

City, University of London Institutional Repository

Citation: Mantzoukas, K., Kloukinas, C. & Spanoudakis, G. (2018). Monitoring Data

Integrity in Big Data Analytics Services. 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD), pp. 904-907. doi: 10.1109/CLOUD.2018.00132

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/21473/

Link to published version: https://doi.org/10.1109/CLOUD.2018.00132

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Monitoring Data Integrity in Big Data Analytics Services

Konstantinos Mantzoukas
Department of Computer Science

City, University of London
London, United Kingdom

Konstantinos.Mantzoukas.1@city.ac.uk

Christos Kloukinas
Department of Computer Science

City, University of London
London, United Kingdom
C.Kloukinas@city.ac.uk

George Spanoudakis
Department of Computer Science

City, University of London
London, United Kingdom

G.E.Spanoudakis@city.ac.uk

Abstract—Enabled by advances in Cloud technologies, Big
Data Analytics Services (BDAS) can improve many processes
and identify extra information from previously untapped data
sources. As our experience with BDAS and its benefits grows
and technology for obtaining even more data improves, BDAS
becomes ever more important for many different domains and
for our daily lives. Most efforts in improving BDAS technologies
have focused on scaling and efficiency issues. However, an
equally important property is that of security, especially as we
increasingly use public Cloud infrastructures instead of private
ones. In this paper we present our approach for strengthening
BDAS security by modifying the popular Spark infrastructure
so as to monitor at run-time the integrity of data manipulated.
In this way, we can ensure that the results obtained by the
complex and resource-intensive computations performed on the
Cloud are based on correct data and not data that have been
tampered with or modified through faults in one of the many
and complex subsystems of the overall system.

Keywords-big data services, security, run-time monitoring,
data integrity.

I. INTRODUCTION

The Internet of Things (IoT), enabled by the Cloud, is
generating data at an ever increasing rate. Gartner, a research
and advisory company, estimates that by 2020 the number
of connected devices will be in the vicinity of 20 billion [1],
whereas IHS, a financial market company, forecasts that this
number will skyrocket to 125 billion devices in 2030 [2].
Many data processing frameworks have been implemented
to easily model and effectively process large datasets, with
a main focus on fault tolerance, efficiency, and scalability
[3]. These properties are vital but we also need to address
other non-functional requirements, especially security. An
indicative use case that highlights this point is the current
debacle over the release of heat-maps from a social network
for runners called Strava [4]. In that specific incident,
researchers and journalists used publicly available data from
the daily activities of soldiers to identify the locations of
secret USA military bases around the world.

Data integrity is a topic that has been examined in great
depth in the domain of databases, especially for semantic
integrity, to ensure that certain data constrains are respected,
e.g., range of values. It has also been studied in the context
of digital signatures for asymmetric encryption to support

the authentication of entities and the encryption of their
messages. In this work we focus instead on supporting the
runtime monitoring of data integrity to monitor whether data
has been tampered with from an external source during ser-
vice execution. In our solution, as data gets transformed by
different service operations, we keep track of the checksums
of the intermediate data produced and compare them be-
tween service operations to decide whether data integrity has
been violated. Violations indicate either faults in the cloud
infrastructure or unauthorized modifications by attackers.

Section II gives a detailed account of our design and
system architecture. Section III compares our approach with
related work. and finally section IV summarizes our work
and discusses possible improvements.

II. DESIGN & SYSTEM ARCHITECTURE

This section presents an overview of the proposed
monitoring specification, reviews the components of
the proposed monitoring system, and describes how
they can be used to monitor data integrity at runtime. Our
monitoring specification is composed of three main artifacts:

i Monitoring rules of the specific property of interest;
ii Monitoring events of interest; and

iii Event captors that need to be installed.

We have chosen Apache Spark [5] as the data processing
framework, since it is an open source project that allows
us to experiment with its code. In addition, Apache Spark
has one of the largest communities of users and contributors,
making our solution of potential benefit to a larger part of the
big data community compared to other alternatives [6], [7],
[8], [9]. Lastly, Apache Spark’s unified API for addressing
multiple types of processing activities in the big data pro-
cessing space such as machine learning, batch processing,
stream processing and graph processing, allows our work to
impact multiple classes of data processing challenges.

In order to derive the aforementioned artifacts we first
need to quickly overview what the code of an Apache Spark
service [5] actually does. Spark code operates on a set of
Resilient Distributed Dataset (RDD) structures to hold the
data produced by each Spark operation. RDDs are computed

lazily — when one needs to be read it is computed at
that point if it does not exist already, causing other RDDs
on which it depends to be computed as well. Spark splits
RDDs into partitions across different nodes to distribute the
data and computations respectively. Spark RDD operations
are of two types: actions, e.g., foreach(), which cause
an RDD to be computed by means of applying a user
function to every data item of the RDD and returning a non-
RDD value to the main program, and transformations, e.g.,
flatMap(), which define how the partitions of an RDD
will be produced by means of applying a user function on
every data item of the partitions of another RDD. Actions
return data to their caller, whereas transformations produce
new RDDs lazily.

RDD transformations themselves can be divided into two
groups. 1-to-1 transformations or transformations with nar-
row dependencies as Spark calls them 1, e.g., flatMap(),
transform an RDD’s partition directly into another RDD’s
partition.These are applied directly to the contents of each
input RDD partition to obtain the contents of the respective
output RDD partition. N-to-1 transformations or transforma-
tions with wide dependencies as Spark calls them 2, e.g.,
combineByKey(), require input from multiple partitions
of another RDD to compute an RDD’s partition. N-to-1
transformations group input partition data by the ID of the
consuming transformation node and store them in separate
partition segments.

A. Monitoring Rules

To support monitoring of data integrity, we must ensure
that whenever a Spark operation reads data then some other
Spark operation had actually written these data. In Event
Calculus [10], the input language of the Everest Monitor [11]
we use, this is expressed as in formula 1. Or(w) identifies
some Spark operation that reads (resp. writes) an RDD R,
and d is the value of the data read/written.

Happens(read(Or, R, d), tr)

→ Happens(write(Ow, R, d), tw) ∧ tw ≤ tr
(1)

Formula 1 checks that data written has not been corrupt-
ed/manipulated/injected, since Spark does not allow RDDs
to be updated, so a write operation that precedes a read
operation is unique and we do not need to identify ”the
most recent” write before a read. Therefore if the data do
not match it is due to an external entity that has altered them
either intentionally or unintentionally. Of course, formula 1
is too high-level. As RDDs are split into partitions, R is
really a pair of (R,P), where R identifies the RDD and P
the specific partition a Spark operation is currently operating
on. The data identifier d is also an abstract identifier —
what exactly it should be used for is a design choice.
For example, the most basic and unsophisticated solution

1spark.apache.org/docs/2.2.1/api/java/org/apache/spark/Dependency.html
2spark.apache.org/docs/2.2.1/api/java/org/apache/spark/rdd/RDD.html

would use each complete data-tuple written/read by a Spark
operation. However, this would create too much strain on the
network and the monitoring engine, which needs to unify
rule variables with event values. A more refined solution
uses a hash for each one of the partitions that the data-tuples
are grouped into, speeding up the matching of event values
with the monitoring rule event variables in the engine.

B. Events of Interest

As aforementioned, the events of interest for the rule in
formula 1 are these writing/reading data in RDD partitions.

Events per Data Tuple: In a simple design, events
can be produced for each different data-tuple as it is being
written/read, by viewing the internal representation of the
tuple as a byte sequence and computing a hash value to
distinguish it from other tuples (with some small probability
of clashes — dependent on the exact hashing function).
The byte sequence is obtained by serializing the tuple, i.
e., representing the tuple as a sequence of bytes that can be
stored in a file or sent over the network. This is an action that
is actually carried out by Spark itself, as it needs to have
a serialized version of the data to store them in an RDD
(which can be seen as a file in a distributed file-system).

Events per Partition — Less Resource Usage: A more
sophisticated design we have explored produces a single
hash value for all the data held in one RDD partition as
a single unit, so as to reduce the network traffic and the
load of the monitor substantially. For 1-to-1 transformations
this approach does not require any changes in the monitoring
rule we employ — it simply creates a single event per RDD
partition read/written instead of creating as many events
from that partition as the data-tuples it contains. However,
an issue with this design arises when we face an N-to-1
transformation. Now the data held inside a partition are not
read in their entirety by some node computing the N-to-1
transformation. Instead only a subset of them are read —
those in the segment assigned to that specific node. In such
instances it is required to use the internal Spark structures
in order to identify the segments that will be read by each
consuming node and compute hash values (and respective
events) separately for each of them. In these situations, the
component R of the rule in formula 1 does not correspond
to an (RDD ID, partition ID) pair but to an (RDD ID,
segment ID). In addition, now each RDD partition leads to
the creation of not just a single read/write event but as many
of them as there are partition segments.

C. Event Captors

In order to support the run-time monitoring we need to
also add code inside Spark so that we can:

1) Identify when a new RDD is written/read; and
2) Construct the event messages for data writes/reads.

These captors work differently depending on the type of
transformation used. From an implementation point of view,

2

spark.apache.org/docs/2.2.1/api/java/org/apache/spark/Dependency.html
spark.apache.org/docs/2.2.1/api/java/org/apache/spark/rdd/RDD.html

we need to intercept the creation of the partitions of RDDs
and calculate a hash value for every data-tuple or every
partition, depending on the monitoring strategy that we want
to employ. By design, each type of RDD extends a base
abstract class called RDD. One of the abstract methods of
the class RDD that each type of RDD has to implement is
called compute(). Method compute() is responsible for
the computation of all the partitions of the RDD.

1) 1-to-1 Transformations: As aforementioned, for these
transformations each output RDD partition can be computed
by reading only one input RDD partition. This enables Spark
to execute those computations in parallel at the locations
where the partitions reside. In addition, Spark for efficiency,
can fuse together multiple 1-to-1 transformations that are
invoked sequentially and execute them within a single unit
of work, called a task.

2) N-to-1 Transformations: The approach described so
far works well for 1-to-1 transformations mapping one
RDD into another. If we were to follow the simple ap-
proach, whereby each data-tuple becomes a single event,
these transformations would work just as the 1-to-1 ones.
As aforementioned however, we have also considered an-
other approach that is more coarse-grained — instead of
considering a single data-tuple as the unit for checking
integrity, we instead consider a whole RDD partition as the
unit, producing a single checksum for each RDD partition.
This approach produces far fewer events, speeding up the
monitoring and also reducing the strain on the memory and
network bandwidth. For 1-to-1 transformations this approach
is more straight forward to implement, since an RDD’s
partition is created by data coming from a single partition
of another RDD. For N-to-1 transformations however, this
approach is more complex, since now an RDD’s partition
is read only for its segment of interest to the specific RDD
partition under construction — the other partitions of the
RDD currently being read provide the remaining segments.
For this reason we need specialized event captors in N-to-1
transformations that use Spark’s internal representation to
identify the RDD partition segments and produce a hash
value for each of them. In essence N-to-1 transformations
take place in two steps. In the first step the previous map
transformation groups data into segments according to the
N-to-1 transformation’s RDD partition ID that they belong
to. In the second step, the N-to-1 transformation consumes
the segment data and applies a user defined combinator
function. We implemented event-capturing by intercepting
the action of writing data into segments and also intercepting
the action of reading the data from them when invoking
method compute() of the N-to-1 transformation. N-to-
1 transformations create a special type of RDD, called
ShuffledRDD 3.

3https://spark.apache.org/docs/2.2.1/api/scala/#org.apache.spark.rdd.
ShuffledRDD

Capture write events for N-to-1 transformations:
All write operations in Spark are performed by an ob-
ject implementing interface ShuffleWriter that has
two methods — write() to write data in segments
and stop() to interrupt the process of writing. Method
write() does not actually keep track of the RDD and
partition it is writing in. However this information is
important to us, so we need to pass it along. To en-
able this we declare a method with additional RDD and
partition parameters in Spark’s default implementation of
ShuffleWriter is class SoftShuffleWriter where
our custom write() method is implemented. The imple-
mentation of our write() method is identical to Spark’s
original method, apart from the fact that when it internally
invokes method writePartitionedFile() to group
data into segmensts it also passes along a reference to the
RDD. Method writePartitionedFile() is declared
in class ExternalSorter, which combines the values
of each input partition segment using a user function.
Inside writePartitionedFile() data is written in the
segments and appropriate indexes to the segments are stored
as well. Spark does this by iterating through the data-tuples
and writing the segments without returning anything to
the caller method, namely writePartitionedFile().
However, for monitoring we need to return the written
value and capture the checksum of the tuple or the partition
segment according to the monitoring strategy used. This is
done by implementing our own write() method, called
writeAndReturnValue(), which also returns the value
written so as to produce a checksum for it afterwards.

Capture read events for N-to-1 transformations: Sim-
ilar to how data-tupes are written by N-to-1 transfor-
mations, reading is performed by an object implement-
ing interface ShuffleReader that has a single method
called read(). Method read() returns an iterator with
all the data that the compute() method of the current
N-to-1 ShuffledRDD will read from its input RDD.
BlockStoreShuffleReader, Spark’s default imple-
mentation of this interface, takes no arguments. Since we
need to keep track of the RDD and the segment that the data
was read from, we again have to pass as extra arguments
the RDD and segment IDs that it reads data from. This
is implemented in class BlockStoreShuffleReader,
whose read() method opens up multiple streams to the
input RDD partitions and reads the corresponding segments.

III. RELATED WORK

The security of distributed computations executed in pub-
lic clouds has made its way into the top ten Big Data security
and privacy challenges published by the Cloud Security
Alliance (CSA) [12]. A significant body of work has been
produced to address the issue of the preservation of data
integrity for data outsourced in the cloud. jMonAtt [13]
addresses the issue of application integrity preservation and

3

https://spark.apache.org/docs/2.2.1/api/scala/#org.apache.spark.rdd.ShuffledRDD
https://spark.apache.org/docs/2.2.1/api/scala/#org.apache.spark.rdd.ShuffledRDD

describes an architecture that provides guarantees for cloud
applications by enforcing dynamic attestation through the
HotSpot virtual machine. Efforts to target the challenges of
runtime data integrity monitoring has been done in [14] and
[15], in both of which the computation runs more than once
to verify the integrity of the data at runtime. In [14] data
is processed both in a public and in a private cloud and
the two results are compared whereas in [15] a reputation-
based rating system is built through redundant computations,
where every computation node is rated on the basis of the
quality of the results that it produces. Both approaches have
been implemented in map/reduce types of computations.

Our approach to data integrity runtime monitoring is
different in three main ways. Firstly, it takes into account
not only map/reduce operations but also 1-to-1 transforma-
tions. Secondly, it avoids re-computations, minimizing the
overhead of the BDAS infrastructure, and, thirdly, it allows
for two separate degrees of granularity with respect to the
monitoring strategy, namely per data-tuple and per partition.

IV. CONCLUSIONS

In this paper we have presented the design of two ap-
proaches for monitoring data integrity in Big Data Analytics
Services (BDAS). More specifically, we have analyzed how
Spark [5] transfers data from one computation node to
another and presented what extra code needs to be added
in Spark to allow us to monitor these data exchanges and to
identify inconsistencies between what one node produces
and another node consumes from it. To achieve this we
had to consider the different types of Spark primitives
(actions and transformations) and how these interact with
the distributed data structures (called RDD in Spark) that
they produce and consume.

Currently we are working on improving different aspects
of our work. First, we are working on speeding up our
approach by performing all event-captor work in parallel
to what Spark normally does. Second, we are working on
making our monitoring more easy to fine-tune and pinpoint
the exact parts of a BDAS system where monitoring should
be applied, since one may wish to turn off monitoring in
particular parts of the system and focus on other parts only.
Third, we are working on linking with the fault-tolerance
mechanisms of Spark, so as to be able to ask it to re-compute
the data sets where integrity was violated (potentially with
the finer grained monitoring enabled) and have a system that
can not only identify the integrity security property violation
but also react to it. Finally, we are working on extending our
technique so as to support other security properties as well.

REFERENCES

[1] Gartner, “Leading the IoT, Gartner insights on how to lead
in a connected world,” Tech. Rep., 2017.

[2] IHS, “The Internet of Things: A movement, not a market,”
Tech. Rep., 2017.

[3] M. Armbrust, T. Das, A. Davidson, A. Ghodsi, A. Or,
J. Rosen, I. Stoica, P. Wendell, R. Xin, and M. Zaharia,
“Scaling Spark in the real world: Performance and usability,”
Proc. VLDB Endow., vol. 8, no. 12, pp. 1840–1843, Aug.
2015.

[4] “Strava data heat maps expose military base locations
around the world — Wired,” https://www.wired.com/story/
strava-heat-map-military-bases-fitness-trackers-privacy/,
2018, [Online; accessed 15-Feb-2018].

[5] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. J. Franklin, S. Shenker, and I. Stoica, “Re-
silient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing,” in Proceedings of the 9th
USENIX Conference on Networked Systems Design and Im-
plementation, ser. NSDI’12. Berkeley, CA, USA: USENIX
Association, 2012, pp. 2–2.

[6] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi,
and K. Tzoumas, “Apache Flink: Stream and batch processing
in a single engine,” IEEE Data Eng. Bull., vol. 38, pp. 28–38,
2015.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” Commun. ACM, vol. 51, no. 1,
pp. 107–113, Jan. 2008.

[8] “Apache Storm,” http://storm.apache.org/, 2018, [Online; ac-
cessed 15-Feb-2018].

[9] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. Henry,
R. Bradshaw, and Nathan, “FlumeJava: Easy, efficient data-
parallel pipelines,” in ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), 2
Penn Plaza, Suite 701 New York, NY 10121-0701, 2010, pp.
363–375.

[10] M. Shanahan, “The event calculus explained,” in Artificial
Intelligence Today, 1999, pp. 409–430. [Online]. Available:
doi.org/10.1007/3-540-48317-9_17

[11] G. Spanoudakis, C. Kloukinas, and K. Mahbub, “The
SERENITY runtime monitoring framework,” in Security and
Dependability for Ambient Intelligence, ser. Advances in
Information Security. Springer, 2009, vol. 45, pp. 213–237.

[12] R. Behrends, L. K. Dillon, S. D. Fleming, and R. E. K.
Stirewalt, “Expanded top ten big data security and privacy
challenges,” Cloud Security Alliance, Tech. Rep. MSU-CSE-
06-2, January 2013.

[13] H. Ba, H. Zhou, S. Bai, J. Ren, Z. Wang, and L. Ci, “jMonAtt:
Integrity monitoring and attestation of jvm-based applications
in cloud computing,” in 2017 4th International Conference on
Information Science and Control Engineering (ICISCE), July
2017, pp. 419–423.

[14] Y. Wang, Y. Shen, and X. Jiang, “Practical verifiable compu-
tation — A MapReduce case study.” IEEE Trans. Information
Forensics and Security, vol. 13, no. 6, pp. 1376–1391, 2018.

[15] Z. Gao, N. Desalvo, P. D. Khoa, S. H. Kim, L. Xu, W. W. Ro,
R. M. Verma, and W. Shi, “Integrity protection for big data
processing with dynamic redundancy computation,” in 2015
IEEE International Conference on Autonomic Computing,
July 2015, pp. 159–160.

4

https://www.wired.com/story/strava-heat-map-military-bases-fitness-trackers-privacy/
https://www.wired.com/story/strava-heat-map-military-bases-fitness-trackers-privacy/
http://storm.apache.org/
doi.org/10.1007/3-540-48317-9_17

	Introduction
	Design & System Architecture
	Monitoring Rules
	Events of Interest
	Event Captors
	1-to-1 Transformations
	N-to-1 Transformations

	Related Work
	Conclusions
	References

