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Abstract. Intelligent assistants are handling increasingly critical tasks, but until 
now, end users have had no way to systematically assess where their assistants 
make mistakes. For some intelligent assistants, this is a serious problem: if the 
assistant is doing work that is important, such as assisting with qualitative 
research or monitoring an elderly parent’s safety, the user may pay a high cost 
for unnoticed mistakes. This paper addresses this problem with 
WYSIWYT/ML, a human/computer partnership that enables end users to 
systematically test intelligent assistants. Our empirical evaluation shows that 
WYSIWYT/ML helped end users find assistants’ mistakes significantly more 
effectively than ad hoc testing. Not only did it allow users to assess an 
assistant’s work on an average of 117 email messages in only 10 minutes, it 
also scaled to a much larger data set, assessing an assistant’s work on 623 out of 
1,448 messages using only the users’ original 10 minutes’ testing effort. 

Keywords: Intelligent assistants, end-user programming, end-user 
development, end-user software engineering, testing, machine learning. 

1   Introduction 

When using a customized intelligent assistant, how can an end user assess whether 
and in what circumstances to rely on the assistant?  

Although this may seem at first glance to be merely a matter of providing live 
feedback, assistant assessment cannot be treated so superficially when the assistant is 
performing a critical task. Yet until now, there has been no way for end users to 
systematically assess whether and how their customized intelligent assistants need to 
be mistrusted or fixed. Instead, the mechanisms available for user assessment have 
been strictly ad hoc: users have only their gut reactions to what they serendipitously 
happen to notice. 

In their perspectives on the future of end-user development, Klann et al. pointed to 
the need both for intelligent customizations and quality control in end-user 
development [14]. In addition to Klann et al.’s arguments, there are at least three 
reasons why end-user assessment of today’s customized assistants has become of key 



importance. First, no machine learning technique can yet prevent an intelligent 
assistant from making any mistakes. Since machine learning algorithms try to learn a 
concept from a finite sample of training data, issues like overfitting and the 
algorithm’s inductive bias prevent an assistant from being 100% correct over future 
data. For instance, in [28], a good assistant is only about 80-90% accurate. 

Second, today’s intelligent assistants are taking on increasingly important roles—
roles in which, if the assistant goes awry, the user may bear significant costs and/or 
risks. For example, Gmail’s new priority inbox decides which e-mail messages busy 
people can and cannot delay reading [9]. Other kinds of emerging assistants are 
moving toward helping with research itself, such as qualitatively “coding” 
(categorizing) natural language text [17]. Assistants are even approaching intelligent 
“aging-in-place” monitoring of safety status to enable geographically distant 
caregivers to support their aging parents [25] without being personally nearby. In this 
paper, we focus on end users who are willing to spend a modest amount of effort to 
assess assistants doing these kinds of critical tasks.  

Third, if an assistant is making mistakes that are critical, the user may want to fix 
(“debug”) the assistant, but effective debugging relies heavily on effective testing—
the user needs to find where the assistant’s mistakes are, when their debugging efforts 
have fixed the mistakes, and when their previous testing and/or debugging may need 
to be revisited. Therefore, as we will explain in the next section, this paper maps the 
question of end-user assessment of a customized intelligent assistant to an end-user 
testing problem.   

Therefore, this paper presents a human/computer partnership, inspired by the What 
You See Is What You Test (WYSIWYT) end-user testing methodology for 
spreadsheets [4, 24]. In our approach (WYSIWYT/ML), the system (1) advises the 
user about which predictions to test, then (2) contributes more tests “like” the user’s, 
(3) measures how much of the assistant’s reasoning has been tested, and (4) 
continually monitors over time whether previous testing still “covers” new behaviors 
the assistant has learned.  

This paper makes the following contributions: 

• We show how end-user assessment of intelligent assistants can be mapped to 
testing concepts. This mapping opens the door to potentially applying prior 
research on software testing to end-user assessment of their assistants. 

• We present our WYSIWYT/ML approach for helping users both find where their 
assistant’s mistakes are and to monitor when a previously reliable assistant may 
have gone astray. 

• We present the first empirical evaluation of an end-user testing approach for 
assessing a user’s evolving intelligent assistant.  

Our empirical results showed significant evidence of the superiority of systematic 
testing in terms of efficiency and effectiveness—by one measure, improving users’ 
efficiency by a factor of 10. These results strongly support the viability of this new 
method for end users to assess whether and when to rely on their intelligent assistants.  



2   Intelligent Assistant Assessment as a Testing Problem  

In this section, we show how assessing whether and when an intelligent assistant’s 
outputs are right or wrong can be mapped to software testing. 

According to the latest IEEE Standard [13], testing is “the process of [running] a 
system or component under specified conditions, observing or recording the results, 
and making an evaluation of some aspect of the system or component”—i.e., running 
the program in a particular way (e.g., with particular inputs) and evaluating the 
outputs. 

The assistant is obviously the program, but it is an unusual kind of program in that 
it was, in part, automatically generated. Specifically, the intelligent assistants of 
interest to us are text classification assistants that output a single label for each textual 
input and, in this domain, the programming process is as follows. First, the machine 
learning expert writes the assistant shell and learning algorithm, and tests or otherwise 
validates them to his or her satisfaction. The expert then runs the algorithm with an 
initial set of training data (here, labeled text examples) to automatically generate the 
first version of the assistant, which is the first version of the program.  The assistant is 
then deployed on the end user’s desktop. 

At this point, the assistant’s primary job, like that of most other programs, is to 
read inputs (here, unlabeled text), reason about them, and to produce outputs (here, a 
label for that text). But unlike other programs, the assistant has a second job: to gather 
new training data from its user’s actions to learn new and better logic—the equivalent 
of automatically generating a new program. Note that the machine learning expert is 
no longer present to test this new program—the newest version of the assistant 
learned behaviors from its specific end user after it has been deployed to the user’s 
desktop. Thus, the end user is the only one present to test this program. 

Given such a program, many of the testing concepts defined in Rothermel et al. 
[24] can be straightforwardly applied to our domain. A test case is the combination of 
an input (unlabeled text) and its output (a label). Given a test case that the program 
has executed, a test is an explicit decision by the end user about whether the output is 
correct for that test case’s input. If the user decides that the output is not correct, this 
is evidence of a bug in the assistant’s reasoning. 

Testing would not be viable if every possible input/output pair must be tested 
individually, because the space of all possible inputs is usually intractably large or 
possibly infinite. One solution has been to use the notion of coverage to measure 
whether “enough” testing has been done. Along this line, consider a partitioning 
scheme that divides inputs into “similar” groups by some measure of similarity. A test 
case can then be said to cover all current (and future) input/output pairs for which the 
inputs are in the same group as the test case’s input, and the outputs equal the test 
case’s output. 

Given these definitions, systematic testing differs in two important ways from the 
ad hoc testing that comes by serendipitously observing correct/incorrect behaviors: 
systematic testing has a measure (coverage) for ascertaining how “tested” the program 
is, and it provides a way to identify which test cases can increase that measure. In the 
spreadsheet paradigm, systematic testing by end users has been shown to be 
significantly more effective than ad hoc testing [4].  



Finally, it helps to discuss how testing and debugging, while related, are distinctly 
separate activities. Testing, as we have explained, evaluates whether a program’s 
outputs are right or wrong, whereas debugging is the act of actually fixing the 
program. Even without precisely mapping debugging of assistants to classic 
debugging concepts (which is beyond the scope of this paper), it is clear that testing 
contributes to two phases that have been identified for debugging [18]: it contributes 
to the debugging phase of finding the bug by showing an instance of where/how a 
program is failing, and also contributes to the debugging phase of validation of 
whether the program has now stopped failing in that way. Our vision for the testing 
approach we present in this paper is that it will contribute to debugging in these two 
aspects.  

3   Related Work  

Testing of intelligent assistants is often done pre-deployment by machine learning 
specialists via statistical methods [12]. Such methods do not substitute for end users’ 
assessment of their assistants because pre-deployment evaluation cannot assess 
suitability of after-deployment customizations to a particular user. 

Some statistical debugging, however, can be automatically carried out after 
deployment. Research in machine learning has led to active learning, whereby an 
assistant can request the user to label the most informative training examples during 
the learning process [27]. Although one of our WYSIWYT/ML methods (Confidence) 
is sometimes used in active learning, most of our methods differ from active 
learning’s. Our approach complements debugging techniques such as active learning, 
allowing the user (not the intelligent assistant) to assess whether and when the 
assistant is reliable. 

Statistical outlier finding has been used in end-user programming settings for 
assessment, such as detecting errors in text editing macros [21], inferring formats 
from a set of unlabeled examples [26], and to monitor on-line data feeds in web-based 
applications for erroneous inputs [23]. These approaches use statistical analysis and 
interactive techniques to direct end-user programmers’ attention to potentially 
problematic values, helping them find places in their programs to fix. Our approach 
also uses outlier finding, but does so as just one part of a larger approach that also 
systematically measures how much more assessment needs to be done. 

Systematic testing for end users was pioneered by the What You See Is What You 
Test approach (WYSIWYT) for spreadsheet users [24]. To alleviate the need for users 
to conjure values for testing spreadsheet data, “Help Me Test” capabilities were 
added; these either dynamically generate suitable test values [6] or back-propagate 
constraints on cell values [1]. WYSIWYT inspired our approach in concept, but our 
under-the-hood reasoning about test prioritization and coverage are based on 
statistical properties of the assistant’s behavior, rather than WYSIWYT’s “white box” 
use of source code structure. Also, rather than helping users conjure new values to 
test, our approach instead aims to help users focus on just the right fraction of existing 
data to find important errors quickly. 

To support end users’ interactions with intelligent assistants, recent work has 
explored methods for explaining the reasons underlying an assistant’s predictions. 



Such explanations have taken forms as diverse as why… and why not… descriptions 
of the assistant’s logic [16, 19], visual depictions of the assistant’s known correct 
predictions versus its known failures [29], and electronic “door tags” displaying 
predictions of worker interruptibility with the reasons (e.g., “talking detected”) [30]. 
As a basis for creating explanations, researchers have also investigated the types of 
information users want before assessing the trustworthiness of an intelligent agent [8, 
17]. Recent work by Lim and Dey has resulted in a toolkit for applications to generate 
explanations for popular machine learning systems [20], and a few systems add 
debugging capabilities to explanations [16, 17]. Our approach for supporting 
systematic assessment of intelligent assistants is intended as a complement to 
explanation and debugging approaches like these. 

4   The WYSIWYT/ML Approach  

We have explained that without systematic testing, a user is left with only the ability 
to assess ad-hoc the assistant’s predictions that they happen to notice. Ad-hoc testing 
does not help the user pick which items to test, nor does it help the user decide how 
much more testing should be done. WYSIWYT/ML targets both issues for situations 
in which an assistant’s mistakes carry high risks or high costs for the user. 

One such high-risk/high-cost situation is qualitative “coding” of verbal transcript 
data (a common HCI research task), in which empirical analysts segment written 
transcripts and categorize each segment. This is a labor-intensive activity requiring 
days to weeks of time—but what if an assistant could do part of this work (e.g., [17])? 
For example, suppose ethnographer Adam has an intelligent assistant that learns to 
code the way Adam does; the assistant could then finish coding Adam’s transcripts. 
But Adam’s research results may be invalid if the assistant’s work is wrong, so he 
needs to assess where the assistant makes significant mistakes. 

We prototyped WYSIWYT/ML as part of an intelligent “coding” assistant that 
classifies text messages, similar to Adam’s hypothetical coding assistant. The 
assistant in our prototypes makes its predictions using a support vector machine, but 
the algorithm is not important—WYSIWYT/ML works with any algorithm that 
produces the information needed by the test prioritization methods described shortly. 

4.1   How WYSIWYT/ML and Adam Work Together 

Two Use-cases. Given an intelligent classification assistant, WYSIWYT/ML’s 
mission is to help the user assess its accuracy during two use cases.  

Use case UC-1: In the assistant’s early days, can Adam rely on it? After his 
assistant has been initially trained, Adam can use WYSIWYT/ML to decide whether 
it classifies messages consistently enough for his purposes. WYSIWYT/ML advises 
him which messages the assistant believes it is weakest at classifying, to minimize his 
time spent finding the assistant’s mistakes. 

Use case UC-2: As the assistant continues to customize itself, can he still rely on 
it? As the assistant continues to learn and/or new messages arrive, WYSIWYT/ML 



keeps track of whether the assistant is working on messages very similar to (and 
sharing the same output label as) those previously tested, or whether the assistant is 
now making predictions unlike those tested earlier. If the assistant is behaving 
differently than before, test coverage will be much lower, and Adam might decide to 
systematically test some of the assistant’s new work. WYSIWYT/ML helps him 
target these new predictions.  

To support these use-cases, WYSIWYT/ML performs four functions: (1) it advises 
(prioritizes) which predictions to test, (2) it contributes tests, (3) it measures 
coverage, and (4) it monitors for coverage changes. 

WYSIWYT/ML Prioritizes Tests. WYSIWYT/ML prioritizes the assistant’s topic 
predictions that are most likely to be wrong, and communicates these prioritizations 
using saturated green squares to draw Adam’s eye (e.g., Figure 1, fourth message). 
The prioritizations may not be perfect, but they are only intended to be advisory; 
Adam is free to test any messages he wants, not only those the system thinks are good 
choices. 

To select prioritization methods, we first ran offline experiments using a “gold 
standard” oracle (rather than real users) to allow for numerous experiment runs. These 
experiments compared five candidate prioritization methods against randomization 
(where Random represents the statistical likelihood of finding mistakes). We selected 
the three best-performing methods, all of which outperformed Random: Confidence, 
Similarity, and Relevance. 

The Confidence method leverages the assistant’s knowledge of its own 
weaknesses, prioritizing messages based on the assistant’s certainty that the topic it 
predicted is correct. (This is also a method used by active learning [27].) The higher 
the uncertainty, the more saturated the green square (Figure 1, Confidence column). 
Within the square, WYSIWYT/ML “explains” Confidence prioritizations using a pie 
chart (Figure 2, left). Each pie slice represents the probability of the message 

Figure 1. The WYSIWYT/ML prototype. This variant uses the Confidence method. 



belonging to that slice’s topic: a pie with evenly sized slices means the assistant 
thinks each topic is equally probable (thus, testing it is a high priority). 

The Similarity method selects “oddball” messages—those least similar to the data 
the assistant has learned from. The rationale is that if the assistant has never before 
seen anything like this message, it is less likely to know how to predict its topic. We 
measure this via cosine similarity [2], which is frequently used in information 
retrieval systems; here, it measures co-occurrences of the same words in different 
messages. A “fishbowl” explains this method’s priority, with the amount of “water” 
in the fishbowl representing how unique the message is compared to messages on 
which the assistant trained (Figure 2, middle). A full fishbowl means the message is 
very unique (compared to the assistant’s training set), and thus high priority. 

The Relevance method is based on the premise that messages without useful words 
may not contain enough information for the assistant to accurately predict a topic. In 
machine learning parlance, useful words have high information gain (i.e., the words 
that contribute the most to the assistant’s ability to predict the topic). We used the top 
20 words from the messages the assistant learned from, then prioritized messages by 
the lack of these relevant words. Our prototype uses the number of relevant words (0 
to 20) to explain the reason for the message’s priority (Figure 2, right), with low 
numbers getting the highest priority. 

In our offline tests (without users), the Confidence method was the most effective: 
its high-priority tests were very successful at identifying flaws in an assistant’s 
predictions, even when the assistant was 80% accurate. The Similarity and Relevance 
methods did not highlight as many bugs, but they outperformed Confidence in 
revealing hard-to-find bugs: items the assistant thought it was right about (predicted 
confidently), but which were wrong. We thus implemented all three, so as to 
empirically determine which is the most effective with real users. 

 

Use-Case UC-1: Adam Tests his Assistant. When Adam wants to assess his 
assistant, he can pick a message and judge (i.e., test) the assistant’s prediction. He can 
pick any message: one of WYSIWYT/ML’s suggestions, or some different message if 
he prefers. Adam then communicates his judgment by clicking a check if it is correct 
or an X if it is incorrect, as in Figure 3. If a topic prediction is wrong, Adam has the 
option of selecting the correct topic—our prototype treats this as a shortcut for 
marking the existing topic as “wrong”, making the topic change, and then marking the 
new topic as “right”. 

WYSIWYT/ML then contributes to Adam’s testing effort: when Adam tests a 
message, WYSWYT/ML automatically infers the same judgment upon similar 
messages. These automated judgments constitute inferred tests. 

 
 

Figure 2. The  Confidence (left), 
Similarity (middle), and Relevance 

(right) visualizations. 

Figure 3. A user can mark a predicted topic wrong, 
maybe wrong, maybe right, or right (or “?” to revert 
to untested). Prior research found these four choices 

to be very useful in spreadsheet testing [11]. 



To contribute these inferred tests, our approach computes the cosine similarity of 
the message Adam just tested with each untested message sharing the same predicted 
topic. WYSWYT/ML then marks very similar messages (i.e., scoring above a cosine 
similarity score threshold of 0.05) as approved or disapproved by the assistant. The 
automatically inferred assessments are shown with gray check marks and X marks in 
the Correctness column (Figure 4, top), allowing Adam to differentiate his own 
explicit judgments from those automatically inferred by WYSIWYT/ML. Of course, 
Adam is free to review (and if necessary, fix) any inferred assessments—in fact, most 
of our study’s participants started out doing exactly this. 

WYSIWYT/ML’s third functionality is measuring test coverage: how many of the 
assistant’s predictions have been tested by Adam and the inferred tests together. A 
test coverage bar (Figure 4, bottom) keeps Adam informed of this measure, helping 
him decide how much more testing he may want to do if the assistant’s importance 
warrants it. 

WYSIWYT/ML also allows the assistant to leverage Adam’s positive tests (his 
“right” and “maybe right” marks) as training data—an extra benefit for Adam. (Only 
Adam’s explicit tests become training data, not WYSIWYT/ML’s inferred tests.) As 
previously mentioned, however, collecting a few training instances in this way is not 
the point of WYSIWYT/ML. Our goal is to allow Adam to effectively and efficiently 
assess how much he can rely on the assistant, not to collect enough training instances 
to fix its flaws. 

Use-Case UC-2: Adam: “It was reliable before; is it reliable now?” Adam’s 
intelligent assistant continually learns from Adam’s behaviors, changing its reasoning 
based upon Adam’s feedback. The assistant may also encounter data unlike any it had 
seen before. Hence, for use-case UC-2, WYSIWYT/ML’s fourth functionality is to 
monitor coverage over time, alerting Adam when a previously tested assistant is 
exposing behaviors that he has not yet tested. 

Whenever Adam tests one of the assistant’s predictions or new content arrives for 
the assistant to classify, WYSIWYT/ML immediately updates all of its information. 

 

 
Figure 4. (Top): The user tested three of the messages (the dark check marks and X marks), so 

they no longer show a priority. Then the computer inferred the third message to be correct 
(light gray check mark). Because the user’s last test caused the computer to infer new 

information, the History column shows the prior values of what changed. (These values move 
right with each new change, until they are pushed off the screen.)  (Bottom): A test coverage 

bar informs users how many topic predictions have been assessed, by either the user or 
computer, as correct (check mark) or incorrect (X mark). 



This includes the assistant’s predictions (except for those Adam “locked down” by 
explicitly approving them), all testing priorities, all inferred tests, and the test 
coverage bar. Thus, Adam can always see how “tested” the assistant is at any given 
moment. If he decides that more testing is warranted, he can quickly tell which 
predictions WYSIWYT/ML thinks are the weakest (UC-1) and which predictions are 
not covered by his prior tests (UC-2). 

4.2   Cognitive Dimensions Analysis  

We used Cognitive Dimensions [10], a popular analytical technique, to head off 
problems early in the design of our WYSIWYT/ML prototype. This analysis revealed 
four key issues, which we addressed as follows. 

What just changed and how (Hard Mental Operations, Hidden Dependencies). 
Hard mental operations denote the user having to manually track or compute things in 
their head, and a hidden dependency is a link between two items that is not explicit. 
These dimensions revealed that a user could only answer the question “what just 
changed?” by scrolling extensively and memorizing prior statuses. To solve this, we 
added a History column showing the last two statuses of each message. 

Too eager to help (Premature Commitment). This dimension denotes requiring 
users to make a decision before they have information about the decision’s 
consequences. In an early prototype, testing a prediction could cause the message to 
disappear from the user’s view (due to the system automatically re-sorting messages), 
making it difficult to see the consequences of their action. Thus, we changed the 
prototype to only re-sort when the user asks it to (e.g., clicks the column header). This 
modification also helps emphasize recent changes, as other affected items in the sort 
“key” become visually distinct from their neighbors (e.g., now have a lower test 
priority than their neighbors). 

Notes and scratches (Secondary Notation). Secondary notations allow users to 
annotate, change layout, etc., to communicate informally with themselves or with 
other humans in their environment (as versus communicating with the computer). We 
decided that secondary notation was unnecessary for end-user testing. As our 
empirical results will show, revisiting this decision may be warranted. 

Communication overload (Role Expressiveness). This dimension denotes a user’s 
ability to see how a component relates to the whole. This was initially a problem for 
our priority widget because it had too many roles: a single widget communicated the 
priority of assessing the message, explained why it had that priority, and how the 
message had been assessed—all in one small icon. Thus, we changed the prototype so 
that no widget had more than one role. We added the Correctness column to show the 
user’s (or computer’s) assessment (Figure 1), the green square to represent priority, 
and the widgets inside to explain the reasoning behind the priority (Figure 2). 



5   Empirical Study 

We conducted a user study to investigate use-case UC-1, the user’s initial assessment 
of an assistant doing important work. We attempted to answer three research 
questions to reveal how well ordinary end users would assess their assistants in this 
use-case, even if they invested only 10 minutes of effort: 

RQ1 (Efficacy): Will end users, testing systematically with WYSIWYT/ML, find 
more bugs than via ad hoc testing?  

RQ2 (Satisfaction): What are the users’ attitudes toward systematic testing as 
compared to ad-hoc testing? 

RQ3 (Efficiency): Will WYSIWYT/ML’s coverage contributions to the 
partnership help with end users’ efficiency? 

We used three systematic testing treatments, one for each prioritization method 
(Confidence, Similarity, and Relevance). We also included a fourth treatment 
(Control) to represent ad hoc testing. Participants in all treatments could test (via 
check marks, X marks, and label changes) and sort messages by any column in their 
prototype. See Figure 1 for a screenshot of the Confidence prototype; Similarity and 
Relevance looked the same, save for their respective prioritization methods and 
visualizations (Figure 2). Control supported the same testing and sorting actions, but 
lacked prioritization visualizations or inferred tests, and thus needed no 
priority/inferred test history column. 

The design was within-subject (i.e. all participants experienced all treatments). We 
randomly selected 48 participants (23 males and 25 females) from respondents to a 
university-wide request. None of our participants were Computer Science majors, nor 
had any taken Computer Science classes beyond the introductory course. Participants 
worked with messages from four newsgroups of the widely used 20 Newsgroups 
dataset [15]: cars, motorcycles, computers, and religion (the original rec.autos, 
rec.motorcycles, comp.os.ms-windows.misc, and soc.religion.christian newsgroups, 
respectively). This data set provides real-world text for classification, the performance 
of machine learning algorithms on it is well understood, and, most important, the 
“gold standard” topic choice (the newsgroup to which the message’s author posted it) 
defines exactly which messages are “bugs” (misclassified by the assistant), in turn 
defining how many of those bugs participants found and when WYSIWYT/ML’s 
inferred approvals went astray. 

We randomly selected 120 messages (30 per topic) to train the intelligent assistant 
using a support vector machine [5]. We randomly selected a further 1,000 messages 
over a variety of dates (250 per topic) and divided them into five data sets: one 
tutorial set (to familiarize our participants) and four test sets (to use in the main tasks). 
Our intelligent assistant was 85% accurate when initially classifying each of these 
sets. We used a Latin Square to counterbalance treatment orderings and randomized 
how each participant’s test data sets were assigned to the treatments. 

Participants answered a background questionnaire, then took a tutorial to learn one 
prototype’s user interface and to experience the kinds of messages and topics they 
would be seeing. Using the tutorial set, participants then practiced testing and finding 
the assistant’s mistakes in that prototype. For the first main task, participants used the 
prototype to test and look for mistakes in a 200-message test set. After each treatment, 



participants filled out a Likert-scale questionnaire with their opinions of their success, 
the task difficulty, and the prototype. They then took another brief tutorial explaining 
the changes in the next prototype, practiced, and performed the main task in the next 
assigned data set and treatment. Finally, participants answered a final questionnaire 
covering their overall opinions of the four prototypes and comprehension. 

6   Results 

6.1   RQ1 (Efficacy): Finding Bugs 

Bugs Found. To investigate how well participants managed to find an assistant’s 
mistakes using WYSIWYT/ML, we compared bugs they found using the 
WYSIWYT/ML treatments to bugs they found with the Control treatment. An 
ANOVA contrast against Control showed a significant difference between treatment 
means (Table 1). For example, participants found nearly twice as many bugs using the 
frontrunner, Confidence, than using the Control version.  

Not only did participants find more bugs with WYSIWYT/ML, the more tests 
participants performed using WYSIWYT/ML, the more bugs they found (linear 
regression, F(1,46)=14.34, R2=.24, beta=0.08, p<.001), a relationship for which there 
was no evidence in the Control variant (linear regression, F(1,45)=1.56, R2=.03, 
beta=0.03, p=.218). Systematic testing using WYSIWYT/ML yielded significantly 
better results for finding bugs than ad-hoc testing. 

Profile of a Hard Bug. Our formative offline oracle experiments revealed types of 
bugs that would be hard for some of our methods to target as high-priority tests. 
(Recall that, offline, Relevance and Similarity were better than Confidence in this 
respect.) In order to evaluate our methods with real users, we took a close look at Bug 
20635, which was one of the hardest bugs for our participants to find (one of the five 
least frequently identified). The message topic should have been Religion but was 
instead predicted to be Computers, perhaps in part because Bug 20635’s message was 
very short (which was also true of the other four hardest bugs): 

Table 1. ANOVA contrast results (against Control) by treatment. The highest values in each 
row are shaded. 

 Mean (p-value for contrast with Control) df F p Confidence Similarity Relevance Control 
Bugs Found 

(max 30) 
12.2 (p<.001) 10.3 (p<.001) 10.0 (p<.001) 6.5 (N/A) 3, 

186 
10.61 <.001 

Helpfulness  
(max 7) 

5.3 (p<.001) 5.0 (p<.001) 4.6 (p<.001) 2.9 (N/A) 3, 
186 

22.88 <.001 

Perceived 
Success (max 21) 

13.4 (p=.016) 13.3(p=.024) 14.0 (p=.002) 11.4 (N/A) 3, 
186 

3.82 .011 

 



Subject: Mission Aviation Fellowship 
Hi, Does anyone know anything about this group and what they do? Any 
info would be appreciated. Thanks! 

As Table 2 shows, nearly all participants who had this bug in their test set found it 
with the Relevance treatment, but a much lower fraction found it using the other 
treatments. As the table’s Prioritization column shows, Relevance ranked the message 
as very high priority because it did not contain any useful words, unlike Confidence 
(the assistant was very confident in its prediction), and unlike Similarity (the message 
was fairly similar to other messages). Given this complementarity among the different 
methods, we hope in the future to evaluate a combination (e.g., a weighted average or 
voting scheme) of prioritization methods, thus enabling users to quickly find a wider 
variety of bugs than they could using any one method alone. 

6.2   RQ2 (Satisfaction): User Attitudes 

Participants appeared to recognize the benefits of systematic testing, indicating 
increased satisfaction over ad hoc testing. When asked “How much did each system 
help you find the computer’s mistakes?” on a seven-point Likert scale, an ANOVA 
contrast again confirmed that responses differed between treatments (Table 1, row 2), 
with WYSIWYT/ML treatments rated more helpful than Control. Table 1’s 3rd row 
shows that participant responses to the NASA-TLX questionnaire triangulate this 
result. Together, these results are encouraging from the perspective of the Attention 
Investment Model—they suggest that end users can be apprised of the benefits (so as 
to accurately weigh the costs) of testing an assistant that does work important to them. 

6.3   RQ3 (Efficiency): The Partnership’s Test Coverage  

Recall that when a participant tested a message, the system partnered with the user by 
inferring additional tests to “cover” similar messages (recall Figure 4). Coverage can 
be a powerful concept: it enables a user to reduce the number of items they must look 
over while still gaining a reasonable understanding of the assistant’s reliability. It also 
reveals the weaknesses of an assistant’s reasoning in terms of areas not yet covered by 
tests. In other domains, research has generally found that increased coverage increases 
bug finding [4, 7, 24]. Thus, in this section, we consider how much coverage the 
partnership achieved and how this related to participants’ efficiency. 

Table 2. The number of participants who found Bug 20635 
while working with each WYSIWYT/ML treatment. 

Treatment Prioritization Found Did not find 
Confidence 0.14 9 15 
Similarity 0.58 11 14 
Relevance 1.00 19 4 

 



Coverage: How much? Using WYSIYWT/ML, our participants were able to 
leverage their explicit tests by a factor of about 2. Together with the computer-oracle-
as-partner, participants’ mean of 55 test actions using WYSIWYT/ML covered a 
mean of 117 (60%) of the messages—thus, participants gained 62 inferred tests “for 
free”. Table 3 shows the raw counts. With the help of their computer partners, two 
participants even reached 100% test coverage, covering all 200 messages within their 
10-minute time limit.   

Further, coverage scaled well. In an offline experiment, we tried our participants’ 
explicit tests on the entire set of Newsgroup messages from the dates and topics we 
had sampled for the experiment—a data set containing 1,448 messages. (These were 
tests participants explicitly entered using either WYSIWYT/ML or Control, a mean of 
55 test actions per session.) Using participants’ 55 explicit tests (mean), the computer 
inferred a mean of 568 tests per participant, for a total coverage of 623 tests (mean) 
from only 10 minutes of work—a 10-fold leveraging of the user’s invested effort. 

Participant and WYSIWYT/ML Approvals vs. Disapprovals. As Table 3 shows, 
participants approved more messages than they disapproved. When participants 
approved a message, their topic choice matched the 20-Newsgroup “gold standard” 
(the original newsgroup topic) for 94% of their regular checkmarks, and even 81% of 
their “maybe” checkmarks. The agreement level across both types of approval was 
92%. By the same measure, WYSIWYT/ML’s approvals were also very accurate, 
agreeing with the gold standard an average 92% of the time—exactly the same level 
as the participants’. 

Participants’ regular X marks also agreed with the gold standard reasonably often 
(77%), but their “maybe” X marks agreed only 43% of the time. Informal pilot 
interviews revealed a possible explanation: re-appropriation of the “maybe” X marks 
for a subtly different purpose. When unsure of the right topic, pilot participants said 

Table 3. Tests via check marks, X marks, and topic changes during a 10-minute session (out 
of 200 total messages per session), for the three WYSIWYT/ML treatments. 

 Mean !s 
participants  
entered per 

session 

Mean Xs 
participants 
entered per 

session 

Mean !s 
inferred  

per session 

Mean Xs 
inferred  

per session 

Total 
!s 

Total 
Xs 

Explicit  Regular: 35.0 
“Maybe”: 7.1 

Regular: 2.4 
“Maybe”: 2.7 

Regular: 46.4 
“Maybe”: 8.5 

Regular:  4.7 
“Maybe”: 2.2 

 
 

105.2 

 
 

20.2 
 

Implicit  8.2 topic changes as shortcuts for 
X+topic+! N/A1 

Total tests 50.3 13.3 54.9 6.9 
Total messages tested 2 117.2 

1Although the computer sometimes did change topics, this was due to leveraging tests as 
increased training on message classification. Thus, because these topic changes were not 
directly due to the coverage (cosine-similarity) mechanism, we omit them from this coverage 
analysis. 

2 Total Tests is larger than Messages Tested because topic changes acted as two tests: an X 
on the original topic, then a ! on the new topic. 
 



they marked it as “maybe wrong” to denote that it could be wrong, but with the 
intention to revisit it later. This indicates that secondary notation in addition to testing 
notation—in the form of a “reminder” to revisit instead of a disapproval—could prove 
useful in future prototypes. 

Perhaps in part for this reason, WYSIWYT/ML did not correctly infer many 
bugs—only 19% of its X marks agreed with the gold standard. (For the computer’s X 
marks, regular X marks and “maybe” X marks did not differ—both were in low 
agreement with the gold standard.) The problem cannot be fully explained by 
participants repurposing “maybe” X marks—WYSIWYT/ML’s regular inferred X 
marks were just as faulty. However, this problem’s impact was limited, because 
inferred X marks’ only serve to highlight possible bugs. Thus, the 81% false rate on 
participants’ mean seven X’s per session meant only that participants had to look at 
an extra five messages/session. Most inferred tests were the very accurate positive 
tests (55 average/session), which were so accurate, participants could safely skip them 
when looking for bugs. 

7   Discussion 

Will end users really explicitly and systematically test an intelligent assistant? 
Although we did not test this question in our lab study, theory suggests that they will 
when they perceive the benefits of doing so to outweigh the costs [3]. Until this 
question can be investigated empirically, we target the subset of end users who are 
willing to expend at least modest effort to assess assistants on tasks in which mistake 
types and frequencies must be understood before the user would be willing to rely on 
them, such as with Adam’s intelligent qualitative coding assistant. 

Our current similarity-based notion of coverage also warrants further empirical 
investigation. It worked well for approvals, but a smaller threshold for disapprovals 
may result in fewer false bug identifications. In the future, we plan a systematic 
evaluation of this threshold and its impact on different aspects of WYSIWYT/ML.  

Finally, we emphasize that finding (not fixing) bugs is WYSIWYT/ML’s primary 
contribution toward debugging. Although WYSIWYT/ML leverages user tests as 
additional training data, simply adding training data is not an efficient method for 
debugging intelligent assistants. To illustrate, our participants’ testing labeled, on 
average, 55 messages, which increased average accuracy by 3% as a side effect of 
leveraging their test cases as training data. In contrast, participants in another study 
that also used a subset of the 20 Newsgroup dataset spent their 10 minutes debugging 
by specifying words/phrases associated with a label [31]. They entered only about 32 
words/phrases but averaged almost twice as much of an accuracy increase (5%) in 
their 10 minutes. Other researchers have similarly reported that allowing users to 
debug by labeling a word/phrase is up five times more efficient than simply labeling 
training messages [22]. Thus, rather than attempting to replace the interactive 
debugging approaches emerging for intelligent assistants (e.g., [16, 17, 22, 29]), 
WYSIWYT/ML’s bug-finding complements them by providing the missing testing 
piece that provides users with knowledge of where important bugs have emerged and 
when those bugs have been eradicated, so that they need not debug blindly.  



8   Conclusion  

With the increase in intelligent assistants helping with critical tasks comes the need to 
rethink the nature of how end users can assess whether and when to rely on their 
assistants’ help. WYSIWYT/ML is the first work to address this need. 

WYSIWYT/ML is a human/computer partnership to enable end users to assess 
intelligent assistants systematically. The human’s role is to approve or disapprove 
(i.e., test) portions of the assistant’s work. The computer’s role is to advise the user 
about testing priorities, contribute additional tests similar to the user’s (which the user 
may verify), measure how much of the assistant’s reasoning has been assessed, and 
monitor the need for additional assessment as the assistant evolves over time. 

Our empirical evaluation showed that systematically testing with WYSIWYT/ML 
resulted in a significant improvement over ad hoc methods in end users’ abilities to 
assess their assistants: our participants found almost twice as many bugs with our best 
WYSIWYT/ML variant as they did while testing ad hoc. Further, the approach scales: 
participants covered 117 messages in the 200-size data set (over twice as many as 
they explicitly tested) and 623 messages in the 1448-size data set (over 10 times as 
many as they explicitly tested)—all at a cost of only 10 minutes work. 

Thus, not only was systematic assessment of intelligent assistants effective at 
finding bugs, ordinary end users were able to assess a reasonable fraction of the 
assistant’s work in a matter of minutes. These findings are very encouraging as to the 
viability of bringing systematic testing to this domain, empowering end users to judge 
whether and when to rely on assistants that are helping with critical tasks. 
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