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Abstract

What are the implications on trading activity if investors are not sophisticated

enough to understand and evaluate trades that have a complex payoff structure? Can

frictions generated by this type of financial complexity be so severe that they lead

to a complete market freeze, like that of the recent financial crisis? Starting from

an allocation that is not Pareto optimal, we find that whether complexity impedes

trade depends on how investors perceive risk and uncertainty. For smooth convex

preferences, such as subjective expected utility, complexity cannot halt trade, even in

the extreme case where each investor is so unsophisticated that he can only trade up

to one Arrow-Debreu security, without being able to combine two or more in order

to construct a complex trade. However, for non-smooth preferences, which allow for

kinked indifference curves, such as maxmin expected utility, complexity can completely

shut down trade.
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1 Introduction

An implicit assumption when modeling financial markets is that each investor is so-

phisticated enough to be able to understand and trade any available security, however

complex it might be. In reality, however, cognitive limitations do exist. Investors

may have limited attention and time, be unaware of certain dimensions of the payoff

structure, have difficulty formulating complex plans or lack special training. Moreover,

information acquisition about past performance of some securities may be too costly.

The Economic Affairs Committee (2009) reports that “It is hard for investors to eval-

uate complex financial instruments, because difficult risk modeling is required, and

because they are often unaware of the details of the asset pool which backs financial

securitisations”.

To provide an example, consider the following description of security Jayanne 4,

which was marketed by Credit Agricole in 2007 (Célérier and Vallée (2017)):

This is a growth product linked to a basket composed of the FTSE Euro First

80, the FTSE 100, the SMI and the NIKKEI 225. The Annual Performance

is set at 5% for the first three years. In the following years, if the performance

since the start date of the worst-performing index is positive or null, then

the Annual Performance for that year is registered at 5%, otherwise 0%.

The Basket Performance since the start date is registered every six months.

The Final Basket Performance is calculated as the average of all these six-

monthly readings, capped at a maximum basket performance of 100%. After

8 years, the product offers a guaranteed capital return of 100%, plus the

greater of either the sum of the Annual Performances, or 100% of the Final

Basket performance.

A typical investor probably understands the indices FTSE Euro First 80, FTSE

100, SMI and NIKKEI 225, which are the basic ingredients of the security’s payoff

structure. In other words, he understands a “simple” bet that pays 1 if FTSE 100

is above 6000 tomorrow and 0 otherwise. However, he may fail to understand the

“complex” Jayanne 4, even though it is “just” a combination of these four indices.

Moreover, evaluating bets on these four indices separately is computationally much

simpler than evaluating bets on all possible combinations of the four indices.

Another example of a complex security is the Collaterized Debt Obligation (CDO),

which pools together cash-flow generating assets (mortgages, bonds and loans) and

repackages them into discrete tranches. Because each tranche has a different risk

profile and usually incorporates hundreds of thousands of underlying assets, it is a
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complicated task to work out its payoff structure, even though it is easy to understand

the payoff structure of each separate underlying asset.

A result of these cognitive limitations is that although investors may be able to

trade “simple” securities, they may fail to consider all of their possible combinations

when formulating their portfolio. Polkovnichenko (2005) reports data from the Sur-

vey of Consumer Finances, showing that many households invest significant fractions

of their wealth simultaneously in well-diversified mutual funds and in un-diversified

portfolios of individual stocks. Nieuwerburgh and Veldkamp (2010) derive optimal

under-diversification in a framework with costly information acquisition. Carlin et al.

(2013) show experimentally that complexity makes subjects less inclined to trade.

Is it possible that the effect of these limitations is so large that opportunities for

trade cease to exist completely? We study this question in a complete markets envi-

ronment with general convex preferences, where all Arrow-Debreu (A-D) securities are

available (paying 1 if some state occurs and 0 otherwise).

The complexity of a trade is measured by the number of different values it has across

the state space. A trade that provides a different payoff at every state is generated by

a combination of all A-D securities, hence its complexity is |S|, the number of states.

A trade whose payoff differs only with respect to whether a state has occurred or not

is generated by the respective A-D security, hence its complexity is 2. Cognitively

constrained investors cannot formulate trades that are complex, even if their welfare

would increase as a result.

Our notion of complexity effectively allows investors to formulate only “coarse”

trades, which are measurable with respect to a coarse partition of the state space.

Investors who have maximum perceived complexity of the asset structure can only

construct coarse trades that are measurable with respect to a two-element partition,

consisting of a state and its complement.

Holding preferences and the initial allocation fixed, if there are gains from trade

in an environment without any cognitive restrictions (i.e. the allocation is not Pareto

efficient), will there always be trade when all investors have maximum perceived com-

plexity of the asset structure? We analyze this question by characterizing the existence

of trading opportunities in terms of the investors’ subjective beliefs, in Theorem 2. To

obtain the characterization we restrict attention to preferences and initial allocations

that satisfy a no-arbitrage principle, so that it is not possible for some investors to

make a sure profit. In Proposition 1, we show that no-arbitrage is characterized in

terms of the investors’ subjective beliefs.1

1The notion of subjective beliefs applies to all convex preferences, not just subjective expected utility,
and is defined in Rigotti et al. (2008).
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Whether there is trade in an environment with cognitively constrained investors

depends on their attitudes towards risk and uncertainty. In particular, we find that if

they have smooth preferences at the initial allocation, which do not allow for kinked

indifference curves (e.g. subjective expected utility, smooth ambiguity, multiplier and

mean-variance preferences), trading will not stop even if investors have maximum per-

ceived complexity of the asset structure. This is a robust result, because it implies

that trade will not stop also if the perceived complexity is less severe, so that investors

are able to trade more than one simple security at once. However, we also find that

if all investors have maximum perceived complexity of the asset structure, trade can

completely freeze if preferences are non-smooth, so that the indifference curve of at

least one investor has a kink at his initial allocation. We provide such an example in

Section 2 with maxmin expected utility (MEU) and a full insurance allocation.

This dichotomy of preference models provides behavioral implications. Suppose

that there is trading in an environment where we control the perceived complexity of

the asset structure. If we observe that trading stops as perceived complexity increases,

it must be that some of the investors’ preferences are non-smooth.

The model can also provide an explanation of why trading froze in some markets

during the recent financial crisis. Suppose that financial crises generate a lot of un-

certainty (Caballero and Simsek (2013), Brunnermeier and Sannikov (2014)) and that

investors have non-smooth preferences. If we know that during the crisis the investors’

priors about fundamentals do not change significantly but we nevertheless observe a

market freeze, this can be interpreted as the investors perceiving the asset structure of

this market to be complex.

To provide an example, Acharya et al. (2009) describe how a series of events that

was triggered by an unexpected decrease of the US house prices in the first quarter of

2006 led to the freezing of the market for asset-backed commercial paper in 2007, right

after BNP Paribas announced that it was suspending redemptions from its structured

investment vehicles, which were trading these types of securities. We can interpret

the once in a lifetime decline of US house prices as an event that created uncertainty

about fundamentals. However, non-smooth preferences were not sufficient for shutting

down trade. This happened one year later, exactly when the suspension of redemptions

informed everyone that asset-backed commercial paper was no longer easy to price and

value. That this second event, which did not convey any information about funda-

mentals, triggered an immediate suspension of trade, could be explained by investors

realizing that these securities have a complex payoff structure and therefore cannot

simultaneously trade any subset of them.

We conclude by discussing some aspects of our definition of complexity. First, the
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investors’ maximum perceived complexity of the asset structure is very different (but

less restrictive) from a standard incomplete markets structure with one available A-D

security. The former allows investors to buy or sell any A-D security but not combine

two or more, whereas the latter allows them to trade only the unique security that is

available. Second, employing a complete market structure is not restrictive. In Section

4, we discuss how we can generalize to an incomplete market structure, where there

exists a partition of the state space and a security pays 1 if an event of that partition

occurs and 0 otherwise.

Gul et al. (2017) study investors with cognitive limitations that have coarse (final)

consumption plans, instead of coarse trades. For example, maximum perceived com-

plexity in their model means that the investor chooses among all final consumption

plans that are measurable with respect to a two-element partition of the state space.

However, to finance these consumption plans he is allowed to trade any combination

of the A-D securities, thus generating a complex payoff structure, according to our

terminology. In contrast, in our model an investor having maximum perceived com-

plexity of the asset structure can only execute a trade that is measurable with respect

to a two-element partition, so that if his initial endowment is different across all states,

then in general so is his final consumption plan. Finally, the focus of Gul et al. (2017)

is different from ours, as they show that allocations are riskier and prices are more

extreme when compared to the no perceived complexity case, whereas we examine

whether trade would occur.2

Finally, our approach is not without limitations. We say that a trade is complex

if it reallocates wealth across many states. This is certainly plausible if all the A-D

securities are available (or more generally securities that take only two values, like

betting on whether an index will go up or down), because to construct such a complex

trade an investor needs to combine several securities. It is also plausible if we model

investors who think about their trading strategy by conditioning on a few events, for

example betting on Trump winning the elections, and then delegate to an expert the

construction and execution of the trade. However, it is not plausible if all investors

have to execute their own trades and the available securities pay differently across all

states. Then, constructing a trade that pays 1 if a state occurs and 0 otherwise might

require combining several of these securities. Such a trade would be complex, rather

than simple.

2See Section 5.3 in Gul et al. (2017) for a detailed comparison of the two approaches.
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1.1 Relation to literature

Our paper is related to Billot et al. (2000, 2002), who characterize trading, from a full

insurance allocation, in terms of disjoint sets of priors in a complete markets setting

with a full insurance allocation, using the MEU model of Gilboa and Schmeidler (1989)

and the Choquet expected utility (CEU) model of Schmeidler (1989). Rigotti et al.

(2008) generalize these results for all convex preferences, encompassing many models

with ambiguity averse preferences. Additionally, they characterize trading from any

initial allocation. Ghirardato and Siniscalchi (2018) analyze the case of non-convex

preferences.

In the MEU model with two investors and a full insurance allocation, Kajii and Ui

(2006) show that there exists an agreeable bet on event E if and only if the maximum

of the probability of E for one investor is smaller than the minimum of that for the

other investor. In the case where each investor’s prior is the core of a convex capacity,

they show that an agreeable bet on some event exists if and only if there is no common

prior, hence it is equivalent to the existence of an agreeable trade. Dominiak et al.

(2012) extend this result for the CEU model with not necessarily convex capacities.

An agreeable bet on E is replicated in our model by an incomplete markets setting

with one security that pays 1 if E occurs and 0 otherwise. As we discuss in Section 4,

we can generalize our approach to an incomplete markets setting, by having a partition

of the state space and each available security paying 1 if an event E of the partition

occurs and 0 otherwise. Theorem 2 improves on the results of Kajii and Ui (2006)

and Dominiak et al. (2012) by providing a characterization of no-trade for any finite

number of investors with general convex preferences and any initial allocation, many

available securities but maximum perceived complexity of the asset structure. More

importantly, our characterization applies irrespective of whether an agreeable trade

(absence of perceived complexity) is equivalent to an agreeable bet (maximum perceived

complexity), which is crucial in separating between models with smooth and non-

smooth preferences. However, we impose a no-arbitrage condition, whereas Kajii and

Ui (2006) and Dominiak et al. (2012) do not.

Our definition of complexity relates to how investors perceive the asset structure.

Alternatively, Caballero and Simsek (2013) use ambiguity and the notion of complexity

about the structure of cross exposures of banks to explain market freezes.

Rigotti and Shannon (2005) characterize Pareto optima and equilibria in the incom-

plete preferences model of Knightian uncertainty of Bewley (1986). This model is used

also by Easley and O’Hara (2010) to explain no-trade. Rigotti and Shannon (2012)

show that generic determinacy is a robust feature of general equilibrium models with

6



ambiguity averse preferences, because kinks are relatively rare, whereas robust inde-

terminacies arise naturally in the model of Bewley (1986), where kinks are ubiquitous.

Although we prove our results only for complete convex preferences, it is straightfor-

ward to extend them in the incomplete preferences model of Bewley (1986).3 In this

model, the indifference curve at any endowment has a kink, hence maximum com-

plexity would generically shut down trade, as opposed to some models with ambiguity

aversion, where indifference curves are smooth at non full insurance endowments.

Our main difference from these papers is that we use complexity in order to explain

no-trade in an environment where there are actually gains from trade. This difference

is important, because we suggest that if complexity was lifted then there would be gains

from trade, whereas the aforementioned papers suggest that (in the case of no-trade)

uncertainty has destroyed all gains from trade. Moreover, our mechanism can help

explain the BNP Paribas incident, by suggesting that the market froze not because

of the initial event that created uncertainty (and hence ambiguity or incompleteness)

about house prices, but due to the investors’ realization that the payoff structure was

too difficult to understand.

Rigotti and Shannon (2005) provide conditions under which endogenous incomplete

markets can arise. Roughly, if investors have different but precise probabilities about

some states but similar but imprecise probabilities about the remaining states, then

they trade only A-D securities contingent on the former set, so it is as if the latter

securities are missing. Our focus is different, because we ask whether trade would

still occur in the case of maximum perceived complexity, which is not the same as an

incomplete markets structure with one available security. Since investors have different

and precise probabilities about at least one state, maximum perceived complexity does

not shut down trade in any such setting with endogenous incomplete markets.

Lang (2017) defines first-order and second-order ambiguity aversion and character-

izes them in term of whether the indifference curve at the endowment point has a kink

or it is smooth. He also provides several economic examples where this dichotomy

matters. Using his terminology, the present paper shows that second-order ambiguity

aversion implies that maximum perceived complexity does not shut down trade. Mihm

(2016) proposes a model of reference-dependent MEU preferences where the indiffer-

ence curve has a kink at the endowment, so that using our results maximum perceived

complexity can shut down trade.

Our paper is related to the growing literature on complex securities (Amromin et al.

(2011), Henderson and Pearson (2011), Ghent et al. (2017), Griffin et al. (2014), Hens

3See Section 4 for details.

7



and Rieger (2014), Sato (2014)). Célérier and Vallée (2017) study more than 50,000

securities and show that complexity has increased over time. Simsek (2013) shows

that complexity increases opportunities for speculation in a model with heterogeneous

beliefs. He uses smooth (mean-variance) preferences for which, according to the present

paper, complexity does not shut down trade.

Our notion of complexity specifies that the investor has a coarse understanding of

his available trading strategies. Alternatively, several strands of the literature study

the coarse understanding of the state space, such as in decision theory (Dekel et al.

(2001), Epstein et al. (2007), Ahn and Ergin (2010)), unawareness (Fagin and Halpern

(1988), Heifetz et al. (2006), Galanis (2013)) and inattention (Sims (2003), Woodford

(2012), Gabaix (2014)).

The paper is organized as follows. In the next section we provide an example

which illustrates our approach. Section 3 introduces the model and characterizes the

occurrence of trade in the case where all investors have maximum perceived complexity

of the asset structure. Section 4 concludes.

2 Illustration

We illustrate our approach using an example. Let S = {s1, s2, s3} be the state space,

describing the uncertainty about tomorrow. Consider a standard complete markets

setting with three A-D securities, each paying 1 if a particular state s ∈ S occurs

and 0 otherwise. The economy consists of two investors, i and j, who have the same

endowment e = (5, 5, 5), paying 5 at every state. We call this a full insurance allocation.

Their preferences are represented by maxmin expected utility (MEU) with ui(x) = x,

x ∈ R+. In particular, i’s utility from trade f i ∈ R3, where e+ f i ≥ 0, is

V i(e+ f i) = min
q∈Ci

∑
s∈S

ui(e(s) + f i(s))q(s),

where Ci ⊆ ∆S is a compact and convex set of beliefs.

Suppose that Ci is the convex hull of probabilities p1 = (0.2, 0.6, 0.2), p2 = (0.2, 0.4, 0.4)

and p3 = (0.3, 0.5, 0.2), whereas Cj is the convex hull of probabilities q1 = (0.4, 0.4, 0.2)

and q2 = (0.3, 0.4, 0.3).

These sets are shown in Figure 1. The triangle represents the probability simplex,

so that each point represents a probability on {s1, s2, s3}. A dashed line, which is

parallel to a side of the triangle, contains all probabilities that assign the same weight

on the state depicted opposite to that side. Set Ci is the triangle formed by p1, p2 and
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Figure 1: Trade occurs only in the absence of complexity

p3, whereas Cj is the line formed by q1 and q2.

Because Ci and Cj are disjoint, there are trades that will make both strictly better

off than consuming their endowment, which gives utility 5. For example, consider

f i = (−3.2, 2.5,−0.5) and f j = (3.2,−2.5, 0.5), which is a trade because f i + f j = 0.

It is an agreeable trade because both investors strictly prefer it to their endowment,

as V i(e+ f i) = 5.16 and V j(e+ f j) = 5.11. Billot et al. (2000) show that in the MEU

model with a full insurance allocation, there is a trade (i.e. the initial allocation is not

Pareto optimal) if and only if the sets of beliefs are disjoint.

According to our terminology, {f i, f j} is a complex trade, because it provides a

different payoff at every state, hence its construction requires a combination of all

three A-D securities.

Suppose now that each investor is cognitively constrained, so that he can buy or

sell at most one A-D security and cannot combine two or more to construct a complex

trade. In other words, he can only formulate a coarse trade, which is measurable to

a two-element partition of S, consisting of a state and its complement. Then, trade

between the two investors translates to i betting on state s occurring, hence buying

the A-D security, and j betting on s not occurring, hence selling the same security.

Consider an A-D security on state s1, with price c < 1. If investor i sells it, he bets

that s1 will not occur and the trade he gets is f i = (c− 1, c, c), whereas if j buys it he

gets f j = (1− c,−c,−c).
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Let pi(s) = max
p∈Ci

p(s) and pi(s) = min
p∈Ci

p(s) be i’s maximum and minimum belief on

state s. If both investors agree on this simple trade {f i, f j}, then investor imust strictly

prefer e+ f i over e, and similarly for j. In particular, V i(e+ f i) = 5 + pi(s1)(c− 1) +

(1−pi(s1))c > V i(e) = 5 and V j(e+f j) = 5+pj(s1)(1−c)−(1−pj(s1))c > V j(e) = 5.

These inequalities imply pj(s1) > c > pi(s1). In other words, i agrees to sell if all of

his beliefs place a small weight on s1 happening, relative to j’s beliefs. Similarly, i

buys the A-D security on s1 that j sells if pj(s1) < c < pi(s1). Put more compactly, if

the two investors agree to bet on s1 then [pi(s1), p
i(s1)] ∩ [pj(s1), p

j(s1)] = ∅ and the

converse is also true.

In this example the two investors do not agree to bet on s1 because [pi(s1), p
i(s1)]∩

[pj(s1), p
j(s1)] 6= ∅, and the same is true for s2 and s3. Can we generalize this result,

so that we find sets of beliefs, C
i

and C
j
, such that they are disjoint if and only if the

two investors agree to bet on some state or, equivalently, to trade a particular A-D

security?

Let C
i

be the set of probability measures p such that pi(s) ≤ p(s) ≤ pi(s) for all

states s, and similarly for C
j
. In Figure 1, C

j
= Cj is still the convex hull of q1 and

q2. However, C
i

is bigger than Ci, as it is the convex hull of p1, p2, p3 and q2. It is

constructed by including all probabilities that are within the respective dashed lines.

It is straightforward that if [pi(s), pi(s)]∩ [pj(s), pj(s)] = ∅ for some s (so that there

is betting on that state), then C
i

and C
j

are disjoint. But the converse is not true. A

counterexample in Section 3.5 shows that even if [pi(s), pi(s)]∩ [pj(s), pj(s)] 6= ∅ for all

states, so that there is never any betting, C
i

and C
j

may still be disjoint. However, it

turns out that these cases violate the following no-arbitrage condition: it is not possible

for any investor to successfully offer to others a series of bets that others will accept

and it will give him a positive payoff at all states. Sets C
i

and C
j

have q2 as a common

element, which is consistent with no betting on any state.

We have shown that starting from an allocation where there are gains from trade and

as the investors’ perceived complexity of the asset structure increases, it is as if their sets

of beliefs expand and they are no longer disjoint, leading to a result of no-trade. The

example might seem restrictive because, with only three states, there is either maximum

perceived complexity (K = 2) or no perceived complexity (K = |S|). The following

modification shows that it is easy to construct an example where there is no-trade

with maximum perceived complexity, however there are trading opportunities with

intermediate perceived complexity (2 < K < |S|). Suppose there are four states and

preferences are as before, whereas each investor’s endowment is (5, 5, 5, 5). Let Ci be

the convex hull of probabilities p1 = (0.2, 0.6, 0.1, 0.1), p2 = (0.2, 0.4, 0.2, 0.2) and p3 =

10



(0.3, 0.5, 0.1, 0.1), whereas Cj is the convex hull of probabilities q1 = (0.4, 0.4, 0.1, 0.1)

and q2 = (0.3, 0.4, 0.15, 0.15). Compared to the initial example, the probability of

s3 is now equally divided between s3 and s4. Similar arguments show that there is

no-trade under maximum perceived complexity, because i is not willing to bet with

j at any state. However, there are trading opportunities with K = 3. For example,

trade f i = (−3.2, 2.5,−0.5,−0.5), f j = (3.2,−2.5, 0.5, 0.5) is strictly preferable because

V i(e+ f i) = 5.16 and V j(e+ f j) = 5.11.

We also assume MEU with linear u, two investors and a full insurance allocation.

Our main result, Theorem 2, shows that the arguments can be substantially generalized

to accommodate any allocation and any finite number of investors with preferences that

are complete, transitive, strongly monotonic and convex.

Instead of starting from a set Ci of beliefs which are specific to the MEU model,

we follow Rigotti et al. (2008) and consider the set of subjective beliefs πi(ei), which

are the prices of A-D securities, normalized to sum to 1, such that i would prefer not

trading his endowment ei.4 Mathematically, subjective beliefs are the normals of the

supporting hyperplanes of the indifference curve at the endowment point. If preferences

are smooth at the endowment then πi(ei) is a singleton, but if there is a kink then it

is a general convex and compact set. In the standard case of no perceived financial

complexity, Rigotti et al. (2008) show that an allocation is Pareto optimal if and only

if there is a common subjective belief.

In the case where investors have maximum perceived complexity of the asset struc-

ture, we establish that they agree to bet on a state if and only if the intervals defined

by their maximum and minimum subjective beliefs on that state are disjoint. For

this result, convexity of preferences is crucial. We then define πi(ei) in the same way

as C
i

and say that there is an S-common belief if the intersection for all investors

is nonempty. Our main result, Theorem 2, specifies that there there is trade in an

environment with maximum perceived complexity if and only if there is no S-common

belief. To achieve this characterization, we assume a no-arbitrage condition, only con-

sidering initial allocations where it is not possible for some investors to obtain a sure

profit by successfully offering a bet to all other investors. Proposition 1 characterizes

this no-arbitrage condition in terms of the investors’ subjective beliefs.

It is straightforward that trading between investors with maximum perceived com-

plexity of the asset structure implies trading in the absence of perceived complexity.

However, the converse is not true, as shown in Figure 1, which means that as com-

plexity increases (or investors become less sophisticated), trade may eventually stop

4In the MEU model with a full insurance allocation, Ci = πi(ei).
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completely. Nevertheless, trade in one environment is equivalent to trade in the other

environment if each investor’s set of subjective beliefs consists of a single probability

measure, which is the case of smooth (differentiable) indifference curves at the endow-

ment point. This observation allows us to obtain a dichotomy of models with convex

preferences (including most models with ambiguity aversion), in terms of whether the

investors’ perceived complexity of the asset structure impedes trade.

3 Model

3.1 Set up

Consider a set I of investors with typical element i and a single consumption good.

Uncertainty is represented by a finite set of payoff relevant states S, with typical

element s. The set of consequences is R+, interpreted as monetary payoffs. Investor

i has binary preference relation %i on the set of acts F = RS+, which satisfies the

following standard axioms.

Axiom 1. (Preference). %i is complete and transitive.

Axiom 2. (Continuity). For all f ∈ F , the sets {g ∈ F : g %i f} and {g ∈ F : f %i g}
are closed.

Axiom 3. (Convexity). For all f ∈ F , the set {g ∈ F|g %i f} is convex.

Axiom 4. (Strong Monotonicity). For all f 6= g, if f ≥ g, then f �i g.

An economy is a tuple {%i, ei}i∈I , where |I| ≥ |S| + 1 and {ei}i∈I ∈ RSI++ is the

interior initial allocation. An economy is large if each investor i has at least |S| copies.

We assume a complete market with a collection {ds}s∈S of A-D securities, where

ds has price ps and pays 1 if state s occurs and 0 otherwise. A portfolio {as}s∈S at

prices {ps}s∈S generates net trade f ∈ RS such that f =
∑
s∈S

asds − 1
∑
s∈S

asps, where

as denotes the units of security ds which are bought if as > 0 or sold if as < 0 and 1

pays 1 at every state. Investor i weakly prefers this portfolio to his initial endowment

if ei + f %i ei.

3.2 Subjective beliefs

Based on Yaari (1969), Rigotti et al. (2008) define investor i’s subjective beliefs at an

act f to be the normals (normalized to be probabilities) of all supporting hyperplanes
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at f ,

πi(f) = {p ∈ ∆S : Epg ≥ Epf for all g %i f},

where Epf =
∑
s∈S

p(s)f(s) is the expectation of f given probability measure p. For

convex preferences, πi(f) is nonempty, convex and compact.

Rigotti et al. (2008) establish the following two properties for strictly positive acts f

and convex preferences.5 First, Epf ≥ Epg for some p ∈ πi(f) implies f %i g. Second,

Epg > Epf for all p ∈ πi(f) implies εg + (1− ε)f �i f for sufficiently small ε > 0.

3.3 Common beliefs

We say that there is a common belief at initial allocation {ei}i∈I if
⋂
i∈I
πi(ei) 6= ∅.

For each s ∈ S, let pi(s) = min
p∈πi(ei)

p(s) and pi(s) = max
p∈πi(ei)

p(s) be i’s minimum and

maximum subjective belief about s, respectively. Let

πi(ei) = {q ∈ ∆S : pi(s) ≤ q(s) ≤ pi(s) for all s ∈ S}

be the set of probability measures that are within i’s minimum and maximum subjective

beliefs at ei, for each s ∈ S.6 We next define a weaker notion of common beliefs.

Definition 1. There is an S-common belief at {ei}i∈I if
⋂
i∈I
πi(ei) 6= ∅.

Because πi(ei) ⊆ πi(ei), if there is a common belief then there is a S-common belief

but the converse is not true, as shown in Figure 1. However, if πi(ei) is a singleton for

each i, then the two notions are equivalent.7 In Section 3.7, we show that there is trade

in the presence of maximum perceived complexity if and only if there is no S-common

belief.

3.4 Trades and bets

We say that f ∈ RS is a bet on state s ∈ S if there exist a, b ∈ R, ab < 0, such that

f(s′) = a if s′ = s and f(s′) = b otherwise. A bet on s can be constructed by buying or

short selling some units of an A-D security ds that pays 1 if s occurs and 0 otherwise.

A bet on s where a > 0 > b can be generated by buying, at price − b
a−b , a− b units of

5An act f is strictly positive if f(s) > 0 for all s ∈ S.
6Note that πi(ei) is a closed and convex polytope, as it is bounded and the intersection of half spaces.
7The converse is not true, so that if the set of common beliefs is equal to the set of S-common beliefs, it

is not the case that each πi(ei) is a singleton.
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ds. If state s does not occur, then the payoff is (a − b) b
a−b = b < 0. If s occurs, the

payoff is (a− b) b
a−b + a− b = a > 0.

Similarly, a bet on s where b > 0 > a can be generated by selling, at price b
b−a ,

b− a units of ds. If state s does not occur, then the payoff is (b− a) b
b−a = b > 0. If s

occurs, the payoff is (b− a) b
b−a − (b− a) = a < 0.

Tuple {f i}i∈I ∈ RSI is a trade if
∑
i∈I
f i = 0 and ei + f i ≥ 0 for all i ∈ I. It is a bet

if, additionally, each f i is a bet on some s. Trade {f i}i∈I is agreeable if ei + f i �i ei

for all i ∈ I. A trade is an agreeable bet if it is an agreeable trade and a bet.

3.5 No-arbitrage

Gains from trade exist at an allocation if it is not Pareto optimal. However, in an en-

vironment with uncertainty and no common prior, the notion of Pareto improvement

is not as compelling as in an environment with certainty.8 In what follows, we only

consider Pareto improvements from initial allocations that satisfy a no-arbitrage con-

dition, so that it is not possible for some investors to make a sure profit by offering a

trade or a bet that others are willing to take. We then show in Proposition 1 that this

condition imposes a restriction on the investors’ subjective beliefs at this allocation.

Definition 2. Tuple {f i}i∈I ∈ RSI is an arbitrage trade at endowment e if it is an

agreeable trade and there exist partitions {A,B} of I and {Si}i∈B of S such that:

• for all i ∈ A, f i(s) = ki > 0 for all s ∈ S,

• for all i ∈ B, f i =
∑
s∈Si

hs, where hs is a bet on s,

• for all i ∈ I and all s ∈ S, ei %i ei − hs.

It is an arbitrage bet at e if, additionally, each Si is a singleton.

In an arbitrage trade there are two types of investors. Each i ∈ A is an arbitrageur,

receiving a positive and fixed payoff ki at each state, thus making a sure profit. Each

i ∈ B is a bettor, willing to bet on all states s ∈ Si. That is, he prefers ei +
∑
s∈Si

hs over

ei. If Si is a singleton, then he only bets on one state s and receives ei +hs. Note that

two bettors never bet on the same state, but collectively they all bet on the whole state

space. Because the securities are in zero net supply, the sure profit of the arbitrageurs

(the sum of all ki’s) is equal to −
∑
s∈S

hs, the opposite side of all the bets made by the

8See Gilboa et al. (2014) and Brunnermeier et al. (2014) for a discussion of this issue in the subjective
expected utility environment.
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bettors. The third condition specifies that no investor is willing to take the opposite

side of an individual bet hs. That is, he prefers his endowment ei over ei − hs.9

An arbitrageur i ∈ A who receives ki may still have maximum perceived complexity

of the asset structure, because his trade is constant across all states. However, if all

investors have maximum perceived complexity, then they may not be able to formulate

arbitrage trades, because these may require that a bettor trades more than one A-D

security. In that case, they will still be able to formulate arbitrage bets, where each

bettor i ∈ B bets only on one state and Si is a singleton.

Definition 3. There is no arbitrage at e if there are no arbitrage trades at e, or there

are no arbitrage bets at e and the economy is large.

It is important to emphasise that no-arbitrage is a joint restriction on preferences

and endowments, not on prices of assets. We require this condition in Theorem 2,

which characterizes trading in the case where all investors have maximum perceived

complexity of the asset structure. When the economy is large, so there are |S| copies of

each investor i, we only need to assume that there are no arbitrage bets at e. As we show

below, no-arbitrage is characterized in terms of subjective beliefs. More importantly,

it excludes cases where there is no bet on any state, yet there is no S-common belief.

Fix preferences and the initial endowment e. As we argued in the example of Section

2 and Theorem 2 below generalizes, there is an agreeable bet on state s between i and

j if and only if [pi(s), pi(s)]
⋂

[pj(s), pj(s)] = ∅, implying that either pi(s) > pj(s) or

pj(s) > pi(s). In other words, the A-D prices about s that would sustain zero net

demand are very different for i and j. More generally, define

[q(s), q(s)] ≡
⋂
i∈I

[pi(s), pi(s)]

to be the conjunction of all the constraints about state s that an S-common belief must

satisfy. Then, [q(s), q(s)] = ∅ is equivalent to the existence of a bet on s between two

investors.

If [q(s), q(s)] = ∅ for some state s, then it is straightforward that there is no S-

common belief. However, the converse is not true. It is possible that [q(s), q(s)] 6= ∅
for all s ∈ S, so that there is no agreeable bet on any state, yet there is no S-common

belief. However, in that case there are arbitrage opportunities.

To show this, consider the following example with four states and five investors.

Investors i = 1, 2 have identical preferences and endowments. Their set of subjective

beliefs πi(ei) is the convex hull of the following three probabilities,

9If he were, he might be tempted to enter into a bidding war and offer a bet with better odds.
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(0.2315, 0.0385, 0.2773, 0.4527),

(0.2306, 0.1668, 0.3948, 0.2078),

(0.1549, 0.0163, 0.4365, 0.3923).

Investors i = 3, 4, 5 have identical preferences and endowments. Their set of sub-

jective beliefs πi(ei) is the convex hull of probabilities

(0.0303, 0.5476, 0.3179, 0.1042),

(0.4765, 0.1215, 0.1492, 0.2528),

(0.3107, 0.2340, 0.3140, 0.1413).

We then have that [q(s1), q(s1)] = [0.1549, 0.2315], [q(s2), q(s2)] = [0.1215, 0.1668],

[q(s3), q(s3)] = [0.2773, 0.3179] and [q(s4), q(s4)] = [0.2078, 0.2528]. There is no S-

common belief because any p that satisfies the previous four constraints has at most∑
s∈S

p(s) ≤
∑
s∈S

q(s) = 0.969 < 1.

However, this example is problematic because it allows for arbitrage. Fix
∑
s∈S

q(s) <

1 and consider, for each state s, a bet fas for investor i with endowment ei and q(s) =

pi(s), that pays as − 1 if s occurs and as otherwise, where as is bigger but arbitrarily

close to pi(s), so that
∑
s∈S

as < 1. This bet can be generated by short selling an A-D

security ds at price as.

Because the expectation Ep(fas + ei) = as − p(s) + Epei > Epei for all p ∈ πi(ei),
convexity of preferences implies that for small enough k > 0, investor i strictly prefers

the convex combination k(fas + ei) + (1− k)ei = kfas + ei to ei.

Investor 5 (the arbitrageur) can offer bet kfas1 to investor 1, kfas2 to investor 2,

kfas3 to investor 3 and kfas4 to investor 4, such that
∑
s∈S

as < 1. Essentially, investor

5 is offering to buy k units of A-D security ds at price as, for each state s. These

bets are going to be accepted, because they make each i = 1, 2, 3, 4 strictly better off.

Moreover, no other investor is willing to take the opposite side of each bet, −kfas .
However, investor 5’s payoff at any state s is −k

∑
s′ 6=s

as′ − k(as − 1) = −k(
∑
s∈S

as − 1) =

k(1−
∑
s∈S

as) > 0. Hence, all conditions of Definition 2 are satisfied.

The following Proposition generalizes this result.

Proposition 1. Suppose that for each s ∈ S, [q(s), q(s)] ≡
⋂
i∈I

[pi(s), pi(s)] 6= ∅. Then,

no-arbitrage at e implies
∑
s∈S

q(s) ≤ 1 ≤
∑
s∈S

q(s). Conversely,
∑
s∈S

q(s) ≤ 1 ≤
∑
s∈S

q(s)

implies that there are no arbitrage bets at e.

Proof. Suppose that for each s ∈ S, [q(s), q(s)] =
⋂
i∈I

[pi(s), pi(s)] 6= ∅ and
∑
s∈S

q(s) < 1.

Choose as > q(s) such that
∑
s∈S

as < 1. We will construct an arbitrage trade {f i}i∈I ,
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or an arbitrage bet in the case that the economy is large. Note that for each s ∈ S,

q(s) = pi(s) for some i ∈ I and q(s) ≤ pj(s) for all j ∈ I.

Consider bet fs,a that pays a − 1 at s and a otherwise. For all a such that a >

pi(s) = q(s), we have that Ep(fs,a + ei) = a − p(s) + Epei > Epei for all p ∈ πi(ei).
From the second property of πi, there exists small enough k ∈ (0, 1) such that k(fs,a +

ei) + (1 − k)ei = kfs,a + ei �i ei. Therefore, investor i would strictly prefer to get

bet kfs,a which pays ka− k at s and ka otherwise. Moreover, this is also true for any

0 < k0 < k. Note that investor i is a bettor and belongs to set B of Definition 2.

The third condition of an arbitrage trade is also satisfied because [q(s), q(s)] 6= ∅
and a > pi(s) = q(s) imply a > pi(s) for all i ∈ I. This means that Ep(−fs,a + ei) =

−a+ pi(s) +Epei < Epei for some p ∈ πi(ei), hence the first property of the subjective

beliefs implies that ei %i ei − fs,a. From convexity, we also have ei %i ei − kfs,a.
By repeating the same argument for each s ∈ S, we can create a tuple {ksfs,as}s∈S

of bets. If the economy is not large, there is the possibility that for the same investor

i ∈ B we have pi(s) = q(s), pi(s′) = q(s′) and this can be true for more than two

states. Then, the same arguments show that investor i would strictly prefer to get

ksfs,as + ks′fs′,as′ . However, in this case i receives an f i that provides different payoffs

in s, s′ and S \ {s, s′}, hence it is an arbitrage trade and not an arbitrage bet. If the

economy is large, then there are |S| investors with the same preferences as i, hence we

can assign to each copy a bet on a different state.

By setting k = min
s∈S

ks, the new tuple is {kfas}s∈S , where for each i with q(s) = pi(s)

we have f i = kfas and kfas + ei �i ei. Because there are at least |S|+ 1 investors, we

can assign one investor i∗ to take the opposite side of {kfas}s∈S , which yields
∑
s∈S
−kfas

and pays −k
∑
s′ 6=s

as′ − k(as− 1) = k(1−
∑
s∈S

as) > 0 at all states. In other words, i∗ ∈ A

is an arbitrageur. For any j who has not been offered kfas for some s ∈ S, we let

f j(s) = kj > 0 for all s ∈ S, where kj is arbitrarily small. From Axiom 4, each j would

strictly prefer to accept f j and this is affordable because
∑
s∈S
− kfas is strictly positive

at all states, so i∗ would get a slightly lower payoff at each state and each such j ∈ A
is an arbitrageur as well. Hence, we have created an arbitrage trade, or an arbitrage

bet in the case of a large economy. We can create a similar arbitrage opportunity if∑
i∈I
q(s) > 1, with bets that pay k − kas at s and −kas otherwise, where q(s) > as, for

small enough k > 0.

Conversely, suppose
∑
s∈S

q(s) ≤ 1 ≤
∑
s∈S

q(s) but there is an arbitrage bet {f i}i∈I .

By definition we have
∑
i∈B

f i < 0 and f i + ei �i ei for all i ∈ B, where f i is of the form

f i(si) = ai and f i(s) = bi for s 6= si, ai 6= bi. From the first property of πi(ei) and
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Axiom 4, we have that Ep(ei + f i) > Epei for all p ∈ πi(ei), all i ∈ I.

We next show that Epf i > 0 for all p ∈ πi(ei) and all i ∈ I. For all i ∈ A this

is obvious, as they receive a fixed positive payoff at all states. Fix i ∈ B and let

si = s. Note that pi(s)ai + pi(S \ s)bi > 0 and pi(s)ai + pi(S \ s)bi > 0, because

1− pi(s) = pi(S \ s) and 1− pi(s) = pi(S \ s), where pi(E) = min
p∈πi(ei)

p(E) and pi(E) =

max
p∈πi(ei)

p(E), for any event E ⊆ S. Take p ∈ πi(ei). If p(s) = p(s) or p(s) = p(s) then

we are done. Suppose p(s) < p(s) < p(s) and let q1(s) = p(s), q2(s) = p(s), where

q1, q2 ∈ πi(ei). Let λ ∈ (0, 1) such that λq1(s) + (1−λ)q2(s) = p(s), which implies that

λq1(S \ s) + (1−λ)q2(S \ s) = p(S \ s). We also have that q1(s)a
i + q1(S \ s)bi > 0 and

q2(s)a
i + q2(S \ s)bi > 0. Multiplying with λ, 1−λ, and adding the two inequalities we

have that Epf i = p(s)ai + p(S \ s)bi > 0.

Because
∑
s∈S

q(s) ≤ 1 ≤
∑
s∈S

q(s), there exists a ∈ [0, 1] such that a
∑
s∈S

q(s) + (1 −

a)
∑
s∈S

q(s) = 1. For each s ∈ S, let p(s) = aq(s)+(1−a)q(s). We then have
∑
s∈S

p(s) = 1,

so that p is a probability measure such that p(s) ∈ [q(s), q(s)] for all s ∈ S, hence

p ∈
⋂
i∈I
πi(ei) 6= ∅. Using this p and by adding Epf i > 0 over all i ∈ B we have∑

i∈B
Epf i = Ep

∑
i∈B

f i < 0, a contradiction.

3.6 Absence of complexity

Consider first the standard environment of no perceived complexity, where each investor

can understand and trade any combination of the A-D securities. In other words, his

trade can be measurable with respect to any partition of S, even the finest one. We

say that there is trade in the absence of perceived complexity if there is an agreeable

trade {f i}i∈I ∈ RSI , so that {ei}i∈I is not Pareto optimal. Recall that an agreeable

trade is such that
∑
i∈I
f i = 0 and ei + f i �i ei for all i ∈ I.10 Proposition 7 in Rigotti

et al. (2008) shows that interior allocation {ei}i∈I is not Pareto optimal if and only

there is no common subjective belief, so that
⋂
i∈I
πi(ei) = ∅.11

Theorem 1. There is trade in the absence of complexity if and only if there is no

common subjective belief.

10Note that because of Axiom 4, {ei}i∈I is not Pareto optimal (
∑
i∈I
f i = 0, f i + ei %i ei for all i ∈ I and

f j + ej �j ej for some j ∈ I) if and only if
∑
i∈I
f i = 0 and ei + f i �i ei for all i ∈ I.

11Theorem 3 in Rigotti and Shannon (2005) proves the same result in the incomplete preferences model
of Bewley (1986).
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3.7 Maximum perceived complexity

Consider now a setting where preferences and the allocation {ei}i∈I are still the same,

however each investor is so unsophisticated or cognitively constraint that he can buy

or sell at most one A-D security, instead of any linear combination, as in the previous

section. This means that his available trades are coarse, as they need to be measurable

with respect to a two-element partition {s, S \ s} of the state space.

The main result of the paper characterizes the existence of trading opportunities in

the case where investors have maximum perceived complexity of the asset structure,

under a no-arbitrage condition. We say that there is trade in the presence of maximum

perceived complexity if there is an agreeable bet.

Theorem 2. Under no-arbitrage at e, there is trade in the presence of maximum

perceived complexity if and only if there is no S-common belief.

Proof. Suppose that
⋂
i∈I
πi(ei) = ∅. We first show that

⋂
i∈I

[pi(s), pi(s)] = ∅ for some

s ∈ S. Suppose not, so that for each s ∈ S, [q(s), q(s)] ≡
⋂
i∈I

[pi(s), pi(s)] 6= ∅. No-

arbitrage and Proposition 1 imply that
∑
s∈S

q(s) ≤ 1 ≤
∑
s∈S

q(s). Let a ∈ [0, 1] such that

a
∑
s∈S

q(s) + (1− a)
∑
s∈S

q(s) = 1. For each s ∈ S, let p(s) = aq(s) + (1− a)q(s). We then

have
∑
s∈S

p(s) = 1, so that p is a probability measure such that p(s) ∈ [q(s), q(s)] for all

s ∈ S, contradicting that
⋂
i∈I
πi(ei) = ∅.

We therefore have that, for some i, j ∈ I and s∗ ∈ S, [pi(s∗), pi(s∗)]
⋂

[pj(s∗), pj(s∗)] =

∅. Suppose without loss of generality that pi(s∗) > pj(s∗). Let c be such that

pi(s∗) > c > pj(s∗). Define bet f on s∗ such that f(s∗) = 1 − c and f(s) = −c
for s 6= s∗. We then have that Epf = p(s∗)(1− c)− (1− p(s∗))c > 0 for all p ∈ πi(ei)
and Ep(−f) = p(s∗)(−1 + c) + (1− p(s∗))c > 0 for all p ∈ πj(ej).

Define bet {fk}k∈I such that f i(s∗) = f(s∗) − ε and f i(s) = f(s) for s 6= s∗, for

sufficiently small ε > 0 such that the above inequality still holds. For each k 6= i, j, let

fk(s∗) = ε
|I\{i,j}| and fk(s) = 0 for s 6= s∗. Let f j = −f .

By Axiom 4, for all k ∈ I, each p ∈ πk(ek) has full support on S. Hence, for small

enough ε > 0 we have, for all k ∈ I, Epfk > 0 for all p ∈ πk(ek) and Ep(fk + ek) >

Epek. From the second property of πk(ek), there exists small enough λk > 0 such that

λk(ek + fk) + (1 − λk)ek = λkfk + ek �k ek. By taking λ = min
k∈I

λk, we have that

ek + λfk �k ek for all k ∈ I. Because
∑
k∈I

λfk = 0, {λfk}k∈I is an agreeable bet.

Conversely, suppose there is an agreeable bet {f i}i∈I . This means that
∑
i∈I
f i = 0

and each f i is of the form f i(si) = ai and f i(s) = bi for s 6= si, where ai 6= bi.
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Moreover, f i + ei �i ei for all i ∈ I. From the first property of πi(ei) and Axiom 4, we

have that Ep(ei + f i) > Epei for all p ∈ πi(ei), all i ∈ I. In the proof of Proposition 1,

we show that the same inequality Epf i > 0 holds for all p ∈ πi(ei), all i ∈ I. Suppose

there is an S-common belief p. Then, by adding Epf i > 0 over all investors we have

0 <
∑
i∈I

Epf i = Ep
∑
i∈I
f i = 0, a contradiction.

4 Concluding remarks

We characterize the existence of trading opportunities in two environments which are

the extreme opposites in terms of the investors’ perceived complexity of the asset

structure. The first is the standard setting of no perceived complexity, where each

investor is sophisticated enough to be able to understand and trade any combination

of the available securities. In the second, each investor has cognitive limitations so that

even though he can understand each A-D security separately, he cannot combine two

or more and construct a complex trade. In other words, he can only formulate a coarse

trade which is measurable with respect to a two-element partition of the state space,

consisting of a state and its complement.

Our main question is, can this type of complexity explain market freezes? The

answer depends on the investors’ attitudes towards risk and uncertainty. We first show

that for smooth preferences, even if all investors have maximum perceived complexity

of the asset structure, not all trading opportunities are destroyed, meaning that if there

is an agreeable trade (no perceived complexity), there is an agreeable bet (maximum

perceived complexity). More importantly, trading opportunities are not destroyed even

if we were to provide a more detailed but (necessarily) weaker definition of complexity

(e.g. generating complexity endogenously through cognitive costs or computational

complexity), as long as each investor can trade at least one security. In other words, our

result for these preferences that complexity does not impede trade is robust, because it

is independent of the particular details of how a complex security is defined. Examples

of smooth preferences are subjective expected utility, the smooth variational preferences

of Maccheroni et al. (2006) (including, as special cases, the mean-variance preferences

of Markowitz (1952) and Tobin (1958) and the multiplier preferences of Hansen and

Sargent (2001)), the smooth ambiguity of Klibanoff et al. (2005) and the second-order

expected utility of Ergin and Gul (2009).

If preferences are non-smooth, we find that maximum perceived complexity can im-

pede trade. These are preferences for which there are multiple sets of A-D prices that
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support zero net demand at the initial allocation, because the indifference curve has a

kink at the endowment point. Examples are the CEU with convex capacity of Schmei-

dler (1989), the MEU of Gilboa and Schmeidler (1989), the non-smooth variational

preferences of Maccheroni et al. (2006), the confidence preferences of Chateauneuf and

Faro (2009) and the uncertainty averse preferences of Cerreia-Vioglio et al. (2011). For

instance, in the MEU model with a full insurance allocation, each investor’s subjective

beliefs coincide with his (non unique) priors and his indifference curve has a kink at

his endowment. As shown in Figure 1, in that case maximum perceived complexity of

the asset structure completely shuts down trade.

Our results make heavy use of the following property of convex preferences. If

the expectation of security gi = f i + ei, according to all of i’s subjective beliefs at

his endowment ei, is higher than the expectation of ei, then there exists a convex

combination of gi and ei that investor i strictly prefers to ei. This property is also true

in the incomplete preferences model of Bewley (1986), which means that our results

apply there as well. The distinctive property of this model is that indifference curves

have a kink at each endowment, whereas in some well known models with convex and

complete preferences, such as MEU, kinks appear only at a full insurance endowment.

Our results then predict that maximum perceived complexity would shut down trade

at all allocations in the Bewley (1986) model but only at full insurance allocations in

the MEU model.

Finally, our results can be generalized to an incomplete markets setting, by having

a partition P of S. Given event E ∈ P, there exists a security that pays 1 if E occurs

and 0 otherwise. A constrained Pareto optimal allocation (i.e. no-trade in the absence

of complexity) is then characterized by the existence of a P-common belief, meaning

that all investors agree on all events in P according to one of their subjective beliefs.

Similarly, no-trade in the presence of maximum perceived complexity is characterized

by a P-common belief, so that there exists a probability measure which is between the

maximum and minimum probability assigned to each event P, by all investors.
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