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ABSTRACT

Photoplethysmography (PPG) is a non-invasive photometric technique which measures
changes in the volume of blood in the biological tissue. PPG is well-known for its ap-
plication in pulse oximetry used for the continuous monitoring of arterial blood oxygen
saturation (SpO2). Over the past decade, there has been a plethora of research in the
field of PPG, with potential applications beyond pulse oximetry and heart rate moni-
toring. Such applications explore the utilisation of PPG for the assessment of various
bio-markers relating to vascular mechanics, haemodynamics and many others. With the
growing research interest in the field of PPG, a comprehensive understanding of the light-
tissue interaction-based working principle underlying the technique is essential. This
thesis is focussed on the investigation of the fundamental light-tissue interactions in PPG
using the Monte Carlo method. Tissue models have been developed in this thesis which
were characterised by the optical properties (e.g., wavelength- dependent coefficients of
scattering and absorption etc.), the anatomical features (e.g., stratification and dimension
of tissue layers and sublayers etc.), and the physiological parameters (water and blood
content in tissue layers etc.). The Monte Carlo strategy was verified, and was initially
implemented to model the light propagation through a monolayer perfused dermal tis-
sue volume in a reflective mode PPG at the red and near-infrared wavelengths, usually
used in pulse oximetry. Results illustrated the distribution of the scattering-absorption
interaction events, and quantified the optical pathlength, penetration depth and detected
reflectance with the variable sensor geometry (i.e., source-detector separation) and physio-
logical states (i.e., the volume of blood and oxygen saturation) of the tissue. The monolayer
model was also employed to produce the plot resembling the ‘calibration curve’ used in
pulse oximetry. With the knowledge gained from the monolayer-model study, a similar
investigation was performed on a heterogeneous tissue structure of a human finger which
was executed in both reflective and transmissive geometrical settings. The calibration
curves produced from the detected reflectance and transmittance exhibited a high corre-
lation. The absorbances of red and near-infrared light by individual layers of the finger
were quantified at systole and diastole. To the relative absorbance, the contributions of
dermis and bone were the maximum and the minimum, respectively. The dependence of
the optical pathlength on the source-detector separation and the operating wavelength
was quantified by the Differential Pathlength Factor (DPF), which was assessed for the
reflective mode PPG by simulating light propagation through a human forearm tissue
volume. The DPF values were used in experimentally obtained PPG signal in order to de-
termine the time-change in the concentration of oxyhaemoglobin and deoxyhaemoglobin.
Cross-talk and absolute errors were calculated between the simulated and approximated
DPFs. The results presented in the thesis contribute greatly to the understanding on PPG
light-tissue interaction. Such knowledge could also greatly contribute to the development
of the new generation PPG sensors for various applications.
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1
INTRODUCTION

Presently, optical methods have a significant impact on medical diagnostics and monitor-

ing in clinical practice [Mudry et al., 2003]. Such bio-optical methods encompass a range

of modalities, which rely on detecting and analysing the optical radiation changes due to

interaction with biological tissues [Yun and Kwok, 2017; Li and Harrington, 1998; Shen

and van Wijk, 2006]. Commercial and experimental optical technologies have been signifi-

cantly improved with the new developments in fibre optics, Light Emitting Diodes (LED),

laser, Charge Coupled Device (CCD), photodetectors, photomultipliers etc., and therefore

become available for various medical and biological applications [Vigneshvar et al., 2016;

Righini et al., 2009]. These advancements led to modern research trends focussed on mak-

ing medical diagnostics smaller, less expensive, faster and consequently more productive.

Besides the advancement of the hardware and instrumentation, computational technol-

ogy has also crossed an incredibly long path along the way of development [Doronin

and Meglinski, 2011]. Fast and flexible computational processes and algorithms can be

immensely helpful in conceptual design, optimisation, and modification of a particular

experimental bio-optical system. In order to recreate, or ‘model’, a bio-optic experimental

environment using a computational tool, and to rely on the results generated by the model

for prediction or optimisation of the system, a very careful assessment of the modelling

method is necessary [Wang and Tuchin, 2013; Prasad, 2004; Tuchin, 1993].

Monte Carlo method is a computational tool to model the propagation of light through
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biological media [Prahl, 1988]. This method has been adopted by many researchers for

solving critical problems related to light-tissue interaction which are very complicated

to solve theoretically [Zhu and Liu, 2013; Tuchin, 1997; Wang and Tuchin, 2013]. The

advantages of Monte Carlo over other available light-tissue interaction modelling ap-

proaches (such as diffusion approximation, random walk theory, adding-doubling etc.)

are well-documented [Meglinski and Matcher, 2002; Tuchin, 1993; Zhu and Liu, 2013;

Periyasamy and Pramanik, 2014], which makes this method the most acceptable tool for

simulating light-tissue interaction.

Photoplethysmography (PPG) is a non-invasive bio-optical technique for measuring

the volumetric changes in blood associated with the cardiac cycle in the vascular tissue

beds [Allen, 2007]. In PPG, a volume of tissue is illuminated by an optical radiation

that undergoes multiple interaction events as it traverses through different tissue-layers

and finally transmits through the tissue [Kamshilin et al., 2015]. Depending on the

geometrical positioning of the optical source and detector of the PPG sensor, the signal

can be recorded either in (a) a reflective mode, where the optical source and the detector

are placed on the same side of the tissue site so that the reflected and backscattered

light from the tissue is detected, or in (b) a transmissive mode, where the source and the

detector are placed on the two opposite sides of the tissue site (e.g., finger) so that the

refracted or transmitted light is detected. A PPG signal is divided into two components:

an alternating component (AC PPG), which is synchronised with the cardiac cycle and

is generated due to the absorption of light in the pulsatile tissue part (i.e., arterial

blood), and a very slowly varying component (DC PPG) that is originated due to the light

absorption in the non-pulsatile tissue part (i.e., venous blood, bloodless tissue etc.).

The PPG signal is widely utilised in the technique of Pulse Oximetry (PO) for the

estimation of arterial oxygen saturation [Moyle, 2002]. In pulse oximetry, the PPG signals

recorded at the red and near-infrared optical wavelengths, and the arterial oxygen satura-

tion is derived from the ratio of the relative amplitudes of the detected signals. The pulse

oximeter is frequently used in the clinical setting for the continuous monitoring of blood

oxygenation. Recently, there has been a plethora of interest in extending the application

of PPG beyond PO, for example, usage of PPG in the assessment of tissue perfusion,

vascular mechanics, blood pressure, blood viscosity, pulse transit time estimation, pulse
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rate variability etc. [Njoum and Kyriacou, 2017; Abay and Kyriacou, 2015; Budidha et al.,

2018; Reisner et al., 2008].

A large volume of work has been carried out focussing on the technical improvement

of Photoplethysmography and pulse oximetry, for example, reducing the noise and im-

proving signal quality, eliminating the motion artefact, dealing with low tissue perfusion,

acquiring signals from different tissue sites and so on [Allen, 2007; Budidha and Kyriacou,

2018; Hickey et al., 2010; Patel et al., 2018]. However, the field of research on the light-

tissue interaction underlying the PPG technique has been minimally explored yet. Such a

study is of utmost importance for a comprehensive understanding of the fundamental

PPG principle and for widening the domain of PPG application. In order to grow the core

understanding in this field, the present thesis aims to investigate the precise nature of

the light-tissue interaction in PPG and pulse oximetry using the Monte Carlo modelling

strategy.

The main objective of the thesis was to develop a robust and flexible opto-anatomical

model illustrating a full three-dimensional distribution of light-tissue interactions in Pho-

toplethysmography. In this process, a single layer of perfused skin tissue was simulated

rigorously to analyse the behaviour of light through the skin at different states of perfu-

sion and oxygen saturation at a reflective geometry. This initial study was followed by a

further detailed analysis with a specific region of interest, i.e., a heterogeneous volume of

finger tissue. A range of variables was recorded that described the light-tissue interaction

pertinent to PPG and pulse oximetry. With the inspiration from the findings obtained from

these studies, the Monte Carlo model was executed to assess the Differential Pathlength

Factor (DPF) for a tissue-volume of human forearm in a reflective geometrical setting of

PPG. The simulated DPF values were further utilised to determine the time-change in the

concentration of oxyhaemoglobin and deoxyhaemoglobin from experimentally obtained

PPG signal from the forearm.

A brief summary of the chapters of the thesis are discussed below:

• Chapter 2: This chapter describes the basics of human physiology pertinent to

the subject Photoplethysmography. It presents an overview of the respiratory and

circulatory system of the human body and the functions responsible for tissue
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perfusion and oxygenation.

• Chapter 3: This chapter presents a theoretical overview of light-tissue interaction.

It discusses the basic mechanism of light propagation through tissue by the steps of

scattering, absorption, reflection etc. This section also describes the laws of tissue

optics which are crucial for understanding the migration of photons through a

biological media, namely, the Beer-Lambert law and Radiative Transfer formalism.

• Chapter 4: This chapter presents the current state of the art of modelling Pho-

toplethysmography. It presents a brief overview of the light-tissue interaction

modelling methods. Further, this chapter reviews the existing research related

to modelling Photoplethysmography and establishes the importance of the Monte

Carlo modelling.

• Chapter 5: In this chapter, the methodologies of Photoplethysmography and pulse

oximetry are discussed. The working principle of the techniques, especially the

Beer-Lambert law-based calculations are explicitly described and derived. This

chapter states the basic requirements for an adequate modelling strategy for PPG.

• Chapter 6: This chapter presents the detailed steps and shows the necessary

derivations for the basic Monte Carlo model. Additionally, this chapter discusses

the strategy of how the Monte Carlo model is executed in the present work. It

also introduces the two sections of the implementation strategy: monolayer and

multilayer modelling, stating the importance of the individual sections.

• Chapter 7: In this chapter, the basic Monte Carlo model is verified, and the input

and output parameters are characterised. These descriptions clarify the terminolo-

gies and annotations which have been defined in earlier chapters and will be used

in the next chapters.

• Chapter 8: This chapter explores the Monte Carlo model for investigating the light-

tissue interaction in a perfused dermal layer. Variables such as optical pathlength,

penetration depth, and detected reflectance are investigated for different blood

volume and oxygen saturation through a range of optical source-detector separation.
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This chapter also finds the effect of pulsatility on the monolayer model and generates

a plot resembling the typical calibration curve for a pulse oximeter.

• Chapter 9: This chapter executes the Monte Carlo model for estimating the light-

tissue interaction in a volume of multilayer finger tissue. Different variables are

studied in controlled environments. Comparative studies between the reflectance

and transmittance modes are also explored.

• Chapter 10: This chapter explores the Monte Carlo model to find the DPF in the

monolayer perfused dermis model and the multilayer model of the human fore-

arm. The comparative values of DPFs in red and infrared wavelengths are plotted

and tabulated for shorter and longer source-detector separations. The measured

DPF values are applied to calculate the concentration-change of oxy and deoxy-

haemoglobin from the experimentally obtained PPG signals. The cross-talk and

absolute errors were assessed from between the simulated and approximated DPFs.

• Chapter 11: This chapter discusses the overall features of the models, results from

the entire thesis, and provides recommendations for future works.
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BACKGROUND PHYSIOLOGY

2.1 Introduction

Oxygen is required by tissue for its survival. Inadequate oxygen supply to cells leads to

poor metabolism, and eventually cell death. In the human body, the oxygen is received,

transported and released by the respiratory system. The carrier of oxygen is blood which

circulates through the body as a part of the circulatory system. In the framework of this

thesis, it is important to build an understanding of the physiological processes, namely

cardiac cycle, oxygen saturation, gas exchange etc. This chapter, therefore, introduces the

basic human physiology of blood circulation and gaseous transport which are parts of the

circulatory and respiratory systems.

2.2 Circulatory system

The part of the circulatory system that carries oxygenated blood from the heart to the

body parts and deoxygenated blood from the organs to the heart is known as systemic

circulation. On the other hand, the part of the circulatory system that carries deoxy-

genated blood from heart to lungs and oxygenated blood from lungs to heart is called

pulmonary circulation [Tortora and Derrickson, 2008]. The driving organ of this system

is the Heart and the medium of transport is the Blood. Other main parts of the system
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Figure 2.1: Schematic of the human circulatory system [Williams et al., 1989]

include Arteries, Arterioles, Capillaries, Venules, and Veins. A schematic of the circulatory

system is presented in Figure 2.1. The arterial circulation carries blood with Oxygen (O2)

from heart to the upper (head and neck) and lower (rest of the body) parts of the body, and

the venous circulation carries the blood with carbon dioxide (CO2) from different corners

of the body to the heart. The pulmonary vein and artery connect the circulatory system to

the Lungs for the pulmonary circulation, which is also a part of the Respiratory system.

7
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2.2.1 Heart

Figure 2.2: An anatomical view of the Human Heart [Williams et al., 1989]

The heart is the main organ of the Systemic circulation [Tortora and Derrickson, 2008].

A muscle wall, known as the septum, divides the heart into left and right parts, each of

which again is divided into two chambers. The upper and lower chambers of each part of

the heart are known as the atrium and ventricle, respectively. The right atrium receives

deoxygenated blood returning from the whole body through superior and inferior vena

cava, and the right ventricle pumps out that blood to lungs via pulmonary arteries. The

left atrium receives the oxygenated blood returning from the lungs through pulmonary

veins and the left ventricle then pumps this blood around the body through the aorta.

There are four valves (namely, two semilunar (SL) valves and two atrioventricular (AV)

valves) in the heart that control the flow of blood coming in and going out from the

heart. All these four valves open in only one direction, preventing any backward flow of

blood. The sound of the heartbeat, often known as ‘lub-dub’ sound, is originated from
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the movements of these heart valves. The AV valves allow blood to move from atria to

ventricles, right after which those snap shut, causing the first heart sound or ‘lub’. The

second heart sound or ‘dub’ is generated when the SL valves shut following the blood flow

from the ventricles to the arteries. The anatomical features of the heart chambers, valves,

arteries and veins are presented in Figure 2.2.

A cardiac cycle consists of a series of ‘Systole’ and ‘Diastole’ conditions of the heart,

which are caused due to the contraction and relaxation of the cardiac muscles. The entire

process is repeated through the cycles of atrial diastole, atrial systole, ventricular systole

and ventricular diastole.

2.2.2 Arteries, Veins and Capillaries

Arteries carry blood away from the heart and veins carry blood back to the heart, only

except pulmonary circulation, where the reverse case happens. An artery, when it reaches

an organ, branches out into narrower arterioles, which branch into even narrower capillar-

ies. The exchanges of food substances, gases etc. take place in capillaries. The capillaries

then combine into venules, which further combine and connect to veins.

Figure 2.3: The anatomy of Artery (A), Capillary (B), and Vein (C) [Williams et al., 1989]

Arteries and arterioles have thicker walls than veins and venules because they are

closer to the heart and receive blood that is surging at a far greater pressure [Tortora
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and Derrickson, 2008]. By the time blood has passed through capillaries and entered

venules, the pressure initially exerted upon it by heart contractions has diminished. The

venule and vein walls are considerably thinner allowing more blood to flow with less

vessel resistance [Tortora and Derrickson, 2008]. Capillary is the junction where the

arterial and venous circulations meet. The capillaries supply blood to the corresponding

organ and tissues and help in ‘tissue perfusion’. Exchange of gases and other substances

occurs in the capillaries between the blood and the surrounding cells and their tissue

fluid. The diameter of a capillary is much smaller than those of arterioles and venules.

Blood flow through capillaries is often described as ‘microcirculation’ [Williams et al.,

1989]. The muscle fibre present in the vessels, especially in arteries, contracts and dilates

periodically, which are commonly known as ‘vasocontraction’ and ‘vasodilation’. These

two phenomena result in changes in the pressure in the vessel, and thus control the blood

flow.

2.2.3 Blood

Blood accounts for 7% of the total human bodyweight [Elert, 2014]. The average adult

blood volume is roughly 5 litres. The mean temperature of blood is 38 ◦ C and pH

is 7.35-7.45. Blood consists of several types of cells (i.e, Erythrocytes, Leukocytes and

Thrombocytes) and liquid Plasma.

Normal blood plasma contains 90-92% of water. Plasma consists of dissolved sub-

stances including electrolytes (e.g. sodium, chlorine, potassium, manganese, and calcium

ions); blood plasma proteins (e.g. albumin, globulin, fibrinogen); and Hormones. The

cellular structures of blood are embedded in the plasma.

The Erythrocytes, also known as Red Blood Cells (RBC), are one of the main compo-

nents of blood, which are as numerous as 4.7−6.1 million for male and 4.2−5.4 million for

female per µL of blood, making up about 25% of the total cells in the body. Erythrocytes

contain Haemoglobins and take the most essential part in transport of gases all around

the body.

The Leukocyte, commonly known as White Blood Cell (WBC), is a major component of

the body 's immunity system. Leukocytes are less numerous than erythrocytes: typically

5000 to 10,000 per µL of blood. The main function of leukocytes is to protect the body
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against invading micro-organisms and body cells with mutated DNA, and cleaning up the

debris.

The Thrombocyte, also known as Platelet is an important component of blood that

helps blood to clot. Platelets are typically 150,000−160,000 in number per µL of blood.

Platelets are mainly responsible for Hemostasis, i.e., the process by which the body seals

a ruptured blood vessel and prevents further loss of blood.

2.2.4 Transport of Oxygen

A small amount of oxygen (about 1.5% of the total blood) is dissolved in the blood plasma

and transported. The major part of the gases form chemical bonding with blood constituent

and transported as some compounds.

Oxygen transport relies mainly on erythrocytes. Erythrocyte contains Haemoglobin

(Hb). Haem is the portion of haemoglobin that contains iron and is capable of binding oxy-

gen. Each Hb molecule contains four subunits, allowing maximum four oxygen molecules

to bind with [Williams et al., 1989]. The following reversible reaction between Hb and O2

forms the final product, Oxyhaemoglobin (HbO2):

Hb+O2 ⇔ HbO2 (2.1)

Binding of the first oxygen molecule causes a conformational change in haemoglobin that

allows the second molecule of oxygen to bind more readily. As each molecule of oxygen is

bound, it further facilitates the binding of the next molecule, until all four haem sites are

occupied by oxygen [Tortora and Derrickson, 2008]. The haemoglobin becomes saturated

when all four oxygen molecules are attached. Thus, considering whole blood, haemoglobin

saturation refers to the percentage of the haem that is bound with oxygen at that instant,

which is 95-99% for a normal adult human [Williams et al., 1989].

2.2.5 Oxyhaemoglobin dissociation curve

An important aspect of the binding of oxygen to and disassociating from haem is the

partial pressure. In a gas mixture, the pressure exerted by an individual gas is known

as the partial pressure of that gas. Gases have the tendency to diffuse from an area of

higher partial pressure to an area of lower partial pressure.
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Figure 2.4: Oxygen - Haemoglobin dissociation curve [Moyle, 2002]

The relationship between the partial pressure of oxygen PO2 and the ability how

readily oxygen binds to or dissociates from haemoglobin is represented by the oxygen-

haemoglobin dissociation curve. The curve possesses a sigmoid shape, as shown in Figure

2.4. It describes the nature of the interaction between the haemoglobin and oxygen.

Haemoglobin’s affinity to bind oxygen increases gradually with the gradual increase of

the partial pressure of oxygen, until it reaches a maximum value, typically 60 mmHg.

After this point, oxygen saturation very slightly increases despite a rapid increase in

partial pressure. Then it appears as the haemoglobin is saturated with oxygen. Beyond

this point, an urgent requirement of increased oxygenation for a patient would need

either external blood supply (blood transfusion) for increasing the haemoglobin count or

supplemental oxygen supply for dissolving in the blood plasma.

The partial pressure of oxygen in the blood at which the haemoglobin is 50% saturated

is typically about 26.6 mmHg for a healthy person. This point is known as the P50. The
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P50 is a conventional measure of haemoglobin affinity for oxygen. In abnormal conditions,

the haemoglobin’s oxygen affinity is altered resulting in shifting the curve to the right

or left, and alteration in the P50 value. An increased P50 indicates a right shift of the

standard curve, which means that a larger partial pressure is necessary to maintain

a 50% oxygen saturation. This indicates a decreased affinity. Conversely, a lower P50

indicates a left shift and a higher affinity. The right or left shift of the curve depend on

several factors, such as blood pH, temperature, presence of hydrogen ion due to presence

of carbon dioxide or other acidic byproducts (which influences the pH of blood), presence

of the byproduct called 2,3-diphosphoglyceric acid (2,3-DPG) etc., as illustrated in Figure

2.4 [Tortora and Derrickson, 2008]. This shift is known Bohr shift. In this context, the

physiological significance of the Bohr effect should be discussed. The Bohr effect enables

the body to adapt to changing conditions and makes it possible to supply extra oxygen

to tissues that need it the most. For example, when muscles are undergoing strenuous

activity, they require large amounts of oxygen to conduct cellular respiration, which

generates CO2 (and therefore HCO3− and H+) as byproducts. These waste products

lower the pH of the blood, which increases oxygen delivery to the active muscles. Carbon

dioxide is not the only molecule that can trigger the Bohr effect. If muscle cells are not

receiving enough oxygen for cellular respiration, they resort to lactic acid fermentation,

which releases lactic acid as a byproduct. This increases the acidity of the blood far more

than CO2 alone, which reflects the cells’ even greater need for oxygen. In fact, under

anaerobic conditions, muscles generate lactic acid so quickly that pH of the blood passing

through the muscles will drop to around 7.2, which causes haemoglobin to begin releasing

roughly 10% more oxygen.

2.2.6 Transport of Carbon dioxide

A certain fraction of carbon dioxide (7-10%)) dissolves in the blood plasma and gets trans-

ported. Most of the carbon dioxide is transported to the lungs as bicarbonate. Carbonic

anhydrase (CA) causes carbon dioxide and water to form carbonic acid (H2CO3), which

dissociates into two ions: bicarbonate (HCO−
3 ) and hydrogen (H+). The following formula
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depicts this reaction:

CO2 +H2O+ [CA]⇔ H2CO3 ⇔ H++HCO3− (2.2)

Bicarbonate tends to build up in the erythrocytes so that there is a greater concentration

of bicarbonate in the erythrocytes than in the surrounding blood plasma. Some of the

bicarbonates leave the erythrocytes and move down its concentration gradient into the

plasma in exchange for chloride (Cl−) ions, a phenomenon known as the chloride shift.

About 20% of carbon dioxide is bound with haemoglobin and is transported to the

lungs. Carbon dioxide does not bind to iron as oxygen does; instead, carbon dioxide binds

amino acid on the globin portions of haemoglobin to form carbaminohaemoglobin following

the equation below:

CO2 +Hb ⇔ HbCO2 (2.3)

When haemoglobin is not transporting oxygen, it tends to have a bluish-purple tone to

it, creating the darker maroon colour typical of deoxygenated blood. Similar to oxygen

transport, carbon dioxide transport also is governed by the partial pressure of the gas.

Since CO2 is released in lungs, blood transported from lungs to the tissues contain

lower PCO2 , resulting in diffusion of CO2 in the tissue capillaries to the bloodstream.

This is then brought to lungs alveoli where blood with higher PCO2 releases the gas. In

addition to PCO2 , the oxygen saturation and PO2 in the blood also influence the affinity of

haemoglobin for carbon dioxide. When oxygen is not bound to haem, and also the PCO2 is

low, then only haemoglobin readily binds to carbon dioxide [OpenStax, 2013].

2.2.7 Oxygen Saturation of Blood

Oxygen saturation of blood is an expression of the amount of oxygen carried by the

blood. Arterial blood oxygen saturation (SaO2) is measured as the ratio of oxygenated

haemoglobin to the total haemoglobin present in the arterial blood [Moyle, 2002], that

can be written in a percentage form as:

SaO2 = [HbO2]
[Hb]+ [HbO2]

×100% (2.4)

where [Hb] and [HbO2] are the concentrations of deoxyhaemoglobin and oxyhaemoglobin

respectively. Arterial blood oxygen saturation measured by Pulse Oximeters (PO) is known
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as SpO2. PO specifically measures the peripheral blood oxygen saturation. Although

SpO2 is not exactly the same as to SaO2, the two have been shown to correlate well

[Moyle, 2002; Volgyesi et al., 1990]. PO is used for the continuous non-invasive monitoring

of SaO2, whereas for a more specific measurement, Arterial Blood Gas (ABG) analysis

is performed on the blood sample collected from the artery through invasive procedure.

An arterial oxygen saturation SaO2 = 95−100% is considered to be a normal value,

and SaO2 < 90% is considered low. Low blood oxygen saturation reading indicates the

inadequacy of oxygen in the blood (hypoxaemia) which results in shortness of breath,

an increased rate of breathing and pursed lip breathing. A serious hypoxaemia leads to

respiratory failure [Colledge et al., 2010].

Measurement of oxygen saturation from venous blood (SvO2) also offers clinical

importance, reflecting the average amount of oxygen remaining in the blood after all

tissues in the body have removed oxygen from the haemoglobin [Ladakis et al., 2001].

Mixed venous oxygen saturation is measured from a true mixed venous blood sample

drawn from the tip of the pulmonary artery catheter, which includes all of the venous blood

returning from the head and arms (via superior vena cava), the gut and lower extremities

(via the inferior vena cava) and the coronary veins (via the coronary sinus). However, the

use of a pulmonary catheter has been declined in medical practice due to potential risk

factors associated with it. Thus as an alternative, the venous oxygen saturation is derived

in a less invasive manner from the blood drawn from the internal jugular or subclavian

catheters (central line) and known as central venous oxygen saturation, which is found to

closely correlate to the mixed venous oxygen saturation [Ladakis et al., 2001]. The normal

value of SvO2 of mixed blood is around 70%, however that measured from peripheral

blood is found to be slightly higher [Nitzan and Taitelbaum, 2008]. The values of SvO2

are found to be about 10% lower than SaO2 [Nitzan et al., 2000].

Total tissue oxygen saturation (StO2) is also measured sometimes which gives an

idea of the oxygenation of tissue in different conditions, and Near Infrared Spectroscopy

method is normally used for StO2 monitoring, especially from muscle and brain [Nitzan

and Taitelbaum, 2008; Scheeren et al., 2012; Epstein and Haghenbeck, 2014].
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Figure 2.5: The Respiratory structure in human body [Scanlon and Sanders, 2014]

2.3 Respiratory system

Respiratory system comprises specific organs and structures responsible for inhaling

oxygen and expelling carbon dioxide from the human body. A schematic of the human

respiratory system is presented in Figure 2.5. The oxygen-rich air is carried to the lungs

and carbon dioxide is carried out from the lungs through the airways. The airways

include nose and linked air passages (nasal cavities), mouth, larynx (voice box), trachea

(windpipe), bronchial tubes or bronchi, and their branches [Tortora and Derrickson, 2008].

The lungs lie on either side of the breastbone, within the chest cavity of the human body.

Pleura is the cavity that attaches the lungs with the thoracic cavity which normally

contains a little amount of fluid. The lungs are divided into five main sections called lobes.

Within the lungs, the bronchi branch into thousands of smaller, thinner tubes called

bronchioles. These tubes end in bunches of tiny round air sacs called alveoli. Each of these

air sacs is covered with capillaries that connect with the circulatory system of the body.

Diaphragm is the membrane that separates lungs and thorax from the abdominal cavity
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[Tortora and Derrickson, 2008].

The pulmonary artery and its branches deliver blood rich in carbon dioxide, and

lacking in oxygen, to the capillaries that surround the alveoli. The alveolar walls are

extremely thin (about 0.2 µm). These walls are composed of single layers of tissues called

epithelial cells, which are very thin and take part in gas exchange.

2.3.1 Exchange of gases

The exchange of gases (oxygen and carbon dioxide) depends on the mechanism of diffusion.

In the current context, diffusion refers to the process of movement of gases from a higher

to a lower concentration area. This process does not require any energy. Instead, it

depends on the partial pressure gradient. The exchange takes place at two sites in the

body: in the alveoli of the lungs, where oxygen is picked up and carbon dioxide is released

at the respiratory membrane (external exchange), and at the capillary beds of the tissues,

where oxygen is released and carbon dioxide is picked up (internal exchange). In the

alveolar air, PO2 is about 100 mm Hg, whereas in the pulmonary capillary blood PO2 is

40 mm Hg, causing a strong pressure gradient resulting in oxygen to diffuse through

the respiratory membrane to the pulmonary capillary blood. On the other hand, PCO2

in the pulmonary capillary blood is about 46 mm Hg, whereas that in the alveolar air

is 40 mm Hg, causing a release of CO2. Therefore, the blood coming out from the lungs

is rich in oxygen and lack carbon dioxide. In the tissue capillaries, where PO2 and PCO2

are respectively 40 mm Hg and 46 mm Hg, the created pressure gradient causes oxygen

to dissociate from haemoglobin, diffuse out of the blood, cross the interstitial space, and

enter the tissue. In a reverse manner, carbon dioxide released into the tissues diffuse into

the blood and is carried to the heart and lungs again.

2.4 Summary

The basic principles of physiology and anatomy in relevance to the present thesis have

been demonstrated in this chapter. The physiological processes such as perfusion, oxygen

saturation, transport and exchange of gases, cardiac cycle etc. have been introduced in

this chapter, which is crucial for understanding the in-depth studies presented later in the
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thesis. The physiological process of oxygen affinity of haemoglobin has been introduced

in this chapter. The biochemical processes taking place during the transport of oxygen

and carbon di-oxide has been described and the the Bohr shift in the oxygen dissociation

curve in relationship with the gaseous transport have been described. The definitions and

descriptions demonstrated in this chapter, therefore, set the necessary background for

the following chapters, where the light-tissue interactions in Photoplethysmography and

Pulse Oximetry will be discussed.
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3
BASICS OF TISSUE OPTICS

3.1 Introduction

The interactions between light and the medium it is propagating through largely depend

on the two main factors: homogeneity and isotropy of the medium. Homogeneity and

isotropy refer to the spatial change and the angular symmetry of the optical properties in

the medium, respectively [Jacques and Prahl, 2007]. Biological tissue, due to its complex

non-uniform architecture, exhibits high levels of inhomogeneity and anisotropy. In order

to model the propagation of light through a complex biological tissue medium, it is

important to understand all the physical processes behind it. The main mechanisms of

interaction between light and biological tissues are ‘scattering’ and ‘absorption’. Also, in a

finite medium, when light interacts with the boundary, there are the events of ‘reflection

and refraction’. The present chapter is dedicated to the theories and concepts behind

modelling the migration of photons through a biological tissue medium [Wang and Tuchin,

2013; Tuchin, 2007; Prasad, 2004].
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3.2 Mechanism of light propagation through tissue

3.2.1 Scattering

The scattering of light may be defined as the redirection of light that takes places when

an incident light ray encounters an obstacle, or in this case, the scattering particle.

Depending on the size of the scatterer relative to the optical wavelength, the scattering is

divided into two main categories, namely, Rayleigh scattering and Mie scattering [Bohren

and Huffman, 2008]. When the radius of the scattering particle is much smaller than the

wavelength of the incident light, Rayleigh scattering occurs. When the dimension of the

scattering particle is bigger than or in the order of the incident radiation, Mie scattering

dominates. When a photon interacts with a particle, it may undergo the ‘elastic’ type

of scattering where the direction of scattered photons change but no change in energy

takes place between the exciting photon and scattered photon. There is also a form of

inelastic scattering where the light is scattered with an energy different from the incident

radiation, for example, Raman scattering. For a simpler understanding on the general

scattering theory, the elastic scattering type will be discussed in this chapter where the

energy remains constant and no particle is annihilated or created.

Figure 3.1 represents a typical scattering interaction where a photon redirects from

its initial direction s to a new direction s’ through a zenith angle θ and an azimuth φ

respectively, as shown in Figure 3.1. Generally, all new possible directions do not occur

with equal probability, but depend on the type of the scatterer and the possible structure

of the scattering medium [Bohren and Huffman, 2008]. The change in direction due to

scattering, in general, shows a distinct distribution. The distribution, which represents

the likelihood that a photon with an initial direction s will be scattered into a direction

s’, is expressed by the factor ‘differential scattering cross-section’ dCs
dΩ ) where dΩ is the

differential solid angle, i.e., dΩ= sinθdθdφ.

The ability of the particle to scatter light in all directions is expressed as an effective

surface area and called total scattering cross-section, Cs which is obtained by integrating

the differential cross-section over all angles [Träger, 2012]:

Cs =
∫
4π

dCs

dΩ
dΩ (3.1)
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Figure 3.1: A typical scattering event of a photon in a conventional 3-D Cartesian co-
ordinate system is shown. The photon is incident from a direction S along z-axis (shown
by the blue solid arrow) and interacts with the scatterer positioned at the origin, i.e.,
scattering centre (shown by blue shaded region). The interaction results in a deviation of
from the initial direction to a new direction S’ (shown by red line) through a zenith angle
θ and an azimuth φ.

.

The scattering coefficient µs for a scattering medium with particle density ρ is defined

as the product of the scattering cross-section and the density of the scatterers:

µs = ρ ·Cs (3.2)

This is the likelihood that the photon will be scattered while travelling through the

medium.

The probability that a photon propagating through a medium with a scattering

coefficient µs does not scatter over a distance x is equal to e−µsx. Therefore, the probability

that the photon scatters between the distances l′ and l′+dl′ is:

p(l′)=µse−µs l′dl′. (3.3)
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This leads to the following expression for the average scattering length l for light through

the medium with a scattering coefficient µs:

l =
∫ ∞

l′=0
l′µse−µs l′dl′

= 1
µs

(3.4)

Therefore, the scattering coefficient of a medium is the inverse of the free path length

(i.e., the distance between two scattering interactions) of the photon travelling through

the medium, and is expressed in the unit of length−1.

3.2.1.1 Phase function and Scattering anisotropy

The cumulative effect of all scattering events throughout the entire volume of the medium

results in a scattering profile. The scattering profile is a representation of all possible

angles of scattering and the likelihood of each scattering direction. This profile is known

as the ‘Scattering phase function’. The name ‘phase function’ does not have any correlation

with the phase of the electromagnetic wave [Splinter and Hooper, 2006].

The phase function p(s, s′) (expressed in sr−1) represents the probability of a photon to

redirect from the incident direction s to the scattered direction s’ [Bohren and Huffman,

2008; Tuchin, 2007]. Generally, phase functions are different for different scatterers. For

light propagation in medium, an average phase function is often considered. Usually,

the average phase function assumes that the scattering event is symmetric about the

direction of the incident light, i.e., to z-direction (Fig. 3.1). Therefore, the phase function is

independent of φ and a function of the scattering angle θ only. The scattering angle ranges

from 0o to 180o, with θ = 0o and θ = 180o corresponding to the forward and backward

scattering, respectively. The assumption of the scattering symmetry about the angle φ

leads to the identity:

p(s, s′)≡ p(θ). (3.5)

It should be noted that cos(θ) has a one-to-one relationship with the angle θ within the

range [0◦,180◦]. So the average phase function can also be expressed as a function of

cos(θ), i.e., p(cos(θ)), which additionally implies that each interaction takes place in same

plane during light-tissue interaction [Splinter and Hooper, 2006].
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Figure 3.2: A demonstration of the anisotropy factor is presented. Scattering event causes
a photon angle to deviate at any scattering angle θ and azimuth φ. The mean of cosine of
the scattering angles produce the net scattered amount in the forward direction.

.

Phase function is a probability distribution, thus the condition of normalisation will

require that the integral of the phase function over all angles equals to unity:∫ 4π

0
p(s, s′)dΩ= 1 (3.6)

Comparing the above equation with Eq. 3.2, the differential scattering cross-section in

its normalised form can be replaced by the scattering phase function.

An isotropic phase function can be expressed from the above equation as:

p(s, s′)= 1
4π

(3.7)

which entails that scattering in every 4π solid angle has equal probability, and is referred

to the isotropic scattering.

In the complex medium such as biological tissue, introduction of potentially different

probabilities for scattering over the various quadrants of space is required. The anisotropic
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Figure 3.3: The relationship of the Henyey-Greenstein phase function p(θ) with the
scattering angle θ for different anisotropy factor (with g=0,0.3,0.5,0.7,0.9 and 0.99) is
presented. For g = 0, i.e., for isotropic scattering the phase function is a straight line, and
for higher values of g it tends toward a sharp peak at the scattering angle 0o.

behaviour of the scattering angle relative to the incident direction is best characterised by

the Henyey-Greenstein (HG) phase function [Henyey and Greenstein, 1941]. This phase

function was originally derived to explain the scattering phenomena in interstellar gas

clouds, and has been successfully implemented for explaining the scattering of light in

tissue [Splinter and Hooper, 2006; Calabro and Bigio, 2014]. The mathematical expression

for HG phase function in its three-dimensional form is given by:

pHG(θ)= 1
4π

1− g2

(1−2gcos(θ)+ g2)3/2 (3.8)

where g is known as the anisotropy factor [Bohren and Huffman, 2008; Henyey and

Greenstein, 1941; Tuchin, 2007]. g is a dimensionless quantity, expressed as the average

cosines of the scattering angles, i.e., the component along the forward scattering direction:

g = 〈cos(θ)〉. In common practice, HG phase function is described as the probability of
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Figure 3.4: An example of the typical relationship between the mean free path (MFP)
and reduced mean free path (MFP’) from a source to a detector that are marked yellow is
shown [Tuchin, 1993]. In this case, one MFP’ is equivalent to ten MFPs, creating random
small deflection angles θ1,θ2, ...,θ10. The free pathlengths between two consecutive photon
interactions are random and not equal.

cosθ:

pHG(cos(θ))= 1
2

1− g2

(1−2gcos(θ)+ g2)3/2 (3.9)

The physical explanation of the anisotropy factor is illustrated in Figure 3.2. All photons

deviated through any scattering angle θ will have components along the forward direction,

i.e., cos(θ). Therefore, the average of these components gives the measure of net scattering

in the forward direction. The value of g varies in the range from −1 to 1; g = 0 corresponds

to isotropic (Rayleigh) scattering, g = 1 to total forward scattering (Mie scattering at large

particles), and g =−1 to total backward scattering. In tissue medium, the value of g is

close to 1 which implies that forward scattering dominates there. Consequently, the mean

scattering angle cos−1 g is very small, i.e., small angles of scattering is favoured in tissue

medium. The relationship between the phase function and the anisotropy factor g is given

in Figure 3.3.
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The reduced scattering coefficient is a lumped property incorporating the scattering

coefficient µs and the anisotropy g:

µ′s =µs(1− g). (3.10)

The purpose of µ′s is to describe the diffusion of photons in a random walk of step size

of 1/µ′s where each step involves isotropic scattering. Such a description is equivalent to

describing the photon movement using many small steps 1/µs that each involves only a

partial deflection angle θ if there are many scattering events before an absorption event.

This situation of scattering-dominated light transport is called the diffusion regime.

Figure 3.4 shows the equivalence of taking ten smaller steps of mean free path

(MFP = 1
µs

) with anisotropic deflection angles, and one big step with a reduced mean free

path (MFP ′ = 1
µ′

s
).

3.2.2 Absorption

In general, absorption quantifies the conversion of light energy into other forms of

energy. A molecule, when interacts with a photon, might rise to an excited state. There

is a number of mechanisms which it might follow to come back to the lower ground

state. It might lead to fluorescence or phosphorescence where the excited molecules

decay back to the ground state by emitting light of higher wavelength than the exciting

light, with a delay governing by the life time of the system. However, in most cases the

molecule returns to its ground state via a radiation-less decay and the absorbed energy

gets converted into thermal energy through inter-molecular de-excitation processes like

molecular vibrations and rotations, and extra-molecular de-excitation processes like

collisions and general molecular motion [Splinter and Hooper, 2006]. There are several

expressions to quantify the absorption of light, namely, extinction coefficient, absorption

coefficient, molar attenuation coefficient etc. These expressions are not quantitatively

similar to each other and have different applications. The coefficients of absorbance is

discussed in details later in this chapter (in the Section 3.4).
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Figure 3.5: A schematic diagram of reflection and refraction is presented. Red, blue and
violet lines are respectively the incident, reflected and refracted beam directions. θi,θr,θt
are the angles of incidence, reflection and transmission (refraction), respectively. ni and
nt are the refractive indices of the two different media, separated by the interface.

3.2.3 Interaction in the boundary

During propagating through a medium, when light hits the boundary, i.e., either at the

interface of the tissue layer and the external medium or at the interface between two

consecutive different tissue layers, a fraction of light is reflected back into the medium

and the rest of the light is refracted or transmitted to the other medium. As shown in

Figure 3.5, if a light beam is incident on the interface between two media having two

different indices of refraction ( ni and nt), the beam is partially reflected at an angle

equal to the angle of incidence (θi = θr). The rest of the beam is refracted or transmitted

to the other medium at an angle θt, which is different from θi. The angle of refraction is

determined by Snell’s law [Ganesan and Hecht, 2008]:

ni sinθi = nt sinθt (3.11)

The reflectance R, i.e., the intensity of reflected beam is determined by Fresnel
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equation [Ganesan and Hecht, 2008]:

R = 1
2

[
sin2(θi −θt)
sin2(θi +θt)

+ tan2(θi −θt)
tan2(θi +θt)

]
(3.12)

For normal incidence, the direction of incidence and reflection is the same, i.e., along the

normal to the surface (θi = θr = 0). In that condition, the reflectance value reduces to:

R =
(

ni −nt

ni +nt

)2

(3.13)

The sum of the reflectance (i.e., reflected intensity R) and the transmittance (i.e., trans-

mitted intensity T) equals to the total intensity of the light (considering the total intensity

of light is unity, i.e., I = 1) [Ganesan and Hecht, 2008] (in an non-absorbing medium):

R+T = 1 (3.14)

3.3 Tissue optical properties

Specifying the optical properties of tissue is the first step for light-tissue interaction

modelling [Jacques, 2013]. The main optical properties of tissue are [Splinter and Hooper,

2006]:

1. absorption coefficient µa;

2. scattering coefficient µs;

3. anisotropy factor g.

Different tissue species exhibit different optical properties, i.e., the capacity of absorb-

ing and scattering light is different for different tissue components. Also, the optical

properties vary with wavelengths. To illustrate the variability of the optical properties,

the absorption spectra for some of the common absorbers present in the tissue, e.g.,

oxyhaemoglobin, deoxyhaemoglobin and water are shown in Figure 3.6. As shown, the

three absorbers exhibit different natures of absorption. For example, around 650 nm

optical wavelength, oxy and deoxyhaemoglobin absorb much higher amount of light than

the water. Again, around 1200 nm, absorption by water is much higher compared to oxy

and deoxyhaemoglobin.
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Figure 3.6: Absorption spectra for deoxyhaemoglobin, oxyhaemoglobin and water are
presented. The absorption coefficient and the wavelength are expressed in the units of
mm−1 and nm respectively. Y-axis is presented in logarithmic scale for clear visibility. The
graph is produced using the data from Bosschaart et al. [2014]; Hale and Querry [1973].

The scattering coefficient and anisotropy factor also exhibit different values for dif-

ferent tissue specimen and vary with wavelength. An example of the variability in the

reduced scattering coefficient (which is a combination of the scattering coefficient and the

anisotropy factor as defined earlier) for human dermis, subdermal fat and muscle tissues

is illustrated in Figure 3.7. The dermis is found to exhibit stronger scattering properties

compared to muscle and fat, and also the values vary with wavelengths.

Determination of the optical properties of tissues is a complex method which includes

sophisticated experiments with the tissue-region of interest, followed by theoretical analy-

sis [Jacques, 2013; Tuchin, 1997; Wang and Tuchin, 2013]. The absorption and scattering

data presented in this section are collected from published literature [Bosschaart et al.,

2014; Hale and Querry, 1973; Simpson et al., 1998; Laufer et al., 1998]. In the model
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Figure 3.7: Scattering spectra for dermal tissue, subdermal fat and muscle tissue are
presented. The scattering coefficient and the wavelength are presented in the units of
mm−1 and nm respectively. The graph is produced using the data from [Simpson et al.,
1998; Laufer et al., 1998]

.

presented in this thesis, the tissue volume will be characterised using the data collected

or derived from literature and text books, and will be discussed in the next chapters.

3.4 Beer-Lambert-Bouguer law

Attenuation of light through a material sample is often described by the Beer-Lambert-

Bouguer law, also known as Beer-Lambert law, Beer’s law or Lambert-Beer law. The law

was first discovered by Pierre Bouguer before 1729, which was cited by Johann Heinrich

Lambert in 1760 [Bouguer, 1729; Lambert, 1892]. This law stated the relationship be-

tween the optical path through the sample material and the attenuation of light. Much

later, August Beer discovered another attenuation relation in 1852, stating the relation-
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ship between the light absorbance through the sample material and the concentration of

the sample [Beer, 1852]. This law has an extensive application in various fields including

chemical analysis and physical optics [Splinter and Hooper, 2006]. The foundation of

Photoplethysmography and pulse oximetry also relies on the Beer-Lambert law [Webster,

1997]. For a clear view on this fundamental law, different aspects of expressions and

derivations are described in details in this section.

3.4.1 Transmittance, Absorbance and Optical Depth

Prior to the derivation of Beer-Lambert law, it is important to define the basic factors. The

amount of absorbed light in the medium is termed as ‘absorbance’ A. Transmittance rep-

resents the unabsorbed amount of light, transmitting through the medium. Considering

I0 and I t represent respectively the incident and transmitted intensity, the absorbance

can be related to the transmittance
(
T = I t

I0

)
by a negative logarithmic (with base 10)

relationship as shown below:

A =−log10 (T)=−log10

(
I t

I0

)
. (3.15)

For convenience, the above relationship also can be presented in its natural logarithmic

form, and the attenuation then is termed as Optical Depth (OD), which is given by,

OD =−ln
(

I t

I0

)
= A× ln(10). (3.16)

In some cases, the absorbance is also termed as Optical Density [Matcher et al., 1994],

however, this use is discouraged scientifically [Nic et al., 2005].

3.4.2 Derivation of the law: classical approach

According to Lambert’s law, the rate of decrease in the intensity of light with thickness

(x) of the medium is proportional to the intensity of the incident light I. When expressed

mathematically,

− dI
dx

∝ I

− dI
dx

= k1I
(3.17)
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where k1 is the proportionality constant. Integrating the left side between the minimum

and maximum intensity values (I = I0 and I = I t), and the right side between the min-

imum and maximum pathlength covered by light (x = 0 to x = d), the above equation

reduces to:

− dI
I

= k1dx

⇒
∫ I t

I0

dI
I

= k1

∫ d

0
dx

⇒ ln
(

I t

I0

)
=−k1d

(3.18)

For convenience, the above equation in natural logarithm sometimes is converted into the

logarithm with base 10 as:

log10

(
I t

I0

)
= −k1d

ln(10)
(3.19)

Therefore, from Lambert’s law, a relationship between the attenuation and the pathlength

traversed by light in the medium are expressed as:

A = −k1d
ln(10)

(3.20)

On the other hand, Beer’s law presents the relationship between the attenuation A and

the concentration C of the absorber in the medium. Following the similar algebraic steps

as above, the Beer’s law presents:

A = −k2C
ln(10)

(3.21)

where k2 is the proportionality constant.

Combination of Lambert’s and Beer’s law presents the linear relationship of A with

both d and C:

A = KCd (3.22)

where K is the proportionality constant.

3.4.3 Derivation of the combined Beer-Lambert law: modern approach

Let us Consider a beam of parallel monochromatic light with intensity I0 striking the

sample at the surface of the sample (medium) as shown in Figure 3.8. After passing

through the path length d of the sample, which contains N molecules/cm3, the intensity

of the light reduces to I t.
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Figure 3.8: A schematic to demonstrate Beer-Lambert law is presented. Ix is the propagat-
ing light beam towards the x-axis through the medium with the incident and transmitted
intensity I0 and I t respectively. There is a small slab of cross-section with an area S and
infinitesimal thickness dx within the medium that absorbs dI amount of light intensity.
The total thickness of the medium, i.e., the total pathlength traversed by light through
the medium is d.

.

Now, let us consider a cross-section of the block having an area S and an infinitesimal

thickness dx placed at a distance x from the surface. Clearly, the number of molecules

present in the infinitesimal block would be = N ×S×dx. If each molecule has a cross-

sectional area σ where photons of light get absorbed, then the fraction of the total area

where light gets absorbed due to each molecule would be = σ
S .

Therefore, the total fractional area for all molecules in the block where light gets

absorbed would therefore be = (number of molecules) × (fractional area for each molecule)

= (N ×S×dx)× σ
S =σ×N ×dx.

If Ix is the light entering the infinitesimal block, and the light absorbed due to the

absorbing particles is dI, the light exiting the slab would be = Ix −dI. Thus, the fraction

of light absorbed would be dI
Ix

.

Now, since the fractional area is the probability of light striking a molecule, the

fraction of light absorbed in the block = fractional area occupied by all the molecules in

the slab. i.e., dI
Ix

= −σ×N ×dx, the negative sign is to denote the intensity loss due to

absorption.
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Integrating this infinitesimal block over the whole sample of thickness from x = 0 to

x = d, where d is the path length of the entire sample, followed by few algebraic steps, we

get:

ln
(

I t

I0

)
=−σ×N ×d. (3.23)

Let us consider C is the concentration of the absorbers in moles/litre. As N is the

number of molecules/cm3, the number of molecules in 1L = 1000cm3 volume is N ×1000.

Also, (6.023×1023) is the Avagadro number (number of molecules per 1 mole of the

sample). Using these values, the number of molecules/cm3 of the sample can be correlated

to the concentration of the sample C in moles/litre using the relationship:

C = N × 1000
6.023×1023

=⇒N = 6.023×1020 ×C.
(3.24)

Putting above value of N in the Eq. 3.23,

ln
(

I t

I0

)
=−σ×6.023×1020 ×C×d. (3.25)

For a convenient notation, the above natural logarithmic relationship can be converted

into a 10-based logarithmic relationship:

log10

(
I0

I t

)
= σ×6.023×1020

ln(10)
×C×d (3.26)

The left hand side of the above equation stands for the absorbance A. Replacing the

fraction in the right hand side by a constant ε= σ×6.023×1020

ln(10) , the above equation reduces

to the simplistic format:

A = εCd (3.27)

A is unitless. ε is known as molar absorptivity or extinction coefficient of the

sample material, which is expressed in the unit of M−1cm−1. The molar concentration C

and pathlength d are expressed in the units of M and cm respectively.

Considering µa = ln(10)×ε× c, Eq. 3.25 reduces to

ln
(

I t

I0

)
=−µa ×C×d

I t = I0e−µaCd.
(3.28)
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Figure 3.9: Schematic diagram of the optical paths (l) between the source (S) and a
detector (D) through a scattering and a non-scattering medium are shown. The paths
of the photon are denoted by black dotted lines [Budidha, 2016]. The distance between
source and detector is d. The optical path and the source-detector separation are the
same in a non-scattering medium. In a scattering medium, light takes a random path
between source and detector, resulting in the optical path to be DPF-times higher than
the source-detector separation.

µa is termed as Napierian absorption coefficient or just the absorption coefficient,

expressed in the units of cm−1.

If expressed in the 10-based logarithmic form, µa is replaced by the Decadic absorption

coefficient µ10 = µa
ln(10) , leading to another representation of the law from Eq. 3.26:

I t = I010−µ10Cd (3.29)

In conventional use, however, µa is expressed as the (Decadic) absorption coefficient so

that

A = ε · c ·d =µa ·d. (3.30)

3.4.4 Modification in Beer-Lambert law for scattering

Attenuation of light through a highly inhomogeneous medium such as biological tissue

attributes to both strong absorption and multiple scattering. However, Beer-Lambert

law in its generic form does not account for the effects of scattering. Thus, in order

to describe the propagation of light through biological media, hence to incorporate the

effect of scattering, the law is modified and known as the Modified Beer-Lambert law

(MBLL), as given by Eq. 3.31 and 3.34:
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A = εcl+G. (3.31)

where l is the physical pathlength of the photon. Expressing with the Decadic absorption

coefficient µa = ε · c, above expression can be written as

A =µa · l+G. (3.32)

The pathlength l can be expressed as the differential of absorbance with respect to the

absorption coefficient as:

l = δA
δµa

. (3.33)

Therefore, the physical pathlength l is also termed as ‘differential pathlength’. It is

found that for a scattering-absorbing medium, the physical optical pathlength is greater

than the geometrical optical pathlength, i.e., the source-detector separation (l > d). This

relationship is quantified by the parameter Differential Pathlength Factor (DPF). DPF

is unitless, and defined as the ratio of the physical or differential pathlength to the

geometrical pathlength:

l = d×DPF (3.34)

A value of the DPF equal to 1 reduces the above equation to l = d, which is the original

Beer-Lambert law for an absorption-only medium. For a highly scattering medium such

as biological tissue, DPF > 1, resulting in l > d. Scattering causes random optical paths

within the medium, resulting in the physical optical path to be higher than the geometrical

optical path [Delpy et al., 1988]. This scenario is shown in Figure 3.9. There is another

new term in the MBLL presented as G in Eq. 3.31 which is a function of the geometry of

the experimental setting associated with the measurement procedure [Delpy et al., 1988].

3.4.5 Beer-Lambert law in inhomogeneous medium

Beer-Lambert law is found to work accurately in inhomogeneous medium, i.e., a medium

where the distribution of the absorbers are not the same and the absorption properties

change spatially [Zijlstra et al., 2000]. If light travels a pathlength l through a medium

having n absorbers with different extinction coefficients (e.g., ε1,ε2, ....εn), and the concen-

trations of the absorber also change accordingly, the overall absorption in that medium
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will be:

A =(ε1.c1 +ε2.c2 + .....+εn.cn) · l

= l
i=n∑
i=1

εi.ci

(3.35)

Expressing with the Decadic absorption coefficient µa = ε · c, above expression can be

written as

A = l.
i=n∑
i=1

µai . (3.36)

3.5 Radiative Transfer formalism

Radiative Transfer Theory (RTT), also known as Transport theory, describes the trans-

portation of any radiation through a medium. In general, the foundation of RTT is the

assumption of migrating particles that do not interact with each other, and conservation

of energy applies [Splinter and Hooper, 2006].

In tissue optics, the particles are photons, which are probability electromagnetic wave

packets, interacting with atomic structure and with optical geometries. In order for the

transport theory to be applicable, the photon’s localisation in space needs to be small with

respect to the dimensions of the medium it interacts with, and the spread of momentum

needs to be small as well. Under these conditions, photons will not interact with each

other. Even if the optical radiation is incident from a coherent source like laser, the

coherence is lost immediately after it interacts with the medium due to many scattering

events taking place. Since the photon is small and likely to undergo numerous scattering

events in its lifetime, the chances of interference is very low [Splinter and Hooper, 2006].

Radiative Transfer Equation (RTE), which is basically the equation of conservation

of energy, is expressed as an integro-differential equation of the Radiance (Specific

Intensity, or often termed as just ‘Intensity’), I(r,s, t). The position of the specific intensity

is denoted by the vector r, and the direction of the radiance is along s. The energy balance

results in a description of the dissemination of the light, which is expressed as:

1
v
∂I(r,s, t)

∂t
=−s ·∇I(r,s, t)− [µa(r)+µs(r)]I(r,s, t)+µs(r)

∫
4π

p(s, s’)I(r,s’, t)dΩ′

+Q(r,s’, t) (3.37)
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The terms of the equation are described as follows [Splinter and Hooper, 2006; Wang and

Tuchin, 2013; Chandrasekhar, 2013]:

1. The term in left hand side is the change in radiance per unit volume:

1
v
∂I(r,s, t)

∂t
(3.38)

2. The first term on right hand side of equation represents the radiance lost through

the boundaries of the volume:

−s ·∇I(r,s, t) (3.39)

3. The second term indicates the loss due to absorption and scattering of a photon

from direction s into different directions:

−[µa(r)+µs(r)] I (r,s, t) (3.40)

4. The subsequent term identifies the recovery of radiance into the original direction

as a result of scattering from direction s’ into the initial direction s.

+µs(r)
∫
4π

p(s , s’) I (r,s’, t) dΩ′ (3.41)

The amount of light that will be scattered back from the direction s’ to s is decided

by the phase function of the system p(s,s’). Since light can scatter back from any

direction to the initial direction s, to account for the overall effect the solid angle

dΩ′ is integrated over all angles, i.e. 4π.

5. The last term of the equation is a source term:

Q(r,s’, t) (3.42)

It depends on the position and property of the light source, like the light is incident

on the surface or within the medium; or even fluorescence.

3.6 Summary

In this chapter, the basic laws and theorems of tissue optics have been discussed. The

interaction events (scattering, absorption and reflection/ refraction) responsible for of
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light propagation through tissue have been introduced and the laws governing those

interactions, namely, the Beer-Lambert law, Fresnel equations, and the Radiative Transfer

formulations have been discussed. The optical properties of tissue (e.g., absorption and

scattering coefficients, anisotropy factor etc.) have been introduced which play very

important in the tissue-optics modelling. The basic concept, definitions and descriptions

related to photon transport through biological tissue medium narrated in this chapter

make a base of the following studies focused on the development and implementation of

the light-tissue interaction model of Photoplethysmography.
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4
REVIEW ON MODELLING LIGHT-TISSUE

INTERACTION IN PHOTOPLETHYSMOGRAPHY

4.1 Introduction

It is needless to state that biological tissues exhibit a complex and inhomogeneous

structure, consisting of multiple layers and at a microscopic scale, composed of individual

cells entrapped in a network of fibres filled with extracellular fluid [Williams et al.,

1989]. The propagation of light through a biological matter is a complicated process

with many peculiarities. An adequate and accurate description of the propagation of the

optical radiation through biological tissue is one of the key priorities to biomedical optics

community. This chapter will present an overview on the approaches that can predict

and explain the behaviour of photons in a tissue medium. Additionally, this chapter will

address the research works carried out in order to understand the light-tissue interaction

in Photoplethysmography.

4.2 Overview on modelling approaches for light-tissue

interaction

An example of the interaction of different biological species of different length scales with

the range of electromagnetic radiation is illustrated in Fig. 4.1. As shown, light interacts
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with the tissue in different length scales, from several microns to sub-micron level [Prasad,

2004]. The biological matter light interacts with can be of a dimension much smaller or

much larger than the operating optical wavelength (∼ nm) [Prasad, 2004]. In different

length scales, biological tissues exhibit distinct features of architectural complexities

[Wang and Tuchin, 2013; Prasad, 2004]. Factors related to tissue morphology, such as

absorption and scattering coefficients, anisotropy and heterogeneity, refractive indices etc.

are responsible for the nature of the interaction between light and tissue. Further, the

quantitative and qualitative features of the outcome of the light-tissue interaction based

technology depend on the external factors such as size and position of the incident optical

radiation, the distance between the optical source and detector, numerical aperture,

incident intensity or exposure time and so on [Wang and Tuchin, 2013]. Therefore, for

an accurate prediction and interpretation of the light-tissue interaction, a feasible and

flexible modelling approach is necessary. The choice of the best modelling approach for a

particular tissue-optics related problem is strongly correlated with the optical properties

of the tissue site and the geometrical description of the system.

Theoretical formalisms based on electromagnetic theory and Mie scattering theory

have been shown to provide unsolvable equations for the cases of practical biomedical

optics applications [Doronin, 2014; Wang and Tuchin, 2013]. Radiative Transfer for-

malism, on the other hand, originates from energy conservation and serves as a basis of

photometry [Tuchin, 2002]. The Radiative Transfer Equation (RTE) is already introduced

in Chapter 3. In RTE, the wave nature of the light and phase relations are ignored, and

the particle nature of photon is considered. The theory has been extensively used in a

number of studies including atmospheric and ocean radiative transfer, astrophysics, geo-

physics, the optics of photographic layers and others [Ishimaru, 1978; Pomraning, 1973;

Tuchin, 2002]. RTE has found its adaptability in biomedical optics since it satisfies all the

required criteria for a model, and also fairly correlates with electromagnetic theory-based

solutions but offers much lesser complexities than the analytical solutions [Ishimaru,

1978; Splinter and Hooper, 2006; Wang and Tuchin, 2013]. There are numbers of ap-

proaches to solving RTE, a comprehensive description of which can be found in textbooks

[Case and Zweifel, 1967; Wing, 1962; Mitra and Kumar, 1999; Patterson et al., 1991;

Splinter and Hooper, 2006]. The RTE can be solved deterministically and stochastically.
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Figure 4.1: A sense of scaling distribution of biological components with respect to the
wavelengths of the electromagnetic radiations is presented. The optical wavelength region
is illustrated separately to present the more detailed wavelength range divisions. Images
are reproduced from the work by Alberts [Alberts, 2017]

.

One of the main approaches to solve RTE which particularly has been used for mod-

elling propagation of light through biological media for different applications related to

clinical treatment, diagnosis and monitoring is the Diffusion Approximation [Tuchin,

2002; Durduran et al., 1997; Patterson et al., 1989; Schmitt, 1991; Marble et al., 1994;

Gate, 1972; De Mul et al., 2007]. Diffusion approximation is only valid for a medium

having predominant scattering. In this approach, it is approximated that the number

of scattering events in the medium is much higher compared to the number of absorp-

tion events, i.e., after numerous scattering events, few absorption events will occur and

the radiance will become nearly isotropic. Diffusion approximation, however, has some

critical limitations to present proper solutions to RTE in cases such as varying sizes of

the radiation source and detector, numerical aperture, low-order scattering photons etc.

[Yoo et al., 1990; Chen et al., 2001; Durian and Rudnick, 1997]. The main limitations are

enlisted below:
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1. The distance between sources and detectors should be much greater than the mean

transport length so that enough scattering events occur to generate a diffuse field

(i.e., a region where scattering becomes isotropic). Thus the approach is not suitable

for short source-detector separations.

2. The source and detector sizes must be small enough as compared to the distance of

their separation. It compromises with the flexibility of the model.

3. The diffusion approximation is also not valid for photons with short arrival time to

the detector.

Numerical methods to solve RTE include flux theory [Kubelka, 1948, 1954] and

adding-doubling method [Prahl, 1995]. Although the flux theory has been used exten-

sively for solving the light-tissue interaction based problems, it imposes restrictions in

the tissue properties and involves complexities. Adding-doubling method, on the other

hand, provides a fast-processed accurate solution and can incorporate the inhomogeneity

and anisotropy of the medium. However, this method has restrictions in term of tissue

geometry and can measure only the reflectance and transmittance from the tissue but

not the distribution of flux within the medium.

Apart from the above deterministic approaches, Random walk theory is one of

the stochastic approaches to solve RTE. It describes the propagation of light through

tissue as within a cube of lattice consisting of adjacent points. Within the lattice, photon

progresses with a step size inversely proportional to the reduced scattering coefficient,

and the photons’ propagation is isotropic between the points of the lattice [Splinter and

Hooper, 2006]. This approach is in good agreement with the Diffusion approximation and

provides simple Reflectance values. However, this method imposes restrictions on the

number of possible directions of photon migration and thus, makes multilayer modelling

challenging [Bonner et al., 1987; Gandjbakhche and Weiss, 1995].

Another statistical approach for modelling light propagation through tissue is Monte

Carlo (MC) method. Monte Carlo is a probabilistic method that traces the path of

photons through tissue by random sampling of the optical properties of the medium. This

method has several considerable advantages in comparison with other methods, which are

highlighted in the next subsection. According to many studies related to biomedical optics,
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MC is considered to be the best choice for modelling light propagation in tissue [Splinter

and Hooper, 2006; Wang and Tuchin, 2013; Meglinski and Matcher, 2003; Patwardhan

et al., 2005; Zhu and Liu, 2013]. The development and advantages of the Monte Carlo

approach will be discussed in the next section.

4.3 Monte Carlo method - developments and advantages

The history of Monte Carlo can go back up to centuries. The earliest example of the

implementation of MC technique was the evaluation of pi (π) [Ramaley, 1969] which

happened in 1777. Starting from then, it underwent lots of discussions, mathematical

verifications and modifications. In 1930s during the work on atom bomb in Manhattan

Project, Von Neumann and Ulam were studying random diffusion and interaction in fissile

materials. During this work, they needed a method that may take account for random

sampling and eventually the method they found appropriate to use got introduced by

the codename "Monte Carlo" after a casino because of the similarity of the process,

which refers to "a game of chance" [Metropolis, 1987]. The finding was published in 1949

[Metropolis and Ulam, 1949]; meanwhile, MC method became popular. The first publicly

available MC code for modelling photon scattering was developed to study the transport of

monochromatic light through Earth’s atmosphere [Collins and Wells, 1965]. This code has

been modified and with the advancement of computer technologies, has been extensively

used for a number of applications including in atmospheric, geological, astrophysical and

medical sciences. MC was applied for the first time to tissue optics for calculating the

absorption and flux distributions by Wilson and Adam in 1983 [Wilson and Adam, 1983].

Later on, Wang et al. developed a set of MC programs (MCML) in standard C language

for a multilayered turbid medium with infinitely narrow beam [Wang et al., 1995]. They

published it as an open-source code which has been used widely and successfully in

different applications [Nicolai et al., 2007; Evans et al., 2005; Rice et al., 2001; Zhu

and Liu, 2013]. Considering the advantages of Monte Carlo for light-tissue interaction

related problems, many works have been carried out to overcome the only drawback of

the method, i.e., the high computational cost [Preis et al., 2009; Lee et al., 2010; Doronin

and Meglinski, 2011]. With all these modifications in the programming language and
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advancements in hardware, Monte Carlo presently is the most convenient and reliable

tool for modelling light-tissue interactions.

There are certain advantages of MC technique which make it the most justified choice

for modelling light-tissue interaction. The main advantages of the method over other

approaches can be stated as:

1. Absorption and Scattering: Almost in all kinds of biological tissue, the scattering

coefficient is much larger than the absorption coefficient especially in the visible and

near infrared region, i.e. in the region of clinical importance. Also, tissue-medium

is a multiple-scattering medium, and the scattering in tissue is anisotropic. The

rest of the modelling approaches are unable to consider all these properties at a

time. However, MC considers all these specific optical properties of the medium and

brings the model close to the real phenomena.

2. Geometry: MC allows full three-dimensional description of the light-tissue model.

It gives the freedom to consider any shape and size of the tissue medium. It is

also compatible with any possible shape and position of the source and detector.

Especially, some of the other approaches such as diffusion approximation fails to

produce accurate results for problems with smaller source-detector separations,

whereas Monte Carlo works correctly in all source-detector separations. Additionally,

MC is flexible enough to alter these geometries any time very easily.

3. Inhomogeneity: Practically tissue is a highly inhomogeneous medium. MC allows

the inclusion of any number of layers having different optical properties easily,

where other models fail. It makes the model more realistic and useful.

4. Boundary effect: The problem that occurs near the boundary between the tissue

and the outside medium (e.g. air) or between two consecutive tissue-layers is a

difficult question to solve where many modelling theorems (e.g., diffusion approxi-

mation) fail. But MC can take into account both diffuse reflection at the tissue-air

boundary or Fresnel reflection/ refraction at the boundary between two consecutive

layers, and thus makes a more realistic model.
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5. Flexible output: A wide range of output data can be scored from the MC model.

Depending on the interest, one can record the values of outgoing intensity of

light, number of photons detected, number of photons absorbed in tissue, rate

of absorption within tissue, number of scattering events, time taken by photons

of travel the path, photon path length within tissue, reflected and transmitted

intensities at boundaries, amount of attenuated intensity of light in tissue and so

on. The variation of the recorded data with the variation of the geometry can also

be measured easily.

6. Accuracy: Based on the single photon physics and the theory of randomness of

scattering, MC gives an exact accurate result.

4.4 Current state of the art in modelling

Photoplethysmography and Pulse Oximetry

There have been a significant technological advancements in the field of pulse oximetry,

i.e., the well-known application of PPG, in the recent years [Allen, 2007; Budidha and

Kyriacou, 2018; Kyriacou, 2013; Phillips et al., 2011; Hickey et al., 2010; Patel et al.,

2017]. Still the aspect of fundamental modelling has been neglected in this field. Very few

research works are available in the field of modelling light-tissue interaction in PPG and

PO.

The first ever published study for modelling light-tissue interaction in a transmission

mode pulse-oximetry is found by [Marble and Cheung, 1988]. It presented a simplis-

tic model based on one-dimensional photon diffusion theory. The second study in this

field by [Schmitt, 1991] presented a photon diffusion analysis for both reflectance and

transmittance pulse-oximetry. This study was rigorous, the detailed description of the

derivation of optical properties was presented, and the detailed calculations for the PPG

parameters (e.g. AC and DC signal, and ratio-of-ratios) were discussed. This work created

the platform for future researches on modelling light-tissue interaction in PPG. However,

these models are restricted by the well-known limitations of diffusion approximation.

Later on, valuable works have been carried out by P. D. Mannheimer [Mannheimer
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et al., 1997, 2004; Mannheimer, 2007], where computational and mathematical models

(using Photon Random Walk theory and homogeneous Monte Carlo model) were used

to explain the basic questions, such as, influence of absorption and scattering in pulse-

oximetry, wavelength selectivity for pulse oximetry, influence of larger artery in pulse-

oximetry readings etc. The studies were comprehensive and detailed, and presented a

picture of an overall understanding. However, the model description was not accurate

enough to be compared with any practical scenario.

The most recent, and the most detailed models were presented by [Reuss and Siker,

2004], which was followed by another publication by [Reuss, 2005], in which heterogeneous

Monte Carlo model of the human skin was executed to study the functionalities of

reflectance pulse oximetry. The optical properties and dimensions of the tissue components

used in the simulation were very close to the real situation. The model was executed

for different oxygen saturation and for a range of source-detector separations, for both

systolic and diastolic cases. However, some limitations still remained. Even though the

model was detailed and in line with other similar modelling-based works on skin tissue

[Tuchin et al., 2011; Meglinski and Matcher, 2003; Wang and Tuchin, 2013], it was just

a skin model, and no particular ROI (region of interest) was mentioned, whereas it is

known that the dimension of the tissue layers and the vascular distribution are very

different at different ROIs [Williams et al., 1989].

4.5 Summary

In this chapter, different aspects of modelling light-tissue interaction in biological tis-

sue have been discussed. Monte Carlo method has been introduced as a probabilistic

method to solve radiative transfer formalism, amongst other methods. The limitations

of different approaches (e.g., flux theory, adding-doubling method, random walk theory,

and diffusion approximation), and the advantages of the Monte Carlo modelling approach

over others to simulate light-tissue interaction have been addressed further. Finally, the

current state of the art of the modelling approaches in Photoplethysmography has been

discussed. The overview of the available studies on PPG light-tissue interaction-based

modelling, irrespective of any particular approach, has been found to be very few in
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number. Available models also do not provide adequate and precise information on PPG

and PO such as optical pathlength, depth of penetration, distribution of scattering, the

effect of physiological factors etc. This chapter has concluded with the feasibility and

importance of using Monte Carlo method as a reliable tool for computing light-tissue

interactions in PPG. The following chapter will concentrate on the further details on the

theoretical aspects of Photoplethysmography, focussing on the requirements of a model of

PPG light-tissue interactions.
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5
PHOTOPLETHYSMOGRAPHY AND PULSE OXIMETRY

5.1 Introduction

Plethysmography is the method to measure the volumetric changes within an organ or the

whole body, usually achieved by analysing the change in volume of blood or air contained in

that part of the body [Criée et al., 2011]. The method to obtain the plethysmogram optically

is known as Photoplethysmography (PPG). PPG has a wide range of applications in clinical

practices and biomedical researches, for example, perfusion indication, respiratory rate

monitoring, heart rate monitoring, blood pressure monitoring, cardiovascular assessment,

arterial and venous blood oxygen saturation measurement etc. [Alian and Shelley, 2014;

Nilsson et al., 2007; Nitzan et al., 2000; Allen and Murray, 2002; Lima et al., 2002;

Njoum and Kyriacou, 2017; Abay and Kyriacou, 2015]. PPG is mostly recognised for its

application in studying and monitoring the pulsations associated with the changes in

blood volume in the peripheral vascular tissue bed, a clinical method known as Pulse

Oximetry (PO) [Allen, 2007; Moyle, 2002]. Pulse oximeters monitor arterial oxygen

saturation continuously, which is the primary indicator of hypoxic events occurring in

patients in anaesthesia, critical care and neonatal care units [Severinghaus, 1993]. In

this chapter, the theoretical concept of Photoplethysmography and Pulse Oximetry will

be discussed in detail. In addition, the requirement for a modelling approach will also be

discussed.
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5.2 Working principle of Photoplethysmography

Photoplethysmography utilises the absorptivity of light to detect the fluctuations of blood

volume in vascular tissue bed during the cardiac cycle.

Figure 5.1: A typical Photoplethysmogram is shown as a function of time. The plot is
adapted from [Abay, 2016].

A cardiac cycle, as already discussed in Chapter 2, consists of two stages: systole

and diastole. During systole, blood pumped out of the heart rushes throughout the

body, including peripheral tissue sites. This systolic increase in blood volume results

in increased absorbance of light in tissue compared to the diastolic state. This relative

change in light absorbance gives rise to the PPG waveform. In order to obtain a PPG

signal, the tissue site is irradiated by an optical illumination, of which a certain amount

of light is absorbed and the unabsorbed light is reflected or transmitted, depending on

the measurement modality being used. A typical PPG waveform is shown in Fig. 5.1.
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5.2.1 Components of PPG waveform

The PPG waveform is the amount of unabsorbed light intensity detected by the sensor

detector. Clearly, the higher is the absorbance (A), the lower is the detected PPG intensity

(I). As shown in Fig. 5.2, the recorded PPG waveform has an inverse relationship with

the absorbed light within the tissue. Corresponding to the effect of light absorbance in

the pulsatile and non-pulsatile compartments of tissue, the PPG intensity can be divided

into two parts as stated below.

Figure 5.2: The schematic of PPG waveform produced due to the absorbance of light in
tissue, as a function of time. Light absorbance in the pulsatile tissue component produces
the pulsatile AC part in the PPG waveform. Absorbance in the non-pulsatile tissue compo-
nents contributes to the slowly varying DC part of the PPG waveform. The absorbances in
the systolic and diastolic parts are denoted as As and Ad respectively. The PPG intensity
during systolic and diastolic parts are denoted as Is and Id respectively [Tamura et al.,
2014]. It should be noted that in this figure, only a qualitative correspondence between A
and I are shown, however, numerically these variables have a non-linear relationship.

1. The non-pulsatile, relatively continuous DC (direct current) component generates

due to the absorption of light in the non-pulsating tissue parts (e.g., bloodless tissue,
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muscle, bone etc.). The slow variation in the DC wave is attributed to respiration,

the sympathetic nervous system, and the thermoregulation [Webster, 1997].

2. The pulsating AC (alternating current) component originates from the absorption

of light in the pulsatile arterial blood and varies synchronously with the heart rate

[Webster, 1997]. The AC PPG is divided into two phases: the rising edge of the pulse

or anacrotic phase that is primarily concerned with systole, and the falling edge of

the pulse catacrotic phase which is associated with the diastole. A dicrotic notch is

usually seen in the second phase of the PPG wave recorded from a healthy subject

[Marcinkevics et al., 2009].

5.2.2 Beer-Lambert law in PPG

The Beer-Lambert law has been stated in Chapter 2. Recalling and combining Eq. 3.15

and Eq. 3.31, the absorbance (A) of light in the tissue medium having the extinction

coefficient ε and concentration c can be expressed in terms of the logarithmic ratio of the

incident light intensity I0 and the detected (i.e, reflected or transmitted) light intensity

I t, as shown below:

A = log
(

I0

I t

)
= εcl+G (5.1)

where the optical pathlength is l and the scattering dependent term is G. Considering

the same amount of light to be incident to the tissue throughout the entire cardiac cycle,

above equation can be manipulated for diastolic and systolic states as:

Ad = log
(

I0

Id

)
= εldCd +G (5.2)

As = log
(

I0

Is

)
= εlsCs +G (5.3)

where the terms with suffices d and s present the corresponding factors in diastolic and

systolic states respectively. As shown in Fig. 5.2, due to higher amount of pulsatile blood

in tissue during systole compared to diastole, the light absorbance will be higher and the

transmitted intensity will be lower in systole compared to diastole, i.e.,

As > Ad

Is < Id

(5.4)
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It is considered that ls ≈ ld = l (this assumption will be validated later on in the thesis).

If the change in the concentration of the absorbers in blood due to its increased volume

is expressed as ∆C = Cs −Cd, the change in absorbance from diastole to systole can be

written as:

∆A = As − Ad = εl∆C. (5.5)

Therefore, the change is absorbance in PPG between diastole to systole also can be

expressed as

∆A = εl∆C

= log
(

I0

Is

)
− log

(
I0

Id

)
= log

(
I0

Is

/ I0

Id

)
= log

(
Id

Is

)
.

(5.6)

5.2.3 PPG measurement technique

In order to record PPG from a tissue site, a system with an optical source and detector

is required. Often LED and photodetectors are chosen for size, cost and availability in a

wide range of wavelengths [Allen, 2007]. There are PPG systems utilising optical fibre

probes as the source and detector which have mainly been used for research purposes

[Hickey et al., 2010; Phillips et al., 2006; Chen et al., 2013; Morley et al., 2017]. Depending

on the positioning of the optical source and detector, the PPG wave can be recorded in

two different modalities, namely, transmittance mode and reflective mode. A comparative

view of the two modes of PPG measurement system is presented in Fig. 5.3.

In the transmittance mode measurement system, the tissue site is placed between

the source and detector. The tissue site is illuminated by the optical wavelength emitted

from the source. A certain amount of light is absorbed within the tissue and the rest is

transmitted. The detector detects the amount of light that is captured within its area.

In the reflective mode, light is emitted from the source, and the unabsorbed light that

reaches the area of the detector is detected. The journey of the photons from the source

to the detector is governed by the interactions between light and tissue, e.g., scattering,

reflection, refraction etc. [Mannheimer, 2007].
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Figure 5.3: The schematic of PPG system modalities, i.e., Transmittance (a) and Re-
flectance (b) are shown. In transmittance mode, the optical source and detector are placed
at two opposite sides of the tissue site, whereas in reflective mode, the source and detector
are placed in the same side of the tissue site. The red dotted lines present the direction of
the light propagation from the source to the detector through the tissue site. It should be
noted that the typical photon trajectory only of the detected photons are shown in the
schematic.

The mode of measurement is chosen depending on the site of application. The configu-

ration of the transmissive mode system allows it to be used at the small extremities, e.g.,

toe, finger or earlobe, whereas the reflective mode system can be used almost any part

of body [Allen, 2007]. Usually, PPG signals are recorded from the peripheral tissue sites

where the pulses can be detected easily [Stern, 1974; Sherebrin and Sherebrin, 1990;

Budidha and Kyriacou, 2018; Middleton et al., 2011]. However, applications of PPG also

are found at tissue sites such as the oesophagus, large intestine, supra-orbital artery, arm,

chest and abdominal organs [Kyriacou et al., 2001; Patel et al., 2017; Barnes et al., 1977;

Abay and Kyriacou, 2015].

5.3 PPG in Pulse Oximetry

As mentioned earlier, the most common application of PPG is Pulse Oximetry (PO) that

is used very frequently in the clinical setting for continuous measurement of arterial

blood oxygen saturation SaO2. Pulse oximeters measure SpO2 (i.e., the peripheral SaO2

measured by PO) using PPG signals obtained at different wavelengths in living tissue

[Hertzman, 1937]. The wavelength selection is the most important criteria for PO to

function properly [Mannheimer et al., 1997]. PO exploits the relative absorbance at
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minimum two (or more) wavelengths of light by the main two absorbers present in

blood, i.e., oxyhaemoglobin and deoxyhaemoglobin (from now on, these will be denoted by

HbO2 and Hb respectively) [Moyle, 2002]. PPG signals are recorded in the red and near-

infrared wavelength regions (typically at 660 nm and 940 nm) as the relative differences

between the absorbance by HbO2 and Hb are the maximum at these wavelengths (the

absorbance by these haemoglobin species at different wavelengths have been illustrated

in Chapter 3). In these two wavelengths, absorption of light both during diastolic state

(i.e., the absorption within the non-pulsatile tissue component) and systolic state (i.e.,

the absorption within the pulsatile tissue component) possess different values, resulting

in different amplitudes of the red and infrared AC and DC PPG signals. Again, the

absorption property of blood is related to the arterial oxygen saturation (described later in

this chapter). Thus, from the normalised amplitudes of the absorbance of light in pulsatile

blood at the red and infrared wavelengths, the SpO2 values are determined.

5.3.1 Working principle of Pulse Oximetry

The formulations and equations used in order to explain the PO working principle are

straightforward, however, the explanations and derivations are presented differently in

various books and articles which are sometimes unclear, disconnected or approximated

[Webster, 1997; Nitzan and Taitelbaum, 2008; Chan et al., 2013; Mannheimer et al., 1997;

Mannheimer, 2007]. In this section, a detailed yet simplistic derivation is demonstrated

which links the fundamental laws with the practical quantifications globally used to

describe PO.

Application of Beer-Lambert law in PPG can be further extended to explain the PO

working principle. As shown earlier in Eq. 5.6, at any particular wavelength λ, the change

in absorbance between diastole and systole can be expressed as the logarithmic ratio of

the diastolic and systolic intensity:

∆A(λ)= log
(

Id(λ)
Is(λ)

)
(5.7)

Manipulating ∆A(λ) algebraically (e.g., changing the base 10 equation to the natural

base, and inverting the fraction), and considering the change in intensity between systole
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and diastole to be ∆I = Id − Is, few steps of equations can be written as follows:

∆A(λ)=−ln
(

Is(λ)
Id(λ)

)/
ln(10)

=− ln
(

Id(λ)−∆I(λ)
Id(λ)

)/
ln(10)

=− ln
(
1− ∆I(λ)

Id(λ)

)/
ln(10)

≈−(−∆I(λ)
Id(λ)

)
/

ln(10)

= ∆I(λ)
Id(λ)

/
ln(10)

(5.8)

where ∆I(λ)
Id(λ) << 1, so the higher order terms could be ignored in the logarithmic series

(this assumption will be validated later on in the thesis ) [Nitzan et al., 2000].

The ratio of the wavelength-dependent change in absorbance is termed as the "ratio

of ratios" R:

R = ∆A(λ1)
∆A(λ2)

(5.9)

Using the absorbance values for red and infrared wavelengths (i.e., λ1= r and λ2= ir)

from the above equations, R can be written in the form as shown below:

R = ∆I(r)
Id(r)

/∆I(ir)
Id(ir)

(5.10)

By definition, the change in the light intensity from systole to diastole is known as AC

signal and the intensity absorbed in the non-pulsatile part of tissue is known as the DC

signal, i.e., ∆I = AC and Id = DC. Replacing ∆I and Id by AC and DC, R is reduced to the

a well-known equation to quantify pulse oximetric measurement [Moyle, 2002; Kyriacou

et al., 2001; Nitzan and Taitelbaum, 2008; Mannheimer, 2007]:

R = AC(r)/DC(r)
AC(ir)/DC(ir)

. (5.11)

For deriving SaO2 from PO, it is considered that only the change in absorption by

blood from diastole to systole (of concentration ∆C) contributes to the arterial pulsation,

and the absorption in non-pulsatile tissue-bed cancels out while taking the ratio between

the diastole and systole. The main two absorbers present in blood are considered to be

deoxyhaemoglobin and oxyhaemoglobin. Now, recalling Eq. 3.35 to describe the Beer-

Lambert law in a medium having mixture of absorbers, and using Eq. 5.6, the change in
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absorbance by blood at any wavelength expressed as shown below:

∆A(λ)= (
εHbO2(λ) · [HbO2]+εHb(λ) · [Hb]

)
l(λ) (5.12)

where εHb and εHbO2 are the extinction coefficients, and [Hb] and [HbO2] are the change

in concentrations of deoxy and oxyhaemoglobin respectively.

Now, recalling the definition of arterial oxygen saturation (Eq. 2.4),

SaO2 = [HbO2]
[Hb]+ [HbO2]

⇒ [HbO2]= SaO2 · ([Hb]+ [HbO2]) ;

[Hb]= (1−SaO2) · ([Hb]+ [HbO2])

(5.13)

Putting the values of [Hb] and [HbO2] in Eq. 5.12,

∆A(λ)= (
εHbO2(λ) ·SaO2 +εHb(λ) · (1−SaO2)

) · ([Hb]+ [HbO2]) · l(λ) (5.14)

Replacing the values of ∆A(λ) for red and infrared wavelength in Eq. 5.9,

R = ∆A(r)
∆A(ir)

= εHbO2(r) ·SaO2 +εHb(r) · (1−SaO2)
εHbO2(ir) ·SaO2 +εHb(ir) · (1−SaO2)

l(r)
l(ir)

.
(5.15)

Through several simple algebraic steps, SaO2 can be expressed by a relationship with R

as follows:

SaO2 = R · l(ir) ·εHb(ir)− l(r) ·εHb(r)
R · l(ir) · [εHb(ir)−εHbO2(ir)

]+ lr ·
[
εHbO2(r)−εHb(r)

] . (5.16)

In general approximation, the optical pathlength at red and infrared wavelengths are

considered to be identical, i.e. l(r) = l(ir) (the validity of this approximation will be

analysed later in this thesis) [Webster, 1997; Moyle, 2002]. Using this approximation in

the above equation, SpO2 (peripheral arterial oxygen saturation measured by PO, as

already discussed earlier) is expressed as a function of R and the extinction coefficients of

the oxy and deoxyhaemoglobin. The SpO2 value is normally presented in the percentage

form, which is given by:

SpO2 = R ·εHb(ir)−εHb(r)
R · [εHb(ir)−εHbO2(ir)

]+εHbO2(r)−εHb(r)
×100% (5.17)

Actual arterial SaO2 and the SpO2 measure by PO are not exactly the same, however,

those exhibit excellent correlation as shown in 5.4.
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Figure 5.4: The correlation between SaO2 and SpO2 presented that has been adapted
from [Moyle, 2002].

5.3.2 Calibrating Pulse Oximeter

To relate the measured values of the ratio R to the reading of the pulse oximeter, the

equation based on Beer’s law can be modified [Webster, 1997]. SpO2 can be calculated

from the Eq. 5.17 directly, if the extinction coefficients of oxy and deoxyhaemoglobin are

known. Using the values of the extinction coefficients from textbook [Zijlstra et al., 2000],

e.g., εHb(r)= 0.814, εHbO2(r)= 0.080,εHb(ir)= 0.183, εHbO2(ir)= 0.294, all values having

the units of L−1mM−1cm−1, Eq. 5.17 can be re-written as:

SpO2 = R×0.183−0.814
R(0.183−0.294)+0.08−0.814

×100% (5.18)

The above expression can be represented in the following format (denoting the multiplica-

tion by 100 by the percentage sign):

SpO2 = 814−183R
734+111R

×100% (5.19)
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Replacing the coefficients the constants and coefficients by the terms k1,k2,k3,k4 respec-

tively, it is obtained as (when SpO2 obtained in its percentage form):

SpO2 = k1 −k2R
k3 −k4R

(5.20)

Eq. 5.20 is one of the form of the equation for calibration as described by [Mendelson and

Kent, 1989].

By the use of algebraic series expansion and ignoring the higher order terms, Eq. 5.19

also can be represented in a quadratic form as described below through the following

steps:

SpO2 = 814(1−0.22R)
734(1+0.15R)

×100%

= 1.11(1−0.22R)(1+0.15R)−1 ×100%

⇒ [1.11(1−0.22R)(1−0.15R)]×100%

= [1.11(0.033R2 −0.37R+1)]×100%

= [0.037R2 −0.41R+1.11]×100%

(5.21)

To generalize the above equation, putting k1,k2,k3 as the coefficients in the polynomial,

it is obtained in the percentage form as:

SpO2 = k1R2 +k2R+k3 (5.22)

which is another form of the equation for pulse oximetry calibration stated by [Fine and

Weinreb, 1995].

In the final quadratic equation in Eq. 5.21, considering the fractional value of R gives

a lesser value when squared, it may be ignored which reduces the equation to a liner

form:

SpO2 = (1.11−0.41R)×100% (5.23)

which leads to a generic form of calibration equation for pulse oximeters, considering the

saturation is expressed in percentage:

SpO2 = 111−41×R (5.24)

In practice, however, SpO2 is determined empirically. Pulse oximeters are calibrated

by collecting a huge dataset from healthy volunteers and lookup table is formed for SpO2
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Figure 5.5: The comparative calibration curves obtained using the empirical calibration
method, Beer-Lambert law (according to Eq. 5.24) and the Linear equation for commercial
pulse oximetry calibration (according to Eq. 5.25) are presented by the blue, red and
yellow lines respectively.

values corresponding to R. An accurately computed empirical calibration formulation,

which is generally used by them who have an experience with pulse oximetry technology

is given by the linear standard equation [Shafique and Kyriacou, 2012; Kyriacou et al.,

2002; Abay and Kyriacou, 2015; Oak and Aroul, 2015; Budidha and Kyriacou, 2018]:

SpO2 = 110−25×R (5.25)

However, most of the modern manufacturers build their own calibration curves instead

of relying on the available theoretical formulations given by Eq. 5.24 or Eq. 5.25. One of

such equation for a pulse-oximetric system, given by [Budidha et al., 2018]:

SpO2 =−19.49.R2 −10.47.R+108.9. (5.26)

The calibration curve obtained using Eq. 5.24, Eq. 5.25 and Eq. 5.26 are presented in Fig.

5.5 showing the correlation among the three datasets.
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In the empirical calibration, it involves the comparison of the oximeter R value to

the oxygen saturation ratio obtained from in vivo samples using human test subjects.

Although this method requires a variety of laboratory instrumentation and is typically

done in a hospital setting, this collection process is only required during the design and

development of the device [Webster, 1997]. This calibration procedure needs the use of a

system named CO-oximeter [Rees et al., 1980] that can measure the concentration of all

species of haemoglobin in blood, namely oxyhaemoglobin, deoxyhaemoglobin, carboxy-

haemoglobin (COHb) and methaemoglobin (MetHb) etc. The last two haemoglobin species

normally exist in a very small quantity in blood, abundance in which is resulted by an

exposure or a disease. During the calibration procedure, the percentages of COHb and

MetHB are checked by the CO-oximeter. Once a low level of these two species is confirmed,

the test begins by first ensuring that the subject is at the 100% oxygen saturation level

and then the saturation is dropped incrementally by manipulating the oxygen-nitrogen

gas mixture inhaled by the subjects. At each level where the pulse oximeter indicates a

stable reading, an arterial blood sample is immediately taken and corresponding read-

ings are recorded from the CO-oximeter. The data are plotted with oxygen saturation

percentage (as determined by the CO-oximeter) on the y-axis and R ratio (as determined

by the pulse oximeter under test) on the x-axis yielding a traditional calibration curve.

Usually, the test for calibration is carried out on a very large number of healthy subjects.

5.3.3 Pulse Oximetry technique

Continuing from the PPG modalities mentioned in Sec. 5.2.3, PO operates in both reflec-

tive and transmissive modes. The most common application site of the pulse oximeter is a

human finger. A schematic of finger pulse oximeter is shown in Fig. 5.6. Red and infrared

light are emitted from LED to the surface of the finger, and the light traversed through

the vascular tissue beds of the finger is recorded by a photodetector placed either on the

opposite surface or in the same surface of the finger, depending the mode of the system

(transmissive and reflective mode, respectively).
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Figure 5.6: The schematic diagram of a reflective and a transmissive mode of pulse
oximetry in the finger is shown. The figure is reproduced from [Tamura et al., 2014].

Transmissive mode pulse oximeters are found to be used in the clinical setting often

for continuous measurement of arterial oxygen saturation. However, transmissive probes

have their limitations with respect to the site of application, and cannot be used in any

places other than fingertip, earlobe or toe. The reflective probe, on the other hand, does not

have any such limitations regarding the probe positioning and can be used almost at any

part of the body. The most used application of the reflective probe is forehead and temple.

The distance between the source and the detector of the sensor is a vital parameter in

order to obtain good PPG from reflective PO. It has been found that a source-detector

separation anywhere between 3 mm and 6 mm is a good choice for achieving good quality

signals [Hickey and Kyriacou, 2007].

5.4 Requirements for a modelling approach

Photoplethysmography, with its application in pulse oximetry, plays an important role

in critical patient monitoring and physiological measurements. The fundamental theory

of PPG bases on a straightforward derivation from the standard Beer-Lambert law. It

is already known that Beer-Lambert law needs modifications to be used in the highly

scattering medium like biological tissue (Chapter 3). The theoretical explanation, as

presented in this chapter, depends on some assumptions which have never been verified for

PPG, for example, the consideration of wavelength-independence of the optical pathlength.

Besides, the Beer-Lambert law considers the absorption of light by oxyhaemoglobin and

deoxyhaemoglobin only. This consideration may be sufficient for pulse oximetry as the

only interest there is to measure the change in absorbance due to the pulse, i.e., the

change in blood volume during the cardiac cycle. However, for a larger picture, i.e., to
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understand the entire PPG process, the absorbance due to the blood less tissue layers,

other chromophores present in tissue such as water and melanin etc. should also be

considered. Beer-Lambert law based theory also does not provide any information on the

penetration depth, which is important to predict the origin of the signal within the tissue.

In the recent age of an ongoing research interest in PPG beyond its application in pulse

oximetry, an intimate investigation with a detailed opto-anatomical model is necessary.

An opto-anatomical model of photoplethysmography must consider the following features.

1. Tissue is a highly scattering medium. Any model, therefore, has to be able to deal

with the effects of multiple scattering.

2. For most tissues, over the wavelength range of interest (500-1000 nm), the scattering

coefficient is considerably larger than the absorption coefficient.

3. Scattering of light in biological tissue is highly anisotropic.

4. On a macroscopic scale, tissues are not homogeneous. Ideally, a model should be

able to take into account multiple layers or sections within the tissue each with

different absorption and scattering coefficients.

5. Not all tissue-structures can be accurately described by a simple slab or sphere

geometry. Thus the model must be able to deal with complex tissue geometries.

6. The computation time necessary to obtain the required results should not be exces-

sive.

7. The model must be able to incorporate any geometrical setting between the opti-

cal source and detector, i.e., variable separation distance, different beam profiles,

different spatial and angular dimensions of the source and detector etc.

5.5 Summary

This chapter has explained the basic principle in PPG and PO, with the detailed Beer-

Lambert law-based derivations. Additionally, this chapter has elucidated the requirements

for a comprehensive light-tissue interaction based model for PPG. The basic criteria for
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the modelling approach have been discussed. Previously, the advantages of Monte Carlo as

a tool for tissue-optical modelling have been discussed in Chapter 4. From the outlook of

the requirements stated in this chapter, it is apparent that the Monte Carlo method is the

most suitable approach for modelling photoplethysmography. Henceforth, the following

chapters in the thesis will be focussed on the development and execution of the Monte

Carlo method to modelling photoplethysmography and pulse oximetry.
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6
MONTE CARLO MODELLING METHODOLOGY

6.1 Introduction

This chapter will concentrate on the developmental stages of the Monte Carlo model which

will be used in this thesis. The algorithm and the fundamental steps of the simulation will

be discussed which will follow the light-tissue interaction theory presented in Chapter

3. This chapter will also discuss the implementation strategy of the model for different

applications in the thesis.

6.2 Development of the model

6.2.1 Concept and considerations

In the Monte Carlo (MC) model, the paths of virtual ‘photons’ were traced through

the optically characterised ‘biological tissue’. The optical properties of the tissue were

described by the wavelength-dependent parameters µa, µs, g, and n which have been

introduced in Chapter 2. Once the optical parameters of the tissue had been defined, the

photon transport through the medium was simulated. Prior to describing the simulation

algorithm, the features and considerations for the model are furnished below.

1. Three-dimensional model geometry: The model provided a full three-dimensional

simulation of light transport. The three-dimensional feature gave the freedom to
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include any structure model, e.g., slab, sphere, cylinder etc. A three-dimensional

feature of the model was also important for illustrating the distribution of light in

all probable directions in tissue.

2. Homogeneity and heterogeneity in tissue model: The tissue was not composed

of discrete scattering and absorption centres distributed in a non-scattering, non-

absorbing medium [Prahl, 1988]. Instead, it showed the volumetric distribution of

the scattering and absorption properties. In other words, the macroscopic tissue-

optical properties were considered in the model rather than the micro-cellular

structural inhomogeneities [Wang et al., 1995]. Therefore, a certain type of tissue

(e.g., dermis, muscle, fat etc.) could be individually presented as homogeneous layers,

and the heterogeneity in the model could be incorporated by addition of more layers

and sublayers with different optical properties.

3. Refraction and polarisation: The index of refraction was assumed to be uniform

in a single tissue layer so that light did not deviate from the straight line direction

until it was scattered. Also, the boundaries of the tissue layers were considered

smooth so that light went through specular reflection only according to Fresnel’s

law. Polarisation effect was not considered in the present model as it is expected

that even if a polarised light beam is incident on the tissue, due to the random

scattering the photon will lose its polarisation information [Van der Zee, 1992].

4. Scattering anisotropy: Scattering was considered symmetric about the direction

of incidence, i.e., was independent of the azimuth (φ), indicating, on an average, no

preferred direction or orientation of the scatterers present in tissue.

In the execution of the model, the ‘implicit capture’ approach was used to reduce

the variance in the method [Witt, 1977] where the simulation of a ‘photon cluster’ was

considered instead of a single photon. Therefore, from now on in this thesis, the term

‘photon’ will directly refer to a ‘photon cluster‘. The concept about the inputs and outputs

in this model are described below.

• Tissue properties: The input parameters to define the optical properties of tissue

at the operating wavelength λ were: µa, µs, g, n; and the parameters to define the
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anatomical properties of the tissue were the shape(s) and thickness(es) of tissue

layer(s).

• Incident photon: The input parameters to define the ‘incident photon’ were: (1)

‘weight’ of the photos, which was assigned to the photon cluster which equals to

unity, i.e., w = 1; and (2) the direction and position co-ordinates.

• Recorded quantities: There was a range of variables that were recorded through-

out the simulation process which included: (1) absorbed, reflected, transmitted

and detected weight of photon, (2) number of scattering within tissue, (3) depth of

penetration, and (4) mean and total optical path of photons through tissue.

The aforementioned conditions were fundamental for the developed MC model which

will be maintained throughout all the simulations in this thesis.

6.2.2 Geometrical representation and co-ordinate system

A ‘slab’ geometry was chosen for the basic tissue-model which was presented in a three-

dimensional Cartesian co-ordinate system. Focussing on the pulse oximetry applications,

the MC model was executed in the reflective and transmissive geometries. The geometrical

representations of the tissue slab with a finite thickness t are illustrated in Figure 6.1(a)

and Fig. 6.1(b). In the Cartesian co-ordinate system (x,y,z), the top surface of the tissue

was presented by the plane z = 0, and the negative z-direction presented the depth

within the tissue. The virtual photon clusters were incident on the tissue surface from

an optical ‘source’ (S), placed at the origin (0,0,0) of the co-ordinate system. From there,

the photons propagated through the tissue medium through the ‘step sizes’ generated

by MC simulation. While traversing through tissue, a photon satisfying the ‘detection

criteria’ was captured by a ‘detector’ (D). As shown in Figure 6.1 (a), the detector was

placed at a certain distance d from the source at the adjacent side of the tissue (on

z = 0) in reflective mode, i.e., the position co-ordinate of the detector was (d,0,0). In the

transmissive geometry as shown in Figure 6.1 (b), the detector was at the bottom surface

(z = t) with the position co-ordinate (0,0,t).

In addition to the main Cartesian co-ordinate system, a spherical polar co-ordinate

system was also required to describe the photon movements [Wang and Tuchin, 2013].
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Figure 6.1: Schematics of the slab of tissue in the (a) reflectance and (b) transmittance
geometries of the model are presented in 3D Cartesian co-ordinate system xyz. The
centre of the source is assumed to placed at the origin of the co-ordinate system. i.e., at
(0,0,0). In the reflectance geometry, the source (S) and the detector (D) are placed at a
distance d at the same side of the tissue, thus the centre of the detector is at (d,0,0). In
the transmittance geometry those are placed at two opposite sides of the tissue separated
by a distance equal to its thickness t, thus the co-ordinate of the centre of the detector
is (0,0,d) or (0,0,t). The ring shape of the source and detector are arbitrarily chosen to
explain the schematic.
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A moving spherical polar co-ordinate system was associated with each photon, which

had its z-axis always aligned with the direction of propagation of the photon. Each time

the direction of photon was deviated due to the interaction with scatterers in tissue, the

change in direction was first calculated in spherical co-ordinate, and then transformed

into the main Cartesian co-ordinate system.

6.2.3 Transformation between co-ordinate systems

Let us consider R is vector denoting the direction of a photon in an instant. The direction

of photon is presented in the spherical polar co-ordinate system by the angle of deflection

θ, and the azimuthal angle φ as shown in Figure 6.2. Again, with respect to the Cartesian

co-ordinate system, the position vector R makes angles α, β, γ respectively with x, y, and

z-axis.

Figure 6.2: Relationship between the Cartesian co-ordinate and Spherical polar co-
ordinate system is shown. The vector R makes the angle of deflection and the azimuth, θ
and φ respectively in the spherical polar co-ordinate. Again, R makes the angles α,β,γ
with the x, y and z-axes respectively in the Cartesian co-ordinate system.
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In Cartesian co-ordinate system the position vector is defined by its direction cosines,

namely, (µx,µy,µz), which are the cosines of the angles made by the position vector with

the unit vectors along x, y and z axes respectively:

µx = cosα;

µy = cosβ;

µz = cosγ.

(6.1)

According to Figure 6.2

γ= θ

=⇒ cosγ= cosθ.
(6.2)

With respect to the Cartesian co-ordinate system, the components of R along the three

axes are:

Rx = R cosα

Ry = R cosβ

Rz = R cosγ

(6.3)

Again, with respect to the spherical polar co-ordinates, the components can be written

as R sinθ cosφ, R sinθsinφ, and R cosθ. Thus, relating the expressions in both the co-

ordinate system, it can be written as:

Rx = R cosα= R sinθ cosφ

Ry = R cosβ= R sinθsinφ

Rz = R cosγ= R cosθ

(6.4)

from which, the direction cosines can be related to the spherical polar co-ordinate as:

µx = sinθ cosφ

µy = sinθsinφ

µz = cosθ.

(6.5)

In the MC simulation, the deflection and azimuthal angles were randomly created and

converted into the corresponding direction cosines using the above relationships and were

updated in the main system.
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6.2.4 Calculation for the scattering angle

The calculation of angle of scatter is important in order to simulate the deflection of

photon each time it undergoes scattering event. The calculation for the angle is briefly

described below.

Mathematically, any point (a,b) can be represented in a complex form as a+ ib. If

that point is rotated through an angle, say, α, the resultant position can be expressed

according to Euler’s formula [Arfken and Weber, 1999] as:

(a+ ib)eiα = (a+ ib)(cosα+ isinα) (6.6)

This simple formula will be used twice to calculate the rotation of a point, say, (x,y,z),

on a unit sphere, ie., first through the angle γ′ about y-axis and then through an angle φ′

about z-axis [Cashwell and Everett, 1959]. Figure 6.2 can be considered for understanding

the spherical polar co-ordinate system representing a unit sphere. First, the rotation of

(x,y,z) to (x’,y’,z’) about y-axis through γ′ can be expressed according to Eq. 6.7:

z′+ ix′ = (z+ ix)(cosγ′+ isinγ′);

y′ = y
(6.7)

Now the rotation of (x’,y’,z’) to (x",y",z") about z-axis through φ is expressed according

to Eq. 6.8:

x"+ i y"= (x′+ i y′)(cosφ′+ isinφ′)

z"= z′
(6.8)

Now, separating the real and imaginary parts gives in above two equations and

substituting the values of x’,y’ and z’ in Eq. 6.8, the relationship between the initial and

final position of the point is obtained as:

x"= xcosγ′ cosφ′+ zsinγ′ cosφ′− ysinφ′

y"= ycosφ′+ xcosγ′ sinγ′+ zsinφ′ sinγ′

z"= zcosγ′− xsinγ′

(6.9)

Let p be the distance from the origin in the unit sphere to the projection of the new

position (x",y",z") onto the xy-plane. Considering x̄, ȳ, z̄ are the projections of the vector in

the respective axes, following relationships are obtained:
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p = sinγ′

x̄
p
= cosφ′

ȳ
p
= sinφ′

z = sinγ′

(6.10)

Since all derivations have been performed on a unit sphere, the vector having components

(x̄, ȳ, z̄) is the same as the directional cosine vector (µx,µy,µz)=(sinθ cosφ,sinθsinφ,cosθ),

as seen from Eq. 6.5. Thus, several algebraic steps make the following relationships

between new direction cosines (µ′x,µ′y,µ′z) with old direction cosines (µx,µy,µz) [Cashwell

and Everett, 1959]:

µ′x =
sinθ(µxµz cosφ−µy sinφ)p

( 1−µ2
z)

+µx cosθ;

µ′y =
sinθ(µyµz cosφ+µx sinφ)p

( 1−µ2
z)

+µy cosθ;

µ′z =−sinθ cosφ
√

1−µ2
z +µz cosθ.

(6.11)

Above relationships also can be derived by the matrix multiplication due to the two

consecutive rotations of a vector having direction cosines (µx,µy,µz) through an angle θ

about y-axis and an angle φ about z-axis, as detailed in several text books [Wang and

Tuchin, 2013; Marchuk et al., 2013].

6.2.5 Sampling of random variables

In order to simulate the random behaviour of the photons in tissue, several variables

were needed to be generated randomly and repeatedly. Examples of those variables

include free pathlength of photon between two consecutive interactions, and angle of

photon scattering. These variables were randomly sampled from well-defined probability

distribution functions. The mathematical explanation of the random sampling in Monte

Carlo modelling can be found in several text books [Cashwell and Everett, 1959; Lux and

Koblinger, 1991; Kalos and Whitlock, 2008].

Let us consider X is the random variable needed in the simulation. There is a proba-

bility density function that is defined by the distribution of X over an interval (a,b). In its
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normalised form, the probability density function (PDF) is written as:

∫ b

a
p(X )dX = 1 (6.12)

In order to choose the value for X randomly and repeatedly, a pseudo-random generator

(inbuilt MATLAB function) was used. It should be noted that inbuilt random number

generators in the computer are known to produce ‘pseudo-random’ numbers because

those are not truly ‘random’ as par its mathematical definition, however, those numbers

approximate the properties of the sequence of actual random numbers [Niederreiter,

1992].

The computer provides a random variable ξ, the value of which is uniformly distributed

between 0 and 1. Let us consider Fξ is the Cumulative distribution function (CDF) for ξ.

CDF of a random variable at a certain input value is the probability that the variable

is always less than or equal to the given input. By definition, CDF for the uniformly

distributed random variable ξ at an input value ξ1 is given by:

Fξ(ξ1)=



0 if ξ1 ≤ 0

ξ1 if 0< ξ1 ≤ 1

1 if ξ1 > 1.

(6.13)

Let us consider that there exists a function X = f (ξ), which maps ξ ∈ (0,1) to X ∈ (a,b)

[Kalos and Whitlock, 2008]. The variables X and ξ, hence, have a one-to-one mapping.

This is described in the Figure 6.3. As shown in the Figures 6.3(a) and (b), the shaded

area depicting the integral of p(X ) over [0, X1] is equated with the shaded area depicting

the integral of p(ξ) over [0, ξ1]. According to the definition of the probability distribution

functions, the areas under both the curves p(X ) and p(ξ) equal to unity. The result is a

one-to-one mapping between the upper boundaries ξ1 and X1 based on the equality of the

shaded areas in the figure. Thus, according to Figures 6.3(a) and (b), the probability of

finding X between a and X1 equals to the probability of finding ξ between 0 and ξ1. This

can be written as a probability equality equation:

P
(
a < X ≤ X1

)
= P

(
0< ξ≤ ξ1

)
. (6.14)
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Figure 6.3: The steps of sampling a random variable, X, based on a uniformly distributed
random variable, ξ are illustrated. The probability of the random number xi, lying
between 0 and 1, to have a value equals to xi1 is presented in (a), and the corresponding
cumulative distribution function is presented in (b). Again, the probability that a random
variable X , lying between a and b, to have a value equals to X1 is presented in (d) and
the corresponding cumulutaive distribution function is presented in (c). By definition,
both the cumulative distribution functions F(ξ) and F(X ) have values between 0 and 1,
as shown in (b) and (c), respectively. The graphs are adapted from [Wang and Jacques,
1992].
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According to the definition of CDF, above probability equation can be written in the form

of two CDFs:

Fx(X1)= Fξ(ξ1). (6.15)

The CDFs are shown in Figures 6.3 (c) and (d) corresponding to the PDFs in (b) and (a)

respectively. The transformation process X1 = f (ξ1) is shown by the arrows. For each ξ1, a

X1 is chosen such that the cumulative distribution functions for ξ1 and X1 have the same

value. Correspondingly, the hatched areas are equal.

Expanding the cumulative distribution function Fξ(ξ1) in terms of the corresponding

probability density function for the left-hand side of Eq.6.15 and employing Eq. 6.13 for

the right-hand side, Eq. 6.15 is converted into:∫ X1

a
p(X ) dX = ξ1 for ξ1 ∈ (0,1). (6.16)

Above equation is solved for X1 to get the function F(ξ1). This above relationship will be

often used in the next sections.

6.2.6 Simulation procedure

The algorithm for simulating a desired number of photon clusters through the tissue

medium is presented in Figure 6.4. In the model, first, a number of photon clusters were

selected to be simulated or detected. A photon cluster was ‘launched’ down the surface

from the optical source places on it. After the correction for ‘specular reflection’, the photon

started propagating through a randomly generated ‘step size’. After moving through each

step size, it was checked whether the photon ‘hit the boundary’ of tissue. In case of

an interaction with the boundary, a check was made for ‘reflection and transmission’.

If the photon was ‘transmitted’ to the outside medium, another check was made if it

was ‘detected’. In cases where the photon was transmitted without being detected, the

photon cluster was ‘terminated’. If it was ‘reflected’ internally, the position and direction

co-ordinates were updated and the photon continued to propagate through a new step size,

repeating the same steps. In case of no collision with the boundary, the photon went to the

interaction site where the ‘scattering and absorption’ events took place, and the photon

weight, position and directions were updated in the system accordingly. The simulated

photon had to ‘survive’ in order to propagate further through tissue. If the photon did not
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Figure 6.4: The flowchart for the algorithm of Monte Carlo modelling is presented.
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Figure 6.5: Schematic of light-tissue interactions to be simulated by the Monte Carlo
model through a ‘slab’ of biological tissue is shown. The internal (tissue) medium and
the transmitting (outside) medium have refractive indices ni and nt respectively. I is
the total initial ’weight’ of the photon incident cluster. A is the amount of light intensity
absorbed in the medium, and S represents the scattering event of the remaining photon
cluster. Rs and Rb respectively represent reflectance at the tissue surface (i.e., entrance
of the photon cluster) and at any tissue boundary (reflectance at the bottom surface is
shown in the diagram, however it can occur at the top surface also). Rd and Td represent
the weight of the photon cluster that exit from the top surface (i.e., diffuse reflectance)
and the bottom surface (i.e., diffuse transmittance) respectively. The occurrences in the
diagram follows the steps from the previous flowchart.
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satisfy the criteria for the survival, termination of the photon propagation happened. For

the photon surviving through the criteria, a new step size was made and the previous

steps repeated. Iterations continued until the desired number of photon clusters were not

simulated. Once the requirement was met, the program ended.

The physical theory of the light-tissue interactions behind the simulation has been

discussed in Chapter 3. In the current section, the simulation steps following those

physical theories will be discussed. The schematic Figure 6.5, that corresponds to the

flowchart in Figure 6.4, summarises all the interactions between light and tissue occurred.

The tissue medium represented by the green block, which (incident medium) has a

refractive index ni, whereas the outside (transmitting medium) refractive index is nt.

The incident weight of the photon cluster is (I). A part of the photon weight undergoes

reflectance Rs on the medium surface, whereas some part of the weight undergoes

reflectance Rb in the boundary of the medium. A part of the photon cluster is absorbed

in the medium (A). The photon cluster with the remaining weight undergoes scattering

event, i.e., shifts directions (S). It should be noted that scattering and absorption events

take place simultaneously at each interaction site, i.e., each time the photon cluster

interacts with a scattering centre (though in the schematic, the absorption is shown

only once). The photon cluster might leave the tissue from the top surface, contributing

to the diffuse reflectance Rd. It also can leave the tissue from its bottom surface to

the transmitting medium resulting in the diffuse transmittance Td. All the reflected,

absorbed and transmitted photon weights always are summed up to give the incident

photon weight:

Rd +Rs + A+Td = I (6.17)

6.2.6.1 Incidence of photon

The first step of the simulation was to introduce a photon cluster with an initial weight,

and the initial position and direction. The initial position and direction of the photon

depended on the characterisation of the photon ‘source’. In the MC model, there are

provisions to incorporate different types of optical radiation, such as, collimated Gaussian

beam, incidence from isotropic source, plain flat beam source, optical fibre source etc.

[Jacques, 2011; Prahl, 1988; Phillips et al., 2010; Reif et al., 2007]. In this thesis, three
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cases of photon incidence are considered for different applications which are described

below.

• Collimated beam from a point source: Photons were launched perpendicular

to the tissue (i.e, θ = 0). The direction cosines were calculated using Eq. 6.5. The

photons were incident exactly on the origin. Therefore, position co-ordinates and

direction cosines of the incident photon are given below:

x = 0,

y= 0,

z = 0;

µx = 0,

µy = 0,

µz = 1.

(6.18)

• Collimated Gaussian beam: Photons were launched as collimated Gaussian

beam (e.g., laser). Here, the beam was considered to emerge from a ring shaped

source placed on the tissue surface, as shown in Figure 6.1. Let us consider the

Figure 6.6 representing the top view of the photon ‘launch’ down into tissue. A

choice of the launch position was described by a radius r and an angle ψ. The

co-ordinate system used for the incidence of the Gaussian beam was different from

the other two systems used to define the tissue geometry and the photon movement.

The origin of this present co-ordinate system coincided with that of the Cartesian

co-ordinate system.

Gaussian beam has a probability distribution function which is given by (in nor-

malised form) [Wang and Jacques, 1992]:

p(r)= e
−r2

b2 2πr
πb2 (6.19)

where b is the 1/e2 radius (i.e., the radius where the intensity values fall to 1/e2 of

its axial values). Integrating the probability function over the entire area of the

annular ring, it is obtained as: ∫ ∞

0
p(r)dr = 1. (6.20)
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Figure 6.6: The diagram presents the top view of the incidence of a cylindrically symmetric
Gaussian beam to the tissue surface. In the 2D polar co-ordinate system, the photon has
a radial position r and an angle ψ with the x-axis.

Due to cylindrical symmetry, the radius and angle of the photon should be randomly

generated within the circumference of the source. Recalling Eq. 6.16, the above

probability can be expressed in the form of a random number ξ ∈ (0,1):∫ r1

0
p(r)dr = ξ

⇒ 1− e
−r2

1
b2 = ξ

⇒ r1 = b
√
−ln(1−ξ)

= b
√
−ln(ξ)

(6.21)

which expresses the probability of finding the radial position within 0 and a certain

value r1. −ln(1−ξ) and −ln(ξ) are equivalent as ξ is uniformly distributed between

0 an 1.

Using this expression, the radial position r of the photon is generated randomly

and repeatedly. Also, the radial angle ψ is chosen randomly between 0 and 2π:

ψ= 2π ·ξ (6.22)
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Utilizing the above two conditions, the x and y position co-ordinates of the photon

on the tissue surface are determined. Considering the photon is incident on the

tissue surface, the position co-ordinates are given below:

x = r1 ·cosψ

y= r1 ·sinψ

z = 0.

(6.23)

Due to normal incidence, the direction cosines are the same as the collimated beam

from a point source described before: µx = 0, µy = 0, µz = 1.

• Incidence from optical fibre: The source fibre had a circular emitter of radius r

(mm). Thus the co-ordinates of the incident photon were constrained by the emitter

diameter. The x and y-coordinates of the photon were described as:

x = (2ξ−1)r

y= (2ξ−1)r

(6.24)

so that

(x2 + y2)< r2 (6.25)

where ξ is a randomly generated number between 0 and 1. Since photon is supposed

to be launched on the tissue-surface, the initial value for the z-coordinate is z = 0.

The numerical aperture NA of an optical fibre is a dimensionless number that

characterizes the range of angles over which the system can accept or emit light,

i.e., the light fallen within the range of angles defined by the NA of an optical

fibre will be entered and transmitted by the fibre. It is expressed as the sin of the

‘acceptance angle’ of the fibre. An acceptance angle is the maximum angle of a light

beam (against the fibre axis) hitting the fibre core which allows the incident light to

be guided by the core. Considering (θ) to be the acceptance angle of the optical fibre

in this case, as depicted in Figure 6.7, the numerical aperture of the fibre is defined

as:
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N A = nsinθ (6.26)

where n is the refractive index (r.i.) of the outside medium.

Figure 6.7: Incidence of the photon cluster from source fibre of radius r and numerical
aperture N A = nsinθ, where θ is the half-acceptance angle of the fibre.

Considering the equal probability of angles about the axis of fibre, it is considered

that the photon cluster can be incident at any angle within the acceptance cone of

the optical fibre. Thus the zenith angle of the incident photon (considering outside

medium to be air so that n = 1) can be written as:

θ = ξsin−1(N A) (6.27)

The azimuthal angle of the photon can take any value between 0 and 2π and can be

expressed in terms of a random number ξ as:

φ= 2ξπ (6.28)

Henceforth, an incident photon cluster was ready for propagation with its initial weight

w, position co-ordinates (x, y, z) and the direction cosines (µx,µy,µz).

6.2.6.2 Step size calculation and moving photon

In order to move the photon, a ‘step size’ l was calculated. A step size refers to the

free path length of photon, i.e., the pathlength it traverses without being absorbed or
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scattered, which is also the distance between two consecutive interaction (scattering and

absorption) sites. As the photon took a path randomly within tissue, the step size was

calculated by the random sampling of the probability of photon path through tissue. Let

us define a suitable normalised probability distribution function for the free pathlength:

p(l), expressed as a function of the total interaction coefficient of tissue, µt =µa+µs [Wang

and Jacques, 1992]:

p(l)=µte−µt l (6.29)

so that ∫ ∞

0
p(l)dl = 1 (6.30)

Therefore, following the rule of random sampling of variable, the probability of photon

free path taking a value between 0 and l = l1 can be expressed as a random number

ξ ∈ (0,1) according to Eq. 6.16: ∫ ł1

0
p(l)dl = ξ

⇒
∫ ł1

0

e−µt l

µt
dl = ξ

⇒ 1− e−µt l1 = ξ

∴ l1 = −ln(1−ξ)
µt

= −ln(ξ)
µt

(6.31)

For a highly scattering medium as tissue, µs >> µa, thus, µt w µs, expressing the path-

length as:

l1 = −ln(ξ)
µs

. (6.32)

Once the pathlength, i.e., the ‘step size’ was determined using the above equation, the

new position of the photon (x’,y’,z’) was updated as [Wang et al., 1995]:

x′ = x+µx · l1

y′ = y+µy · l1

z′ = z+µz · l1.

(6.33)

6.2.6.3 Absorption and scattering

Through the step size, the photon was moved to an interaction site and went through the

absorption and scattering events. The absorbed fraction of photon weight is expressed by
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an absorption factor a = µa
µt

. Therefore, the absorbed weight ∆w is given by

∆w = w.a = w
µa

µt
. (6.34)

The unabsorbed amount of photon cluster, i.e. w = w−∆w then was subjected to the

scattering event.

Scattering of photon was achieved by deviating the photon direction by a deflection

angle θ (06 θ <π), and simultaneously rotating through an azimuthal angle, φ(06φ<
2π). The scattering angle was calculated by random sampling of its probability density

function determined from the Henyey-Greenstein phase function, introduced in Chapter

3. Recalling Eq. 3.8, putting the value of p(cosθ), the value of cosine of the deflection

angle was obtained in the term of the random number ξ and anisotropy factor g as:

cosθ =


1

2g

[
1+ g2 −

(
1−g2

1−g+2gξ

)2
]

if g 6= 0

2ξ−1 if g = 0.
(6.35)

Next, the azimuthal angle φ, uniformly distributed between 0 and 2π, was sampled

as:

φ= 2πξ. (6.36)

Once both the angles were calculated, the new directions of photon cluster were

updated using the following relationships [Cashwell and Everett, 1959]:

µ′x =
sinθ(µxµz cosφ−µy sinφ)√

1−µ2
z

+µx cosθ;

µ′y =
sinθ(µyµz cosφ+µx sinφ)√

1−µ2
z

+µy cosθ;

µ′z =−sinθ cosφ
√

1−µ2
z +µz cosθ.

(6.37)

If the photon was sufficiently close to the z-axis, then the following formulas should be

used:

µ′x = sinθ cosφ

µ′y = sinθsinφ

µ′z = SIGN(µz)cosθ

(6.38)

where SIGN(µz) returns 1 when µz is positive, and returns −1 when it is negative.
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6.2.6.4 Correction at the boundary

During travelling through tissue, each time the photon interacted with the boundary, the

events of reflection and transmission took place. For these events to occur, the refractive

index mismatch between both sides of the boundary line was necessary. In the model, the

refractive index mismatch was found at the air-tissue interface only. Thus, the boundary

correction was implemented in the following conditions:

1. At surface: When a photon cluster was incident from the source on the tissue term,

reflection took place and a fraction of the photon weight was always lost. In all cases

in the modelling, it was assumed that the photon clusters were normally incident

from the source on the tissue surface. Therefore, the Fresnel’s reflection equation

for normal incidence (θi = 0o) was used for calculating the reflection factor at the

surface, i.e., Rs [Born and Wolf, 2013; Ganesan and Hecht, 2008]:

Rs =
(

ni −nt

ni +nt

)2
. (6.39)

Upon incidence, the weight w of the photon was lost by Rs ·w, and the photon

entered the medium with a weight w = w−Rs ·w.

2. At boundary: During travelling through the tissue medium, when the photon

cluster reached the air-tissue boundary either at the top z = 0, or at the bottom

z = t (for a tissue volume of finite thickness t), reflection or transmission took place.

In case of light travelling from an optically denser medium to an optically rarer

medium, e.g., from tissue to air (i.e., ni > nt), for the angle of incidence θi larger

than the critical angle θc, ‘total internal reflection’ takes place while in other cases,

the reflection or transmission depended on the reflectance R. The conditions were

defined as follows:

R =



(
nt−ni
ni+nt

)2
, if θi ' 0

1
2

[
sin2(θi−θt)
sin2(θi+θt)

+ tan2(θi−θt)
tan2(θi+θt)

]
, if 0< θi < θc

1, if θc ≤ θi <π/2.

(6.40)

If the photon hit boundary, a check was made to determine whether the photon was

internally reflected or transmitted by comparing the reflection coefficient R with a
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Figure 6.8: The correction for reflection at boundary in the model is shown. From the
position A, a new step size of the photon cluster is generated such that the photon reaches
B crossing the boundary. To make the correction at boundary, the photon position and
direction cosines are reversed so that photon is traced at the position B’. The position is
updated as z =−z (if the photon hits the the top boundary z = 0) or z = 2t− z (if photon
hits the bottom boundary z = t, t being tissue thickness), and the direction is updated as
µz =−µz. The alternative cases are written within brackets.

randomly generated number ξ. If R > ξ, the photon cluster would transmit, else it

would reflect internally.

For a slab of thickness t, the coordinates of a reflected photon was achieved by

updating its position and direction with respect to z-axis only. Thus, after reflection,

the position and direction of the photon was updated as:

z =


−z, if z < 0

2t− z if z > t

µz =−µz.

(6.41)

The reflection and refraction process was depicted in the Figure 6.8.

6.2.6.5 Termination of photon propagation

The propagation of photon ended in two circumstances:
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1. The photon was ‘detected’.

2. The photon did not ‘survive’.

Let us first discuss the detection part. Different Monte Carlo models define different

detection criteria according to the requirement. In the present work, the photon clusters

were detected if their position and direction co-ordinates fell within the area of a ring-

shaped detector of a known radius, placed on the tissue surface (top or bottom, depending

on the mode of application). Once the photon cluster was detected, its propagation in

the medium was terminated. The detected ‘weight’ of photon is called ‘reflectance’ when

the detector was placed at the same side of tissue adjacent to the source (in reflectance

geometry), and ‘transmittance’ when the detector was placed at the opposite side to the

source (in the transmittance geometry). Once the photon was detected, numbers of related

variables were updated, such as the total transmittance or reflectance detected, optical

pathlength and photon weight, number of scattering in medium, absorbed weight in

tissue-layer, the distribution of the scattering centres in the medium, penetrated depth

and so on.

The photon cluster, on the other hand, was discarded when it did not meet the criteria

for ‘survival’. A fraction of photon weight was absorbed in the tissue at each interaction

site. After each interaction event it was checked whether the photon weight has dropped

below a certain threshold weight wth. Usually, for the photon migration through biological

tissue, the value was set to wth = 10−4. A photon cluster with weight w below the threshold

(i.e., w < wth) was unlikely to contribute to any information from the tissue. In other

words, the weight of photon which is equivalent to the intensity of the beam became too

feeble to be detected. Hence, the photon was terminated. However, the termination of

a photon below a certain threshold might impose a bias to the termination technique.

The biased termination of photons might compromise with the law of conservation of

energy [Wang and Jacques, 1992; Prahl, 1995]. To deal with this problem, a probabilistic

method was used for the photon termination which is known as Russian roulette. This

paradigm gave a chance to one photon in, say, m number of photons to survive with an

additional weight of mw. Usually, it was considered that m = 10. If the photon did not

survive the Russian roulette, its weight was reduced to zero and its propagation was
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ceased. Therefore, the rule of survival of a photon having a weight below the threshold

(w < wth) was expressed as:

w =


mw if ξ≤ 1

m

0 if ξ> 1
m .

(6.42)

Once the photon was terminated, a new photon was launched and the loops continued

until the desired number of photons were detected. Once the requirement was met, the

program ended.

6.3 Implementation strategy

The MC model was designed in MATLAB (Mathworks, Inc., USA) version 2015b (licensed

by City, University of London). A 64-bit Operating System with an installed memory of

24 GB and an Intel Xeon CPU (2.40 GHz, 2 processors) was dedicated for the simulation.

The code was written using ‘parallel programming’ method utilising an inbuilt MATLAB

function in 16 parallel threads. Figure 6.9 describes the detailed strategy to implement

the Monte Carlo model for different applications in the frame of the thesis.

6.3.1 Input and output

Figures 6.9 (a) and (b) respectively present the model inputs and outputs. The input

parameters to define the tissue volume were its optical properties (µa, µs, g, n) at the

operating wavelength λ, and its anatomical properties (thickness of tissue, stratification

of tissue layers, the concentration of absorbers present in the layers etc.). The input sensor

geometry was defined by the shape, dimension and position of the optical source and

detector. The model was provided with the information on the desired number of detected

photon so that the program ends when this requirement is met. In the output, MC model

provided the information on weight of detected photon, distribution of photon scattering

events in tissue, optical pathlength, depth of penetration, number of scattering in tissue,

absorbed photon weight in tissue layer(s), the record of lost photons (i.e., photons leave

tissue without being detected or fall below the threshold weight), number of reflected and

transmitted photon from boundary and time consumed for the interactions.
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6.3.2 Monolayer and multilayer model

On the basis of the level of heterogeneity induced in the tissue model, there were two

categories of the MC approach: monolayer modelling and multilayer modelling.

A monolayer model consisted of a single homogeneous layer of tissue defined by its

optical properties, for example, dermal skin, fat, muscle, brain matter etc. Although a

single layer of tissue cannot be isolated in the case of in vivo experiments or practical

applications with human subjects, such in vitro experiments are possible in the lab

environment. Studies with a single layer of tissue provided an insight into the precise

nature of anatomical and optical properties exhibited by particularly that layer. Several

obvious advantages associated with the monolayer model, such as, simplicity to design,

flexibility to induce any physiological variations, and of course, fast computational speed.

In this work, the monolayer model was initially explored for validating the implementation

protocols, and was further executed to investigate the light-tissue interactions in a

perfused tissue.

On the other hand, a multilayer tissue model consisted of multiple layers of tissue with

different optical properties. Numbers of individual homogeneous monolayers combined

to form a heterogeneous multilayer tissue model. The level of the heterogeneity of a

multilayer model depended on the application. In this work, multilayer models of human

finger and forearm were simulated and explored for detail investigation on light-tissue

interaction in photoplethysmography.

The monolayer model complemented the multilayer models, whereas the multilayer

model presented a comprehensive view of the light-tissue interaction in the bulk tissue of

interest. Therefore, studies with both the models were equally important in the thesis.

6.3.3 Execution of the model

This section describes th execution the MC model. The outputs from the model which

were recorded for all applications were:

• Distribution of photon scattering was the density plot of the position co-ordinates

of the scattering centres distributed in the three-dimensional geometry.
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• Depth of penetration was the maximum perpendicular distance from the tissue

surface along the negative z-axis covered by a photon. The mean of the highest abso-

lute magnitudes of the z-coordinate of each detected photon gave the quantification

of the penetration depth

• Optical path was the sum of the step sizes (according to Eq. 6.32) a photon takes

to travel from the source to detector.

• Weight of the detected photon was recorded as ‘reflectance’ or ‘transmittance’

depending on the detection geometry. Also, the weight of the absorbed photon in

each layer of tissue was scored.

Two different photon capture technique were used for the detection of photons, which

are detailed below.

• Fixed detector technique: For the demonstration of the interaction events within

tissue, the model was executed for a fixed source-detector separation d. In this case,

a given number of photon clusters were detected when they crossed the boundary

and reached the detector area.

• Moving detector technique: applications where a very large number of photons

had to be simulated through a vast range of source-detector separations, this

technique was used. Consider photons had to be detected at n separations (from

source placed at the origin) in ascending order: d1,d2, ...dn. In this case, it was

very time consuming to detect photons separately in all distances. Instead, photons

were detected whenever they cross the boundary anywhere within the maximum

separation dn, and the distance of the emerging point (having a co-ordinate (x,y,0))

from the source (i.e., origin (0,0,0)) was calculated as:

d =
√

x2 + y2 (6.43)

The detector was basically simulated as a sliding window of a width equal to the

detector diameter. The information on the detected photons in each sliding detector

position at different distances were calculated by accumulating the data in the area

defined by adequate bin sizes (i.e., detector diameters), and obtaining the histogram

plots for optical path, depth, weight etc.
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Both fixed and moving detector technique were used for the reflective mode inves-

tigations. For the transmissive mode, only the fixed detector technique was used. The

applications of these techniques will be discussed in the following chapters in the thesis.

6.4 Summary

In the first section of this chapter, detail methodology for developing the MC model for

this work has been described. Incidence of photon as a cluster has been considered in the

model that is initiated with a weight equals to unity, and that weight gradually decays

due to the absorption losses within the tissue medium, and after a certain threshold the

photon cluster is terminated or propagated based on a probability check. The propagation

of the photon cluster within the medium depends on the randomly generated pathlengths,

and scattering angles. The model also incorporates the provision for the corrections due to

reflection at the surface and the boundary. For the sampling of random variables, pseudo-

random numbers (having values number between 0 and 1) were generated repeatedly.

Since the cumulative distribution function of the random number and the variable was

shown to have an one-to-one correspondence, the variables could be generated randomly

as functions of the random numbers as many times as required. The methodology follows

the light-tissue interaction theory discussed in Chapter 3. The assumptions for the model

have been discussed and the necessary calculations are shown. In the second section

of the chapter, details on the basic protocols for implementing the model have been

discussed. The inputs and outputs of the model were illustrated. The main feature of the

Monte Carlo strategy in this thesis are the simultaneous application of monolayer and

multilayer tissue models. With the flowchart of the implementation detail, the importance

of both kinds of models have been addressed in this chapter. The two execution strategy

of the photon detection, namely, fixed detector and moving detector techniques have been

described which will be used frequently in the thesis. The specifications about the models

will be discussed later on along with the applications in the thesis. The modelling strategy

and protocols discussed in this chapter will be verified in next chapter.
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7
CHARACTERISATION AND EVALUATION OF THE

MONTE CARLO MODEL

7.1 Introduction

The process of development of the Monte Carlo model has been discussed in the last

chapter. The features of the model will be characterised in this chapter. Before relying on

the numbers produced by a model, it is important to validate the results. This chapter

will validate the results produced using the developed Monte Carlo model by comparing

those with the already established analytical solutions. The features of the model, that

has been defined in previous chapter, will be characterised by the simulated examples

in this chapter. Also, the accuracy of the model will be verified in the chapter. For the

purpose of characterisation and validation, the monolayer tissue volumes were simulated

in this chapter.

7.2 Characterisation of the model

The recipe of the MC simulation was explained in Chapter 6. This will be further il-

lustrated in this chapter by an example of simulation. The typical optical path of a

single photon cluster simulated in a tissue medium is shown in Figure 7.1. As de-

scribed in the last chapter, the tissue volume was characterised by its optical properties:
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Figure 7.1: A typical path of a photon cluster traced in a medium is shown in a 2D
projection (x-z plane) of the 3D model. Optical fibre source S detector D are placed at the
points (0,0,0) and (d,0,0) on the tissue surface z = 0 in this reflectance geometry. The blue
dots are the position of the photon cluster. Red dotted lines are the pathlength l. The plot
is describe the physical processes described in Figure 3.4.

µs = 36.36 mm−1, µa = 0.09 mm−1, g = 0.876, ni = nt = 1. The tissue specifications

described the optical properties of the white matter of the human brain at 810 nm

wavelength [Yaroslavsky et al., 2002]. The 2D projection (x-z plane) of the 3D model is

demonstrated in Figure 7.1. Source S was placed at the origin (0,0,0) of the Cartesian

co-ordinate system, and detector D was placed at the point (d,0,0). Here, the optical fibre

probe was used. The radii and numerical apertures for both the source and detector were

kept the same, i.e., 1 mm and 0.39. In this reflectance geometry, both source and detector

were placed on the tissue surface z = 0. The blue dots is the photon scatter positions. Red

dotted lines joining the photon positions are the pathlength l in the simulated result. The

maximum value of absolute z-coordinate presents the depth of penetration, and the angle

between two consecutive scatter positions is the deflection angle θ. This also corresponds
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Figure 7.2: Scatter-plot of Monte Carlo simulated photon cluster distribution in tissue
medium is presented in the (x,y,z) co-ordinate system. The path of the photon clusters
from a source placed at origin (0,0,0) and the detector (4,0,0) in a reflectance geometry
are shown. The randomness of the optical path is due to the random scattering of photon.
Negative z-direction indicates depth within tissue.

to the description of scattering angle and mean free pathlength described in Figure 3.4.

in the Chapter 3. The deflection angles generated in the tissue medium are small, leading

to more forward scattering. The free pathlengths are randomly generated each time. All

the variables used here have been already introduced in Chapter 6.

The scatter-plot distribution of the interaction events (scattering+absorption) through

which the photon clusters propagated through the volume of tissue is shown in Figure 7.2.

The plot shows the randomness of the photon cluster which was simulated by the random

sampling of the step sizes and the scattering angles. A small number of photon clusters

(103) were simulated. Although the scatter-plots are easy to compute in the MATLAB

platform, such plots are inconvenient for simulating a very high number of photons.
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Figure 7.3: Density-plot of Monte Carlo simulated scatter distribution for photon clusters
propagating through tissue from source to detector separated by a distance 6 mm is
presented in the (x,y,z) co-ordinate system. Distribution in the three planes are shown
separately: xz plane in (a) shows the direct cross-sectional view, yz plane in (b) shows
lateral cross-sectional view, and the xy plane in (c) shows the top view of the photon
scatter distribution from source to detector. Colourbar shows the distribution between
the minimum and maximum number of scattering events (i.e., interaction events).
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Instead, density-plots need to be used for handling a large number of data. Figure 7.3

presents the same scatter-plot in the form of density-plot. Images from the three different

planes: xy, yz and xy are illustrated figures (a), (b) and (c) respectively. The colourbar

represents the distribution of the number of scattering N between its minimum value

Nmin = 0 and its maximum value Nmax = 66×104. The brighter shade near the source

and the detector in Figure 7.3(a) indicates the occurrence of the maximum scattering

events in that region. The darker shade deeper within tissue refers to less number of

scattering events. In the fixed detector technique (described in Chapter 6), the mean

penetration depth of the photon clusters was calculated by averaging the maximum of

absolute z co-ordinate of the photons, and the mean optical pathlength was calculated by

averaging the total step sizes taken by the photons through tissue.

It should be noted that in this thesis, the Monte Carlo is discussed to simulate the

light propagation through tissue to be detected in some specific geometries. Therefore,

all previous images shown in this chapter are the path of photon clusters only that are

detected in the reflectance geometry. However, if no detector is placed on the tissue, light

traverses freely through it until they leave the tissue or become very week to propagate

further. An instance of the distribution of photon clusters in a detector-free tissue medium,

having a source placed at the origin, are shown in Figure 7.4. In Figure 7.4 (a), a typical

path of a single photon cluster is shown which starts from from the point A, loses its

energy (i.e., ’weight’) through the absorption events and finally, is terminated at point

B where it becomes too weak to survive (i.e., weight falls below wth). In Figure 7.4(b),

the scatter-plot of a 100 numbers of simulated photon clusters in the medium is shown.

Since there is no cut-off criteria for the photon clusters, they follow random paths in

any directions. Different colours shown the different optical paths, however, those are

difficult to isolate because of their randomness. Figure 7.4 is presented for a complete

understanding of the photon cluster distribution in a medium, however, in all further

applications in this thesis, only the path of the detected photons clusters will be shown.
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Figure 7.4: A typical distribution of all photon clusters in a medium is presented, i.e.,
the photon path is not restricted with any detection criteria. No photons beyond z=0
are discarded, and the only rule of termination of photon propagations is the weight
of the photon falling below a threshold. The photon clusters are incident from a source
placed at the origin (0,0,0). A typical path of a photon cluster is shown in (a) in a 2-
D geometry (xz plane). A and B are the positions of the start and end of the photon
propagation, respectively. The typical paths of 100 photon clusters are shown in (b) in a
3D geometry (xyz plane). The optical paths appear to be randomly distributed. Different
colours represent the different path of the photon clusters.

7.3 Evaluation of the model

The Monte Carlo model was verified by cross-checking with pre-validated results in the

four different cases below.

Case I: The developed MC model was comprehensively validated through comparing

the results of simulated diffuse reflectance Rd in a semi-infinite medium with: (a) the

analytical result by [Giovanelli, 1955], (b) the results of adding doubling method (as

mentioned in Chapter 5) by [Prahl, 1988], and (c) the MCML code developed by [Wang

et al., 1995] (as stated in Chapter 5). The tissue medium was considered to have isotropic

scattering property and a different refractive index than the outside medium. The para-

meters used for simulation in this case were: ni = 1.5, nt = 1, µa = 1 mm−1, µs = 9 mm−1,

and g = 0.0. Ten simulations each with 5×104 photon clusters were iterated, as the same

parameters were used in MCML application by [Wang et al., 1995]. The calculated values

of Rd and the standard error (i.e., deviation from the analytical value) are presented in
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Table 7.1. The standard error was found to be minimal in the developed MC algorithm

result.

Table 7.1: Simulated results of diffuse reflectance (Rd) compared with pre-validated
results.

References Rd Error
Giovanelli [Giovanelli, 1955] 0.2600 −

Prahl [Prahl, 1988] 0.26079 0.00079
Wang [Wang et al., 1995] 0.25907 0.00170

Developed MC 0.0.26029 0.0.00029

Case II:

The results of MC simulated diffuse reflectance Rd and transmittance Td for a slab

having finite thickness of 0.2 mm were compared with: (a) the results tabulated by

[Hulst, 1957], (b) results obtained by [Prahl, 1988] using adding-doubling method, and (c)

rthe results using MCML by [Wang et al., 1995]. The tissue medium was considered to

exhibit anisotropic scattering and to have the same refractive index as that of the outside

medium (i.e., air). The parameters used for the simulation were: ni = nt = 1, µa = 1 mm−1,

µs = 9 mm−1 , and g = 0.75. The compared results are presented in Table 7.2. It was

seen that the values of simulated Rd and Td were in fair agreement with analytical and

pre-validated data, with a very minimal standard error.

Table 7.2: Comparison of MC simulated total reflectance and transmittance with the
analytical results for an anisotropic scattering tissue having matched boundary.

Reference Rd Error Td Error
van de Hulst [Hulst, 1957] 0.0973 − 0.66096 −

Prahl [Prahl, 1988] 0.09711 0.00033 0.66159 0.00049
Wang [Wang et al., 1995] 0.09734 0.00035 0.66096 0.00020

Developed MC 0.097397 0.000007 0.66074 0.00022

In Case I and case II, the energy conservation law was also verified to check the

accuracy of the model. According to the law of energy conservation (which is also the basis

of Radiative Transfer formalism discussed in Chapter 2), the total weight of the photon

cluster should be maintained always. Therefore, the sum of the absorbance (absorbed

weight, A), the diffuse reflectance (reflected weight, Rd) and the diffuse transmittance

(transmitted weight, Td) should always be equal to the incidence weight of the photon

cluster, w = 1. In case I, Rd = 0.2600, A = 0.7397, so that Rd + A = 1. No transmittance
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was recorded in Case I so Td = 0. In case II, Rd = 0.09737, Td = 0.66074, A = 0.2419,

resulting in Rd +Td + A = 1. Hence, the energy was conserved in both cases of Monte

Carlo application.

Case III:

The results of transmittance and reflectance in a medium with the same refractive

index as the outside medium (relative refractive index = 1) and exhibiting isotropic

scattering were produced by the present MC model and were compared with the results:

(a) tabulated by van de Hulst [Hulst, 1957], (b) the results of the adding-doubling method

by Prahl [Prahl, 1988], and (c) the MC programs developed by van der Zee [Van der Zee,

1992] in Table 7.3. The results were obtained for a set of four values for albedo (a = µa
µt

),

and four values of a slab thickness t for each albedo, respectively with data. Results

were averaged over 105 number of simulated photon clusters. The results showed fair

agreement between the simulated and tabulated data.

Table 7.3: Comparison of developed Monte Carlo (MC) reflectance and transmittance
simulations for an isotropic scattering slab with known thickness t and albedo a with the
data tabulated by van de Hulst (vdH) [Hulst, 1957], van der Zee (vdZ) [Van der Zee, 1992]
and Prahl (P) [Prahl, 1988].

t (mm) Reflectance Transmittance
MC vdH vdZ P MC vdH vdZ P

a = 0.4
0.25 0.0368 0.0357 0.037 0.0356 0.8112 0.8136 0.8120 0.8136
0.5 0.0550 0.0553 0.0524 0.0553 0.6596 0.6577 0.6610 0.6577
1.0 0.0737 0.0734 0.0716 0.0734 0.4233 0.4250 0.4260 0.4251
4.0 0.0838 0.0833 0.0837 0.0833 0.0270 0.0272 0.0272 0.0272

a = 0.8
0.25 0.0833 0.0824 0.0837 0.0824 0.8581 0.8594 0.8580 0.8595
0.5 0.14130 0.1401 0.1430 0.1401 0.7353 0.7378 0.7340 0.7378
1.0 0.2073 0.2109 0.2090 0.2108 0.5451 0.5414 0.5440 0.5414
4.0 0.2844 0.2840 0.2870 0.2840 0.0754 0.0751 0.0754 0.0751

a=0.9
0.25 0.0980 0.0965 0.0975 0.0965 0.8713 0.8733 0.8730 0.8733
0.5 0.1701 0.1690 0.1650 0.1690 0.7649 0.7653 0.7710 0.7654
1 0.2671 0.2674 0.2660 0.2674 0.5925 0.5916 0.5940 0.5916

a=0.99
0.25 0.1122 0.1101 0.1090 0.1101 0.8846 0.8867 0.8860 0.8867
0.5 0.2017 0.1989 0.2030 0.1989 0.7910 0.7940 0.7900 0.7941
1 0.3361 0.3329 0.3290 0.3329 0.6478 0.6509 0.6550 0.6510
4 0.6444 0.6450 0.6450 0.6450 0.2765 0.2755 0.2760 0.2755
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Case IV:

The reflectance and the transmittance for a tissue medium having scattering anisotropy

were tabulated by van de Hulst [Hulst, 1957], which was reproduced by Prahl [Prahl,

1988] and P. van der Zee [Van der Zee, 1992]. Results simulated by the developed MC

code with the same input variables, i.e., the HG scattering phase function with g values

of 0.5, 0.875, and for albedo, a = 0.9, 0.99, each for thickness 0.5, 1 and 4 mm of the tissue

slab are presented in Table 7.4. A 105 number of photon clusters were simulated. The

average transmittance and reflectance were calculated. Good agreement was seen in all

cases.

Table 7.4: Comparison of developed Monte Carlo (MC) reflectance and transmittance
simulations for an isotropic scattering slab with known thickness t and albedo a with the
data tabulated by van de Hulst (vdH) [Hulst, 1957], van der Zee (vdZ) [Van der Zee, 1992]
and Prahl (P) [Prahl, 1988].

t (mm) Reflectance Transmittance
MC vdH vdZ P MC vdH vdZ P

a = 0.4, g=0.5
0.5 0.0714 0.0720 0.0739 0.0720 0.8681 0.8672 0.8650 0.8672
1 0.1294 0.1298 0.1290 0.1298 0.7397 0.7391 0.7390 0.7391
4 0.2617 0.2612 0.2620 0.2612 0.2498 0.2505 0.2490 0.2505

a = 0.99, g=0.5
0.5 0.0862 0.0879 0.0874 0.0878 0.9074 0.9057 0.9060 0.9057
1 0.1694 0.1707 0.1690 0.1707 0.8158 0.8145 0.8160 0.8145
4 0.4687 0.4698 0.4670 0.4698 0.4537 0.4527 0.4550 0.4527

a=0.9, g=0.875
0.5 0.0122 0.0125 0.0110 0.0125 0.9363 0.9354 0.9350 0.9354
1 0.0242 0.0238 0.0226 0.0238 0.8702 0.8701 0.8690 0.8702
4 0.0653 0.0657 0.0650 0.0658 0.5204 0.5212 0.5220 0.5212

a=0.99, g=0.875
0.5 0.0151 0.0157 0.0155 0.0157 0.9795 0.9789 0.9790 0.9790
1 0.0321 0.0327 0.0322 0.0327 0.9564 0.9558 0.9560 0.9558
4 0.1413 0.1417 0.1400 0.1417 0.8008 0.8001 0.8020 0.8002

7.4 Correlating the optical parameters in the model

In order to check the effect of the individual optical parameters on the model behaviour,

three sets of simulations were run and the output variables (e.g., mean optical path,

absorbance, reflectance and transmittance) were measured. In all cases, the outputs were

averaged over 50,000 simulations.
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Case I:

According to Figure 7.5, MC model was executed for the absorption coefficient values

from 0-10 mm−1 with a scattering coefficient 50 mm−1 and an anisotropy factor 0.9 in

a semi-infinite slab of 1 mm thickness with a refractive index matched boundary. As

shown in Figure 7.5(a), the mean optical paths decreased with increasing absorption

coefficient. The obvious reason was that the most of the photon weight was absorbed

before it travelled a long distance in the medium. This explanation was supported by

result in Figure 7.5 (b), (c) and (d) respectively. Results showed that the absorbance was

increasing, and the reflectance and transmittance were decreasing. Higher values of

the scattering coefficient and anisotropy factor were considered to simulate the highly

forward scattering in the tissue medium.

Figure 7.5: Monte Carlo simulated plots for mean optical path (a), absorbance (b), re-
flectance (c) and transmittance (d) are presented for a range of absorption coefficient
values from 0-10 mm−1 with scattering coefficient 50 mm−1 and anisotropy factor 0.9 in
a semi-infinite slab of 1 mm thickness and refractive index matched boundary. Number of
photon clusters simulated is 50,000.

Case II:

According to Figure 7.6, MC model was executed for the scattering coefficient values
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Figure 7.6: Monte Carlo simulated plots for mean optical path (a), absorbance (b), re-
flectance (c) and transmittance (d) are presented for a range of scattering coefficient
values from 0-100 mm−1 with absorption coefficient 10 mm−1 and anisotropy factor 0.9
in a semi-infinite slab of 1 mm thickness and refractive index matched boundary. Number
of photon clusters simulated is 50,000.

from 0-100 mm−1 with an absorption coefficient of 10 mm−1, and an anisotropy factor of

0.9 in a semi-infinite slab of 1 mm thickness and refractive index matched boundary. As

shown in Figure 7.6, optical path initially increased with the scattering coefficient, and

then slowly decreased. This can be explained by the dependence of the optical pathlength

on the total interaction coefficient µt =µa +µs. Usually in biological tissue, µs >>µa. In

Figure 7.6, the high scattering region is the part where the optical path slowly decreased

with the scattering coefficient. However, for µs ∼µa, i.e., in the beginning of the plot, the

optical path increased sharply with the scattering coefficient. Since in this thesis, the

subject of interest is the biological tissue, we should mainly concentrate on the part where

µs >µa. The absorbance was found to fall sharply with an increasing scattering coefficient

which is explicable by the measurement of absorbed photon weight: ∆w = w(·µs
µt

). Thus,

the greater is the value of µs, the lower is the absorbance ∆w. For the reverse reason,

the reflectance increased with the increase of µs. The change in transmittance with the
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increasing scattering coefficient could be related to the change in optical pathlength.

Initially, with the higher optical paths, photons tended to cross the medium and transmit

through it. However, with increasing scattering coefficient, the pathlength values dropped,

i.e., lesser photons were able to transmit through tissue which resulted in a drop in the

transmittance values.

Case III:

In Figure 7.7, MC model was executed for a range of anisotropy factor values from

0.1-0.9 with an absorption coefficient of 10 mm−1 and a scattering coefficient of 50 mm−1

in a semi-infinite slab of 1 mm thickness and refractive index matched boundary.

Figure 7.7: Monte Carlo simulated plots for mean optical path (a), absorbance (b), re-
flectance (c) and transmittance (d) are presented for a range of anisotropy factor values
from 0.1-0.9 with absorption coefficient 10 mm−1 and scattering coefficient 50 mm−1 in a
semi-infinite slab of 1 mm thickness and refractive index matched boundary. Number of
photon clusters simulated is 50,000.

The optical path was found to be increasing with g. An increase in g indicated a

gradual increase of the dominance of the forward scattering. This led the photons to

take longer optical paths within the tissue. The increase in absorbance with g was the
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result of an increased number of interactions in tissue. With increasing g, the reduced

scattering coefficient of tissue µ′s =µs(1− g) decreased. This resulted in smaller scattering

angles and more forward scattering. Thus the number of interactions increased, which

resulted in increasing absorbance. Again, increasing forward scattering led the photons

to travel through higher values of optical paths from the source to the detector. Due to

higher absorbance, less number of photons transmitted through tissue resulting in lower

reflectance for high g. For smaller values of g, due to less forward scattering, most of the

photon clusters reflected, and almost no photon clusters transmitted through tissue. With

increasing g, forward scattering increased, resulting in increasing absorbance, and very

low transmittance. Thus, the overall transmittance value was very small. A very small

amount of photon weight ( 10−8) transmitted only at a very high g value.

In all the above cases (Case I, II and III), for each value of the input variable, the

values of reflectance, transmittance and absorbance were noted, and each time the energy

conservation relationship Rd +Td + A = 1 was verified.

7.5 Summary

In the first part of the chapter, the variables of the Monte Carlo model have been char-

acterised. Introducing the parameters of the model was important to relate to the de-

scriptions given in the following chapters. In the second part of the chapter, results from

the model have been cross-validated. Different sets of simulations were performed to

reproduce the results from the analytically obtained or re-validated data. All four cases

of the simulation showed excellent agreement with the pre-validated results. and the

correlations between the input and output variables have been demonstrated. In the third

part of the chapter, the correlation between the basic input parameters (absorption and

scattering coefficient, and anisotropy factor) and output variables (optical pathlength,

absorbance, reflectance and transmittance) have been demonstrated. The validation

and characterisation of the basic model make it a reliable and executable tool for the

investigation of the light-tissue interaction of any bio-optical application. Based on the

platform stated by this initial study, the following chapters will focus on investigating the

light-tissue interaction in PPG.
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8
INVESTIGATING LIGHT-TISSUE INTERACTIONS IN

REFLECTANCE PHOTOPLETHYSMOGRAPHY USING

MONOLAYER PERFUSED SKIN MODEL

8.1 Introduction

In this chapter, the development and execution of a single layer Monte Carlo model

of perfused skin tissue will be presented. Perfusion is an important factor in the PPG-

based measurement systems relying on the changes in the perfusion state (i.e., the

volume of blood) in tissue. The model was executed in a dual wavelength, reflective mode

PPG set-up. Pulse oximetry is the most common application of PPG which usually uses

a dual wavelength setting. The results presented in the chapter, therefore, elucidate

the fundamental properties of a reflective mode pulse oximeter as well. The operating

wavelengths were 660 nm (red) and 940 nm (infrared), two commonly used wavelengths

in pulse oximetry. The results presented in this chapter primarily concentrate on the

light-tissue interaction in a perfused skin tissue in its static and pulsatile state.

8.2 Background

The last chapter addressed the relationship between the output variables and the input

parameters of the basic MC model. To apply the model for the PPG that measures the
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volumetric changes in blood and the pulse oximetry that measures the oxygen saturation

of arterial blood, additional input parameters indicating the physiological state of tissue

(for example, blood oxygen saturation and blood volume) were required. A perfused skin

tissue layer was chosen as the ROI of the present study. For a non-invasive application

of PPG, the most common application site is the skin. Also, pulse oximetry primarily

concentrates on monitoring the peripheral perfusion, i.e., cutaneous and subcutaneous

blood. This justifies the choice of perfused skin for the study.

For a PPG-based measurement system relying on the change of blood volume with

the cardiac cycle, the ‘pulse’ plays a vital role. The pulsatility in the acquired PPG signal

is also a key factor for the measurement with a pulse oximeter. Therefore, for a study

related to PPG and pulse oximetry, a model should be able to include the pulsatility.

Commercial pulse oximeters are traditionally calibrated empirically by the manu-

facturers. The method involves a controlled study on a number of healthy volunteers.

Although this method is straight forward, it has an obvious ethical restriction to desatu-

rate the subject below 60%. As a result, R values (stated in Chapter 5) for a wide range of

lower oxygen saturations have to be extrapolated [Severinghaus et al., 1989]. In clinical

practice, the accuracy of a pulse oximeter reading at very low oxygen saturations are not

very important since patients are usually maintained at higher oxygen saturation level

[Wukitsch et al., 1988]. Also, with the recent advancement in signal processing techniques,

pulse oximeters show a high level of accuracy. Nevertheless, the knowledge of PPG at

very low saturation and blood volume is important for a comprehensive understanding in

this field, which has never been addressed before. Such an understanding is significant

in cases such as profound hypoxaemia (for example, cyanotic heart disease) for whom a

10% underestimation or overestimation of the SaO2 values might lead to brain damage

[DeMeulenaere, 2007; Fanconi, 1989].

Poor peripheral pulsation can result from several conditions such as hypotension,

hypothermia, low cardiac output, hypovolemia, peripheral vascular disease, septic shock,

infusion of vasoactive drugs, proximal blood pressure cuff inflation, leaning on an ex-

tremity, Raynaud’s phenomenon etc. [Preston and Kelly, 2016; Engel and Kochilas, 2016;

Baheti and Laheri, 2014]. In cases of compromised perfusion, it is often difficult to obtain

good PPG signals. A controlled investigation of the tissue-optical parameters with blood
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volume should be able to explain such a behaviour in PPG.

The Beer-Lambert law based theoretical description for PPG and pulse oximetry

assumed no dependence of the optical path on the operating wavelength, as discussed in

Chapter 5. However, in Chapter 7 it was seen that the optical pathlengths changed consid-

erably for different optical properties. Since the optical properties vary with the operating

wavelength, the approximation in the PPG theory might not be valid. There are published

works that explained the dependence of the optical path on the wavelength [Sakaguchi

et al., 2007; Umeyama and Yamada, 2009; Nitzan and Taitelbaum, 2008], however, no

investigation is available so far with a specific interest in photoplethysmography. Such an

investigation, therefore, is required for an extensive understanding.

The present work has been motivated by such requirements existing in the field as

discussed above in order to understand the fundamental working principle of PPG and

pulse oximetry. Implementation and execution of the MC model for this purpose will be

described in the following sections.

8.3 Model description

8.3.1 Monolayer model with static perfusion

8.3.1.1 Tissue characterisation

The tissue layer was presented by a slab of infinite dimensions and was characterised by

its optical properties, e.g., µa, µs, and g. Considering the volumetric optical properties

of the medium, as stated in the general concept of the model in Chapter 6, the ‘per-

fused’ tissue layer was assumed to be a homogeneous mixture of skin-dermis and blood

(comprising the main absorbers: oxyhaemoglobin and deoxyhaemoglobin). The effective

optical properties incorporated the volumetric contributions from the tissue-components.

The total absorption coefficient µa of a layer of dermis perfused with a volume fraction

of blood V and a total oxygen saturation StO2 (i.e., the total oxygen saturation in the

arterial, venous and capillary blood) was written as the sum of the individual absorption

coefficients of the components [Schmitt, 1991; Wang and Tuchin, 2013; Meglinski and
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Table 8.1: Optical properties of tissue constituents (in unit of mm−1)

λ

(nm)
bloodless skin dermis

oxygenated blood
(Hct=0.45)

deoxygenated blood
(Hct = 0.45)

µaskinbaseline µ′sskinbaseline
µaHbO2

µ′sHbO2
µaHb µ′sHb

660 0.0286 2.2336 0.15 1.3844 1.64 1.156
940 0.0245 0.9501 0.65 1.3187 0.43 1.124

Matcher, 2003]:

µa = (1−V ) ·µaskinbaseline +V . [StO2 µaHbO2
+ (1−StO2) µaHb ] (8.1)

where µaskinbaseline is the absorption coefficient of dermis, µaHbO2
and µaHb are the absorption

coefficients of oxygenated and deoxygenated blood respectively having a haematocrit (Hct)

of 45%. The total oxygen saturation StO2 was given by,

StO2 = [HbO2]
[Hb]+ [HbO2]

, (8.2)

where [HbO2] and [Hb] were the concentrations of oxyhaemoglobin and deoxyhaemoglobin,

respectively in the total blood volume, i.e., the all blood found in the arterial, capillary

and venous blood compartments.

The baseline skin absorption coefficient (i.e., the co-efficient for bloodless skin) at

wavelength λ was expressed (in the unit of mm−1) as [Jacques, 1998; Simpson et al.,

1998]:

µaskinbaseline = 0.244+85.3 · e− λ−154
66.2 (8.3)

The reduced scattering coefficient of bloodless dermis was estimated from the contribution

of dermis collagen fibres as given by [Jacques, 1998; Simpson et al., 1998]:

µ′sskinbaseline
= (2×104)λ−1.5 + (2×1011)λ−4. (8.4)

The values of the absorption and reduced scattering coefficient at 660 nm and 940 nm for

skin dermis (calculated using above equation), and for the oxygenated and deoxygenated

blood (adapted from [Bosschaart et al., 2014]) are given in Table 8.1. The anisotropy factor

value for the perfused skin tissue was considered to be g = 0.95 at both wavelengths,

and the refractive index of the tissue layer was considered to be n = 1. The model was

executed for a range of volume and oxygen saturation of the perfused skin. The blood

volume was varied from 2.5% to 10% in the tissue volume, and the total oxygen saturation
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was varied between 50% to 100%. In each case the optical path and detected reflectance

were calculated.

8.3.1.2 Implementation details

The MC code was initially executed to find the distribution of scattering events within

perfused tissue and its variation with the distance between source and detector. Fixed

detector technique described in Chapter 6 was used for the photon capture. In addition to

the described reflectance sensor geometry with circular source and detector both having

radii of 0.1 mm, in this case a numerical aperture (NA) was considered for both source

and detector so that the light was guided within the cone of acceptance. The photons were

simulated for the two fixed source-detector distances 3 mm and 6 mm, at the red and

infrared wavelengths. In this fixed detector set up, a 104 photon clusters ere detected

(with total simulated photon clusters 108 −109) for each source-detector separation at

each wavelength.

MC code was executed separately for investigating the differential mean optical path

(MOP) and total diffuse reflectance (W) of photons through tissue. The circular source

had a radius of 0.05 mm and NA 0.39, and the circular detector had a radius of 0.05 mm

and NA 0.39. The model was executed at different blood volumes for a range of total

oxygen saturations using the moving detector technique. In this case, the detector was

simulated as a sliding window of a width equal to the detector diameter (0.1 mm). The

photon exiting from the tissue surface was detected if it had fallen within the NA of the

detector fibre. The distance of its point of exit (on the plane z = 0) from the origin was

calculated from its position co-ordinates following the equation:

d =
√

( x2 + y2). (8.5)

Meanwhile, other quantities (e.g., total optical path and remaining weight) associated

with the detected photon were recorded. In this moving detector set up, a total 1010

photon clusters were detected within a maximum source-detector spacing of 8 mm. Since

pulse oximeters normally use small source-detector separations, simulations were not

run further to detect photons at d > 8 mm to avoid excessive computation time. Also, no

photons were detected below d = 0.1 mm, where source and detector superposed. Finally,
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the average optical path and weight of the photon clusters were detected within the

sliding window of width 0.1 mm were calculated.

8.3.1.3 Calculation of mean optical path, mean penetration depth and

reflectance

Let us consider a jth photon cluster travels from the source to detector through N number

of randomly generated step sizes (in other words, through N number of scattering-

absorption interaction events, or number of scattering). For any ith step, the generated

step size l i was given by:

l i =− ln(ξi)
µt

(8.6)

Therefore, the total optical path of the jth photon cluster was:

OP j =
N∑

i=1
l i. (8.7)

For a total detected number of photons Np, the mean optical path (MOP) was calculated

as:

MOP = 1
Np

Np∑
j=1

OP j (8.8)

The mean penetration depth MD of the detected photons within a certain source

detector separation was calculated as the mean of the depths (i.e., the maximum distance

covered along negative z-axis) of the photons. Similarly to MOP, considering D j to be

the depth of penetration of the z-th photon cluster, the mean depth calculated over Np

number of photon clusters which was given by,

MD = 1
Np

Np∑
j=1

D j (8.9)

The detected diffuse reflectance (W) was defined as the sum of normalised statistical

weights of the Np detected photon clusters as the following equation [Meglinski and

Matcher, 2003]:

W = 1
Np ·w

Np∑
j=1

wo j (8.10)

where w and wo are in the incident and detected weight of a photon cluster, with w = 1.
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8.3.2 Monolayer model with pulsatility

The pulsatility was introduced in the monolayer model by simulating the different states

of perfusion corresponding to systole and diastole. In this model, instead of total blood

volume and oxygen saturation, arterial and venous blood contributions were incorporated

separately. There is not many literature particularly stating the distribution between the

arterial and venous blood. However, based on the available literature [Williams et al.,

1989; Reuss, 2005; Wang and Tuchin, 2013], the ratio of arterial and venous blood was

considered to be 1:1, and the value of venous oxygen saturation SvO2 was kept 10%

lower than the arterial oxygen saturation. These values were approximated based on the

information from textbook and published literature. Although these parameters may vary

between different locations and physiological states of the subject, an ideal situation was

assumed here. In the present modelling approach, the main focus was to asses the relative

absorbances in PPG and PO at the operating wavelengths, thus the current assumption

did not compromise the accuracy of the model. The main variables in the static model (V

and StO2) were related to the variables of the pulsatile model (Va, Vb and SaO2, SvO2,)

as:

V =Va +Vb

StO2 = SaO2 +SvO2.
(8.11)

The diastole phase was achieved by assuming a nominal arterial blood volume of Va(dia)=
50% in the dermal tissue, and the systole was obtained by increasing the blood volume by

20% so that Va(sys)= 70%. The model was executed for a range of SaO2. The reflectance

and the mean optical paths were detected in systolic and diastolic phases using the ‘fixed

detector’ technique at a source-detector separation of 6 mm. The model was explored to

generate the curve for ‘ratio of ratios’ R (Chapter 5) as a function of StO2. Recalling Eq.

5.10 from Chapter 5, R was written in the form:

R =
∆I(r)
Id(r)
∆I(ir)
Id(ir)

. (8.12)

Here, the difference between diastolic and systolic intensities was expressed as ∆I = Id−
Is. In this model, the detected intensity was considered equivalent to the reflectance as

already stated earlier. Therefore, above expression for R could be written in the form of
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the systolic and diastolic reflectance (Ws and Wd respectively):

R =
∆W(r)
Wd(r)
∆W(ir)
Wd(ir)

=
1− Ws(r)

Wd(r)

1− Ws(ir)
Wd(ir)

.

(8.13)

8.4 Distribution of scattering events

Examples of the photon scattering distributions within the dermis containing 7.5% blood

at a StO2 = 60% are given in Figure 8.1. The distribution of the scattering events at 660

nm and 940 nm are shown for d = 3 mm in Figure 8.1(a) and Figure 8.1(b), and for d =

6 mm in Figure 8.1(d) and Figure 8.1(e), respectively. The simulations provided full 3D

description of the distribution of the photon scattering, however, only its projection in the

xz plane was shown in the figure. The colourbar represented the number of scattering N

within tissue.

In all cases, the photon clusters followed a ‘banana’ shaped path distribution from the

source to the detector. As expected, the number of scattering events N was the highest

near the source and the detector, and decreased at deeper penetration depths. The number

of scattering was directly related to the number of photon clusters. The more number

of photons accumulated in one region, the more number of overall scattering was found.

Conclusively, the number of photons gradually decreased along the depth within the

tissue. An important observation from the figure was that the red and infrared photons

distributed themselves differently in tissue. The infrared photons appeared to be more

dispersed, whereas the red photons appeared to be clumped. This can be explained as the

result of the different scattering coefficients. The infrared scattering co-efficient was lower

than the red scattering co-efficients for all tissue components according to Table 8.1. The

lower is the scattering co-efficient, the higher is the free pathlength. Thus the distance

between two consecutive scattering events for infrared photon was higher compared to

the red photon. As a result, the number of scattering of red photons was much higher

compared to the infrared photons.

Comparative histograms of the optical pathlengths (OP) at red and infrared wave-

lengths at d = 3 mm and 6 mm were shown in Figure 8.2 (a) and (b) respectively. Differ-
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Figure 8.1: Density-plots for distribution of photon scatter in monolayer dermal skin
tissue containing blood volume 7.5% at a total oxygen saturation of 60% are shown.
Results for a source-detector separation, d=3 mm and d = 6 mm at 660 nm are shown in
(a) and (c), respectively. Results for d = 3 mm and d = 6 mm at 940 nm are shown in (b)
and (d), respectively. The colourbar indicates the number of scattering events (N). Each
figure shows a 2-D projection of a 3-D distribution of photon clusters. For comparison,
all colourmaps are shown within the same axis limits. The optical path of only detected
photon clusters are shown here.

ences in the distribution of optical paths at red and infrared wavelengths were apparent

for both source-detector separations. The histogram plots further showed the tendency

of infrared photons to take shorter optical path compared to red photons. The difference

between the red and infrared optical paths increased for d = 6 mm compared to d = 3 mm.

Since the same number of photons were detected at both d, the optical pathlengths were

lesser at 6 mm than at 3 mm as expected.
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Figure 8.2: Comparative histogram plots of the optical pathlengths at red and infrared
wavelengths are shown. Results for d = 3mm and d = 6 mm are shown in (a) and (b),
respectively. The plots are presented in the same axes limits. These plots correspond to
the scatter-density plot shown in Figure 8.1.

8.5 Mean optical path and reflectance as function of blood

volume

In Figure 8.3, the variation of mean optical path and the diffuse reflectance as functions

of the source-detector separations are shown. Simulation was carried out for variable

volume fractions of blood at a fixed oxygen saturation 60%. In both wavelengths MOP

was reduced for higher blood volumes as shown in Figure 8.3 (a) and (c). Vertical axis

limits show that the infrared pathlengths are shorter than red pathlengths. In Figures

8.3 (b) and (d), it was seen that the reflectance decreased considerably with increasing

blood volumes at both wavelengths.
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Figure 8.3: Mean optical path (MOP) and diffuse reflectance (W) of the photon clusters as
function of source-detector separation (d) are shown. Results for MOP and W at a fixed
StO2 = 60% for V = 2.5−10% for λ= 660 nm are shown in (a) and (b), respectively. For
the same parameters, the results for λ= 940 nm are shown in (c) and (d), respectively.

8.6 Mean optical path and reflectance as function of blood

oxygen saturation

In Figure 8.4, the variation of mean optical path and reflectance were plotted as functions

of d. The oxygen saturation was varied through 50%-100% at a fixed blood volume 7.5%.

Red optical paths increased considerably with the increasing saturations. The maximum

MOP was at 100% oxygen saturation. Infrared optical paths varied slightly with varying

V and increased with increasing blood volume. This observation was opposite to the case

of red light. Red light was attenuated more at lower saturation. Infrared attenuation

changed very slightly with saturations with a maximum value at 100% saturation.

116



CHAPTER 8. INVESTIGATING LIGHT-TISSUE INTERACTIONS IN REFLECTANCE
PHOTOPLETHYSMOGRAPHY USING MONOLAYER PERFUSED SKIN MODEL

Figure 8.4: Mean optical path (MOP) and diffuse reflectance (W) of photon clusters
as functions of source-detector separation (d). Results are shown at a fixed V = 7.5%
for StO2 = 50−100% for λ = 660 nm in (a) and (b); and for λ = 940 nm in (c) and (d),
respectively.

8.7 Differential red and infrared mean optical path, mean

penetration depth and reflectance

The dependence of the mean optical path with the source-detector separation, blood

volume and the total blood oxygen saturation were observed in Figures 8.3 and 8.4 which

motivated further investigation of this relationship through a range of parameters. MC

simulation results exhibiting mean optical path as a function of source detector separation

are presented. The simulation for skin tissue containing different blood volumes (i.e., V =

2.5%, 5%, 7.5% and 10%) for a range of tissue oxygen saturations (i.e., StO2 = 50−100%

with an interval of 10%) are shown in Figure 8.5. The photons took longer paths at the

red wavelength compared to infrared for all blood volume and oxygen saturation values.

For StO2 = 50−80%, the difference between red and infrared optical paths decreased

with increasing blood volume. However, for very high StO2 (90−100%) the differences

in red-infrared optical path increased with increasing blood volume. The differences in
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red-infrared optical path, thus, increased with blood oxygen saturation but decreased

with blood volume (except at very high StO2, i.e., approximately 100%).

The percentage changes of the optical path between red wavelength (MOP (R)) and in-

frared wavelength (MOP (IR)) at a certain source-detector spacing d = 6 mm is illustrated

in Figure 8.6. The percentage change ∆MOP is calculated as:

∆MOP = MOP(R)−MOP(IR)
MOP(IR)

×100%. (8.14)

Clearly, positive values of ∆MOP showed that MOP (R) was greater than MOP (IR).

∆MOP decreased with V at lower StO2 (50−80%) but the variation gradually decreased

with higher StO2. For a very high StO2 (90−100%), ∆MOP increased with V. Results of

the variation of the mean optical path with blood volume and oxygen saturation shown in

Figure 8.5 and Figure 8.6 are consistent with the observations in Figure 8.3 and Figure

8.4.

The Monte Carlo simulation results for the mean penetration depth, as a function

of d for different volume fractions of blood with a range of total oxygen saturation of

blood, are shown in Figure 8.7. The depth of penetration increased directly with the

increasing source-detector separation. For lower blood volume and oxygen saturation,

infrared photons penetrated deeper than the red photons. However, for higher saturation

and higher blood volume, the difference between red and infrared penetration depths were

smaller. For StO2 = 100% and V = 10%, red and infrared photons penetrated through

almost the same depth within tissue. From Figures 8.5 and 8.7, it is concluded that

the variation in the optical path and the penetration depth were not identical, i.e., a

higher optical path did not refer to a higher penetration depth in tissue. As very clearly

seen in Figure 8.7 and Figure 8.5, infrared optical path was lower compared to red but

the penetration depth was mostly higher for infrared. This can be predicted from the

scattering distribution plot in Figure 8.1, that the infrared photons are likely to penetrate

deeper due to their lower scattering coefficient and higher free pathlength.

The Monte Carlo simulation results for diffuse reflectance W, as a function of d

for different volume fractions of blood with a range of total oxygen saturation of blood,

are shown in Figure 8.8. As expected, in Figure 8.8 it was seen that W decreased with

increasing source-detector separation. This observation supports the Beer-Lambert law
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Figure 8.5: Differential mean optical path (MOP) between red and infrared wavelengths
as a function of source-detector separation (d) for perfused dermal skin tissue is shown.
Results for StO2 = 50%,60%,70%,80%,90%and100% are presented in the rows (R.1),
(R.2), (R.3), (R.4), (R.5) and (R.6) respectively. For each saturation, the differential mean
optical path for V = 2.5%,5%,7.5%and10% are shown in the columns (C.1), (C.2), (C.3)
and (C.4) respectively. For comparison, all graphs are plotted within the same axis limits.
The red and blue lines represent MOP at red (660 nm) and infrared (940 nm) light
respectively.
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Figure 8.6: Percentage change in the mean optical path between red and infrared
light (∆MOP) is shown. Results were calculated for a source-detector separation
6 mm as a function of blood volume (V) for total oxygen saturations StO2 =
50%,60%,70%,80%,90%and100%. The markers represent data points at fractional blood
volume V = 0.025, 0.05, 0.075 and 0.1. ∆MOP decreases with V for lower StO2(∼ 50−80%)
increases with V for higher StO2(∼ 100%).

that the attenuation of light increases with increasing distance traversed through tissue.

The difference in the decremental rate with d of the reflectance between red and infrared

varied according to both the blood volume and blood oxygen saturation. Results showed

that red light was more attenuated than infrared at oxygen saturations 50-80%, with a

decrease in the difference in attenuation at higher blood volume. However, at very high

oxygen saturations (90-100%), infrared light was attenuated more than red light, which

is mostly visible for high blood volumes (7.5-10%). The difference in attenuation, thus,

decreased with increasing blood volume as well as increasing blood oxygen saturation.

Relating Figures 8.5, 8.7 and 8.8, it is seen that at lower saturation and blood volume,

detected infrared reflectance was higher when the penetration depth was also higher

although the optical path was lower. Even though red light took higher mean optical path-

length, it penetrated less because its direction was deviated more frequently than infrared

due to smaller free pathlengths. Also for the same reason, i.e., the increased number of

interactions, red photons were absorbed more frequently than infrared while travelling
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Figure 8.7: Differential mean penetration depth (MD) between red and infrared wave-
lengths as a function of source-detector separation (d) for perfused dermal skin tissue is
shown. Results for StO2 = 50%,60%,70%,80%,90%and100% are presented in the rows
(R.1), (R.2), (R.3), (R.4), (R.5) and (R.6) respectively. For each saturation differential
mean optical path for V = 2.5%,5%,7.5%and10% are shown in the columns (C.1), (C.2),
(C.3) and (C.4) respectively. For comparison, all graphs are plotted within the same axis
limits. The red and blue lines represent MD at red (660 nm) and infrared (940 nm) light
respectively.
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from the source to the detector, resulting in lower remaining weight in the detection end.

Also, the absorption coefficient of skin was higher in red than infrared. The oxygenated

blood absorbed less red light than infrared, whereas the deoxygenated blood absorbed

more red light than infrared. When blood volume was small, the optical properties of skin

dominated over the oxy and deoxyhaemoglobin properties in the entire tissue volume.

Consequently, red light was more attenuated than infrared at any oxygen saturation

values. For higher blood volume, the optical properties of oxy and deoxyhaemoglobin were

dominant. When oxygen saturation was low, the optical properties of deoxyhaemoglobin

dominated, resulting in higher absorption in red light and higher detected reflectance

in infrared light. But for higher blood volume and higher oxygen saturation, optical

properties of oxyhaemoglobin dominated, resulting in higher absorption in infrared. As

the cumulative effect of all components, red detected reflectance became almost the same

or slightly higher than the infrared for a very high oxygen saturation (∼ 100%), as seen in

the row (R.6) of Figure 8.8. At the high blood volume and high oxygen saturation (e.g.,

V = 10% and StO2 = 100%), for smaller source-detector separation, red reflectance was

higher than infrared reflectance, however for longer source-detector separation the case

reversed. It can be explained from the analogy with Figure 8.7, where for the same state

of perfusion and oxygenation, the depth penetrated by red light was slightly higher than

infrared at higher source-detector separation, resulting in slightly higher red light absorp-

tion and therefore, gradually lower detected reflectance with increasing source-detector

separation.

Similar to the percentage changes in MOP, percentage change between red and in-

frared detected reflectance and the mean penetration depth (∆W and ∆MD, respectively)

are calculated as:

∆W = W(R)−W(IR)
W(IR)

×100%; (8.15)

∆MD = MD(R)−MD(IR)
MD(IR)

×100%. (8.16)

Percentage changes in optical path, mean optical penetration depth and relative diffuse

reflectance at different physiological states at a certain source-detector spacing 6 mm

are presented in Table 8.2. Negative values of ∆W and ∆MD showed lower values in red

than infrared in all cases only except very high StO2 ∼ 100% and high V ≥ 7.5%.
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Figure 8.8: Differential reflectance (W) between red and infrared wavelengths as a
function of source-detector separation (d) for perfused dermal skin tissue is shown. Results
for StO2 = 50%,60%,70%,80%,90%and100% are presented in the rows (R.1), (R.2), (R.3),
(R.4), (R.5) and (R.6) respectively. For each saturation differential mean optical path
for V = 2.5%,5%,7.5%and10% are shown in the columns (C.1), (C.2), (C.3) and (C.4)
respectively. For comparison, all graphs are plotted within the same axis limits. The red
and blue lines represent W at red (660 nm) and infrared (940 nm) light respectively.
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Table 8.2: Percentage change in mean optical path ∆MOP, reflectance ∆W and mean
penetration depth ∆MD with blood volume V and total blood oxygen saturation StO2 for
a certain source-detector separation of 6 mm.

V StO2 ∆MOP ∆W ∆MD

2.5/%

50% +44.79% -59.70% -18.90%
60% +50.48% -55.01% -16.95%
70% +57.16% -50.62% -15.49%
80% +60.48% -43.96% -13.39%
90% +69.74% -38.31% -11.70%
100% +73.35% -29.44% -10.25%

5%

50% +34.91% -68.50% -22.14%
60% +41.76% -61.84% -18.43%
70% +50.11% -54.05% -16.28%
80% +60.15% -43.74% -11.91%
90% +70.61% -30.96% -9.07%
100% +82.65% -13.21% -5.47%

7.5/%

50% +25.61% -73.45% -25.15%
60% +34.78% -66.91% -20.66%
70% +45.39% -57.06% -15.94%
80% +56.33% -43.20% -11.25%
90% +71.28% -23.84% -5.97%
100% +89.43% +5.24% -1.44%

10%

50% +18.65% -76.78% -28.24%
60% +28.91% -69.28% -23.09%
70% +40.94% -58.29% -16.92%
80% +54.56% -42.55% -11.39%
90% +71.58% -15.99% -4.32%
100% +93.43% +25.66% 1.74%

The conclusions drawn from the steady state monolayer skin tissue simulation can be

summarised as stated below:

• Low V , low StO2: At low blood volume, optical properties of skin tissues dominate.

Skin has lower absorption and scattering coefficient in infrared than red light.

Therefore, the total interaction coefficient is also lower in infrared than in red,

resulting in longer free path length in infrared, i.e., MOP(R)> MOP(IR). Conse-

quently, red photons are subjected to more frequent scattering events which do not

let them to penetrate very deep within tissue so that MD(R)< MD(IR). Also, due

to an increased number of absorption, more photon weight is absorbed in tissue so

that W(R)<W(IR).

• High V , low StO2: Due to high blood volume, the optical properties of blood
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dominate. Because of low oxygen saturation, optical properties of deoxyhaemoglobin

dominate. Deoxyhaemoglobin being more absorbing and scattering in red than

infrared, the scenario is the same as the above. However, the difference between

red-infrared scattering coefficient for deoxyhaemoglobin is not that great as in

skin baseline. Therefore, although the red optical path is higher than infrared,

the difference is comparatively low. The effect on mean penetration depth and the

reflectance is almost similar as in the case above.

• High V , high StO2: Optical properties of oxyhaemoglobin is predominant. Al-

though optical path is much higher in red than in infrared, both mean penetration

depth and the detected reflectance are almost identical.

8.8 Reflectance and ‘ratio of ratios’ as function of oxygen

saturation

Pulsatile monolayer model described in the subsection 8.3.2 was executed to determine

the reflectance in systole and diastole at red (660 nm) and infrared (940 nm). Results are

shown as a function of arterial oxygen saturation with a source-detector separation of 6

mm. In Figure 8.9 (a), the red reflectance (660 nm) was found to be lower than infrared

(940 nm) reflectance for low arterial oxygen saturation values. However, it gradually

increased with increasing oxygen saturation. At high saturation values (90−100%), it

exceeded the infrared reflectance. This observation agrees with the static model result in

Figure 8.8, where the red reflectance exceeded the infrared at high oxygen saturations.

The diastolic reflectance (shown in red line in plot) was always higher than the systolic

reflectance (shown in green light in the plot). This was expected due to the higher

absorption of light at higher blood volume in systolic phase.

The ‘ratio of ratios’ R was calculated from Eq. 8.13 as a function of arterial oxygen

saturation. As shown in the Figure 8.9 (b), the calculated values of R at each SaO2

produced an almost linear curve. This nature of the simulated calibration curve was

similar to the available calibration curve, presented in Figure 5.5.
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Figure 8.9: Simulated results from a monolayer pulsatile model is presented. Reflectance
in systole and diastole at red (660 nm) and infrared (940 nm) wavelengths are shown
as a function of arterial oxygen saturation (a). Calculated ‘ratio of ratios’ R from the
reflectance as a function of arterial oxygen saturation is presented (b), which produces
the ‘calibration curve’ of the present reflectance mode monolayer pulse oximetry model.
The data points at individual oxygen saturation values are denoted by the markers.

8.9 Summary

In this chapter, a monolayer static and a pulsatile Monte Carlo model of perfused skin

was explored for rigorous analysis of the fundamental tissue-optical variables in a dual

wavelength PPG system such as pulse oximeter. The output variables of the model were

the distribution of the interaction events, mean optical path, mean penetration depth, and
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detected reflectance etc. The input parameters were the tissue optical properties, blood

volume, total oxygen saturation of blood, and source-detector separation etc. The optical

path and the penetration depth were found to vary differently with the input variables.

The wavelength dependence of the output variables were quantified. From the pulsatile

modality of the PPG model, the ‘ratio of ratios’ were calculated as a function of the total

blood oxygen saturation, which produced a shape close to the ‘calibration curve’ of the

pulse oximeters. The extensive studies with the monolayer skin tissue model enlightened

the light-tissue interactions in PPG. The next chapter will concentrate on investigation

with a further detailed multilayer tissue-model.
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9
INVESTIGATING LIGHT-TISSUE INTERACTIONS IN

REFLECTANCE AND TRANSMITTANCE FINGER

PHOTOPLETHYSMOGRAPHY

9.1 Introduction

In the last chapter, an investigation with a single layer of tissue analysed the light-

tissue interactions in photoplethysmography and pulse oximetry. Although a monolayer

model-based study has its own significance, in order to describe the complex structure

of the biological tissue, a multilayer model-based study is a necessity. Different regions

of interests (ROI) of the body exhibit different anatomical and optical characteristics

[Williams et al., 1989]. Defining an ROI is important for an investigation dedicated to a

specific bio-optical application. In this chapter, the Monte Carlo simulation of light-tissue

interaction in a finger ROI will be described.

9.2 Background

The previous study with the single layer of skin tissue unravelled much useful information

on PPG and pulse oximetry. However, that study was limited to the reflective modality

only. Since a semi-infinite tissue volume was modelled, it could not be implemented for a

study on the transmissive mode. Moreover, no details on the tissue-heterogeneity were
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included to the previous model. With the confidence built from the results with single

layer tissue, the present study is focussed on the light-tissue interactions through a

heterogeneous volume of human finger pertinent to PPG and pulse oximetry. The finger

tissue, being the most common site for the clinical measurement of the peripheral oxygen

saturation using pulse oximetry, was chosen as the ROI. The model was executed in

both reflective and transmissive modalities of the system at the two commonly used

wavelengths (660 nm and 940 nm) in pulse oximeters.

9.3 Description of the finger tissue model

The schematic diagram of the tissue volume used for the study is shown in Figure

9.1. A three-dimensional slab geometry was chosen to represent the simulated tissue

volume which was a small cubic section of the finger (as shown in Figure 9.1(a) by a

red dotted block). The stratification and dimensions of the tissue layers and sublayers

were determined by surveying various histological images and consulting text books and

published literature [Wang and Tuchin, 2013; Meglinski and Matcher, 2003; Williams

et al., 1989; Tuchin et al., 2011; Doronin and Meglinski, 2011; Doronin, 2014]. The

heterogeneous volume of the finger had a width of 1.3.cm, and consisted of the layers:

skin (0.95 mm thick), fat (0.55 mm thick), muscle (10 mm thick), and then fat (0.55 mm

thick) and skin (0.95 mm thick) in reverse order. The muscle tissue contained a cylindrical

bone at a depth of 3 mm with a radius of 2 mm.

The skin layer comprised six sublayers: stratum corneum, epidermis, papillary dermis,

upper blood net dermis, reticular dermis and deep blood net dermis [Wang and Tuchin,

2013; Salasche and Bernstein, 1988]. The pulsating arterial blood flow was simulated by

a proportional increase in blood volume. It was assumed that the pulsatile changes in the

arterial blood mainly manifested in the dermal tissue sublayers rather than sub-dermal

fat, bone, and muscle [Reuss and Siker, 2004; Tuchin, 2007; Doronin et al., 2011]. To

achieve the pulsatility, blood volumes in all the dermal sublayers during ‘systole’ were

incremented twice as much as in ‘diastole’. Following the similar assumption as stated

in Chapter 8, the ratio of arterial and venous blood fraction in the dermal tissue layers

was considered as 1:1. Venous oxygen saturation (SvO2) was considered 10% lower than
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Figure 9.1: Description of the multilayer finger tissue model is presented. The selected
cubic section of the finger (a) has the layers and sublayers as illustrated in (b). The volume
of finger section is represented by a semi-infinite slab geometry of a thickness of 1.3 cm.
It consists of the tissue layers: skin (A), fat (B), muscle (C & E) containing a cylindrical
bone layer (D), and then the fat (F) and skin (G) in reverse order. Skin layer consists of
several sublayers which are illustrated in (c). The sublayers are: (1) stratum corneum,
(2) epidermis, (3) papillary dermis, (4) upper blood net dermis, (5) reticular dermis, and
(6) deep blood net dermis. The 6-th sublayer of the skin is connected with the next layer
which is fat (7) through blood vessels.

the arterial oxygen saturation (SaO2). An epidermal melanin concentration of 10% was

considered in the model. The contribution of the water present in the dermal tissue

sublayers were taken into consideration. The thickness (t), and the volume fraction of

diastolic blood and water (Vb and Vw, respectively) present in the dermal tissue layers

were adapted from textbook and literature [Reuss and Siker, 2004; Williams et al., 1989;

Tuchin, 1993; Wang and Tuchin, 2013; Bashkatov et al., 2016; Tuchin, 1997; Jacques,

1998]. The thickness of the dermal sublayers, and the distribution of the water and blood

content in them are illustrated in Table 9.1.
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Table 9.1: Stratification of dermal sublayers.

serial no. Dermal sublayer t (mm) Vb Vw
1 stratum corneum 0.02 0 0.05
2 epidermis 0.25 0 0.2
3 papillary dermis 0.1 0.04 0.9
4 upper blood net dermis 0.08 0.3 0.6
5 reticular dermis 0.2 0.04 0.7
6 deep blood net dermis 0.3 0.1 0.7

The effective absorption coefficient of the dermal tissue sublayer considered the

volumetric contribution of the all absorbers, namely, the main two haemoglobin species

(oxyhaemoglobin and deoxyhaemoglobin), water and melanin.

The baseline absorption coefficient µabaseline (i.e., the absorption coefficient of the skin

tissue in absence of any other chromophore) at an operating wavelength λ was given by

[Saidi, 1992; Jacques, 1998]:

µabaseline = 7.84× 107 λ−3.255 (9.1)

The absorption coefficient of any i-th sublayer of skin (only except epidermis) was written

as:

µai (λ)=VA iµaAi
(λ)+VViµaVi

(λ)+Vwiµawi
(λ)+ [1− (VA i +VVi +Vwi )]µabaselinei

(9.2)

where VA i and VVi are the arterial and venous blood volume, respectively, in the i-th

sublayer (i.e., VA i : VVi = 1 : 1 or, VA i =VVi = Vbi /2 ); and µaAi
, µaVi

, µawi
are respectively

the absorption coefficients of the arterial blood, venous blood and water present in the

i-th sublayer.

The absorption coefficients of arterial and venous blood attributed to the absorption

properties of oxy and deoxyhaemoglobin, as stated in the following equations:

µaA (λ)= SaO2 µaHbO2
(λ)+ (1−SaO2) µaHb (λ)

µaV (λ)= SvO2 µaHbO2
(λ)+ (1−SvO2) µaHb (λ)

(9.3)

where µaHbO2
and µaHb are the absorption coefficients of oxy and deoxyhaemoglobin, and

SaO2 and SvO2 are the arterial and venous oxygen saturation respectively. According to

the consideration in the model, SvO2 = SaO2 −10%.

The first two layers in skin, i.e., the stratum corneum and epidermis did not contain

blood. The absorption coefficient of the stratum corneum was calculated using above
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Table 9.2: Optical properties of tissue layer in finger tissue model.

Tissue component µa(mm−1) µs(mm−1)
g660 nm 940 nm 660 nm 940 nm

skin - - 25.62 15.68 0.9
fat 0.0104 0.0170 6.20 5.42 0.8

muscle 0.0816 0.0401 8.61 5.81 0.5
bone 0.0351 0.0457 34.45 24.70 0.92

oxyhaemoglobin 0.15 0.65 - - -
deoxyhaemoglobin 1.64 0.43 - - -

water 0.0036 0.2674 - - -

equation with Vb = 0. Epidermal layer contained the absorber melanin. The melanin

absorption coefficient µamel at a wavelength λ was determined from the following equation

[Jacques and McAuliffe, 1991]:

µamel (λ)= 6.6 × 1010 × λ−3.33. (9.4)

The epidermal absorption coefficient µaepi was, therefore, written as the cumulative effect

of the absorption coefficients of water and melanin:

µaepi (λ)=Vmelµamel (λ)+Vwepiµaw (λ)+ [1− (Vmel +Vwepi )]µabaseline (λ). (9.5)

The haematocrit of blood was considered to be 45%. The absorption coefficients of the

blood constituents (Hb and HbO2) and water were adapted from literature [Bosschaart

et al., 2014; Laufer et al., 1998; Steinke and Shepherd, 1988; Hale and Querry, 1973].

The absorption coefficients of subdermal fat and muscle were adapted from the published

data measured from human skin [Simpson et al., 1998]. Due to lack of data on the

optical properties of a finger bone, the optical properties of the skull bone were used for

the simulation [Bashkatov et al., 2016]. The scattering coefficient and anisotropy factor

of skin, muscle and bone were adapted from published studies [Simpson et al., 1998;

Bashkatov et al., 2016]. The optical properties of the tissue layers used in the model are

presented in Table 9.2.

The assumptions and considerations in the model were based on the ideal situations.

In reality, however, the biological tissue is a highly heterogeneous and complex structure,

with the variable spatial distribution of blood and other chromophores in different depths

[Meglinski and Matcher, 2002]. The content of blood in tissue layers also can vary in

amount and distribution [Renkin et al., 1984; Goldsmith, 1991]. The thickness of the layers

132



CHAPTER 9. INVESTIGATING LIGHT-TISSUE INTERACTIONS IN REFLECTANCE
AND TRANSMITTANCE FINGER PHOTOPLETHYSMOGRAPHY

is subjected to vary from person to person. Efforts were made to choose the parameters to

simulate the model close to reality, replicating the ideal situation for a normal healthy

human being.

9.4 Method of execution

The MC model was executed for the reflectance and transmittance modalities of PPG.

In the reflectance mode, the optical source and detector were placed 5 mm apart on

the tissue surface. In transmittance mode, the source and detector were placed at two

opposite surfaces of the tissue site, i.e., 13 mm apart. A Gaussian beam of 1 mm radius

was made incident to the tissue surface that propagated through the tissue medium to

be detected at a circular detector of radius 1 mm. The model was executed to record the

distribution of scattering and absorption events in different geometries through the finger

tissue volume using the ‘fixed detector technique’ (Chapter 6). The optical path at the red

and near-infrared wavelengths were also investigated. Further, the model was explored

to record the ‘intensity’ of detected photon clusters. Here, the term ‘intensity’ I refers to

the total weight of the detected photon clusters relative to the total weight of the incident

photon clusters, which is generally known as ‘reflectance’ or ‘transmittance’ (depending

on the source-detector positions). Denoting the ‘pulsatile intensity’ (i.e., the difference

between the diastolic and systolic intensity) by ∆I, the normalised pulsatile intensity IN

was represented as:

IN (λ)= ∆I(λ)
Idiastole(λ)

(9.6)

The graphs resembling the ‘calibration curves’ of the pulse oximeter were generated

at both modalities by computing the ‘ratio of ratios’ (R), i.e., the ratio of the red to

the infrared (ir) normalised pulsatile intensity as a function of arterial blood oxygen

saturation (SaO2 = 10−100%) :

R = IN (red)
IN (ir)

. (9.7)

The model investigated the relationship among the penetration depth, optical path and

source-detector separation in a reflectance geometry. The mean penetration depth was

calculated as the mean of the highest depths penetrated by each photon cluster. The mean
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optical path was calculated as the mean of the total simulated pathlengths of all detected

photon clusters using the ‘moving detector technique’ (Chapter 6).

The transmittance mode MC model was employed to quantify the contribution of each

tissue layer to the total light-absorbance. Absorbance A in its normalised form at any

wavelength λ was expressed as:

A(λ)= ∆A(λ)
Adiastolic(λ)

, (9.8)

∆(A) corresponding to the change in absorbance between systole and diastole.

The relative absorbance at the optical wavelengths 660 nm and 940 nm were expressed

in terms of the ‘modulation ratio’ of the normalised absorbances, RM [Mannheimer et al.,

1997]:

RM = A(red)
A(ir)

. (9.9)

9.5 Simulated results of the interaction events

The simulated distribution of the light-tissue interaction events through the finger tissue

in reflectance and transmittance modalities of PPG are shown in Figure 9.2. An example

of typical distributions of the interaction events while the light traverses through the

tissue from the source to the detector at an arterial oxygen saturation value SaO2 = 90%

is shown here. In reflective geometry, the photons were simulated from a source (S) to

a detector (D) placed 5 mm apart on the top surface of the tissue. In the transmissive

geometry, the source and detector were supposed to be placed at two opposite surfaces of

the tissue. Therefore, the depth of penetration of the photons in the reflective geometry

depended on the source-detector separation, whereas for the transmissive mode the

penetration depth was fixed, i.e., equal to the thickness of the tissue. The number of

interaction events N (i.e., scattering and absorption events) along the depth within the

tissue volume for red (660 nm) and infrared (940 nm) wavelengths are shown for the

reflective geometry in Figures (a) and (b), and for the transmissive geometry in Figures

(c) and (d) respectively. In the reflective mode, the maximum number of interactions

was found in the upper layers of the tissue volume, i.e., the dermal sublayers. The

maximum penetration depth was till the muscle layer and no photon passed beyond the

muscle layer in both red and infrared wavelengths (i.e., penetration depth ≤ 11.5 mm). In
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the transmissive mode, the maximum numbers of interaction events occurred near the

source and the detector, which were limited to dermal sublayers. Also, a large number of

interaction events were observed in the bone part of the finger. In all four simulations,

the detected number of photon clusters were 108. Typical time taken for detecting these

many photon clusters in parallel programming configuration were 3 hours and 3.50 hours

for reflective and transmissive modes respectively.

To quantify the distribution of the optical pathlength and the penetration depth in the

reflective PPG, the histogram plots of these variables at both wavelengths were plotted in

Figures 9.3 (a) and (b) respectively. The maximum number of occurrences were found in

the smaller depths (≤ 1.5mm), i.e., primarily in the dermal tissue region. This observation

agreed with Figure 9.2 (a). Maximum depth of penetration for both wavelengths concluded

that almost no photons pass through the muscle layer, i.e., beyond 12 mm. The number

of photons penetrated deeper was higher in infrared compared to red. In the histogram

for optical pathlength, the number of infrared photons having smaller optical pathlength

was higher than red. This observation is consistent with the results from the previous

monolayer model where the infrared photons penetrated deeper yet had smaller optical

pathlengths compared with red photons. The similar histogram plots for the transmissive

modality of PPG are shown in Figure 9.4. The histogram plots of the penetration depth

and the optical paths taken by the photon clusters from the source to the detector placed

on the top and bottom surface of the finger tissue are shown in (a) and (b) respectively.

The penetration depth followed the profile of the distribution of the scattering as shown

in Figure 9.2(b). The maximum occurrence were seen in the depth of the bone tissue layer,

i.e., the photons were interacted (or scattered) for the maximum number in the bone

layer. This is explained by the very high scattering coefficient of bone 34.45 mm−1 for

red and 24.70 mm−1 for infrared. The number of events are the lowest in the fat tissue

layer. The second highest number of interactions occur in the dermal layer. In all cases

the red number of scattering is higher. It should be noted that in transmissive mode,

all photons had to penetrate all the sublayers of tissue in order to be detected, thus the

total penetrated depth by both red and infrared photons were the same (i.e., equal to

the thickness of the tissue 13 mm) which is seen in the Figure 9.4. The frequency of

interactions at different depths and optical pathlengths in finger varied between the red
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Figure 9.2: Density plots of the interaction events (i.e., scattering and absorption) while
light passes through the finger tissue-volume at 660 nm and 940 nm are shown for the two
modalities of Photoplethysmography: reflective modality in (a) and (b), and transmissive
modality in (c) and (d), respectively. The plots are the xz-plane projection of the 3D
simulation in the (x,y,z) Cartesian co-ordinate system. The optical source S and detector D
are placed at a separation d = 5 mm on the same side of finger in the reflective geometry,
and those are placed at two opposite surfaces of finger in the transmissive geometry. The
colourbar represents the distribution of the number of interaction events (N) between
its maximum and minimum values. All the plots are presented in the same axes limits.
Optical paths of the detected photon clusters only have been shown.
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Figure 9.3: Histogram plots of the penetration depth (a) and the optical pathlength (b)
taken by the detected photon clusters at red (660 nm) and infrared (940 nm) in the
reflective PPG setting with a source-detector separation of 5 mm, placed on the top
surface of finger tissue are shown.
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Figure 9.4: Histogram plots of the penetration depth (top) and the optical pathlength
(bottom) by the detected photon clusters at red (660 nm) and infrared (940 nm) in the
transmissive PPG setting with the optical source and the detector placed on the opposite
surfaces of the finger tissue are shown.
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and infrared light. Red photons having higher scattering coefficient than infrared, were

tending to take higher optical paths despite penetrating through the same depth. This is

validated in Figure 9.4, where it is seen that the number of photons having longer optical

path is higher in red compared to infrared. To penetrate the same thickness of finger,

the infrared photons used to take pathlengths up to 80 mm, whereas the red optical

pathlength extended up to 140 mm.

9.6 Reflectance, Transmittance and Ratio of ratios

In Figures 9.5 (a) and (b), the detected reflectance and transmittance recorded in the

reflective and transmissive PPG geometries are presented as functions of arterial oxygen

saturation. The geometrical setting of PPG system were the same as stated in the

previous section. The overall transmittance was shown to be higher than the overall

reflectance for both red and infrared wavelengths at systole and diastole. For example, at

90% oxygen saturation, the infrared diastolic transmittance was 2.89×10−2, which was

about 105 times higher than the infrared systolic reflectance, i.e., 5.27×10−8. Apparently,

reflectance and transmittance for the red light very slowly increased with the arterial

oxygen saturation, whereas the same for infrared light gradually decreased. The diastolic

values of the reflectance and transmittance were shown to be slightly higher than the

systolic values in all cases.

The calculated normalised pulsatile reflectance and transmittance were shown in

Figures 9.5(c) and (d), respectively. Although the values of the individual detected inten-

sities varied greatly between the reflectance and transmittance mode, the normalised

pulsatile intensities (i.e., the ratio of the pulsating signal to the diastolic intensity) were

almost identical in both the modes. For example, the infrared normalised reflectance was

0.18, i.e., almost equal to the infrared normalised transmittance 0.10. The red normalised

intensity was higher than the infrared normalised intensity in both the modes.

The ratio of the normalised red and infrared amplitudes, i.e., R, was plotted as

a function of the arterial oxygen saturation in Figure 9.5(e). These plots resembled

the ‘calibration curves’ of the Pulse Oximeter. The calibration curves for the reflective

and transmissive modalities were found to be strongly correlated. Using the in-built
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Figure 9.5: Detected reflectance and transmittance in the reflective and transmissive PPG
geometries are shown in (a) and (b), respectively. The upper solid line pairs represent
diastolic and systolic states at infrared wavelength (940 nm) and the lower dashed line
pairs represent diastolic and systolic states at red wavelength (660 nm). The normalised
reflectance and the normalised transmittance, as functions of arterial blood oxygen
saturation, are plotted in (c) and (d). The ‘ratio of ratios’ R is plotted against the arterial
blood oxygen saturation in (e), resembling the ‘calibration curves’ for both the reflectance
and transmittance mode pulse oximeter.
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correlation calculator in MATLAB, the correlation factor was found to be r = 0.996.

A high number of interaction events for red light led to more absorption in photon

clusters, resulting in higher detected intensity for infrared light compared to red light at

both the reflective and transmissive mode. The systolic increase in blood volume in the

dermal sublayers resulted in more absorption in systolic states, and thus, higher detected

reflectance and transmittance values in diastole compared to systole at all arterial blood

oxygen saturations (10-100%) occurred. The ‘pulse’, i.e., the difference in systolic and

diastolic amplitude (AC component of PPG), was normalised by the diastolic intensity

(DC component of PPG) to obtain the ‘ratio of ratios’ (described in Chapter 6), that was

plotted as a function of oxygen saturation to produce the ‘calibration curve’, which was

the technical characterisation of the pulse oximetry set up. The similar patterns and

values of normalised reflectance and transmittance, and the correspondence between the

calibration curves obtained in reflective and transmissive modes show that the functions

of the pulse oximeters do not greatly depend on the geometry chosen.

The limitations regarding the empirical calibration of pulse oximeters have been

discussed in Chapter 8. The inadequacy of data in low arterial oxygen saturations may

not influence the traditional SpO2 reading by pulse oximetry, in fact, most of the pulse

oximeters provide a consistent accuracy of ±2% in clinical measurements. Still such

information is invaluable in cases such as septic shock where very low oxygen saturation

in the peripheral proximities take place, often together with severe hypoxaemia where

studies have shown an overestimation of the pulse oximeter readings [Wilson et al., 2010].

9.7 Mean optical path and mean depth of penetration

The source-detector separation in a transmittance mode geometry was fixed. For in-

vestigation with variable source-detector separation, therefore, the reflective geometry

was chosen. The the mean optical path and the mean penetration depth as functions of

source-detector separation for a range of arterial oxygen saturation (SaO2) were recorded.

Results for the simulation of the optical pathlengths and the penetration depths at

SaO2 = 10%,30%,50%,70%, and 90% are shown in Figure 9.6(a)-(e) and (f)-(j), respec-

tively. The source-detector separation d was varied from 1 mm to 10 mm, with a gap of 1
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mm between two consecutive detections. The total number of detected photon clusters

in the range of source-detector separations was 1010. The ‘moving detector’ technique

was followed for the calculations. The simulations were performed at both the red and

infrared wavelengths, at systolic and diastolic states. The mean optical path was found

to increase almost linearly with d. The maximum optical path was taken by any photon

cluster to reach the maximum distance between source and detector (d = 10 mm) was 60

mm. The penetration depth increased sharply with an initial increase of d, however, the

increment rate fell for higher d. Interestingly, no photon passed through finger beyond

the depth 8 mm, even for a high source-detector separation d = 10 mm. For all cases, the

systolic and diastolic optical path and penetration depths appeared almost same, and

varied between the red and infrared wavelengths, especially at higher source-detector

separations (d > 5 mm).

The wavelength dependence of the mean optical path (MOP) and the mean penetration

depth (MD) were quantified as the percentage change between their values at 660 nm

and 940 nm (∆MOP and ∆MD) following the equations:

∆MOP = MOP(ir)−MOP(red)
MOP(ir)

∆MD = MD(ir)−MD(red)
MD(ir)

(9.10)

The percentage changes in the mean optical path and penetration depth at d = 3 mm,

5 mm, 7 mm and 9 mm for SaO2 = 10−100% are presented in Figures 9.7 (a) and (b)

respectively. The negative values of ∆MOP at d = 3 mm referred to the lower optical path

at 940 nm compared to 660 nm wavelength. With increasing d, the infrared optical path

became higher than the red optical pathlength. With increasing oxygen saturation, the

difference between red and infrared optical path slowly decreased. All positive values

of ∆MD, on the other hand, indicated that the penetration depth in infrared light was

always higher than red. The difference in the penetration depth between red and infrared

light did not exhibit any significant variation with increasing oxygen saturation.

The optical pathlengths were found to increase almost linearly with d. Also, the

physical optical pathlengths were much higher than the geometric pathlength (i.e., the

source-detector separation). These two observations followed the modified Beer-Lambert

law (Chapter 2). Optical pathlengths depended on both the absorption and scattering
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Figure 9.6: The mean optical path and the mean depth of penetration, at red (660 nm) and
infrared (940 nm) wavelengths for both systolic and diastolic states, recorded at different
source-detector separations (d = 1-10 mm) at arterial oxygen saturations 10%, 30%, 50%,
70% and 90% are shown in (a)-(e) and (f)-(j) respectively.
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Figure 9.7: At source-detector separations d = 3 mm, 5 mm, 7 mm, and 9 mm, the
calculated percentage changes in diastolic mean optical path ∆MOP between the red
and infrared at SaO2 = 10−100% are presented in (a). At the same source-detector
separations, the calculated percentage change in diastolic mean penetration depth ∆MD
are presented in (b). The different colours of the line plots as stated in the legend present
different source-detector separations, and the markers represent the data points.
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coefficients of the tissue layers. Since the effective absorption coefficient changed with the

change in oxygen saturation, the optical pathlength also varied with the blood oxygen

saturation, as seen in Figure 9.6(a)-(e). In the shorter source-detector separations, i.e.,

when photons mainly localised near the dermal sublayers, red photons took higher path

than infrared photons. However, at higher source-detector separations, the higher infrared

optical path compared to red was attributed to the distinct optical properties of muscle

and bone.

The information of the penetration depth is important to understand the PPG light-

tissue interaction. The method such as diffusion approximation is incapable of providing

with correct information on penetration depth for a system like PPG where the source-

detector separation is normally very small (∼mm). The simulated result showed that the

infrared light always penetrated higher than the red light as depicted in Figure 9.6 (f)-(j).

The change in penetration depth with increasing oxygen saturation is an indicative of

the dependence of the depth on the absorption coefficient (as scattering coefficient has

no dependence on the oxygen saturation). The difference between the red and infrared

depth of penetration sharply increased with the increasing source-detector separation

and slowly decreased with increasing oxygen saturation.

From Figure 9.6, it is seen clearly that for lower source-detector separations (d ≤ 5),

red and infrared optical paths were almost the same, so were the depth of penetration. For

higher separations, however, the difference increased considerably. From the observation,

it is advisable that for the best result using reflective PPG setting, a small source-detector

separation (∼ 5 mm) should be chosen.

9.8 Normalised absorbances and modulation ratio

To retrieve the information on the absorption from each layer of the tissue, it photons

need to pass through all tissue layers. While travelling from source to detector in the

reflective modality PPG, light does not pass through all layers of the finger, as seen in

earlier sections. Therefore, this study was performed on the transmissive modality of the

system only. The distribution of relative absorbances in each tissue layer is illustrated in

Figure 9.8. The amount of absorbances in each layer is presented in Table 9.3. It should
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Figure 9.8: Barplot showing the distribution of the normalised absorbances (A(λ)) is
presented in (a). The normalised absorbance was derived at different tissue layers in
a transmissive modality of PPG at red (660 nm) and infrared (940 nm) wavelengths
during systolic and diastolic phases of tissue perfusion. The absorbance modulation ratio
RM = A(red)

A(ir) calculated for each tissue each layer is shown in (b).
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Table 9.3: Simulated distribution of relative absorbances and modulation ratio in tissue
layers

Tissue layers Red diastolic Red systolic Infrared
diastolic

Infrared
systolic RM

Stratum corneum 0.12% 0.12% 0.09% 0.09% 0.77
epidermis 63% 61% 37.07% 35.57% 0.66

dermis 4.53% 6.97% 29.99% 33.74% 4.30
fat 0.82% 0.79% 1.79% 1.64% 0.37

muscle 28.58% 27.89% 25.50% 23.75% 0.36
bone 2.83% 2.79% 5.56% 5.21% 0.21

be noted that the absorbance in the dermis is presented as a whole and not as separate

absorbances by sublayers.

The maximum absorbances at both red and infrared systole and diastole were seen in

the epidermis layer. The minimal absorption was found in the stratum corneum, then

in fat, bone, muscle and dermis. The absorbances in the dermal layer exhibited a large

difference between the infrared and red wavelengths (e.g., in diastole, 29.99% and 4.53%

which is about 7 times).

The relative difference in the absorbances of light between red and infrared wave-

lengths is the main working principle of pulse oximetry. Although this principle is well-

known, the contribution of the different layers in the absorbance was never investigated

earlier. Such an information is of fundamental importance for a comprehensive under-

standing of PPG and pulse oximetry mechanism. In Figure 9.8, the epidermal layer

appeared to absorb the maximum amount of red (∼60%) and infrared (∼35%) light, which

was attributed to the presence of a 10% melanin concentration in the epidermal volume.

High absorbances were found in the muscle, bone and dermal layer, and the maximum

amount of relative absorbance (hence the highest RM) was found in the dermis, and the

minimum was found in the bone. This also pointed towards the fact that the dermal

sublayers were mainly responsible for the pulsatile signal, to which the contribution

of bone was the minimal. This is an important observation as the optical properties of

the bone layer used in the simulated tissue volume were approximated. All previously

published modelling studies available related to the light-tissue interaction in finger or

arm excluded the bone layer from their simulation stating that bone is highly scattering

and reflecting [Schmitt, 1991; Doronin et al., 2011]. In the present simulation, cranial
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optical properties were used due to lack of information on finger bone. Simulated results

showed, however, that the contribution of the dermis in the PPG waveform was much

higher compared to any other layer, and bone had the minimum impact. These results

justify the approximation of the bone optical properties in the simulated tissue volume.

9.9 Summary

In the present paper, the interaction of light at two wavelengths (660 nm and 940 nm)

with a three-dimensional volume of finger tissue has been shown using a Monte Carlo

model. The model has been executed at the reflective and transmissive modalities to

investigate the distribution of scattering, detected intensities, the ratio of ratios, optical

path, penetration depth, relative absorbances and absorbance modulation ratio. The

comparative study between the reflective and transmissive modalities has given an

insight into the pulse oximetry mechanism. The demonstration of the change in optical

path and penetration depth with the source-detector separation are crucial to systematise

the sensor geometry in a reflectance optoelectronic setting. Characterisation of the depth-

specific absorbances elucidates the contribution of each layer of the tissue model in the

PPG. The studies presented in this paper are useful in a broad area of applications using

PPG, and also other similar optical systems.
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10
DIFFERENTIAL PATHLENGTH FACTOR ESTIMATION

AND PERFUSION ASSESSMENT BY

PHOTOPLETHYSMOGRAPHY

10.1 Introduction

In previous chapters, the Monte Carlo model has been explored to understand the basic

light-tissue interactions in PPG and pulse oximetry. From both the monolayer and multi-

layer model based studies, the dependence of the optical path with the source-detector

separation has been observed. The simulated optical pathlength (l) has been shown to

be considerably higher compared to the geometrical pathlength (i.e., the source detector

separation, d) in the previous results. In a highly scattering medium such as biological

tissue, the physical pathlength of the photon is related to the geometrical pathlength

by the Differential Pathlength Factor DPF, which was introduced during describing the

modified Beer-Lambert law in Chapter 3. The relationship between the geometrical and

physical optical pathlength is stated as:

l = DPF ·d. (10.1)

The results presented in the previous chapters revealed the importance of the studies

focussed on the optical path and DPF in PPG which has never been investigated before.

In this chapter, a monolayer model of perfused skin and a multilayer model of human
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forearm will be explored to investigate DPF in PPG. The simulated DPF for forearm will

be further utilised to assess the tissue perfusion from PPG. Using the simulated DPFs

at 660 nm and 880 nm, the time-change in concentration in the main two haemoglobin

species of blood, namely, oxyhaemoglobin and deoxyhaemoglobin, will be evaluated from

the experimentally obtained PPG signal from healthy volunteers. Additionally, the results

obtained using the simulated DPF will be compared with the same obtained using

approximated DPF, and the errors induced due to the approximations will be evaluated.

10.2 Background

The concept of DPF is fundamental in light-tissue interaction theory starting from Beer-

Lambert law, as stated before. However, all the published studies on DPF associate

with only one certain type of bio-optical system, namely, ‘Near Infrared Spectroscopy

(NIRS)’. NIRS is a well-known biomedical diagnostic technique relying on the application

of the modified Beer-Lambert law for measurement of tissue oxygenation and perfusion.

Investigation on DPF is a very crucial part of NIRS studies, and many works have been

pursued for estimating the values and the properties of DPF in NIRS at different tissue

sites [Pellicer and del Carmen Bravo, 2011; Scheeren et al., 2012; Jue and Masuda, 2013;

Murkin and Arango, 2009; Hiraoka et al., 1993; Delpy and Cope, 1997; Duncan et al.,

1995; Delpy et al., 1988; Essenpreis et al., 1993; Kohl et al., 1998].

The recent works by Abay et. al. [Abay and Kyriacou, 2015, 2018] have demonstrated

the feasibility of using the Photoplethysmography signal for estimating changes in oxy-

haemoglobin (HbO2), deoxyhaemoglobin (Hb), and total haemoglobin (tHb) as in NIRS.

This has been achieved by splitting dual-wavelength PPG signals into AC and DC compo-

nents, and applying the modified Beer-Lambert law to the DC component. Since the same

PPG signals can also be used to estimate the conventional SpO2, this approach allows the

same signals captured during pulse oximetry for also determining other haemodynamic

parameters (i.e., concentrations of oxy and deoxyhaemoglobin), in addition to measuring

the oxygen saturation, in clinical settings. That might eventually lead pulse oximetry to

be used as a tool for measurement of arterial oxygen saturations and for the assessment

of tissue perfusion changes. Although being relatively easy to apply this approach, not
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requiring any additional instrumentation to the conventional pulse oximetry technology,

this procedure has been restricted by the unknown DPF. In the existing literature, the

optical path and DPF have been evaluated for longer source-detector separations normally

used for NIRS (>10 mm) [Duncan et al., 1995; Van der Zee et al., 1992]. The available

information is unlikely to match the shorter source-detector separations which are ideally

around 5-6 mm (as observed in Chapter 9). Also, in previous studies, DPF values have not

been assessed at the wavelengths pertinent to PPG. The inadequacy of available data on

the PPG DPF, therefore, limits the scope of tissue perfusion assessment from PPG. This

limitation is possible to resolve with a better knowledge on the fundamental light-tissue

interaction details behind the PPG system. With this motivation, the work presented in

the chapter is focussed to estimate the DPF in PPG for the first time using Monte Carlo

simulations, and to apply this knowledge gained from the study for the assessment of

tissue perfusion using PPG.

Let us recall the modified Beer-Lambert law for a highly scattering medium such

as biological tissue as introduced in Chapter 3. According to the law, the absorbance of

light of an wavelength λ in tissue medium is represented as the product of the extinction

coefficient ε of the medium, concentration c of the absorber and physical (or differential)

optical pathlength l as stated below:

Aλ = ελ · lλ · c+G. (10.2)

With the consideration that the main absorbers present in the tissue medium are

oxyhaemoglobin (HbO2) and deoxyhaemoglobin (Hb), the above equation can be written

as:

Aλ = (εHbO2λ
·CHbO2 +εHbλ ·CHb) · lλ+G (10.3)

where εHbO2λ
and εHbλ are the extinction coefficients of oxyhaemoglobin and deoxy-

haemoglobin, respectively, and CHbO2 and CHb are the concentrations of oxyhaemoglobin

and deoxyhaemoglobin, respectively. Considering G to be constant over time, a differential

approach of the modified Beer-Lambert law is applied that permits the calculation of

changes in concentrations relative to an initial nominal or a baseline value. Expressing

the differential pathlength in terms of the geometrical pathlength (i.e., the source-detector

separation) d and the differential pathlength factor at the wavelength, DPFλ, above
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equation reduces to:

∆Aλ = (εHbO2λ
·∆CHbO2 +εHbλ ·∆CHb) ·d ·DPFλ. (10.4)

This expression indicates a change in absorbance due to a change in the overall blood

volume in tissue, or in other words, due to the change in concentration of the oxy and

deoxyhaemoglobin in the tissue. This fundamental equation is the basis of NIRS mea-

surements [Kohl et al., 1998; Delpy and Cope, 1997; Matcher et al., 1994].

Using the above equation in the two wavelengths used in pulse oximetry, at red and

infrared (ir) wavelengths, a set of two linear equations are obtained:

∆Ared = (εHbO2red
·∆CHbO2 +εHbred ·∆CHb) ·d ·DPFred

∆A ir = (εHbO2ir
·∆CHbO2 +εHbir ·∆CHb) ·d ·DPFir .

(10.5)

The two linear equations are solved to determine the concentration changes in oxy and

deoxyhaemoglobin as:

∆CHbO2 =
∆AredεHbir

DPFred
− ∆A irεHbred

DPFir

d[εHbO2red
εHbir −εHbredεHbO2ir

]
(10.6)

∆CHb =
∆A irεHbO2red

DPFir
− ∆AredεHbO2ir

DPFred

d[εHbO2red
εHbir −εHbredεHbO2ir

]
(10.7)

Once ∆CHbO2 and ∆CHb are calculated, the time changes in total haemoglobin con-

centration ∆CtHb is derived as the sum of the two haemoglobins species.

∆CtHb =∆CHbO2 +∆CHb (10.8)

The impact of DPF in the quantification of ∆CHbO2 and ∆CHb, therefore, are seen from

Eqs. 10.6 and 10.7. An approximation in the DPF value might cause a systematic error in

the estimated concentration changes. The error induced by an approximation on the DPF

value can be estimated by calculating the ‘cross-talk’ and the ‘absolute error’.

Cross talk relates to the separability of the mixed optical signals into ∆CHbO2 and

∆CHb, and it is defined as the quantity of ∆CHbO2 that is reflected into ∆CHb and vice-

versa. The cross talk error (CT) due to inaccuracies in the optical pathlengths is expressed

as [Strangman et al., 2003; Uludağ et al., 2004]:

CTi→ j =
−εiredεi ir

εiredε j ir −ε jredεi ir

· [kred −kir] (10.9)
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where εi is the extinction coefficient of either oxyhaemoglobin or deoxyhaemoglobin,

and ε j is the extinction coefficient of the other haemoglobin species. CTi→ j represents

the crosstalk from the chromophore i to the chromophore j, and it is different in sign

and magnitude from CT j→i, which, in turn, is the crosstalk from the chromophore j to

chromophore i. The terms kred and kir are the relative pathlength factors in red and

infrared optical wavelengths, respectively [Strangman et al., 2003; Uludağ et al., 2004]

and mathematically represent the amount of error in the optical pathlengths at each

wavelength. Here, DPF simulated by the Monte Carlo model is defined as the ‘real’ DPF

(i.e., DPFMC). The approximated value of DPF based on the assumption of wavelength-

independence is denoted as DPFappr. Hence, the relative pathlength is expressed as the

ratio between the accurate and estimated DPFs [Strangman et al., 2003]:

kλ =
DPFMCλ

DPFapprλ
. (10.10)

Cross talk provides the qualitative error information between the concentrations, mea-

sured using real (simulated, in this case) and approximated DPF values.

The quantitative (or absolute) errors between the concentration measured in two ways

(EHb and EHbO2 , respectively, for deoxy and oxyhaemoglobin) can be derived directly

using the following equations:

EHbO2 =∆CHbO2appr
−∆CHbO2MC

EHb =∆CHbappr −∆CHbMC

(10.11)

where the concentration-change in Hb, determined using simulated and approximated

DPFs, are ∆CHbMC and ∆CHbappr , respectively and the concentration-change in HbO2

determined using simulated and approximated DPFs are CHbO2MC
and CHbO2appr

, respec-

tively.

10.3 Methodology

The work in this chapter can be divided into three main sections. The first phase of work is

the investigation of the DPF in a perfused skin tissue layer at different states of perfusion

and oxygenation. This work is an extension from the monolayer model-based study

presented in Chapter 8. The second part of the work includes the investigation of DPF
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with a multilayer tissue model. A human forearm model was used for this purpose. The

third part of the work utilised the estimated DPFs for forearm to asses the tissue perfusion

(by determination of the time-change in concentration of oxy and deoxyhaemoglobin) from

the PPG signal recorded from the forearm as a part of an in vivo experimental study. This

part also estimated the cross-talk and the absolute error between for the results obtained

using approximated DPF values.

The parameters for the monolayer model of the perfused skin has already been

described in Chapter 8 and the same model was used for the assessment for DPF for

different blood oxygen saturation and blood volumes in this chapter. The parameters for

the multilayer model of forearm will be discussed in this chapter.

10.3.1 Description of multilayer tissue model

A heterogeneous volume of human forearm was modelled which replicated the location

for the experimental PPG measurement. Experimentally, the signal was acquired from

the volar side of the brachioradialis muscle of left forearm, which will be shown later

in Figure 10.2. In Figure 10.1, the location of of the PPG sensor on the hand, and

the anatomical configuration of the tissue volume beneath the sensor are presented.

The anatomical structure presented in Figure 10.1(B) was presented by a simplified

tissue model presented in Figure 10.2. A three-dimensional slab geometry was chosen

to represent the volume of the forearm which was interrogated by red (660 nm) and

infrared (880 nm) light. In order to reconstruct a multilayer tissue model, the anatomical

properties of the forearm were determined by surveying the published literature [Doronin

et al., 2011; Tuchin et al., 2011; Meglinski and Matcher, 2003; Williams et al., 1989;

Schmitt, 1991] and analysing histological images. The first six layers starting from the

top represented the dermal sub-layers of the skin (stratum corneum, epidermis, papillary

dermis, upper blood net plexus, reticular dermis, and deep blood net plexus) and they

were followed by the subdermal fat layer and the muscle layer. This order represented the

first half of the tissue model, and was replicated in reverse order in the other half of the

model. Overall, the multilayer tissue model comprised 15 layers, with a total thickness of

4 cm and an infinite width (considering the spatial distribution of the photons to be much

smaller than the width of the human forearm). The schematic of the multilayer tissue
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Figure 10.1: The location of the PPG sensor on the forearm (A) and the anatomy of
the volume of tissue in that location (B) are presented. This figure corresponds to the
actual experimental set up presented in Figure 10.3. S and D represent the approximate
locations of the optical source and detector of the PPG sensor, placed on the volar side of
the brachioradialis muscle of left forearm. The anatomical description is adapted from
the text book [Netter, 2017].

model in the reflectance photoplethysmography setting at a source-detector separation of

5 mm is shown in Figure 10.2.

The stratification of the layers of the forearm tissue are illustrated in Table 10.1.

The volume of blood (Vb) and water (Vw) in each layer were used to simulate the overall

perfusion and hydration of the tissue, and the values were adapted from textbook [Wang

and Tuchin, 2013]. The arterial oxygen saturation of blood in all layers was considered

92%, with an arteriovenous oxygen saturation difference of 10%, an arteriovenous blood

concentration ratio 1:1 and a haematocrit of 45% [Wang and Tuchin, 2013; Bosschaart

et al., 2014; Jacques, 1998]. The individual absorption and scattering coefficients and

anisotropy factor were adapted from published literature [Simpson et al., 1998; Matcher

et al., 1994; Kohl et al., 1998; Bosschaart et al., 2014; Steinke and Shepherd, 1988]. The

effective absorption coefficient was calculated using the same formulations described in

Chapter 9. Refractive index of tissue layers was 1.4, and the external (air) refractive index

was 1.

The model used in this work did not include the optical properties of the bone layer.

Due to the high scattering and reflecting optical characteristics of bone, especially in a
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Figure 10.2: Schematic of tissue layers of human forearm model presented in a three-
dimensional Cartesian co-ordinate system. The model comprises of the layers skin, fat,
muscle, and again fat and skin respectively (skin sublayers are not shown separately).
The depth of tissue is along the negative z-axis. Total tissue thickness is 4 cm. In the
reflectance PPG setting, the optical source (S) and detector (D) are placed at a distance of
5 mm, however the distance in the simulation was varied. This schematic is a simplified
form of the anatomical structure shown in Figure 10.1B.

small source-detector separation used in this study, the photons scattered within the bone

were very unlikely to survive until they reach the detector [Schmitt, 1991; Williams et al.,

1989]. Also, there was not enough study describing the optical properties of forearm-bone.

Additionally, from the previous chapter, by investigating with the finger tissue layers, it

was found the bone has a minimum impact in PPG light tissue interactions. Therefore,

the presence of bone layer in the forearm (radius and ulna, which are two cylindrical

bones, deep below the skin and surrounded by muscle tissue) were not considered in the

model.

10.3.2 Execution strategy

Both the monolayer and multilayer models were executed in the moving detector tech-

nique (described in Chapter 6) for capturing a 1010 number of photon clusters throughout
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a range of source-detector separations.

If the path of the photon cluster through the tissue volume from the source to the

detector is simulated through small step sizes s (where each value of s is different), the

total optical path S of the photon cluster will be the sum of these small steps:

S =∑
i

s. (10.12)

The mean optical pathlength (also differential pathlength) l is the average of the total

optical pathlengths of all photons detected in a certain source-detector separation (which

is also the geometrical pathlength) d at a certain wavelength λ:

lλd = S̄λ. (10.13)

According to the definition of differential optical path, the DPF at the same geometrical

and optical pathlength at that wavelength is calculated as:

DPFλd =
lλ
d

. (10.14)

In this work, for both the monolayer and multilayer models DPFs were calculated

through a range of source-detector separation d. The monolayer model was executed at the

wavelengths 660 nm and 940 nm. The multilayer model was executed at the wavelengths

660 nm and 880 nm. Both the wavelengths 880 nm and 940 nm are commonly used to

detect the PPG signals in pulse oximetry [Patel et al., 2018; Budidha et al., 2018] .

Usually, shorter source-detector separations (< 10 mm) are used in PPG measure-

ments, whereas larger source-detector separations (> 10 mm) are used in NIRS measure-

ments. Depending on the usual application, the range of source-detector separations used

in this study for modelling light-tissue interactions were divided into two sections: dPPG

that was varied between 1-10 mm, and dNIRS that was varied from 10 mm to 40 mm.

Although the work primarily focussed on the determination and application of DPF for

PPG, the NIRS region was also modelled for a more comprehensive understanding.

The monolayer model was executed in the PPG region only, demonstrating DPF values

through dPPG (1< d(mm)< 10) at red and infrared wavelengths. The multilayer model

was executed at through the ranges of dPPG and dNIRS (1 < d(mm) < 40). The simu-

lated DPF values from the multilayer model were further utilised in the experimentally

obtained PPG signal.
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10.3.3 Experimental setting and data analysis

As already stated, initial attempts to asses tissue perfusion using PPG was restricted

with an insufficient information on optical pathlength. Also from Eq. 10.6 and Eq. 10.7,

it is apparent that an inaccurate selection of DPF may cause systematic errors in the

estimated concentration changes [Boas et al., 2001; Uludağ et al., 2004; Strangman et al.,

2003]. Thus, using the simulated DPF values, the time change in concentration was

determined from the physiological signal recorded from healthy volunteer, and compared

with the result with not using the DPF values. The DPF values derived from the MC

model were used for determining changes in the concentration of oxyhaemoglobin and

deoxyhaemoglobin from in-vivo PPG measurements acquired from the forearm. The

measurements were collected as a part of a previous study by [Abay and Kyriacou, 2015].

The experimental set up for recording the PPG signal of the volunteer is shown in Figure

10.3. The processing unit ZenPPG was used for acquiring the PPG data, the details of

which can be found in the work by [Budidha et al., 2018]. The collected data consisted of

raw PPG signals (AC + DC) acquired at two wavelengths, red (660 nm) and infrared (880

nm), from a reflectance PPG sensor positioned on the volar side of the left forearm. The

reflectance PPG sensor comprised two red (660 nm) LEDs, two infrared (880 nm) LEDs,

and a photodiode. The LEDs and photodiode were placed at a centre-to-centre distance of

5 mm.

The protocol consisted of a sequence of vascular occlusions, which aimed to induce

changes in blood flow in the measurement area and they were performed by manually

inflating a cuff positioned around the upper left arm (on the volar side of the brachiora-

dialis muscle) of 21 healthy volunteers (13 males and 8 females having the mean age

of 31.05 years with a standard deviation of 7.55). Ethical approval was granted by the

Senate Research Ethics Committee at City, University of London and written consent

was sought from the volunteers before commencing of the investigation. Subjects with a

history of cardiovascular disorders were excluded from the study.

The protocol started with 5 min of baseline measurements, followed by two minutes

of venous occlusion (60-mmHg occlusion pressure), 2 min of recovery (no pressures),

and two final minutes of total vascular occlusion (occlusion pressure 20-mmHg over the
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Figure 10.3: The experimental set-up for acquiring the PPG signal is shown. The PPG
sensor is placed at the volar side of the left forearm of the volunteer.

systolic pressure). The post-processing of the signals was performed on MATLAB. The

DC components were obtained with a low-pass zero-phase digital filter (cut-off frequency:

0.1 Hz). A more detailed description of the protocol and the reflectance PPG sensor can be

found in the published work by [Abay and Kyriacou, 2015].

In order to investigate the effects of DPF approximations on ∆CHbO2 and ∆CHb

estimated from PPG measurements, the error-analysis was carried out with three different

sets of approximated data. The ‘real’ situation was considered when the DPF values for

red and infrared optical wavelengths obtained through the MC simulation (DPFMCred

and DPFMCir ), were utilised for calculating ∆CHbO2 and ∆CHb from the PPGs acquired

from the forearm. This situation was considered as ‘real’ in this case as the DPFs were

obtained from the simulation of a realistic model and no assumption or approximation

was made regarding the optical pathlength (i.e., DPFred 6= DPFir).

In the approximated conditions, the wavelength-independence of DPF was assumed

(i.e., DPFred = DPFir). The conditions are listed below:

• Case A: The DPFs for both wavelengths were set equal to the value simulated for

the red wavelength (i.e., DPFred = DPFir = DPFMCred ).

• Case B: The DPFs for both wavelengths were set equal to the value obtained for the
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infrared wavelength from the MC simulation (i.e., DPFred = DPFir = DPFMCir ).

• Case C: The DPFs for both wavelengths were set equal to an experimentally

determined DPF for NIRS measurements from the existing literature [Van der

Zee et al., 1992]. The parameter was measured from the adult forearm by the

time of flight method at an optical wavelength of 761 nm, resulting in a value of

3.59 for long separation distances (d > 2.5 cm). Therefore, the DPFs at red and

infrared wavelength in this experiment were approximated to be equal to 3.59

(DPFred = DPFir = 3.59).

For each of the conditions where the DPFs were approximated (i.e., A, B, and C), the

cross talk and absolute errors were assessed against the results obtained with the MC

simulated DPFs (i.e., DPFMCred and DPFMCir ), following the theory explained in Section

10.2. The cross talk between haemoglobin species was determined with the relative

pathlength factor kλ being set as the ratio between the DPF obtained at each wavelength

from the MC simulation and the DPFs assumed at each of the three conditions above. For

example, in Case A where DPFappr = DPFA, the relative pathlength at red wavelength

was written after Eq. 10.10 as kAred = DPFMCred
DPFAred

. The inaccuracies in the haemoglobin

concentrations in the three conditions were assessed by determining the absolute error

in the measurements. This was obtained for each haemoglobin species by computing

the maximum difference between the concentrations estimated using simulated DPFs

(DPFMC) and approximated DPFs (DPFappr). The error was then normalised to the full

measurement range and expressed as a percentage error. The values across the population

were presented as median and interquartile ranges (IQR).

10.4 DPF in monolayer perfused skin tissue

Differential pathlength factors were evaluated for a semi-infinite three-dimensional slab

of perfused dermis tissue. Simulated results with this model (e.g., scattering distribution,

optical pathlength, penetration depth etc.) have already been presented in Chapter 8.

Dependence of optical path on the source-detector separation, with a change in optical

pathlength between the red (660 nm) and infrared (940 nm) wavelengths were observed

in the results discussed in Chapter 8. The dependence of the optical pathlength on the
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source-detector separation was quantified by the differential pathlength factor, and the

results are presented in this chapter. DPF in the perfused skin was evaluated for a range

of total oxygen saturation (StO2 = 50−100%) and blood volume (Vb = 2.5%,5%,7.5%,10%)

for the source-detector separations in PPG region (1< dppg (mm) < 10). The results are

demonstrated in Figure 10.4. In Figure 10.4, considerable difference is observed between

the red and infrared DPFs. The values of DPF is found to be changing with the blood

volume as well as blood oxygen saturation. For a clearer observation, DPFs for a fixed blood

volume Vb = 10% for different oxygen saturations, i.e., StO2 = 50%,60%,70%,80%,90% as

function of source-detector separations are presented in Figure 10.5. Red DPF increases

slowly with increasing d but the rate of increase gradually decays with the increasing d.

Considerable increase in red DPF with higher oxygen saturation is noticed. The infrared

DPF, on the other hand, does not change considerably with blood oxygen saturation and

slightly varies with increasing source-detector separation. Also, DPF values at a fixed

StO2 = 90% for different blood volumes, i.e, Vb = 2.5%, 5%, 7.5%, 10% are shown in Figure

10.6. It is seen that for red wavelength, the DPF rises more sharply compared to infrared.

With increasing blood volume, red and infrared DPF values decrease.

The results presented in Figures 10.4, 10.5 and 10.6 elucidate the dependence of

DPF on many factors, e.g., source-detector separation, optical wavelength, physiological

states such as blood volume and oxygen saturation of tissue etc. Therefore, for any further

application, it is crucial to asses the DPF in the specific geometry for the specific tissue

sample at a certain wavelength rather than any crude approximation. The dependence of

DPF on the external factors such as the geometrical setting or the physiological states

are more clearly visible in the red wavelength. Relatively lesser changes in the infrared

wavelength is consistent with the previous observation by [Delpy et al., 1988] where it was

stated the DPF is independent of the source-detector separation at infrared wavelength

region. For PPG applications where lower wavelengths also play vital role, therefore, an

accurate assessment of the DPF at a certain source-detector separation in crucial for any

related studies.
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Figure 10.5: Differential Pathlength Factor in monolayer perfused skin dermis at a fixed
Vb = 10% for different oxygen saturations StO2 = 50%,60%,70%,80%,90%. All plots are
shown in the same axes limits.

10.5 Light-tissue interaction and DPF estimation in

multilayer forearm tissue

Figure 10.7 shows the density plots of the simulated photon migration in the forearm at

both red (660 nm) and infrared (880 nm) wavelengths. The plots show the colourmap of the

scattering events N for red and infrared reflectance PPG measurements, acquired with

an interoptode separation distance of 5 mm. The maximum number of photon scattering

events is found within the top few layers, especially in the proximity of the light source

and detector. The photon scattering distribution clearly decreases with increasing depth.

It is noticeable that the majority of the scattering events for both wavelengths take place
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Figure 10.6: Differential Pathlength Factor in monolayer perfused skin dermis at a fixed
StO2 = 90% for different blood volume Vb = 2.5%,5%,7.5%,10% are shown for red (660
nm) in (a) and for infrared (940 nm) in (b). All plots are shown in the same axes limits.
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Figure 10.7: Simulated distributions of scattering events (N) through human forearm
in PPG measurements at 880 nm (a) and 660 nm (b). The images are 2D projections of
the 3D distribution, with a source-detector separation distance fixed at 5 mm. Only the
photons that reach the detector from the source are shown. The images are scaled equally.
Colourbar represents distribution between maximum (Nmax) and minimum (Nmin) values
of number of scatter.

within the dermal skin layers, extending up to a depth of 1.77 mm. Almost no photons

travel any deeper than the muscle tissue layer (i.e., 12 mm depth from the surface). In

Figure 10.8, the scattering distributions for higher source-detector separations, which

are beyond usual PPG specifications, and fall normally within the NIRS source-detector

separation range, are shown. Simulations were carried out for the separations 15 mm, 25

mm and 35 mm. It is seen that the penetration depth increases slowly with increasing

source-detector separation, although the maximum penetration depth by the photons did

not exceed the muscle layer even for a very high source-detector separation.

Figures 10.9(a) and (b) show the simulated distributions of the mean optical path

(or differential pathlength, l) and DPF in the forearm tissue volume at red and infrared

wavelengths for source-detector separation distances ranging from 2 mm to 40 mm. As

expected, the mean optical path l travelled by the photons increased with the separation

distance d, indicating a deeper light penetration with increasing d. The differences in l

and DPF at the two different wavelengths are clearly visible, with the optical path at 660

nm being higher than 880 nm, thus resulting in a greater DPF at the red wavelength. The

plots in Figures 10.9(a) and (b) were divided into two application regions, depending on the

source-detector separation distance d. The region A at shorter d, represents the typical

application region of PPG measurements, whereas the region B indicates the applications
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Figure 10.8: Simulated distributions of scattering events (N) through human forearm at
880 nm and 660 nm for larger source detector separations: d = 15 mm (a)-(b), d = 25 mm
(c)-(d) and d=35 mm (e)-(f) respectively. The images are 2D projections of the 3D model.
Only the photons that reach the detector from the source are shown. Colourbar represents
distribution between maximum (Nmax) and minimum (Nmin) values of number of scatter.

with medium-large separation distances. The upper end of region B mainly represents

NIRS applications, consisting in a very large source-detector separation distances (d >

2.5 cm). Interestingly, the increase of l with d in the PPG region (A) is much sharper

compared to the NIRS region (B), resulting in a steep increase in DPF for lower d. For d

larger than 30 mm (region B), the DPFs at both red and infrared wavelengths tended to

an asymptote (constant DPF), with a concomitant decrease in the difference between red

and infrared DPFs. Table 10.2 summarises some DPF values at 660 nm and 880 nm for

different separation distances d commonly employed in PPG and NIRS measurements.

From the simulation results presented in Figures 10.7 and 10.8, it is observed that

both the red and infrared light penetrate a certain distance within the tissue, with
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Figure 10.9: Mean Optical Path in mm (a) and Differential Pathlength Factor DPF (b)
simulated through the human forearm at wavelengths 660 nm and 880 nm, as functions
of source detector separation d. The region of shorter d is marked as (A) and the region
at longer d is marked at (B), representing respectively the PPG and NIRS regions of
measurements. Red dashed lines represent the results from 660 nm, whereas blue solid
lines represent the 800 nm.
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Table 10.2: Differential Pathlength Factor (DPF) at both red and infrared wavelengths
for different source-detector separation distances d. The values are derived from the MC
simulations of light transport through human forearm. The mean optical pathlength l
can be calculated as l = d×DPF.

Source-detector separation
d (mm)

Differential
Pathlength Factor (DPF)
660 nm 880 nm

2 3.998 3.70
3 5.542 4.398
4 6.649 4.915
5 7.242 5.203
6 7.487 5.323
7 7.532 5.337
10 7.213 5.077
20 5.547 3.876
30 4.628 3.215
40 4.218 2.905

maximum scattering in the first few layers of the skin and a reduction of scattering in

the fat and muscle layers. The optical paths are mainly limited within the cutaneous and

subcutaneous tissue region, which indicates that PPG would only provide information on

the shallow tissue perfusion and not deep tissue perfusion as NIRS. In Figure 10.9, the

two application regions investigated (regions A and B) show very different characteristics

of the optical pathlength and DPF. Overall, the DPF for the red wavelength is always

greater than infrared, thus highlighting a consistent wavelength-dependency of the DPF

for short separation distances.

From the multilayer model study it is seen that DPF depends on scattering properties

of tissue. The scattering coefficients of all tissue layers possess higher values in red

wavelength compared to the infrared wavelength according to the tissue optical properties

presented in Table 10.1. The effective optical properties of the tissue volume resulted

in higher optical path for red photons for all source-detector separation. Consequently,

DPF at 660 nm is consistently greater compared to 880 nm. The decline in the measured

DPF values with increasing wavelength is as well observed in the literature by Duncan

et al. in their experimental measurements of DPF on the forearm [Duncan et al., 1995].

The variation in DPF with varying d observed in this study agrees with experimental

measurements of DPF previously reported by van der Zee et al. [Van der Zee et al., 1992].

In the study by van der Zee, the DPF was measured experimentally at d ranging from 10
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mm to 60 mm. In their measurements on the forearm, the authors reported a gradual

decrease in DPF with increasing interoptode distance, similarly observed in the present

MC simulation. Also, it was observed that the measured DPFs were relatively constant

for separation distances above 25 mm. The similarity of the results obtained from the

present Monte Carlo studies with the published literature confirms the accuracy of the

model. However, the DPF for separation d less than 10 mm (i.e., PPG applications) was

never measured in any previous studies. Therefore, the present study can be considered

as the first effort towards the assessment of DPF for PPG.

10.6 Experimental data analysis and error calculation

Figure 10.10 shows the changes in the concentration of HbO2 and Hb from a subject,

estimated from PPG signals in the three conditions A, B, and C (as described in Sec. 10.3).

The trends in the changes of ∆CHb and ∆CHbO2 indicate the variations in blood flow,

either of venous or arterial nature, caused by the vascular occlusions. For comparison,

the ∆CHb and ∆CHbO2 obtained with the simulated DPFs are plotted as well in the same

figure, showing how the approximations in the DPFs introduced some discrepancies in

the estimation of ∆CHb and ∆CHbO2 . The differences in the estimation of ∆CHb and

∆CHbO2 were assessed by calculating the cross talk between the two haemoglobin species.

Table 10.3 shows the values of cross talk calculated in all the three different conditions

investigated, and it shows how the approximations in all three conditions resulted in

a consistent cross talk between the haemoglobin species. The highest degree of cross

talk for both haemoglobin species was observed in condition C, where a DPF for NIRS

measurements was used for estimating ∆CHb and ∆CHbO2 from PPG signals.

When compared with the results obtained with the DPFs from the MC simulations,

the use of approximated DPFs for the estimation of ∆CHb and ∆CHbO2 during occlusions

also resulted in a consistent error in the quantification of the magnitude of change. Figure

10.11 shows the box-plots of the normalised percentage errors in ∆CHb and ∆CHbO2 in

the three different conditions. The normalised maximum errors in ∆CHbO2 were 26.04

(IQR = 21.76 to 27.32)%, 9.90 (IQR = 7.25 to 12.28)%, 19.53 (IQR = 15.16 to 25.18)%,

respectively, for conditions A, B, and C. The normalised errors for ∆CHb were 3.17
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Figure 10.10: Changes in concentrations of oxyhaemoglobin HbO2 (red traces) and de-
oxyhaemoglobin Hb (blue traces) estimated from a subject during the protocol in the
three conditions investigated. The solid lines represent the changes estimated with the
simulated DPFs, whereas the dotted lines represent the same estimated with the approx-
imated DPFs. (a) ∆CHbO2 and ∆CHb in condition A, (b) ∆CHbO2 and ∆CHb in condition
B, and (c) ∆CHbO2 and ∆CHb in condition C. The bottom trace shows the ∆CHbO2 and
∆CHb estimated without DPF (concentration × optical pathlength). The shaded green
areas indicate the duration of the venous occlusion (minutes 5 to 7) and total occlusion
(minutes 9 to 11). For improved clarity, plots A, B, and C have been plotted with equal
scales, whereas the last instance [(d) no DPF] has been plotted with a different scale in
mM.cm.
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Figure 10.11: Box-plots of the normalised percentage errors of ∆CHb and ∆CHbO2 in the
three conditions (A, B, and C) investigated. The values represent the maximum absolute
errors observed in ∆CHb and ∆CHbO2 from the MC simulation condition, normalised to
the full measurement ranges.

(IQR = 2.18 to 4.85)%, 13.44 (IQR = 13.00 to 15.83)%, and 33.43 (IQR = 32.18 to 39.39)%

for conditions A, B, and C, respectively.

Table 10.3: Cross talk between haemoglobin species calculated for the three conditions
investigated. CTHb→HbO2 is the cross talk of deoxyhaemoglobin into oxyhaemoglobin,
whereas CTHbO2→Hb represents the cross talk of oxyhaemoglobin into deoxyhaemoglobin.

conditions cross-talk
CTHb→HbO2 CTHbO2→Hb

A -0.213 0.0297
B -0.2965 0.0414
C -0.4297 0.060

In all three cases of approximation, therefore, significant amount of error in the

assessed concentration-changes of oxy and deoxyhaemoglobin were observed. These

results clearly indicate that the assumption of the wavelength independence will lead

to error in calculation, thus should not be considered. The maximum amount of cross

talk between the haemoglobin species (in values of both CTHb→HbO2 and CTHbO2→Hb)

were found in Case C, i.e., in the approximation of the NIRS DPF. Also, the maximum

absolute error was calculated for Case C. This suggests that for the quantification of

haemoglobin concentrations from PPG, the use of DPFs from the NIRS literature could

cause significant measurement errors, therefore, should be avoided.
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10.7 Summary

The present chapter primarily focussed on evaluating the DPF in PPG. The investigation

was performed separately on a monolayer and a multilayer model. A thorough investiga-

tion of the dependence of DPF on wavelength, blood volume and blood oxygen saturation

in the single perfused skin tissue layer was shown at 660 nm and 940 nm wavelengths.

The values of DPF at 660 nm considerably shifted between different states of oxygen

saturation and blood volume. DPFs for 940 nm were relatively constant. Results from the

monolayer model motivated the study with a multilayer volume of forearm tissue layer.

The model was explored to quantify the DPF in PPG at red (660 nm) and infrared (880

nm) wavelengths. The simulated DPF values were utilised to derive the time changes

in concentrations of oxyhaemoglobin and deoxyhaemoglobin, based on the derivations

from the modified Beer-Lambert law. To study the influence of the DPF values on the

concentration measurements from PPG, recorded PPG signals from the human forearm

was analysed using the simulated DPF. Simulated density plots showed the distribution

of light-tissue interaction events through the tissue volume. Both red and infrared light

penetrated a certain distance through tissue, with maximum scattering in the first few

layers of the skin and a reduction of scattering in the fat and muscle layers. Through

the two application regions (i.e. shorter source-detector separations for PPG and longer

separations for NIRS) investigated in the simulation, the optical pathlength and DPF

showed different characteristics. The DPF for the red wavelength was invariably higher

than infrared. The observations displayed a consistent wavelength-dependence of the DPF,

predominantly in the shorter separation distances usually used in PPG measurements.
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DISCUSSION AND CONCLUSION

A concept-based technical design and optimisation of the geometrical parameters of an

optical system used in biomedical applications require a clear understanding of the un-

derlying light-tissue interaction. A robust bio-optical model (i.e., a model characterised

by a combination of biological and optical properties) including the different tissue struc-

ture (i.e., monolayer and multilayer) at different geometries (reflective and transmissive

modalities) of PPG has never explored in any earlier studies. The growing research inter-

est in employing photoplethysmography for various applications and an inadequacy of

the existing literature on the core PPG research were the driving factors of the thesis.

There is clearly a deficit in knowledge on the fundamental tissue-optical variables in PPG

such as the optical path, penetration depth, light absorbance by different tissue layers,

distribution of scattering and absorption etc. It was previously known that the foundation

of PPG and pulse oximetry lies on the relative absorbance of red and near infrared light

by oxyhaemoglobin and deoxyhaemoglobin, however, no study evaluated the contribution

of the different layers, sublayers, and absorbers present in a heterogeneous volume of

tissue. Results presented in the thesis shed light on such information that is crucial for a

better understanding of the PPG theory and its contribution to a plethora of applications.

Monte Carlo method was chosen for simulating the light-tissue interaction in pho-

toplethysmography due to its significant advantages over other methods, for example,

electromagnetic theory, random walk theory, diffusion approximation etc. The most im-
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portant advantage of this approach was its ability to recreate the ‘randomness’ in the

tissue medium. This was achieved by the random sampling of the optical variables such

as photon pathlength, the angle of incidence, the angle of scattering etc. The anatomical

heterogeneity and the wavelength-dependent optical properties of the tissue layers led

to the realistic distribution of light-tissue interaction events in tissue. The anisotropy in

the scattering events depended on the choice of the ‘phase function’. Henyey-Greenstein

phase function was used to describe the randomised scattering in tissue. This phase

function was chosen as it makes the photons to scatter more in the forward direction,

and is accepted by previous researchers for tissue-optics modelling [Splinter and Hooper,

2006]. The corrections made at the boundary of the tissue-model compensated for the loss

of photonic energy while entering or exiting the tissue surface. The model in the thesis

was executed in two different modalities: reflective and transmissive and the geometrical

positions of the optical source and detector were variable. The MC design provided the

flexibility to operate the system through a very short as well as a very long source-detector

separation, and thus, modelled the system suitable for both peripheral and deep tissue

monitoring (i.e., PPG and NIRS regions). The MC model was also equipped with the

facility to incorporate different types of optical source and detector. Hence, for different

applications, the model was exposed to a beam from a point source, illumination from the

optical fibre and the Gaussian type beam such as laser source. Incident light from the

point source was used for the validation purposes. Optical fibre source was simulated for

a few preliminary applications in this thesis, however, this can be used for any fibre-optic

system for the non-invasive clinical measurements and monitoring [Phillips et al., 2006;

Hickey and Kyriacou, 2007; Hickey et al., 2010]. In the most common PPG technology,

usually, LEDs or laser diodes are used [Budidha et al., 2018; Moyle, 2002; Silva et al.,

2003; Nitzan et al., 2014]. Therefore, for the main applications in the thesis, Gaussian

beam was used as the incident illumination.

Monte Carlo model developed in this thesis was validated against analytical results

and checked with the standard law of energy conservation. Monolayer models were used

for the validation and characterisation purpose. By cross-checking the model with pre-

validated data, and defining the input and output variables of the model, confidence was

built on the accuracy of the model. Throughout the thesis, the accuracy of each simulation
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was verified against the law of energy conservation, i.e., the input weight of the photon

clusters must have been equal to the sum of their absorbed, reflected and/ or transmitted

weights. Another accuracy check was performed on the basis of the number of simulation

(Q). It is known that the convergence rate of the Monte Carlo method is 1/
√

Q [Lapeyre

et al., 2003]. In the thesis, the minimum number of simulated photon clusters were 108,

and the maximum was 1010. Therefore, the convergence rate was a minimum of 0.0001,

and the maximum was 0.00001. Due to a very large number of iterations, the modelling

results exhibited a high level of accuracy. Monte Carlo method has a well-known limitation

regarding the time-consumption [Prahl, 1988; Wang et al., 1995] which was considered in

this work. A ‘variance reduction’ approach for the modelling was adapted that allowed

a large number of photons to be simulated in a small processing time. Additionally, for

simulating the mean optical path through a wide range of source-detector separation,

implicit detection technique was used. Finally, the computer program was written in a

multi-threaded platform that fastened the simulations considerably.

Modelling a highly heterogeneous structure like biological tissue needed a careful

selection of the anatomical details and the optical properties. In the model, the optical and

anatomical properties of the tissue layers were adapted from published literature, and by

surveying the text-books on human anatomy and histology. The textbooks and existing

literature contain the optical property and anatomical structure of the individual tissue

components measured experimentally by dedicated research groups. Though now-a-days

an increasing number of research groups are working in this core area of bio-photonics,

still the works are numbered [Prasad, 2004; Wang and Tuchin, 2013]. In the thesis,

efforts were made to choose the optical properties and the anatomical details carefully

using the best resources available, and in cases of unavailability of the data, a rational

approximation was made (for example, arterio-venous oxygen saturation difference,

systolic increase in blood volume, bone optical properties etc.). In cases of sex or race based

division of parameters, the average values were considered in the thesis. For example,

melanin concentration in the simulation was considered to be 10% which was an average

of Negroid and Caucasian skin [Jacques and McAuliffe, 1991]) since the aim of this

thesis was to present an unbiased study. Besides, it is well known that the anatomical

structure of tissue layers largely varies from person to person. Various factors of the test
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subject could affect the anatomical properties of the tissue layers of the same region of

interest in the body, for example, age, sex, complexion, fat content; physiological states

during measurement such as skin or body hydration, state of perfusion, the position of the

subject etc. In the thesis, an ideal situation was considered, i.e., simulations were carried

out considering the test subject to be a healthy person at rest. However, the model was

equipped with flexibilities to incorporate other states, such as low perfusion, skin dryness,

pigmented skin etc. The basic tissue geometry was represented by a semi-infinite slab. Of

course in reality tissue is not semi-infinite, however, considering the tissue dimensions

to be much higher than the spatial distribution of photons, the approximation was valid.

The tissue model used in this work, as mentioned previously, followed the ideal scenario.

The assumptions and approximations might be slightly different from the experimental

findings, however, the relative behaviour between the systole and diastole, and between

red and infrared wavelengths will be the same.

The steps of the gradual development of the model have been demonstrated in the

thesis. A homogeneous model of a single absorbing-scattering tissue layer was the first

step that was used for the validation and characterisation purpose. In order to simulate

a ‘perfused’ skin tissue, heterogeneity was added to the dermal layer by introducing

absorbers (i.e., oxy and deoxyhaemoglobin) of different absorption coefficients. For this

basic investigation of light-tissue interaction in a monolayer tissue, the skin was chosen

as this is the most common ROI for the non-invasive optical application. This model was

explored for several investigations in order to retrieve the behaviour of light through a

perfused tissue layer in different settings and environments relevant to PPG, for example,

ranges of source-detector separation, blood volume, blood oxygen saturation etc. The

distribution of scattering for different source-detector separations at red and infrared

wavelengths was shown. The density plot showed the distribution of the interaction

events. According to the MC algorithm, after taking each step size l, the photon reached

a new ‘site of interaction’ where it underwent the scattering and absorption events

simultaneously. Therefore, the interaction sites were basically the position of the scatterer,

and l was the ‘free pathlength’ between two consecutive interaction events. A higher

number of scattering events was shown in red light compared with infrared due to the

higher scattering coefficient of the red light. The dependence of the optical path, depth of
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penetration and detected intensity were rigorously studied as functions of source-detector

separation, blood volume and oxygen saturation. One of the main findings from the study

was the dependence of the optical path on the operating wavelength in PPG. Therefore, the

assumption of wavelength independence of the optical path found in the basic theoretical

description of PPG has been proven to be invalid. The demonstration of the increasing

optical pathlength and penetration depth with the source-detector separation proved that

for deeper tissue monitoring, a larger source-detector separation was required.

The ‘pulsatility’ in the monolayer and the multilayer studies were achieved by the

increment in blood volume in the dermal layer. The small source-detector separations

used in PPG mainly interrogate with micro-circulation in the vascular tissue bed in the

extremities of the body. The peripheral tissue is supplied with blood through arterioles

and capillaries. However, capillaries are not pulsatile, thus, unlikely to contribute in the

pulsatile signal captured in PPG [Kamshilin et al., 2015]. Therefore, the pulsatility exists

in the arterioles. In the tissue model, the arteriole was too thin (∼ µm) to be designed

as a rigid cylinder (simulation with a large cylindrical blood vessel can be found in the

appendix of the thesis). Instead, the volumetric contribution of the blood was considered

in the tissue layer. In other words, the peripheral dermis was considered to be ‘perfused’

with a volume of blood which varied corresponding to the cardiac cycle, giving rise to the

pulses.

In the finger tissue simulation, the optical properties of the cranial bone were incorpo-

rated due to the absence of any available data on the finger bone. Cranial and finger bones

are optically different due to the variation of blood present. However, it has been found

that the bone layer has the minimum impact on the relative absorbance of light in PPG.

The maximum contribution to the absorbance was of dermis that has the modulation ratio

of 4.30, whereas this was only 0.21 in bone. The high absorption of both red and infrared

light in the epidermal layer indicated that melanin has an effect on the recorded PPG

amplitude. However, a low absorption modulation ratio confirmed that skin colour does

not influence the oxygen saturation sensing using a pulse oximeter where the ratios of the

absorbances are evaluated. The correlation between the reflectance and transmittance

mode calibration curves have stated that the pulse oximeter readings should not change

depending on their modalities.
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The dependence of the optical pathlength and penetration depth on the source-detector

separation was noticeable in all simulated cases. Also, the wavelength-dependence of

the pathlength and penetration depth increased with the increasing source-detector

separation. In order to avoid any error caused by the differences in the optical path or

depth penetrated by red and infrared wavelengths, a shorter source-detector separation

for a reflectance mode sensor is advisable. Wavelength-dependence of the optical path

and detected intensities at different source-detector distances in a general reflectance

geometry were reported in earlier literature [Nitzan et al., 2000; Meglinsky and Matcher,

2001], however, no investigation in a finger tissue volume has ever been addressed earlier.

The data presented in the thesis, therefore, may be readily used for the optimisation of

the reflectance finger PPG sensor.

The dependence of the optical path, mean penetrated depth and the mean reflectance

and transmittance on blood volume and blood oxygen saturation is an important aspect

of the thesis. The limitation of pulse oximetry in the conditions of very poor perfusion or

very low oxygen saturation is well-documented [Wilson et al., 2010; Baheti and Laheri,

2014; Preston and Kelly, 2016; DeMeulenaere, 2007; Engel and Kochilas, 2016]. Recent

technological developments and the advanced data-processing tools have enabled pulse

oximetry to maintain consistent accuracy of ±2%, and any inconsistency in the SpO2

reading usually can be avoided. Nevertheless, an in-depth knowledge of the correlation

between the variables is very important to understand any potential sources of errors dur-

ing the measurement, and to rule them out. In absence of any such previous studies, the

results presented in this thesis will play an indispensable role to analyse the performance

of PPG and pulse oximetry in a clinical setting.

The assessment of the Differential Pathlength Factor for PPG has never been at-

tempted before. Recently, there is a huge interest in extending the horizon of the PPG

applications beyond SpO2 measurement, and acquiring adequate knowledge on the

optical path and DPF opens the doors for new applications of PPG, especially in the

assessment of tissue perfusion. Changes in peripheral perfusion can be an early sign of a

global change in the parameter, indicating a serious health condition. Since the oxygen

saturation level of the critical care patient is continuously monitored using a pulse oxime-

ter, the same PPG signal can be used for the assessment of the peripheral tissue perfusion
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without requiring any additional instrumentation. Determination of tissue perfusion

using PPG, however, is not possible without an adequate knowledge of the DPF. The DPF

simulated for the forearm tissue has exhibited unique behaviour through different ranges

of source-detector separations, as well as at different wavelengths. The dynamic behaviour

of the DPFs at short separation distances should be taken into consideration in the use of

an appropriate DPF for the quantification of haemoglobin concentration changes from

PPG signals. The cross-talk and the absolute error in the measured haemoglobin concen-

trations indicated the inefficiency of using an approximated DPF. The approximation that

the NIRS DPF was the same as the PPG DPF caused the maximum cross-talk and error.

This again points towards the significant mismatch between the behaviours of the DPFs

in the PPG and NIRS regions. The studies with the monolayer model have exhibited the

dependence of DPF on the volume and the (total) oxygen saturation of blood in the skin,

especially in the red wavelength. Higher scattering and absorption in the lower optical

wavelengths have been the main contributing factors for the dynamic behaviour of the

red DPF with the input physiological, anatomical and geometrical variables. Therefore, a

careful assessment of the DPF is essential for using the pulse oximeter, operating at red

or lower wavelengths, for the applications such as peripheral perfusion monitoring.

In summary, a rigorous computational model of photoplethysmography has been

developed, evaluated and executed for the reflective and transmissive modalities. A

thorough investigation of the light-tissue interaction variables pertinent to PPG and

pulse oximetry has been performed on a monolayer perfused skin tissue which has been

followed by the investigation with heterogeneous tissue-structure of a finger. For the first

time, an opto-anatomical model of a specific ROI has been explored for investigating the

light-tissue interactions in both reflective and transmissive modalities of pulse oximetry.

The multilayer model of the forearm tissue volume has been explored for the assessment

of the differential pathlength factor of PPG, which has never been addressed before.

Using the simulated DPFs in the PPG signals recorded from the forearm of healthy

volunteers, the absolute concentration-changes in oxyhaemoglobin and deoxyhaemoglobin

have been determined, exploring PPG as a potential tool for the perfusion assessment.

The hypothesis and the results discussed in the thesis are invaluable for the prediction of

any potential error, comprehending the origin of the signal and optimisation of the sensor
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design.

This thesis has opened new pathways for further research in this field and hence some

recommendations for future research are:

• As mentioned already, the models in presented in the thesis approximate the

ideal situation. The main focus of the applications of the model in the thesis has

been to asses the relative functionality of PPG in the operating wavelengths, and

investigating the influence of variations in all parameters were not in the scope of

the study. However, the model can be employed in future to study the effect of the

variations in the individual parameters of the model, for example variation in the

ratio between arterial and venous blood, variation in the distribution of arterial

ad venous oxygen saturation, studying the effect of varying melanin and water

concentration etc.

• In the thesis, the model has primarily focussed on the effect of optical, anatomical

and physiological properties of tissue in PPG. However, the model also has the

flexibility to include the mechanical properties. An instance of the investigation

with the variation in artery radius has been shown in the appendix section. Such

studies can be extended further for investigating the effect of the change in other

mechanical properties such as elasticity and rigidity of the blood vessel on the

light-tissue interaction.

• It has been stated in the thesis that different regions of interest in body exhibit

different anatomy and physiology, which greatly affects the optical interaction

with that region. Also, operating wavelengths play the most significant part to

characterise the optical interactions in the tissue region. Modelling light-tissue

interactions in other regions of interest (e.g., forehead) and at a range of wave-

lengths (i.e., green, mid and far infrared etc.), therefore, can be an important study,

extending from the present model.

• The model in the thesis has been explored for reflectance and transmittance ge-

ometry. In reflectance mode, it has also been explored for various source-detector

separations. An instance of multi-detector PPG model has been mentioned in the
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appendix section of the thesis. The model can be executed for studying the effect of

different location and orientation of the sensor on the tissue and such a study will

be immensely helpful for designing new age wearable PPG sensors.

• PPG DPF has been addressed for the very first time in the thesis. This area is not

well explored. The study can be extended to many directions, for example, to asses

tissue perfusion using PPG from finger or forehead, to experimentally derive the

DPF for a particular region of interest at a certain wavelength etc. Such studies

can be useful for many potential applications in medical technology.

The theory, method, and results presented in the thesis undoubtedly contribute new

knowledge to the ongoing research in the fields of PPG and Pulse Oximetry. Clearly, the

information gained in this research enhances the understanding of the fundamental

aspects of PPG and provides a new perception to all the community who is involved in

the development of transcutaneous sensors based on PPG.
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OTHER APPLICATIONS OF MONTE CARLO MODEL

The present thesis has been focussed on the execution of Monte Carlo model for analysing

the conceptual limitations in PPG and to explore PPG principle for applications beyond

the measurement of arterial oxygen saturation measurement The MC model also is

explored in some other applications in this work, which might not directly or accurately

related to PPG descriptions, however, contribute to the basic understanding of interaction

of light with perfused bed of tissue and different sensor geometries. Here, the optical

properties of muscle and fully oxygenated blood, which are already introduced in previous

chapters, have been used for the simulation.

Differential Pathlength Factor in monolayer muscle, blood

and brain like tissue:

Detail discussion on a multilayer volume of human forearm has been presented in Chapter

9. Apart from that study, the Monte Carlo model has been explored to investigate the

DPF for a single layer of brain, blood and muscle like tissues. In all cases, DPF values

are greater than 1, validating the definition of DPF. The DPF value of a single layer

of tissue might not be adequate for an experimental setup as there are always other

tissue layers which contribute in the light-tissue interaction for a typical non-invasive

diagnosis modality. However, the study on the individual layer might give an insight to
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Figure A.1: Distribution of optical path as a function of source-detector separation through
brain like tissue at 810 nm wavelength. The average DPF is shown as the slope of the
graph.

the contribution of the specific tissue region. Figure A.1 represents the mean optical path

plotted against source-detector separation at a near-infrared wavelength 810 nm. Figure

A.2 represents the mean optical path plotted against the source-detector separation at

red (660 nm) and infrared (940 nm) wavelengths. In both cases, DPF is calculated as the

slope of the optical paths and source-detector separations. A more specific approach of the

finding the DPF is to calculate this for a specific source-detector separation as stated in

Chapter 9, whereas the slope gives average outlook. Nature of DPF in different tissues

show distinct features, which also vary with wavelengths and source-detector separations.

This relates to the Modified Beer-Lambert law described in the theory section of the thesis

(Eq. 3.34).
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Figure A.2: Distribution of optical path as a function of source-detector separation through
blood and muscle like tissues at 660 nm and 940 nm wavelength, as noted. The average
DPF is shown as the slope of the graph.

Heterogeneous model with blood and muscle:

In usual pulse oximeter set-up, signals are collected using a sensor with a very small

source-detector separation with which light can penetrate till the dermal and subdermal

layers (in reflectance mode) and unlikely to reach a large artery site. However, if the

source-detector separation is higher, it is likely to penetrate deeper and interact with the

usual tissue-structure of a cylindrical blood vessel surrounded by muscle tissue. Such

studies can be used for very important applications if modified necessarily. In Figure

A.3, light propagation from the source to detector placed 4 mm apart through a muscle

slab containing a cylinder of blood of radii 2 mm (a) and 4 mm(b) are shown in a 3D

Cartesian geometry (view in xz plane). The projection in yz plane is presented for two

cases in (c) and (d) respectively. The cylinder is considered to be at a depth of 1 mm from
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Figure A.3: Light propagation from the source to detector placed 4 mm apart through a
muscle slab containing a cylinder of blood of radii 2 mm (a) and 4 mm(b) are shown in
a 3D Cartesian geometry (view in xz plane). The projection in yz plane is presented for
two cases in (c) and (d) respectively. The cylinder is considered to be at a depth of 1 mm
from the top surface of muscle. Colourbar shows the distribution of scattering events (I)
between the minimum and maximum values.

the top surface of muscle. The circular shape of the scatter plot in (c) and (d) establish

the cylindrical modelling. Higher scattering is seen in the tissue with higher diameter of

blood vessel.

Multiple detector:

There are studies with multiple detectors in the PPG-based measurement systems. A

monolayer muscle tissue is explored to investigate the relative changes in the penetration

depth and the detected intensity (i.e., reflectance) of the signal in different detectors.

A nominal number of photons 103 are detected in each detector. The total intensity of

light decreases from the source to the detector at further distances. Similar study is also

performed on the monolayer blood tissue. The comparative results of the penetrated depth

and detected reflectance of blood and muscle at different source-detector separations are

shown in Fig. A.5. The similar experimentation is carried out with a muscle tissue slab
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Figure A.4: Propagation of light through blood tissue having detectors at two opposite
sides of the source (S). The detector positions along the positive and negative sides of the
source are indicated by the serial numbers 1,2,3,4 and -1,-2,-3,-4 respectively. The same
number of photons (103) are detected in each detector.

containing a cylindrical blood vessel. The scatter plot and the mean depth of penetration of

the detected photon clusters at various distances are plotted in Figure A.6. Investigation

is performed with blood vessel of radii 1 mm and 3 mm (the plot shown in (a) is for radius

1 mm).

From the above simulations, it is clear that absolute values of penetration depth

increase with increasing source-detector separation. However, in plot, the negative values

of x denotes the detector to be placed in the opposite direction and hence, the depth is

seen to be decreasing. the same explanation goes with mean reflectance, which basically

increases with increasing source detector separations (taken the absolute values). In the

layer of muscle with blood cylinder, the absolute penetration depth is higher in bigger

diameter of the vessel.

All these observations are likely to contribute with potential knowledge on the feasi-

bility of the model to explore the effect of the sensor of optical path and depth, however a

fool-proof study would need further problem-oriented investigations.
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Figure A.5: The mean penetrated depth (a) and the detected reflectance (b) of the photon
clusters received at the detectors placed at different distances in monolayer tissue models
of blood and muscle are shown.
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Figure A.6: The distribution of scatter (a) and the mean penetrated depth (b) of the photon
clusters received at the detectors placed at different distances on the top of the muscle
tissue slab containing a cylindrical blood vessel are shown. The detector distances are
same as the monolayer model.
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COMPUTATIONAL PROGRAM

As stated previously, the code for simulation has been written in MATLAB platform.

The basic code is the same, however, is has been amended every time depending on the

application. Here, as an example, the basic code for a multilayer transmittance pulse

oximetry model is presented. Although this is written in a single thread code, often in

practice the code was run by multi-threading in order to simulate a large number of

photons in small time.
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clc;clear; 

N_phot=10e8; 

lambda=660; 

s=4; 

Sat=0.9; 

mua_bl=7.84*10^7*(lambda^-3.255); 

mua_mel =(6.6*10^10)*(lambda^(-3.33)); 

Sat_A=Sat; 

Sat_V=Sat_A-0.1; 

fibrad2=1; 

entry=0; 

detect=0; 

discard=0; 

ni=1.4;                  %internal refractive index of tissue 

nt=1;                    %external refractive index of air 

rad1=1;                  %Gaussian beam radius 

Rsp=((ni-nt)/(ni+nt))^2; 

k=0;                     %number of position of photon 

j=0;                     %total positions of detected photons 

.............................................................. 

mua_W=0.0036;            %660nm; 

% % mua_W=0.0560;            %880nm; 

% % mua_W=0.2674;            %940nm; 

mua_HHb=1.64;            %660 nm  

mua_Hbo=0.15;            %660 nm   

% % mua_HHb=0.43;          %940 nm  

% % mua_Hbo=0.65;          %940 nm   

% % mua_HHb=0.44;          %880nm 

% % mua_Hbo=0.56;          %880nm 

mua_A=Sat_A*mua_Hbo+(1-Sat_A)*mua_HHb; 

mua_V=Sat_V*mua_Hbo+(1-Sat_V)*mua_HHb; 

mus1_skin=2.562;         %660nm 

% % mus1_skin=1.681;       %880nm 

% % mus1_skin=1.568;       %940nm 

g_skin=0.9; 

mus1_fat=1.24;         %660 nm 

% % mus1_fat=1.09;         %880nm 

% % mus1_fat=1.085;        %940nm 

g_fat=0.8; 

mus1_musc=0.861;         %660nm 

% % mus1_musc=0.635;       %880nm 

% % mus1_musc=0.581;       %940nm 

g_musc=0.9; 

................................................................. 

vW=0.05; 

mua_sc=mua_W*vW+(1-vW)*mua_bl;%stratum croneum 

......................................................................

.... 

vW=0.2; 

vmel=0.1;                   %skin melanin volume fraction 

mua_epi=vmel*mua_mel++mua_W*vW+(1-vmel-vW)*mua_bl; %upper epidermis 

abs. coeff. 
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......................................................................

.... 

vW=0.5; 

v=0.04; 

vA=v/2; 

vV=v/2; 

mua_papder=mua_A*vA+mua_V*vV+mua_W*vW+(1-(vA+vV+vW))*mua_bl;  

%papilary dermis abs. coeff. 

......................................................................

.... 

vW=0.6; 

v=0.3; 

vA=v/2; 

vV=v/2; 

mua_upblder=mua_A*vA+mua_V*vV+mua_W*vW+(1-(vA+vV+vW))*mua_bl;  %upper 

blood net dermis abs. coeff. 

......................................................................

.... 

vW=0.7; 

v=0.04; 

vA=v/2; 

vV=v/2; 

mua_retder=mua_A*vA+mua_V*vV+mua_W*vW+(1-(vA+vV+vW))*mua_bl;  

%reticular dermis abs. coeff. 

......................................................................

.... 

v=0.1; 

vA=v/2; 

vV=v/2; 

mua_dpblder=mua_A*vA+mua_V*vV+mua_W*vW+(1-(vA+vV+vW))*mua_bl;  %deep 

blood net plexus abs. coeff. 

.............................................................. 

v=0.05; 

vA=v/2; 

vV=v/2; 

mua_fat=mua_A*vA+mua_V*vV+mua_W*vW+(1-(vA+vV+vW))*mua_bl;  %subdermis 

abs. coeff. 

.............................................................. 

vW=0.6; 

v=0.35; 

vA=v/2; 

vV=v/2; 

mua_musc=mua_A*vA+mua_V*vV+mua_W*vW+(1-(vA+vV+vW))*mua_bl;  %muscle 

abs. coeff. 

.......finger model: total thicknes 1 cm.................... 

t1=0.02;    

t2=t1+0.25; 

t3=t2+0.1;  

t4=t3+0.08;  

t5=t4+0.2;  

t6=t5+0.3;  

t7=t6+0.5;  
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t8=t7+7.1; %muscle 

t9=t8+0.5; 

t10=t9+0.3; 

t11=t10+0.2; 

t12=t11+0.08; 

t13=t12+0.1;  

t14=t13+0.25; 

t15=t14+0.02; 

% .............arm model: total thicknes 4 cm ............... 

% % t1=0.02;    

% % t2=t1+0.1; 

% % t3=t2+0.2;  

% % t4=t3+0.1;  

% % t5=t4+1.23;  

% % t6=t5+0.12;  

% % t7=t6+3.23;  

% % t8=t7+30;    %muscle 

% % t9=t8+3.23; 

% % t10=t9+0.12; 

% % t11=t10+1.23; 

% % t12=t11+0.1; 

% % t13=t12+0.2;  

% % t14=t13+0.1; 

% % t15=t14+0.02; 

............................................................... 

while detect<N_phot 

alpha=2*pi*rand;                              %cylinidrical co-ord 

angle 

r_source=rad1*sqrt(-log(rand)); 

x_source=r_source*cos(alpha); 

y_source=r_source*sin(alpha); 

w=1-Rsp; 

W1=0; 

W2=0; 

W3=0; 

W4=0; 

W5=0; 

W6=0; 

W7=0; 

W8=0; 

W9=0; 

W10=0; 

W11=0; 

W12=0; 

W13=0; 

W14=0; 

W15=0; 

OP1=0; 

OP2=0; 

OP3=0; 

OP4=0; 

OP5=0; 
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OP6=0; 

OP7=0; 

OP8=0; 

OP9=0; 

OP10=0; 

OP11=0; 

OP12=0; 

OP13=0; 

OP14=0; 

OP15=0; 

x=x_source;                                 %Gaussian distribution 

y=y_source; 

z=0; 

ux=0; 

uy=0; 

uz=1; 

n_ent=1;  

entry=entry+1;                    %total entered photon 

k=k+1; 

X(k)=x;Y(k)=y;Z(k)=z; 

L=0;                              %total pathlength of a single photon 

mu_a=mua_epi; 

g=g_skin; 

mu_s=mus1_skin/(1-g); 

while n_ent==1 

theta=acos(abs(uz)); 

l=-log(rand)/(mu_a+mu_s); 

L=L+l; 

x2=x+(l*ux); 

y2=y+(l*uy); 

z2=z+(l*uz); 

k=k+1; 

if (w<=10^-4)%Roullet 

                if(rand<=1/10) 

                w=10*w; 

                else 

                n_ent=0; 

                discard=discard+1; 

                k=0;  

                clear X Y Z; 

                end 

 %....................Transmittance.............................   

elseif (z2>=t15)%exit below 

    x3=((t15-z)*ux/uz)+x; 

    y3=((t15-z)*ux/uz)+y;       

%     s=sqrt((x3)^2+(y3)^2);         %for MOP 

     if ((x3^2+y3^2)<=fibrad2^2)      

                detect=detect+1; 

                disp(detect) 

                OP(detect)=L; 

                W(detect)=w; 

%                 S(detect)=s;       %for MOP 
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                N_Scat(detect)=k; 

                WA1(detect)=W1; 

                WA2(detect)=W2; 

                WA3(detect)=W3; 

                WA4(detect)=W4; 

                WA5(detect)=W5; 

                WA6(detect)=W6; 

                WA7(detect)=W7; 

                WA8(detect)=W8; 

                WA9(detect)=W9; 

                WA15(detect)=W15; 

                WA14(detect)=W14; 

                WA13(detect)=W13; 

                WA12(detect)=W12; 

                WA11(detect)=W11; 

                WA10(detect)=W10; 

                n_ent=0; 

                w=0; 

                k=k+1; 

                X(k)=x3; Y(k)=y3;Z(k)=t15; 

                X1(j+1:j+k)=X(:); 

                Y1(j+1:j+k)=Y(:); 

                Z1(j+1:j+k)=Z(:); 

                j=j+k; 

                k=0; 

                clear X Y Z; 

     elseif (abs(uz)==1||theta>asin(nt/ni)) %OI/TIR 

        uz=-uz; 

        z2=-z2; 

        X(k)=x2;Y(k)=y2;Z(k)=z2; 

     else 

        theta_t=asin(ni*sin(theta)); 

        a=theta-theta_t; 

        b=theta+theta_t; 

        aa=sin(a)/sin(b); 

        bb=tan(a)/tan(b); 

        r_fres=(aa^2+bb^2)*0.5;      

                  if(rand>r_fres) %photon exits tissue         

                        discard=discard+1; 

                        k=0; 

                        n_ent=0; 

                        w=0; 

                        clear X Y Z; 

                  else %photon reflects back in tissue 

                          uz=-uz; 

                          z2=-z2;%internal reflection  

                          x=x2; 

                          y=y2; 

                          z=z2; 

                          X(k)=x2; 

                          Y(k)=y2; 

                          Z(k)=z2; 
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                  end 

     end 

elseif (z2<0)%exit above 

        if (abs(uz)==1||theta>asin(nt/ni)) %OI/TIR 

        uz=-uz; 

        z2=-z2; 

        X(k)=x2;Y(k)=y2;Z(k)=z2; 

     else 

        theta_t=asin(ni*sin(theta)); 

        a=theta-theta_t; 

        b=theta+theta_t; 

        aa=sin(a)/sin(b); 

        bb=tan(a)/tan(b); 

        r_fres=(aa^2+bb^2)*0.5;      

                  if(rand>r_fres) %photon exits tissue         

                        discard=discard+1; 

                        k=0; 

                        n_ent=0; 

                        w=0; 

                        clear X Y Z; 

                  else %photon reflects back in tissue 

                          uz=-uz; 

                         z2=-z2;%internal reflection  

                          x=x2; 

                            y=y2; 

                            z=z2; 

                          X(k)=x2;Y(k)=y2;Z(k)=z2; 

                  end 

         end 

 

......................................................................

... 

  

elseif((z2>=0)&&(t1>z2))% stratum croneum 

    mu_a=mua_sc; 

    g=g_skin; 

    mu_s=mus1_skin/(1-g); 

   [ux,uy,uz]=scattering_prahl(ux,uy,uz,g); 

    x=x2; 

    y=y2; 

    z=z2; 

    X(k)=x2; 

    Y(k)=y2; 

    Z(k)=z2; 

    dw=w*mu_a/(mu_a+mu_s); 

    W1=W1+dw; 

    w=w-dw; 

    OP1=OP1+l; 

elseif ((z2>=t1)&&(t2>z2))%epidermis 

    mu_a=mua_epi; 

    g=g_skin; 

    mu_s=mus1_skin/(1-g); 
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    [ux,uy,uz]=scattering_prahl(ux,uy,uz,g); 

    x=x2; 

    y=y2; 

    z=z2; 

    X(k)=x2; 

    Y(k)=y2; 

    Z(k)=z2; 

    dw=w*mu_a/(mu_a+mu_s); 

    W2=W2+dw; 

    w=w-dw; 

    OP2=OP2+l; 

elseif ((z2>=t2)&&(t3>z2))%papilary dermis 

    mu_a=mua_papder; 

    g=g_skin; 

    mu_s=mus1_skin/(1-g); 

    [ux,uy,uz]=scattering_prahl(ux,uy,uz,g); 

    x=x2; 

    y=y2; 

    z=z2; 

    X(k)=x2;Y(k)=y2;Z(k)=z2; 

    dw=w*mu_a/(mu_a+mu_s); 

    W3=W3+dw; 

    w=w-dw; 

    OP3=OP3+l; 

elseif ((z2>=t3)&&(t4>z2))%upper blood net dermis 

    mu_a=mua_upblder; 

    g=g_skin; 

    mu_s=mus1_skin/(1-g); 

    [ux,uy,uz]=scattering_prahl(ux,uy,uz,g); 

    x=x2; 

    y=y2; 

    z=z2; 

    X(k)=x2; 

    Y(k)=y2; 

    Z(k)=z2; 

    dw=w*mu_a/(mu_a+mu_s); 

    W4=W4+dw; 

    w=w-dw; 

    OP4=OP4+l; 

elseif ((z2>=t4)&&(t5>z2))%reticular dermis 

    mu_a=mua_retder; 

    g=g_skin; 

    mu_s=mus1_skin/(1-g); 

    [ux,uy,uz]=scattering_prahl(ux,uy,uz,g); 

    x=x2; 

    y=y2; 

    z=z2; 

    X(k)=x2; 

    Y(k)=y2; 

    Z(k)=z2; 

    dw=w*mu_a/(mu_a+mu_s); 

    W5=W5+dw; 
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    w=w-dw; 

    OP5=OP5+l; 

    elseif ((z2>=t5)&&(t6>z2))%deep blood bet dermis 

    mu_a=mua_dpblder; 

    g=g_skin; 

    mu_s=mus1_skin/(1-g); 

    [ux,uy,uz]=scattering_prahl(ux,uy,uz,g); 

    x=x2; 

    y=y2; 

    z=z2; 

    X(k)=x2; 

    Y(k)=y2; 

    Z(k)=z2; 

    dw=w*mu_a/(mu_a+mu_s); 

    W6=W6+dw; 

    w=w-dw; 

    OP6=OP6+l; 

    elseif ((z2>=t6)&&(t7>z2))%fat 

    mu_a=mua_fat; 

    g=g_fat; 

    mu_s=mus1_fat/(1-g); 

    [ux,uy,uz]=scattering_prahl(ux,uy,uz,g); 

    x=x2; 

    y=y2; 

    z=z2; 

    X(k)=x2; 

    Y(k)=y2; 

    Z(k)=z2; 

    dw=w*mu_a/(mu_a+mu_s); 

    W7=W7+dw; 

    w=w-dw; 

    OP7=OP7+l; 

    elseif ((z2>=t7)&&(t8>z2))%muscle 

    mu_a=mua_musc; 

    g=g_musc; 

    mu_s=mus1_musc/(1-g); 

    [ux,uy,uz]=scattering_prahl(ux,uy,uz,g); 

    x=x2; 

    y=y2; 

    z=z2; 

    X(k)=x2; 

    Y(k)=y2; 

    Z(k)=z2; 

    dw=w*mu_a/(mu_a+mu_s); 

    W8=W8+dw; 

    w=w-dw; 

    OP8=OP8+l; 

    elseif ((z2>=t8)&&(t9>z2))%fat 

     mu_a=mua_fat; 

     g=g_fat; 

    mu_s=mus1_fat/(1-g); 

    [ux,uy,uz]=scattering_prahl(ux,uy,uz,g); 
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    X(k)=x2;Y(k)=y2;Z(k)=z2; 

    x=x2; 

    y=y2; 

    z=z2; 

    dw=w*mu_a/(mu_a+mu_s); 

    W9=W9+dw; 

    w=w-dw; 

    OP9=OP9+l; 

    elseif ((z2>=t9)&&(t10>z2))%deep blood net 

    mu_a=mua_dpblder; 

    g=g_skin; 

    mu_s=mus1_skin/(1-g); 

    [ux,uy,uz]=scattering_prahl(ux,uy,uz,g); 

    X(k)=x2;Y(k)=y2;Z(k)=z2; 

    x=x2; 

    y=y2; 

    z=z2; 

    dw=w*mu_a/(mu_a+mu_s); 

    W10=W10+dw; 

    w=w-dw; 

    OP10=OP10+l; 

    elseif ((z2>=t10)&&(t11>z2))%retucular dermis 

     mu_a=mua_retder; 

      g=g_skin; 

    mu_s=mus1_skin/(1-g); 

    [ux,uy,uz]=scattering_prahl(ux,uy,uz,g); 

    X(k)=x2;Y(k)=y2;Z(k)=z2; 

    x=x2; 

    y=y2; 

    z=z2; 

    dw=w*mu_a/(mu_a+mu_s); 

    W11=W11+dw; 

    w=w-dw; 

    OP11=OP11+l; 

    elseif ((z2>=t11)&&(t12>z2))%upper blood net 

     mu_a=mua_upblder; 

      g=g_skin; 

    mu_s=mus1_skin/(1-g); 

    [ux,uy,uz]=scattering_prahl(ux,uy,uz,g); 

    X(k)=x2;Y(k)=y2;Z(k)=z2; 

    x=x2; 

    y=y2; 

    z=z2; 

    dw=w*mu_a/(mu_a+mu_s); 

    W12=W12+dw; 

    w=w-dw; 

    OP12=OP12+l; 

    elseif ((z2>=t12)&&(t13>z2))%papilary dermis 

     mu_a=mua_papder; 

      g=g_skin; 

    mu_s=mus1_skin/(1-g); 

    [ux,uy,uz]=scattering_prahl(ux,uy,uz,g); 
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    X(k)=x2;Y(k)=y2;Z(k)=z2; 

    x=x2; 

    y=y2; 

    z=z2; 

    dw=w*mu_a/(mu_a+mu_s); 

    W13=W13+dw; 

    w=w-dw; 

    OP13=OP13+l; 

    elseif ((z2>=t13)&&(t14>z2))%epidermis 

     mu_a=mua_epi; 

      g=g_skin; 

    mu_s=mus1_skin/(1-g); 

    [ux,uy,uz]=scattering_prahl(ux,uy,uz,g); 

    X(k)=x2;Y(k)=y2;Z(k)=z2; 

    x=x2; 

    y=y2; 

    z=z2; 

    dw=w*mu_a/(mu_a+mu_s); 

    W14=W14+dw; 

    w=w-dw; 

    OP14=OP14+l; 

else 

    mu_a=mua_sc;%strat croneum 

     g=g_skin; 

    mu_s=mus1_skin/(1-g); 

    [ux,uy,uz]=scattering_prahl(ux,uy,uz,g); 

    X(k)=x2;Y(k)=y2;Z(k)=z2; 

    x=x2; 

    y=y2; 

    z=z2; 

    dw=w*mu_a/(mu_a+mu_s); 

    W15=W15+dw; 

    w=w-dw; 

    OP15=OP15+l; 

end 

end 

end 

save(['transdia_',num2str(lambda),'_',num2str(Sat_A),'_',num2str(n),'.

mat']); 

% end 
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