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Abstract
The containment problem for quantitative automata is the natural quantitative generalisation
of the classical language inclusion problem for Boolean automata. We study it for probabilistic
automata, where it is known to be undecidable in general. We restrict our study to the class
of probabilistic automata with bounded ambiguity. There, we show decidability (subject to
Schanuel’s conjecture) when one of the automata is assumed to be unambiguous while the other
one is allowed to be finitely ambiguous. Furthermore, we show that this is close to the most
general decidable fragment of this problem by proving that it is already undecidable if one of the
automata is allowed to be linearly ambiguous.
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1 Introduction

Probabilistic automata (PA) are a quantitative extension of classical Boolean automata that
were first introduced by Rabin [20]. Non-deterministic choices are replaced by probabilities:
each transition carries a rational number which gives its probability to be chosen amongst
all the other transitions going out of the same state and labelled by the same letter. Then,
instead of simply accepting or rejecting a word, such an automaton measures the probability
of it being accepted.

PA can be seen as (blind) partially observable Markov decision processes [19]. The
latter have numerous applications in the field of artificial intelligence [22, 11]. Further
applications for PA include, amongst others, verification of probabilistic systems [23, 14, 5],
reasoning about inexact hardware [18], quantum complexity theory [25], uncertainty in
runtime modelling [9], as well as text and speech processing [17]. PA are very expressive, as
witnessed by the mentioned applications, most natural verification-related decision problems
for them are consequently undecidable. However, equivalence and minimisation do admit
efficient algorithms [13].

Due to the aforementioned negative results, many sub-classes of probabilistic automata
have been studied. These include hierarchical [7] and leaktight [2] automata; and more
recently, bounded-ambiguity automata [8] (see [6] for a survey).

In this paper, we continue the study of the class of PA with bounded ambiguity. We focus
on the containment problem: given two automata A and B, determine whether for all words
w, the probability of it being accepted by A is at most the probability of it being accepted by B.
The problem is known to be undecidable even for the subclass of automata with polynomial
ambiguity, more specifically, already for automata with quadratic ambiguity [8].

Contributions. In this paper, we refine the undecidability result by extending it to the class
of linearly ambiguous automata.

I Theorem 1. The containment problem is undecidable for the class of linearly ambiguous
probabilistic automata.

The proof we provide gives in fact two stronger results. Firstly, the containment problem
for linearly ambiguous PA is already undecidable if one of the two input automata is
unambiguous. Secondly, and perhaps more importantly, the better-known emptiness problem
(given a probabilistic automaton, does there exist a word accepted with probability at least 1/2?)
is also undecidable for the class of linearly ambiguous PA. This strictly refines the previous
best known result [8].

This negative result motivates us to turn our attention to the class of finitely ambiguous
PA. For this class, we prove that the containment problem is decidable, provided that one of
the two input automata is unambiguous (and conditional on Schanuel’s conjecture).

I Theorem 2. If Schanuel’s conjecture holds then the containment problem is decidable for
the class of finitely ambiguous probabilistic automata, provided that at least one of the input
automata is unambiguous.

The intermediate problem, i.e., when both input PA are finitely ambiguous, remains open.
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Organisation of the paper. In Section 2, we give the formal definition of probabilistic
automata, the notion of ambiguity, and the problems under consideration. We also recall
classical results that will be useful in the paper. In Section 3, we explain how to translate
the containment problem into a problem about the existence of integral exponents for certain
exponential inequalities. Using this formalism, we prove that the containment problem for A
and B, as stated above, is decidable if A is finitely ambiguous and B is unambiguous. In
Section 4, we tackle the more challenging direction and prove that the containment problem
is also decidable if A is unambiguous and B is finitely ambiguous. Finally, in Section 5, we
prove that the containment problem is undecidable provided that one of the automata is
linearly ambiguous.

2 Preliminaries

In this section, we define probabilistic automata and recall some classical results.

Notation. We use boldface lower-case letters, e.g., a, b, . . . , to denote vectors and upper-
case letters, e.g., M,N, . . . , for matrices. For a vector a, we write ai for its i-th component,
and a> for its transpose.

2.1 Probabilistic automata and ambiguity
For a finite set S, we say that a function f : S → Q≥0 is a distribution over S if

∑
s∈S f(s) ≤

1. We write D(S) for the set of all distributions over S. We also say that a vector
d = (d1, d2, . . . , dn) ∈ Qn≥0 of non-negative rationals is a distribution if

∑n
i=1 di ≤ 1.

A probabilistic automaton (PA) A is a tuple (Σ, Q, δ, ι, F ), where:

Σ is the finite alphabet,
Q is the finite set of states,
δ : Q× Σ→ D(Q) is the (probabilistic) transition function,
ι ∈ D(Q) is the initial distribution, and
F ⊆ Q is the set of final states.

We write δ(q, a, p) instead of δ(q, a)(p) for the probability of moving from q to p reading a.
Consider the word w = a1 . . . an ∈ Σ∗. A run ρ of A over w = a1 . . . an is a sequence of
transitions (q0, a1, q1), (q1, a2, q2), . . . , (qn−1, an, qn) where δ(qi−1, ai, qi) > 0 for all 1 ≤ i ≤ n.
It is an accepting run if ι(q0) > 0 and qn ∈ F . The probability of the run ρ is PrA(ρ) def=
ι(q0) ·

∏n
i=1 δ(qi−1, ai, qi).

The automaton A realizes a function [[A]] mapping words over the alphabet Σ to values
in [0, 1]. Formally, for all w ∈ Σ∗, we set: [[A]](w) def=

∑
ρ∈AccA(w) PrA(ρ) where AccA(w) is

the set of all accepting runs of A over w.

Ambiguity. The notion of ambiguity depends only on the structure of the underlying
automaton (i.e., whether a probability is null or not, but not on its actual value). An
automaton A is said to be unambiguous (resp. k-ambiguous) if for all words w, there is at
most one accepting run (resp. k accepting runs) over w in A. If an automaton is k-ambiguous
for some k, then it is said to be finitely ambiguous. If there exists a polynomial P , such that
for every word w, the number of accepting runs of A on w is bounded by P (|w|) (where |w|
is the length of w), then A is said to be polynomially ambiguous, and linearly ambiguous
whenever the degree of P is at most 1.

ICALP 2018
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1 a : 1
2

b : 1

a, b : 1

q⊥

a : 1
2

b : 1a : 1
2

a, b : 1a, b : 1 1

Figure 1 Two PA over the alphabet Σ = {a, b} are depicted. On the left hand side, automaton A
induces the function anbΣ∗ 7→ 1

2n and a∗ 7→ 0. On the right hand side, the automaton A induces the
function anbΣ∗ 7→ 1− 1

2n and a∗ 7→ 1. Observe that A is unambiguous and A is linearly ambiguous.

It is well-known that if an automaton is not finitely ambiguous then it is at least linearly
ambiguous (see, for example, the criterion in [24, Section 3]). The same paper shows that if
an automaton is finitely ambiguous then it is k-ambiguous for k bounded exponentially in
the number of states of that automaton.

We give two examples of PA and discuss their ambiguity in Figure 1. As usual, they are
depicted as graphs. The initial distribution is denoted by ingoing arrows associated with
their probability (when there is no such arrow, the initial probability is 0) and the final states
are denoted by outgoing arrows.

2.2 Decision problems
In this work, we are interested in comparing the functions computed by PA. We write
[[A]] ≤ [[B]] if “A is contained in B”, that is if [[A]](w) ≤ [[B]](w) for all w ∈ Σ∗; and we
write [[A]] < 1

2 if [[A]](w) < 1
2 for all w ∈ Σ∗. We are interested in the following decision

problems for PA.

Containment problem: Given probabilistic automata A and B, does [[A]] ≤ [[B]] hold?
Emptiness problem: Given a probabilistic automaton A, does [[A]] < 1

2 hold?

We will argue that the containment and emptiness problems are both undecidable when
considered for the class of linearly ambiguous automata (Section 5). The emptiness problem
is known to be decidable for the class of finitely ambiguous automata [8]. We tackle here the
more difficult containment problem (Sections 3 and 4).

2.3 Classical results
Weighted-sum automaton. For PA A1,A2, . . . ,An over the same alphabet, and for a
discrete distribution d = (d1, d2, . . . , dn), the weighted sum (of A1,A2, . . . ,An with weights d)
is defined to be the disjoint union of the n automata with the initial distribution ι(q) def= di·ιi(q)
if q is a state of Ai, where ιi is the initial distribution of Ai. Note that if B is the
weighted sum of A1,A2, . . . ,An with weights d then it is also a probabilistic automaton and
[[B]] =

∑n
i=1 di · [[Ai]].

Complement automaton. For a PA A, we define its complement automaton A in the
following way. First, define the PA A′ by modifying A as follows:

add a new sink state q⊥;
obtain the transition function δ′ from δ by adding transitions:

δ′(q⊥, a, q⊥) = 1 for all a ∈ Σ,
δ′(q, a, q⊥) = 1−

∑
r∈Q δ(q, a, r) for all (q, a) ∈ Q× Σ;

obtain the initial distribution ι′ from ι by adding ι′(q⊥) = 1−
∑
q∈Q ι(q).
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Observe that [[A′]] = [[A]], that
∑
r∈Q δ

′(q, a, r) = 1 for all (q, a) ∈ Q × Σ, and that∑
q∈Q ι

′(q) = 1. We obtain A from A′ by swapping its final and non-final states. As
expected, it is the case that [[A]] = 1− [[A]].
I Remark (Preserving ambiguity). The ambiguity of a weighted-sum automaton is the sum of
the ambiguities of the individual automata, and the ambiguity of a complement automaton
may be larger than the ambiguity of the original one (see Figure 1).

3 Decidability of the case finitely ambiguous vs. unambiguous

Our aim is to decide whether [[A]] ≤ [[B]]. We first give a translation of the problem into a
problem about the existence of integral exponents for certain exponential inequalities.

Notation. In the rest of the paper, we write exp(x) to denote the exponential function
x 7→ ex, and log(y) for the natural logarithm function y 7→ loge(y). For a real number x and
a positive real number y, we write yx for exp(x log(y)).

3.1 Translating the containment problem into exponential inequalities
We are going to translate the negation of the containment problem: Given two finitely
ambiguous PA A and B, does there exist a word w, such that [[A]](w) > [[B]](w)? Consider
two positive integers k and n, and vectors p ∈ Qk>0 and q1, . . . , qk ∈ Qn>0. We denote by
S(p, q1, . . . , qk) : Nn → R the function associating a vector x ∈ Nn to

∑k
i=1 piq

x1
i,1 . . . q

xn
i,n,

where qi,j is the j-th component of vector qi.

I Proposition 3. Given a k-ambiguous automaton A and an `-ambiguous automaton B, one
can compute a positive integer n and a finite set ∆ of tuples (p, q1, . . . , qk′ , r, s1, . . . , s`′) of
vectors p ∈ Qk′

>0, r ∈ Q`′

>0, for some k′ ≤ k and `′ ≤ `; and qi ∈ Qn>0, sj ∈ Qn>0, for all i
and j; such that the following two conditions are equivalent:

there exists w ∈ Σ∗ such that [[A]](w) > [[B]](w),
there exist (p, q1, . . . , qk′ , r, s1, . . . , s`′) ∈ ∆ and x ∈ Nn such that

S(p, q1, . . . , qk′)(x) > S(r, s1, . . . , s`′)(x).

It thus follows that to prove Theorem 2, it suffices to show decidability of the second item of
Proposition 3 for a given element of ∆ in the cases where either k or ` are equal to 1. To
prove Proposition 3, the idea is to decompose every run into a short path and simple cycles
using the well-known simple-cycle decomposition (see, e.g., [21]). We do this simultaneously
for all runs in A and B. The vectors p and r then correspond to probabilities of simple paths
in every run; qi (resp. sj), to all simple cycles in the i-th run in A (resp. j-th run in B).
Finally, x specifies how many times each simple cycle occurs in the decomposition.

I Example 4. Consider the following instance of the problem, where k = n = 2, ` = 1, and
p is a fixed rational number 0 ≤ p ≤ 1: Do there exist x, y ∈ N such that p ·

( 1
12
)x · ( 1

2
)y +

(1− p) ·
( 1

3
)x · ( 1

18
)y
<
( 1

6
)x · ( 1

6
)y. This can be rewritten as

p ·
(

1
2

)x
· 3y + (1− p) · 2x ·

(
1
3

)y
< 1

or equivalently, using the exponential function, as follows

exp(log(p)− x log(2) + y log(3)) + exp(log(1− p) + x log(2)− y log(3)) < 1.

ICALP 2018
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−3 −2 −1

−3

−2

−1

ex + ey = 1

V

b

u

v

x

y

Figure 2 The set V is bounded by the plot ex + ey = 1 and the point b is on that plot.

Consider the set V = {(x, y) ∈ R2 | ex+ey < 1} and denote by b the point (log(p), log(1−p)).
Let u = (− log(2), log(2)) and v = (log(3),− log(3)) be two vectors. See Figure 2 for a
geometric representation. The question is now: do there exist x, y ∈ N such that b+xu+yv ∈
V . We will show that the answer is yes if and only if p 6= 1

2 .
Let C = {(x,−x) | x ∈ R}. For p = 1

2 , the affine line C + p is tangent to the blue plot
and so, whatever the values of x and y, b+ xu + yv cannot be in V . For p 6= 1

2 , there is a
value δ such that the whole interval strictly between b and b+ (δ,−δ) is in V . Since log(2)
and log(3) are rationally independent, the set D = {xu + yv | x, y ∈ N} is a dense subset
of C, so in particular, there is a point of D + b in the interval between b and b+ (δ,−δ) and
thus there exist x, y ∈ N such that b+ xu + yv ∈ V .

3.2 Decidability
We prove here the decidability of the containment problem when A is finitely ambiguous
and B is unambiguous. The converse situation is tackled in Section 4.

I Proposition 5. Determining whether [[A]] ≤ [[B]] is decidable when A is finitely ambiguous
and B is unambiguous.

Proof. Let A be k-ambiguous. Proposition 3 shows that it is sufficient to decide, given
an integer n and positive rational numbers p, qj , ri, si,j for i ∈ {1, . . . , k}, j ∈ {1, . . . , n},
whether there exists x1, . . . , xn ∈ N such that

k∑
i=1

piq
x1
i,1 · · · q

xn
i,n > rsx1

1 · · · sxn
n . (1)

We consider two cases. First, assume that there exist i and j such that qi,j > sj . Then in
that case, for a large enough m ∈ N condition (1) will be satisfied for (x1, . . . , xj , . . . , xn) =
(0, . . . ,m, . . . , 0). Otherwise, assume that max{qi,j | 1 ≤ i ≤ k} ≤ sj for all 1 ≤ j ≤ n. In
this case, if there exists a valuation of the xi satisfying (1) then (x1, . . . , xn) = (0, . . . , 0) also
satisfies it. It is then sufficient to test condition (1) for x1 = · · · = xn = 0 to conclude. J

4 Decidability of the case unambiguous vs. finitely ambiguous

In this section we will show the more challenging part of Theorem 2, i.e., that the containment
problem is decidable for A unambiguous and B finitely ambiguous. Our proof is conditional
on the first-order theory of the reals with the exponential function being decidable. In [15], the
authors show that this is the case if a conjecture due to Schanuel and regarding transcendental
number theory is true.
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I Theorem 6. Determining whether [[A]] ≤ [[B]] is decidable when A is unambiguous and B
is finitely ambiguous, assuming Schanuel’s conjecture is true.

4.1 Integer programming problem with exponentiation
Given two positive integers n and `, we define Fn,` to be the set of all the functions f : Rn → R
such that there exist r ∈ Q`>0 and s1, . . . , s` ∈ Qn>0 such that f(x) =

∑`
i=1 ris

x1
i,1 . . . s

xn
i,n.

Observe that this is just a lifting of the S(·) function, defined in the previous section, to real-
valued parameters. Consider the following integer programming problem with exponentiation.

I Problem 7 (IP+EXP).

Input: Three positive integers n, ` and m, a function f ∈ Fn,`, a matrix M ∈ Zm×n,
and a vector c ∈ Zm.
Question: Does there exist x ∈ Zn such that f(x) < 1 and Mx < c?

In the sequel, we will show that the above problem is decidable.

I Theorem 8. The IP+EXP problem is decidable, assuming Schanuel’s conjecture is true.

Theorem 6 is a direct corollary of Theorem 8.

Proof of Theorem 6. Proposition 3 shows that, in order to prove Theorem 6, it is sufficient
to decide, given an integer n and positive rational numbers p, ri, qj , si,j for i ∈ {1, . . . , `},
j ∈ {1, . . . , n}, whether there exist x1, . . . , xn ∈ N such that pqx1

1 · · · qxn
n >

∑`
i=1 ris

x1
i,1 · · · s

xn
i,n

or equivalently, whether there exist x1, . . . , xn ∈ N such that:

∑̀
i=1

rip
−1(si,1q−1

1 )x1 · · · (si,nq−1
n )xn < 1. (2)

Define f : Rn → R such that f(x) =
∑`
i=1 rip

−1(si,1q−1
1 )x1 · · · (si,nq−1

n )xn . Then,
inequality (2) becomes f(x) < 1. We can now apply Theorem 8 with m set to be n; M , to
be −Id, where Id is the identity matrix; and c to be the null vector. J

Since the IP+EXP problem is semi-decidable (indeed, we can enumerate the vectors x in
Zn to find one satisfying the conditions), it will suffice to give a semi-decision procedure to
determine whether the inequalities f(x) < 1 ∧Mx < c have no integer solution. We give
now such a procedure.

4.2 Semi-decision procedure for the complement of IP+EXP
Consider as input for the IP+EXP problem three positive integers n, `, m, a function
f ∈ Fn,`, a matrix M ∈ Zm×n, and a vector c ∈ Zm. Denote by X the set of real solutions
of the problem, i.e., the set of vectors X = {x ∈ Rn | f(x) < 1 ∧Mx < c}.

Proc(n, `, m, f , M , c):

1. Search for a non-zero vector d ∈ Zn and a, b ∈ Z such that {d>x | x ∈ X} ⊆ [a, b]. Set
i = a.

2. If i > b, then stop and return YES. Otherwise, let Yi be the set of vectors x ∈ Zn
satisfying d1x1 + · · ·+ dnxn = i. If Yi is empty, then increment i and start again from
step 2. Otherwise:

ICALP 2018
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a. Compute N ∈ Zn×(n−1) and h ∈ Zn such that Yi = {Ny + h | y ∈ Zn−1}.
b. If n− 1 = 0 and f(h) < 1 ∧Mh < c then return NO, otherwise increment i and start

again from step 2.
c. If n− 1 > 0 then recursively call Proc(n− 1, `, m, f ′, M ′, c′), where f ′ ∈ Fn−1,`

is defined as f ′(y) = f(Ny + h); M ′ ∈ Zm×(n−1), as M ′ = MN ; and c′ ∈ Zm, as
c−Mh. If the procedure stops and returns YES then increment i and start again from
step 2. If the procedure stops and returns NO then return NO.

I Lemma 9. The above semi-decision procedure stops and outputs YES if and only if there
is no integer valuation of x that satisfies the constraints, i.e. X ∩ Zn is empty.

First, notice that the only step which might not terminate in a call to our procedure
is step 1. Indeed, once d, a, and b are fixed, there are only finitely many integers i ∈ [a, b]
that have to be considered in step 2. For each of them, one can compute in a standard
way (see, e.g., [3]) the set of integer solutions of the equation d1x1 + · · ·+ dnxn = i and the
corresponding N and h as in the procedure.

Moreover, for each integer vector d ∈ Zn and a, b ∈ Z, the inclusion {d>x | x ∈ X} ⊆ [a, b]
that needs to be checked in step 1 can be formulated as a decision problem in the first-order
logic over the structure (R,+,×, exp). Since this structure has a decidable first-order theory
subject to Schanuel’s conjecture [15], the inclusion can be decided for each fixed d, a, and b.

To prove Lemma 9 we use the two following lemmata. The first one is the most technical
contribution of the paper and is proved in Section 4.3. It ensures termination of step 1 in
the procedure when there is no integer solution.

I Lemma 10. If the set X contains no integer point then there must exist a non-zero integer
vector d ∈ Zn and a, b ∈ Z such that {d>x | x ∈ X} ⊆ [a, b].

I Lemma 11. Given a non-zero vector d ∈ Zn and an integer i, there exists x ∈ Zn
such that f(x) < 1 ∧Mx < c ∧ d>x = i if and only if there exists y ∈ Zn−1 such that
f ′(y) < 1 ∧M ′y < c′ where f ′, M ′ and c′ are as defined in the procedure.

We can now prove Lemma 9.

First direction: when the procedure returns YES. Suppose first that the semi-decision
procedure stops and outputs YES. Then there exist a non-zero vector d ∈ Zn and a, b ∈ Z
such that {d>x | x ∈ X} ⊆ [a, b] as in step 1, and for all integers i ∈ [a, b], one of the
following situations occurs:

1. Yi is empty,
2. n− 1 = 0, Yi = {h} as defined in step 2.a but h is not an integer solution of the problem,
3. n− 1 > 0 and the recursive call stops and outputs YES.
By definition of d, in order to prove that there is no integer solution of the problem, we need
to show that in all those cases, and for all i ∈ [a, b], Yi ∩X = ∅. It is clear for items 1 and 2
and we use Lemma 11 and an induction for item 3.

Second direction: when X ∩ Zn = ∅. If there is no integer solution then by Lemma 10,
there must exist a non-zero vector d ∈ Zn and a, b ∈ Z such that {d>x | x ∈ X} ⊆ [a, b] as
in step 1. Moreover, for any of those choices, if for an integer i ∈ [a, b], the set Yi of vectors
x ∈ Zn satisfying d1x1 + · · ·+ dnxn = i is non-empty, then,

1. if n = 1, then h as defined in step 2.a, is not a solution of the problem (by hypothesis)
and thus the procedure stops and returns YES,

2. if n > 1, we use Lemma 11 and, by induction, the recursive call must return YES.
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4.3 Proof of Lemma 10
Fix three positive integers n, `, m, a function f ∈ Fn,`, a matrix M ∈ Zm×n, and a vector
c ∈ Zm. Recall that we denote by X the set of vectors

X = {x ∈ Rn | f(x) < 1 ∧Mx < c}.

We want to prove that if the set X contains no integer point then there must exist a non-zero
integer vector d ∈ Zn and a, b ∈ Z such that {d>x | x ∈ X} ⊆ [a, b].

We will use the following corollary of Kronecker’s theorem on simultaneous Diophantine
approximation. It generalises the fact that any line in the plane with irrational slope passes
arbitrarily close to integer points in the plane.

I Proposition 12. [12, Corollary 2.8]. Let u,u1, . . . ,us be vectors in Rn. Suppose that for
all d ∈ Zn we have d>u = 0 whenever d>u1 = · · · = d>us = 0. Then for all ε > 0 there
exist real numbers λ1, . . . , λs ≥ 0 and a vector v ∈ Zn such that ‖u +

∑s
i=1 λiui − v‖∞ ≤ ε.

By definition, there exist vectors r ∈ Q`>0 and s1, . . . , s` ∈ Qn>0 such that f(x) =∑`
i=1 ris

x1
i,1 . . . s

xn
i,n. Let a ∈ R` and bi ∈ Rn be defined by ai = log(ri) and bi =

(log(si,1), . . . , log(si,n)). We can then rewrite f(x) as follows

f(x) = exp(b>1 x + a1) + · · ·+ exp(b>` x + a`).

Let us now consider the cone

C =
{

x ∈ Rn
∣∣∣ b>1 x ≤ 0 ∧ · · · ∧ b>` x ≤ 0 ∧Mx ≤ 0

}
. (3)

It is easy to see that X + C ⊆ X.

I Lemma 13. Suppose that X is non-empty and that no non-zero integer vector in Zn is
orthogonal to C. Then X ∩ Zn is non-empty.

Proof. Let u ∈ X. Since X is open, there exists ε > 0 such that the open ball Bε(u) is
contained in X. We therefore have that Bε(u) + C ⊆ X.

We will apply Proposition 12 to show that Bε(u) + C contains an integer point and
hence that X contains an integer point. To this end, let vectors u1, . . . ,us ∈ C be such that
span{u1, . . . ,us} = span(C). Then no non-zero vector in Zn is orthogonal to u1, . . . ,us. By
Proposition 12, there exist real numbers λ1, . . . , λs ≥ 0 and an integer vector v ∈ Zn such
that ‖u +

∑s
i=1 λiui − v‖∞ ≤ ε. Thus, v ∈ Bε(u) + C ⊆ X. J

The contrapositive of the above result states that if X contains no integer point, then
there must exist an integer vector that is orthogonal to C. For the desired result, it remains
for us to prove the boundedness claim.

I Lemma 14. Suppose that d ∈ Zn is orthogonal to the cone C. Then {d>u | u ∈ X} is
bounded.

Proof. Define the “enveloping polygon” of X to be

X̂ =
{

x ∈ Rn
∣∣∣ b>1 x + a1 ≤ 0 ∧ · · · ∧ b>` x + a` ≤ 0 ∧Mx ≤ c

}
.

Clearly it holds that X ⊆ X̂. Moreover, by the Minkowski-Weyl decomposition theorem we
can write X̂ as a sum X̂ = B + C for B a bounded polygon and C the cone defined in (3).
Since d is orthogonal to C by assumption, it follows that {d>u | u ∈ X̂} = {d>u | u ∈ B}
is bounded and hence {d>u | u ∈ X} is bounded. The result immediately follows. J
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We can now complete the proof of Lemma 10.

Proof of Lemma 10. By Lemma 13 there exists a non-zero integer vector d ∈ Zn such
that d is orthogonal to the cone C defined in (3). Then by Lemma 14 we obtain that
{d>u | u ∈ X} is contained in a bounded interval. J

5 Undecidability for linearly ambiguous automata

In this section we prove Theorem 1. That is, we argue that the containment problem is
undecidable for the class of linearly ambiguous PA. For most of this section we deal with
the following variant of the problem: does there exist a word w such that [[A]](w) ≤ [[B]](w).
Towards the end, we shortly explain how our reduction proves undecidability for any variant
of this problem (that is, with inequality <). Moreover, we derive from the proof that all
variants of the emptiness problem are undecidable for a given linearly ambiguous automaton
A, i.e. whether there exists w such that [[A]](w) ≥ 1

2 (or resp. >, ≤, <).
The proof is done by a reduction from the halting problem for two-counter machines.

The reduction resembles the one used to prove undecidability of the comparison problem
for another quantitative extension of Boolean automata: max-plus automata [4, 1]. We give
here an outline of the proof and the main ideas used in the reduction.

Two-counter machines. A two-counter machine (or a Minsky machine) is a deterministic
finite-state machine, with an initial state, a final state, and two counters, each of which
can be incremented or decremented (if its value is not 0). For each counter i ∈ {1, 2},
there are two types of transitions: T+

i ⊆ Q2 such that a transition (p, q) ∈ T+
i moves from

state p to state q and increments the i-th counter; and T−i ⊆ Q3 such that a transition
(p, q, r) ∈ T−i moves from state p to state q if the i-th counter has value 0, and moves from
state p to state r decrementing the i-th counter otherwise. The set of all transitions is
denoted T = T+

1 ∪ T
+
2 ∪ T

−
1 ∪ T

−
2 .

The machine halts if there is a (unique) computation from the initial state to the final
state. It is well-known that deciding whether a given machine halts is undecidable [16]. We
use this fact to prove undecidability of the containment problem.

I Proposition 15. Given a two-counter machine, one can construct two linearly ambiguous
probabilistic automata A and B, such that the machine halts if and only if there exists a
word w such that [[A]](w) ≤ [[B]](w).

Outline of the reduction. The general idea is to encode executions of the two-counter
machine into words over the alphabet Σ = {a, b} ∪ T . A block am (resp. bm) encodes the
fact that the value of the first (resp. second) counter is m. For example, given t ∈ T+

1
and t′ ∈ T−2 , a word anbmtan+1bmt′an+1bm

′ , encodes an execution starting with value n in
the first counter and m in the second counter. Transition t then increases the value of the
first counter to n + 1 without changing the value of the second one. The configuration is
thus encoded by the infix an+1bm. Next, transition t′ is taken, and either m′ = m = 0 or
m′ = m − 1. Moreover, if t = (p, q) and t′ = (r, s, u) then q = r (i.e., the states between
transitions have to match).

Simulating executions faithfully. Our reduction has the following property: [[A]](w) =
[[B]](w) for the unique word w encoding the halting execution (if it exists), and [[A]](w) >
[[B]](w) for all other words. This suffices to prove Proposition 15.
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There are several conditions that the constructed automata A and B need to check to
ensure the correctness of the encoding: whether the states match; whether the counter values
encoded by blocks of a and b are increased and decreased properly, etc. It is easy to define
an automaton A0 that will allow us to focus only on proper words of the form

w = an1bm1t1a
n2bm2t2a

n3bm3t3 · · · ankbmktk. (4)

That is, A0 is such that [[A0]](w) = 0 if the word w correctly alternates between blocks of a,
b, and letters from T ; it correctly implements the zero tests within decrement transitions; it
observes the initial and final states and checks that the states of adjacent transitions match.
Observe that the latter are all regular conditions. If w does not satisfy all these constraints,
then [[A0]](w) = 1.

For other (non-regular) conditions we construct pairs of automata Ai and Bi, such that
[[Ai]](w) = [[Bi]](w) if a proper word w does not violate the condition and [[Ai]](w) > [[Bi]](w)
for all other proper words. In the end, the automata A and B are obtained as weighted sums
of the automata Ai and Bi.

Simulating increments. We present the construction for one of the components of A and B.
The remaining ones are obtained using similar gadgets. The automata A1 and B1 check that
a proper word encodes an execution where the first counter is always correctly incremented
after reading transitions from T+

1 . Consider the automaton C(x, y, z) in Figure 3. It is
parameterised by three probability variables x, y, z > 0. The parameter x is the probability
used by the initial distribution, and parameters y and z are used by some transitions.

x x

T : 1
2

a, b : 1

T : 1
2 a : y

b : 1

T +
1 : y

a : z T, b : 1 Σ : 1

Figure 3 Gadget automaton C(x, y, z) used to check if the first counter is incremented properly.

Consider a word w as in (4). Notice that the only non-deterministic transitions in C(x, y, z)
are the ones going out from the the leftmost state upon reading letters from T . It follows
that C(x, y, z) is linearly ambiguous. In fact, for every position in w labelled by an element t
from T+

1 there is a unique accepting run that first reaches a final state upon reading t. By
construction, we have

[[C(x, y, z)]](w) =
∑
ti∈T+

1

x

(
1
2

)i−1
yni+1zni+1 . (5)

Let x = 1
2 , y = 1 and z = 1

4 . We define B1 as C(x, x, x) and A1 as a weighted sum of
C(x, y, z) and C(x, z, y) with weights ( 1

2 ,
1
2 ). Since C(·, ·, ·) is linearly ambiguous the obtained

automata are also linearly ambiguous. We prove that [[A1]](w) = [[B1]](w) only if ni+1 = ni+1
for all i such that ti ∈ T+

1 and [[A1]](w) > [[B1]](w) otherwise.
By (5) it suffices to show that for every i it holds that(

1
2

)ni+1+ni+1

≤ 1
2

((
1
4

)ni+1

+
(

1
4

)ni+1
)

and that the equality holds only if ni + 1 = ni+1, which is the case.
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Changes for version with strict inequalities. Observe that if PA A and B output different
probabilities on a word w then the probabilities must differ by at least x|w|+1 for some
value x depending on the probabilities used in A and B (see, e.g., [10]). By a weighted sum
construction, we can define a PA B′ associating a word w to the value [[B]](w) +x|w|+1. Then
there is a word w such that [[A]](w) ≤ [[B]](w) if and only if there is a word w such that
[[A]](w) < [[B′]](w).

px qx ⊥1− 2x

T : 1
2

a, b : 1

T : 1
2 a : y

b : 1

a, T +
1 : 1− y

T \ T +
1 : 1

Σ : 1

Figure 4 Complement automaton of C(x, y, z) after trimming.

Changes for the emptiness problem. Let us consider the containment problem [[A]] ≤ [[B]].
For all words w, we have that [[A]](w) ≤ [[B]](w) holds if and only if 1

2 [[A]](w)+ 1
2 (1−[[B]](w)) ≤

1
2 . Thus, using the weighted sum and complement operations we can get a single probabilistic
automaton that outputs 1

2 [[A]](w) + 1
2 (1 − [[B]](w)). Complementing an automaton may,

in general, increase the ambiguity (see Figure 1). However, for the automata we have
constructed, this is not the case. For example, it is easy to check that the complement
automaton C(x, y, z) depicted in Figure 4 is—just like C(x, y, z)—also linearly ambiguous.

6 Conclusion

In this work we have shown that the containment problem for probabilistic automata is
decidable if one of the automata is finitely ambiguous and the other one is unambiguous.
Interestingly, for one of the two cases, our proposed algorithm uses a satisfiability oracle for
a theory whose decidability is equivalent to a weak form of Schanuel’s conjecture. We have
complemented our decidability results with a proof of undecidability for the case when the
given automata are linearly ambiguous.

Decidability of the containment problem when both automata are allowed to be finitely
ambiguous remains open. One way to tackle it is to study generalizations of the IP+EXP
problem introduced in Section 4. This problem asks whether there exists x ∈ Nn such that
f(x) < 1 and Mx < c for a given function f defined using exponentiations, a given matrix
M , and vector c. A natural way to extend the latter would be to ask that f(x) < g(x),
where g is obtained in a similar way as f . The main obstacle, when trying to generalize our
decidability proof for that problem, is that we lack a replacement for the cone C needed in
order to obtain a result similar to Lemma 14 using the Minkowski-Weyl decomposition.
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