

City, University of London Institutional Repository

Citation: Kulesza, T., Burnett, M., Stumpf, S., Wong, W., Das, S., Groce, A., Shinsel, A.,

Bice, F. & McIntosh, K. (2011). Where Are My Intelligent Assistant's Mistakes? A Systematic
Testing Approach. Paper presented at the Third International Symposium on End-User
Development (IS-EUD), 07 - 10 June 2011, Torre Canne, Italy.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/214/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Where Are My Intelligent Assistant’s Mistakes?
A Systematic Testing Approach

Todd Kulesza1, Margaret Burnett1, Simone Stumpf 2,
Weng-Keen Wong1, Shubhomoy Das1, Alex Groce1,

Amber Shinsel1, Forrest Bice1, Kevin McIntosh1

1 School of EECS, Kelley Engr. Center, Oregon State University, Corvallis, OR 97331
{kuleszto, burnett, wong, dassh, alex, shinsela, bice, mcintoke}@eecs.oregonstate.edu

2 Centre for HCI Design, City University London, Northampton Square, London EC1V 0HB
Simone.Stumpf.1@city.ac.uk

Abstract. Intelligent assistants are handling increasingly critical tasks, but until
now, end users have had no way to systematically assess where their assistants
make mistakes. For some intelligent assistants, this is a serious problem: if the
assistant is doing work that is important, such as assisting with qualitative
research or monitoring an elderly parent’s safety, the user may pay a high cost
for unnoticed mistakes. This paper addresses this problem with
WYSIWYT/ML, a human/computer partnership that enables end users to
systematically test intelligent assistants. Our empirical evaluation shows that
WYSIWYT/ML helped end users find assistants’ mistakes significantly more
effectively than ad hoc testing. Not only did it allow users to assess an
assistant’s work on an average of 117 email messages in only 10 minutes, it
also scaled to a much larger data set, assessing an assistant’s work on 623 out of
1,448 messages using only the users’ original 10 minutes’ testing effort.

Keywords: Intelligent assistants, end-user programming, end-user
development, end-user software engineering, testing, machine learning.

1 Introduction

When using a customized intelligent assistant, how can an end user assess whether
and in what circumstances to rely on the assistant?

Although this may seem at first glance to be merely a matter of providing live
feedback, assistant assessment cannot be treated so superficially when the assistant is
performing a critical task. Yet until now, there has been no way for end users to
systematically assess whether and how their customized intelligent assistants need to
be mistrusted or fixed. Instead, the mechanisms available for user assessment have
been strictly ad hoc: users have only their gut reactions to what they serendipitously
happen to notice.

In their perspectives on the future of end-user development, Klann et al. pointed to
the need both for intelligent customizations and quality control in end-user
development [14]. In addition to Klann et al.’s arguments, there are at least three
reasons why end-user assessment of today’s customized assistants has become of key

importance. First, no machine learning technique can yet prevent an intelligent
assistant from making any mistakes. Since machine learning algorithms try to learn a
concept from a finite sample of training data, issues like overfitting and the
algorithm’s inductive bias prevent an assistant from being 100% correct over future
data. For instance, in [28], a good assistant is only about 80-90% accurate.

Second, today’s intelligent assistants are taking on increasingly important roles—
roles in which, if the assistant goes awry, the user may bear significant costs and/or
risks. For example, Gmail’s new priority inbox decides which e-mail messages busy
people can and cannot delay reading [9]. Other kinds of emerging assistants are
moving toward helping with research itself, such as qualitatively “coding”
(categorizing) natural language text [17]. Assistants are even approaching intelligent
“aging-in-place” monitoring of safety status to enable geographically distant
caregivers to support their aging parents [25] without being personally nearby. In this
paper, we focus on end users who are willing to spend a modest amount of effort to
assess assistants doing these kinds of critical tasks.

Third, if an assistant is making mistakes that are critical, the user may want to fix
(“debug”) the assistant, but effective debugging relies heavily on effective testing—
the user needs to find where the assistant’s mistakes are, when their debugging efforts
have fixed the mistakes, and when their previous testing and/or debugging may need
to be revisited. Therefore, as we will explain in the next section, this paper maps the
question of end-user assessment of a customized intelligent assistant to an end-user
testing problem.

Therefore, this paper presents a human/computer partnership, inspired by the What
You See Is What You Test (WYSIWYT) end-user testing methodology for
spreadsheets [4, 24]. In our approach (WYSIWYT/ML), the system (1) advises the
user about which predictions to test, then (2) contributes more tests “like” the user’s,
(3) measures how much of the assistant’s reasoning has been tested, and (4)
continually monitors over time whether previous testing still “covers” new behaviors
the assistant has learned.

This paper makes the following contributions:

• We show how end-user assessment of intelligent assistants can be mapped to
testing concepts. This mapping opens the door to potentially applying prior
research on software testing to end-user assessment of their assistants.

• We present our WYSIWYT/ML approach for helping users both find where their
assistant’s mistakes are and to monitor when a previously reliable assistant may
have gone astray.

• We present the first empirical evaluation of an end-user testing approach for
assessing a user’s evolving intelligent assistant.

Our empirical results showed significant evidence of the superiority of systematic
testing in terms of efficiency and effectiveness—by one measure, improving users’
efficiency by a factor of 10. These results strongly support the viability of this new
method for end users to assess whether and when to rely on their intelligent assistants.

2 Intelligent Assistant Assessment as a Testing Problem

In this section, we show how assessing whether and when an intelligent assistant’s
outputs are right or wrong can be mapped to software testing.

According to the latest IEEE Standard [13], testing is “the process of [running] a
system or component under specified conditions, observing or recording the results,
and making an evaluation of some aspect of the system or component”—i.e., running
the program in a particular way (e.g., with particular inputs) and evaluating the
outputs.

The assistant is obviously the program, but it is an unusual kind of program in that
it was, in part, automatically generated. Specifically, the intelligent assistants of
interest to us are text classification assistants that output a single label for each textual
input and, in this domain, the programming process is as follows. First, the machine
learning expert writes the assistant shell and learning algorithm, and tests or otherwise
validates them to his or her satisfaction. The expert then runs the algorithm with an
initial set of training data (here, labeled text examples) to automatically generate the
first version of the assistant, which is the first version of the program. The assistant is
then deployed on the end user’s desktop.

At this point, the assistant’s primary job, like that of most other programs, is to
read inputs (here, unlabeled text), reason about them, and to produce outputs (here, a
label for that text). But unlike other programs, the assistant has a second job: to gather
new training data from its user’s actions to learn new and better logic—the equivalent
of automatically generating a new program. Note that the machine learning expert is
no longer present to test this new program—the newest version of the assistant
learned behaviors from its specific end user after it has been deployed to the user’s
desktop. Thus, the end user is the only one present to test this program.

Given such a program, many of the testing concepts defined in Rothermel et al.
[24] can be straightforwardly applied to our domain. A test case is the combination of
an input (unlabeled text) and its output (a label). Given a test case that the program
has executed, a test is an explicit decision by the end user about whether the output is
correct for that test case’s input. If the user decides that the output is not correct, this
is evidence of a bug in the assistant’s reasoning.

Testing would not be viable if every possible input/output pair must be tested
individually, because the space of all possible inputs is usually intractably large or
possibly infinite. One solution has been to use the notion of coverage to measure
whether “enough” testing has been done. Along this line, consider a partitioning
scheme that divides inputs into “similar” groups by some measure of similarity. A test
case can then be said to cover all current (and future) input/output pairs for which the
inputs are in the same group as the test case’s input, and the outputs equal the test
case’s output.

Given these definitions, systematic testing differs in two important ways from the
ad hoc testing that comes by serendipitously observing correct/incorrect behaviors:
systematic testing has a measure (coverage) for ascertaining how “tested” the program
is, and it provides a way to identify which test cases can increase that measure. In the
spreadsheet paradigm, systematic testing by end users has been shown to be
significantly more effective than ad hoc testing [4].

Finally, it helps to discuss how testing and debugging, while related, are distinctly
separate activities. Testing, as we have explained, evaluates whether a program’s
outputs are right or wrong, whereas debugging is the act of actually fixing the
program. Even without precisely mapping debugging of assistants to classic
debugging concepts (which is beyond the scope of this paper), it is clear that testing
contributes to two phases that have been identified for debugging [18]: it contributes
to the debugging phase of finding the bug by showing an instance of where/how a
program is failing, and also contributes to the debugging phase of validation of
whether the program has now stopped failing in that way. Our vision for the testing
approach we present in this paper is that it will contribute to debugging in these two
aspects.

3 Related Work

Testing of intelligent assistants is often done pre-deployment by machine learning
specialists via statistical methods [12]. Such methods do not substitute for end users’
assessment of their assistants because pre-deployment evaluation cannot assess
suitability of after-deployment customizations to a particular user.

Some statistical debugging, however, can be automatically carried out after
deployment. Research in machine learning has led to active learning, whereby an
assistant can request the user to label the most informative training examples during
the learning process [27]. Although one of our WYSIWYT/ML methods (Confidence)
is sometimes used in active learning, most of our methods differ from active
learning’s. Our approach complements debugging techniques such as active learning,
allowing the user (not the intelligent assistant) to assess whether and when the
assistant is reliable.

Statistical outlier finding has been used in end-user programming settings for
assessment, such as detecting errors in text editing macros [21], inferring formats
from a set of unlabeled examples [26], and to monitor on-line data feeds in web-based
applications for erroneous inputs [23]. These approaches use statistical analysis and
interactive techniques to direct end-user programmers’ attention to potentially
problematic values, helping them find places in their programs to fix. Our approach
also uses outlier finding, but does so as just one part of a larger approach that also
systematically measures how much more assessment needs to be done.

Systematic testing for end users was pioneered by the What You See Is What You
Test approach (WYSIWYT) for spreadsheet users [24]. To alleviate the need for users
to conjure values for testing spreadsheet data, “Help Me Test” capabilities were
added; these either dynamically generate suitable test values [6] or back-propagate
constraints on cell values [1]. WYSIWYT inspired our approach in concept, but our
under-the-hood reasoning about test prioritization and coverage are based on
statistical properties of the assistant’s behavior, rather than WYSIWYT’s “white box”
use of source code structure. Also, rather than helping users conjure new values to
test, our approach instead aims to help users focus on just the right fraction of existing
data to find important errors quickly.

To support end users’ interactions with intelligent assistants, recent work has
explored methods for explaining the reasons underlying an assistant’s predictions.

Such explanations have taken forms as diverse as why… and why not… descriptions
of the assistant’s logic [16, 19], visual depictions of the assistant’s known correct
predictions versus its known failures [29], and electronic “door tags” displaying
predictions of worker interruptibility with the reasons (e.g., “talking detected”) [30].
As a basis for creating explanations, researchers have also investigated the types of
information users want before assessing the trustworthiness of an intelligent agent [8,
17]. Recent work by Lim and Dey has resulted in a toolkit for applications to generate
explanations for popular machine learning systems [20], and a few systems add
debugging capabilities to explanations [16, 17]. Our approach for supporting
systematic assessment of intelligent assistants is intended as a complement to
explanation and debugging approaches like these.

4 The WYSIWYT/ML Approach

We have explained that without systematic testing, a user is left with only the ability
to assess ad-hoc the assistant’s predictions that they happen to notice. Ad-hoc testing
does not help the user pick which items to test, nor does it help the user decide how
much more testing should be done. WYSIWYT/ML targets both issues for situations
in which an assistant’s mistakes carry high risks or high costs for the user.

One such high-risk/high-cost situation is qualitative “coding” of verbal transcript
data (a common HCI research task), in which empirical analysts segment written
transcripts and categorize each segment. This is a labor-intensive activity requiring
days to weeks of time—but what if an assistant could do part of this work (e.g., [17])?
For example, suppose ethnographer Adam has an intelligent assistant that learns to
code the way Adam does; the assistant could then finish coding Adam’s transcripts.
But Adam’s research results may be invalid if the assistant’s work is wrong, so he
needs to assess where the assistant makes significant mistakes.

We prototyped WYSIWYT/ML as part of an intelligent “coding” assistant that
classifies text messages, similar to Adam’s hypothetical coding assistant. The
assistant in our prototypes makes its predictions using a support vector machine, but
the algorithm is not important—WYSIWYT/ML works with any algorithm that
produces the information needed by the test prioritization methods described shortly.

4.1 How WYSIWYT/ML and Adam Work Together

Two Use-cases. Given an intelligent classification assistant, WYSIWYT/ML’s
mission is to help the user assess its accuracy during two use cases.

Use case UC-1: In the assistant’s early days, can Adam rely on it? After his
assistant has been initially trained, Adam can use WYSIWYT/ML to decide whether
it classifies messages consistently enough for his purposes. WYSIWYT/ML advises
him which messages the assistant believes it is weakest at classifying, to minimize his
time spent finding the assistant’s mistakes.

Use case UC-2: As the assistant continues to customize itself, can he still rely on
it? As the assistant continues to learn and/or new messages arrive, WYSIWYT/ML

keeps track of whether the assistant is working on messages very similar to (and
sharing the same output label as) those previously tested, or whether the assistant is
now making predictions unlike those tested earlier. If the assistant is behaving
differently than before, test coverage will be much lower, and Adam might decide to
systematically test some of the assistant’s new work. WYSIWYT/ML helps him
target these new predictions.

To support these use-cases, WYSIWYT/ML performs four functions: (1) it advises
(prioritizes) which predictions to test, (2) it contributes tests, (3) it measures
coverage, and (4) it monitors for coverage changes.

WYSIWYT/ML Prioritizes Tests. WYSIWYT/ML prioritizes the assistant’s topic
predictions that are most likely to be wrong, and communicates these prioritizations
using saturated green squares to draw Adam’s eye (e.g., Figure 1, fourth message).
The prioritizations may not be perfect, but they are only intended to be advisory;
Adam is free to test any messages he wants, not only those the system thinks are good
choices.

To select prioritization methods, we first ran offline experiments using a “gold
standard” oracle (rather than real users) to allow for numerous experiment runs. These
experiments compared five candidate prioritization methods against randomization
(where Random represents the statistical likelihood of finding mistakes). We selected
the three best-performing methods, all of which outperformed Random: Confidence,
Similarity, and Relevance.

The Confidence method leverages the assistant’s knowledge of its own
weaknesses, prioritizing messages based on the assistant’s certainty that the topic it
predicted is correct. (This is also a method used by active learning [27].) The higher
the uncertainty, the more saturated the green square (Figure 1, Confidence column).
Within the square, WYSIWYT/ML “explains” Confidence prioritizations using a pie
chart (Figure 2, left). Each pie slice represents the probability of the message

Figure 1. The WYSIWYT/ML prototype. This variant uses the Confidence method.

belonging to that slice’s topic: a pie with evenly sized slices means the assistant
thinks each topic is equally probable (thus, testing it is a high priority).

The Similarity method selects “oddball” messages—those least similar to the data
the assistant has learned from. The rationale is that if the assistant has never before
seen anything like this message, it is less likely to know how to predict its topic. We
measure this via cosine similarity [2], which is frequently used in information
retrieval systems; here, it measures co-occurrences of the same words in different
messages. A “fishbowl” explains this method’s priority, with the amount of “water”
in the fishbowl representing how unique the message is compared to messages on
which the assistant trained (Figure 2, middle). A full fishbowl means the message is
very unique (compared to the assistant’s training set), and thus high priority.

The Relevance method is based on the premise that messages without useful words
may not contain enough information for the assistant to accurately predict a topic. In
machine learning parlance, useful words have high information gain (i.e., the words
that contribute the most to the assistant’s ability to predict the topic). We used the top
20 words from the messages the assistant learned from, then prioritized messages by
the lack of these relevant words. Our prototype uses the number of relevant words (0
to 20) to explain the reason for the message’s priority (Figure 2, right), with low
numbers getting the highest priority.

In our offline tests (without users), the Confidence method was the most effective:
its high-priority tests were very successful at identifying flaws in an assistant’s
predictions, even when the assistant was 80% accurate. The Similarity and Relevance
methods did not highlight as many bugs, but they outperformed Confidence in
revealing hard-to-find bugs: items the assistant thought it was right about (predicted
confidently), but which were wrong. We thus implemented all three, so as to
empirically determine which is the most effective with real users.

Use-Case UC-1: Adam Tests his Assistant. When Adam wants to assess his
assistant, he can pick a message and judge (i.e., test) the assistant’s prediction. He can
pick any message: one of WYSIWYT/ML’s suggestions, or some different message if
he prefers. Adam then communicates his judgment by clicking a check if it is correct
or an X if it is incorrect, as in Figure 3. If a topic prediction is wrong, Adam has the
option of selecting the correct topic—our prototype treats this as a shortcut for
marking the existing topic as “wrong”, making the topic change, and then marking the
new topic as “right”.

WYSIWYT/ML then contributes to Adam’s testing effort: when Adam tests a
message, WYSWYT/ML automatically infers the same judgment upon similar
messages. These automated judgments constitute inferred tests.

Figure 2. The Confidence (left),
Similarity (middle), and Relevance

(right) visualizations.

Figure 3. A user can mark a predicted topic wrong,
maybe wrong, maybe right, or right (or “?” to revert
to untested). Prior research found these four choices

to be very useful in spreadsheet testing [11].

To contribute these inferred tests, our approach computes the cosine similarity of
the message Adam just tested with each untested message sharing the same predicted
topic. WYSWYT/ML then marks very similar messages (i.e., scoring above a cosine
similarity score threshold of 0.05) as approved or disapproved by the assistant. The
automatically inferred assessments are shown with gray check marks and X marks in
the Correctness column (Figure 4, top), allowing Adam to differentiate his own
explicit judgments from those automatically inferred by WYSIWYT/ML. Of course,
Adam is free to review (and if necessary, fix) any inferred assessments—in fact, most
of our study’s participants started out doing exactly this.

WYSIWYT/ML’s third functionality is measuring test coverage: how many of the
assistant’s predictions have been tested by Adam and the inferred tests together. A
test coverage bar (Figure 4, bottom) keeps Adam informed of this measure, helping
him decide how much more testing he may want to do if the assistant’s importance
warrants it.

WYSIWYT/ML also allows the assistant to leverage Adam’s positive tests (his
“right” and “maybe right” marks) as training data—an extra benefit for Adam. (Only
Adam’s explicit tests become training data, not WYSIWYT/ML’s inferred tests.) As
previously mentioned, however, collecting a few training instances in this way is not
the point of WYSIWYT/ML. Our goal is to allow Adam to effectively and efficiently
assess how much he can rely on the assistant, not to collect enough training instances
to fix its flaws.

Use-Case UC-2: Adam: “It was reliable before; is it reliable now?” Adam’s
intelligent assistant continually learns from Adam’s behaviors, changing its reasoning
based upon Adam’s feedback. The assistant may also encounter data unlike any it had
seen before. Hence, for use-case UC-2, WYSIWYT/ML’s fourth functionality is to
monitor coverage over time, alerting Adam when a previously tested assistant is
exposing behaviors that he has not yet tested.

Whenever Adam tests one of the assistant’s predictions or new content arrives for
the assistant to classify, WYSIWYT/ML immediately updates all of its information.

Figure 4. (Top): The user tested three of the messages (the dark check marks and X marks), so

they no longer show a priority. Then the computer inferred the third message to be correct
(light gray check mark). Because the user’s last test caused the computer to infer new

information, the History column shows the prior values of what changed. (These values move
right with each new change, until they are pushed off the screen.) (Bottom): A test coverage

bar informs users how many topic predictions have been assessed, by either the user or
computer, as correct (check mark) or incorrect (X mark).

This includes the assistant’s predictions (except for those Adam “locked down” by
explicitly approving them), all testing priorities, all inferred tests, and the test
coverage bar. Thus, Adam can always see how “tested” the assistant is at any given
moment. If he decides that more testing is warranted, he can quickly tell which
predictions WYSIWYT/ML thinks are the weakest (UC-1) and which predictions are
not covered by his prior tests (UC-2).

4.2 Cognitive Dimensions Analysis

We used Cognitive Dimensions [10], a popular analytical technique, to head off
problems early in the design of our WYSIWYT/ML prototype. This analysis revealed
four key issues, which we addressed as follows.

What just changed and how (Hard Mental Operations, Hidden Dependencies).
Hard mental operations denote the user having to manually track or compute things in
their head, and a hidden dependency is a link between two items that is not explicit.
These dimensions revealed that a user could only answer the question “what just
changed?” by scrolling extensively and memorizing prior statuses. To solve this, we
added a History column showing the last two statuses of each message.

Too eager to help (Premature Commitment). This dimension denotes requiring
users to make a decision before they have information about the decision’s
consequences. In an early prototype, testing a prediction could cause the message to
disappear from the user’s view (due to the system automatically re-sorting messages),
making it difficult to see the consequences of their action. Thus, we changed the
prototype to only re-sort when the user asks it to (e.g., clicks the column header). This
modification also helps emphasize recent changes, as other affected items in the sort
“key” become visually distinct from their neighbors (e.g., now have a lower test
priority than their neighbors).

Notes and scratches (Secondary Notation). Secondary notations allow users to
annotate, change layout, etc., to communicate informally with themselves or with
other humans in their environment (as versus communicating with the computer). We
decided that secondary notation was unnecessary for end-user testing. As our
empirical results will show, revisiting this decision may be warranted.

Communication overload (Role Expressiveness). This dimension denotes a user’s
ability to see how a component relates to the whole. This was initially a problem for
our priority widget because it had too many roles: a single widget communicated the
priority of assessing the message, explained why it had that priority, and how the
message had been assessed—all in one small icon. Thus, we changed the prototype so
that no widget had more than one role. We added the Correctness column to show the
user’s (or computer’s) assessment (Figure 1), the green square to represent priority,
and the widgets inside to explain the reasoning behind the priority (Figure 2).

5 Empirical Study

We conducted a user study to investigate use-case UC-1, the user’s initial assessment
of an assistant doing important work. We attempted to answer three research
questions to reveal how well ordinary end users would assess their assistants in this
use-case, even if they invested only 10 minutes of effort:

RQ1 (Efficacy): Will end users, testing systematically with WYSIWYT/ML, find
more bugs than via ad hoc testing?

RQ2 (Satisfaction): What are the users’ attitudes toward systematic testing as
compared to ad-hoc testing?

RQ3 (Efficiency): Will WYSIWYT/ML’s coverage contributions to the
partnership help with end users’ efficiency?

We used three systematic testing treatments, one for each prioritization method
(Confidence, Similarity, and Relevance). We also included a fourth treatment
(Control) to represent ad hoc testing. Participants in all treatments could test (via
check marks, X marks, and label changes) and sort messages by any column in their
prototype. See Figure 1 for a screenshot of the Confidence prototype; Similarity and
Relevance looked the same, save for their respective prioritization methods and
visualizations (Figure 2). Control supported the same testing and sorting actions, but
lacked prioritization visualizations or inferred tests, and thus needed no
priority/inferred test history column.

The design was within-subject (i.e. all participants experienced all treatments). We
randomly selected 48 participants (23 males and 25 females) from respondents to a
university-wide request. None of our participants were Computer Science majors, nor
had any taken Computer Science classes beyond the introductory course. Participants
worked with messages from four newsgroups of the widely used 20 Newsgroups
dataset [15]: cars, motorcycles, computers, and religion (the original rec.autos,
rec.motorcycles, comp.os.ms-windows.misc, and soc.religion.christian newsgroups,
respectively). This data set provides real-world text for classification, the performance
of machine learning algorithms on it is well understood, and, most important, the
“gold standard” topic choice (the newsgroup to which the message’s author posted it)
defines exactly which messages are “bugs” (misclassified by the assistant), in turn
defining how many of those bugs participants found and when WYSIWYT/ML’s
inferred approvals went astray.

We randomly selected 120 messages (30 per topic) to train the intelligent assistant
using a support vector machine [5]. We randomly selected a further 1,000 messages
over a variety of dates (250 per topic) and divided them into five data sets: one
tutorial set (to familiarize our participants) and four test sets (to use in the main tasks).
Our intelligent assistant was 85% accurate when initially classifying each of these
sets. We used a Latin Square to counterbalance treatment orderings and randomized
how each participant’s test data sets were assigned to the treatments.

Participants answered a background questionnaire, then took a tutorial to learn one
prototype’s user interface and to experience the kinds of messages and topics they
would be seeing. Using the tutorial set, participants then practiced testing and finding
the assistant’s mistakes in that prototype. For the first main task, participants used the
prototype to test and look for mistakes in a 200-message test set. After each treatment,

participants filled out a Likert-scale questionnaire with their opinions of their success,
the task difficulty, and the prototype. They then took another brief tutorial explaining
the changes in the next prototype, practiced, and performed the main task in the next
assigned data set and treatment. Finally, participants answered a final questionnaire
covering their overall opinions of the four prototypes and comprehension.

6 Results

6.1 RQ1 (Efficacy): Finding Bugs

Bugs Found. To investigate how well participants managed to find an assistant’s
mistakes using WYSIWYT/ML, we compared bugs they found using the
WYSIWYT/ML treatments to bugs they found with the Control treatment. An
ANOVA contrast against Control showed a significant difference between treatment
means (Table 1). For example, participants found nearly twice as many bugs using the
frontrunner, Confidence, than using the Control version.

Not only did participants find more bugs with WYSIWYT/ML, the more tests
participants performed using WYSIWYT/ML, the more bugs they found (linear
regression, F(1,46)=14.34, R2=.24, beta=0.08, p<.001), a relationship for which there
was no evidence in the Control variant (linear regression, F(1,45)=1.56, R2=.03,
beta=0.03, p=.218). Systematic testing using WYSIWYT/ML yielded significantly
better results for finding bugs than ad-hoc testing.

Profile of a Hard Bug. Our formative offline oracle experiments revealed types of
bugs that would be hard for some of our methods to target as high-priority tests.
(Recall that, offline, Relevance and Similarity were better than Confidence in this
respect.) In order to evaluate our methods with real users, we took a close look at Bug
20635, which was one of the hardest bugs for our participants to find (one of the five
least frequently identified). The message topic should have been Religion but was
instead predicted to be Computers, perhaps in part because Bug 20635’s message was
very short (which was also true of the other four hardest bugs):

Table 1. ANOVA contrast results (against Control) by treatment. The highest values in each
row are shaded.

 Mean (p-value for contrast with Control) df F p Confidence Similarity Relevance Control
Bugs Found

(max 30)
12.2 (p<.001) 10.3 (p<.001) 10.0 (p<.001) 6.5 (N/A) 3,

186
10.61 <.001

Helpfulness
(max 7)

5.3 (p<.001) 5.0 (p<.001) 4.6 (p<.001) 2.9 (N/A) 3,
186

22.88 <.001

Perceived
Success (max 21)

13.4 (p=.016) 13.3(p=.024) 14.0 (p=.002) 11.4 (N/A) 3,
186

3.82 .011

Subject: Mission Aviation Fellowship
Hi, Does anyone know anything about this group and what they do? Any
info would be appreciated. Thanks!

As Table 2 shows, nearly all participants who had this bug in their test set found it
with the Relevance treatment, but a much lower fraction found it using the other
treatments. As the table’s Prioritization column shows, Relevance ranked the message
as very high priority because it did not contain any useful words, unlike Confidence
(the assistant was very confident in its prediction), and unlike Similarity (the message
was fairly similar to other messages). Given this complementarity among the different
methods, we hope in the future to evaluate a combination (e.g., a weighted average or
voting scheme) of prioritization methods, thus enabling users to quickly find a wider
variety of bugs than they could using any one method alone.

6.2 RQ2 (Satisfaction): User Attitudes

Participants appeared to recognize the benefits of systematic testing, indicating
increased satisfaction over ad hoc testing. When asked “How much did each system
help you find the computer’s mistakes?” on a seven-point Likert scale, an ANOVA
contrast again confirmed that responses differed between treatments (Table 1, row 2),
with WYSIWYT/ML treatments rated more helpful than Control. Table 1’s 3rd row
shows that participant responses to the NASA-TLX questionnaire triangulate this
result. Together, these results are encouraging from the perspective of the Attention
Investment Model—they suggest that end users can be apprised of the benefits (so as
to accurately weigh the costs) of testing an assistant that does work important to them.

6.3 RQ3 (Efficiency): The Partnership’s Test Coverage

Recall that when a participant tested a message, the system partnered with the user by
inferring additional tests to “cover” similar messages (recall Figure 4). Coverage can
be a powerful concept: it enables a user to reduce the number of items they must look
over while still gaining a reasonable understanding of the assistant’s reliability. It also
reveals the weaknesses of an assistant’s reasoning in terms of areas not yet covered by
tests. In other domains, research has generally found that increased coverage increases
bug finding [4, 7, 24]. Thus, in this section, we consider how much coverage the
partnership achieved and how this related to participants’ efficiency.

Table 2. The number of participants who found Bug 20635
while working with each WYSIWYT/ML treatment.

Treatment Prioritization Found Did not find
Confidence 0.14 9 15
Similarity 0.58 11 14
Relevance 1.00 19 4

Coverage: How much? Using WYSIYWT/ML, our participants were able to
leverage their explicit tests by a factor of about 2. Together with the computer-oracle-
as-partner, participants’ mean of 55 test actions using WYSIWYT/ML covered a
mean of 117 (60%) of the messages—thus, participants gained 62 inferred tests “for
free”. Table 3 shows the raw counts. With the help of their computer partners, two
participants even reached 100% test coverage, covering all 200 messages within their
10-minute time limit.

Further, coverage scaled well. In an offline experiment, we tried our participants’
explicit tests on the entire set of Newsgroup messages from the dates and topics we
had sampled for the experiment—a data set containing 1,448 messages. (These were
tests participants explicitly entered using either WYSIWYT/ML or Control, a mean of
55 test actions per session.) Using participants’ 55 explicit tests (mean), the computer
inferred a mean of 568 tests per participant, for a total coverage of 623 tests (mean)
from only 10 minutes of work—a 10-fold leveraging of the user’s invested effort.

Participant and WYSIWYT/ML Approvals vs. Disapprovals. As Table 3 shows,
participants approved more messages than they disapproved. When participants
approved a message, their topic choice matched the 20-Newsgroup “gold standard”
(the original newsgroup topic) for 94% of their regular checkmarks, and even 81% of
their “maybe” checkmarks. The agreement level across both types of approval was
92%. By the same measure, WYSIWYT/ML’s approvals were also very accurate,
agreeing with the gold standard an average 92% of the time—exactly the same level
as the participants’.

Participants’ regular X marks also agreed with the gold standard reasonably often
(77%), but their “maybe” X marks agreed only 43% of the time. Informal pilot
interviews revealed a possible explanation: re-appropriation of the “maybe” X marks
for a subtly different purpose. When unsure of the right topic, pilot participants said

Table 3. Tests via check marks, X marks, and topic changes during a 10-minute session (out
of 200 total messages per session), for the three WYSIWYT/ML treatments.

 Mean !s
participants
entered per

session

Mean Xs
participants
entered per

session

Mean !s
inferred

per session

Mean Xs
inferred

per session

Total
!s

Total
Xs

Explicit Regular: 35.0
“Maybe”: 7.1

Regular: 2.4
“Maybe”: 2.7

Regular: 46.4
“Maybe”: 8.5

Regular: 4.7
“Maybe”: 2.2

105.2

20.2

Implicit 8.2 topic changes as shortcuts for
X+topic+! N/A1

Total tests 50.3 13.3 54.9 6.9
Total messages tested 2 117.2

1Although the computer sometimes did change topics, this was due to leveraging tests as
increased training on message classification. Thus, because these topic changes were not
directly due to the coverage (cosine-similarity) mechanism, we omit them from this coverage
analysis.

2 Total Tests is larger than Messages Tested because topic changes acted as two tests: an X
on the original topic, then a ! on the new topic.

they marked it as “maybe wrong” to denote that it could be wrong, but with the
intention to revisit it later. This indicates that secondary notation in addition to testing
notation—in the form of a “reminder” to revisit instead of a disapproval—could prove
useful in future prototypes.

Perhaps in part for this reason, WYSIWYT/ML did not correctly infer many
bugs—only 19% of its X marks agreed with the gold standard. (For the computer’s X
marks, regular X marks and “maybe” X marks did not differ—both were in low
agreement with the gold standard.) The problem cannot be fully explained by
participants repurposing “maybe” X marks—WYSIWYT/ML’s regular inferred X
marks were just as faulty. However, this problem’s impact was limited, because
inferred X marks’ only serve to highlight possible bugs. Thus, the 81% false rate on
participants’ mean seven X’s per session meant only that participants had to look at
an extra five messages/session. Most inferred tests were the very accurate positive
tests (55 average/session), which were so accurate, participants could safely skip them
when looking for bugs.

7 Discussion

Will end users really explicitly and systematically test an intelligent assistant?
Although we did not test this question in our lab study, theory suggests that they will
when they perceive the benefits of doing so to outweigh the costs [3]. Until this
question can be investigated empirically, we target the subset of end users who are
willing to expend at least modest effort to assess assistants on tasks in which mistake
types and frequencies must be understood before the user would be willing to rely on
them, such as with Adam’s intelligent qualitative coding assistant.

Our current similarity-based notion of coverage also warrants further empirical
investigation. It worked well for approvals, but a smaller threshold for disapprovals
may result in fewer false bug identifications. In the future, we plan a systematic
evaluation of this threshold and its impact on different aspects of WYSIWYT/ML.

Finally, we emphasize that finding (not fixing) bugs is WYSIWYT/ML’s primary
contribution toward debugging. Although WYSIWYT/ML leverages user tests as
additional training data, simply adding training data is not an efficient method for
debugging intelligent assistants. To illustrate, our participants’ testing labeled, on
average, 55 messages, which increased average accuracy by 3% as a side effect of
leveraging their test cases as training data. In contrast, participants in another study
that also used a subset of the 20 Newsgroup dataset spent their 10 minutes debugging
by specifying words/phrases associated with a label [31]. They entered only about 32
words/phrases but averaged almost twice as much of an accuracy increase (5%) in
their 10 minutes. Other researchers have similarly reported that allowing users to
debug by labeling a word/phrase is up five times more efficient than simply labeling
training messages [22]. Thus, rather than attempting to replace the interactive
debugging approaches emerging for intelligent assistants (e.g., [16, 17, 22, 29]),
WYSIWYT/ML’s bug-finding complements them by providing the missing testing
piece that provides users with knowledge of where important bugs have emerged and
when those bugs have been eradicated, so that they need not debug blindly.

8 Conclusion

With the increase in intelligent assistants helping with critical tasks comes the need to
rethink the nature of how end users can assess whether and when to rely on their
assistants’ help. WYSIWYT/ML is the first work to address this need.

WYSIWYT/ML is a human/computer partnership to enable end users to assess
intelligent assistants systematically. The human’s role is to approve or disapprove
(i.e., test) portions of the assistant’s work. The computer’s role is to advise the user
about testing priorities, contribute additional tests similar to the user’s (which the user
may verify), measure how much of the assistant’s reasoning has been assessed, and
monitor the need for additional assessment as the assistant evolves over time.

Our empirical evaluation showed that systematically testing with WYSIWYT/ML
resulted in a significant improvement over ad hoc methods in end users’ abilities to
assess their assistants: our participants found almost twice as many bugs with our best
WYSIWYT/ML variant as they did while testing ad hoc. Further, the approach scales:
participants covered 117 messages in the 200-size data set (over twice as many as
they explicitly tested) and 623 messages in the 1448-size data set (over 10 times as
many as they explicitly tested)—all at a cost of only 10 minutes work.

Thus, not only was systematic assessment of intelligent assistants effective at
finding bugs, ordinary end users were able to assess a reasonable fraction of the
assistant’s work in a matter of minutes. These findings are very encouraging as to the
viability of bringing systematic testing to this domain, empowering end users to judge
whether and when to rely on assistants that are helping with critical tasks.

Acknowledgements. We thank Jeremy Goodrich, Travis Moore, Shalini
Shamasunder, Nicole Usselman, and Chaoqiang Zhang for their help. This work has
been supported in part by NSF 0803487.

References

[1] Abraham, R. and Erwig, M. AutoTest: A tool for automatic test case generation in
spreadsheets. Proc. VL/HCC, IEEE (2006), 43-50.

[2] Baeza-Yates, R. and Ribeiro-Neto, B. Modern Information Retrieval. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[3] Blackwell, A. First steps in programming: A rationale for attention investment models.
Proc. HCC, IEEE (2002), 2-10.

[4] Burnett, M., Cook, C., and Rothermel, G. End-user software engineering. Comm. ACM 47,
9 (Sept. 2004), 53-58.

[5] Chang, C. and Lin, C. LIBSVM: A library for support vector machines, 2001.
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[6] Fisher, M., Cao, M., Rothermel, G., Brown, D., Cook, C. and Burnett, M. Integrating
automated test generation into the WYSIWYT spreadsheet testing methodology. ACM
Trans. Software Engineering and Methodology 15, 2 (April 2006), 150-194.

[7] Frankl, P. and Weiss, S. An experimental comparison of the effectiveness of branch testing
and data flow testing. IEEE Trans. Software Eng., 19, 3 (1993), 202–213.

[8] Glass, A., McGuinness, D. and Wolverton, M. Toward establishing trust in adaptive agents.
Proc. IUI, ACM (2008), 227-236.

[9] Gmail Priority Inbox: Get through your email faster. http://google.com/mail/help/priority-
inbox.html (2010).

[10] Green, T. and Petre, M. Usability analysis of visual programming environments: A
cognitive dimensions framework, J. Visual Languages and Computing 7, 2 (June 1996).

[11] Grigoreanu, V., Cao, J., Kulesza, T., Bogart, C., Rector, K., Burnett, M., and Wiedenbeck,
S. Can feature design reduce the gender gap in end-user software development
environments? Proc. VL/HCC, IEEE (2008), 149-156.

[12] Hastie, T., Tibshirani, R. and Friedman, J. The Elements of Statistical Learning. Springer,
2003.

[13] IEEE, IEEE Standard Glossary of Software Engineering Terminology, 1990.
[14] Klann, M., Paterno, F., and Wulf, V. Future perspectives in end-user development, in End-

User Development (H. Lieberman, F. Paterno, and V. Wulf, eds.), Springer, 2006.
[15] Kniesel, G. and Rho, T. Newsgroup data set. http://www.ai.mit.edu/jrennie/20newsgroups

(2005).
[16] Kulesza, T., Wong, W., Stumpf, S., Perona, S., White, R., Burnett, M., Oberst, I., and Ko,

A. Fixing the program my computer learned: Barriers for end users, challenges for the
machine. Proc. IUI, ACM (2009), 187-196.

[17] Kulesza, T., Stumpf, S., Burnett, M., Wong, W., Riche, Y., Moore, T., Oberst, I., Shinsel,
A., and McIntosh, K. Explanatory debugging: Supporting end-user debugging of machine-
learned programs. Proc. VL/HCC, IEEE (2010).

[18] Lawrance, J., Bogart, C., Burnett, M., Bellamy, R., Rector, K., and Fleming, S. How
programmers debug, revisited: An information foraging theory perspective. IEEE Trans.
Software Engineering (2011).

[19] Lim, B., Dey, A. and Avrahami, D. Why and why not explanations improve the
intelligibility of context-aware intelligent systems. Proc. CHI, ACM (2009).

[20] Lim, B. and Dey, A. Toolkit to support intelligibility in context-aware applications. Proc.
Int. Conf. Ubiquitous Computing, ACM (2010).

[21] Miller, R. and Myers, B. Outlier finding: Focusing user attention on possible errors. Proc.
UIST, ACM (2001), 81-90.

[22] Raghavan, H., Madani, O., and Jones, R. Active learning with feedback on both features
and instances. JMLR 7 (2006), 1655-1686.

[23] Raz, O., Koopman, P. and Shaw, M. Semantic anomaly detection in online data sources.
Proc. ICSE, IEEE (2002), 302-312.

[24] Rothermel, G., Burnett, M., Li, L., Dupuis, C., and Sheretov, A. A methodology for testing
spreadsheets. ACM Trans. Software Engineering and Methodology 10, 1 (Jan. 2001).

[25] Rowan, J. and Mynatt, E. Digital family portrait field trial: Support for aging in place.
Proc. CHI, ACM (2005), 521-530.

[26] Scaffidi, C. Unsupervised inference of data formats in human-readable notation. Proc. Int.
Conf. Enterprise Integration Systems, (2007), 236-241.

[27] Settles, B. Active learning literature survey. Computer Sciences Technical Report 1648,
University of Wisconsin–Madison, 2009.

[28] Shen, J. and Dietterich, T. Active EM to reduce noise in activity recognition. Proc. IUI,
ACM (2007), 132-140.

[29] Talbot, J., Lee, B., Kapoor, A. and Tan, D. EnsembleMatrix: Interactive visualization to
support machine learning with multiple classifiers. Proc. CHI, ACM (2009), 1283-1292.

[30] Tullio, J., Dey, A., Chalecki, J., and Fogarty, J. How it works: A field study of non-
technical users interacting with an intelligent system. Proc. CHI, ACM (2007).

[31] Wong, W.-K., Oberst, I., Das, S., Moore, T., Stumpf, S., McIntosh, K., and Burnett, M.
End-user feature labeling: A locally-weighted regression approach. Proc IUI, ACM (2011).

