
              

City, University of London Institutional Repository

Citation: Daviaud, L., Jecker, I., Reynier, P-A. & Villevalois, D. (2017). Degree of 

Sequentiality of Weighted Automata. In: Foundations of Software Science and Computation 
Structures. FoSSaCS 2017. Lecture Notes in Computer Science, 10203. (pp. 215-230). 
Berlin: Springer. ISBN 978-3-662-54457-0 doi: 10.1007/978-3-662-54458-7_13 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/21295/

Link to published version: https://doi.org/10.1007/978-3-662-54458-7_13

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Degree of sequentiality of weighted automata

Laure Daviaud1, Ismael Jecker2, Pierre-Alain Reynier3, and Didier Villevalois3

1 Warsaw University, Poland
2 Université Libre de Bruxelles, Belgium

3 Aix-Marseille Université, CNRS, LIF UMR 7279, France

Abstract. Weighted automata (WA) are an important formalism to
describe quantitative properties. Obtaining equivalent deterministic ma-
chines is a longstanding research problem. In this paper we consider WA
with a set semantics, meaning that the semantics is given by the set of
weights of accepting runs. We focus on multi-sequential WA that are
defined as finite unions of sequential WA. The problem we address is
to minimize the size of this union. We call this minimum the degree of
sequentiality of (the relation realized by) the WA.
For a given positive integer k, we provide multiple characterizations
of relations realized by a union of k sequential WA over an infinitary
finitely generated group: a Lipschitz-like machine independent property,
a pattern on the automaton (a new twinning property) and a subclass
of cost register automata. When possible, we effectively translate a WA
into an equivalent union of k sequential WA. We also provide a decision
procedure for our twinning property for commutative computable groups
thus allowing to compute the degree of sequentiality. Last, we show that
these results also hold for word transducers and that the associated
decision problem is Pspace-complete.

1 Introduction

Weighted automata. Finite state automata can be viewed as functions from words
to Booleans and, thus, describe languages. Such automata have been extended to
define functions from words to various structures yielding a very rich literature,
with recent applications in quantitative verification [6]. Weighted automata [15]
(WA) is the oldest of such formalisms. They are defined over semirings (S,⊕,⊗)
by adding weights from S on transitions; the weight of a run is the product of the
weights of the transitions, and the weight of a word w is the sum of the weights
of the accepting runs on w.

The decidability status of natural decision problems such as universality and
equivalence highly depends on the considered semiring [14]. The first operation of
the semiring, used to aggregate the values computed by the different runs, plays
an important role in the (un)decidability results. Inspired by the setting of word
transducers, recent works have considered a set semantics that consists in keeping
all these values as a set, instead of aggregating them [10], and proved several
decidability results for the resulting class of finite-valued weighted automata [11].



For automata based models, a very important problem is to simplify the
models. For instance, deterministic (a.k.a. sequential) machines are essential in
order to derive efficient evaluation algorithms. In general, not every WA can be
transformed into an equivalent sequential one. The sequentiality problem then
asks, given a WA on some semiring (S,⊕,⊗), whether there exists an equivalent
sequential WA over (S,⊕,⊗). This problem ranges from trivial to undecidable,
depending on the considered semiring, see [13] for a survey.

Sequential transducers. Transducers define rational relations over words. They
can be viewed as weighted automata over the semiring of finite sets of words (thus,
built over the free monoid); sum is the set union and product is the concatenation
extended to sets. When the underlying automaton is deterministic, then the
transducer is said to be sequential. The class of sequential functions, i.e. those
realized by sequential transducers, has been characterized among the class of
rational functions by Choffrut, see for instance [4] for a presentation:

Theorem 1 ([7]). Let T be a functional finite state transducer and [[T ]] be the
function realized by T . The following assertions are equivalent:

i) [[T ]] satisfies the bounded variation property
ii) T satisfies the twinning property
iii) [[T ]] is computed by a sequential transducer

In this result, two key tools are introduced: a property of the function, known as
the bounded variation property, and a pattern property of the transducer, known
as the twinning property.

Multi-sequential weighted automata. Multi-sequential functions of finite words
have been introduced in [8] as those functions that can be realized by a finite
union of sequential transducers. A characterization of these functions among the
class of rational functions is given in [8]. Recently, this definition has been lifted
to relations in [12] where it is proved that the class of so-called multi-sequential
relations can be decided in Ptime among the class of rational relations.

We consider in this paper multi-sequential weighted automata, defined as finite
unions of sequential WA. As described above, and following [10], we consider
weighted automata with a set semantics. We argue that multi-sequential WA are
an interesting compromise between sequential and non-deterministic ones. Indeed,
sequential WA have a very low expressiveness, while it is in general difficult to
have efficient evaluation procedures for non-deterministic WA. Multi-sequential
WA allow to encode standard examples requiring non-determinism (any regular
look-ahead on the input word for instance), yet provide a natural evaluation
procedure by evaluating simultaneously the different sequential WA of the union.

A natural problem then consists in minimizing the size of the union of multi-
sequential WA that is, given a WA and a natural number k, decide whether it
can be realized as a union of k sequential WA. More precisely, we are interested
in identifying the minimal such k, that we call degree of sequentiality of the
weighted automaton.

2



Contributions. In this paper, we propose a solution to the problem of the
computation of the degree of sequentiality of WA. Following previous works [10,
9], we consider WA over infinitary finitely generated groups. We introduce new
generalizations of the tools of Choffrut that allow us to characterize the relations
that can be defined as unions of k sequential WA: first, a property of relations
that extends a Lipschitz property for transducers, and is called Lipschitz property
of order k (Lipk for short); second, a pattern property of transducers, called
branching twinning property of order k (BTPk for short). We prove:

Theorem 2. Let W be a weighted automaton with set semantics over an infini-
tary finitely generated group and k be a positive integer. The following assertions
are equivalent:

i) [[W ]] satisfies the Lipschitz property of order k,
ii) W satisfies the branching twinning property of order k,
iii) [[W ]] is computed by a k-sequential weighted automaton,

In addition, the equivalent model of property iii) can be effectively computed.

As demonstrated by this result, the first important contribution of our work
is thus to identify the correct adaptation of the properties of Choffrut suitable
to characterize k-sequential relations. Sequential functions are characterized by
both a bounded variation and a Lipschitz property [5]. In [9], we introduced a
generalization of the bounded variation property to characterize relations that
can be expressed using a particular class of cost register automata with exactly
k registers, that encompasses the class of k-sequential relations. Though, to
characterize k-sequential relations, we here introduce a generalization of the
Lipschitz property. We actually believe that this class cannot be characterized
by means of a generalization of the bounded variation property. Similarly, the
difference between the twinning property of order k introduced in [9] and the
branching twinning property of order k introduced in this paper is subtle: we
allow here to consider runs on different input words, and the property requires
the existence of two runs whose outputs are close on their common input words.

BTPkLipk

k-sequential
WA

Prop 2

Pr
op

3Prop
1

We now discuss the proof of Theorem 2
whose structure is depicted in the picture on
the right. In [7], as well as in [9], the difficult
part is the construction, given a machine sat-
isfying the pattern property, of an equivalent
deterministic machine. Here again, the most
intricate proof of our work is that of Propo-
sition 3: the construction, given a WA satis-
fying the BTPk, of an equivalent k-sequential
weighted automaton. It is worth noting that
it is not a simple extension of [7] and [9]. Our proof proceeds by induction on
k, and the result of [7] constitutes the base case while the tricky part resides in
the induction step. Compared with [9], the construction of [9] stores pairwise
delays between runs, and picks a minimal subset of ”witness” runs that allows to

3



express every other run. In [9], the choice of these witnesses may evolve along
an execution while in order to define a k-sequential WA, the way we choose the
representative runs should be consistent during the execution. The technical part
of our construction is thus the identification of a partition of size at most k of
the different runs of the non-deterministic WA such that each element of this
partition defines a sequential function. This relies on the branching structure of
the twinning property we introduce in this paper.

Our result can also be rephrased in terms of cost register automata [2]. These
are deterministic automata equipped with registers that aim to store along the
run values from a given semiring S. The restriction of this model to updates of
the form X := Xα (we say that registers are independent) exactly coincides (if
we allow k registers) with the class of k-sequential relations. Hence, our result
also allows to solve the register minimization problem for this class of CRA.

Beyond weighted automata over infinitary groups, we also prove that our
results apply to transducers from A∗ to B∗.

Regarding decidability, we show that if the group G is commutative and has
a computable internal operation, then checking whether the BTPk is satisfied
is decidable. As a particular instance of our decision procedure, we obtain that
this can be decided in Pspace for G = (Z,+, 0), and show that the problem is
Pspace-hard. Last, we prove that checking the BTPk for finite-state transducers
is also Pspace-complete.

Organization of the paper. We start with definitions in Section 2. In Section 3, we
introduce our original Lipschitz and branching twinning properties. We present
our main construction in Section 4. Section 5 is devoted to the presentation of
our results about cost register automata, while transducers are dealt with in
Section 6. Last we present our decidability results and their application to the
computation of the degree of sequentiality in Section 7. Omitted proofs can be
found in the Appendix.

2 Definitions and examples

Prerequisites and notation. We denote by A a finite alphabet, by A∗ the set of
finite words on A, by ε the empty word and by |w| the length of a word w. For a
set S, we denote by |S| the cardinality of S.

A monoid M = (M,⊗,1) is a set M equipped with an associative binary
operation ⊗ with 1 as neutral element; the product α⊗ β in M may be simply
denoted by αβ. If every element of a monoid possesses an inverse - for all α ∈M ,
there exists β such that αβ = βα = 1 (such a β is unique and is denoted by α−1)
- then M is called a group. The monoid (resp. group) is said to be commutative
when ⊗ is commutative. Given a finite alphabet B, we denote by F(B) the free
group generated by B.

A semiring S is a set S equipped with two binary operations ⊕ (sum) and ⊗
(product) such that (S,⊕,0) is a commutative monoid with neutral element 0,
(S,⊗,1) is a monoid with neutral element 1, 0 is absorbing for ⊗ (i.e. α⊗ 0 =

4



0⊗ α = 0) and ⊗ distributes over ⊕ (i.e. α⊗ (β ⊕ γ) = (α⊗ β)⊕ (α⊗ γ) and
(α⊕ β)⊗ γ = (α⊗ γ)⊕ (β ⊗ γ)).

Given a set S, the set of the finite subsets of S is denoted by Pfin(S). For a
monoid M, the set Pfin(M) equipped with the two operations ∪ (union of two
sets) and the set extension of ⊗ is a semiring denoted Pfin(M).

From now on, we may identify algebraic structures (monoid, group, semiring)
with the set they are defined on when the operations are clear from the context.

Delay and infinitary group. There exists a classical notion of distance on words
(i.e. on the free monoid) measuring their difference: dist is defined for any two
words u, v as dist(u, v) = |u|+ |v| − 2 ∗ |lcp(u, v)| where lcp(u, v) is the longest
common prefix of u and v.

When considering a group G and α, β ∈ G, we define the delay between α
and β as α−1β, denoted by delay(α, β).

Lemma 1. Given a group G, for all α, α′, β, β′, γ, γ′ ∈ G,
1. delay(α, β) = 1 if and only if α = β,
2. if delay(α, α′) = delay(β, β′) then delay(αγ, α′γ′) = delay(βγ, β′γ′).

For a finitely generated group G, with a fixed finite set of generators Γ , one
can define a distance between two elements derived from the Cayley graph of
(G, Γ ). We consider here an undirected right Cayley graph : given α ∈ G, β ∈ Γ ,
there is a (non-oriented) edge between α and αβ. Given α, β ∈ G, the Cayley
distance between α and β is the length of the shortest path linking α and β in
the undirected right Cayley graph of (G, Γ ). It is denoted by d(α, β).

For any α ∈ G, we define the size of α (with respect to the set of generators
Γ ) as the natural number d(1, α). It is denoted by |α|. Note that for a word u,
considered as an element of F(A), the size of u is exactly the length of u (that is
why we use the same notation).

Lemma 2. Given a finitely generated group G and a finite set of generators Γ ,
for all α, β ∈ G, d(α, β) = |delay(α, β)|.

A group G is said to be infinitary if for all α, β, γ ∈ G such that αβγ 6= β,
the set {αnβγn | n ∈ N} is infinite. Classical examples of infinite groups such
as (Z,+, 0), (Q,×, 1) and the free group generated by a finite alphabet are all
infinitary. See [10] for other examples.

Weighted automata. Given a semiring S, weighted automata (WA) are non-
deterministic finite automata in which transitions have for weights elements of S.
Weighted automata compute functions from the set of words to S: the weight
of a run is the product of the weights of the transitions along the run and the
weight of a word w is the sum of the weights of the accepting runs labeled by w.

We will consider, for some monoid M, weighted automata over the semiring
Pfin(M). In our settings, instead of considering the semantics of these automata
in terms of functions from A∗ to Pfin(M), we will consider it in terms of relations
over A∗ and M. More precisely, a weighted automaton (with initial and final
relations), is formally defined as follows:

5



Definition 1. Let A be a finite alphabet, a weighted automaton W over some
monoid M is a tuple (Q, tinit, tfinal, T ) where Q is a finite set of states, tinit ⊆ Q×M
(resp. tfinal ⊆ Q×M) is the finite initial (resp. final) relation, T ⊆ Q×A×M×Q
is the finite set of transitions.

A state q is said to be initial (resp. final) if there is α ∈ M such that
(q, α) ∈ tinit (resp. (q, α) ∈ tfinal), depicted as α−→ q (resp. q α−→). A run ρ from
a state q1 to a state qk on a word w = w1 · · ·wk ∈ A∗ where for all i, wi ∈ A,
is a sequence of transitions: (q1, w1, α1, q2), (q2, w2, α2, q3), . . . , (qk, wk, αk, qk+1).
The output of such a run is the element of M, α = α1α2 · · ·αk. We depict this
situation as q1

w|α−−→ qk+1. The run ρ is said to be accepting if q1 is initial and
qk+1 final. This automaton W computes a relation [[W ]] ⊆ A∗ ×M defined by
the set of pairs (w,αβγ) such that there are p, q ∈ Q with α−→ p

w|β−−→ q
γ−→.

An automaton is trimmed if each of its states appears in some accepting run.
W.l.o.g., we assume that the automata we consider are trimmed.

Given a weighted automaton W = (Q, tinit, tfinal, T ) over some finitely gener-
ated group G with finite set of generators Γ , we define the constant MW with
respect to Γ as MW = max{|α| | (p, a, α, q) ∈ T or (q, α) ∈ tinit ∪ tfinal}.

For any positive integer `, a relation R ⊆ X × Y is said to be `-valued if, for
all x ∈ X, the set {y | (x, y) ∈ R} contains at most ` elements. It is said to be
finitely valued if it is `-valued for some `. A weighted automaton W is said to
be `-valued (resp. finite-valued) if it computes a `-valued (resp. finite-valued)
relation.

The union of two weighted automata Wi = (Qi, tiinit, tifinal, Ti), for i ∈ {1, 2},
with disjoint states Q1 ∩Q2 = ∅ is the automaton W1 ∪W2 = (Q1 ∪Q2, t

1
init ∪

t2init, t
1
final ∪ t2final, T1 ∪T2). States can always be renamed to ensure disjointness.

It is trivial to verify that [[W1 ∪W2]] = [[W1]] ∪ [[W2]]. This operation can be
generalized to the union of k weighted automata.

Definition 2. A weighted automaton (Q, tinit, tfinal, T ) over M is said to be se-
quential if |tinit| = 1 and if for all p ∈ Q, a ∈ A there is at most one transition
in T of the form (p, a, α, q). It is said to be k-sequential if it is a union of k
sequential automata. It is said to be multi-sequential if it is k-sequential for
some k. A relation is said to be k-sequential (resp. multi-sequential) if it can be
computed by a k-sequential (resp. multi-sequential) automaton. The degree of
sequentiality of the relation is the minimal k such that it is k-sequential.

Observe that, unlike the standard definition of sequential weighted automata
over M (see for instance [10]), we allow finite sets of weights to be associated
with final states, and not only singletons. This seems more appropriate to us
regarding the parallel evaluation model for multi-sequential weighted automata:
we prefer to merge threads that only differ by their final outputs. If we define
OutMax = maxq∈Q |{(q, α) ∈ tfinal}|, then the standard definition of sequential
machines requires OutMax = 1. Being k-sequential implies being (k ·OutMax)-
valued. Hence, multi-sequential weighted automata are included in finite-valued

6



ones. However, multi-sequential weighted automata are strictly less expressive
than finite-valued ones.

Allowing a final output relation obviously has an impact on the sequentiality
degree. We believe that it is possible to fit the usual setting by appropriately
reformulating our characterizations. However, this cannot be directly deduced
from our current results.

Example 1. Let us consider A = {a, b} and (M,⊗,1) = (Z,+, 0). The weighted
automaton W0 given in Figure 1(a) computes the function flast that associates
with a word wa (resp. wb) its number of occurrences of the letter a (resp. b),
and associates 0 with the empty word. It is easy to verify that the degree of
sequentiality of flast is 2. It is also standard that the function f∗last mapping the
word u1# . . .#un (for any n) to flast(u1) + · · ·+ flast(un) is not multi-sequential
(see for instance [12]) whereas it is single-valued.

qa

0

qf

0

0

qb

0

b : 0

a : 1

a : 1
a : 0

b : 1

b : 1

(a)

qa

{Xa}

qb

{Xb}

a : Xa++ b : Xb++

a : Xa++

b : Xb++

(b)

Fig. 1. (a) Example of a weighted automaton W0 computing the function flast.
(b) Example of a cost register automaton C0 computing the function flast. The updates
are abbreviated: Xa++ means both Xa := Xa + 1 and Xb := Xb (and conversely).

3 Lipschitz and branching twinning properties

Sequential transducers have been characterized in [7] by Choffrut by means of
a so-called bounded-variation property and a twinning property. The bounded-
variation property is actually equivalent to a Lipschitz-like property (see for
instance [5]). We provide adaptations of the Lipschitz and twinning properties so
as to characterize k-sequential WA.

We consider a finitely generated infinitary group G and we fix a finite set of
generators Γ .

3.1 Lipschitz property of order k

Given a partial mapping f : A∗ ⇀ B∗, the Lipschitz property states that there
exists L ∈ N such that for all w,w′ ∈ A∗ such that f(w), f(w′) are defined, we
have dist(f(w), f(w′)) 6 Ldist(w,w′) (see [5]). Intuitively, this property states
that, for two words, their images by f differ proportionally to those words. This

7



corresponds to the intuition that the function can be expressed by means of a
sequential automaton.

When lifting this property to functions that can be expressed using a k-
sequential automaton, we consider k + 1 input words and require that two of
those must have proportionally close images by f . The extension to relations
R ⊆ A∗×B∗ requires that for all k+ 1 pairs chosen in R, two of those have their
range components proportionally close to their domain components. In addition,
for relations, an input word may have more than one output word, we thus need
to add a constant 1 in the right-hand side. Finally, our framework is that of
infinitary finitely generated groups. Instead of dist(, ), we use the Cayley distance
d(, ) to compare elements in the range of the relation.

Definition 3. A relation R ⊆ A∗ ×G satisfies the Lipschitz property of order k
if there is a natural L such that for all pairs (w0, α0), . . . , (wk, αk) ∈ R, there are
two indices i, j such that 0 6 i < j 6 k and d(αi, αj) 6 L (dist(wi, wj) + 1).

Example 2. The group (Z,+, 0) is finitely generated with {1} as a set of genera-
tors. The function flast does not satisfy the Lipschitz property of order 1 (take
w1 = aNa and w2 = aNb), but it satisfies the Lipschitz property of order 2.

Using the pigeon hole principle, it is easy to prove the implication from iii)
to i) of Theorem 2:
Proposition 1. A k-sequential relation satisfies the Lipschitz property of order k.

3.2 Branching twinning property of order k

The idea behind the branching twinning property of order k is to consider k + 1
runs labeled by arbitrary words with k cycles. If the branching twinning property
is satisfied then there are two runs among these k+ 1 such that the values remain
close (i.e. the Cayley distance between these values is bounded) along the prefix
part of these two runs that read the same input. This property is named after
the intuition that the k + 1 runs can be organized in a tree structure where the
prefixes of any two runs are on the same branch up to the point where those two
runs do not read the same input anymore.

Definition 4. A weighted automaton over G satisfies the branching twinning
property of order k (denoted by BTPk) if: (see Figure 2)

– for all states {qi,j | i, j ∈ {0, . . . , k}} with q0,j initial for all j,
– for all γj such that (q0,j , γj) ∈ tinit with j ∈ {0, . . . , k},
– for all words ui,j and vi,j with 1 6 i 6 k and 0 6 j 6 k such that there are
k + 1 runs satisfying for all 0 6 j 6 k, for all 1 6 i 6 k, qi−1,j

ui,j |αi,j−−−−−→ qi,j

and qi,j
vi,j |βi,j−−−−−→ qi,j,

there are j 6= j′ such that for all i ∈ {1, . . . , k}, if for every 1 6 i′ 6 i, we have
ui′,j = ui′,j′ and vi′,j = vi′,j′ , then we have

delay(γjα1,j · · ·αi,j , γj′α1,j′ · · ·αi,j′) = delay(γjα1,j · · ·αi,jβi,j , γj′α1,j′ · · ·αi,j′βi,j′).

8



Example 3. The weighted automaton W0, given in Figure 1(a), does not satisfy
the BTP1 (considering loops around qa and qb). One can prove however that it
satisfies the BTP2.

Let us denote by W1 the weighted automaton obtained by concatenating W0
with itself, with a fresh # separator letter. W1 realizes the function f2

last defined
as f2

last(u#v) = flast(u) + flast(v). We can see that the minimal k such that W1
satisfies the BTPk is k = 4. As we will see, this is the sequentiality degree of
f2
last.

γ0
q0,0 q1,0

v1,0|β1,0

q2,0

v2,0|β2,0

qk,0

vk,0|βk,0

u1,0|α1,0 u2,0|α2,0

γ1
q0,1 q1,1

v1,1|β1,1

q2,1

v2,1|β2,1

qk,1

vk,1|βk,1

u1,1|α1,1 u2,1|α2,1

γk
q0,k q1,k

v1,k|β1,k

q2,k

v2,k|β2,k

qk,k

vk,k|βk,k

u1,k|α1,k u2,k|α2,k

k
+

1
ru

ns

Fig. 2. Branching twinning property of order k

3.3 Equivalence of Lipschitz and branching twinning properties

We can prove that a weighted automaton satisfies the BTPk if and only if
its semantics satisfies the Lipschitz property of order k. This implies that the
branching twinning property of order k is a machine independent property, i.e.
given two WA W1,W2 such that [[W1]] = [[W2]], W1 satisfies the BTPk iff W2
satisfies the BTPk.

Proposition 2. A weighted automaton W over an infinitary finitely generated
group G satisfies BTPk if and only if [[W ]] satisfies the Lipschitz property of
order k.

Proof (Sketch). Let us sketch the proof of the Proposition. First, suppose that
W does not satisfy the BTPk. Then consider a witness of this non satisfaction.
Fix an integer L. By pumping the loops in this witness (enough time and going
backward), one can construct k + 1 words that remain pairwise sufficiently close
while their outputs are pairwise at least at distance L. This leads to prove that
[[W ]] does not satisfy the Lipschitz property of order k.

Conversely, consider that the BTPk is satisfied. For all k + 1 pairs of words
and weights in [[W ]], we have k + 1 corresponding runs in W labeled by those

9



words. By exhibiting cycles on these runs, we can get an instance of BTPk as in
Figure 2 such that the non-cycling part is bounded (in length). By BTPk, there
are two runs that have the same delays before and after the loops appearing in
their common prefix. Thus, we can bound the distance between the two weights
produced by those runs proportionally to the distance between the two input
words, proving that the Lipschitz property is satisfied. ut

4 Constructing a k-sequential weighted automaton

As explained in the introduction, the most intricate part in the proof of Theorem 2
is to prove that ii) implies iii). We give a constructive proof of this fact as stated
in the following proposition.

Proposition 3. Given a weighted automaton W satisfying the BTPk, one can
effectively build k sequential weighted automata whose union is equivalent to W .

Let W = (Q, tinit, tfinal, T ) be a weighted automaton that satisfies the BTPk.
The construction is done in two steps. First, we build an infinite sequential
weighted automaton DW equivalent to W , using the subset construction with
delays presented in [4]. Then, by replacing infinite parts of DW with finite
automata, we build k sequential weighted automata whose union is equivalent to
W .

Let us sketch the main ideas behind the construction of DW . The states of
DW are the subsets S of Q × G. On input u ∈ A∗, DW selects an initial run
ρ : α0−→ p0

u|α−−→ p of W , outputs the corresponding α ∈ G, and, in order to keep
track of all the runs ρ′ : β0−→ q0

u|β−−→ q of W over the input u, stores in its state the
corresponding pairs (q′, delay(α0α, β0β)). The detailed construction, together
with the proofs of its properties, adapted from [4] to fit our settings, can be found
in the appendix.

If W is a transducer, i.e., a weighted automaton with weights in a free monoid,
and W satisfies the BTP1, which is equivalent to the twinning property, Lemma
17 of [4] proves that the trim part of DW is finite. This lemma can be generalized
to any kind of weighted automata, proving our proposition in the particular case
k = 1. Let us now prove the general result by induction. Suppose that k > 1, and
that the proposition is true for every integer strictly smaller than k. We begin by
exposing two properties satisfied by DW .

Since W satisfies the BTPk, it also satisfies the notion of TPk introduced in
[9], and, by Proposition 1 of that paper, it is `-valued for some integer ` effectively
computable. Let NW = 2MW |Q|`|Q|, let S ∈ Q×G be a state of the trim part
of DW , and let WS = (Q,S, tfinal, T ) be the weighted automaton obtained by
replacing the initial output relation of W with S. The following properties are
satisfied.

P1: The size of S is bounded by `|Q|;

P2: If there exists a pair (q, α) ∈ S such that |α| > NW , [[WS ]] is k-sequential.

10



The proof of P1 follows from the `-valuedness of W . The main difficulty of the
demonstration of Proposition 3 lies in the proof of P2, which can be sketched as
follows. Using the fact that there exists (q, α) ∈ S such that |α| > NW , we expose
a partition of S into two subsets S′ and S′′ satisfying the BTPk′ , respectively the
BTPk′′ , for some 1 6 k′, k′′ < k such that k′ + k′′ 6 k. This is proved by using
the fact that W satisfies the BTPk, and that the branching nature of the BTP
allows us to combine unsatisfied instances of the BTP over WS′ and WS′′ to build
unsatisfied instances of the BTP over W . Then, since k′ < k and k′′ < k, [[S′]] is
k′-sequential and [[S′′]] is k′′-sequential by the induction hypothesis. Finally, as S
is the union of S′ and S′′, WS is equivalent to the union of WS′ and WS′′ , and
P2 follows, since k′ + k′′ 6 k.

The properties P1 and P2 allow us to expose k sequential weighted automata
V 1, . . . , V k whose union is equivalent to W . Let U denote the set containing the
accessible states S of DW that contain only pairs (q, α) satisfying |α| 6 NW . As
there are only finitely many α ∈ G such that |α| 6 NW , P1 implies that U is
finite. Moreover, as a consequence of P2, for every state S /∈ U in the trim part
of DW , WS can be expressed as the union of k sequential weighted automata
Vi(S), with 1 6 i 6 k. For every 1 6 i 6 k, let V i be the sequential weighted
automaton that copies the behaviour of DW as long as the latter stays in U ,
and swaps to Vi(S) as soon as DW enters a state S /∈ U . Then DW is equivalent
to the union of the V i, 1 6 i 6 k, which proves the desired result, since DW is
equivalent to W . Once again, the detailed proofs can be found in the appendix.

5 Cost register automata with independent registers

Recently, a new model of machine, named cost register automata (CRA), has
been introduced in [2]. We present in this section how the class of k-sequential
relations is also characterized by a specific subclass of cost register automata.

A cost register automaton (CRA) [2] is a deterministic automaton with
registers containing values from a set S and that are updated through the
transitions: for each register, its new value is computed from the old ones and
from elements of S combined using some operations over S. The output value is
computed from the values taken by the registers at the end of the processing of
the input. Hence, a CRA defines a relation in A∗ × S.

In this paper, we focus on a particular structure (M,⊗c) defined over a monoid
(M,⊗,1). In such a structure, the only updates are unary and are of the form
X := Y ⊗ c, where c ∈M and X,Y are registers. When M is (Z,+, 0), this class
of automata is called additive cost register automata [3]. When M is the free
monoid (A∗, ., ε), this class is a subclass of streaming string transducers [1] and
turns out to be equivalent to the class of rational functions on words, i.e. those
realized by finite-state transducers.

While cost register automata introduced in [2] define functions from A∗ to
M, we are interested in defining finite-valued relations. To this aim, we slightly
modify the definition of CRA, allowing to produce a set of values computed from
register contents.

11



Definition 5. A cost register automaton on the alphabet A over the monoid
(M,⊗,1) is a tuple (Q, qinit,X , δ, µ) where Q is a finite set of states, qinit ∈ Q
is the initial state and X is a finite set of registers. The transitions are given
by the function δ : Q×A→ (Q× UP(X )) where UP(X ) is the set of functions
X → X ×M that represents the updates on the registers. Finally, µ is a finite
set of Q×X ×M (the output relation).

The semantics of such an automaton is as follows: if an update function f
labels a transition and f(Y ) = (X,α), then the register Y after the transition
will take the value βα where β is the value contained in the register X before the
transition. More precisely, a valuation ν is a mapping from X to M and let V be
the set of such valuations. The initial valuation νinit is the function associating
with each register the value 1. A configuration is an element of Q × V. The
initial configuration is (qinit, νinit). A run on a word w = w1 · · ·wk ∈ A∗ where
for all i, wi ∈ A, is a sequence of configurations (q1, ν1)(q2, ν2) . . . (qk+1, νk+1)
satisfying that for all 1 6 i 6 k, and all registers Y , if δ(qi, wi) = (qi+1, gi)
with gi(Y ) = (X,α), then νi+1(Y ) = νi(X)α. Moreover, the run is said to be
accepting if (q1, ν1) is the initial configuration and there are X,α such that
(qk+1, X, α) ∈ µ.

A cost register automaton C computes a relation [[C]] ⊆ A∗ ×M defined
by the set of pairs (w, νk+1(X)α) such that (q1, ν1)(q2, ν2) . . . (qk+1, νk+1) is an
accepting run of C on w and (qk+1, X, α) ∈ µ.

Definition 6. A cost register automaton is said to be with independent registers
if for any update function f which labels a transition, if f(Y ) = (X,α) then
X = Y .

Example 4. Consider A = {a, b} and (M,⊗,1) = (Z,+, 0). The cost register
automaton C0 given in Figure 1(b) computes the function flast introduced in
Example 1. The register Xa (resp. Xb) stores the number of occurrences of the
letter a (resp. b). Observe that these two registers are independent.

Independence of registers is tightly related to sequentiality of WA. We prove:

Proposition 4. For all positive integers k, a relation is k-sequential if and only
if it is computed by a cost register automaton with k independent registers.

CRA are deterministic by definition, and a challenging minimisation problem
is captured by the notion of register complexity. It is defined for a relation as
the minimal integer k such that it can be defined by a CRA with k registers. By
Proposition 4, results on the computation of the degree of sequentiality presented
in Section 7 thus also allow to compute the register complexity for CRA with
independent registers.

One can also show that the class of CRA with k independent registers is
equivalent to the class of CRA with k registers, updates of the form X := Y α,
and that are copyless (every register appears at most once in the right-hand side
of an update function).

12



The class of CRA with k non-independent registers was characterized in [9]
using the twinning property of order k. This property is weaker than our branching
twinning property of order k as it requires the same conclusion but only for runs
labeled by the same input words.

6 The case of transducers

A transducer is defined as a weighted automaton with weights in the monoid B∗.
It can thus be seen as a weighted automaton with weights in the free group F(B).
We say that a transducer T satisfies the branching twinning property of order k
if, viewed as a weighted automaton over F(B), it satisfies the BTPk. Similarly, a
relation R ⊆ A∗ ×B∗ is said to satisfy the Lipschitz property of order k iff it is
the case when viewing R as a relation in A∗ ×F(B).

A relation R of A∗×B∗ is said to be positive k-sequential if it is computed by
a k-sequential weighted automaton with weights in B∗ (weights on the transitions
in B∗ and initial and final relations in Q×B∗ where Q is its set of states). As
for the general case, it is easy to see that a relation is positive k-sequential if and
only if it is computed by a cost register automaton with k independent registers,
with updates of the form X := Xc where c ∈ B∗ and with an output relation
µ ⊆ Q×X ×B∗.

Theorem 3. Let T be a transducer from A∗ to B∗, and k be a positive integer.
The following assertions are equivalent:

i) [[T ]] satisfies the Lipschitz property of order k,
ii) T satisfies the branching twinning property of order k,
iii) [[T ]] is positive k-sequential.

The assertions i) and ii) are equivalent by Theorem 2. The fact that the
assertion iii) implies the assertion ii) is also a consequence of Theorem 2 and of
the fact that the branching twinning property of order k is a machine-independent
characterization. Finally, it remains to prove that the assertion ii) implies the
assertion iii).

By hypothesis, [[T ]] ⊆ A∗ ×B∗ is computed by a transducer that satisfies the
branching twinning property of order k. Thus, by Theorem 2, it is computed by
a cost register automaton over F(B) with k independent registers. We conclude
using the:

Proposition 5. A relation in A∗×B∗ is computed by a cost register automaton
over F(B) with k independent registers if and only if it is computed by a cost
register automaton over B∗ with k independent registers.

7 Decidability of BTPk and computation of the
sequentiality degree

In this section, we prove the decidability of the following problem under some
hypotheses on the group G:

13



The BTPk Problem: given a weighted automaton W over some group G and
a number k, does W satisfy the BTPk?

As a corollary of Theorem 2, this allows to compute the degree of sequentiality
for weighted automata. We will consider two settings: first weighted automata
over some computable commutative group and second, word transducers.

Our decision procedures non-deterministically guess a counter-example to
the BTPk. First, we show that if there exists such a counter-example with more
than k loops, then there exists one with k loops. For simplicity, we can assume
that the counter-example contains k(k + 1)/2 loops i.e. exactly one loop per pair
(j, j′), with 0 6 j < j′ 6 k. This allows the procedure to first guess the ”skeleton”
of the counter example, and then check that this skeleton can be turned into a
real counter-example. The skeleton consists of the vectors of states, and, for each
pair (j, j′) of run indices, indicates the index χ(j, j′) of the last loop such that
input words of runs j and j′ are equal up to this loop, and the index η(j, j′) of
the loop that induces a different delay (with η(j, j′) 6 χ(j, j′)).

Case of computable commutative groups. We write W = (Q, tinit, tfinal, T ) and let
n = |Q|. In order to decide the branching twinning property, we will consider the
k+ 1-th power of W , denoted W k+1, which accepts the set of k+ 1 synchronized
runs in W . We write its runs as ρ = (ρi)06i6k and denote by αi the weight of
run ρi.

Theorem 4. Let G = (G,⊗) be a commutative group such that the operation ⊗
and the equality check are computable. Then the BTPk problem is decidable.

Proof (Sketch). It is easy to observe that for commutative groups, the constraint
expressed on the delay in the BTPk boils down to checking that loops have
different weights.

The procedure first guesses the skeleton of a counter-example as explained
above. The procedure then non-deterministically verifies that the skeleton can be
completed into a concrete counter-example. To this end, it uses the information
stored in this skeleton about how input words are shared between runs (indices
χ(j, j′)) to identify the power p 6 k+1 of W in which the run should be identified.
The procedure is based on the two following subroutines:

– first, given two vectors of states v, v′ ∈ Qp, checking that there exists a path
from v to v′ in W p is decidable,

– second, the following problem is decidable: given a vector of states v ∈ Qp
and a pair 1 6 j 6= j′ 6 p, check that there exists a cycle ρ around v in W p

such that delay(αj , αj′) 6= 1. The procedure non-deterministically guesses the
cycle in W p (its length can be bounded by 2np) and computes incrementally
the value of delay(αj , αj′). ut

If we consider the group (Z,+), we can verify that the above procedure runs
in Pspace if k is given in unary. In addition, using ideas similar to a lower bound
proved in [3], we can reduce the emptiness of k deterministic finite state automata
to the BTPk problem, yielding:

14



Theorem 5. Over (Z,+), the BTPk problem is Pspace-complete (k given in
unary).

Case of transducers. For word transducers, the authors of [16] prove that a
counter-example to the (classical) twinning property is either such that loops
have output words of different length, or such that output words produced on
the runs leading to the loops have a mismatch.

Inspired by this result, we show that the skeleton described above can be
enriched with the information, for each pair of run indices (j, j′), whether one
should look for a loop whose output words have distinct lengths, or for a mismatch
on the paths leading to the loop. These different properties can all be checked in
Pspace, yielding:

Theorem 6. Over (B∗, ·), the BTPk problem is Pspace-complete (k is given
in unary)4.

8 Conclusion

Multi-sequential machines are an interesting compromise between sequential and
finite-valued ones. This yields the natural problem of the minimization of the size
of the union. In this paper, we have solved this problem for weighted automata over
an infinitary finitely generated group, a setting that encompasses standard groups.
To this end, we have introduced a new twinning property, as well as a new Lipschitz
property, and have provided an original construction from weighted automata
to k-sequential weighted automata, extending the standard determinization of
transducers in an intricate way. In addition, the characterization by means of
a twinning property allows to derive efficient decision procedures, and all our
results are also valid for word transducers.

As a complement, these results can be generalized to non finitely generated
groups, using ideas similar to those developed in [9]. As future work, we plan to lift
these results to other settings, like infinite or nested words. Another challenging
research direction consists in considering other operations to aggregate weights
of runs.

References

1. Alur, R., Cerný, P.: Expressiveness of streaming string transducers. In: IARCS An-
nual Conference on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2010, December 15-18, 2010, Chennai, India. LIPIcs, vol. 8, pp.
1–12. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

2. Alur, R., D’Antoni, L., Deshmukh, J.V., Raghothaman, M., Yuan, Y.: Regular
functions and cost register automata. In: 28th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013.
pp. 13–22. IEEE Computer Society (2013)

4 The transducer is viewed as a weighted automaton over F(B).

15



3. Alur, R., Raghothaman, M.: Decision problems for additive regular functions. In:
Automata, Languages, and Programming - 40th International Colloquium, ICALP
2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 7966, pp. 37–48. Springer (2013)

4. Béal, M., Carton, O.: Determinization of transducers over finite and infinite words.
Theor. Comput. Sci. 289(1), 225–251 (2002), http://dx.doi.org/10.1016/S0304-
3975(01)00271-7

5. Berstel, J.: Transductions and context-free languages. Springer-Verlag (2013)
6. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans.

Comput. Log. 11(4) (2010), http://doi.acm.org/10.1145/1805950.1805953
7. Choffrut, C.: Une caracterisation des fonctions sequentielles et des fonctions sous-

sequentielles en tant que relations rationnelles. Theor. Comput. Sci. 5(3), 325–337
(1977), http://dx.doi.org/10.1016/0304-3975(77)90049-4

8. Choffrut, C., Schützenberger, M.P.: Décomposition de fonctions rationnelles. In:
STACS 86, 3rd Annual Symposium on Theoretical Aspects of Computer Science,
Orsay, France, January 16-18, 1986, Proceedings. Lecture Notes in Computer
Science, vol. 210, pp. 213–226. Springer (1986)

9. Daviaud, L., Reynier, P.A., Talbot, J.M.: A Generalised Twinning Property for
Minimisation of Cost Register Automata. In: 31st Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2016. IEEE Computer Society (2016), to
appear

10. Filiot, E., Gentilini, R., Raskin, J.F.: Quantitative languages defined by func-
tional automata. Logical Methods in Computer Science 11(3:14), 1–32 (2015),
http://arxiv.org/abs/0902.3958

11. Filiot, E., Gentilini, R., Raskin, J.: Finite-valued weighted automata. In: 34th
International Conference on Foundation of Software Technology and Theoretical
Computer Science, FSTTCS 2014, December 15-17, 2014, New Delhi, India. LIPIcs,
vol. 29, pp. 133–145. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2014)

12. Jecker, I., Filiot, E.: Multi-sequential word relations. In: Developments in Language
Theory - 19th International Conference, DLT 2015, Liverpool, UK, July 27-30, 2015,
Proceedings. Lecture Notes in Computer Science, vol. 9168, pp. 288–299. Springer
(2015)

13. Lombardy, S., Sakarovitch, J.: Sequential? Theor. Comput. Sci. 356(1-2), 224–244
(2006), http://dx.doi.org/10.1016/j.tcs.2006.01.028

14. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009),
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521844253

15. Schützenberger, M.P.: On the definition of a family of automata. Information and
Control 4 (1961)

16. Weber, A., Klemm, R.: Economy of description for single-valued transducers. Inf.
Comput. 118(2), 327–340 (1995), http://dx.doi.org/10.1006/inco.1995.1071

16


