

City, University of London Institutional Repository

Citation: Tahir, S., Ruj, S., Sajjad, A. & Rajarajan, M. (2019). Fuzzy keywords enabled

ranked searchable encryption scheme for a public Cloud environment. Computer
Communications, 133, pp. 102-114. doi: 10.1016/j.comcom.2018.08.004

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/21586/

Link to published version: https://doi.org/10.1016/j.comcom.2018.08.004

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

1

Fuzzy Keywords enabled Ranked Searchable
Encryption Scheme for a Public Cloud Environment

Shahzaib Tahir, Student Member, IEEE, Sushmita Ruj, Senior Member, IEEE, Ali Sajjad,
and Muttukrishnan Rajarajan, Senior Member, IEEE

Abstract—Searchable Encryption allows a user or organi-
zation to outsource their encrypted documents to a Cloud-
based storage service, while maintaining the ability to perform
keyword searches over the encrypted text. However, most of the
existing search schemes do not take the almost certain presence
of typographical errors in the documents under consideration,
when trying to obtain meaningful and accurate results. This
paper presents a novel ranked searchable encryption scheme that
addresses this issue by supporting fuzzy keywords. The proposed
construction is based on probabilistic trapdoors that help resist
distinguishability attacks. This paper for the first time proposes
Searchable Encryption as a Service (SEaaS). The proposed
construction is deployed on the British Telecommunication’s
public Cloud architecture and evaluated over a real-life speech
corpus. Our security analysis yields that the construction satisfies
strong security guarantees and is also quiet lightweight, by
analyzing its performance over the speech corpus.

Index Terms—Searchable Encryption as a Service (SEaaS),
Privacy by Design, Probabilistic Trapdoors, Inverted Index,
Indistinguishability, Min hashing, Euclidean Norm, Relevance
Frequency, Jaccard Similarity.

I. INTRODUCTION

CLOUD is an environment that enables on-demand, ubiq-
uitous resource sharing and data access to the Clients

efficiently and effectively while minimizing the up-front in-
frastructure costs. Apart from the monumental advantages and
benefits of relying upon the Cloud, it also poses a serious
threat to the privacy and security of the Client and the data
that is outsourced. One solution is to encrypt the documents
prior to outsourcing them to the Cloud that may lead to huge
network latency incurred due to the downloading of all the
documents and decrypting them to search for a particular
keyword. Therefore, a Searchable Encryption (SE) scheme is
required that delegates the search to the Cloud in such a way
that the confidentiality of the outsourced documents remains
intact, while equally preserving the privacy of the keywords
searched. This also helps to thwart effective eavesdropping of
data transmitted between the Client and the Cloud Server.

S. Tahir is with the Information Security Group, School of Mathemat-
ics, Computer Science and Engineering, City, University of London, UK,
EC1V 0HB, on study leave from the National University of Sciences and
Technology (NUST), Islamabad, Pakistan (e-mail: shahzaib.tahir@city.ac.uk;
shahzaib.tahir@mcs.edu.pk).

S. Ruj is with Indian Statistical Institute, 203 B.T. Road, Kolkata 700108,
India. (e-mail: sush@isical.ac.in).

A. Sajjad is with Research and Innovation, British Telecommunications,
Adastral Park, Ipswich, UK, IP5 3RE. (e-mail: ali.sajjad@bt.com).

M. Rajarajan is with the Information Security Group, School of Mathe-
matics, Computer Science and Engineering, City, University of London, UK,
EC1V 0HB, (email: r.muttukrishnan@city.ac.uk).

Attempts to design Searchable Encryption schemes for
securely storing data on the Cloud while enabling keyword
search have generally considered three factors: 1) Security and
privacy; 2) Efficiency; and 3) Query Effectiveness. Although
all these factors are of equal importance but most of the
existing schemes are unable to maintain a balance between
them. Hence, the schemes lack in usability and can not be
deployed onto a real Cloud infrastructure.

The aim of the proposed SE scheme is to preserve the
privacy of the client’s data and the tasks that he performs on
his data. This requires to have privacy preservation inherently
and not as a pluggable feature. In [1], Cavoukian discusses the
fundamental principles to achieve privacy by design. The aim
of this research is to design a SE scheme that assures privacy
preservation as a default feature.

The significance of SE is apparent from its vast areas of
application where a lot of work is under progress. In [2],
SE is studied in conjunction with e-Healthcare systems over
the Cloud. SE is also being explored in relation to the IoT
devices and smart meters as proposed in [3]. SE can also
have a profound impact on secure transactions when coupled
with blockchain technology, as discussed in [4]. With the
emergence of Homomorphic Encryption, the use of Searchable
Encryption is also being explored in genome analysis to
securely analyse and search human DNA sequences [5].

In our fuzzy searching process, the Cloud service takes
human typographical errors into account while performing the
search, such that the search query does not have to exactly
match the desired information. Typically, a single-keyword or
a multi-keyword SE scheme allows only the exact matching
of the keyword(s) and in-case a keyword is wrongly spelt,
a null set is returned as the result. On the contrary, a fuzzy
keyword enabled SE scheme uses a similarity based search
mechanism that performs the search based on the edit distance
to identify a possible set of keywords that could be desired by
the Client. Until now a few fuzzy keywords enabled searchable
encryption schemes have been proposed but they are not
practical enough to be deployed on the Cloud. Some of the
fuzzy schemes do not facilitate ranking and/or are based on
deterministic trapdoors e.g. [6] [7] [8] [9] [10]. Therefore,
the aim of this research is to explore the problem of fuzzy
searching and propose novel, practical and efficient solutions
to perform fuzzy Searchable Encryption while preserving the
privacy. Furthermore, the proposed scheme should be based
on probabilistic trapdoors and allow ranked searching.

2

A. Contributions

The following contributions to the field of SE are being
made through this research:
• We present a novel fuzzy keywords enabled ranked

searchable encryption scheme. The scheme is privacy
preserving by design as it is based on probabilistic
trapdoors that helps resist distinguishability attacks and
preserve the privacy of the outsourced documents and
search queries.

• We introduce Searchable Encryption as a Service
(SEaaS). We design and develop a proof of concept
prototype and test it over a encrypted real-world corpus of
speech transcriptions outsourced to the British Telecom’s
public Cloud storage service.

B. Organization

Section II discusses the proposed architecture with the help
of a scenario that helps to formally present the design goals.
Section III discusses the major relevant existing schemes by
concisely highlighting their pros and cons. In Section IV,
the preliminaries associated to the Fuzzy Ranked Search-
able Encryption scheme (FRSE) are discussed that helps to
conceptualize the proposed scheme. Section V revisits the
existing security definitions by tuning them according to the
proposed architecture. Finally, in Section VI the FRSE scheme
is proposed. The Security analysis is performed in Section
VII and the scheme is validated. The Section VIII presents
an algorithmic comparative analysis against existing schemes.
The scheme is deployed on the BT Cloud service and its per-
formance and storage overhead is analyzed in Section IX. The
details related to British Telecom’s public Cloud infrastructure
are also presented in Section IX. The conclusions are drawn
towards the end of the paper in Section X, followed by the
acknowledgments.

II. FUZZY KEYWORDS ENABLED RANKED SEARCHABLE
ENCRYPTION SCHEME ARCHITECTURE

In this section we explain the architectural details involved
in the proposed scheme. This discussion leads to the identifi-
cation of the design goals.

A. Proposed Architecture

In this section we discuss the proposed FRSE architecture,
using the Cloud Server (CS) as an honest-but-curious com-
ponent of the system. We explain this with the help of the
following scenario:

Bob outsources his encrypted documents
D={D1, D2, · · · , Dn} to the CS. He wants to perform
fuzzy search over the encrypted set of documents. Typically,
a searchable encryption algorithm does not take the user’s
typographical errors into account. Therefore, for the wrongly
spelt keyword (e.g., “aboot” instead of “about”), the search
will return null. On the contrary, a fuzzy searchable encryption
algorithm will still successfully infer a meaningful keyword
from the misspelt keyword. So the search result will include
the documents containing the keywords “about”, “abort” etc.

To perform efficient search, Bob will extract a dictionary
of keywords W = {W1,W2, · · · ,Wm} from D and form an
inverted index table and fuzzy index table respectively. The
inverted index table makes use of relevance score generator
for the ranking of the documents whereas the fuzzy table
enables the fuzzy matching of the keywords. For the secure
index generation, the cryptographic keys are generated. Upon
the successful generation of the index tables (FI, I), Bob
outsources the index tables along with the encrypted set of
documents to the CS. This is a one time process.

As mentioned above, we assume that the CS is honest-
but-curious. Here honesty means that the CS performs all its
operations properly and correctly, but it is also willing and
curious to learn any information that it can infer from the
outsourced documents it is storing on behalf of the client, or
from the search queries it receives from the client. In future, to
search for a keyword over the encrypted set of documents, Bob
using his private key will generate a meaningful probabilistic
trapdoor and send it to the CS. The probabilistic trapdoor
is unique for the same keyword being searched repeatedly,
hence, it resists distinguishability attacks. Now the CS using
the trapdoor performs the search over the index tables and
returns the results i.e. the encrypted document identifiers in a
ranked order.

Figure 1 illustrates the flow of events that take place during
the entire life cycle of the search.

Fig. 1. The System Architecture

B. Design Goals

The proposed Fuzzy Ranked Searchable Encryption Scheme
(FRSE) has the following design objectives:
• Trapdoor Unlinkability: The trapdoors should resist dis-

tinguishability attacks i.e. for the same keyword being
searched again a new, unique and totally randomized
trapdoor should be generated.

• Ranked Searching: The proposed scheme should facilitate
ranked searching by presenting the search results based
on some ranking functionality.

• Modularized Fuzzy Component: The fuzzy component
should be designed in such a way that it can be

3

inter-operable with an existing SE schemes (single-
keyword/multi-keyword) with minimal modifications.

• Cloud Compatibility: The designed scheme should be
compatible and easy to integrate with an existing Public
Cloud offering.

• Privacy-by-design: The designed scheme should be pri-
vacy preserving by default.

Definition (Fuzzy Ranked Searchable Encryption Scheme
(FRSE)): The proposed FRSE comprises of five polynomial
time algorithms Π = (KeyGen, Build Index, Build Trap,
Search Outcome, Dec) such that:
(K, ks, r) ← KeyGen(1λ): is a probabilistic key generation

algorithm that takes a security parameter λ as the input.
It outputs a master key K, a session key ks and a random
number r. This algorithm is run by the client.

(I, FI) ← Build Index(S′,D): is a probabilistic algorithm
that takes a randomly permuted shingle vector S′ and
collection of documents D as the input. The algorithm
returns an inverted index table I and a fuzzy index table
FI . This algorithm is run by the client.

TW ← Build Trap(S′, ks,W, num): is a probabilistic algo-
rithm that takes a randomly permuted shingle vector S′,
session key ks, keyword(s) W , number (num) of required
documents as the input. The algorithm returns a trapdoor,
TW . The algorithm is run by the client.

X ← Search Outcome(ks, I, F I, TW): is a deterministic al-
gorithm run by the CS. The algorithm takes the session
key (ks), index table (I), fuzzy index table (FI), the
trapdoor (TW) as the input and returns (X), a set of
required encrypted document identifiers EncK(id(Di))
in ranked order.

Di ← Dec(K,X): is a deterministic algorithm. The algorithm
requires the client’s master key K and encrypted set
of document identifiers EncK(id(Di)) to decrypt and
recover the document id’s. This algorithm is executed by
the client.

III. RELATED WORK

Focusing mainly on the query effectiveness, the literature
can be summarized into two main categories as follows:

A. Single Keyword and Multi-Keyword Searchable Encryption

The problem of SE dates back to the first scheme introduced
by Song et al. in [11]. The proposed scheme did not require a
secure index. Curtmola et al. in [12] introduced formal security
definitions of SE and presented an index-based single keyword
SE scheme. The scheme was based on deterministic trapdoors.
In [13] authors for the first time shed light on the problem
of ranked search and introduce a ranked single keyword SE
scheme. However, in [14] authors are able to launch a success-
ful differential attack on the scheme. In [15] authors introduced
an index- based ranked SE scheme based on probabilistic
trapdoors and presented improved security definitions for SE.
These schemes only facilitated single keyword searching.

Until now several SE schemes have been proposed that sup-
port conjunctive queries in the sense that interrelated keyword
queries can be conducted such as [16] [17]. Sun et al. in

[18] introduced cosine similarity measurement for supporting
privacy-preserving multi-keyword SE. In [19], authors for the
first time introduced coordinate matching for ranked multi-
keyword searching. Authors for the first time design a SE
scheme that enables geometric range search on the spatial data
in [20]. It is also observed that the scheme is generalized and
allows different type of shape queries. Authors in [21] intro-
duce a ranked SE scheme that facilitates disjunctive queries.
All these aforementioned schemes provide multi-keyword SE
but do not support fuzzy SE.

B. Fuzzy Searchable Encryption
In [22], authors for the first time introduce a privacy

preserving construction that enables fuzzy keyword searching.
Although the proposed scheme takes the typographical errors
into account and performs fuzzy search, it requires to construct
a fuzzy keyword set and takes all the possible erroneous key-
words into consideration. Therefore, for the keyword CASTLE
the substitution operation on the first character of the keyword
produces the following set {AASTLE. BASTLE, DASTLE,
· · ·, YASTLE, ZASTLE}. This may not be feasible for large
datasets containing hundred thousand keywords because the
size of the index may grow exponentially. Since this task
is performed by the data owner having low memory and
computational resources, it may lead to the entire memory
consumption and wastage of resources.

Wang et al. in [8] for the first time introduced the concept
of utilizing Locality Sensitive Hashing (LSH) into Searchable
Encryption. Their scheme definitely brought a new perspective
to design fuzzy SE schemes because a predefined dictionary
spanning over the entire possible set of keywords (correct and
erroneous) as discussed in [22] was not required. The authors
presented two schemes that were able to resist attacks in the
known ciphertext model and the known background model
respectively. The schemes required per document bloom filter
or vector to perform the fuzzy search which is not feasible
in real deployment as it may consume too much storage on
the cloud. Furthermore, due to the use of independent bloom
filters the ranking of the documents cannot be achieved.

In [23] authors for the first time introduce uni-gram vectors
for the fuzzy keyword search. They claim to have improved the
accuracy as compared to the scheme proposed in [8]. They also
propose a stemming algorithm that can query the keywords
with the same root and the ranking of the results is based on
it. Although their scheme is novel and enhances the query
effectiveness, the scheme does not resist distinguishability
attacks as the trapdoors are not indeterministic. Therefore, it
cannot be termed as the ultimate fuzzy searchable encryption
scheme.

Further details about the SE schemes can be found on [24],
[25].

IV. FUZZY RANKED SEARCHABLE ENCRYPTION SCHEME

A. Preliminaries
The design of the proposed scheme is primarily based

on several important design primitives i.e. Relevance score,
Shingling, Min Hashing, Jaccard Similarity and Euclidean
Norm. A brief introduction is given below:

4

1) Relevance Frequency: The relevance frequency (RF)
helps to rank the documents. The RF formula [26] presented
here is widely accepted and already used in SE [7] [13] [27].
So, given a keyword W , and a document D, the relevance
frequency (RF), is calculated as:

RF (W,D) =

W∑
T=1

1

|D|
· (1 + ln f(D,T)) · ln(1 +

N

fT
) (1)

where |D| denotes the length of the document obtained by
counting the words appeared in the document D; f(D,T)

denotes number of times a word W appears within a particular
document D; fT denotes the number of documents in the
dataset that contain the word T and N denotes the total
number of documents in the dataset.

2) Shingled Keywords: Given a set W of keywords
{W1,W2, . . . ,Wm}. Let l be a constant that represents the
sequence of l characters to appear within the keywordsW . The
choice of l is made such that the probability of any shingle
appearing within a keyword should be low. The keyword is
firstly transformed into a shingle set S consisting of contiguous
l letters appeared in the keyword. The shingle set is converted
to a vector S that represents the presence or absence of a
particular shingle. Hence for each shingled keyword, a vector
S of length 26l-bit is required i.e. the entries of the vector S
represent the occurrence of shingles within a keyword.

3) Min Hashing: Given q number of random hash functions
(i.e. random permutations), represented as fq : S→ R reduces
the shingle vector S and assigns a real number R to form a
signature vector (SV). Let Sa and Sb represent two shingle
vectors for two different keywords. The random hash function
permutations should satisfy the condition: fq(Sa) 6= fq(Sb).
Hence the permutations are independent. The min hash value
of any vector is the number of first row, in the permuted order,
in which the vector has a 1.

4) Min hashing and Jaccard similarity: With reference to
[28], Min hashing and Jaccard similarity (JS) are closely
related as follows:

• Given two shingled vectors Sa and Sb. The probability
of JS(fq(Sa), fq(Sb)) is equal to the JS(Sa, Sb).

The Jaccard similarity between two sets X and Y is calculated
by:

JS(X,Y) = |X∩Y |
|X∪Y |

Corollary 1: The Jaccard Similarity between two sets X and
Y is 0 if and only if X ∩ Y = ∅

5) Euclidean Norm: Given two vectors A =
[a1, a2, · · · , ai] and B = [b1, b2, · · · , bi], the Euclidean
Norm d represents the distance between the vectors (A,B).
The distance between the two i-dimensional vectors A and B
is represented as:

d(A,B) =

√√√√ n∑
i=1

(ai − bi)2

B. Scheme Conceptualization
Prior to presenting the proposed scheme, this section in-

troduces the crux that help to conceptualize the scheme.
This section is explained keeping in view the Public Cloud
infrastructure. Before going into the explanation a toy example
is presented in Figure 2 to help illustrate the significant SE
phases.

Fig. 2. Toy Example: i) Transform a keyword into a shingle vector. ii)
Permute a random vector from the shingle vector. iii) Form a Fuzzy Index
table comprising of the signature vectors after applying Q permutations for the
Min Hashing. iv) Calculate the relevance frequencies and form an inverted
index by masking the relevance scores. v) To generate a trapdoor, form a
shingle vector and a randomized vector. Using the Q permutations calculate
the Min hashes and compute the Euclidean Norm between the two vectors.
vi) Compute the Jaccard Similarity between the Fuzzy index entries and the
trapdoor. vii) Obtain documents in ranked order.

1) Inverted Index Table Generation and document encryp-
tion: The scheme identifies a dictionary of keywords W from
the document set D. The inverted index is formed such that
the corresponding entries are populated using the relevance
frequency generation mechanism (Eq (1)). On the successful
generation of the index I the documents are encrypted using
the client’s master key K.

2) Fuzzy Index Generation: The fuzzy index table (FI)
generation requires the client to shingle the keywords and
compute the signature vectors (SV). Each keyword can be
represented in the form of shingles. The keywords containing
uppercase letters, lowercase letters, numbers, duplicate letters
and special characters can also be considered. The proposed
scheme only considers lower case alphabets, hence, the
proposed scheme chooses l = 2, therefore, each keyword
can be represented in the form of a vector having the
length 262-bits i.e. 676 individual entries. This is explained
with the help of an example, suppose the keyword is
”university”. The shingled set representation of ”university”
is {un,ni,iv,ve,er,rs,si,it,ty}. The next phase is to represent the
shingled set in the form of a vector S {aa, ab, ac, · · · , zz}.
Such that if a shingle appears within a keyword set the
corresponding entry in S as 1 otherwise 0. The default shingle
vector may reveal the keyword to the server, so S needs to
be randomized such that the total number of permutations
are 676!. As mentioned in [29], the permutations are done as
follows:

5

Algorithm (PermS): Let P denote a set of n possible
permutations of the vector S represented by Sn. Initialize a
vector S′. A random permutation V : S→ S′ such that S′ ∈ Sn
is generated as:

1. Let S = [e0, e1, · · · , en−1]

2. For k = 0, 1, · · · , n− 1, do:
Select at random an element e from S such that e /∈ S′.
Set S′[k]=e.

Therefore, the first element e is picked at random from all
the n elements contained in S, the second element is picked
from n − 1 elements and so on. There are n! different ways
to form a randomly permuted vector S′.

The advantage behind randomizing the vector S is that
the keywords cannot be guessed in polynomial time. This is
highlighted in more detail in the security proofs presented in
the Section VII. After the selection of a particular instance of
the random permutation, the entire dictionary of the keywords
is represented in the form of individual randomly permuted
shingled vectors. As the vectors are mostly sparse, the tech-
nique of min hashing is applied to all the vectors so that the
search space may be reduced and a signature vector may be
formed (already discussed in the preliminary).

3) Trapdoor Generation: Let W denote the keyword to
be searched for. Given a vector T, the keyword is shingled
to populate the randomly permuted vector S′ accordingly
such that T = S′. Since T is mostly sparse, calculating the
Jaccard Similarity JS and Euclidean Norm of T against all
the signature vectors in the Fuzzy Index FI is a resource
intensive task. Therefore, min hashing is applied to T. Until
now, the trapdoor was deterministic. To make the trapdoor
probabilistic a random vector T′ is selected, the selection is
done as follows:

Algorithm (ProbT): Let T = [t1, t2, · · · , tn] denote a
vector containing n min hashed values associated to a keyword
W . Initialize a vector T′. A random permutation Q : T→ T′
is generated as:

For j = 1, 2, · · · , n, do:
Let U be a uniform random variable in the range [1, 262]

and U /∈ T,T′.
Set T′[j] = U .

Therefore, the vectors do not have any elements in common.

Upon the successful generation of random vector T′ the
Euclidean Norm dis = d(T,T′) is computed. The trapdoor
is Encks(dis,T′). The trapdoor is transmitted to the Cloud
Server (CS). The next step is to perform search and identify
the documents that contain the queried keyword.

4) Searching: Upon receiving the trapdoor, the Cloud
Server using the session key ks decrypts the trapdoor to
uncover the underlying content. The search is based on the
corollary 1. Since JS is applicable to sets only, so the CS
calculates the JS(T′,SVW) that requires the representation
of vectors into sets. The conversion is done as follows:

Algorithm (ExtendedVector): Let T = [t1, t2, · · · , tn]
denote a vector containing n entries. Initialize an empty set
L. The ExtendedVector E : T→ L is generated as:

For j = 1, 2, · · · , n, do:
Add tj to L such that tj /∈ L .

The trapdoor is formed in such a way that the CS looks
for the entries where the JS is 0. On identifying the relevant
entries, the CS computes the Euclidean Norm d(T′,SVW),
where SVW ∈ FI and T′ ∈ Trapdoor. If the searched keyword
is contained in the dictionary, calculated Euclidean Norm will
be equal to dis. Otherwise, if the keyword is not contained
in the dictionary, the most relevant keyword will be having a
Euclidean Norm ≈ dis varying by ε. ε is the variance from
the existing keywords and represents the threshold that can be
controlled by the Client.

Upon the identification of the corresponding masked key-
word identifier mask(id(W)), the CS refers to the Inverted
Index Table, I . After identifying the relevant column, the CS
returns ranked encrypted document identifiers to the client.
Note: The sole purpose of using session key ks between the
Client and the CS is to avoid any passive attacks that may be
carried out by an outsider. Session key may not be required if
the channel is secure.

V. SECURITY DEFINITIONS

In this section we revisit the existing definitions proposed
in [15] that are related to probabilistic trapdoors. We extend
the definitions to fit our construction.

A. Keyword-Trapdoor Indistinguishability for FRSE

Keyword-Trapdoor indistinguishability allows the adversary
to select a keyword adaptively based on the history. More
precisely, the adversary is given tuples (W, TW). Since the
adversary now has all the possible keywords and associ-
ated trapdoors, it has to now submit two distinct keywords
(wo, w1). The challenger tosses a fair coin b and sends the
trapdoor corresponding to the keyword wb to the adversary.
This process continues until the adversary has submitted
polynomially-many queries and is then challenged to output
the bit b.

Definition 5.1 Let FRSE= (KeyGen, Build Index,
Build Trap, Search Outcome, Dec) be a fuzzy-based ranked
searchable encryption scheme over a dictionary ∆, λ be
the security parameter, and Aj;0≤j≤N+1 be a non-uniform
adversary. Consider the following probabilistic experiment
Key TrapFRSE,A(λ):

Key TrapFRSE,A(λ)
(K, ks, r)← KeyGen(1λ)
(I, FI)← Build Index(S′,D)
for 1 ≤ i ≤ N

(stA, wi)← Ai(stA, Tw1 , · · · , Twi)
Twi
← Build Trapks(wi)

(stA, w0, w1)← A0(1λ)

b
$←− {0, 1}

(Twb
)← Build Trap(S′, ks, wb, num)

b′ ← AN+1(stA, Twb
)

6

T ′w ← Build Trapks(wj); j ∈ N
if b′ = b, output 1
otherwise output 0

where stA represents a string that captures A’s state.
The keyword-trapdoor indistinguishability holds for all the
polynomial-size adversaries (A0,A1, · · · ,AN+1) such that
N = poly(λ),

Pr[Key TrapFRSE,A(λ) = 1] ≤ 1

2
+ negl(λ)

where probability is over the choice of b.

B. Trapdoor-Index Indistinguishability for FRSE

Trapdoor-Index indistinguishability refers to the complexity
offered by a fuzzy ranked searchable encryption scheme. More
precisely, the adversary is given tuples (W, TW), F I . Since
the adversary now has all the possible keywords, associated
trapdoors and fuzzy index table, he submits two distinct
keywords (wo, w1). The challenger now tosses a fair coin b and
submits the trapdoor, fuzzy index table entries corresponding
to the keyword wb to the adversary. This process continues
until the adversary has submitted polynomially-many queries
and is then challenged to output the bit b.

Definition 5.2 Let FRSE= (KeyGen, Build Index,
Build Trap, Search Outcome, Dec) be a fuzzy ranked
searchable encryption scheme over a dictionary ∆, λ be
the security parameter, and A = (A0,A1) be non-uniform
adversaries. Consider the following probabilistic experiment
Trap IndexFRSE,A(λ):

Trap IndexFRSE,A(λ)
(K, ks)← KeyGen(1λ)
(I, FI)← Build Index(S′,D)
for 1 ≤ i ≤M

let I ′ = FI[0][i] = EncK(Wi)
Twi ← Build Trapks(wi)

b
$←− {0, 1}

(stA, w0, w1)← A0(1λ)
(Twb

)← Build Trap(S′, ks, wb, num)
b′ ← A1(stA, F Iwb

)
if b′ = b, output 1
otherwise output 0

where stA represents a string that captures A’s state. The
trapdoor-index indistinguishability holds if for the polynomial-
size adversaries (A0,A1),

Pr[Trap IndexFRSE,A(λ) = 1] ≤ 1

2
+ negl(λ)

where probability is over the choice of b.

In SE Privacy Preservation refers to getting valid search
results without letting the server learn the underlying data.
This also includes anything that can be inferred from
the trapdoors, index tables and the encrypted documents
outsourced to the Cloud. This leads to the following corollary:

Theorem 1: The proposed FRSE scheme provides
Keyword-Trapdoor Indistinguishability and Trapdoor-Index

Indistinguishability if the Inverted Index table (I) and
Fuzzy index table (FI) are secure and the trapdoors are
probabilistic.

VI. PROPOSED FRSE SCHEME

This section formally presents the detailed description of the
proposed scheme. As mentioned earlier, the proposed scheme
comprises of the following five polynomial-time algorithms:
• Phase 1-KeyGen (λ): Given a security parameter λ,

generate the keys K, ks ← {0, 1}λ and a random number
r ← CSPRNG(1λ).

• Phase 2-Build Index (S′,D):
– Inverted Index(I) Generation: Construct a matrix (I)

of the order (n+ 1)× (m+ 1) as follows:
1) Extract a keyword set W = {W1,W2, · · · ,Wm}

from a set of documents D =
{D1, D2, · · · , Dn}.

2) Set entries at (i + 1, 1) = EncK(id(D));
1 ≤ i ≤ n.

3) Set entries at (1, j + 1) = EncK(Wj);
1 ≤ j ≤ m.

4) Calculate the RF using equation 1 and pop-
ulate the remaining entries (i + 1, j + 1) =
RF (Wj , Di).

5) Mask the RFs as:
- For a = 1, 2, · · · ,m

- For b = 1, 2, · · · , n
- (a, b) = (a, b)× r

Notes: To further enhance the security Order Pre-
serving Encryption (OPE) may be used instead.

6) Output the matrix (I) that represents the inverted
index table I .

– Fuzzy Index(FI) Generation: Construct a matrix FI
of the order (Q + 1) × (m + 1) where Q ∈ q
represents the random permutations used for min
hashing represented as fq : S → R and m are the
total number keywords. Construct FI as follows:
1) Form a shingle vector S of the order 262 and

randomize it to form S′ using the algorithm
PermS (presented previously in the Section IV).

2) For each keyword Wm form a shingle set and
permute according to S′.

3) For each S′ compute the min hashes and form
the corresponding Signature Vectors SV having
Q-bit length.

4) Set entries of FI at (1, i) = EncK(Wi); 1 ≤ i ≤
m

5) Set entries of FI at (i, j) = SV[Q]; 1 ≤ j ≤ q.
• Phase 3-Build Trap (S′, ks,W, num): Generate a prob-

abilistic trapdoor vector T′ as follows:
1) Represent the search keyword(s) in the form of a

shingle set(s).
2) Permute the same random vector S′ according to the

shingle set.
3) Using the same Q permutations form a signature

vector(s) represented as T.

7

4) According to the algorithm (ProbT) (presented pre-
viously in the Section IV) randomize the vector T
to obtain T′.

5) Compute the Euclidean Norm d(T, T′)
The Trapdoor TW = (d,T′, num); where num repre-
sents the total number of required documents. Compute
Encks(TW) and send it to the CS.

• Phase 4- Search Outcome (ks, I, F I, Encks(TW):
Identify the documents Di ∈ D as the outcome of the
search as follows:

1) Using the session key ks decrypt Encks(TW).
2) Using algorithm (ExtendedVector) (presented in

the Section IV) Convert T′ to a set L.
3) For each signature vector SVm stored in FI , convert

to a set L′ using the algorithm (ExtendedVector).
Calculate the Jaccard Similarity JS(L,L′).
- If JS is 0 do:

- Calculate the Euclidean Norm d′(T′,SVm)
4) The required keyword will have d ≈ d′ varying by

ε (threshold).
5) Identify the corresponding masked keyword iden-

tifier mask(id(W)) in I and return the encrypted
document identifiers X = EncK(Dnum) in ranked
order.

Return X to the client.
• Phase 5-Dec (K,X): Given X a set of encrypted doc-

ument identifiers, decrypt X using the master key K to
uncover the outcome of the search.

VII. SECURITY ANALYSIS

It is not possible to present a SE construction that does not
leak information to the adversary. The proposed scheme limits
the leakage by generating probabilistic trapdoors. Although the
proposed scheme leaks very less information as compared to
prior existing schemes, it is important to analyze the leakage
profile. This leakage profile includes all leakages that may
be important or unimportant and encrypted or unencrypted.
The leakage profile is formed over involved artifacts including
the index table I , fuzzy index FI , trapdoor Tw generated
for a particular keyword and the outcome of the search. The
leakages are as follows:

1) Leakage L1: This leakage highlights the information
revealed by the index table I . The index table I is generated
by the Client and outsourced to the CS. This leakage is
defined as follows:

L1(I) =
{

Total number of keywords,
}

2) Leakage L2: This leakage highlights the information
revealed by the fuzzy index table FI . FI is generated by the
Client and outsourced to the CS. This leakage is defined as
follows:

L2(FI) =

{
Total number of keywords,
SVW [Q]

}

3) Leakage L3: This leakage is associated to the
information revealed by the trapdoor T generated for a
particular keyword W . The probabilistic trapdoor T is
generated by the Client and sent to the CS. Using the
trapdoor, the CS searches on the client’s behalf. The leakage
is defined as follows:

L3(Tw) =

Probabilistic TrapdoorT′,
EuclideanNorm(d(T,T′)),
Number of required documents

4) Leakage L4: This leakage is bound to the search

outcome (SO) of the trapdoor generated for a particular
keyword represented as TW . This leakage is induced as a
result of the search carried out by the CS. This leakage is
defined as follows:

L4(SO)=
{

OC(W), EncK(id(Di))∀TW∈D
}

where OC represents the relevant outcome corresponding to
the searched keyword.

Discussion on Leakage: In [30] the possible attacks are
studied on the SE schemes that require a relational database
based on Order Preserving Encryption (OPE). It may be ob-
served that the proposed scheme does not require a relational
database, therefore, the masking function can be strengthened
by using OPE.

Referring to the leakage associated to the inverted index
table (I), it may be observed that the index may only leak
the presence or absence of an encrypted keyword within a
document. The leakage related to fuzzy index table (FI) leaks
the total number of keywords that form a fuzzy index table
(FI) but the keywords itself can never be uncovered. The
trapdoor is unlinkable as it is probabilistic, therefore, it does
not reveal the access pattern prior to the search. The outcome
of the search is only revealed. We now discuss the impact of
these leakages on the security of the system as done in [15].

Lemma 1. The Fuzzy Ranked Searchable Encryption Scheme
(FRSE) presented in the Section VI is “Privacy Preserving”
according to Theorem 1, as it is L1, L2, L3, L4-secure and
according to Definition (5.1,5.2) where L1 is associated with
the index table (I) and leaks the total number of keywords.
L2 is related to the fuzzy index table (FI) and leaks the
total number of keywords, signature vectors (SV). L3 leaks
a probabilistic vector T′, Euclidean norm and number of
required documents. L4 leaks the outcome of a trapdoor and
the encrypted file identifiers containing the searched keywords.

Proof Sketch. The security proof of the proposed scheme
is achieved in two-fold; firstly it is proved that the scheme
provides keyword-trapdoor and trapdoor-index indistinguisha-
bility resulting in the privacy preserving system. Secondly the
leakage profiles are analyzed to validate the conformance to
the privacy preserving property.

Referring to the scheme proposed in Section VI,
the algorithm comprises of five phases. The KeyGen
phase generates two keys and a random number r,
(K, ks, r) ← KeyGen(1λ). The Build Index phase
generates an inverted index table and a fuzzy index

8

table (I, FI) ← Build Index(S′,D). The TW ←
Build Trap(S′, ks,W, num) generates a trapdoor
corresponding to the keyword (W) to be searched. The
X ←Search Outcome(ks, I, F I, TW) represents the outcome
of the search and Di ←Dec(K,X) represents the decrypted
document identifiers. In order to validate the security of the
proposed scheme against this lemma, we first prove that our
scheme satisfies the security definitions 5.1 and 5.2. The
following claim is made that leads to prove that the proposed
FRSE scheme satisfies the definitions 5.1 and 5.2.

Claim: If a FRSE scheme is Keyword-Trapdoor indistin-
guishable then Trapdoor-Index indistinguishability also holds
true.

Firstly, we show that if there exists a polynomial-size adver-
sary A that succeeds in the experiment key TrapFRSE,A(λ)
with non-negligible probability over 1/2, then there exists
a polynomial-size adversary B and a polynomial-size dis-
tinguisher D that distinguishes between the outputs of the
experiment Trap IndexFRSE,B(λ).

The adversary B computes (stA, wi) ←
Ai(stA, Tw1

, · · · , Twi
); samples b $←− {0, 1}. As a result B

outputs the stB = (stA, b). The distinguisher D proceeds as
follows:

1) Parses (stA, wi) ← Ai(stA, Tw1 , · · · , Twi) where 1 ≤
i ≤ N ;

2) Computes b′ ← AN+1(stA, Twb
);

3) Outputs 1 if b′ = b and 0 otherwise;

Since Ai+1 are polynomial size adversaries, therefore B and
D are also polynomial size. The next phase would be to guess
the success rate of D. It may be noted that D will only cor-
rectly guess b and output 1 when the views of adversariesAi+1

may be different. It is to be noted that the trapdoor is random-
ized even for the same keyword searched twice, therefore it is
independent of b. An adversary will guess b with the maximum
probability of 1/2, which is according to the definition 5.1.
Therefore, the initial assumption of having such an adversary
that succeeds in the experiment Key TrapFRSE,A(λ) with a
non-negligible probability over 1/2 is wrong. Hence the distin-
guisher D cannot distinguish between the output induced by
the experiment Trap IndexFRSE,A(λ) with non-negligible
probability over 1/2. This also validates the definition 5.2.
Hence the claim is correct.

So it remains to prove that an FRSE is “Privacy Pre-
serving”. As discussed earlier, the FRSE scheme is based
on probabilistic trapdoors that maintains unlinkability and
indistinguishability. Since the proposed scheme is based on
probabilistic trapdoors therefore a unique trapdoor is generated
for the same keyword searched twice. The proposed trapdoor
is primarily based on a randomly permuted vector of the
order 26l! combinations that cannot be solved in polynomial
time and leads to the NP-Hard problem. Therefore it is not
possible for an adversary to form a relationship between the
keyword, trapdoor or index table entries within polynomial
time and prior to the search. This is also valid for an adaptive
adversary maintaining a history of the search and the outcome.
Therefore, the proposed scheme is in accordance with the

proposed definitions. Therefore, this leads to the privacy pre-
serving FRSE scheme on the whole and leads to the property
of “Privacy-by-design”.

The next step is to prove that the aforementioned leakages
do not effect the security of the scheme. It is observed
that the proposed FRSE scheme is based on the NP-hard
problem as there is no polynomial adversary to enumerate 26l!
combinations of permutations.The assumption here is that the
master key (K) is kept secure. Therefore, the proposed scheme
is (L1, L2, L3, L4)-secure against adaptive/non-adaptive indis-
tinguishability attacks and provides Keyword-Trapdoor Indis-
tinguishability and Trapdoor-Index indistinguishability.

Therefore, considering the definitions (5.1,5.2), theorem 1,
the leakages L1, L2, L3, L4 and the associated proofs the
proposed FRSE scheme is Privacy Preserving.

VIII. PERFORMANCE METRICS

A. Algorithm Analysis

In order to analyze the computational complexity it is
important to perform the asymptotic analysis of the proposed
scheme against similar existing schemes. The asymptotic
analysis helps to measure the upper bound time complex-
ity of the schemes. The complexity associated to a set of
documents is represented by n and for the keywords by m.
As most of the schemes comprise of all the 5 phases i.e.,
KeyGen, Build Index, Build Trap, Search Outcome and the
Dec phase, therefore we analyze these phases separately to
perform the asymptotic comparative analysis. It may also be
observed that since the KeyGen and Dec phases are identical
to any other scheme, we do not take their complexities into
consideration. Our analysis also considers ranking and non-
ranking separately because the well known existing fuzzy
scheme presented in [8] does not rank the documents. This
will help readers to easily relate the complexities of the
proposed scheme against similar existing schemes. Table I
shows the comparative algorithmic analysis against similar
existing schemes.

From the complexity analysis it can be observed that the
proposed FRSE scheme, in the build index phase, builds
two indexes i.e. the inverted index table (I) and the fuzzy
index table (FI). The inverted index table I enabling
ranking requires Θ(2mn + n) and unranked inverted index
generation requires Θ(mn + n). The fuzzy index table
FI is not affected by the ranked or unranked searching,
therefore, the complexity induced is Θ(Qm), where Q
represents the random permutations used for min hashing.
As a result the total complexity of the ranked Build Index
phase is Θ(2mn + n + Qm). The Build Trap phase is
asymptotically bound by Θ(Q+ 1). As mentioned in Section
VI, the Search Outcome is performed at the CS side. This
phase is asymptotically bound by (2Qm + mn) in terms of
ranked searching and (2Qm+n+ 1) for unranked searching.
Apart from this, S is the complexity associated to [22] and
represents the wildcard-based fuzzy set construction.

9

TABLE I
ALGORITHMIC COMPARATIVE ANALYSIS

Fuzzy Schemes
SCHEMES Build Index Build Trap Search OC
[22] Θ(mS) Θ(mS + 1) Θ(m2)
[8] and [23] Θ(mn+Qm) Θ(Qm + 1) Θ(2m2)

This paper
(ranked)

Θ(2mn+n+
Qm)

Θ(Q + 1) Θ(2Qm +
mn)

This paper
(unranked) Θ(mn + n +

Qm)
Θ(Q + 1) Θ(2Qm+n+

1)

[8], [22] and [23] are not ranked SE schemes.

B. Storage Overhead

Another important metrics for measuring the performance of
the scheme is the storage overhead analysis. This is dependent
upon the data structure and helps analyse the amount of data
stored either on the client’s side or the server side. We analyse
both of the storages (i.e. the client and the server) separately.
Referring to the proposed scheme presented in the Section
VI it may be observed that the client stores the Master key
K and the session key ks. Having the security parameter
λ, the size of the keys are 128bit. The client also stores a
randomized shingle vector S′ having the size 262 = 676 bits.
Furthermore, Q permutations are also stored that are used to
form a signature vector SV. As mentioned earlier the variable
Q increases/decreases the accuracy of the results. Considering
Q = 10bits, the total storage required at the client’s side is
128+128+676+10 = 942 bits= 942/8 bytes. This means the
client requires only 117.75 bytes in terms of storage overhead.

Referring to the storage overhead of the CS, firstly the
encrypted documents need to be stored. Having n documents
and avg representing the average size of each document, this
storage can be represented as n ∗ Davg . The fuzzy index
table FI requires a storage space of (m*Q), where m are
the total number of keywords. The inverted index table I
incurs a storage overhead of 8(mn). The session key ks is
also stored at the CS. The total storage overhead at the CS is
n ∗Davg +m ∗Q+ 8(mn) + 128bits.

We now discuss the storage overhead of the scheme pre-
sented in [8]. For clear and concise comparison we use similar
abbreviations such as in our scheme. Having the security
parameter λ the scheme requires to store the secret key K
which is a combination of (M1,M2, S), where M1,M2 are
matrices of the order λ x λ and S is a vector of the order λ. So
having λ = 128 bits, the CS requires 128 ∗ 128 + 128 = 2064
bits. The CS stores the secure index that is similar to a per
document bloom filter i.e., n ∗ (n ∗m ∗ 128) bit. Whereas, the
outsourced encrypted documents require the same storage as
our proposed scheme.

It can be observed that our proposed scheme outperforms
the scheme presented in [8] in terms of Client and CS storage
overhead. We also refer readers to [31] that discusses the
storage overhead induced by existing multi-keyword schemes.

IX. COMPUTATIONAL ANALYSIS

Before discussing the computational overhead, it is impor-
tant to discuss the BTCS architectural details, the dataset

related information and the system specifications that effect
the computational results. This also helps to give more insight
on the performance of the proposed scheme.

A. Application Encryption Service

The Application Encryption (AE) service is available as
a part of the British Telecommunications Cloud service
that implements and offers cryptographic services for its
clients. These services include core cryptographic operations
like encryption/decryption based on symmetric ciphers and
cryptographic-hash based integrity checking, as well as sup-
porting operations like key management, key storage and key
retrieval etc. through a Key Management Service (KMS). The
KMS component, in addition to the storage and management
of the cryptographic keys, also enforces policy-based access
control over the client’s keys. The AE service can also be
hosted inside the clients’ premises for their complete control
and trust in the cryptographic operations, or the clients can
even construct their own version of the AE service from
scratch as it is based on open standards and technologies.
However, in our deployment scenario the AE service offered
by BT is FIPS-140-1 certified and is treated as a trusted third
party.

AE service provides the following features to the clients:

• Centralized control and management of application-layer
encryption services through XACML policies.

• NIST standard implementation of Advanced Encryption
Standard (AES-256), RSA, SHA-256 and other crypto-
graphic primitives.

• Provides a library that implements the OASIS PKCS#11
APIs, which the clients can integrate in their applications.

Figures 3 and 4 illustrate the activity diagrams that depict the
flow of events of the proposed scheme when deployed onto
the BT Cloud Storage Service and when the AE service is
used.

Fig. 3. Activity Diagram: Setup.

10

Fig. 4. Activity Diagram: Searching.

B. Dataset Description

A realistic dataset of telephone speech is used for testing
the performance of the proposed scheme. This dataset has
been previously used in [15], [27] to study the performance
of SE schemes. The dataset used is a Switchboard-1 Tele-
phone Speech Corpus (LDC97S62) originally collected by
Texas Instruments in 1990-1, under DARPA sponsorship. The
Switchboard-1 speech database [32] is a corpus of spontaneous
conversations which addresses the growing need for large
multi-speaker databases of telephone bandwidth speech. The
corpus contains 2430 conversations averaging 6 minutes in
length; in other words, over 240 hours of recorded speech, and
about 3 million words of text, spoken by over 500 speakers of
both genders from every major dialect of American English. In
total 120,000 distinct keywords are identified from the dataset.

C. Implementation Details

The proposed FRSE scheme has been implemented in Java
and the results have been presented in the form of graphs using
Excel 2013. The server side has been deployed onto a public
Cloud platform (British Telecom’s Cloud Storage). Whereas,
the client-side is a local workstation. The client interacts and
imports the required cryptographic primitives from the Ap-
plication Encryption(AE) server. The communication between
the client-side and the server-side is done through sockets.
Therefore the results also include the network latency.

• Client Side: Entire algorithm(other than the
Search Outcome) is implemented at the client’s
system. The workstation used runs with an Intel Core i5
CPU running at 3.00GHz and 8GB of RAM.

• Server Side: Only the Search Outcome is implemented at
the BTCS. In other words, the entire search algorithm is
delegated to the BTCS. The allocated resources include a
Dual Core Intel (R) Xeon (R) CPU E5-2660 v3 running
at 2.60GHz and 8GB of RAM.

D. Computation Overhead
In this section the computational time for the different

phases of the proposed scheme is analyzed. As discussed in
Section VI, the proposed scheme comprises of five polynomial
time algorithms. We skip the computational time analysis of
the KeyGen phase and the Dec phase. It is to be mentioned
here that these graphs are generated directly from actual results
obtained from the experiments and no data normalization
techniques have been applied on the data.

Starting with the Build Index phase, two main tasks are
performed in this phase, i.e., the inverted index generation
and the fuzzy index generation. It is again emphasized that the
Build Index is a one-time process. The computational cost for
the inverted index generation mainly comes from the relevance
score generator. Figure 5 highlights the computational cost of
the algorithm. The inverted index is generated for fixed number
of keywords, 120,000, and variable amount of documents. The
experiment starts with 100 documents that are incremented by
100 on every iteration to a maximum of 1600 documents. The
number of documents are presented along the x-axis and the
time in seconds is presented along the y-axis. The graph shows
a linear growth with the increase in the number of documents
that can be realized upon normalizing the graph. For 1600
documents, inverted index generation takes 14.68 seconds.

Fig. 5. Computational time for the inverted index generation.

In the next step we analyze the computational time for the
fuzzy index generation. This computation is mainly incurred
due to the shingaling of keywords and applying min hashing.
The fuzzy index is not effected by the number of documents,
therefore, only the number of keywords are varied. The results
are presented in the form of a graph in Figure 6. The
experiment starts with 10,000 keywords that are scaled to a
maximum of 120,000 by gradually adding 10,000 on every
iteration. The number of keywords are along the x-axis and
the time in seconds is along the y-axis. It is observed that the
fuzzy index shows a linear growth with the increase in the
number of keywords. For 120,000 keywords, the fuzzy index
generation requires approximately 2.84 seconds.

The Build Trap phase is effected by the number of key-
words to be searched i.e., the trapdoor generated for multi-
keyword search will take more computational time as com-
pared to single keyword search. Currently the implementation

11

Fig. 6. Computational time for the fuzzy index generation.

only facilitates single keyword search queries. In the exper-
iment trapdoor is generated for the wrongly spelt keyword
“aboot”. The same keyword is used to analyze the computa-
tional time of proceeding phases. The proposed scheme takes
an average time of 0.09 seconds for generating the trapdoor.

The next phase is the Search Outcome phase and performed
on the BTCS. The computational time is analyzed in threefold.
Firstly the effect of varying number of keywords on the
search results is analyzed. Secondly, the efficiency of search
is analyzed by varying the number of documents. Lastly, the
result is analyzed that also includes the network latency while
retrieving the results directly from the BTCS.

It is observed that the Build Index is highly effected by
the change in the number of keywords and documents. This
also means that with the change in the size of the index
table the computational time of the Search Outcome phase
is also effected. Firstly we analyze the effects of varying
number of keywords. Referring to the Figure 7, the number of
keywords are changed ranging from 10,000 to 120,000. The
number of keywords are presented along the x-axis and the
time in seconds is along the y-axis. It is observed that for 100
documents and with the increase in the number keywords the
efficiency decreases while searching for the keyword “aboot”,
however, the graph shows a linear growth. Hence, for scenarios
that require a few set of keywords, the search is very efficient.
The search time for 10,000 and 120,000 keywords are 0.17
and 2.56 seconds respectively.

Next we analyze the effect of altering the number of
documents. With increase in the number of documents the
performance decreases. The reason for this decrease is due to
the increase in the search space where the ranking is to be
applied. The ranking is achieved through the sorting of the
relevance scores which effects the computational cost. While
searching for the keyword “aboot” takes around 2.17 seconds
for 100 documents and 43.1 seconds for 1600 documents as
shown in Figure 8.

Once the effects of the search time with varying amounts of
keywords and documents has been analyzed, we search for the
keyword “aboot” where we have an inverted index table gen-
erated for 1600 documents and fuzzy index table comprising
of 120,000 keywords. We only vary the number of required

Fig. 7. Computational time for the search with fixed documents and varying
keywords.

Fig. 8. Computational time for the search with varying documents and fixed
keywords.

documents starting from 100 and incrementing in steps of 100
to attain a maximum of 1600. The results are illustrated in
Figure 9. The results also include the network latency incurred
due to the communication between the BTCS and the Client
through sockets. While searching for the keyword “aboot”
the fuzzy search result includes the documents containing the
keywords “about, abort, abouts”. It is observed that the scheme
shows a linear growth. The number of required documents are
presented along the x-axis and the time in minutes along the
y-axis. The search time for 1600 documents is around 11.1
minutes.

1) Result Accuracy: To discuss the accuracy of the scheme,
we analyze the precision and recall as described in [33].
The precision is represented as tp

tp+fp
whereas the recall is

defined as tp
tp+fn

. Before proceeding further, it is important to
define false positive fp and false negatives fn. In the proposed
construction, false positives are those keywords that are not
required but appear in the search. Similarly, a false negative
represents the set of keywords expected to appear in the search.

For the experiment we randomly pick 100 keywords from
the possible 120,000 keywords and we generate the results for
the keyword “aboot”. Figure 10 shows the performance of the
proposed scheme while varying the threshold ε. If the keyword

12

Fig. 9. Computational time for the search on the BTCS including network
latency.

is correctly spelt then the exact matching takes place and that
would lead to 100% accuracy, however, in fuzzy search we use
min hashing and apply Euclidean Norm and Jaccard similarity
to compute the similarity between the trapdoor and the fuzzy
index. By varying the ε value the accuracy of the results
changes. We observe that with the increase in the threshold
value the precision increases. For the threshold value of 0.1,
the precision is 25% that increases to 67% when ε is 0.6 and
to a maximum of 100% for ε value of 0.9. We also notice
a slight fluctuation in the precision at different intervals due
to the use of probabilistic trapdoor. During our experiment
the fluctuation took place when the value of ε was 0.8. It
is also observed that unlike [8] with the increase in ε, the
recall also increases. This is due to the reason that we are
seeing an increase in the true positives with the increase in
the ε value. The proposed scheme attains a maximum of 67%
recall value when the value of ε approaches 0.9. It is also
observed that the accuracy of [8] is better as compared to the
proposed scheme, the reason being the small dataset that the
authors have used for the experiment comprising of only 20
keywords. The accuracy can also be increased by reducing the
number of keywords in the fuzzy index table.

Fig. 10. Performance metrics considering the precision and recall.

X. CONCLUSION

This paper revisited the problem of fuzzy keyword Search-
able Encryption. As compared to the state of the art, we
presented a novel, efficient and lightweight construction that
enabled ranked fuzzy searching over the encrypted data. The
presented scheme was based on probabilistic trapdoors that
helped resist distinguishability attacks. To allow fuzzy search
we introduced a fuzzy index table that was formed from min
hashes. The similarity search was twofold and based on the
Euclidean Norm and Jaccard Similarity. Extensive security
and performance analysis yields that the scheme outperforms
the existing schemes. To validate our performance claim,
we have also implemented and tested our proof of concept
prototype over a real speech corpus by outsourcing it to the BT
Cloud once the data is encrypted. In this paper we introduced
Searchable Encryption as a Service (SEaaS) for the British
Telecom’s Alpha Cloud offering.

ACKNOWLEDGEMENT

The authors would like to thank British Telecom, Plc, UK
for their support during the implementation and deployment.
The authors are also thankful to Intelligent Voice Ltd, UK for
providing the dataset used in the implementation.

REFERENCES

[1] A. Cavoukian, “Privacy by design: the definitive workshop. a foreword
by ann cavoukian, ph. d,” Identity in the Information Society, vol. 3,
no. 2, pp. 247–251, 2010.

[2] L. Yang, Q. Zheng, and X. Fan, “Rspp: A reliable, searchable and
privacy-preserving e-healthcare system for cloud-assisted body area
networks,” arXiv preprint arXiv:1702.03467, 2017.

[3] H. Shafagh, A. Hithnawi, A. Dröscher, S. Duquennoy, and W. Hu,
“Talos: Encrypted query processing for the internet of things,” in
Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems. ACM, 2015, pp. 197–210.

[4] H. Li, H. Tian, and F. Zhang, “Block chain based searchable
symmetric encryption,” Cryptology ePrint Archive, Report, 2017,
https://eprint.iacr.org/2017/447.pdf.

[5] M. Kim and K. Lauter, “Private genome analysis through homomorphic
encryption,” BMC medical informatics and decision making, vol. 15,
no. 5, p. S3, 2015.

[6] N. S. Khan, C. R. Krishna, and A. Khurana, “Secure ranked fuzzy multi-
keyword search over outsourced encrypted cloud data,” in Computer and
Communication Technology (ICCCT), 2014 International Conference
on. IEEE, 2014, pp. 241–249.

[7] S. Ding, Y. Li, J. Zhang, L. Chen, Z. Wang, and Q. Xu, “An efficient and
privacy-preserving ranked fuzzy keywords search over encrypted cloud
data,” in Behavioral, Economic and Socio-cultural Computing (BESC),
2016 International Conference on. IEEE, 2016, pp. 1–6.

[8] B. Wang, S. Yu, W. Lou, and Y. T. Hou, “Privacy-preserving multi-
keyword fuzzy search over encrypted data in the cloud,” in INFOCOM,
2014 Proceedings IEEE. IEEE, 2014, pp. 2112–2120.

[9] J. Wang, H. Ma, Q. Tang, J. Li, H. Zhu, S. Ma, and X. Chen,
“Efficient verifiable fuzzy keyword search over encrypted data in cloud
computing,” Computer science and information systems, vol. 10, no. 2,
pp. 667–684, 2013.

[10] J. Wang, M. Miao, Y. Gao, and X. Chen, “Enabling efficient approximate
nearest neighbor search for outsourced database in cloud computing,”
Soft Computing, vol. 20, no. 11, pp. 4487–4495, 2016.

[11] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Security and Privacy, 2000. S&P 2000.
Proceedings. 2000 IEEE Symposium on. IEEE, 2000, pp. 44–55.

[12] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient constructions,”
Journal of Computer Security, vol. 19, no. 5, pp. 895–934, 2011.

13

[13] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked keyword
search over encrypted cloud data,” in Distributed Computing Systems
(ICDCS), 2010 IEEE 30th International Conference on. IEEE, 2010,
pp. 253–262.

[14] K. Li, W. Zhang, C. Yang, and N. Yu, “Security analysis on one-
to-many order preserving encryption-based cloud data search,” IEEE
Transactions on Information Forensics and Security, vol. 10, no. 9, pp.
1918–1926, 2015.

[15] S. Tahir, S. Ruj, Y. Rahulamathavan, M. Rajarajan, and C. Glackin,
“A new secure and lightweight searchable encryption scheme over
encrypted cloud data,” IEEE Transactions on Emerging Topics in Com-
puting, vol. 99, no. 99, 2017.

[16] P. Golle, J. Staddon, and B. Waters, “Secure conjunctive keyword search
over encrypted data,” in ACNS, vol. 4. Springer, 2004, pp. 31–45.

[17] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on
encrypted data,” Theory of cryptography, pp. 535–554, 2007.

[18] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, and H. Li, “Privacy-
preserving multi-keyword text search in the cloud supporting similarity-
based ranking,” in Proceedings of the 8th ACM SIGSAC symposium on
Information, computer and communications security. ACM, 2013, pp.
71–82.

[19] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving multi-
keyword ranked search over encrypted cloud data,” IEEE Transactions
on parallel and distributed systems, vol. 25, no. 1, pp. 222–233, 2014.

[20] B. Wang, M. Li, and H. Wang, “Geometric range search on encrypted
spatial data,” IEEE Transactions on Information Forensics and Security,
vol. 11, no. 4, pp. 704–719, 2016.

[21] S. Tahir, S. Ruj, and M. Rajarajan, “An efficient disjunctive query
enabled ranked searchable encryption scheme,” 2017, accepted and to
appear in the proceedings of the 16th IEEE International Conference On
Trust, Security And Privacy In Computing And Communications (IEEE
TrustCom-17).

[22] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy keyword
search over encrypted data in cloud computing,” in INFOCOM, 2010
Proceedings IEEE. IEEE, 2010, pp. 1–5.

[23] Z. Fu, X. Wu, C. Guan, X. Sun, and K. Ren, “Toward efficient multi-
keyword fuzzy search over encrypted outsourced data with accuracy im-
provement,” IEEE Transactions on Information Forensics and Security,
vol. 11, no. 12, pp. 2706–2716, 2016.

[24] Y. Wang, J. Wang, and X. Chen, “Secure searchable encryption: a
survey,” Journal of communications and information networks, vol. 1,
no. 4, pp. 52–65, 2016.

[25] C. Bösch, P. Hartel, W. Jonker, and A. Peter, “A survey of provably se-
cure searchable encryption,” ACM Computing Surveys (CSUR), vol. 47,
no. 2, p. 18, 2015.

[26] Y. Hwang and P. Lee, “Public key encryption with conjunctive key-
word search and its extension to a multi-user system,” Pairing-Based
Cryptography–Pairing 2007, pp. 2–22, 2007.

[27] S. Tahir, M. Rajarajan, and A. Sajjad, “A ranked searchable encryption
scheme for encrypted data hosted on the public cloud,” in 2017
International Conference on Information Networking, ICOIN 2017, Da
Nang, Vietnam, January 11-13, 2017, 2017, pp. 242–247. [Online].
Available: https://doi.org/10.1109/ICOIN.2017.7899512

[28] J. Ji, J. Li, S. Yan, Q. Tian, and B. Zhang, “Min-max hash for jaccard
similarity,” in Data Mining (ICDM), 2013 IEEE 13th International
Conference on. IEEE, 2013, pp. 301–309.

[29] J. Arndt, Generating Random Permutations. Australian National
University, 2010.

[30] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on property-
preserving encrypted databases,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2015, pp. 644–655.

[31] H. Li, Y. Yang, T. H. Luan, X. Liang, L. Zhou, and X. S. Shen, “Enabling
fine-grained multi-keyword search supporting classified sub-dictionaries
over encrypted cloud data,” IEEE Transactions on Dependable and
Secure Computing, vol. 13, no. 3, pp. 312–325, 2016.

[32] J. J. Godfrey, E. C. Holliman, and J. McDaniel, “Switchboard: Telephone
speech corpus for research and development,” in Acoustics, Speech,
and Signal Processing, 1992. ICASSP-92., 1992 IEEE International
Conference on, vol. 1. IEEE, 1992, pp. 517–520.

[33] D. L. Olson and D. Delen, Advanced data mining techniques. Springer
Science & Business Media, 2008.

Shahzaib Tahir received his B.E. degree in software
engineering from Bahria University, Islamabad, Pak-
istan, in 2013. In 2015, he received his MS degree
in information security from National University
of Sciences and Technology (NUST), Islamabad,
Pakistan. He is currently pursuing Ph.D. degree
in information engineering at City, University of
London, UK.

From June, 2015 to present, he is Lecturer in the
Department of Information Security, NUST, Islam-
abad, Pakistan and has been awarded a scholarship

by NUST and City, University of London for pursuing his Ph.D. at City,
University of London. His research interest include applied cryptography and
cloud security. Shahzaib is a Student Member of IEEE.

Sushmita Ruj received her B.E. degree in com-
puter science from Bengal Engineering and Science
University, Shibpur, India and Masters and Ph.D. in
computer science from Indian Statistical Institute.
She was an Erasmus Mundus Post-Doctoral Fel-
low at Lund University, Sweden and Post-Doctoral
Fellow at University of Ottawa, Canada. She is
currently an Assistant Professor at Indian Statistical
Institute, Indore, India. Prior to this, she was an
Assistant Professor at IIT, Indore. She was a visiting
researcher at INRIA, France, University of Wollon-

gong, Australia, Kyushu University, Japan. KDDI labs, Japan and Microsoft
Research Labs, India. Her research interests are in applied cryptography,
security, combinatorics and complex network analysis. She works actively
in mobile ad hoc networks, vehicular networks, cloud security, security in
smart grids. She has served as program co-chair of IEEE ICCC (P&S Track),
IEEE ICDCS, IEEE ICC, etc and served on many TPCs. She won best papers
awards at ISPA’07 and IEEE PIMRC’11. She is a Senior Member of IEEE.

Ali Sajjad is a Senior Security Researcher in British
Telecom UK, where he contributes to internal re-
search and innovation programmes and international
research collaboration activities in the areas of Se-
cure Cloud Storage, Cyber Security and Cloud-
based Managed Security Services. He has over 10
years’ academic and industrial experience in Data
and Network Security. He holds a Ph.D. in Informa-
tion Engineering from City University London, UK
and Masters degree in Computer Engineering from
Kyung Hee University, Seoul, South Korea.

Muttukrishnan Rajarajan is Professor of Security
Engineering at the City, University of London, UK.
He obtained his Ph.D. from City University London
in 2001. His research expertise are in the areas
of mobile security, intrusion detection and privacy
techniques. He has chaired several international con-
ferences in the area of information security and
involved in the editorial boards of several security
and network journals. He is also a visiting fellow
at the British Telecommunications (BT) UK and is
currently actively engaged in the UK Governments

Identity Assurance programme (Verify UK). He is a Senior Member of IEEE,
Member of ACM and Advisory board member of the Institute of Information
Security Professionals UK.

