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ARTICLE OPEN

The polygenic nature of telomere length and the anti-ageing
properties of lithium
Fiona Coutts1, Alish B. Palmos1, Rodrigo R. R. Duarte 1,2, Simone de Jong1, Cathryn M. Lewis 1,2, Danai Dima3,4 and
Timothy R. Powell 1

Telomere length is a promising biomarker for age-related disease and a potential anti-ageing drug target. Here, we study the
genetic architecture of telomere length and the repositioning potential of lithium as an anti-ageing medication. LD score regression
applied to the largest telomere length genome-wide association study to-date, revealed SNP-chip heritability estimates of 7.29%,
with polygenic risk scoring capturing 4.4% of the variance in telomere length in an independent cohort (p= 6.17 × 10−5). Gene-
enrichment analysis identified 13 genes associated with telomere length, with the most significant being the leucine rich repeat
gene, LRRC34 (p= 3.69 × 10−18). In the context of lithium, we confirm that chronic use in a sample of 384 bipolar disorder patients is
associated with longer telomeres (p= 0.03). As complementary evidence, we studied three orthologs of telomere length regulators
in a Caenorhabditis elegans model of lithium-induced extended longevity and found all transcripts to be affected post-treatment (p
< 0.05). Lithium may therefore confer its anti-ageing effects by moderating the expression of genes responsible for normal telomere
length regulation. This is supported by our bipolar disorder sample, which shows that polygenic risk scores explain a higher
proportion of the variance in telomere length amongst chronic lifetime lithium users (variance explained= 8.9%, p= 0.01),
compared to non-users (p > 0.05). Consequently, this suggests that lithium may be catalysing the activity of endogenous
mechanisms that promote telomere lengthening, whereby its efficacy eventually becomes limited by each individual’s inherent
telomere maintenance capabilities. Our work indicates a potential use of polygenic risk scoring for the prediction of adult telomere
length and consequently lithium’s anti-ageing efficacy.

Neuropsychopharmacology (2018) 0:1–9; https://doi.org/10.1038/s41386-018-0289-0

INTRODUCTION
‘Aging is not lost youth but a new stage of opportunity and
strength’ [1].
Our population is ageing [2]; with increased longevity and

decreased fertility rates, the median age of populations within
more economically developed countries has risen from 28 in 1950
to 40 in 2010 [3]. Although longer life span has clear benefits,
when it is associated with an increased proportion of the
population suffering from age-related diseases, it can pose an
economic burden [4]. Consequently, there has been an interna-
tional effort to identify factors that can both increase longevity
and delay the onset of morbidity [5].
One predictor of age-related disease, including coronary artery

disease and obesity, as well as all-cause mortality and longevity, is
telomere length [6]. Telomeres are stretches of TTAGGG nucleo-
tide repeats at the ends of chromosomes [7]. They represent
sacrificial DNA elements that protect vital coding DNA from being
lost, as a result of the ‘end replication problem’; which is the loss
of genetic material at the end of chromosomes (i.e. telomeres)
each time a cell divides [8]. When a critical telomere length is
reached, a cell loses the ability to divide [9]. This ultimately means

that as we age, we are less able to replace old or damaged cells,
and this can increase risk for age-related disease. Indeed, a direct
relationship between telomere shortening and disease risk has
been highlighted recently by Mendelian randomisation studies
revealing that robust genetic predictors of telomere length also
predict risk for coronary artery disease [10]. Therefore, telomere
length represents both a biomarker for cellular age, and a
potential anti-ageing drug target.
Psychiatric disorder patients exhibit high rates of comorbid age-

related disease and frequently exhibit shorter telomere length
relative to non-affected controls of a similar age [11]. Conse-
quently, they represent a useful group in which to better
understand the genetic and environmental contributions to
shorter telomere length. Our recent work suggests a familial
transmission of shorter telomere length, whereby even non-
affected relatives of psychiatric disorder patients exhibit shorter
telomeres compared to those with no family history [12]. Based on
twin studies that reveal blood (leukocyte), telomere length is a
highly heritable trait [13], and genome-wide association studies
that reveal numerous loci as being involved in the regulation of its
length [10], shared genetics could underlie this familial
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association. Indeed, we have previously shown that a genetic risk
factor for shorter telomeres also confers risk for childhood-onset
major depressive disorder [14]. However, in the more frequent
cases of adult-onset psychiatric disorders, it appears that
environmental factors (e.g. childhood stress) play a more
important role in explaining shorter telomeres, than common
genetic risk factors [15, 16]. Consequently, intervention strategies
that focus on the environment may be particularly useful in
preventing excessive telomere shortening amongst high-risk
groups for age-related disorders, such as psychiatric disorder
patients or those exposed to environmental trauma, and perhaps
even more broadly for the general population.
In addition to stress, diet and medications can also affect rates

of telomere shortening, suggesting that to an extent, we can
actively moderate how we age [15–18]. This has led to the
realisation that we may be able to pharmacologically reduce
telomere shortening via the creation of anti-ageing (or anti-
telomere shortening) medications. However, one of the pitfalls
faced so far in targeting telomeres, pharmacologically, has been
that excessive telomere length, and activity of the telomere-
lengthening enzyme, telomerase, is associated with an increased
risk of cancer [19]. Therefore, it’s likely that effective anti-ageing
strategies would need to evoke subtle effects to telomeres across
the life course, rather than rapid effects that may simultaneously
increase cancer risk.
On a population scale, perhaps one of the most wide-reaching

and effective ways to implement anti-ageing benefits across the
life course would be by altering diet, and recent research suggests
that even the water we drink may be important. Specifically,
reports indicate that a higher level of lithium, naturally found in
drinking water, is associated with fewer incidences of all-cause
mortality, a reduced number of individuals committing suicide,
increased longevity, and a reduced risk of neurodegenerative
disease [20–23]. The anti-ageing benefits of lithium are not limited
to humans either, with the effects being replicated in the worm C.
elegans, and in the fly Drosophila melanogaster, where it extends
lifespan [23–26].
In addition to being a metal naturally found in drinking water,

lithium also has clinical applications, and is currently a first-line
treatment for bipolar disorder (BD), where it acts as an effective
mood-stabilizer [27]. BD patients are therefore a useful cohort to
study the effects of lithium on anti-ageing mechanisms as these
individuals are often taking relatively high, controlled doses for
long periods of time. Indeed, we have shown in previous research
that current lithium use is associated with longer telomere length
amongst BD patients [12], and others have shown that lithium
treatment duration amongst BD patients positively correlates with
telomere length, specifically amongst chronic lifetime users [28,
29]. Lithium is further of interest, as its use is associated with
longer telomeres, but with a decreased risk of cancer [30]. This
accumulation of findings has sparked interest regarding the
repositioning potential of lithium as an anti-ageing drug, and even
the utility of lithium supplementation in drinking water (similarly
to the use of fluoride for teeth), as a way to keep people healthier
for longer [20, 31].
Due to lithium’s ability to affect a multitude of biological

systems [32], more research is needed to understand its anti-
ageing mechanism of action, and how generic its effects are in
humans. For instance, research in C. elegans has shown a strong
mediation of lithium’s anti-ageing effects by genetic factors [24],
suggesting it may not be effective at preventing telomere
shortening in a one-size-fits-all fashion across different genetic
backgrounds. In humans, we know that variation in telomere
length is moderated by a multitude of factors, such as oxidative
stress and inflammation [33, 34], with perhaps the most pertinent
factor being the activity of the telomerase enzyme, which adds
TTAGGG repeats to telomere ends in dividing cells [35]. At least
some of this inter-individual variation moderating telomere length

is captured at the genetic level, for instance, single nucleotide
polymorphisms (SNPs) within, or upstream of the telomerase
genes represent the strongest predictors of leukocyte telomere
length [10, 14]. In the case of lithium however, it’s currently
unknown whether its telomere-lengthening effects work similarly
for everyone (i.e. in a one-size-fits-all fashion), or whether variation
in genes regulating baseline telomere length maintenance also
contribute to variation in its anti-ageing benefits.
In this report, we determine: (i) the heritability of telomere

length and confirm its genetic relationship to age-related disease
and cancer, (ii) a polygenic risk score (PRS-TL) capable of
predicting telomere length in an adult population, (iii) that
chronic lithium use is associated with longer telomeres in an
independent bipolar disorder sample, (iv) that genetic regulators
of telomere length are affected in a C. elegans model of lithium-
induced extended longevity and (v) that polygenic risk scores for
telomere length explain a substantial proportion of inter-
individual variability in telomere length amongst chronic lithium
users, suggesting that lithium’s anti-ageing efficacy may be
moderated by polygenic factors.

MATERIALS AND METHODS
LD score regression: heritability and genetic correlations
LD score regression via LD Hub (http://ldsc.broadinstitute.org/
ldhub/) was used to estimate the SNP-chip heritability of telomere
length, i.e. the proportion of variance in telomere length explained
by common genetic differences [36]. To achieve this, we obtained
genome-wide summary statistics directly from Codd and collea-
gues who performed the largest GWAS of telomere length to-date,
using data from 37,684 individuals [10]. SNPs were merged to the
recommended SNP list in LD Hub which excludes the major
histocompatibility complex (MHC). In LD hub we further
performed genetic correlations to test whether age-related
phenotypes robustly associated with telomere length at the
molecular level were mirrored at the genetic level. We limited our
phenotypes to: (i) any cancer diagnosis (UK Biobank), (ii) body
mass index (UK Biobank), (iii) coronary artery disease [37], (iv) low
density lipoprotein [38] and high density lipoprotein [38].

Bipolar association case-control study
Within this study we utilise 384 recurrent bipolar disorder patients
recruited as part of the Bipolar Association Case-Control Study
(BACCS) [39]. For full details on recruitment criteria, see S1
Supplementary information. Detailed phenotype data were also
collected during the interview which included information on
current lithium use, lifetime lithium use, duration of lithium
treatment and lithium dose. Based on previous reports showing
that lithium’s telomere-lengthening effects only correlate with
duration of treatment amongst chronic lifetime users, (i.e. after
several years of taking the drug) [28, 29], and because the
treatment duration data was negatively skewed, we split our
lifetime user group by the median treatment duration into two
equally sized (and normally distributed) subgroups consisting of
“short-term lifetime lithium users” ( < 4.5 years, n= 84), and
“chronic lifetime lithium users” (4.5–30 years, n= 84). See Table 1
for sample characteristics. Access to molecular and clinical data
related to BACCS is available upon request via a local access
procedure, in accordance with the ethics agreement.

BACCS DNA extraction and preparation
25mL of whole blood was taken from each participant at the time
of interview and stored in EDTA blood tubes at −20 °C. Genomic
DNA was then extracted using an inhouse protocol, previously
described [40]. All DNA samples had 260/280 ratios of between 1.7
and 1.9, tested using the Nanodrop D1000 (Thermo Fisher
Scientific, Massachusetts, United States), indicating good DNA
purity.
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Telomere protocol
Relative telomere length (RTL) was quantified using a modified
version of the quantitative Polymerase Chain Reaction (qPCR)
protocol described by Cawthon and colleagues [41], as used by
our lab previously [12, 16]. First, the protocol assayed the telomere
variable repeat region (TTAGGG), and the cycle threshold (Ct)
required to reach a predetermined level of fluorescence: this
correlated with the number of telomere repeats present in the
individual samples. Second, and in parallel, a single-copy gene
(albumin) was assayed in the same way, except the Ct now
correlated with the number of copies of the genome in that
individual DNA sample. Finally, a telomere-to-single-copy-gene
ratio was used to determine RTL, where the number of telomere
repeats in each sample was corrected for the total number of
copies of that individual’s genome in the DNA sample being
tested. See S2 for further details on the protocol and S3 and S4 in
Supplementary information for the quality control procedures and
results.

BACCS genetic data
Genotype data was generated using Illumina HumanHap550
BeadChip (Illumina Inc., San Diego, CA, USA). Quality control was
performed including the removal of SNPs with minor allele
frequencies below 1%, and those not in Hardy-Weinberg
equilibrium (p < 1 × 10−5), as described previously [42]. Multi-
dimensional Scaling (MDS) in PLINK [43] was used to construct
three population covariates (PCs), which were used in all analyses
to correct for minor differences related to ancestry.

Individualised polygenic risk scoring for telomere length
PRSice version 1.25 software [44] was used to determine the
optimal p-value threshold (PT) where the polygenic risk for
telomere length from the GWAS summary statistics [10] predicted
telomere length in the BACCS cohort. To achieve this, our RTL data
was initially adjusted for age, sex and BMI by taking the
standardized residuals (z-scores); this phenotype was then
modelled in PRSice with three ancestry PCs as covariates, for p-
value thresholds from p= 0.001 to p= 0.5, increasing in 0.001
increments.

Gene-enrichment analysis
MAGMA was applied to genome-wide summary statistics from the
Codd et al. [10] GWAS, using the online tool FUMA [45]. MAGMA
maps SNPs to genes in order to prioritise genes of functional

relevance to a given trait. It generates a gene-wide statistic (and
weighted p-value) from the GWAS results files, adjusting for gene
size, single nucleotide polymorphism (SNP) density and linkage
disequilibrium effects. We used a 10 kb 5′ and 3′ window around
protein coding genes, as recommended by the authors, where
genes surpassing genome-wide significance (P= 0.05/18879=
2.648 × 10−6) were then investigated in datasets from a C. elegans
model of lithium-induced longevity.

eQTL analysis
We tested the effects of the most significant SNP associated with
telomere length, rs10936599, on gene expression across multiple
tissues using the online interface provided by the Genotype-Tissue
Expression (GTEx) project [46].

Lithium and C. elegans longevity microarray
Previous research in C. elegans assayed genome-wide expression
changes associated with lithium-induced longevity [24]. Specifi-
cally, work by McColl and colleagues, revealed that a 10mM dose
of lithium increased the median lifespan of C. elegans by 46%.
They subsequently assayed the genome-wide expression effects
of a two-day 10 mM lithium treatment using a purpose-built C.
elegans microarray (Genome Sequencing Center, University of
Washington School of Medicine; Platform GPL5367 in GEO) to
better understand the molecular mechanism conferring longevity.
They found overlapping molecular effects of a two-day lithium
treatment in C. elegans with effects observed in human cells
treated in the same conditions. Microarray data is publically
available from the Gene Expression Omnibus (GDS3140). OrthoList
was used to identify C. elegans orthologs of human genes [47].

Statistical analysis
Effects of lithium on telomere length. We tested the effect of
lifetime lithium duration on RTL amongst short-term and chronic
lifetime users separately, using a linear regression where RTL was
the outcome, age, sex, BMI, current lithium use and three PCs were
included as covariates, with lifetime lithium duration (weeks) as
the independent variable. In the full bipolar disorder sample, we
performed sensitivity analyses to test for the effects of (i) number
of episodes (depressed/manic/mixed), (ii) other medications used,
(iii) duration of illness and (iv) lithium dose, on RTL, with all models
including age, sex, BMI and three PCs as covariates.
We additionally used data summary techniques to expand our

current sample size and draw support from previous work on the

Table 1. Demographic data within the bipolar disorder sample

Li-naive BD patients Short-term lifetime Li users Chronic lifetime Li users Full sample

n 83 84 84 384

Age (mean, (SD)) 44.48 (12.18) 44.06 (9.99) 52.14 (10.34) 48.42 (11.57)

Sex, n (% males) 22 (26.50) 30 (35.29) 35 (41.67) 126 (32.81)

BMI (mean, (SD)) 26.20 (5.57) 28.24 (7.06) 28.08 (4.92) 27.42 (5.67)

Age of onset (mean, (SD)) 21.08 (11.58) 20.69 (9.04) 22.31 (10.93) 21.63 (10.57)

Illness duration, years (mean, (SD)) 24.26 (13.66) 22.63 (10.96) 30.26 (11.45) 21.21 (12.29)

Number of depressive episodes (mean, (SD)) 11.60 (20.62) 11.96 (18.74) 14.08 (22.84) 12.22 (19.69)

Number of manic episodes (mean, (SD)) 11.49 (22.70) 10.45 (18.85) 11.56 (19.94) 10.86 (19.30)

Number of mixed episodes (mean, (SD)) 2.69 (12.25) 4.35 (16.03) 3.66 (13.29) 3.12 (12.72)

Current lithium use (n) 0 33 59 170

Ever taken other mood-stabilizers (n) 45 61 47 215

Ever taken antidepressants (n) 63 76 71 303

Ever taken antipsychotics (n) 49 64 63 250

Ever taken anxiolytics (n) 24 38 34 147

Information is based on available self-report data
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effects of chronic lithium use on RTL. We included all primary
human studies where the effects of lithium alone had been
considered in the context of telomere length, by searching for
“lithium”+ “telomere” in PubMed (https://www.ncbi.nlm.nih.gov/
pubmed). We conducted the data summarisation in R (https://
www.r-project.org) using the package “metap” [48] and Stouffer’s
“sumz” method [49], which allows for an estimation of z-scores

and weighted average p-values in the absence of effect sizes.
Weights of p-values from each study were defined as the square
root of the sample size, as recommended by the authors.

Effect of PRS-TL on telomere length amongst lithium users and non-
users. To compare the impact of PRS-TL in lithium-naive BD
patients, short-term lifetime lithium users, and chronic lifetime
lithium users, we performed a linear regression for each group of
patients separately. RTL was selected as the outcome variable,
with age, sex, BMI, current lithium use, lifetime lithium duration
(weeks) and three PCs as covariates, with PRS-TL as the
independent variable.

Effects of lithium on genetic regulators of telomere length in a model
of extended longevity. Following MAGMA analyses, paired sample
t-tests were used to compare whether implicated genes were
affected in C. elegans following lithium treatment.

Multiple testing correction. For hypothesis-driven tests (effects of
lithium on telomere length, genetic correlations on ageing traits)
we considered p < 0.05 to be significant as these were replications
of previous work. For all remaining analyses, we applied the
Bonferroni method of multiple testing correction.

RESULTS
Telomere length is polygenic and associated with risk for age-
related disease and cancer
LD score regression was applied to the largest telomere length
GWAS to-date [10] in order to establish the proportion of variance
in telomere length explained by common genetic differences.
Results revealed a significant polygenic component to telomere
length regulation, whereby there was a SNP heritability estimate
of 7.29% (S.E.= 1.54). Polygenic risk for longer telomere length
was associated with increased risk for cancer and HDL cholesterol,
and decreased risk for coronary artery disease, high BMI and high
levels of LDL cholesterol (all p ≤ 0.02) replicating epidemiological
reports, Fig. 1. Polygenic risk scoring revealed that 3634 SNPs
under the p-value threshold, PT= 0.013 significantly predicted
4.382% of the variance in adjusted RTL (p= 6.174 × 10−5) in an
independent sample of 384 bipolar disorder individuals, see Fig. 1.

Fig. 1 Genetic correlations with telomere length and individualised risk prediction. a Genetic correlations between single nucleotide
polymorphisms predictive of increased telomere length and age-related phenotypes. b Left: Output from PRSice displaying a range of p-value
thresholds (PT) tested, including the optimal PT as shown in the tallest bar at threshold PT= 0.013, which explained ~4.4% of the variance (p=
6.174 × 10−5). Right: A scatterplot showing the positive correlation between polygenic risk scores for telomere length (PRS-TL; adjusted for 3
PCs) and relative telomere length (RTL; adjusted for age, sex and BMI), Pearson (r)= 0.205, p ≤ 0.0001

Fig. 2 Lithium affects telomere length. a Scatterplot showing a
positive association between lithium treatment duration and
relative telomere length (RTL; adjusted for age, sex, BMI, PCs 1-3
and current lithium use) in chronic lifetime lithium users. b Data
summarisation results using Stouffer’s sum of z method. Table
includes previous studies assaying the effect of chronic lithium
duration on RTL, the direction of effect observed (effect), sample
size (n) and p-value (p), as well as a weighted effect combining
results from all studies
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This effect remained significant after correcting for the 500
thresholds tested (adj. p= 0.03).

Lithium use is associated with longer telomere length
Within our UK bipolar disorder sample (BACCS; see Table 1), short-
term lifetime lithium duration did not predict telomere length (F(1,
75)= 0.47, p= 0.829, variance explained= 0.1%) as expected, but
chronic lithium treatment duration did predict longer telomere
length (F(1, 75)= 4.733, p= 0.033, variance explained= 6.3%),
replicating previous findings [28, 29], Fig. 2. The effect of lithium
treatment duration amongst chronic lifetime users was further
validated using data summary methods (Stouffer’s z= 3.120 p=
9.061 × 10−4), Fig. 2. There were no effects of number of episodes,
illness duration, other medications, or current lithium dose in the
full BACC sample (see S5 Supplementary information). Amongst
chronic lifetime lithium users, daily doses ranged from 120–1800
mg, but similarly to the full BACC sample, there were no effects of
dose on RTL.

Lithium targets genetic regulators of telomere length in a model
of extended longevity
Our gene-enrichment analysis, using MAGMA and GWAS summary
statistics from Codd and colleagues [10], revealed 13 genes
significantly implicated in telomere length regulation, Fig. 3. eQTL
analysis using GTex [46] confirmed an effect of the top telomere
SNP rs10936599 on the expression of the most significantly
enriched gene LRRC34, in transformed fibroblasts, adipose tissue,
tibial nerve, heart, arteries, oesophagus and adrenal gland (all p <
3 × 10−5), whereby the risk allele for shorter telomere length (T-
allele) was consistently associated with reduced LRRC34 expres-
sion. There was no effect of rs10936599 on TERC expression levels.
Of the 13 genes identified by our gene-enrichment analysis, three
had orthologs in C. elegans that were also assayed in the McColl
et al. study of lithium-induced extended longevity [24]. All three
genes were differentially expressed upon lithium treatment in the
model, including: Y55F3AM.14 (human ortholog: ZNF257; t(5)=
−3.884, p= 0.012), F25H8.2 (human ortholog: NAF1; t(5)= 4.973, p
= 0.004), and Y54E10BR.2 (human ortholog: ARFRP1; t(5)= 2.597,
p= 0.048), Fig. 3. The effect on Y55F3AM.14 and F25H8.2 remained
significant after correcting for three tests (adj. p < 0.05).

Polygenic risk explains more inter-individual variability in telomere
length amongst lithium users
To understand how PRS-TL behaves in lithium users and non-
users, we tested its effect in lithium-naive BD patients, short-term
lifetime lithium users and chronic lifetime lithium users, separately.
The rationale for this was to understand if lithium works in a one-
size-fits-all manner, or whether variation in PRS-TL explains inter-
individual variation in telomere length amongst lithium users. In
subsamples of just over 80 patients (Table 1), PRS-TL did not
predict a significant amount of variance in RTL amongst BD
patients who were naive to lithium (F(1, 72)= 0.250, p= 0.619,
variance explained= 0.3%), nor in those who were short-term
lifetime users (F(1, 75)= 0.85, p= 0.771, variance explained=
0.1%). In contrast, PRS-TL explained a relatively high proportion of
the variance in RTL amongst chronic lifetime users (F(1, 75)=
6.802, p= 0.011, variance explained= 8.9%), see Fig. 4. The effect
of PRS-TL in chronic lifetime users remained significant following
multiple testing correction (adj. p= 0.033).

DISCUSSION
Telomere length represents a promising biomarker for age-related
disease and a potential anti-ageing drug target. In this study we
examined the genetic basis of telomere length regulation and
explored the repositioning potential of lithium as an anti-ageing
medication. First, our study revealed that telomere length is a
polygenic trait with SNP heritability estimates of 7.29%. Using

polygenic risk scoring we identified a genetic score which
explained 4.4% of the variance in telomere length in an
independent sample, which is an improvement to the previously
reported genetic risk score consisting of only genome-wide
significant SNPs that explained just over 1% [10]. These findings
further support twin research suggesting telomere length is a
highly heritable trait, but our work also suggests that a significant
amount of variation remains missing (up to 74%), which may
indicate that even larger sample sizes and more powerful GWAS
are required, or that rare variants, gene-environment interactions
or epigenetic modifications also add significantly to twin
heritability estimates [13]. Genetic correlations corroborate pre-
vious reports that indicate a higher risk for cancer amongst
individuals with very long telomeres [19]. In terms of age-related
disease phenotypes, we found genetic risk for longer telomeres
was associated with higher levels of high density lipoprotein (the
‘good cholesterol’) and reduced levels of low density lipoprotein
(the ‘bad cholesterol’), alongside a reduced risk for coronary artery
disease and high body mass index. This supports a multitude of
studies that indicate a strong relationship between telomere
length and age-related risk for coronary artery disease [10, 50, 51].
To better understand what genes are functionally important in

regulating telomere length, we performed gene-level enrichment
analysis on GWAS summary data. We found that the top five genes
associated with telomere length were all clustered around the
same genomic location on chromosome 3. These adjacent genes
fall upstream of the telomerase gene TERC, and consequently it’s
possible that a range of SNPs exerting long range cis-regulatory
effects on TERC are inflating signal in this genomic area. To gain a
better grasp on what SNPs in this area affect which genes, we
performed expression quantitative trait loci (eQTL) analysis on the
most significant SNP associated with telomere length (rs10936599).
This analysis did not reveal any effect of rs10936599 on TERC but
did reveal an effect of the SNP on the most significantly enriched
gene, leucine rich repeat containing 34 (LRRC34), across multiple
tissue types, whereby the T-allele (associated with shorter telomere
length) was consistently associated with reduced expression.
Although the exact role of LRRC34 is unclear, it is predicted to
act as a ribonuclease inhibitor [52]. As a key component of
telomerase’s mechanism is the temporary incorporation of a non-
coding RNA template to the lagging strand of DNA at our
chromosome ends, it’s possible that ribonuclease inhibitors help to
preserve the RNA primer pivotal to telomere restoration. Conse-
quently, its plausible that the LLR genes proximal to TERC are
independently important in the regulation of telomere length,
however further functional studies (e.g. CRISPR) will be needed to
gain a definite understanding of how SNPs in these regions exert
their effects. Other genes identified from our analyses included
previously implicated regulators of telomere length (TERT, NAF1,
OBFC1, ZBTB46, ZNF257) and some novel genes (AL158091.1, RP4-
583P15.15), which will require further work to better understand
their function [10].
Next, we confirmed that chronic lifetime lithium use is

associated with longer telomere length in an independent sample
of 384 BD patients, and in an expanded sample [12, 28, 29]. This
supports epidemiological data which has shown that lithium in
our water supply has beneficial effects on health and longevity
and suggests that lithium’s effect on telomere length may be one
mechanism by which it confers its anti-ageing properties [20, 23].
To corroborate this theory, we tested whether lithium affects the
expression of genes responsible for telomere length maintenance
(identified from our gene-enrichment analyses) in a relevant
model system that recapitulates the drug’s anti-ageing effects. We
found that 3 out of the 13 genes identified from the gene-
enrichment analysis had an assayed ortholog in a C. elegansmodel
of lithium-induced extended longevity, where we found that
lithium had an effect on all three genes. This subsequently
supports the notion that genes responsible for normal telomere
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length regulation may play a role in mediating lithium’s anti-
ageing mode of action.
Finally, we used PRS-TL to better understand whether SNPs

involved in telomere maintenance contribute to inter-individual
variation amongst lithium users, or whether lithium’s telomere-
lengthening effects work the same for everyone. Our results
revealed variation in telomere length amongst lithium users, with
a substantial proportion being explained by PRS-TL. In fact, far
greater variance in telomere length was explained by PRS-TL in
chronic lifetime lithium users (8.9%) relative to lithium-naive BD
patients (0.3%) and short-term lifetime users (0.1%). This disparity
suggests that lithium is not simply extending telomere length in a
one-size-fits-all fashion, with residual baseline differences between
individuals remaining, rather that lithium is increasing the
penetrance of genetic differences in telomere length. In light of
the results from the C. elegans model, it further suggests that
lithium may be catalysing the activity of endogenous mechanisms
responsible for telomere lengthening via its effects on gene
transcription, whereby it eventually approaches a plateau and its
efficacy becomes limited by each individual’s inherent telomere
maintenance capabilities, as captured using PRS-TL.
In sum, our findings have several potential implications. Our

polygenic risk scoring result suggests that common genetic

differences can predict over 4% of the variance in adult telomere
length. This supports the possibility that PRS-TL may eventually
represent a useful way of predicting those at risk for age-related
disease (or cancer), though this will need to be verified in
independent studies. It also adds support for further larger
telomere GWAS to be performed in order to observe whether we
can increase the predictive power of our PRS. Our comparative
genomics work revealed that lithium can moderate the expression
of genes governing telomere length, and this might be one
mechanism via which it extends telomeres amongst bipolar
disorder patients. Consequently, lithium may have repositioning
potential for its anti-ageing effects in susceptible individuals. For
instance, studies have shown that childhood maltreatment can
shorten telomeres, which is a possible mechanism via which these
individuals are also at higher risk for age-related disease [16].
Therefore, if telomere length was confirmed to be shorter
amongst a maltreated individual, lithium might be a treatment
option to prevent further premature ageing. Our results also
suggest that lithium would likely be most effective if that
individual also has a genetic predisposition to having longer
telomeres in the first place (captured by PRS-TL). Thus, a
combination of information on an individual’s exposure to
telomere-shortening environmental risk factors (e.g. by a

Fig. 3 Genetic regulators of telomere length and effects of lithium. a Manhattan plot showing results from telomere length gene-enrichment
analyses, indicating which genes are most important in affecting telomere length. The dashed line represents the threshold for genome-wide
significance. b Three orthologs were assessed at the mRNA level in a C. elegans model of lithium-induced extended longevity, *p ≤ 0.05, **p ≤
0.01
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childhood trauma questionnaire), confirmation of shorter telo-
mere length via molecular probing (e.g. qPCR), and quantification
of genetic risk for telomere length (e.g. PRS-TL), could be useful in
identifying individuals who will need, and respond best, to the
anti-ageing benefits of lithium.
Although the work in BD patients reported here represents a

microcosm of how lithium supplementation may act on a
population level, the results are encouraging, and adds support
to epidemiological data which finds associations between higher
lithium levels in water supplies and lower risk for age-related
disease [20, 23]. We now need to study how lithium acts in a far
larger, non-clinical population setting and confirm that the genetic
factors restricting lithium’s benefits identified here, replicate in
other contexts. Furthermore, although, chronicity of treatment
seems to be more important than lithium dose based on our
analyses, we still need to consider how comparable low lithium
levels are to the high clinical levels used to treat BD. Moreover,
when considering doses of lithium for repurposing we should be
mindful that high doses can be toxic, and are related to thyroid
dysfunction, kidney injury, blood dyscrasias, and polydipsia, all of
which can shorten lifespan [53]. Therefore, careful consideration of
upper dose limits and further refinement of the optimal
therapeutic range of lithium for anti-ageing purposes will need
to be considered in the future.
There are a number of other limitations in this report that

should also be acknowledged. First, the study makes a number of
inferences about the effects of lithium based on associations and
the use of genetic predictors, but ultimately prospective long-
itudinal data and functional studies are required to confirm our
findings and to better understand how lithium mediates its
telomere-lengthening effects in the context of different genetic

backgrounds. Second, our BD sample size is relatively small and
our study utilises samples from a severe clinical population on
high doses of lithium, and therefore the results may not be
representative of the wider unaffected population. Third, analysis
using the C. elegans model may not reflect what is observed in
humans. For instance, the 10 mM dose applied is ten times that
which is found in the serum of BD patients and would be
considered toxic for humans [54]; although the authors found that
this dose was not toxic in their model, and it is generally accepted
that smaller organisms require higher doses of drugs due to their
faster metabolisms [55]. Future longitudinal studies assessing the
effects of lithium in the context of telomere length and age-
related disease risk will be best placed to confirm which gene
transcripts are important in mediating lithium’s telomere-
lengthening effects. Fourth, although our polygenic predictor
captures a significant amount of the variance in adult telomere
length, the effect is still small, and may not be clinically useful in
predicting age-related disease risk, or it may only be valuable
when combined with disease-specific environmental risk factors
[56]. Despite these limitations, our results extend previous work on
the genetics of telomere length and confirms the potential utility
of lithium as an anti-ageing compound, though we acknowledge
that lithium’s effects may be limited by the same polygenic factors
responsible for baseline telomere length maintenance.
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