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Abstract. This chapter reports on a model-based approach to assessing cyber-

risks in a cyber-physical system (CPS), such as power-transmission systems. We 

demonstrate that quantitative cyber-risk assessment, despite its inherent 

difficulties, is feasible. In this regard: i) we give experimental evidence (using 

Monte-Carlo simulation) showing that the losses from a specific cyber-attack 

type can be established accurately using an abstract model of cyber-attacks – a 

model constructed without taking into account the details of the specific attack 

used in the study; ii) we establish the benefits from deploying defence-in-depth 

(DiD) against failures and cyber-attacks for two types of attackers: a) an attacker 

unaware of the nature of DiD, and b) an attacker who knows in detail the DiD 

they face in a particular deployment, and launches attacks sufficient to defeat 

DiD. This study provides some insight into the benefits of combining design-

diversity – to harden some of the protection devices in a CPS – with periodic 

“proactive recovery” of protection devices. The results are discussed in the 

context of making evidence-based decisions about maximising the benefits from 

DiD in a particular CPS.  

Keywords: stochastic models, defence-in-depth, power transmission system, 

adversary model, cyber-attacks, NORDIC-32, IEC 61850 

1 Introduction 

Security of industrial control systems (ICS) used to control critical infrastructure 

(CI) has attracted the attention of researchers and practitioners. The evidence is 

overwhelming that the services offered by CI are somewhat robust with respect to 

single component failures of the underlying network. The reaction to multiple and 

cascade failures, however, is much more difficult to understand and to predict, 

especially when cyber-attacks are taken into consideration. 

Dealing adequately with cyber-threats requires a credible assessment of the 

effectiveness of cyber-security controls deployed in a particular system. This is 
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particularly important if the results from the analysis are used to support decision 

making, e.g. about how to maximize the benefits from a given limited investment. 

Cyber-security assessment has matured over the last decade1. Yet, recommendations to 

deploy specific security controls are often made with no quantification of the benefits 

these are likely to bring to a particular system. The assessment results, especially when 

qualitative assessment techniques are used, are often difficult to reproduce. Decision 

makers struggle to justifiably answer practical questions such as “How much should I 

invest in improving cyber-security?”, “How much better is my system after spending 

the available budget on additional cyber-security controls?”, and “Have I done enough 

to secure my system?”.  

Probabilistic models for assessment are widely used in critical systems, for 

quantitative reliability assessment as well as highlighting serious misconceptions, e.g. 

the well-known controversy surrounding the quantification of the benefits from design 

diversity for software reliability [1], [2]. The success of these models motivated the 

present work – using a similar style of modelling, we develop a method for cost-benefit 

analysis of defence-in-depth in a CI. Defence-in-depth (DiD) – a multi-layered 

approach to defending against accidental and design faults – has been widely used in 

safety-critical systems for many decades. The essence of DiD is that a number of 

defence mechanisms, typically diverse in nature, are deployed to defend a system from 

threats, such as accidental/design faults or malicious activities (e.g. cyber-attacks). 

Respectable bodies, e.g. ICS-CERT, have recommended DiD for cyber-security of ICS 

[3]. While DiD has been demonstrated to bring significant safety benefits in safety-

critical systems, its benefits with respect to cyber-threats are yet to be demonstrated 

convincingly. In this chapter we take some steps in this direction. 

In this chapter: 

 We study how the behaviour of a complex system model (of a power transmission 

system) is affected by the level of abstraction in modelling the effect of cyber-attacks 

on smart devices (i.e. those devices containing non-trivial software) deployed in a 

power transmission network. We compare the behaviour of the same system model 

using two alternative models for the effect of cyber-attacks on the smart devices: i) 

a conceptual (i.e. abstract) model of the reliability of smart devices deployed in 

adverse environments and ii) a more detailed model of the effects of successful, 

specific cyber-attacks described in our previous work [4]. Our results demonstrate 

how the abstract cyber-attack model can be tuned by a suitable parameterisation, so 

that the system model behaves comparably to how it behaves using the more detailed 

cyber-attack model. This observation suggests that a model-based risk assessment 

(or a cost-benefit analysis) can be performed, perhaps even for unknown cyber-

threats, by using an abstract model of cyber-attacks with a suitable parameterisation.  

 We apply the abstract model in studying the benefits from deploying a specific form 

of DiD in a power transmission network and its respective ICS. Here, DiD involves 

replicating some of the smart devices using design diversity, e.g. devices from 

                                                           
1 A range of standards deal with risk assessment including cyber-attacks on industrial control 

systems, e.g. IEC 62443, ISO/IEC 15408, ISO 27005, etc. 
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different vendors are combined, together with a maintenance policy, such as 

“proactive recovery” [5] or “cleansing” [6]. 

The rest of the chapter is organized as follows: In section 2 we state the problem of 

quantifying the benefits from DiD against cyber-attacks in CI. In section 3 we provide 

a brief description of the case study and the particular models adopted for DiD. Section 

4 summarizes our findings, which we discuss in section 5. Related research is 

highlighted in section 6 and, finally, section 7 concludes the chapter with an outline of 

directions for future research. 

2 Problem statement 

Investment in improving CI resilience is high on the agenda of many companies’ 

boards. An investment decision is typically taken in the face of a large number of 

alternatives and uncertainties, thus requiring an evaluation and comparison of the 

efficacy and associated risks of employing each of these alternatives. An example 

investment decision, taken from a power systems context, considers whether or not the 

monitoring of physical network assets should be accomplished using either Wide Area 

Measurements Systems (WAMS) that employ high frequency GPS-synchronized 

phasor-measurement units (PMU), or a more traditional monitoring network comprised 

of low frequency remote terminal units (RTU).  

WAMS, being newer technology than RTU-based monitoring solutions, allow 

operators in control centres to conduct more sophisticated and accurate calculations of 

a power system’s state. However, the adoption of WAMS appears to be largely driven 

by the “obvious” superiority of the new WAMS technology over more traditional RTU-

based state estimators2. But there are risks in adopting this new technology, not least its 

apparent sensitivity to cyber-threats, and such risks do not appear to have been 

adequately addressed. For instance, take WAMS dependence on GPS. A recognized 

concern, GPS signal jamming, is a critical failure-mode. Recent studies, e.g. [7, 8], 

demonstrate that sophisticated man-in-the-middle (MiM) attacks on PMU readings may 

remain unnoticed by WAMS state-estimation algorithms and lead to significant biases 

in the power system state perceived by operators in control centres. This approach to 

adopting technological improvements – based on “obvious” benefits and either 

disregarding or underestimating new risks – seems to follow a well-established pattern 

in industry3. 

Furthermore, while WAMS may well bring benefits to both vendors and adopters 

alike in the long-run, short term risks for early adopters may be significant; 

                                                           
2  This came to our attention from private conversations with WAMS vendors. 
3 In a highly regarded book on the theory of “disruptive innovation”, [9], Christensen 

demonstrated that the initial technological inferiority of products and services is typically 

temporary and is no impediment for adopting disruptive products/technologies, provided it 

addresses real market needs (e.g. creates new markets, reduces the cost, etc.). In the particular 

case, the WAMS technology may be inferior in terms of cyber-risks, e.g. GPS jamming is not 

a problem at all for low-frequency state-estimation, but it is a critical failure mode for WAMS.  
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quantification of these risks seems highly desirable. The decision “to invest now or not” 

should be based on a sound cost-benefit analysis. Some of the costs and benefits are 

clear: i) technical advantages of WAMS over traditional state-estimators are 

demonstrable; ii) the upfront costs are known. The costs due to failures, however, are 

much more difficult to estimate. They depend on the frequency of failures and on the 

harm these failures cause, how good the new technology is in the face of failure, the 

particular operational environment, and any additional controls used in the particular 

deployment. For instance, in some installations, the WAMS dependence on GPS may 

be compensated by deploying atomic clocks which allow the PMU to continue to work 

with accurate timestamps even if the GPS signal becomes unavailable (e.g. due to 

accidental failure of a GPS receiver or due to jamming). Absence of atomic clocks in a 

particular installation will make WAMS dependence on GPS a serious risk for this 

system. Similarly, if controls are in place (e.g. strong encryption) which make MiM 

attacks unlikely, perturbation of the PMU readings may be assumed unlikely, which in 

turn will justify ignoring the problems discussed in [7, 8]. Finally, if one is uncertain 

about the quality of the controls4, then a more detailed study of how the quality of a 

particular control impacts system operation may be needed.  

Given all of the foregoing, we contend that a sound risk assessment (or a cost-benefit 

analysis) should be done for a specific system, rather than solely relying on the results 

of pilot studies conducted elsewhere or merely adopting generic “best practices” which 

may ignore important deficiencies of a specific system. Consider the case when one 

needs to spend a fixed budget, sensibly, to improve a particular system. A rational 

approach to solving this problem would be exploring the space of possible system 

changes, i.e. consider a number of alternative ways of investing in CI resilience and 

ranking the alternatives according to the benefits each of these brings. It is typically too 

expensive for more than a few alternatives to be tried for real. But this problem can be 

overcome by using high fidelity models – one per plausible alternative – and conducting 

a model-based comparison. Provided the models are credible [10], one can establish the 

losses due to failures under comparable threat scenarios, an essential consideration for 

making a sound cost-benefit analysis of the planned investment.  

Such an approach is feasible – we study the benefits from adopting a specific form 

of defence-in-depth on a non-trivial CPS such as NORDIC-32, a reference architecture 

of a power transmission system. Of particular interest is the effect of hardening the 

instrumentation/control by introducing design diversity in the protection devices of 

power lines, generators and loads. We consider investment in protection devices by 

replacing legacy devices with fault-tolerant, two-channel protection devices, each of 

which works as a 1-out-of-2 system. That is, the specific function of the device (e.g. a 

line protection) only fails if both channels become failed simultaneously. We assume 

that the channels, although functionally equivalent, are implemented differently. For 

example, when protection is based on different algorithms (functional diversity) or on 

different implementations (by different vendors) of the same algorithm. There are two 

important consequences of such diversification: the channels may be less likely to i) 

                                                           
4 For instance, strong encryption may guarantee the integrity of PMU readings, but i) the use of 

encryption in practice is not guaranteed, and ii) encryption keys may be compromised.  
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fail simultaneously due to the same design fault (e.g. the same software bug); ii) contain 

the same exploitable vulnerabilities (than if the channels were identical). Thus, 

repeating the same attack on each of the channels is unlikely to compromise both. 

Compromising both channels is still possible, but may require different attacks be 

carried out either simultaneously (or in quick succession, but with a very short duration 

between each attack) or at different times. 

3 The case study 

We use a non-trivial case study of a power transmission network, NORDIC 32, to 

demonstrate our approach. The system model was developed by the FP7 EU project 

AFTER – the NORDIC 32 network was enhanced with an industrial distributed control 

system (IDCS), compliant with the international standard IEC 61850 “Communication 

networks and subsystems in sub-stations”. A detailed description of the system model 

is beyond the scope of this chapter, but a short summary is provided below. 

3.1 The cyber-physical system under study 

The transmission network (Figure 1) consists of a large number of transmission lines, 

which connect 19 power generators and 19 loads. All of the connections of the lines, 

generators and links are done in 32 substations. 

 
Figure 1. NORDIC 32 power system topology. This topology is well documented in the 

technical literature, e.g. [11] or the more easily accessible [12]. 
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Each substation is arranged in a number of bays. Each bay is responsible for 

connecting a single element – a line, a generator or a load – to the transmission network. 

The substations are assumed compliant with IEC 61850. Figure 2 shows an example of 

one such substation (substation 4011). The other substations have similar architecture, 

but they may differ in their number and types of bays. Some substations have generators 

and/or loads, and all sub-stations contain Line-bays connecting transmission lines to 

the bus-bar of the particular substation. 

Each sub-station has a Local Area Network (LAN), allowing local devices to 

communicate with one another. The LAN is protected from the rest of the world by a 

firewall. Legitimate traffic in and out the sub-station is allowed, of course. 
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Figure 2. Substation topology (IEC 61850 compliant). 

The substations are connected via a sophisticated communication infrastructure 

(Figure 3), which includes a number of control centres, communication channels and 

data centres. 

During system operation, each protection/control function (with respect to the 

individual bays in substations) that is needed to maintain system integrity is either 

available when needed or unavailable. Availability is determined by the state 

(operational or not) of the equipment required for enacting the control function. For 

instance, shedding off a specific load to balance the power between the available 

generators and loads in the system, can only be achieved if the respective components 

– relays, communication from control centres to the respective substations, etc. - are all 

operational. So, in a model of the system, availability of a control function is determined 

by a predicate on the minimal cut set for the function (measurement, protection or 

control). Only when the predicate evaluates to “true” is the respective function 

available; if the predicate evaluates to “false” instead, the respective function becomes 

unavailable. The function will only deliver the expected outcome when it is available. 
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If an unavailable function is called upon to execute, it will fail to achieve the required 

outcome. For instance, if the function to shed some load is called upon when it is 

unavailable, the load will not be disconnected from the power network.  
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Figure 3. Communication topology (EMS + SCADA). 

Each bay is responsible for (dis)connecting one element from the transmission 

network. Protection devices (breakers) serve to disconnect power elements from the 

transmission network, e.g. because of the over-loading of a line or a generator. Control 

devices, on the other hand, are used to connect or disconnect power elements from the 

network and are typically used by either the operators in the respective control centres 

or by special purpose software (SPS) designed to undertake some of the operators’ 

functions automatically.  

Some functions are implemented using functionally redundant components, others 

are not. 

We model the behaviour of the entire system using a hybrid model: a combination 

of probabilistic and deterministic models to capture different aspect of system 

behaviour. Each element in the system model – whether it be a power element or an 

element for instrumentation and control – is modelled as a stochastic state machine. 

The effects of component failures on power-flow across the network is captured by a 

deterministic power-flow model (a DC approximation). A more detailed description of 

the method used to create the system model is given in [13]. Each state machine has at 

least two states – “OK” and “Failed”. Some state machines (e.g. all power elements) 

may have an additional state, e.g. “Disconnected”. Some other components containing 

software, such as those that facilitate control and instrumentation, may have the 

additional state “Compromised”, the semantic of which we detail later.  

Depending on the element type, its model, in addition to a state machine, may 

include specific additional properties needed to capture the functionality of the 
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component. For instance, the model of a generator will have a property defining the 

maximum power that the generator can produce; the model of a load will have an 

additional property defining the power consumed; a power line will have two properties 

– one that defines the line capacity and another that defines the power (current) through 

the line. The full list of properties for the different components that occur in the system 

model are beyond the scope of this chapter. However, we provide an illustration of 

these concepts in Appendix A. The listed properties for a given element may vary 

depending on the level of detail used in the model – e.g. depending on whether DC or 

AC power flow calculations are used to establish the new state of the power network 

following a disruption. The complete model used in the study can be found in [14]. 

The reader familiar with state-based probabilistic models may have realised that 

these properties extend the state space of the state machines implicitly. This 

complication is handled in our model by having a clear separation between the state 

captured by the states of the respective state machine and the state extension captured 

by the values of the various properties. The discrete part of the state evolves according 

to the logic built into the topologies of the state machines of the individual components. 

The dependencies between the state-machines are captured by different models, chief 

among them power-flow calculations that use the state of components across the entire 

power network, and predicates that determine the operational status of 

protection/control/measurement devices based on the state of all related components, 

etc. This is pragmatic approach allows us to apply in the studies well-known methods 

of solving Markov processes despite the use of properties, attached to some of the 

components. 

3.2 Modelling protection devices 

In our study we compare the behaviour of systems using non-replicated protection 

devices, with the behaviour of systems with (some) replicated protection devices – 

replication being the use of functionally equivalent but “diverse” channels in the 

devices.  

The state machines of both a 1-channel and 2-channel protection devices are shown 

in Figure 4 and Figure 6, respectively. In these diagrams we refer to a “Compromised” 

state which will be defined in detail in section 3.3.  

 
Figure 4. A UML state machine diagram of a single channel protection device.  
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A Markov chain is shown in Figure 5, which corresponds to the state-machine shown 

in Figure 4 under the assumption of exponentially distributed sojourn-times.  

µFC

µC λC

0 1

2 3

λ

µ

λCF

0 – channel is OK
1 – channel is failed
2 – channel is compromised
3 – channel is Failed Compromised

 
 
Figure 5. A Markov chain diagram illustrating the behavior of a single channel protection 

device.  

The states of the Markov chain correspond to the states in the UML diagram, except 

for two differences: i) there are 2 failed states – “Failed” and “Failed Compromised” 

states. This is necessary since the state machine in Figure 4 models a non-Markov 

process: which state is the device restored to from a failure is dependent on the state the 

device was prior to failure (“OK” or “Compromised”); ii) the maintenance state is not 

explicitly shown5. The maintenance occurs while the device is in one of the failed states.  

The transition rates are as follows:  

λ – rate of failure in non-compromised state. 

µ - rate of repair after a failure. 

λC - rate of attack. This parameter is related to a system-wide rate of attacks 

(discussed later). During an attack, depending on an attacker’s preferences, a particular 

protection device is selected (e.g. no preferences, preferences for larger assets, etc.). As 

a result of such a selection, the rate of attack of a specific protection device is modelled 

as a fraction of the rate of attacks on the system.  

µC - rate of inspection (i.e. of returning to OK state from a compromised state). This 

is a system-wide parameter. In our studies we ignore the time taken to inspect different 

devices and restore their operation after a compromise. We model the inspections by 

defining the distribution of times between successive inspections (e.g. exponential 

distribution with mean – a day, a week, etc.). The inspection is assumed to restore 

simultaneously the normal operation of all compromised devices.   

λCF - rate of failure in compromised state.  

µFC - rate of repair in Failed-Compromised state.  

The behavior of a 2-channel protection device is shown in Figure 6. 

The 2-channel version implements a 1-out-of-2 architecture. |That is, the 2-channel 

device fails only if both channels have failed. As long as at least one of the channels is 

operational (in either “OK” or “Compromised” state), the 2-channel breaker itself is 

                                                           
5 The maintenance activity in the UML diagram is one which affects all of the devices across the 

network, and one via which transitions from the “Compromised” to the “OK” state in the 

Markov chain are realized. This could be modelled as a “shared activity”, but would require 

an adequate modelling support (e.g. available in Mobius SAN v2.5).  
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also assumed to work correctly. The diagram uses the advanced features of UML 2.X 

to model the behaviour of each of the channels, including their possible failure, repair 

and maintenance. A channel can be restored on its own (triggered by the event 

“restore_operation”) or by a repair of the 2-channel system (triggered by “restored” 

event). In the former case the respective channel is returned to the operational state it 

was prior to this channel failure captured by “deep history” (H*) pseudo-state6. The 

latter case leads to forking a signal “restore” to both channels, which in turn returns 

each of the channels to the respective deep history pseudo-state. The “Breaker” state 

machine further models the device maintenance and eliminates the effects of a 

malicious compromise of the device via either the possibility of “cleansing” [6] – e.g. 

restoring the device to a known clean software configuration – or by patching it.  In the 

model we assume that maintenance is always successful, hence it returns the state 

machine to OK state (modelled as “shallow history”, H, in the diagram, Figure 4).  

 

 
Figure 6. UML state machine diagram depicting the behaviour of a 2-channel protection 

device.  

When a breaker fails, the corresponding component (line, generator, etc.) becomes 

disconnected. In either case, the failed protection device would respond to commands 

from the control centre (to connect or disconnect the respective line).  

An external event, “successfulAttack”, triggers the transition “OK” → 

“Compromised”. A return to the OK state requires maintenance.  

In a “Compromised” state the protection device (or a channel, in the case of a two 

channel device) continues to operate, but it may fail in circumstances, in which the 

device in “OK” state would not, i.e. the failure-rate in a “Compromised” state is higher 

                                                           
6 The terms “deep history” and “shallow history” is part of the UML state-machine jargon. These 

refer to pseudo-states which are used with composite states (i.e. states, which consists of two 

or more sub-states). The pseudo state “deep history” is used to signify that when a state 

machine enters a composite state, it will in fact enter the sub-state of this composite state in 

which the state machine was prior to leaving the composite state for the last time. The 

“shallow history” pseudo-state, instead, will always enter the same “initial” sub-state of the 

composite state.  
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than it would be in an “OK” state. The rationale for this modelling choice is the desire 

to capture the effect of advanced persistent threats (APT), e.g. Stuxnet [15], under 

which the affected devices may continue to operate for some time before a failure 

occurs7. This model of how cyber-attacks affect device (channel) behaviour in a 

compromised state is a special case of the model developed in [16], where the interested 

reader may find further detail.  
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3 – channel is Failed Compromised
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Figure 7. A Markov chain diagram illustrating the behavior of a 2-channel protection device. 

The labels attached to the states indicate the state of each of the channels, e.g. “2,0” means that 

channel 1 is in a “Compromised” state (“2”) and the second channel is in an “OK” state (“0”).  

Figure 7 depicts a Markov chain which models the behaviour of the 2-channel 

protection device assuming exponentially distributed sojourn-times for all transitions. 

The state space of the chain is a Cartesian product of the space of the channels (defined 

in Figure 5). The transitions correspond to the rates defined for the single channel 

device. The transition from state “2,2” to “0,0” captures the fact that the inspection of 

all devices is assumed an atomic operation, hence the states of both channels, when 

found “Compromised”, are changed simultaneously. 

The shaded states, “1,1”, “1,3”, “3,1” and “3,3” are the states when the 2-channel 

                                                           
7 In fact, APT introduce subtle changes in the behaviour of the compromised devices (software), 

which are difficult to distinguish from normal operation, hence the compromised state may 

remain undetected for a long time.  
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device itself fails – both channels are in either “Failed” or “Compromised-Failed” state. 

According to our assumption that the device is a 1-out-of-2 protection device, when the 

chain is in one of these shaded states, the 2-channel protected device (a line, a generator 

or a load) is disconnected from the power network, which in turn triggers a 

redistribution of the power in the power network, i.e. the power-flow calculation will 

be computed, which in turn may lead to more devices being disconnected if lines get 

overloaded.  

Clearly, while in an operational state – “OK” or “Compromised” – the protection 

device works according to its specification: it either keeps the respective protected 

device connected to the power network or, when a power overload threshold is 

exceeded, the protection device will enact a powerline trip. This behaviour is not visible 

in the diagrams. Note that while the UML state-machine diagram captures normal 

operational behaviour – the device keeps the protected asset either connected to, or 

disconnected from, the power network – capturing these details with the Markov chain 

would be problematic. This is because transitions between operational sub-states 

(connected/disconnected) are triggered by changes of the entire power system – 

changes which are external to the protection device and typically follow 

deterministically after a change of the power network topology. External stimuli can be 

modelled with a UML state-machine while this is problematic for Markov chains.  

We compare the effect on a system model’s behaviour using two different models 

of a compromised breaker:  

i) as soon as the line breaker is compromised its tripping threshold is set to a 

value which is 10% above the load to/from/through the protected asset 

(line, load or generator) at the time of the compromise. This tripping 

threshold can be significantly lower than the “correct” threshold, linked to 

the capacity of the respective asset, e.g. a line. We used this model in [4], 

following reports in the literature that similar attacks have indeed been 

observed [17]. The device failure may have no immediate consequence: it 

is only manifested once the state of the power network changes (e.g. as a 

result of accidental failure of a power component), resulting in the 

redistribution of electrical power flowing across the power network. If the 

flow through the protected asset then exceeds the incorrect tripping value 

set by a successful attack, the associated breaker will disconnect the asset;  

ii) significantly increasing the rate of failure of a channel in a compromised 

state. An example would be an increase from a rate of failure once in 10 

years in the non-compromised state to a rate of failure once a day in a 

compromised state (i.e. over 3 orders of magnitude). Once the breaker fails 

(with a high failure-rate), under this model, it disconnects the respective 

protected element (a line, a generator or a load). 

Clearly, the two models possess quite different levels of abstraction. The first one 

deterministically defines the breaker failure behaviour and requires detailed knowledge 

about the actions taken by an adversary. Such knowledge is only available for known 

attacks, for which extensive forensic analysis has been undertaken and their 

consequences established with certainty. Such knowledge, however, is not available for 

attacks which have not been seen or studied, e.g. those that use 0-day vulnerabilities. 
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The first model, therefore, cannot be used for analysis in the face of unknown attacks. 

The second, more abstract model of a compromised breaker, instead, merely 

hypothesizes that a breaker compromise leads to a higher failure intensity, without 

defining specifics beyond the failure mode (that should the breaker fail it disconnects 

the protected component). Importantly, a lack of specific knowledge about unknown 

attacks is not, by itself, an impediment for using the abstract model to study the effects 

of these attacks.  

Via suitable parameterization of the abstract model, can one reproduce system 

behaviour that is close to the behaviour arising when using the specific model of the 

compromised breaker instead? If it turns out that this is indeed possible, then there is 

an argument for using the abstract model in risk-assessment that includes unknown 

cyber-attacks. Varying the parameters of the abstract model might allow one to explore 

a spectrum of possible losses, without a detailed knowledge about how 

(unknown/future) cyber-attacks may compromise the respective devices. 

3.3 Modelling cyber-attacks 

Now we briefly describe the adversary model, which captures the behaviour of the 

attacker. This model is derived from [4] and is extended to capture the knowledge that 

an adversary may have about the deployed architecture of the breaker, e.g. whether 

defence-in-depth in the form of replicated breakers is deployed.  

For the system under study we assumed that each substation has a dedicated firewall 

(indicated by the “brick wall” in Figure 2), which isolates the sub-station from the rest 

of the world. We also assume that an intrusion detection/prevention system (IDS/IPS) 

monitors traffic in the sub-station’s LAN. When an IDS/IPS detects illegitimate traffic, 

it blocks an adversary from accessing those assets located at the substation. 

 
Figure 8. Model of adversary applied to NORDIC 32. 

Our study is limited to the effect of a single type of attack on the modelled system: 

a cyber-attack via the firewall of a sub-station. The model is shown in Figure 8 using 

the Stochastic Activity Networks (SAN) formalism.  

This model assumes that the adversary is periodically idle (represented by the SAN 

place labelled “Idle”). With some regularity, defined by the activity Attack_interval, 

the adversary launches a cyber-attack on the system by trying to penetrate the Firewall 
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(modelled in Figure 8 by the activity Firewall_attack) of one of the 32 sub-stations 

defined in the NORDIC-32 model. 

The selection of a substation to attack8 is driven by either a uniform distribution, 

defined over the 32 sub-stations (“Indiscriminate attacker profile”) or by a non-uniform 

distribution defined in a way to capture the preferences of the adversary, which are 

discussed elsewhere [18]. In this chapter, we limit the study to an indiscriminate 

adversary. Under the current model we also assume that the firewalls of all sub-stations 

are equally easy/difficult to penetrate. This model shows the steps that follow the 

adversary’s initial selection of a sub-station to attack:  

─ The adversary may target each of the firewall configuration rules. The decision of 

which rule to attack is modelled by the activity Firewall_attack. In Figure 8 we 

assume that there are 4 rules to choose between, which is just an example. The model 

assumes that the rules are equally likely to be chosen by an attacker – the 

probabilities associated with the outputs of the Firewall_attack activity are all set to 

0.25.  

─ Once a rule is selected (modelled by the places Rule_1 – Rule_4), the adversary 

spends time trying to break the selected rule. This is modelled by activities Attack_1 

– Attack_4, respectively. Her efforts may be successful or unsuccessful. In the case 

of a failed attempt, the adversary returns to the state Under_attack and may try 

another rule.  

─ However, in the case of a successful penetration through the firewall, the state 

“Penetrated” is reached, in which case the adversary now has two further options for 

proceeding9:  

 compromise the protection device of a single line,  

 compromise the protection devices of all lines in the particular substation.  

If the adversary succeeds, she leaves the substation. This choice is modelled by the 

instantaneous activity Next_step, which returns the adversary to the state “Idle”.  

─ When the protection device (breaker) is replicated, the adversary is presented with 

two further choices when in a “Penetrated” state (modelled by “Select_Model” 

instantaneous activity): 

 Independent attacks: one of the channels of the breaker is selected at random and 

attacked. If the attack is successful, this channel enters “ChX_compromised” 

state; the state of the second channel remains unaffected by the attack. This 

models the behaviour of an adversary unaware of the particular form of defence-

in-depth (diverse replication of the breaker) she is facing. Note, with this 

adversary model, the two channels of the breaker may still eventually become 

simultaneously compromised, e.g. as a result of 2 separate attacks on the same 

substation, each attacking different channels of the same breaker; 

 Synchronised attacks: here, the adversary tries to compromise both channels of 

the breaker in the same attack, using suitably devised attacks for each of the 

                                                           
8 Figure 8 does not show how the adversary chooses a sub-station. 
9 The actions that an adversary can take are not modeled in detail in Figure 8. The specific logic 

of successful attacks – either changing the tripping threshold immediately or increasing the 

failure rate in the future, however, is implemented in the solver (simulator) of NORDIC-32.  
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channels. So each channel may be compromised as a result of a single attack. This 

adversary model captures an adversary with detailed knowledge of the deployed 

defence-in-depth. In this case the likelihood of compromising both channels of a 

protection device is clearly significantly higher than in the previous model with 

independent channel attacks.  

─ IDS/IPS is modelled by the activity IDS_detection, which is enabled if the model 

state is “Penetrated”. This activity competes with the activities for the adversary 

selecting and attacking the breaker channels. The adversary may be detected before 

she completes the attacks – as soon as the activity IDS_detection fires, the attack is 

aborted and the adversary is returned to “Idle”.  

Finally, a channel of a protection device attacked multiple times may end up being 

compromised multiple times [16]. In this study, however, we ignore the implications of 

this possibility, assuming that the cumulative effect of multiple compromises of the 

same channel is no worse than the effect of a single successful attack; this is, admittedly, 

a simplifying assumption. 

4 Results 

First we compare the behaviour of the system model with two different adversary 

models: i) the adversary model described in [4]. Under this model, if the adversary 

succeeds in getting unauthorised access to the protection devices of a substation, she 

changes the tripping threshold from being set at a value slightly over the capacity of the 

protected device (line, generator and load) to a value that is merely 10% above the 

current flow through the protected device at the time of the successful attack; ii) the 

adversary model [16] discussed above. Under this model the rate of failure of a 

compromised protection device is set to a value of 103 greater than the rate of failure of 

the uncompromised device (i.e. before the successful attack on it).  

In both cases a measure of interest is the expected value of the supplied power, as a 

fraction of the maximum power that can be supplied in the model, 10,940 MW. This 

measure is calculated via Monte-Carlo simulation. The NORDIC–32 system is 

simulated as running for 10 years of operation, repeated 300 times. The 300 simulation 

runs are a sample, allowing us to compute a sample estimate of the expected supplied 

power, as well as confidence intervals for this statistic at stated confidence levels. 

In all simulated cases, in addition to those measures which seek to prevent an 

adversary from accessing assets of a substation, a periodic activity of “proactive 

recovery” (or cleansing) of the protection devices is in place. This activity restores the 

successful operation of protection devices by eliminating any effects of compromises 

that have taken place. When an adversary alters tripping thresholds, cleansing restores 

tripping thresholds to their nominal values. For the abstract model of a compromise, 

cleansing restores the failure-rates to the values assumed for non-compromised states 

of the protection device. The cleansing procedure is assumed “perfect”, i.e. its outcome 
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is always a success10. Later in the chapter we discuss the implications of relaxing this 

assumption.  

4.1 High fidelity vs. abstract adversary models 

In this section we summarise the results from the studies with the two adversary models. 

These are detailed in Table 1. The labels attached to the columns are as follows:  

- µ represents the expected supplied power as a fraction of the nominal supplied 

power. The expectation is calculated over a number of simulation runs, N, 

typically 300. The average supplied power, P, is a random variable. For each 

simulation run, i, P takes some value pi. We define 𝜇 as the expected value of 

P, and it is computed as: 𝜇 ≡ 𝐸[P] =
∑ 𝑝𝑖
𝑁
𝑖=1

𝑁
. Values of µ close to 1 (100%) 

represent cases with small average losses, while large deviations of µ from 

100% indicate more significant losses, e.g. those due to cyber-attacks.  

- σ is the standard deviation of P.  

- LB and UB are the lower and upper bound, respectively, of the 95% 

confidence interval for µ computed under the assumption that P is normally 

distributed. 

- p-values are computed for the Anderson-Darling statistic, in a test for 

statistical normality. A value of the test statistic is computed for each sample 

of simulation runs (typically a sample-size of 300), and the associated p-value 

for the sample is the probability of observing a value for the test statistic that 

is no less extreme than the value computed from the sample, assuming the 

sample was indeed drawn from a normal distribution. This p-value should be 

compared with the required significance level, typically 0.05, to pass a 

judgement about normality – as values smaller than the significance level 

suggest that the hypothesis about normality should be rejected.  

 

The top part of the table summarises the observations when the adversary model 

follows a specific cyber-threat closely – changing protection thresholds of the 

protection devices. Successful attacks of this kind have no immediate visible 

consequence and may manifest themselves only if/when the topology of the power 

network changes and the flow of power alters in such a way as to exceed the thresholds 

of some compromised devices and, thereby, trigger line trips. The problem may escalate 

over time, and unless the tripping thresholds are restored to their proper values the 

losses will be very significant, as the top 3 rows in the table indicate. Such large losses 

are clearly intolerable, and the problem with thresholds is likely to be identified and 

fixed. For this reason, although the studies point to a potentially serious type of attack, 

the fix is relatively simple. 

 

                                                           
10 Clearly, this is a simplifying assumption, which may not hold true in practice: the cleansing 

procedure itself may be fallible or it may be unavailable due to an insufficient number of 

personnel or insufficient amount of resource required for its enactment.  
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Table 1. Lost power due to attacks tampering with the tripping threshold of a protection device  

 Case µ σ LB UB p-value 

A
tt

ac
k

s 
ch

an
g
e 

p
ro

te
ct

io
n

 

th
re

sh
o

ld
 

Daily attacks, no inspections 0.0319 0.0171 0.03 0.0338 <0.0005 

Weekly attacks, no inspections 0.2180 0.1143 0.205 0.2309 <0.0005 

Monthly attacks, no inspections 0.7185 0.2101 0.695 0.7423 <0.0005 

Yearly attacks, no inspections 0.9681 0.0552 0.962 0.9744 <0.0005 

Weekly attacks, inspect daily  0.9832 0.0015 0.983 0.9833 0.74823 

Weekly attacks, inspect weekly  0.9800 0.0028 0.980 0.9803 0.00070 

Weekly attacks, monthly inspections 0.9692 0.0089 0.968 0.9702 <0.0005 

Weekly attacks, yearly inspections 0.7653 0.1243 0.751 0.7794 <0.0005 

A
tt

ac
k

s 
re

d
u
ce

 

re
li

ab
il

it
y
 

Weekly attacks, no inspections 0.7913 0.0106 0.790 0.7925 0.031739 

Weekly attacks, monthly inspections 0.9772 0.0021 0.977 0.9774 0.90484 

Weekly attacks, yearly inspections 0.9226 0.0185 0.920 0.9249 <0.0005 

No 

attacks 

Baseline  0.9845 0.0012 0.984 0.9846 0.53410 

 

Looking at those rows of the table which summarise the effect of inspections, one 

sees that the frequency of inspections affects losses, which is not surprising. Monthly 

inspections leave the losses within the 2% (in comparison with the base line) – 0.9692 

vs. 0.9841 for the average supplied power.   

Let us now compare the model results with the two models of attacks – using a 

detailed model of stealth attacks vs the more abstract model of the effect attacks would 

have on compromised protection devices. The two highlighted rows of the table show 

losses calculated with the two models. It is striking how close the average losses are: 

0.9692 for the stealth model vs. 0.9772 for the abstract model of the compromised 

protector. Although the difference between these averages is statistically significant11 

the absolute difference is negligible – less than 1%! This observation suggests that 

despite conceptual differences between these models of how attacks compromise 

protection devices, the average losses from stealth attacks for the particular case (of 

weekly attacks and monthly inspections) for this particular system, NORDIC-32, can 

be estimated quite accurately using a model which operates at a much higher level of 

abstraction. And more importantly, the abstract model does not rely on detailed 

knowledge of the mechanisms of how the stealth attacks might alter the behaviour of 

the protection devices, which makes the abstract models potentially very attractive for 

assessing the risk from future, unknown attacks. 

Perhaps it is noteworthy that these results were “easily” obtained from an initial 

informal exploration of the abstract model’s parameter space. We ran a short campaign 

with an order of magnitude increase of the failure rate as a result of a compromise. The 

effects on the system model were negligible. We then tried an increase of 3 orders of 

                                                           
11 We do not present the results from testing statistically the hypothesis that the means of the two 

samples are the same, but did conduct this test and the null hypothesis was strongly rejected.  
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magnitude and this choice of parameterisation for the abstract model produced the 

agreement between the models we report here.  

In practice, the parameterisation of the abstract model is likely to be done more 

systematically. Here, we list a number of options worth considering: 

- one may carry out systematic sensitivity analysis exploring how failure-rate12 

increases affect system behaviour. In case specific models of past cyber-

attacks are available, one could try to identify a range of parameters for the 

abstract model, for which the system model behaves comparably to how it 

behaves when the more detailed models of compromise are used, e.g. repeat, 

for a whole slew of known attacks, a study similar to the one we reported 

above. Selecting the abstract model’s parameter values from within this range 

might give some indication about the system’s preparedness against both  

known (which is usually where security assessment stops!) and unknown 

cyber-threats which happen to have consequences that are captured accurately 

enough by the abstract model parameterised from the range identified in the 

sensitivity study.  

- Clearly with the abstract model of consequences, the failure-rate may increase 

to infinity, which would result in an instantaneous failure of the compromised 

device. Instead of using the failure rate increase (i.e. a parameter, relative to 

the rate of failure of the non-compromised device), one may parameterise the 

abstract model using an absolute failure-rate. With this, a sensitivity analysis 

may still be employed to determine a useful range of values: from 

instantaneous failure to a rate which corresponds to mean-time-to-failures of 

a few units of meaningful time, e.g. seconds, minutes or hours, depending on 

the specific context. 

4.2 Quantification of Defence-in-depth using the abstract model  

In this section we look at the effect of applying defence-in-depth (DiD) in the form of 

2- channel protection devices deployed at certain points across the network, instead of 

1-channel protection devices. The options that we considered are: applying DiD to 

devices protecting lines only, generators only, loads only or all power elements (lines, 

and generators, and loads)13.  

In all of the cases with 2-channel protection devices we study the behaviour of the 

system model subjected to different attacks on protection devices: 

- Independent attacks: each time an adversary succeeds in gaining access to a 2-

                                                           
12 Clearly, by referring to the rate of failure, we implicitly envisage an exponential distribution 

of the time to failure, which is often used as it reduces the problem of parameterisation to a 

single value. Should there be a reason ruling out the use of exponential distribution, the 

abstract model parameterisation will become more complex. It will involve a selection of a 

suitable family of probability distributions and applying sensitivity analysis to their respective 

parameters.  
13 Clearly, limiting the total number of 2-channel protection devices, and trying to identify the 

optimal places to deploy these resources in the system is yet another example of a worthwhile 

study. 
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channel protection device, she compromises only one of the channels, selected 

at random. Under this mode of attack, compromising both channels is still 

possible, but would require at least two separate successful attacks on each of 

the channels of the same device, respectively.  

- Synchronised attacks: every successful attack on a protection device results in 

both channels being compromised (i.e. simultaneously by the same attack).  

As stated above, we ignore the effects of the second, third, etc., successful attacks on 

the same channel, a simplifying assumption made for convenience (to reduce the 

number of modelling parameters). Under rather broad conditions, reducing the periods 

between proactive recoveries will reduce the probability of multiple compromises of 

the same protection channel, which provides some justification for the adopted 

simplification. Clearly, a sufficiently frequent “proactive recovery” reduces the 

probability of a protective channel being compromised more than once to a negligibly 

small number, justifying ignoring the effects of multiple attacks on the same protection 

device.  

The results from our studies are reported in Table 2 and grouped according to the mode 

of attack – independent or synchronised, whether inspections (i.e. cleansing) are applied 

or not and, if applied, the rate of the inspections. At the bottom of the table, the 

simulation results are presented for a system with single channel protection devices. 

This last case is included to demonstrate some of the benefits from DiD.  

 
Table 2. Defense-in-depth: Independent vs. synchronized attacks on protection devices. 

System Model µ σ LB UB p-value 

In
d

ep
e
n

d
e
n

t 
a

tt
a

ck
s 

Baseline (attacks disabled) 0.9845 0.0012 0.984 0.985 0.534 

N
o

 

In
sp

ec
ti

o
n

s Weekly attacks (all) 0.9443 0.0079 0.943 0.945 0.481 

Weekly attacks (generators) 0.9529 0.0025 0.953 0.953 <0.005 

weekly attacks (lines) 0.9577 0.0046 0.957 0.958 0.3977 

weekly attacks (loads) 0.9629 0.0013 0.963 0.963 0.4911 

M
o
n
th

ly
 

In
sp

ec
ti

o
n

s weekly attacks (all) 0.9843 0.0012 0.984 0.984 0.145 

weekly attacks (generators) 0.9837 0.0013 0.984 0.984 <0.005 

weekly attacks (lines) 0.9843 0.0011 0.984 0.984 0.4103 

weekly attacks (loads) 0.9838 0.0012 0.984 0.984 0.008 

Y
ea

rl
y

 

In
sp

ec
ti

o
n

s weekly attacks (all) 0.9801 0.0036 0.98 0.980 <0.005 

weekly attacks (generators) 0.9702 0.0043 0.97 0.971 0.117 

weekly attacks (lines) 0.9816 0.0023 0.981 0.982 <0.005 

weekly attacks (loads) 0.9752 0.0027 0.975 0.975 0.003 

S
y

n
ch

ro
n

is
e
d

 

a
tt

a
ck

s 

Baseline (attacks disabled) 0.9845 0.0012 0.984 0.985 0.416 

N
o

 

In
sp

ec
ti

o
n

s 

Weekly attacks (all) 0.8930 0.0057 0.892 0.894 0.418 

Weekly attacks (generators) 0.9505 0.0016 0.950 0.951 0.187 

weekly attacks (lines) 0.9264 0.0037 0.926 0.927 0.884 

weekly attacks (loads) 0.9609 0.0011 0.961 0.961 0.462 

M
o
n

th
ly

 

In
sp

ec
ti

o

n
s 

weekly attacks (all) 0.9810 0.0014 0.981 0.981 0.518 

weekly attacks (generators) 0.9774 0.0016 0.977 0.978 0.278 



20 

weekly attacks (lines) 0.9825 0.0013 0.982 0.983 0.718 

weekly attacks (loads) 0.9798 0.0012 0.980 0.98 0.056 
Y

ea
rl

y
 

In
sp

ec
ti

o
n

s weekly attacks (all) 0.9560 0.0089 0.955 0.957 <0.005 

weekly attacks (generators) 0.9588 0.0036 0.958 0.959 0.980 

weekly attacks (lines) 0.9667 0.0063 0.966 0.967 <0.005 

weekly attacks (loads) 0.9672 0.0018 0.967 0.967 0.929 

1
-c

h
an

n
el

 

p
ro

te
ct

io
n

 

d
ev

ic
e 

(All) weekly attacks, no inspections 0.7912 0.0106 0.79 0.792 0.032 

(All) weekly attacks, monthly 

inspections 
0.9772 0.0021 0.977 0.977 0.905 

(All) weekly attacks, yearly 
inspections 

0.9226 0.0185 0.920 0.925 <0.005 

Baseline (1-channel protection device) 0.9845 0.0012 0.984 0.985 0.302 

 

Comparing the three rows labelled “Baseline” clearly indicates that the cases are 

statistically indistinguishable from the point of view of the selected measure of interest 

(supplied power): the collected measures are practically identical. Statistical tests of 

whether the samples from the simulation runs, collected for all 3 cases, come from the 

same distribution, provided us with no evidence to suggest that the hypothesis should 

be rejected. This observation is somewhat surprising, as it suggests that using replicated 

protection devices brings no benefits for the modelled system, provided the system 

operates in a trusted environment without attacks. The reason might be that the rate of 

failure of the protection devices is very low (MTTF ~ 10 years), which makes 

redundancy unlikely to improve a device’s reliability in the face of accidental failure.  

The rows at the bottom of Table 2 (labelled 1-channel device) provide measures 

from the attack and inspection rates used to study DiD: weekly attacks and no/monthly 

and yearly inspections, respectively. A comparison of 1-channel and of 2-channel 

protection devices indicate clear benefits from employing replication in an untrusted 

environment. The benefits are more clearly pronounced for independent attacks.  

Now let us compare the model behaviour with, and without, DiD, and under different 

attack modes: independent and synchronised attacks.  

- No inspections. Without inspections, the losses under independent attacks are 

clearly smaller than the losses under synchronised attacks: the expected value 

of supplied power under independent attacks is closer to the values recorded for 

the Baseline studies than the losses from synchronised attacks.  

Stratification – attacks are applied to all protection devices vs. to generators 

only, lines only and loads only – provides additional insight as to where DiD 

would bring the most serious benefits. Under the independent attacks model, 

losses from attacks on generators are greater than the losses from attacks on the 

lines or on loads. Under synchronised attacks, however, the pattern is different. 

With no inspections the largest losses from synchronised attacks are recorded 

for attacks on the lines, while the losses from attacks on generators are lower 

than from attacks on both lines and loads.  

- Inspections (either monthly or yearly). Adding inspections changes the 

ordering between the cases quite subtly. 

o For independent attacks, even yearly inspections make the system 
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comparable to the Baseline case: the additional power lost due to 

weekly cyber-attacks is only a small fraction of a percent. Clearly, the 

combination of replication in protection, together with the favourable 

attack regime (one channel at a time), is sufficient for the effects of 

cyber-attacks to be almost entirely compensated; the additional losses 

are very small. Increasing the rate of inspections (monthly) reduces the 

additional losses due to cyber-attacks even further, which is not 

surprising.  

o For synchronised attacks the fact that the two channels of a protection 

device can be compromised by the same attack, leads to device failure 

shortly (on average 7.5 hours later) after a successful attack. A device 

failure, in turn, leads to disconnecting the respective protected 

component (a generator, a line or a load) from the power network, i.e. 

the topology of the power network changes, and some power losses 

become inevitable. Yearly inspections are simply not frequent enough 

to mitigate the additional losses due to cyber-attacks: with yearly 

inspections the losses due cyber-attacks are almost 3 times greater than 

they are due to accidental failures (the baseline case). Our results 

suggest that monthly inspections can mitigate – to a large extent – the 

additional losses: the model behaviour with monthly inspections is 

very close to the Baseline case, especially for the cases when power-

line protections are under attack. Intuitively, this last observation is not 

surprising: disconnecting some lines may be of no immediate 

consequence. Whether disconnecting a line will lead to losses or not 

depends on the topology of the power network before and after 

disconnecting the line. Our study also suggests, that the monthly 

inspections are less effective in mitigating losses from attacks on 

protection devices attached to generators and loads. Although 

intriguing, this observation is not surprising either: disconnecting a 

load in the power network leads to an immediate loss of power. The 

effect of disconnecting a generator is less obvious: in some cases the 

effect may be nil, e.g. if the operational generators have spare capacity 

sufficient to pick up the required power and the topology of the 

network is such that it does not get overloaded. If a large generator is 

disconnected14, however, a power loss is imminent and substantial.   

5 Discussion 

Our studies demonstrate the quantitative analysis of cyber-risks in a complex industrial 

system. Contrary to a commonly adopted approach to cyber-risk assessment (e.g. [19] 

relying on “high”, “moderate”, or “low” qualitative indicators of impact), we 

demonstrate that the impact of cyber-attacks can be meaningfully established using a 

                                                           
14 One of the generators in NORDIC – 32 provides more than 40% of the power in the network. 

The smallest generator – provides less than 10% of the total power.  
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model of the particular cyber-physical system. While we share the view that 

establishing the likelihood of various cyber-attacks is difficult and, perhaps, 

unknowable15, the quantitative method of cyber-risk assessment we put forward here 

seems useful. Dismissing quantitative methods because of a lack of credible methods 

to capture likelihoods seems to miss the point. Yes, even if, somehow, the “true” 

likelihoods of attacks can be captured today, these are likely to become hopelessly 

inaccurate when the landscape of cyber-threats changes tomorrow. However, instead 

of giving up on quantitative risk-assessment because of this difficulty, one could opt 

for performing sensitivity analysis over a range of plausible likelihoods. Using such an 

approach could establish useful bounds for risk indices of interest (e.g. the lost power 

in our studies). This is much better than using questionable indices with values {high, 

moderate, low} calculated on a scale devoid of mathematical rigour, and that typically 

ignore the specific application context! 

Now, arguably, there is a fundamental issue with security assessment activities that 

are solely based on establishing whether “best practice and engineering principles” 

have been followed. While there is no doubt that such assessment approaches are 

sensible, they do fall short in answering the question of whether the system is “secure 

enough”. Clearly, while undertaking an assessment (certification) gives some 

confidence that the system is prepared against anticipated (i.e. known) attacks, such 

confidence can be misleading, especially if the system scores very well in the 

assessment (certification). The problem is the assessment provides no indication of how 

good the system defences are against unknown cyber-threats (e.g. those that exploit 0-

day vulnerabilities).  

One approach to tackling this problem was developed recently in [16], which we 

have now attempted to validate here. By using an abstract adversary model consistent 

with [16], we reproduce the expected power loss experienced by the NORDIC-32 

power system subjected to sophisticated stealth attacks. Here, with the power system 

undergoing monthly maintenance inspections and being subjected to weekly attacks, 

each successful attack resulted in a modified tripping threshold for some protection 

device. The corresponding abstract adversary model does not explicitly represent these 

threshold changes; instead, the consequence of a successful attack is represented as an 

increase in the failure rate of the affected device. And yet, the expected losses, 0.9692 

and 0.9772, under these very different alternative ways of capturing the effects of 

successful attacks, are in close agreement. Our studies highlight the potential for the 

behaviour of a CPS, subjected to a previously unknown sophisticated cyber-attack, to 

be suitably mirrored by subjecting the CPS to attacks from a properly parameterised 

abstract adversary model. Fully demonstrating such a substitute of “the specific” with 

“the abstract” will take more than our simulation studies, but we believe the work we 

report here is important as it indicates a useful way forward in addressing unknown 

cyber-attacks. Finding out how the system might be affected by unknown attacks may 

prompt system operators to look for additional controls to bring risk down to an 

acceptable level. 

The final set of results – quantifying the effect of DiD – is also intriguing. With these 

                                                           
15 This is a “known unknown” 
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we confirm the observations made in [16], but with a much larger CPS – that a model 

of an adversary attacking replicated assets (in this case protection devices) is 

significantly affected by the adversary’s knowledge of the architecture of the assets. 

The improvements DiD bring against independent attacks (i.e. when a single channel 

of a replicated asset is attacked) are more significant than the improvements against 

synchronised attacks. The magnitude of the difference depends on how replication is 

complemented by inspections – measures to cleanse software from the effects of cyber-

attacks.  

The main message of the study, however, is in demonstrating the feasibility of 

deploying DiD rationally. If an operator has identified a number of plausible and 

affordable alternatives, say A, B, C, etc. to deploying DiD, then she doesn’t need to 

count on “gut feelings” to choose amongst these. No; instead, she can run model-based 

studies with each of the available alternatives and compare the resulting improvements. 

Such studies, however computationally demanding, are a small price to pay in 

comparison with investing in a sub-optimal alternative that gives little to no 

improvement. The feasibility of the approach is demonstrated in this work: we 

identified a number of alternative deployments of DiD – all equipment protected, 

protection for only generators, or lines, or loads – and report on the benefits each of 

these candidate DiD-deployments bring.  

6 Related research 

In addition to the references given earlier, we would like to outline a number of 

related sources.  

There have been studies applying different modelling techniques to known attacks. 

A couple of examples are [20, 21]. The first reference applies a probabilistic technique 

to define a model of Stuxnet, and demonstrates how model parameters can be assigned 

plausibly. The second example, instead, uses a non-probabilistic formalism. These 

authors claim that documenting the particular malware is, itself, an important 

contribution. Neither of the two models, however, is used by the respective authors for 

an analysis of open research problems. Our focus is quite different here: instead of 

merely constructing a model of something that has been seen, we use a model as a tool 

to study practical problems such as the effectiveness of DiD in different, adverse 

environments.  

Somewhat related to the work presented in this chapter is our own previous work on 

modelling the effect of cyber-attacks on the reliability of an embedded device with 

fault-tolerant software [22]. The style of modelling there and in this chapter are 

conceptually similar, but the scope of the analysis is quite different. The tools to 

implement the work are also quite different. In [22] we developed a detailed model of 

a specific device – to study a specific attack on the safe-state of the device – using the 

stochastic activity networks (SAN) formalism. In this chapter, however, we use 

complex hybrid models of power systems which combine both probabilistic (stochastic 

state machines) and deterministic (e.g. power-flow models) parts. A SAN is depicted 

in Figure 8 merely as an aid in describing the adversary model. 
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The synchronized attacks that we studied in detail are conceptually similar to 

common mode/cause failure; a topic which has been studied extensively in the context 

of system/software safety and highly available computer systems.  

There is also conceptual similarity in the proposed approach of replacing specific 

models of adversaries with more abstract counterparts and the popular approach to 

dependability analysis based on fault injection – trying to learn about true faults via 

injection of faults believed by the proponents of the methods to be representative. 

Despite the conceptual similarities – replacing “reality” with surrogates – there are 

significant conceptual differences. Many of the fault-injection based studies merely 

assume that injecting faults is a valid approach. In our work, we try to gain confidence 

in those model parameter values potentially related to unknown attacks by identifying 

those parameter values which make the abstract model suitably mimic the “real thing”.  

Finally, we would like to acknowledge the ADVISE formalism, a part of the popular 

Mobius tool (https://www.mobius.illinois.edu/). The ADVISE formalism captures, 

probabilistically, the motivation of an adversary, the assets of a particular system and 

the rewards that successful attacks will bring to the successful adversary. ADVISE 

operates at a high level of abstraction, which may pose some difficulties in estimating 

risk indices requiring detailed causal mechanisms for their computation, such as the 

expected loss of power which we used in our studies. Modelling synchronized attacks, 

which require detailed knowledge of defense-in-depth, with ADVISE is likely to pose 

additional difficulties, too.  

7 Conclusions and future research 

This chapter provides a number of results concerning a quantitative assessment of 

cyber-risks in cyber-physical systems (CPS) – one which we proposed a few years ago. 

We use a complex model of the power-transmission system, NORDIC-32, extended 

with measurement, protection and control, all in line with the recent standard for 

interoperable sub-stations, IEC 61850.  

We report on two important advances:  

 experimental evidence that, via suitable parameterisation of an abstract model, 

the expected losses due to a specific attack can be established fairly accurately. 

This result is significant as it points to an intriguing prospect of quantifying risks 

from unknown cyber-attacks.   

 demonstrating that our model-based approach can be used to support rational, 

evidence-based decisions, about how to maximise the benefits from investing in 

defence-in-depth (DiD). We studied the effectiveness of DiD – a combination 

of design diversity in protection devices and proactive recovery of the channels 

– as a defence against two types of attackers:  

o a naïve attacker, unaware of the nature of DiD, who would select only 

one of the channels of the protection device to compromise at any one 

time, and, 

o a knowledgeable attacker. One with detailed knowledge of the DiD 

they face, and able to launch attacks which defeat the DiD.  

https://www.mobius.illinois.edu/
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This work can be extended in a number of ways. The encouraging result, that there 

are easily identifiable circumstances under which an abstract adversary model can be 

used to accurately establish losses from a fully defined attacker, needs further scrutiny. 

In what ways can this be harnessed to give more insight into unknown attacks? In part, 

this will require exploring more specific models of attacks, studying how well the 

abstract model can mimic these, and using sensitivity analysis to establish ranges of the 

abstract model’s parameters that result in plausible, but as-of-yet unseen, cyber-attacks.  

It is unclear at this stage whether the abstract adversary model used in this work is 

universally applicable, i.e. whether accurate estimates of the loss can be achieved for 

any attack type – we suspect not. The modelling circumstances under which such parity 

can be accomplished, as well as the generality of the approach, requires further 

investigation. In order to shed more light on the problem, we plan to look at 

sophisticated attacks, e.g. compromising WAMS software (mentioned earlier) or other 

“special purpose software” (SPS). Such cyber-attacks could lead to system operators 

being presented with plausible, but nevertheless incorrect, data on the state of the CPS, 

causing these operators to take erroneous decisions in the control room. It may well 

turn out that the effects of compromised SPS require a different family of abstract 

models. Constructing these with the same objective – getting accurate estimates of 

losses due to attacks on SPS – is an important direction for immediate future research. 
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Appendix A: Model of Power Line  

1 { 

2   "name": "Link", 

3   "type": "state-machine", 

4   "comment": "Represents physical lines between substations. ", 

5   "properties": { 

6     "from": { 

7       "type": "Lookup", 

8       "required": true, 

9       "properties": { 

10         "list": "machines", 

11         "filter": "name === 'Substation'", 

12         "value": "name" 

13       } 

14     }, 

15     "to": { 

16       "type": "Lookup", 

17       "required": true, 

18       "properties": { 

19         "list": "machines", 

20         "filter": "name === 'Substation'", 

21         "value": "name" 

22       } 

23     }, 

24     "kV": { 

25       "type": "String", 

26       "required": true 

27     }, 

28     "x": { 

29       "type": "Number", 

30       "required": true 

31     }, 

32     "max": { 

33       "type": "Number", 

34       "required": true 

35     }, 

36     "overloaded": { 

37       "type": "Boolean", 

38       "required": true 

39     }, 

40     "connected": { 

41       "type": "Boolean", 

42       "required": true 

43     }, 
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44     "failure": { 

45       "type": "Activation", 

46       "required": true 

47     }, 

48     "recovery": { 

49       "type": "Activation", 

50       "required": true 

51     }, 

52     "length": { 

53       "type": "Number", 

54       "required": true 

55     } 

56   }, 

57   "structure": { 

58     "states": [ 

59       "ok", 

60       "fail" 

61     ], 

62     "initial": "ok", 

63     "transitions": { 

64       "ok": { 

65         "fail": [ 

66           { 

67             "type": "property", 

68             "property": "failure" 

69           } 

70         ] 

71       }, 

72       "fail": { 

73         "ok": [ 

74           { 

75             "type": "property", 

76             "property": "recovery" 

77           } 

78         ] 

79       } 

80     } 

81   } 

} 

This code fragment provides the definition of a Power Line and includes the 

respective state machine and a set of properties defined for the line. 

Appendix B: a detailed description of attacks on a breaker 

1.{ 

2.  "name": "Breaker Component", 

3.  "type": "state-machine", 

4.  "structure": { 

5.    "states": [ 

6.      "ok", 

7.      "fail", 

8.      "compromised-ok", 

9.      "compromised-fail" 

10.    ], 

11.    "initial": "ok", 
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12.    "transitions": { 

13.      "ok": { 

14.        "fail": [ 

15.          { 

16.            "type": "probabilistic", 

17.            "distribution": "exponential", 

18.            "parameter": 0.1, 

19.            "comment": "once in 10 years" 

20.          } 

21.        ] 

22.      }, 

23.      "fail": { 

24.        "ok": [ 

25.          { 

26.            "type": "deterministic", 

27.            "parameter": 0.00086, 

28.            "comment": "7.5h" 

29.          } 

30.        ] 

31.      }, 

32.      "compromised-ok": { 

33.        "compromised-fail": [ 

34.          { 

35.            "type": "probabilistic", 

36.            "distribution": "exponential", 

37.            "parameter": 365, 

38.            "comment": "daily" 

39.          } 

40.        ] 

41.      }, 

42.      "compromised-fail": { 

43.        "compromised-ok": [ 

44.          { 

45.            "type": "deterministic", 

46.            "parameter": 0.00086, 

47.            "comment": "7.5h" 

48.          } 

49.        ] 

50.      } 

51.    } 

52.} 

 

The code fragment (in json notation) defines a state machine, which captures the 

adversary behaviour. The state machine definition starts in line 4, from which its 

structure is defined: i) the states (“"ok", “fail”, "compromised-ok" and 

"compromised-fail"), "ok" is defined as the initial state, and ii) the transitions 

between the states, which define the source and destination state for each of the 

transitions, together with a distribution of the transition duration: distribution type and 

the parameters, required by the respective distribution type. Most of the transitions in 
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this example are assumed exponentially distributed: this distribution requires a single 

parameter. The recovery from a failure (with or without a compromise) is deterministic: 

a fixed duration of 7.5 hours, a somewhat arbitrary figure. Apart from these two options 

– exponentially distributed and deterministic – a number of alternatives distributions 

for the transition durations are available to a modeller to choose from. 


