

City, University of London Institutional Repository

Citation: Ardagna, C. A., Damiani, E., Krotsiani, M., Kloukinas, C. & Spanoudakis, G.

(2018). Big Data Assurance Evaluation: An SLA-Based Approach. In: 2018 IEEE
International Conference on Services Computing (SCC). (pp. 299-303). IEEE. ISBN 978-1-
5386-7250-1 doi: 10.1109/SCC.2018.00053

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/21475/

Link to published version: https://doi.org/10.1109/SCC.2018.00053

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Big Data Assurance Evaluation: An SLA-based Approach

Claudio A. Ardagna, Ernesto Damiani
DI, Università degli Studi di Milano

Crema, 26013, Italy
Email: {firstname.lastname}@unimi.it

Maria Krotsiani, Christos Kloukinas, George Spanoudakis
City, University of London

Northampton Square, London, EC1V 0HB, UK
Email: {Maria.Krotsiani, C.Kloukinas, G.E.Spanoudakis}@city.ac.uk

Abstract—The Big Data community has started noticing

that there is the need to complete Big Data platforms with

assurance techniques proving the correct behavior of Big Data

analytics and management. In this paper, we propose a Big

Data assurance solution based on Service-Level Agreements

(SLAs), focusing on a platform providing Model-based Big Data

Analytics-as-a-Service (MBDAaaS).

Keywords-Assurance, Big Data, SLA

I. INTRODUCTION

Big Data is a major research topic, leading all productive
environments and enterprises towards the data-driven econ-
omy. Better management of data coming from productive
processes leads to faster processes, better customer man-
agement, and lower overheads/costs. Despite its immense
benefits Big Data still suffers from the intrinsic complexity
of its technologies and the inability to manage the quality
and correctness of the implemented Big Data analytics.

In the last few years, the R&D community focused on
providing solutions supporting users in easily implementing
a Big Data campaign [1], [2]. Approaches to Big Data
Platform-as-a-service have been defined, providing users
with a pre-configured Big Data platform, such as in Mi-
crosoft Azure and Amazon AWS environments. Users need
to only focus on executing the analytics without worrying
about how to manage and deploy the Big Data platform.
This scenario, however, collides with the lack of expert users
having the skills to implement a sound Big Data campaign
and retrieve meaningful results. Following this issue, in the
last few years, some effort has been done in the definition
of techniques supporting the concept of Big Data Analytics-
as-a-Service [3], [4], where high-level requirements of the
users are transformed in Big Data workflows that can be
executed on the target Big Data platform.

In the above context, it is increasingly important to guar-
antee that the overall Big Data infrastructure complies with
users’ expectation, and even more with national/international
laws and regulations. This challenge points to the concept
of Big Data assurance, which provides justifiable confidence
that a system will behave as expected. In the past, assurance
techniques (i.e., audit, certification, compliance) have been
used to evaluate the status of distributed systems such as the
cloud [5]. These solutions barely apply to Big Data scenarios
and require a rethinking of the assurance concept at large.

In this paper, we provide a first approach to Big Data
assurance, whereby Service-Level Agreements (SLAs) help
evaluate the compliance of a Big Data environment and
corresponding analytics, both distributed as a service using
a MBDAaaS methodology.

II. RELATED WORK

Assurance techniques have been defined for distributed
systems, from service-oriented architectures (e.g., [6], [7]) to
cloud environments [8], [9], [10]. These techniques mostly
focused on evaluating the security and dependability status
of distributed systems. Specifically, They evaluate the status
of the system at all layers of the corresponding stack (e.g.,
service, platform, and infrastructure layers for the cloud),
provide a continuous process that evaluates the correctness
of the system behavior, and support incremental evaluation
to reduce the need of evaluating the system from scratch at
each contextual change.

In this paper, we focus on SLAs as a means for supporting
Big Data assurance. SLAs have been heavily used to specify
terms and conditions for service provision between service
consumers and service providers. In order to support the
SLA specification process, several specification languages
(e.g., [11], [12]) have been defined over the years, with
the aim to simplify the SLA specification process for the
involved parties and to minimize the time and cost required
for it. Despite the extended research on SLA languages
and SLA management, SLAs still fail to completely address
the requirements of BDA services. Even though new SLA
languages have been developed to support cloud services
(e.g., SLAC [13], or SLA* [12]), privacy of services is
not fully supported. Furthermore, cloud and BDA services
support complex operations and have many dependencies
between different operations/services, which are difficult to
model with current SLA languages.

III. MBDAAAS METHODOLOGY

Recently, the research community moved from a paradigm
where Big Data application development is driven by the
latest technology release, to a more traditional (model-
based) paradigm where the users specify their expectations
in terms of requirements, and users/consultants follow them

in implementing the Big Data infrastructure. In [3], we pre-
sented a Model-based Big Data Analytics-as-a-Service (MB-
DAaaS) approach, where users specify declarative require-
ments driving smarter components in carrying out the Big
Data processes. MBDAaaS is based on the Model Driven
Engineering paradigm and aims to reduce the involvement
of the users in Big Data management. The approach in [3]
is based on three models as follows.

Declarative model collects a user’s requirements and expec-
tations on the Big Data computation. The user defines such
requirements in terms of goals modeled as a pair (indica-
tor, objective). An indicator permits to measure the goal,
while the objective represents a value the indicator must
achieve. Each goal can also be enriched with constraints as
pairs (attribute, value), further refining user’s expectations,
and prioritized to solve conflicts. Our approach defines
declarative requirements along all phases of a Big Data
infrastructure instantiation including: i) data preparation, ii)
data representation, iii) data analytics, iv) data processing,
and v) data visualization and reporting.
Example. Let us consider a reference scenario provided
by Lightsource, a global market leader in energy (solar)
networks. Lightsource requires the development of a big
data analytics service for calculating the average energy
consumption of every appliance for a specific gateway id
or household. Data on energy consumption entail hidden
sensitive information on the corresponding household. Light-
source can then define the following goals: i) Anonymization,
with indicator Anonymization technique and value Hashing,
extended with a constraint on the anonymization algorithm
such as (Algorithm, SHA-256); ii) Analytics Aim, with indi-
cator Models and value Descriptive and indicator Task and
value Statistical Analysis.

Procedural model defines a technology-independent work-
flow, as a service composition, describing how Big Data
processes should be carried out to achieve the objectives.
It is modeled as a direct acyclic graph where each node
represents a service and each arrow models the execution
flow.
Example. A procedural model sequentially composes a
stream data connector to ingest Lightsource data on energy
consumption, a SHA-256 anonymization service, and an
analytics service providing descriptive analysis based on an
averaging function.

Deployment model specifies how the Big Data processes
will work on the target platform. It is a technology-
dependent representation of the service composition in the
procedural model, using a workflow language (e.g., Oozie)
that can be automatically executed on the target platform.
The deployment model contains all details on the target
system and implemented algorithms, and can be used as a
source of assurance requirements.

Declarative Model

Assurance Manager

Deployment Model

Procedural Model

Platform Assurance

Data and Process
Assurance

Assurance-Based
Refinement

Execution

Model
Transformation

Service
Composition

Platform
Requirements

D&P
Requirements

Figure 1. Model-based Big Data Analytics-as-a-Service methodology

Example. The deployment model specifies the details (in-
cluding the endpoints) of the anonymization and analytics
services composed following the procedural model.

The MBDAaaS methodology implements a series of semi-
automatic model transformations. The declarative model is
used to retrieve a set of services that are compatible with
the user goals. For instance, considering goal Anonymization
above, our methodology retrieves all services implementing
a SHA-256 anonymization service. Upon retrieving all ser-
vices, the user manually configures and composes a subset of
them to produce the procedural model. This model is then
automatically transformed by a compiler in a deployment
model, which is ready to be executed on the target platform.
What is still missing in our methodology is the guarantee
that the retrieved results are correct, meaning that a sound
process addressing the declarative requirements of the user is
executed on the Big Data infrastructure. To this aim, Figure 1
sketches how our methodology can be integrated with an
assurance process (Section IV).

IV. BIG DATA ASSURANCE

Big Data assurance extends traditional assurance to eval-
uate the status of the platform and its behavior, as well as
the status of the analytics process and of the corresponding
data. The latter points to veracity of the 5V model for Big
Data [14], which refers to the trustworthiness of data. In
this paper, we focus on the assurance evaluation of our
MBDAaaS methodology, as follows.

• Data assurance. It evaluates how data are managed,
represented, and prepared for the Big Data infrastruc-
ture. It relates to the two areas of the declarative model
regarding data preparation and data representation. For
example, sensitive data on energy consumption of
households can be anonymized by removing details on
the data owner identity by means of hashing techniques

(e.g., SHA-256). An assurance manager should verify
whether data are always kept anonymized.

• Process assurance. It evaluates the status of a Big Data
process, by monitoring all activities between the data
ingestion and the production of the analytics outcome.
It relates to the two areas of declarative model regarding
data analytics and data visualization and reporting. For
example, data of EU household might be required to be
always stored and processed by components deployed
in an EU country. An assurance manager should verify
the distribution of data among components to ensure
that data never leave EU countries.

• Platform assurance. It evaluates the status of the Big
Data platform, where Big Data analytics are executed.
It also considers the behavior of non-functional compo-
nents supporting data security and privacy, and process
monitoring. For instance, it includes requirements on
performance, parallelization, processing, and elasticity.
For example, cryptographic techniques should be em-
ployed to guarantee data confidentiality (e.g., encryp-
tion). An assurance manager should verify that the
encryption components behave correctly.

In the following, we define a Big Data assurance process for
MBDAaaS, based on SLAs where the declarative model is
the main source of requirements and the target of assurance
specification and verification.

V. SLA-BASED BIG DATA ASSURANCE

SLAs are formal agreements that clarify the service provi-
sioning and the responsibilities between the parties involved,
and facilitate the communication between them [15]. At a
minimal level, SLAs should define the properties that need
to be preserved during the provision of a service and the
penalties that will be applied if those properties are violated.
In this paper, we extend the WS-Agreement specification
language to specify SLAs covering the MBDAaaS concept
and securely use Big-Data-Analytics services.

A. SLA Specification

WS-Agreement [11] was introduced by the Open Grid
Forum to address key requirements for the specification
of SLAs, such as supporting modularity, accommodating
other external and domain specific standards, and allowing
extensions. In WS-Agreement, an SLA is composed of
three main sections: i) SLA name (optional), ii) Context,
containing the meta-data for the entire SLA (e.g., the SLA
participants, its lifetime), iii) SLA terms that contain Service
Terms (STs) describing the services regulated by the SLA
and Guarantee Terms (GTs) specifying the service levels
that should be satisfied during the provision of the service.

The limitations of WS-Agreement for our purposes are
related to the lack of specification support for: i) security
and privacy Service Level Objectives (SLOs); ii) actions that

need to be taken during the life cycle of an SLA (e.g., plat-
form modification actions or SLA re-negotiation actions); iii)
multi-party SLAs; and iv) comprehensive models of complex
services, composed of internal operations, service assets,
data and other dependencies. Thus, to support monitorable
SLOs, we extended the sub-element CustomServiceLevel of
the ServiceLevelObjective, by introducing a new type called
PreciseSLOType, to support the specification of SLOs at:

1) Declarative level, based on the declarative model of
our MBDAaaS approach (section III). This is specified
as a property of a particular category that is applied
to a service asset (e.g., internal or external operation
or data elements of the service).

2) Procedural-Deployment level, which provides the ex-
act run-time assertion for the SLO satisfaction.

As an example, we can extract the information regarding
the Anonymization security property that should be applied
on the sensitive data of households, based on a specified
algorithm (e.g., SHA-256). Also, based on the corresponding
procedural and deployment models, we can retrieve the
information of the service target.

To support the specification of actions that should be
undertaken when terms are violated, we extend the WS-
Agreement’s sub-element CustomBusinessValue. Our exten-
sion permits to express different types of actions by each GT
violation. Two actions have been predefined: i) renegotiate,
which causes the SLA to be renegotiated, and ii) penalty,
which causes a penalty (or reward if negative) to be incurred.
SLA modellers are also free to use any other action name
they wish and can also guard all actions with a predicate. A
guard predicate declares conditions that should be satisfied,
in addition to the GT violations.

B. MBDA-SLA Negotiation Process

SLA negotiation is characterized by the observation that
a customer and a service provider are separated by a
knowledge gap when initiating the SLA negotiation process.
By decreasing this knowledge gap, customers and service
providers can successfully negotiate a reasonable SLA for a
specific service provision.

Our approach is based on the PROSDIN negotiation
framework, a proactive runtime SLA negotiation tool [16].
Our negotiation rules are Jess rules ([17]) defined in XML
and are condition-action rules of the form:

IF(condition)THEN(action)ELSE(action)

Conditions are either atomic conditions or logical com-
binations of atomic conditions over property attributes of
services. Rule actions can be either accept or reject actions
that are used to accept/reject the value of property attributes
in a given SLA offer; or set actions that are used to propose
a new value or range of values for one or more property
attributes in a given SLA offer.

To proceed with the SLA Negotiation process, we take
the viewpoint of a middleman (i.e., the MBDA platform)
between service consumers and service providers. There
are two main types of SLAs we consider: pay–as–you–
go (PAYG) and subscription types. They both assume an
average rate of service use. In PAYG, the consumer pays a
price each time a service is used, while in subscription they
pay a subscription each interval (week, month, etc.). Herein
we consider PAYG SLAs only, to simplify the presentation.

We assume that for each consumer ci we know the:
• C

in
i : income received per request;

• P

in
i : penalty paid by us when a request is not serviced;

• C
R

in
i : contractually agreed/negotiated average rate of

service requests; and
• O

R

in
i : its observed/assumed average request rate.

Thus, for a new consumer, we might negotiate for a rate
C
R

in
i , when we assume that they will have a lesser rate O

R

in
i .

Similarly, for an existing consumer, we would have agreed
upon a C

R

in
i , but observe that they actually have a lesser rate

O
R

in
i . It is always the case that O

R

in
i <=C

R

in
i , otherwise our

SLA would be violated by the consumer. Furthermore, we
assume that for each service provider pj we know the:

• C

out
j : income received per request;

• P

out
j : penalty paid when a request is not serviced;

• C
R

out
j : contractually agreed/negotiated average rate of

service requests; and
• O

R

out
j : its observed/assumed average request rate.

Our observed/assumed rate O
R

out
j may be greater than

C
R

out
j , as there is nothing forbidding the provider to serve

requests faster than promised. If it is lesser than C
R

out
j , then

the provider may end up paying a penalty, assuming that
consumer requests are forwarded at the agreed rate C

R

out
j .

However, it is not possible to know the actual provider’s
rate of service processing or how likely it fails to service a
request. But, we can consider the number of lost requests at
the provider’s side L

out
j . It should be stressed that all rates

are average rates, so there are situations where they arrive
too fast/slow or they can take more/less time to be served
than the average. Thus, in order for an SLA to be agreed,
we need to know the: i) max/min consumer request rate; ii)
penalty amount; and iii) payment for the service.
Example. Based on the Platform assurance layer (Sec-
tion IV), information regarding the deployed components
and their configuration can be used regarding the max/min
request rate. Reward and penalty amounts should be defined
by the SLA modeler. Thus, in order to start a negotiating
process we need: i) boundaries of the SLA terms that can
be agreed; ii) penalties and charges to be negotiated. For
this reason, we use the Prism tool [18] to retrieve these
figures, and facilitate the SLA negotiation process. Since we
need the request rate, we will base our formal model on
the (finite-buffer) M/M/s/K queue [19] that has an incoming
rate of requests �, s servers with a serving rate µ and a

Listing 1. The consumer module
1 const double reqRate;

2 module Consumer1

3 [req1] (true) -> reqRate: true;

4 endmodule

Listing 2. The provider (server) module
1 #const s#

2 const double srvRate;

3 const int s=#s#;

4 module Provider1

5 [srv1] (true) -> srvRate: true;

6 endmodule

7 #for i=2:s#

8 module Provider#i#=Provider1 [srv1=srv#i#]

9 endmodule

10 #end#

Listing 3. The MBDAaaS platform module
1 const int Capacity;

2 module Queue_M_M_s_K

3 waiting : [0..Capacity] init 0;

4 / / C l i e n t s d r i v e t h e s e a c t i o n s
5 [req1] (waiting<Capacity) -> 1 : (waiting’=waiting+1);

6 [req1] (waiting=Capacity) -> 1 : true; / / l o s t req
7 / / S e r v i c e p r o v i d e r s d r i v e t h e s e a c t i o n s
8 #for i=1:s#

9 [srv#i#] (waiting>=#i#)

10 -> 1 : (waiting’=waiting-1); / / s e r v e i f enough r e q u e s t s
11 #end#

12 endmodule

buffer with capacity K to help with request/service spikes
(since rates are average ones). The PRISM model [18] is
a continuous-time Markov chain (CTMC). Listing 1 shows
the basic model for consumers and Listing 2 for providers.
Each of these has a single transition, which fires with a
specific rate. All consumers use the same module definition
as consumer 1 (Listing 1) renaming its action and rate –
similarly for providers (Listing 2, lines 7–10).

The module in Listing 3, representing the MBDAaaS
platform, links consumers and providers together. The transi-
tions of this module are synchronized with the same-named
transitions of the other modules. It defines their rate as 1.0,
thus their global rate is the one declared in the other modules
(rates of synchronized transitions in PRISM are multiplied
together). Each time a consumer makes a request and there
are free slots in the waiting queue, the MBDAaaS module
accepts the request, incrementing the number of waiting
requests. If the waiting queue is full this module rejects
the request. It should be noted that the model is parametric
on the number s of servers (see lines 8–11), which can be
extracted from the deployment model.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we provided a solution to Big Data As-
surance based on SLAs, which integrates with a MBDAaaS
solution. We applied our solution in a real-world scenario
of Lightsource, focusing on the domain of data security
and privacy management. Data of energy consumption carry
sensitive information that can be used to infer people habits
and behavior (e.g., working time, bed time), and pose strict
requirements, especially with the advent of the General
Data Privacy Regulation (GDPR) in Europe. Privacy and
security requirements are specified in the declarative model,

possibly including constraints on the target platform and its
configuration. Two main requirements of our evaluation are:

1) Data anonymization (data and platform assurance).
GDPR (articles 25 and 51.f) mandate users’ sensitive
data to be protected at a reasonable level of strength
against inference attacks and data leaks. A possible
approach for data protection is anonymization that
can be specified in the data preparation area of the
declarative model.

2) Data confidentiality and integrity at rest (data and
platform assurance). GDPR (articles 24 and 25) man-
date to safely store users’ data, guaranteeing their
confidentiality and integrity. Cryptographic techniques
could be deployed to guarantee data confidentiality
and data integrity.

Driven by the above declarative requirements, an executable
deployment model of the Big Data process is generated spec-
ifying the details of the integrated privacy services. These
high-level requirements are fed into the SLA specification
and negotiation tool, to generate the relevant SLAs.

Based on our scenario, a service consumer (i.e., Light-
source) using our MBDAaaS platform generates an SLA
and triggers the SLA negotiation process. By providing all
requirements needed to generate the three models of our
methodology, an SLA offer is produced (section V-A), which
is then translated into a PRISM model, to be evaluated by
the PRISM tool (section V-B). When the PRISM tool finishes
validating the model, the results are translated into Jess rules
and are sent to the Jess rule engine, which checks those
values and tries to match them with existing values from a
service provider(s). It then decides if the offer is accepted
or not, or it will provide a counter-offer, as explained in
section V-B. When an SLA is signed, a runtime monitor
can start monitoring the specific services to assure that the
security requirements hold for a specified period of time.

VII. ACKNOWLEDGMENTS

This work was partly supported by the EU-funded project
TOREADOR [20] (grant no H2020-688797) and by the
programme “Piano sostegno alla ricerca 2015-17” funded
by the Universita degli Studi di Milano.

REFERENCES

[1] M. D. Assunção, R. N. Calheiros, S. Bianchi, M. A. Netto,
and R. Buyya, “Big data computing and clouds: Trends
and future directions,” Journal of Parallel and Distributed
Computing, vol. 79, pp. 3–15, 2015.

[2] I. Hashem, I. Yaqoob, N. Anuar, S. Mokhtar, A. Gani, and
S. Khan, “The rise of big data on cloud computing: Review
and open research issues,” Information Systems, vol. 47, pp.
98–115, 2015.

[3] C. Ardagna, V. Bellandi, M. Bezzi, P. Ceravolo, E. Damiani,
and C. Hebert, “A model-driven methodology for big data
analytics-as-a-service,” in Proc. of IEEE BigData Congress
2017, Honolulu, HI, USA, June 2017.

[4] E. R. Sparks, S. Venkataraman, T. Kaftan, M. J. Franklin, and
B. Recht, “Keystoneml: Optimizing pipelines for large-scale
advanced analytics,” in Proc. of ICDE 2017, San Diego, CA,
USA, April 2017.

[5] C. Ardagna, R. Asal, E. Damiani, and Q. Vu, “From security
to assurance in the cloud: A survey,” ACM CSUR, vol. 48,
no. 1, pp. 2:1–2:50, August 2015.

[6] M. Anisetti, C. Ardagna, E. Damiani, and F. Saonara, “A test-
based security certification scheme for web services,” ACM
TWEB, vol. 7, no. 2, pp. 1–41, May 2013.

[7] M. Krotsiani, G. Spanoudakis, and K. Mahbub, “Incremental
certification of cloud services,” in Proc. of SECURWARE
2013, Barcelona, Spain, August 2013.

[8] M. Anisetti, C. Ardagna, E. Damiani, and F. Gaudenzi, “A
semi-automatic and trustworthy scheme for continuous cloud
service certification,” IEEE TSC, 2017.

[9] S. Lins, S. Schneider, and A. Sunyaev, “Trust is good, control
is better: Creating secure clouds by continuous auditing,”
IEEE TCC, vol. PP, no. 99, pp. 1–1, 2016.

[10] O. A. Wahab, J. Bentahar, H. Otrok, and A. Mourad, “To-
wards trustworthy multi-cloud services communities: A trust-
based hedonic coalitional game,” IEEE TSC, vol. 11, no. 1,
pp. 184–201, 2016.

[11] A. Andrieux, K. Czajkowski, K. Keahey, A. Dan, K. Keahey,
H. Ludwig, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu,
“Web services agreement specification (WS-Agreement),” in
Global Grid Forum GRAAP-WG, Honolulu, HI, USA, June
2004.

[12] K. T. Kearney, F. Torelli, and C. Kotsokalis, “SLA*: An
abstract syntax for service level agreements,” in Proc. of Grid
2010, Brussels, Belgium, October 2010.

[13] R. B. Uriarte, F. Tiezzi, and R. De Nicola, “SLAC: A formal
service-level-agreement language for cloud computing,” in
Proc. of UCC 2014, London, UK, December 2014.

[14] Y. Demchenko, P. Membrey, P. Grosso, and C. de Laat,
“Addressing big data issues in scientific data infrastructure,”
in Proc. of BDDAC 2013, San Diego, CA, USA, May 2013.

[15] N. Karten, “How to establish service level agreements,” 2003.

[16] K. Mahbub and G. Spanoudakis, “Proactive SLA negotiation
for service based systems: Initial implementation and evalu-
ation experience,” in Proc. of SCC 2011, Washington, DC,
USA, July 2011.

[17] E. F. Hill, Jess in Action: Java Rule-Based Systems. Green-
wich, CT, USA: Manning Publications Co., 2003.

[18] G. Norman, D. Parker, and J. Sproston, “Model checking
for probabilistic timed automata,” Formal Methods in System
Design, vol. 43, no. 2, pp. 164–190, 2013.

[19] L. Kleinrock, Theory, Volume 1, Queueing Systems. Wiley-
Interscience, 1975.

[20] “Toreador project,” http://toreador-project.eu/.

http://toreador-project.eu/

	Introduction
	Related Work
	MBDAaaS Methodology
	Big Data Assurance
	SLA-based Big Data Assurance
	SLA Specification
	MBDA-SLA Negotiation Process

	Discussion and Conclusions
	Acknowledgments
	References

