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Size-Change Abstraction and Max-Plus

Automata ?

Thomas Colcombet1, Laure Daviaud1, and Florian Zuleger2

1 LIAFA, CNRS, Université Paris Diderot
2 Vienna University of Technology

Abstract. Max-plus automata (over N ∪ {−∞}) are �nite devices that
map input words to non-negative integers or −∞. In this paper we
present (a) an algorithm allowing to compute the asymptotic behaviour
of max-plus automata, and (b) an application of this technique to the
evaluation of the computational time complexity of programs.

1 Introduction

The contributions of this paper are two-fold. First, we provide an algorithm that
given a function computed by a max-plus automaton over N ∪ {−∞} computes
the asymptotic minimal behaviour of the automaton as a function of the length of
the input. We then apply this result for characterizing the asymptotic complexity
bounds that can be obtained by the size-change abstraction, which is a widely
used technique in automated termination analysis. These two contributions are
of independent interest. Let us introduce them successively.

Weighted automata, and the main theorem

Max-plus automata belong to the wider family of weighted automata, as in-
troduced by Schützenberger [8]. The principle of weighted automata is to con-
sider non-deterministic automata that produce values in a semiring (S,⊕,⊗, 0, 1)
(i.e., a ring in which the addition is not required to have an inverse). Weighted
automata interpret the non-determinism of the automaton as the sum in the
semiring and the sequence as the product. Standard non deterministic automata
correspond to the case of the Boolean semiring ({0, 1},∨,∧, 0, 1). Probabilis-
tic automata correspond to the case ([0, 1],+,×, 0, 1) (with a stochasticity re-
striction). Distance automata (or min-plus automata) correspond to the case
(N ∪ {∞},min,+, 0,∞}.

In this paper, we concentrate our attention to max-plus automata, which
correspond to the semiring (N ∪ {−∞},max,+, 0,−∞). Such automata have

? The research leading to these results has received funding from the European Union's
Seventh Framework Programme (FP7/2007-2013) under grant agreement no259454
and from the Vienna Science and Technology Fund (WWTF) through grant ICT12-
059.



transition with weights in N. Over a given input, they output the maximum
over all accepting runs of the sum of the weights of transitions (and −∞ if there
is no accepting run). Such automata are natural candidates for modelling worst
case behaviours of systems, as shown in the subsequent application. Remark that
max-plus automata share a lot of common points with min-plus automata, and
indeed, many results for max-plus automata can be converted into results for
min-plus automata and vice-versa3.

We seek to analyse the asymptotic behaviour of such automata. More pre-
cisely, �x a max-plus automaton computing a function f from the words in A∗
to N ∪ {−∞}. We study the asymptotic evolution of c(n) de�ned for n ∈ N as:

c(n) = inf{f(w) : w ∈ A∗, |w| ≥ n} .

We show that this quantity either is −∞ for all n, or it is in Θ(nβ) for a com-
putable rational β ∈ [0, 1]. Our main theorem, Theorem 2, expresses this prop-
erty in a dual, yet equivalent, way as the asymptotic behaviour of the longest
word that happens to have a value smaller than n.

From a logical perspective, it has to do with a quanti�er alternation since
the quantity studied is computed as a minimum (inf) of a function which, itself,
is de�ned as a maximum (as a max-plus-automaton). In particular, in our case,
it is immediately PSPACE hard (using reduction of the universality problem for
non-deterministic automata). Such quanti�er alternations are often even more
complex when weighted automata are considered. For instance, a natural ques-
tion involving such an alternation is to test whether f(u) < |u| for some u, and
it turns out to be undecidable [5]. On the other side, the boundedness question
for min-plus automata (determining if there exists n such that f(u) ≤ n for
all words u), which also has a similar quanti�er alternation �avour, turns out
to be decidable [4]. The work of Simon [10] has the most similarities with our
contribution. It shows that, for a min-plus automaton computing a function g,
the dual quantity d(n) = sup{g(w) : w ∈ A∗, |w| ≤ n} has a behaviour that is
asymptotically between n1/(k+1) and n1/k for some non-negative integer k. Our
result di�ers in two ways. First, the results for min-plus automata and for max-
plus automata cannot be converted directly into results over the other form of
automata. Second, our main result is signi�cantly more precise since it provides
the exact asymptotic coe�cient. The proof of this theorem is the subject of the
�rst part of this paper.

Program Analysis and Size Change Abstraction

The second contribution in this work consists in applying Theorem 2 for char-
acterizing the asymptotic complexity bounds that can be obtained by the size-
change abstraction, which is a popular program abstraction for automated ter-

3 Indeed, if we allow negative weights, then negating all weights turns max-plus au-
tomata into min-plus automata and vice-versa, while preserving the semantics. How-
ever, such kind of reductions can get more complicated, if not impossible, when
negative values are forbidden, as it is in our case.
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mination analysis (e.g. [6, 7]). This question was the primary reason for this
investigation.

We start with de�nitions needed to precisely state our contribution. We �x
some �nite set of size-change variables Var . We denote by Var ′ the set of primed
versions of the variables Var . A size-change predicate (SCP) is a formula x . y′

with x, y ∈ Var , where . is either > or ≥. A size-change transition (SCT) T is
a set of SCPs. A size-change system (SCS) S is a set of SCTs.

We de�ne the semantics of size-change systems by valuations σ : Var →
[0..N ] of the size-change variables to natural numbers in the interval [0..N ], where
N is a (symbolic) natural number. We write σ, τ ′ |= x.y′ for two valuations σ, τ ,
if σ(x).τ(y) holds over the natural numbers. We write σ, τ ′ |= T , if σ, τ ′ |= x.y′

holds for all x.y′ ∈ T . A trace of an SCS S is a sequence σ1
T1−→ σ2

T2−→ · · · such
that Ti ∈ S and σi, σ

′
i+1 |= Ti for all i. The length of a trace is the number of

SCTs that the trace uses, counting multiple SCTs multiple times. An SCS S is
terminating, if S does not have a trace of in�nite length.

We note that in earlier papers, e.g. [6], the de�nition of a size-change system
includes a control �ow graph that restricts the set of possible traces. For the
ease of development we restrain from adding control structure but our result
also holds when we add control structure. Moreover, earlier papers, e.g. [6],
consider SCSs semantics over the natural numbers, i.e., valuations σ : Var → N.
In contrast, we restrict values to the interval [0, N ] in order to guarantee that the
length of traces is bounded for terminating SCSs: no valuation σ ∈ Var → [0..N ]
can appear twice in a trace (otherwise we would have a cycle, which could be
pumped to an in�nite trace); thus the length of traces is bounded by (N + 1)k

for SCSs with k variables.
Problem Statement: Our goal is to determine a function hS : N→ N such

that the length of the longest trace of a terminating SCS S is of asymptotic
order Θ(hS(N)). This question has also been of interest in a recent report [1],
which claims that SCSs always have a polynomial bound, i.e., a bound Θ(Nk)
for some k ∈ N. However, this is not the case (see example below). We believe
that the development in [1] either contains a gap or that the results of [1] have
to be stated di�erently.

Example 1. The length of the longest trace of the SCS S = {T1, T2, T3} with
T1 = {x1 > x′1, x2 ≥ x′2, x3 > x′3, x4 ≥ x′4},
T2 = {x1 > x′1, x2 ≥ x′2, x2 ≥ x′3, x2 > x′4, x3 > x′4, x4 > x′4} and
T3 = {x2 > x′2, x2 > x′3, x2 > x′4, x3 > x′2, x3 > x′3, x3 > x′4, x4 > x′2, x4 >

x′3, x4 > x′4} is of asymptotic order Θ(N
3
2 ). For comparison, [1] considers SCSs

bounded in terms of the initial state; we can make S bounded in terms of the
initial state by adding a new variable xN to S, and adding the constraints {xN ≥
x′N , xN ≥ x′1, xN ≥ x′2, xN ≥ x′3, xN ≥ x′4} to each of T1, T2, T3.

The asymptotic order Θ(N
3
2 ) of S can be established by Theorem 1 stated

below (a corresponding max-plus automaton is stated in Example 2). For il-
lustration purposes, we sketch here an elementary proof. For the lower bound

we consider the sequence sN = ((T

√
N
2 −1

1 T2)
√

N
2 −1T3)

√
N
2 −1. For example, for
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N = 36 we have sN = T1T1T2T1T1T2T3T1T1T2T1T1T2T3. Note that sN is of

length lN =
√
N
2 ·

√
N
2 · (

√
N
2 − 1) = Ω(N

3
2 ). We de�ne valuations σi, with

0 ≤ i ≤ lN , that demonstrate that sN belongs to a trace of S: given some in-
dex 0 ≤ i ≤ lN , let t3 denote the number of T3 before index i in the sequence
sN , let t2 denote the number of T2 before index i since the last T3, and let
t1 denote the number of T1 before index i since the last T2 (note that we have

0 ≤ t1, t2, t3 <
√
N
2 by the shape of sN ); we set σi(x1) = N−t2 ·

√
N
2 −t1, σi(x2) =

N − t3 ·
√
N, σi(x3) = N − t3 ·

√
N − t1, σi(x4) = N − t3 ·

√
N −

√
N
2 − t2. It is

easy to verify that the valuations σi satisfy all constraints of sN .
We move to the upper bound. Let S be a sequence of SCTs that belongs

to a trace of S. We decompose S = S1T3S2T3 · · · into subsequences Si that
do not contain any occurrence of T3. We de�ne ai to be the maximal number
of consecutive T1 in Si, and bi to be the total number of T2 in Si. We set
ci = max{ai, bi}. We start with some observations: We have |Si| ≤ ci(ci+1)+ci =
ci(ci + 2) (i) by the de�nition of the ci. We have |Si| ≤ N (ii) because the
inequality x1 > x′1 is contained in T1 as well as in T2 and the value of x1 can only
decrease N times in Si. Combining (i) and (ii) we get |Si| ≤ min{ci(ci + 2), N}
(iii). We have

∑
i ci ≤ N (iv); this holds because there is a chain of inequalities

from the beginning to the end of S that for every i either uses all inequalities
x3 > x′3 of the consecutive T1 or all inequalities x4 > x′4 of the T2 in Si, and this
chain can only contain N strict inequalities. Finally, by the de�nition of the Si
we have |S| ≤

∑
i |Si| + 1. With (iii) we get |S| ≤

∑
imin{ci(ci + 2), N} + 1 ≤

5
∑
imin{c2i , N} (v). Using associativity and commutativity we rearrange the

sum
∑
i ci =

∑
i di +

∑
i ei + r, where the di are summands ci >

√
N and

the ei and r are the sum of summands ci ≤
√
N with

√
N
2 ≤ ei ≤

√
N and

r <
√
N
2 ; we denote ei =

∑
j cij for some cij . By (iv) there are at most

√
N of

the di and at most 2
√
N of the ei. Using these de�nitions in (v) we get |S| ≤

5(
∑
imin{d2i , N}+

∑
i,j min{c2ij , N}+min{r2, N}) ≤ 5(

√
N ·N+

∑
i,j c

2
ij+N) ≤

5(
√
N ·N +

∑
i e

2
i +N) ≤ 5(

√
N ·N + 2

√
N ·N +N) = O(N

3
2 ).

In this paper we establish the fundamental result that the computational time
complexity of terminating SCA instances is decidable:

Theorem 1. Let S be a terminating SCS. The length of the longest trace of S is
of order Θ(Nα), where α ≥ 1 is a rational number; moreover, α is computable.

We highlight that our result provides a complete characterization of the com-
plexity bounds arising from SCA and gives means for determining the exact
asymptotic bound of a given abstract program. Our investigation was motivated
by previous work [11], where we introduced a practical program analysis based
on SCA for computing resource bounds of imperative programs; in contrast to
this paper, [11] does not study the completeness of the proposed algorithms and
does not contain any result on the expressivity of SCA.

Organization of the Paper In Section 2, we give the automata de�nitions
and sketch the proof of Theorem 2. In Section 3 we provide a reduction from
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size-change systems to max-plus automata that allows to prove Theorem 1 from
Theorem 2.

2 Max-Plus Automata

In this section, we �rst de�ne max-plus automata (section 2.1), and then sketch
the proof of Theorem 2 (section 2.2).

2.1 De�nition of max-plus automata

A semigroup (S, ·) is a set S equipped with an associative binary operation `·'.
If the product has furthermore a neutral element 1, (S, ·, 1) is called a monoid.
The monoid is said to be commutative if · is commutative. An idempotent in
a semigroup is an element e such that e ·e = e. Given a subset A of a semigroup,
〈A〉 denotes the closure of A under product, i.e., the least sub-semigroup that
contains A. Given X,Y ⊆ S, X · Y denotes {a · b : a ∈ X, b ∈ Y }.

A semiring (S,⊕,⊗, 0S , 1S) is a set S equipped with two binary operations
⊕ and ⊗ such that (S,⊕, 0S) is a commutative monoid, (S,⊗, 1S) is a monoid,
0S is absorbing for ⊗ (for all x ∈ S, x⊗0S = 0S⊗x = 0S) and ⊗ distributes over
⊕. We shall use the max-plus semiring ({−∞} ∪ N,max,+,−∞, 0), denoted
N, and its extension R+ = {−∞, 0} ∪ {x : x ∈ R, x ≥ 1}, that we name the
real semiring. This semiring will be used instead of N during the computations.
The operation over matrices induced by this semiring is denoted ⊗. Remark that
0N = −∞, and 1N = 0.

Let S be a semiring. The set of matrices with m rows and n columns over
S is denoted Mm,n(S), or simply Mn(S) if m = n. As usual, A ⊗ B for two
matrices A,B (provided the width of A and the height of B coincide) is de�ned
as:

(A⊗B)i,j =
⊕

0<k≤n

(Ai,k ⊗Bk,j)
(
= max

0<k≤n
(Ai,k +Bk,j) for S = N or R+

)
.

It is standard that (Mn(S),⊗, In) is a monoid, whose neutral element is the
diagonal matrix In with 1S (i.e., 0 for N) on the diagonal, and 0S (i.e., −∞ for
N) elsewhere. For a positive integer k, we set M0 = In, and M

k = Mk−1 ⊗M .
For λ ∈ R+, we denote by λA the matrix such that (λA)i,j = λAi,j for all i, j

(this matrix has non-negative real coe�cients, which might not be over R+ if
λ ≤ 1). Finally, we write A ≤ B if for all i, j, Ai,j ≤ Bi,j .

A max-plus automaton over the alphabet A (with k states) is a map δ
from A toMk(N) together with initial and �nal vectors I, F ∈M1,k({0,−∞}).
The map δ is uniquely extended into a morphism from A∗ to Mk(N), that we
also denote δ. The function computed by the automaton maps each word
u ∈ A∗ to tI ⊗ δ(u)⊗ F ∈ N where tI denotes the transpose of I.
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Example 2. We consider the following automaton, over the alphabet {a, b, c}, for
k = 6 and de�ned by (where −∞ is not written for readability):

δ(a) =


0 0 0 0 0 0
1 0
0 0
1 0
0 0
0

 , δ(b) =


0 0 0 0 0 0
1 0
0 0 1 0

1 0
1 0
0

 ,

δ(c) =


0 0 0 0 0 0

0
1 1 1 0
1 1 1 0
1 1 1 0

0

 , and I = F =


0
0
0
0
0
0

 .

It is sometimes convenient to see such matrices as a weighted automaton [8].
Such a presentation is provided in Figure 1. The states of the automaton are
q1, . . . , q6 and correspond respectively to the lines and the columns 1 to 6 of the
matrices. There is a transition from qi to qj corresponding to letter x = a, b, c
if the entry i, j of the matrix δ(x) is z 6= −∞. In this case, the transition is
weighted by z. The initial states are the states qi such that Ii = 0. The �nal
states are the states qj such that Fj = 0. A run over the word w is a path (a
sequence of compatible transitions) in the graph labelled by w. Its weight is the
sum of the weights of the transitions. Finally the weight of a given word w is the
maximum of the weights of the runs labelled by w and going from an initial state
to a �nal state. The weight of w, given by the graph representation is exactly
the value tI ⊗ δ(w)⊗ F , given by the matrix presentation.

More details about weighted automata can be found in [3].

2.2 Main theorem

Theorem 2. Given a max-plus automaton computing f : A∗ → N ∪ {−∞},
there exists an algorithm that computes the value α ∈ {+∞}∪{β ∈ Q : β ≥ 1}
such that

g(n) = Θ(nα)

where g(n) = sup{|w| : f(w) ≤ n}, with the convention that n+∞ = +∞.

Example 3. The algorithm applied on the automaton given in exemple 2 outputs
value 2/3. A sequence of words that witness this growth is (((anb)n)cn)n∈N.

The semigroup of weighted matrices Our goal is to analyse the relationship
between the output of the automaton and the length of the input. Thus we

6



q3

q2

q4

q5

q1

q6

a, b : 1

a, b : 0, c : 1

b : 0

c : 1

c : 1

b : 1

a, c : 1

c : 1

b : 1

a : 0, b, c : 1

a, b, c : 0

a, b, c : 0

where:
� there are edges from state
q1 to every state labelled by
every letter with weight 0,
� there are edges from every
state to state q6 labelled by
every letter with weight 0,
� every state is initial and
�nal.

Fig. 1. A weighted automaton over the semiring (N,max,+).

use weighted matrices that are pairs of a matrix representing the behaviour of
the automaton with a value standing for the length of the input. Formally, a
weighted matrix is an ordered pair (M,x) where M ∈ Mk(R+) and x ≥ 1
is a real number called the weight of the weighted matrix. They are useful
to represent pairs (δ(w), |w|). The set of weighted matrices is denoted by Wk.
Weighted matrices have a semigroup structure (Wk,⊗), where (M,x) ⊗ (N, y)
stands for (M ⊗ N, x + y). By de�nition, the function w 7→ (δ(w), |w|) is a
morphism of semigroups. As in the general case, we use ⊗ over subsets of Wk.
Given A ⊆ Wk, 〈A〉 is the closure under ⊗ of A. Our goal is to study the set

{(δ(w), |w|) | w ∈ A∗} = 〈{(δ(a), 1) | a ∈ A}〉

and more precisely to give a �nite representation of it up to some approximation.
The key to our algorithm is the ability to (a) �nitely represent in�nite sets
of weighted matrices and (b) de�ne a notion of approximation between such
sets. Then our algorithm computes using such sets, and guarantees that, up
to the approximation, it is consistent with the behaviour of the automaton.
We present these notions below. From now we �x a max-plus automaton with
k states computing a function f and de�ned by the morphism δ. Let us �rst
introduce another semiring useful for de�ning �nite representation.

The R+
� and small semirings, and the semigroup of weighted matrices

We have seen the semirings N and R+. We use another semiring over the same
ground set R+ but with a di�erent product, �. For all x, y ∈ R+ set x� y to be:

x� y =

{
−∞ if either x = −∞ or y = −∞,

max(x, y) otherwise.

7



Again, (R+,max,�,−∞, 0) is a semiring, denoted R+
�. As before, this induces a

product operation � for matrices. The product operation � is a good approxi-
mation of ⊗ as shown by the following key lemma that follows from the similar
property for real number and monotonicity of max and plus.

Lemma 1. Given matrices M1, . . . ,Mq, q ≥ 1 over R+, then

M1 � · · · �Mq ≤M1 ⊗ · · · ⊗Mq ≤ q(M1 � · · · �Mq) .

The last semiring we use is the small semiring (S,max,�,−∞, 0), simply

denoted S, which is the restriction of R+
� to {−∞, 0, 1}. There is a natural map

ϕ from R+ to S obtained by collapsing all elements above or equal to 1 to 1. It
happens that ϕ is at the same time a morphism of semirings from R+ to S and

from R+
� to S. Matrices over the small semiring are called small matrices.

The morphism ϕ is also extended to weighted matrices by ϕ((M,x)) = ϕ(M).

Our goal is, given a �nite set of weighted matrices A, to compute a presentation
of 〈A〉 up to approximation (Lemma 7). The notion of presentation of sets of
weighted matrices and the notion of approximation are the subject of the two
subsequent sections.

Presentable Sets of Weighted Matrices We introduce now the notion of
presentable sets of matrices, i.e., sets of matrices that we can manipulate via their
�nite presentation. Our sets of weighted matrices are presented in `exponential
form', i.e., given a weight x ≥ 1, an entry of the matrix will be of the form xα.
In fact, some special cases have to be treated, that results in the use of α = ⊥
or −∞.
Exponents and exponentiations The semiring of exponents (the choice of this
name will be explained when de�ning exponentiation in the next paragraph) is
(Exps,max,max�,⊥,−∞) where

Exps = {⊥,−∞} ∪ [0, 1] ,

where max is de�ned with respect to the order ⊥ < −∞ < x < y for all
x < y ∈ [0, 1], and where max�(α, β) for α, β ∈ Exps is de�ned by:

max�(α, β) =

{
⊥ if α = ⊥ or β = ⊥,
max(α, β) otherwise.

This semiring will be simply denoted Exps, and the induced operation over ma-
trices � (we will see that this notation is not ambiguous). We take the convention
to denote by α, β exponents, and by X,Y, Z vectors and matrices of exponents.

We de�ne now the exponentiation operation. For x ≥ 1 and α ∈ Exps, set

xα =


−∞ if α = ⊥,
0 if α = −∞,
xα otherwise, i.e., if α ∈ [0, 1], for the usual exponent.

8



Lemma 2. For all x ≥ 1, α 7→ xα is a semiring morphism from Exps to R+
�.

Note that this morphism can be applied to vectors (or matrices). In this case,

given a matrix Y ⊆ Expsk×k, and some x ≥ 1, we denote by Y [x] ∈ R+
k×k

the
matrix such that (Y [x])i,j = xYi,j for all i, j = 1 . . . k. According to the previous
lemma, the map Y 7→ Y [x] is a morphism from matrices over Exps to matrices

over R+
�.

It is also sometimes convenient to send the small semiring to the exponent
semiring. It is done using the following straightforward lemma.

Lemma 3. The function γ that maps −∞ to ⊥, 0 to −∞, and 1 to 0 is a
semiring morphism from S to Exps such that xγ(a) = a for all a ∈ S and x ≥ 1.

Polytopes and presentable sets. Our goal it to describe �nitely some in�nite sets
of matrices over R+. We start from the notion of polytope. For this, we rely on
the de�nition of polytopes in Rk: a polytope (in Rk) is a convex hull of �nitely
many points of Rk. We would like to use this de�nition for subsets of Expsk. For
that we send Exps to R by t(⊥) = −2, t(−∞) = −1 and t(s) = s if s is real.

A subset of Expsk is called a polytope if its image under t is a polytope in
Rk. In particular, we can use this de�nition for matrices of exponents, yielding
polytopes of matrices.

We can now de�ne presentable sets of matrices over R+. Essentially, a set
of matrices over R+ is presentable if it is the image under exponentiation of a
�nite union of polytopes of exponent matrices. Let us de�ne precisely how this is
de�ned. A set of weighted matrices A ⊆ Wk is presentable if it is of the form:

A = {(M, 1) : M ∈ S} ∪ {(Y [x], x) : Y ∈ P, x ≥ 1} ,

where S is a set of small matrices of dimension k × k, and P is a �nite union
of polytopes of Expsk×k. The pair (S, P ) is called the presentation of A. A
presentation is said small if P = ∅. It is said asymptotic if S = ∅. Obviously,
any presentable set is the union of a set of small presentation with a set of
asymptotic presentation. Of course presentable sets are closed under union.

The approximation and simulation scheme We describe now the notion of
approximation that we use. Indeed, our goal is to compute the set of weighted
matrices {(δ(w), |w|)}. We cannot expect to do it in general, and, at any rate,
presentable sets of matrices cannot capture exactly the behaviour of the automa-
ton. That is why we reason about sets of matrices up to some approximation
relation that is su�ciently precise for our purpose, and at the same time is suf-
�ciently relaxed for allowing to approximate the behaviour of the automaton by
a presentable set of weighted matrices.

Given some a ≥ 1 and two weighted matrices (M,x) and (N, y), we write

(M,x) 4a (N, y) if M ≤ aN, y ≤ ax and ϕ(M) = ϕ(N) .

This de�nition extends to sets of weighted matrices as follows. Given two such
sets A,B, A 4a B if for all (N, y) ∈ B, there exists (M,x) ∈ A such that
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(M,x) 4a (N, y). We write A ≈a B if A 4a B and B 4a A and say that A is
a-equivalent to B. We drop the a parameter when not necessary, and simply
write A ≈ B if A ≈a B for some a.

A �rst consequence of this de�nition is that every weighted matrix (M,x) is
a-equivalent to the weighted matrix (ϕ(M), 1) where a is the maximum of the
entries of M and x. This justi�es that, in the de�nition of a presentable set, the
weighted matrices of the �nite part are of this form.

Let us give some intuition why this approximation may help. For instance
consider some exponent matrix M , and let us show:

{(M [x], x) : x ≥ 1} ≈2 {(M [y], y) : y ∈ N, y ≥ 1} .

Indeed, one inclusion is obvious, yielding 41. For the other direction, consider
some x ≥ 1, and take y = bxc, then 2y ≥ x and M [y] ≤M [x], thus (M [y], y) 42

(M [x], x). More generally imagine the y's would be further constrained to be
multiples of some value, say 2, then the same arguments would work. Hence this
equivalence relation allows to absorb a certain number of phenomena that can
occur in an automaton and are irrelevant for our speci�c problem. In particular,
if the least growing rate is achieved for words of length n for n even only, then
this `computing modulo 2' can be `hidden' thanks to the ≈-approximation.

The following lemma establishes some essential properties of the 4a relations
(as a consequence, the same properties hold for ≈a).

Lemma 4. Given A,A′, B,B′, C sets of weighted matrices and a, b ≥ 1,

1. if A 4a B and b ≥ a , then A 4b B,
2. if A 4a A′ and B 4a B′, then A ∪B 4a A′ ∪B′,
3. if A 4a B and B 4b C then A 4ab C,
4. if A 4a A′ and B 4a B′ then A⊗B 4a A′ ⊗B′,
5. if A 4a B then 〈A〉 4a 〈B〉.

The main induction: the forest factorization theorem of Simon The
forest factorization theorem of Simon [9] is a powerful combinatorial tool for
understanding the structure of �nite semigroups. In this short abstract, we will
not describe the original statement of this theorem, in terms of trees of factor-
izations, but rather a direct consequence of it which is central in our proof (the
presentation of the theorem was used in a similar way in [2]).

Theorem 3 (equivalent to the forest factorization theorem [9]). Given
a semigroup morphism ϕ from (S,⊗) (possibly in�nite) to a �nite semigroup
(T,�), and some A ⊆ S, set B0 = A and for all n ≥ 0,

Bn+1 = Bn ∪Bn ⊗Bn ∪
⋃
e∈T

is idempotent

〈Bn ∩ ϕ−1(e)〉 ,

then 〈A〉 = BN for N = 3|T | − 1.
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This theorem teaches us that, for computing the closure under product in the
semigroup S, it is su�cient to be able to know how to compute (a) the union of
sets, (b) the product of sets, and (c) the restriction of a set to the inverse image
of an idempotent by ϕ, and (d) the closure under product of sets of elements
that all have the same idempotent image under ϕ. Of course, this proposition is
only interesting when the semigroup T is cleverly chosen.

In our case, we are going to use the above proposition with (S,⊗) = (Wk,⊗),
and (T,�) = (Mk(S),�), and ϕ the morphism which maps each weighted matrix
(M,x) to ϕ(M). Our algorithm will compute, given a presentation of a set of
weighted matrices A, an approximation of 〈A〉 using the inductive principle of
the factorization forest theorem. This is justi�ed by the two following lemmas.

Lemma 5. For all presentable sets of weighted matrices A,A′, there exists ef-
fectively a presentable set of weighted matrices product(A,A′) such that

A⊗A′ ≈ product(A,A′) .

Lemma 6. For all presentable sets A such that ϕ(A) = {E} for E an idempo-
tent, there is e�ectively a presentable set idempotent(A) such that

〈A〉 ≈ idempotent(A) .

Assuming that Lemmas 5 and 6 hold, it is easy to provide an algorithm which,
given a presentable set A computes a presentable set closure(A) as follows:

� Set A0 = A and for all n = 0 . . . N − 1 (N taken from Theorem 3), set

An+1 = An ∪product(An, An)∪
⋃

E ∈ Mk(S)
idempotent

idempotent(An ∩ϕ−1(E)) .

� Output closure(A) = AN .

The correctness of this algorithm is given by the following lemma. It derives
from the good properties of ≈ given in Lemma 4.

Lemma 7. For all presentable sets of weighted matrices closure(A) ≈ 〈A〉 .

This allows us to conclude the proof of Theorem 2. The algorithm takes an
automaton δ, I, F as input, then it computes thanks to the above Lemma 7 a
presentable set B that is ≈-equivalent to 〈A〉 where A is the set of weighted
matrices corresponding to basic letters (i.e., {(δ(a), 1) : a letter}). Set (S, P ) a
presentation of B. Then the algorithm outputs inf{tI �X � F | X ∈ P} that is
computable since P is a �nite union of polytopes. This coe�cient is the answer
of the algorithm: the minimal exponent such that the presentable set witnesses
the existence of a behaviour of the automaton that has this growth-rate.
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3 From Size-Change Systems to Max-Plus Automata

For proving Theorem 1, we de�ne a translation of SCSs to max-plus automata.
Let S be an SCS with k variables, which we assume to be numbered x1, . . . , xk.
We de�ne an max-plus automaton φ(S) with k+2 states as follows: The alphabet
AS of φ(S) contains a letter aT for every SCT T ∈ S. We de�ne the mapping δ
of AS toMk+2(N) as follows:

δ(aT )i,j =


0, i = 1 or j = k + 2
1, xi−1 > x′j−1 ∈ T
0, xi−1 ≥ x′j−1 ∈ T
−∞, otherwise

Further, φ(S) has the initial and �nal vector I = F = 0 ∈ M1,k+2(N). For
example, the SCS from Example 1 is translated to the max-plus-automaton in
Example 2.

The following lemmata relate SCSs and their translations; they allow us to
derive Theorem 1 from Theorem 2.

Lemma 8. Let u be a word of φ(S) with tI⊗δ(u)⊗F = N . Then S has a trace
with valuations over [0, N ] of length |u|.

Lemma 9. Assume S has a trace with valuations over [0, N ] of length l. Then
there is a word u of φ(S) with tI ⊗ δ(u)⊗ F ≤ N and |u| = l.
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