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Abstract

Measurements of wall shear-stress fluctuations on very long timescales (≥ 1900 free-fall time

units) are reported for turbulent Rayleigh-Benard (RB) convection in air at the heated bottom

plate of a RB cell, 2.5 m in diameter and 2.5 m in height. The novel sensor simultaneously captures

the fluctuations of the magnitude and the direction of the wall shear stress vector τ (t) with high

resolution in the slow air currents. The results show the persistence of a tumble-type structure,

which is in a bi-stable state as it oscillates regularly about a mean orientation at a timescale that

compares with the typical eddy turnover time. The mean orientation can persist almost hundreds

of eddy turnovers, until a re-orientation of this structure in form of a slow precession sets in, while

a critical weakening of the mean wall shear stress magnitude - respectively the mean wind - is

observed. The amplitudes of turbulent fluctuations in the streamwise wall shear-stress τx along

mean wind direction reveal a highly skewed Weibull distribution, while the fluctuations happening

on larger time scales follow a symmetric Gaussian distribution. Extreme events such as local flow

reversals with negative τx are recovered as rare events and correlate with a rapid angular twist

of the wall shear-stress vector. Those events - linked to critical points in the skin friction field -

correlate with the coincidence of signals at the tails in both probability distributions.
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I. INTRODUCTION

The heat transport by turbulent convection is characterized by a subtle interplay between

small-scale turbulence in the near-wall flow field at the heated/cooled surfaces and the

large-scale structures evolving or being present far from the wall. In spite of considerable

experimental and theoretical effort, the spatial and temporal dynamics of these large-scale

structures and their dependency of the width-to-height ratio of the adjacent fluid layer

are not very well understood. Since these large-scale structures also affect the flow field

adjacent to the wall, they have to be considered too, studying the convective heat transport

from a solid surface to a surrounding fluid. Ludwig Prandtl was the first person, who

linked heat and momentum transport throughout a convective boundary layer in his so-

called mixing length theory [1]. The core idea of this theory is that turbulent parcels of

fluid transport momentum and heat simultaneously. Therefore, Prandtl believed that both

transport coefficients are equal. Today, we know that this is not fully true. But, following

Prandtl’s idea, it is undoubtedly that the local flow field close to the wall determines the

heat transport from/toward a heated/cooled surface. In the work presented here, we focus

on measurements of the local wall shear stress, which has been identified as a quantity that

is directly linked to the local heat transport (if the fluid layer adjacent to the wall is not

laminar and convection dominates over diffusion).

The link between the local heat transport and the wall shear stress in a non-laminar

boundary layer has been quantitatively studied first by Ludwieg [2]. He experimentally

determined the ratio between the transport coefficients for heat and momentum in a fully

developed turbulent pipe flow and, unlike Prandtl, he found this ratio to be different from

one. Recent experiments using micro-pillar wall shear stress sensors in a turbulent boundary

layer flow along a flat plate showed the existence of singularities in the wall shear stress vector

field. For the first time, those measurements highlighted the importance of the directional

information of the wall shear stress vector and its topology [3]. It is the authors conclusion

that both wall shear stress components are essential to draw correct conclusions about the

correlation between τW and the local heat transport from the wall. In general, time-resolved

measurements of the wall shear stress in thermal convection are rare, and in particular,

measurements in turbulent Rayleigh-Bénard (RB) convection, a fluid layer heated from

below and cooled from the top, are completely missing. The current status quo in such data
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knowledge is only provided by recent highly resolved Direct Numerical Simulations (DNS).

Those simulations can provide the local wall shear stress vector information in time, but

only for a limited simulation periods. First wall shear stress data for a similar RB convection

flow as studied herein shows also the existence of singularities in the wall shear stress vector

field similar as those reported in [3], which were found to be footprints of large eruptions

of fluid parcels from the wall [4]. However, the state-of-the-art computational power allows

only to run the simulations for short periods in time and are limited to Rayleigh numbers

as low as Ra = 1010 (see e.g. [5]).

Recently (in 2017), Bruecker and Mikulich developed a novel sensor particularly designed

to measure the wall shear stress in low-speed air flows [6]. As reported in [6], its sensitivity

and dynamic response were sufficiently good to apply it in the so-called Barrel of Ilmenau

(BOI), a large-scale RB experiment, which will be described in detail below. The flow in such

a convection cell is known to generate a large-scale circulation (LSC), whose shape mainly

depends on the diameter-to-height ratio of the test cell. This ratio defined as Γ = D/H,

is commonly referred to as aspect ratio. The LSC exhibits the shape of a single roll for

aspect ratios of order unity, while for larger or smaller aspect ratios a pattern of multiple

rolls evolves [7–10]. It is already known that the single roll structure exhibits a number of

various flow modes, like e.g. the oscillation of its plane around the mean [11], the torsional

mode disentangling the upper and the lower part of the flow structure [12], the sloshing

mode [13], and various kinds of re-orientations like reversals [14], rotations or cessations

[15]. Independent on its particular mode, the LSC forms distinct boundary (shear) layers

near the top and bottom plates as well as near the sidewalls. The wall shear stress at the

surfaces of the plates and the sidewall reflects both the particular shape and the dynamics

of the LSC.

The present work reports the first application of this sensor in the BOI, which addresses

the hitherto unknown long-term dynamics of the wall shear stress field by simultaneously

measuring the magnitude and direction of the wall shear stress vector. The results display

the long-term behaviour of the local wall shear stress in turbulent RB convection and give

insight into the long-term statistics and dynamics of the flow pattern, permitting validation

of recent DNS. The sensor has the appropriate temporal resolution along with a very high

sensitivity to capture singularities in the wall shear stress field at long sampling periods of

the order of hours and more. Furthermore, the system also allows to recover the dynamics
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of the LSC [14–19]. Hence, our wall shear stress measurements contribute to a better

understanding, how the emission of strong plumes from the boundary layer is coupled with

the global flow field [20–23].

II. EXPERIMENTAL SET-UP AND MEASUREMENT TECHNIQUE

A. The large-scale Rayleigh-Bénard Experiment “Barrel of Ilmenau”

The wall shear stress measurements were carried out in the so-called “Barrel of Ilmenau

(BOI)” (see Fig. 1) with the sensor mounted at the center of the bottom plate. The BOI

represents a classical Rayleigh-Bénard (RB) experiment using air (Pr = 0.7) as working

fluid. It is confined in a well-insulated container of cylindrical shape with an inner diameter

of D = 7.15 m. A heating plate at the lower side releases the heat to the air layer, and a

cooling plate at the upper side removes it. Both plates are carefully levelled perpendicular

to the vector of gravity with an uncertainty of less than 0.15 degrees. The thickness of

the air layer H can be varied continuously between 6.30 m > H > 0.15 m by moving the

cooling plate up and down. The temperature of both plates can be set to values between

20 ◦C < Th < 80 ◦C (heating plate) and 10 ◦C < Tc < 30 ◦C (cooling plate). Due to

the specific design of both plates (for details see [24]), the temperature at their surfaces

is very uniform and the deviation does not exceed 1.5 % of the total temperature drop

∆T = Th − Tc across the air layer. The variation of the surface temperature over the time

is even smaller and remains below ±0.02 K. The sidewall of the model room is shielded by

an active compensation heating system to inhibit any heat exchange with the environment.

Electrical heating elements are arranged between an inner and an outer insulation of 16 cm

and 12 cm thickness, respectively. The temperature of the elements is controlled to be

equal to the temperature at the inner surface of the wall, and thus, a heat flux throughout

the side-wall is impossible. As described in Section II C the top-plate has several glass

windows, which allow optical access to the inner of the test section. Our measurements were

undertaken inside a smaller inset of D = 2.5 m and H = 2.5 m (see Fig. 1). This reduces the

Rayleigh number, Ra = (βg∆TH3)/(νκ) with being β the thermal expansion coefficient, g

the gravitational acceleration, ν the kinematic viscosity, and κ the thermal diffusivity, to

Ra = 1.58× 1010, and allows to compare our results with currently running DNS.
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FIG. 1. Sketch of the large-scale Rayleigh-Bénard experiment “Barrel of Ilmenau” with the smaller

inset of D = 2.5 m. The origin of a Cartesian coordinate system is fixed with the centre of the

bottom plate (the location of the wall shear stress sensor) in the x, y plane and the z axis pointing

normal to the wall towards the top plate.

The characteristic timescale of the flow is the so-called free-fall time unit, defined as

Tf =
√
H/gβ∆T , which is about Tf = 2.73 s for the current configuration at a temperature

difference of ∆T = 10 ◦C. Another timescale is the characteristic eddy turnover time of the

LSC, which is calculated from the mean wind U = 0.15 m/s and the circumference of the

cell to about Te = 50 s. Previous flow studies in the BOI using Laser Doppler Velocimetry

show a typical boundary layer thickness of the order of δ = 50 mm. The smallest turbulent

scales are about 30 mm and correlate to the highest reported frequencies of the order of 2 Hz
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FIG. 2. Mean velocity profile in the boundary layer of the barrel of Ilmenau. Inserted is a true-scale

sketch of the sensor with its head at z0 = 7 mm, illustrating that it is fully surrounded by the

linear part of the velocity profile.

([11, 25]). A typical profile of the mean velocity at the position of the sensor, measured using

Laser Doppler Velocimetry, is shown in Fig. 2. The linear part of the profile as indicated by

the dashed line represents the viscous sublayer close to the wall. Measurements by Ampofo

and Karayiannis [26] in a similar low-turbulence convection flow as studied herein show that

the viscous sublayer thickness is of order of 10 % of the outer boundary layer, similar as

observed in the BOI. For subsequent discussion, the picture additionally displays a true-scale

sketch of the sensor. This illustrates, that the sensor is one order of magnitude smaller than

the typical boundary layer thickness in the BOI.

B. The wall shear stress sensor

The sensor including its calibration in the BOI is described in detail in [6] . The interested

reader is referred to the reference, while we give here only a short review. The sensor

resembles an artificial wind receptor hair with a stem, which is bonded at the wall with the

foot in a flexible membrane. It tilts with the flow like an inverted pendulum. The sensor’s
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FIG. 3. Pictures of the pappus sensor fixated with the stem at the bottom plate of the BOI.

Pictures show the side view (left) with a scale bar and the top view with higher magnification

(right). Taken from [6].

FIG. 4. Close-up view of the flexible foot fixation of the stem at the bottom plate of the BOI in

a thin Silicone rubber membrane. Sensor at rest (left) and under strong wind load (right). Note

that the stem keeps its straight shape under load. Taken from [6].

head consists of a pappus of slender hairs with a diameter of a few tens of microns. They

act as an antenna maximizing the drag force of an imposing flow. The mechanical behavior

of the sensor is described in Bruecker and Mikulich as a second-order harmonic oscillator

in overdamped condition [6]. A calibration of the mechanical model can provide the two

unknown variables of the solution to the response function, the constant gain K and the

cut-off frequency fc, the frequency at which the sensor can no longer follow the excitation

(the response starts to roll-off with -20 dB per decade).

A detailed view of the sensor is shown in Fig. 3. The stem and head were taken from a

nature-grown Dandelion [6] with a pappus consisting of a total 86 radially arranged slender

hairs (mean length l = 7 mm, mean diameter d = 30 µm. It has a stem height of z0 = 7 mm

and the overall radial diameter of the pappus is about Dp = 14 mm. The Reynolds number

7



Re of the flow around the individual hairs - simplified as thin cylinders of diameter d - is of

the order of Red ≈ 2 for air speeds of 1 m/s. Thus, the drag is dominated by viscous friction

and scales, therefore, approximately linear with flow speed [27–29]. The elastic membrane,

at which the stem’s foot is bonded, is made from rubber silicone (Polydimethylsiloxane,

PDMS; Youngs modulus E ≈ 1.5 MPa) and acts as a torsional spring with uniform bending

stiffness in radial direction. A close-up view of the membrane with the stem is given in

Fig. 4. When the stem with the pappus is exposed to an air flow parallel to the wall, the

resulting torque tilts the stem around the membrane. As the tilt is proportional to the

torque, the latter can be measured indirectly by the end-to-end shift vector Q(t) of the tip

relative to the wind-off reference. For small tilt angles this is approximately the projection

of the vector in the horizontal x-y plane at z = z0 with Q(t) = (Qx(t), Qz(t)), which we

capture by imaging the sensor head’s orbital motion from top.

At a sufficiently small sensor scale with z0 � δ, Q(t) is directly proportional to the wall

shear stress vector τ (t) = (τx(t), τy(t)), see also [30]. Assuming the mean flow is parallel

to the wall in x-direction the streamwise component is defined by the wall-normal velocity

gradient ∂ux/∂z|z=0mm and the spanwise component is ∂uy/∂z|z=0mm respectively. Using a

Taylor expansion, the information of the velocity field in the x − y plane close to the wall

at a distance z = z0 is related to these wall shear-stress components as follows:

τx,y = µ
ux,y(z0)

z0
+ O(z0)

2 (1)

For small wall distances z0 � δ, the second order term in Eq. (1) can be neglected. This

approximation is valid close to the wall within the viscous sublayer of a turbulent boundary

layer (TBL), see the discussion above. The low Re number flow around the micron-size

pappus hairs at the sensor head suggests a linear relationship between the pappus drag and

the air velocity [27–29], therefore we can approximate the sensor tilt proportional to the

velocity as follows:

ux,y(z0) ≈ K ·Qx,y (2)

Therefore, once the tip displacement of the sensor is calibrated with respect to a reference

flow, the proportionality constant K in Eq. (2) can be determined and the gain of the

mechanical system is given. Using Eq. (1,2) for a given fluid viscosity µ then allows to
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FIG. 5. Optical set-up of the wall shear stress measurement technique applied at the hot bottom

plate (left). Top view of the pappus sensor, the circle marks the center of the sensor head (right).

calculate the time-dependent vector τ (t) in magnitude and direction from time-resolved

measurements of Q(t) during the motion of the sensor.

C. Optical set-up for sensor imaging

Fig. 5 shows the optical set-up of our measurements. The pappus sensor at the bottom

plate was illuminated by a defocused Laser beam (Raypower 5000, 5 W power at λ =

532 nm, Dantec Dynamics, Skovlunde, Denmark) through a glass window in the top plate

. The diameter of the laser beam is about 1.5 mm at the aperture of the laser and it is

further expanded to illuminate a spot of 50 mm diameter at the floor. A CCD camera

(mvBlueFOX3-1031, Matrix Vision, Oppenweiler, Germany) placed on top of the cooling

plate acquires the deflection of the sensor head in the wall-parallel x, y plane with a resolution

of 2048 x 1536 px2 and a frame rate of 10 Hz. The camera is equipped with a long-

distance microscope (model K2/SCTM, Infinity Photo-Optical, Goettingen, Germany), which

provides a resolution of 185 px/mm. A total number of 54,000 images was recorded in a

single measurement campaign. The images are streamed via USB 3 to the hard disc of

a desktop. This equates to a maximum of 1.5 hours of observation time per experiment.

To avoid any vibrations during the recordings, the facility was left alone after starting the
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recording and no external disturbance could enter the RB cell. In order to remove any

vibration induced by leaving and re-entering the facility, the first and the last 2-3 minutes

were rejected when analysing the data.

The tip displacement vector in the images is obtained using a 2D cross-correlation method

similar as in Particle Image Velocimetry technique [31], where we compare a quadratic

subsection of the sensor image between wind-off and wind-on situation. The shift in tip

position relative to wind-off is determined with subpixel accuracy using a 2D Gaussian fit

of the correlation peak, which has an uncertainty of about 0.05 pixel. A reference marker

on the floor is used to correct for potential vibrations of the camera during the recordings.

After multiplication of the shift with the lens magnification, the vector Q(t) of the sensor

head is recovered for each time-step in the image sequence. With the obtained gain K from

calibration and z0 as the known sensor wall-normal distance, τ (t) is determined according

Eq. (1,2).

D. In-situ calibration

The sensor represents a mechanical system that can be modeled as a second-order har-

monic oscillator in an overdamped condition, see Bruecker and Mikulich [6]. A calibration

provides the constant gain K and the cut-off frequency fc, at which the sensor can no longer

follow the signal (the response starts to roll-off at -20 dB per decade). The latter quantity is

inverse to the response time, which can be measured in a step-response test. Therefore, the

stem was tilted away from its resting position and the head was recorded while flexing back

after unloading. The response time was measured to about τ95 = 10 ms. Hence, the sensor

can follow the fluctuations up to frequencies of 100 Hz with a constant amplitude response.

The gain was measured in-situ using a wind-generating device placed inside the BOI

under isothermal conditions. The reader is again referred to the details given in Bruecker

and Mikulich [6]. The device resembles a small Eiffel-type wind tunnel [32] with an open

rectangular nozzle (width ws = 120 mm, height hs = 5 mm). It is arranged in front of the

sensor at the centre of the heating plate at a distance of 20hs (see Fig. 6). A centrifugal

fan generates the flow in the device and guides the air through the smooth contraction unit

(ratio 20:1) to the exit slot. The outcoming flow generates a well-defined laminar Blasius-

type wall-jet [32–36] along the bottom wall of the barrel. Since the aspect ratio of the slot
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FIG. 6. Sketch of the wall-jet apparatus. Air flow is generated with a planar nozzle flow that

is tilted at an angle of 45 degree towards the bottom heated plate of the research facility and

generates a Blasius-type wall-jet in direction of the sensor. The sensor is located at the centre of

the plate and the nozzle exit is at a radial offset of 20 slot heights hs away. The flow profile at the

sensor location is well-defined as the laminar Blasius wall-jet.

is high, the flow in the centre plane remains nearly two-dimensional until far distances from

the exit.

Five different jet velocities v = 0.16 m/s, v = 0.40 m/s, v = 0.75 m/s, v = 1.00 m/s and

v = 1.50 m/s have been set and the shift vector Q of the sensor head was measured. These

were repeated with the sensor facing the wind from four orthogonal directions. The results

of the calibration demonstrate that the direction of Q is always aligned with the jet flow

axis and the magnitude ||Q|| increases approximately linear with the jet velocity at z0 up to

v = 1.0 m/s. Beyond this, the recordings at v = 1.5 m/s show that the configuration of the

pappus’ hairs starts to change over time and the linear relationship is no longer valid. In

the convection flow studies in the barrel the expected maximum velocities are about 1 m/s

and thus, a linear regression formula can be applied for the calibration in the velocity range

of 0−1 m/s, recalling that a linear relationship is expected between air velocity and pappus

drag [27–29] as observed in nature for typical wind speeds of ≤ 1 m/s. The linear regression

of the data results to a value of K = 1000 s−1. As an example, a measured head shift of
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500 µm represents a velocity of u(z0) = 0.5 m/s.

E. Sensor resolution and data processing

The so calibrated sensor at the centre of the bottom plate is capable to resolve the near-

wall velocity ux,y(z = z0) from minimum velocities of the order of 0.4×10−3 m/s (defined by

the uncertainty in optical detection of the shift vector Q) up to maximum velocities of 1 m/s

(limited by the linear regression curve). This is the typical range of air velocities in the barrel

that appear in the vicinity of the heated bottom plate. The standard error in the linear

regression is about 4× 10−3 m/s. The typical timescales of the velocity flucutations in the

BOI, measured in earlier experiments using LDA [19] are of the order of 0.5 s (2Hz), which is

also well below the sensor’s critical cut-off frequency of 100Hz. The present data have been

acquired with a sampling frequency of 10Hz. I order to remove spurious samples, the data

was filtered in time with a 4th order Butterworth low-pass filter designed with a -3 dB cutoff

frequency. We consider this as the optimal configuration to capture the full dynamics of the

wall shear stress fluctuations in the convective airflow in the BOI. The spatial resolution of

the sensor is defined by the radius of the pappus which amounts to about 7mm. The LDA

data mentioned above [19] show that the typical small-scale structures have a minimum size

of the order of 30 mm. Therefore, along with a high sensitivity, the sensor also provides a

sufficiently well spatial resolution to map the full dynamics of the flow also in the smallest

scales. The arguments given above show, that the described sensor was particularly specially

designed for the conditions in the BOI which is a very slow, but turbulent air flow. Presently,

there is no other sensor capable to measure the wall shear stress and it’s fluctuations under

these conditions, which was the motivation for the sensor development in 2017 [6].

In order to make our data comparable with results obtained in recent PIV measurements,

we consider in the following the components of the viscosity-divided wall shear stress τx,y/µ

with

τx(t)/µ = CQx(t)/z0, τy(t)/µ = CQy(t)/z0 (3)

and we define the direction and the magnitude as follows:

Φ(t) = arctan
τy(t)

τx(t)
Ψ(t) =

1

µ
||τ || = 1

µ

√
τ 2x(t) + τ 2y (t) (4)
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III. RESULTS AND DISCUSSION

The wall shear-stress fluctuations at the surface of the bottom plate reflect the dynamics

of the convective boundary layer exhibiting eruptions of plumes overlaid with the dynamics

of the mean wind driven by the LSC. In order to recover the large-scale motion from the

signals, we applied another low-pass filter on the recorded data (4th order Butterworth low-

pass filter designed with a -3 dB cutoff frequency at 0.003 Hz). Based on the notation used

in Shi et al. [37], we define the large-scale direction and magnitude of the wall shear stress

based on the low-pass filter as Φ̃LSC and Ψ̃LSC . Their values indicate the direction and the

magnitude of the mean wind that is imposed by the LSC. This is useful to analyse the wall

shear stress data in a plane, which is aligned with the instantaneous direction of the LSC in

the cell.

Fig. 7 shows time traces of the direction Φ, Φ̃LSC and the magnitude Ψ, Ψ̃LSC over the

entirely recorded time span of 1.5 hours. It is seen that both, direction and magnitude

vary strongly. We recognize a fast variation of the orientation of the angle over a range of

approximately ≥ ± 25◦, similar as already observed in Shi et al. [37]. On average, the LSC

is almost perfectly aligned with the x-axis for phase A (t=0...3,000 s). A very slow drift of the

angle beginning at t = 3000 s in phase B (t=3,000...5,000 s) in counter-clockwise direction is

superimposed on the fast oscillations. This drift indicates a very slow precession of the LSC.

Such a slow precession mode can be present in the BOI, since the mean orientation of the roll

is not locked in one particular direction. While the angular fluctuations increase in phase B,

the mean magnitude slows down and exhibits a modulation with a long wavelength. Thus,

the variance in the pattern of fluctuations increases in phase B relative to the mean and

the effect of perturbations accumulates. The mean of the magnitude in phase A amounts

to ΨA = 40 s−1 but it significantly decreases in phase B to a value of about ΨB = 28 s−1

(see in Fig. 7). The slow-down of the mean wind lasted about 1,500 s (550 units of Tf ),

meanwhile, the angle Φ̃LSC changed by 1.36 pi. As the kinetic Energy Ekin is proportional

to the square of the magnitude of the wall shear stress Ekin ∝ Ψ2, the average kinetic energy

of the mean wind in phase B is reduced to about 50 % of the energy in phase A. In spatially

extended and/or high dimensional systems, transitions are often a consequence of such a

critical slowdown. Therefore, the lower level of the kinetic energy of the mean wind may have

triggered this slow precession. In order to illustrate the complex behaviour of the flow in
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FIG. 7. a) Plot of direction Φ(t) and b) magnitude Ψ(t) of the wall shear-stress vector τ (t)/µ

over a period of 1.5 hours. Overlaid in color is the profile of the low-pass time-filtered signal of

the direction Φ̃(t) and the magnitude Ψ̃(t). Two different characteristic phases are coded in color

(phase A in red, phase B in blue).

the x-y plane, the data in Fig. 7 are plotted again as a x-y trace plot in Fig. 8. In phase A,

the direction of the LSC (the red part of the time-filtered signal in Fig. 8b) was almost

constant towards north (positive x-axis) with relatively small fluctuations. Later on, in

phase B, the direction of the mean flow followed a nearly circular trace in counter-clockwise

direction, which proves that the LSC started to rotate at the time, when the magnitude

of the main wind slowed down. Our sensor enables us to reveal this slow precession and

to distinguish it from a phase of constant orientation of the wind. The time scale of this
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FIG. 8. Temporal trace of the wall shear-stress vector τ (t)/µ in the x-y plane, comparable to the

trace Q(t) of the sensor head. a) original signal in phase A; b) low-pass filtered signal in phase A

(colored in red) and in the successive phase B (colored in blue), compare Fig. 7.

precession is rather long compared to the characteristic eddy turnover time of the LSC in

the experiment (about Te = 50 s). Another interesting feature in phase A is the observation

of a negative streamwise wall shear stress τx as seen in the traces in Fig. 8, when the line

crosses the 2nd or 3rd quadrant in the left sub-figure. Our data indicates that eventually

the LSC becomes weaker such that the superposition of strong fluctuations can lead to a

local backflow with a negative streamwise wall shear-stress τx. Such events are observed in

turbulent RB convection for the first time and they are quite similar to those observed in

turbulent boundary layer flows [3].

For the further statistical analysis of the wall shear stress in a wind-driven convective

boundary layer, we exclusively focus on phase A. In this period, the mean direction of the

wind is aligned with the x-axis. Fig. 9 shows the angular probability density function of

the yaw angle of the wall shear-stress as a wind rose plate with a mean direction towards

north. The angle Φ of the rays relative to north represent the yaw angle, while the length

indicates the probability over all samples recorded in phase A. The magnitude Ψ is overlaid

in color. The graph is similar to that used by Bruecker displaying the measurements of the

statistics of the wall shear stress in TBL flows [3]. The distribution shows a type of cone,

in which mean angles between ± 25◦ around the x-axis predominate. However, there are
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FIG. 9. Polar plot of probability distribution of the wall shear-stress direction Φ in phase A (mean

wind flow is in direction north). The right sub-figure shows a zoom-in image of the data given left.

Angular steps are in 5◦. The color indicates the magnitude Ψ in s−1 for the ranges given in the

legend bar.

also, even rarely, events of τ , in which the yaw angle exceeds ± 90◦. The maximum amounts

to about ± 110◦. Thus, these rare events can be associated with events of large spanwise

τy, first argued in [3] in a zero pressure gradient TBL flow. The probability and the yaw

angle of the rare events in thermal convection are quite similar to those reported therein.

Therefore, it can be concluded that the source and the character of these events is similar

to the transport process in a TBL, where the convection of larger coherent vortex structures

within the boundary layer leads to the same effect.

The observation also indicates a rapid temporal variation of the local direction of the

fluctuating wall shear-stress, expressed by the angular velocity of the vector τ (t). We further

analyse, how the streamwise wall shear-stress τx correlates with these temporal changes of

Φ(t) by plotting a joint probability density distribution (see Fig. 10a). The colored contour

distribution clearly shows the preferred orientation of large positive amplitudes of τx in

the direction of the mean-flow with only slow temporal variation in Φ. On the other hand,

fluctuations that induce negative streamwise τx relative to the mean wind are correlated with

higher angular velocities of the wall shear stress vector. Therefore, the contours display a

tear-drop like shape with the tip aligned with the mean wind. A possible explanation for

this different behaviour is the passage of two essential elements of the boundary layer: they
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FIG. 10. a) Joint probability density distribution of the streamwise component τx with angular ve-

locity of the wall shear-stress vector; b) joint probability density distribution of temporal gradients

of τx and τy.

are documented in previous research as a) the plume-detachment event and b) the post-

plume-detachment phase. If a plume dissolves from the boundary layer, the structure of the

latter one reorganizes. Typical sequences of such an event cover a certain time lag of about

0.45Tf . Prior to the plume detachment, the flow is more irregular and hot fluid starts to rise

up, probably causing more irregular fluctuations and a twist in τ , reducing τx and increasing

τy. If there is any wall-normal vorticity, then, it is reinforced by vortex stretching. This

might explain the increase in ∂tΦ as a speed-up of the twist observed in this process, similar

as in a tornado. This process is represented by the bottom of the tear-drop like shape. Once

the plume has formed and rises up, it causes strong upward outflow that is connected to the

plume detachment. This is followed with a strong inflow in the back of the plume due to

conservation of mass. This is the phase when the fluctuations drive the flow towards the tip

of the tear-drop shape. Some more information is given by the temporal rate of change of

the spanwise and streamwise component of the wall shear-stress, again displayed as a joint

probability density distribution in Fig. 10b. The rate of change of the wall shear-stress can

be interpreted as the acceleration of the flow in the plane above the wall. This distribution

has a rather isotropic shape, which indicates that there is no preferential direction in flow

acceleration. Thus, local pressure gradients are expected to be distributed uniformly in the
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FIG. 11. Power spectra of the magnitude (a) and the angle of the wall shear-stress fluctuations

(b). The spectra are calculated using the Welch power estimate [38]. The roll-off above 2 Hz is

caused by the cut-off frequency of the low-pass filter.

horizontal plane.

We further computed the power spectra of the magnitude Ψ and the angle Φ and the

results are given in Fig. 11. The spectrum in Fig. 11b clearly shows a prominent peak at

about 0.02 Hz. The corresponding time well agrees with the characteristic turnover time Te

of the LSC that has been measured in the BOI in previous experiments [39]. It represents

the angular oscillation of the LSC, which is not visible in the spectrum of the magnitude in

Fig. 11a. Both spectra follow an approximately linear decay in the log-log plot for the range

of 0.03–1 Hz with a slope of about -2/3. Since the sampling frequency is as high as 10 Hz,

the spectrum ends up at 5 Hz. As mentioned above, we filtered our signal by a low-pass

filter with a cut-off frequency of 2 Hz. The steep roll-off of the spectrum beyond this limit

follows the natural decrease of the forth-order butter-worth filter (-80 dB/decade) and is

not associated with any physical process in the flow.

In order to analyse the angular oscillation of the LSC in more detail, one each short

window of the time traces of Ψ(t) and Φ(t) are plotted in detail in Fig. 12. While the

oscillations of the magnitude seem to be rather irregular (see Fig. 12a), the plot of Φ(t)

reveals a low frequency oscillation around the mean with a frequency of about 0.02 Hz (see

Fig. 12b). This timescale corresponds to the characteristic turnover time Te of the LSC.

It is more pronounced in the plot of the autocorrelation function Cxx(Φ) and Cxx(Ψ) (see

Figs. 12c,d). The autocorrelation Cxx(Φ) shows that the system of the LSC is in a quasi-
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FIG. 12. Time series of magnitude Ψ(t) and direction Φ(t) of the wall shear-stress vector τ/µ for

phase A, 400 s < t < 700 s (a and b); autocorrelation function of the magnitude Cxx(Ψ) and the

direction Cxx(Φ) for phase A (c and d).

bistable state. We conclude this from the regular angular fluctuations (Fig. 12b) and the

strong periodic correlation peaks. The dynamical system has obviously two attracting states

overlaid with a certain fraction of noise/turbulence. This is quite similar to other bistable

systems as, e.g., reported in [40]. Consequently, the RB convection system also exhibits

two time scales: the periodic dynamics representing the low frequency angular oscillations

of the mean wind and turbulent small-scale fluctuations. Another observation is the long-

term modulation of the angular oscillations as the peak amplitude of the correlation slowly

decreases for increasing time lag to about zero at a time lag of 4t = 450 s (9Te). For even

higher 4t, it increases again to a correlation value Cxx(Φ) = 0.2. The second maximum

appears at 4t = 700 s (14Te). This decrease in autocorrelation towards a minimum can
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FIG. 13. Peak-to-peak amplitude of the fluctuations of τx at different timescales. a) Temporal

signal τx (black line) with envelopes of the short-term and long-term fluctuations (thin blue and

red lines, respectively). b) Probability density function (PDF) of the short-term fluctuations (the

solid line is a Weibull fit with a scale parameter λ = 0.637 and a shape parameter k = 1.223), c)

PDF of the long-term fluctuations (the solid line is a Gaussian fit with a mean value of τ̄x = 2.85

and a standard deviation of σ(τx) = 0.92).

be explained applying Extreme Value Theory (EVT). According to the ideas of EVT the

decrease of the correlation towards a minimum is associated with a critical slow down, in

which the system becomes increasingly weak, while recovering from small perturbations [40].

It is quite difficult to recover extreme events using classical conditional averaging methods

or a fixed threshold definition due to this particular modulation of the magnitude and the

orientation of the mean flow. Here, we discriminate the oscillation of the mean flow into

different time-scales. We distinguish between the periodic transitive dynamics represented
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in the low-frequency angular oscillations of the mean wind and the small-scale turbulent

fluctuations. To this end, we apply envelope functions with different time windows on τx

to determine the amplitudes of these fluctuations on the different timescales. The envelope

is calculated from the Matlab toolbox and uses a sliding time-window that connects within

the window the local peaks (upper envelope for local maxima and lower envelope for local

minimum peaks) with a smoothed spline [38]. For the low frequency dynamics, we chose

a window of 15 s, while using a shorter time window of 0.5 s for the small-scale turbulent

structures. One typical example of such an enveloping curve is plotted along with the original

signal in Fig. 13a. In order to analyse the amplitude of the fluctuations, we compute the

absolute difference between the upper and the lower envelopes and determine the probability

density function (PDF) for both time windows (see Fig. 13b and c). The PDF of the short-

term fluctuations using a time window of 0.5 s is shown in Fig. 13b, that for the long-term

fluctuations is shown in Fig. 13c. While the short-term fluctuations of the streamwise wall

shear-stress follow a Weibull distribution according to:

f(x;λ, k) =
k

λ
(
x

k
)k−1e−(x/λ)k (5)

(with the scale parameter λ=0.637 and the shape parameter k=1.223), the long-term fluctu-

ations are clearly Gaussian distributed. In conclusion, extreme events are more likely, if large

excursions occur simultaneous for both statistical distributions. Our long-term recording of

totally 54,000 samples covers more than 100 LSC turnover times Te, and ensures sufficient

statistical evidence even for the long time-scales.

IV. CONCLUSION

We have investigated the long-term behavior of the wall shear-stress fluctuations in tur-

bulent Rayleigh-Bénard convection in air. Using a novel sensor concept based on a nature-

inspired pappus design, we measured the direction and the magnitude of the wall shear

stress vector τ (t) at the bottom plate of a large-scale convection cell, the “Barrel of Il-

menau”. For a fixed cylindrical geometry of aspect ratio unity and a Rayleigh-number of

Ra = 1.58 × 1010, we recorded the fluctuations using an optical method, and we analysed

their angular distribution at different timescales. The wall shear-stress vector τ (t) measured

at the center of the heated bottom plate clearly reflects the strength and the orientation
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of the large-scale circulation (LSC), being omnipresent in such a system. We demonstrate

that it remains in a bistable state for a very long time. Its orientation oscillates regularly

with ±25◦ around the mean, which represents the typical wind direction in the convection

cell. The period of this angular oscillations is linked to the characteristic turnover time Te

of the LSC in the cell. The analysis of the autocorrelation of the wall shear-stress direction

Φ yields a considerable large memory of those oscillations up to temporal scales of several

decades of turnover cycles. The peaks in the correlation plot show also a low frequency

modulation of these oscillations, whose timescale agrees with a modulation of the magni-

tude of the mean wall shear stress, respectively of the mean wind in the cell. After this long

phase of constant mean wind direction a transition sets in that causes the slow precession of

the mean wind orientation. The periodic oscillations of the LSC persist over this transition

while slowly precessing. It is concluded that this transition is triggered by a critical decay in

mean wind kinetic energy, which happens, when the observed very low-frequency amplitude

modulation in the wall shear-stress reaches a local minimum. On the same time, the level

of perturbation remains rather unchanged, thus their influence increases within this phase.

Within the regular oscillations of the LSC, extreme events such as local backflow events

were observed, seen by negative streamwise wall shear-stress. The latter phenomenon has

also been detected in turbulent boundary layer flow along a flat wall [3] recently. This is

the first time that such events also could be documented in a temperature gradient driven

flow. The similarity in the statistics of the small-scale fluctuations indicates the presence

of coherent vortices as characteristic for a turbulent boundary layer, which is generated by

the LSC. Our measurements show, that these events are correlated with a rapid twist of

the wall shear-stress vector. As these local flow-reversals are related to singularities in the

skin-friction field as shown in [3], we can follow the argument given in [4] about a possible

link of these events to the detachment of thermal plumes.

We separate the fluctuations of τx in two different timescales (0.5 s and 15 s) using a

method that calculates the envelope of the extreme events (peaks of local maxima and min-

ima). The short-term fluctuations show peak-to-peak amplitudes that follow a highly skewed

Weibull distribution, which indicates the strong intermittent character of these turbulent

fluctuations. On the contrary, for the long-term fluctuations the peak-to-peak amplitudes

are represented by a symmetric Gaussian. In both distributions the ends of the tails can

reach amplitude values of 3-4 times the rms of the wall shear-stress. A coincidence of large
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values in both distributions, therefore, may lead to rare excursions such as the reorienta-

tion of the LSC or the appearance of local events of a negative streamwise wall shear stress

(the latter ones could be validated in our experiment). This behaviour suggests that the

fluctuations of the wall shear-stress observed at the bottom wall are a superposition of the

long-term dynamics of the bi-stable LSC and the turbulent, highly intermittent near-wall

events. Most likely, these are impinging jets from the fully turbulent core of the flow, which

transport coherent structures along the wall. All these observations show that the flow close

to the heated bottom and the cooled top plates is similar to other dynamical systems with

a bi-stable set of states, where fluctuations of considerable strong amplitude trigger the os-

cillation of the system between both states. The slow precessing of the mean flow direction

is a transient phase or a reorientation of the flow in confined thermal convection, while the

oscillating flow of the LSC is seemingly persistent during this phase.

The current conclusions on the wall shear-stress measurements built on the fact that the

sensor height is one order of magnitude smaller than the boundary layer thickness in the

BOI at the given conditions. It is sufficiently small to consider the velocity profile from

the wall up to the sensor head as linear in a first approximation. Regarding this, we wish

to refer to a very recent work of Daniel et al. [41]. The authors of this paper studied

the correlation between the fluctuations of the wall shear stress and the fluctuations of the

velocity in the near-wall region in a zero-pressure-gradient TBL at high Re-numbers. When

we apply this analysis to our own set-up, their results predict a correlation coefficient of

C = 0.3. Recalling, that the low-level turbulent natural convection flow near the wall herein

cannot be compared one-to-one to the situation of a high Re number TBL along a flat plate.

The wall shear stress dynamics in thermal convection is mainly driven by the eruptions

of hot plumes or impacts of cold ones. Therefore, we expect in our experiments a higher

correlation of the near-wall flow features with the dynamics of the wall shear-stress. Insofar,

although the sensor might not be perfect, it is still of sufficient sensitivity and selectivity

to provide a first insight into the statistical properties of the different components of the

wall shear-stress as well as the dynamics of the local wall heat flux which is, according to

Prandtl’s mixing length theory [1], directly linked to the local wall shear-stress.
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