
              

City, University of London Institutional Repository

Citation: Tahir, S. (2018). Privacy preserving search in large encrypted databases. 

(Unpublished Doctoral thesis, City, University of London) 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/21592/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Privacy Preserving Search in Large

Encrypted Databases

Shahzaib Tahir

This dissertation is submitted for the degree of

Doctor of Philosophy

School of Mathematics, Computer Science and Engineering

City, University of London

November 2018



Dedicated to Papa and Mama



Declaration

I hereby declare that except where specific reference is made to the work of others,

the contents of this dissertation are original and have not been submitted in whole or

in part for consideration for any other degree or qualification in this, or any other

university. This dissertation is my own work and contains nothing which is the

outcome of work done in collaboration with others, except as specified in the text

and Acknowledgements.

Shahzaib Tahir

November 2018



Acknowledgements

First and foremost, I would like to thank Allah Almighty for giving me the strength

to carry out this research.

My deepest gratitude to my supervisor Prof. Muttukrishnan Rajarajan for his

continuous guidance and support during my Ph.D. study. I cannot imagine having

a better supervisor and mentor than him. I am also thankful to my co-supervisor

Nikos Komninos. A heartfelt thank you to my collaborators Sushmita Ruj and

Yogachandran Rahulamathavan for their valuable feedback and thought provoking

questions.

I am grateful to City, University of London, UK and National University of

Sciences and Technology (NUST), Islamabad, Pakistan for sponsoring my Ph.D. and

making it possible for me to study here. I would like to thank Baber Aslam from

NUST for his continuous encouragement during my Ph.D.

I would like to thank Ali Sajjad from British Telecommunications for providing

support and guidance with the deployment of this work on the BT Cloud offering. I

would also like to thank Cornelius Glackin from Intelligent Voice for providing the

datasets that have been used in the development and testing of this work. Completion

of this Ph.D. would not have been possible without their help. I also thank my fellow

lab mates Waqar Asif, Prof. Bruno Bogaz Zarpelão and Anna Hajduk for being

sincere colleagues.

I am thankful to the IT and the administrative staff at City, University of London,

especially Ms. Paula Green for looking after the needs of the Ph.D. students inside the



v

lab. I am also thankful to the staff at the Finance Directorate and the HR Directorate

at NUST for the timely provision of the scholarship every month during my Ph.D.

I am also thankful to InnovateUK and all the people involved within the Cyber

Security Academic Startups Programme for providing the funding and giving me the

opportunity to network with people from the world’s leading institutes, organizations

and companies.

I am thankful to all the reviewers who had reviewed my publications and gave

their valuable feedback. Their comments helped to significantly improve the quality

of my research.

On a personal note, I must also extend my respect to my parents, who supported

me emotionally and have been a source of guidance throughout my life. I cannot

imagine a life without their love and blessings. I am also thankful to my sister and

brother for their guidance, encouragement and prayers. I consider myself the luckiest

person in this world to have such a caring, loving and supportive family. I thank you

all for showing faith in me. Finally, I must mention my nephew: Zaim and nieces:

Eesha and Anabia who’s smiles have been a source of joy for me even when I was

stressed.



List of Publications

Journals

[J1] S. Tahir, S. Ruj, Y. Rahulamathavan, M. Rajarajan, C. Glackin, “A New

Secure and Lightweight Searchable Encryption Scheme over Encrypted Cloud

Data”, IEEE Transactions on Emerging Topics in Computing, 2017. (Impact

Factor: 3.826)

[J2] S. Tahir, L. Steponkus, S. Ruj, M. Rajarajan, A. Sajjad, “A Parallelized Dis-

junctive Query based Searchable Encryption Scheme for Big Data”, Elsevier

Future Generation Computer Systems, 2018. (Impact Factor: 3.997)

[J3] S. Tahir, S. Ruj, A. Sajjad, M. Rajarajan, “Fuzzy Keywords enabled Ranked

Searchable Encryption Scheme for a Public Cloud Environment”, Elsevier

Computer Communications, 2018. (Impact Factor: 2.613)

[J4] S. Tahir, H. Tahir, A. Sajjad, R. Tahir, M. Rajarajan, “Privacy-Preserving

Healthcare Framework using Permissioned Blockchain”, Elsevier Journal of

Biomedical Informatics, Under Revision. (Impact Factor: 2.882)



vii

Conferences

[C1] S. Tahir, M. Rajarajan, A. Sajjad, “A ranked searchable encryption scheme

for encrypted data hosted on the Public Cloud”, The 31st IEEE International

Conference on Information Networking (ICOIN), Vietnam, 2017.

[C2] S. Tahir, S. Ruj, M. Rajarajan, “An Efficient Disjunctive Query Enabled

Ranked Searchable Encryption Scheme”, The 16th IEEE International Con-

ference On Trust, Security And Privacy In Computing And Communications

(IEEE TrustCom), Australia, 2017.

[C3] C. Glackin, G. Chollet, N. Dugan, N. Cannings, J. Wall, S. Tahir, I. Ray,

M. Rajarajan, “Privacy preserving encrypted phonetic search of speech data”,

The 42nd IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), USA, 2017.

[C4] S. Tahir, M. Rajarajan, “Privacy-Preserving Searchable Encryption Frame-

work for Permissioned Blockchain Networks”, The IEEE International Con-

ference on Blockchain (Blockchain-2018), Canada, 2018.

[C5] W. Asif, I. Ray, S. Tahir, M. Rajarajan, “Privacy-preserving Anonymization

with Restricted Search (PARS) on Social Network Data for Criminal Investi-

gations”, 19th IEEE/ACIS International Conference on Software Engineering,

Artificial Intelligence, Networking and Parallel/Distributed Computing, Korea,

2018.



List of Successful Grants

[G1] Innovate UK: Cyber security academic startups programme Year2-Phase 1

(16,000£)

[G2] Innovate UK: Cyber security academic startups programme Year2-Phase 2

(22,000£)

[G3] Innovate UK: Cyber security academic startups programme Year2-Phase 3

(100,000£)

[G4] City, University of London: Proof of Concept (PoC) Fund - Enterprise Show-

case (25,000£)



Abstract

The Cloud is an environment designed for the provision of on-demand resource

sharing and data access to remotely located clients and devices. Once data is

outsourced to the Cloud, clients tend to lose control of their data thus becoming

susceptible to data theft. To mitigate/ reduce the chances of data theft, Cloud service

providers employ methods like encrypting data prior to outsourcing it to the Cloud.

Although this increases security, it also gives rise to the challenge of searching and

sifting through the large amounts of encrypted documents present in the Cloud.

This thesis proposes a comprehensive framework that provides Searchable

Encryption-as-a-Service (SEaaS) by enabling clients to search for keyword(s) over

the encrypted data stored in the Cloud. Searchable Encryption (SE) is a methodology

based on recognized cryptographic primitives to enable a client to search over the

encrypted Cloud data. This research makes five major contributions to the field of

Searchable Encryption:

The first contribution is that the thesis proposes novel index-based SE schemes

that increase the query effectiveness while being lightweight. To increase query

effectiveness this thesis presents schemes that facilitate single-keyword, parallelized

disjunctive-keyword (multi-keyword) and fuzzy-keyword searches.

The second contribution of this research is the incorporation of probabilistic

trapdoors in all the proposed schemes. Probabilistic trapdoors enable the client to

hide the search pattern even when the same keyword is searched repeatedly. Hence,
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this quality allows the client to resist distinguishability attacks and prevents attackers

from inferring the search pattern.

The third contribution is the enumeration of a “Privacy-preserving” SE scheme

by presenting new definitions for SE; i.e., keyword-trapdoor indistinguishability and

trapdoor index indistinguishability. The existing security definitions proposed for

SE did not take into account the incorporation of probabilistic trapdoors hence they

were not readily applicable to our proposed schemes; hence new definitions have

been studied.

The fourth contribution is the validation that the proposed index-based SE

schemes are efficient and can be deployed on to the real-world Cloud offering.

The proposed schemes have been implemented and proof-of-concept prototypes have

been deployed onto the British Telecommunication’s Cloud Server (BTCS). Once

deployed onto the BTCS the proof-of-concept prototypes have been tested over a

large real-world speech corpus.

The fifth contribution of the thesis is the study of a novel homomorphic SE

scheme based on probabilistic trapdoors for the provision of higher level of security

and privacy. The proposed scheme is constructed on a Partially Homomorphic En-

cryption Scheme that is lightweight when compared to existing Fully Homomorphic-

based SE schemes. The scheme also provides non-repudiation of the transmitted

trapdoor while eliminating the need for a centralized data structure, thereby facilitat-

ing scalability across Cross-Cloud platforms.
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Chapter 1

Introduction

Over the past decade, cloud has emerged as a large scale “Storage-as-a-Service”

[156][71][112] platform that provides on-demand resource sharing and data access

to fulfill the needs of its users. The cloud storage adds business value to the existing

small scale enterprises through the enormous benefits it has to offer; including acces-

sibility, reduced costs, disaster recovery, scalability, speed and storage immortality.

Generally, small scale enterprises have limited resources and limited expertise which

drives them to rely on the cloud for their operations, and benefit from the advantages

the cloud offers. However, the cloud also poses certain challenges to the small scale

enterprises and their clients in terms of data theft and data misuse. These concerns

prevent clients from fully trusting the cloud and storing their sensitive data into

it, leaving many industries disadvantaged; such as, the healthcare sector, financial

sector, and the Internet of Things (IoT).

Searchable Encryption (SE) is a technology that allows enterprises and individu-

als to store encrypted data into the cloud while allowing them to search over it. SE

gives clients full control over their data stored into the cloud. This ever growing

usage of the cloud and the rapid growth in file sharing over the cloud has created a

necessity for efforts towards designing SE schemes. A recent survey [1] estimates

the unique monthly visitors to the top 6 most popular file sharing websites during
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July, 2017. From the Figure 1.1, one may anticipate the amount of data that the

clients are outsourcing to the cloud. It is indeed surprising to see that DropBox alone

has experienced 35 million clients accessing its cloud servers. SE is imperative for

the security and privacy of the clients, so that the data storage and any transactions

(search queries) thereafter may be carried out in a secure manner.

Fig. 1.1 File sharing website usage.

1.1 Research Motivation

According to Forrester, the global public cloud market will be $178B in 2018, up

from $146B in 2017, and will continue to grow at a 22% compound annual growth

rate (CAGR) [44]. Despite the increased interest and demand, 75% of enterprises

have highlighted security concerns related to cloud computing. In addition, 60%

of enterprises have highlighted data protection concerns [2]. Furthermore, since

2017, 2.6 billion data records have been compromised worldwide which means every

second, 82 data records are stolen [3]. These concerns prevent people from benefiting

from the resource sharing the cloud offers and keeps them from outsourcing their

private and confidential data to the cloud.
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Even though the sharing of resources has many advantages, several confidentiality

and privacy concerns prevail. Therefore, the clients may be interested to encrypt

the documents prior to outsourcing them to the cloud. Although encryption seems

to be a very straightforward solution, the conventional encrypt-then-outsource data

model cannot be applied directly, because to search for a keyword within a document

conventionally, the client has to download and decrypt all the documents that are

outsourced to the cloud and then search for the relevant one. That is certainly

not a feasible solution for huge datasets. To address this problem, a SE scheme

is required that allows the cloud to search over the encrypted data on the client’s

behalf. A trapdoor is a search token that is generated to search for keyword(s) over

the encrypted data. Only an authorized individual (in possession of the correct

credentials) should be able to generate meaningful and correct trapdoors. A SE

scheme provides data confidentiality and preserves the privacy of the client and his

trapdoors respectively.

1.1.1 Challenges in Searchable Encryption

There are three main challenges associated with SE as discussed in [22] (a) security

and privacy (b) efficiency and (c) query effectiveness. Security and privacy is given

utmost importance and is aimed at limiting the amount of information that an adver-

sary or a cloud server (CS) can learn from the encrypted documents stored in the

cloud or by implementing the SE scheme itself. The enhancement of security and

privacy may be termed as a primary objective of the designed SE schemes. However,

efficiency and query effectiveness are not of primary consideration. Query effec-

tiveness is the degree to which a user can search for complex queries, for example,

a multi-keyword query can be termed more expressive as compared to a single-

keyword query. Similarly, a ranked SE scheme is more expressive and effective as

compared to an unranked SE scheme. The efficiency of a SE scheme is directly de-
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pendent upon the underlying design primitives of the scheme and the types of queries

that are allowed (discussed in the Section 2.2). For example, there are primarily two

main approaches for performing SE, i.e., by using a specialized encryption scheme

such as homomorphic SE [113][60][13][59] that allows to search directly over the

encrypted documents or design an index-based SE scheme [46][132][130][144] that

maps the encrypted documents to a secure index.

In [110], a comparison of fully homomorphic SE schemes and index-based SE

schemes has been conducted, and it is evident that homomorphic encryption is ineffi-

cient therefore homomorphic based SE is not preferred for practical purposes. Con-

sidering the index-based constructions, until now, several schemes [47][147][46][78]

have been designed and proposed that are unable to maintain a balance between the

aforementioned challenges i.e., security and privacy, efficiency and query effective-

ness. For that reason, they cannot be deployed onto the existing cloud infrastructure.

Hence, while designing SE schemes (whether HE-based or index-based), a balance

between the level of security and privacy, efficiency, and query effectiveness needs

to be maintained.

1.1.2 Security Aims

As mentioned in the previous section, security and privacy are the primary objectives

that are to be achieved through this research. It is important to list the security goals

and design a scheme accordingly. Security and privacy work in harmony so defining

the security goals will lead to highlighting the associated privacy concerns. The

previous discussion leads to the following security goals:

• Authorized Search: only an authorized individual (in possession of the correct

credentials) should be able to generate meaningful and correct trapdoors.
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• Data Confidentiality: the data outsourced to the cloud server should be stored

in the encrypted format and the data stored in the index table should also be

secure.

1.1.3 Privacy Concerns in Searchable Encryption

To throw light on the privacy concerns, we consider two threat models which are

widely used in the existing schemes [146][28][82]:

• Known Cipher-text Model: the CS is only given access to the data that the

client outsources, such as, encrypted set of documents, secure index table, and

trapdoors. The CS is also allowed to maintain a history of the trapdoors and

the search outcome.

• Known Background Model: apart from the information that the CS has in the

known cipher-text model, the CS also has some additional information about

the datasets. The CS also knows the nature of the documents and the frequency

of the encrypted keywords with which they appear within a document.

The privacy of the document’s content is achieved by encrypting the documents

before outsourcing them to the CS. Therefore, the concern here is to study privacy

violations caused as a result of implementing an SE scheme. Hence, the above

mentioned threat models lead to the following privacy related concerns:

• Keyword Privacy: apart from the outcome of the search, the CS should not

deduce any keyword related information from the secure index and trapdoors.

This requires the SE scheme to be designed in such a way that the leakage

profile may not indicate leakage of any meaningful information.

• Trapdoor Unlinkability: the CS should not be able to link the trapdoor to

the previous queries or index table ‘prior’ to the search. This requires a
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probabilistic trapdoor that results in the generation of a different trapdoor for

the same set of keywords searched again.

1.1.4 Applications of Searchable Encryption

SE has both generic and specific applications on the cloud. SE can be applied to

many domains like healthcare where searching can be performed over encrypted

medical records [14]. In [165] authors have explored the use of SE in performing

secure search over the genomic signatures placed on the public CS. SE has also been

considered in IoT for accomplishing encrypted queries. Extending this concept, in

[88], the authors explore the use of SE in performing search while preserving the

privacy of connected cars. In [19], SE has been carried out over the email servers

to secure the emails from being disclosed to unauthorized individuals. Apart from

these domains SE could have a profound impact on e-commerce to hide confidential

transactions, business intelligence and data science.

1.2 Thesis Statement

The cloud is being used for storing large amounts of data seeking on-demand avail-

ability and remote access. Commonly the data stored on the cloud is unencrypted,

moreover once an individual outsources the data into the cloud he/she loses control

of the data. Thereafter, the data may be used without prior permission. This makes

individuals prone to privacy breaches, resulting in lack of trust in the cloud. Applying

encryption prior to outsourcing the data to the cloud can help achieve confidentiality

of the data, but this comes with an overhead of downloading all the documents and

decrypting them every time an individual wants to search for a keyword(s).

SE allows to perform search over the encrypted documents. Conventional SE

schemes [78][47][151] are based on deterministic trapdoors (search query), i.e., for
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the same keyword searched again the same trapdoor is generated. Therefore, the

server is able to learn the search pattern. From this the behaviors of an individual or

a group of people can be inferred and could lead to passive attacks (passive attacks

are discussed in the Section 3.1.4). This gives rise to the need of SE schemes that are

based on probabilistic trapdoors, i.e., for the same keywords searched repeatedly a

unique trapdoor should be generated every time. In this way the trapdoor is unlinkable

and it prevents distinguishability attacks. This also preserves the privacy of the user

by preventing the CS from learning the underlying keyword being searched.

This research presents a comprehensive framework that provides Searchable

Encryption-as-a-Service (SEaaS) [135] to the individuals outsourcing their private

data into the cloud. The aim of this research is to build the client’s trust onto the cloud

so that the clients may confidently outsource their confidential data into the cloud.

The benefits are two-fold; firstly, by presenting index-based SE schemes that enhance

the query effectiveness while trying to attain high levels of security and privacy, and

efficiency. Secondly, by proposing a homomorphic-based searchable encrpytion

scheme to achieve greater levels of security and privacy while allowing scalability

across cross-cloud/nested cloud platforms [15][66]. This research incorporates

probabilistic trapdoors in the proposed SE schemes to enhance the privacy-preserving

property to prevent deterministic attacks. This research discusses the limitations of

the existing security definitions and the existing literature. Following this discussion

new security definitions for SE are proposed that highlight the “privacy preserving”

property of the SE schemes. The security of the framework is analyzed in coherence

with the new security definitions. This research studies the feasibility of the presented

framework over a real-world cloud platform and real dataset of encrypted documents.
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1.3 Thesis Contributions

This thesis explores a set of domains related to the field of SE. This research provides

a privacy-preserving SE framework which can be adapted by an existing cloud

service Provider (CSP). Conventional SE schemes (discussed in the Chapter 2) have

an inherent weakness that they leak the search patterns and the access patterns. The

disclosure of the search patterns leads to reduced privacy and successful launch of

distinguishability attacks as the adversary may carry out passive attacks. To deal with

these inherent problems this thesis makes five contributions to the field of SE. The

contributions are aimed towards enhancing the privacy-preserving property offered

by a SE framework while enhancing the query effectiveness. The research presented

in this thesis has been published in [132], [130], [135], [133], [134], [8], [61] and

[129]. The following original contributions are made in this thesis:

i. Index-based SE schemes that enhance the query effectiveness:

This thesis presents novel index-based SE schemes to enhance the query effectiveness.

These schemes primarily facilitate single-keyword, parallelized disjunctive-keyword

and fuzzy keyword searching. The increase in query effectiveness effects the security

and privacy, and efficiency. Hence, this research aims to propose schemes that main-

tain a balance between the query effectiveness, security and privacy and efficiency

by presenting lightweight schemes as compared to the state-of-the-art.

ii. Probabilistic trapdoors for enhancing the privacy of the proposed schemes:

The second, yet most important contribution of this thesis is the provision of proba-

bilistic trapdoors. Therefore, all the schemes are based on probabilistic trapdoors that

prevent successful distinguishability attacks. This research shows that the proposed

schemes can resist network attacks in which a system may be scanned or observed.
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iii. New security definitions “keyword-trapdoor indistinguishability” and “trap-

door-index indistinguishability” for SE:

The third contribution of this thesis is establishing the relationship between privacy-

preservation and probabilistic trapdoors. Conventional SE schemes are based on

deterministic trapdoors, therefore, the existing security definitions do not take the

benefits of having probabilistic trapdoors into consideration. To appreciate this, new

security definitions are proposed that focus entirely on indistinguishability. The

definitions include keyword-trapdoor indistinguishability and trapdoor-index indis-

tinguishability that lay down the foundation towards proving the privacy-preserving

property of the proposed schemes.

iv. Development of proof of concept prototypes, deploying on a public cloud

and testing over a real-world dataset:

The fourth paramount contribution is the design and development of the proof-of-

concept prototypes. This research justifies the feasibility of the proposed index-based

schemes by deploying them to the British Telecommunication’s public cloud offering.

The proposed schemes are deployed on the British Telecommunications cloud server

(BTCS) and tested over a real-world corpus of encrypted documents.

v. A novel privacy-preserving Homomorphic-based SE scheme scalable across

cross-cloud platforms:

The fifth contribution of this research is to present a privacy-preserving homomorphic

based SE scheme. This eliminates the need of a pre-processed index-table and

supports scalability and dispersion of the data across cross-cloud platforms. The

database can also be dynamic in this scheme. The scheme utilizes the partial

homomorphic property of RSA to perform the search directly over the encrypted

documents. The scheme is based on probabilistic trapdoors and provides non-
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repudiation related to the trapdoors. To demonstrate the effectiveness of the proposed

scheme, the proof-of-concept prototype is developed and tested over encrypted

documents. Thus the homomorphic-based SE scheme can be used in scenarios where

the security is critical as compared to efficiency.

1.4 Thesis Structure

In summary, this thesis presents individual SE schemes that collectively form a SE

framework. The thesis breakdown is as follows:

• Chapter 2: Literature Review discusses the existing literature on SE. The

chapter begins by discussing the design primitives. The existing security defi-

nitions and their limitations are analyzed. Then the existing single-keyword,

multi-keyword, fuzzy keyword and homomorphic SE schemes are discussed.

The literature review discusses the pros and cons of the existing schemes.

• Chapter 3: Ranked Single Keyword Searchable Encryption Scheme in-

troduces a novel ranked single keyword SE scheme. The proposed scheme

is based on probabilistic trapdoors and resists distinguishability attacks. To

highlight the advantage of probabilistic trapdoors, the chapter proposes new

security definitions; keyword-trapdoor indistinguishability and trapdoor-index

indistinguishability. The algorithmic analysis is presented to discuss the feasi-

bility of the scheme. This also includes asymptotic analysis of the proposed

scheme against a few schemes presented in the literature review. The proof-of-

concept prototype is implemented and deployed on the British Telecommuni-

cations cloud offering and tested over a real-world dataset.

• Chapter 4: Parallelized Disjunctive Query Searchable Encryption Scheme

extends the scheme presented in the chapter 3 to perform disjunctive keyword
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search. The proposed security definitions are extended to apply onto the pro-

posed scheme and the formal security proofs are presented. To benefit from

multi-core processors, the scheme is deployed onto the BT cloud offering and

parallel searching is performed. This performance analysis is accompanied

with the algorithmic analysis and storage overhead analysis.

• Chapter 5: Fuzzy Ranked Searchable Encryption Scheme is geared to-

wards presenting a scheme that takes human typographical errors or closely

related keywords into account. This chapter explores the concept of Shingling,

Min hashing, Jaccard Similarity and Euclidean Norm to achieve the search.

The scheme is tested over a real-world encrypted corpus and deployed onto

the BT cloud offering. The correctness of the scheme is also discussed. The

chapter includes a comprehensive security and performance analysis to discuss

its feasibility in real-world applications.

• Chapter 6: Homomorphic-based Searchable Encryption Scheme presents

a scheme that explores the partial homomorphic property of RSA. The scheme

for the first time introduces probabilistic trapdoors to the standard RSA, hence

preventing from distinguishability attacks. The discussion includes the se-

curity definitions, formal security proofs and performance analysis. The

proof-of-concept prototype is tested over a real-world speech corpus and the

computational complexity is analyzed.

• Chapter 7: Conclusions and Future Directions concludes the thesis by

discussing the directions that can be explored in the future research.



Chapter 2

Literature Review

SE refers to a methodology that enables clients to perform search over the encrypted

data stored in the cloud while preserving the privacy. Privacy preservation is a

characteristic that reduces the amount of data leaked to an adversary or a CS when

the SE scheme is in effect. The previous chapter gave an overview of the proposed

SE framework by discussing the security and privacy concerns related to the cloud

storage. The chapter presented two different threat models; known cipher-text model

and the known background model. The common privacy goals that became apparent

from both the threat models included: keyword privacy and trapdoor unlinkability.

The design of a SE framework is influenced by the domain usability, the under-

lying use case and the associated cloud infrastructure. Hence, there are a number

of design primitives that need to be discussed prior to designing a SE scheme. This

chapter gives a detailed overview of the significant and pioneering existing works

in the field of SE. As evident from the previous chapter, trapdoor unlinkability and

keyword privacy are essential, due to this reason the existing security definitions are

not applicable. This chapter also discusses the existing security definitions for SE

and their limitations. This chapter provides a foundation for the remaining chapters

and this discussion is directed towards designing a framework that would meet the

security and privacy goals highlighted in the previous chapter. Before studying the
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existing literature and discussing the pros and cons of the existing schemes, it is

important to understand the design primitives.

2.1 Triangle of Searchable Encryption

Over the past decade extensive research has been done on designing novel SE

schemes. Our analysis shows that the feasibility of the existing schemes is judged on

three perimeters [22]; i.e., security and privacy, efficiency and query effectiveness.

Security and privacy refer to measure the amount of information that the encrypted

documents, trapdoors or index tables leak to the cloud server or adversary. The

security and privacy are analyzed against a set of security models and definitions.

As per the security definitions presented in Chapter 3, a SE scheme is secure and

privacy preserving if it is based on probabilistic trapdoors. Probabilistic trapdoors

help to mitigate the risk of search pattern leakage. A limitation of the existing SE

schemes is highlighted in [78];

“A limitation of all known SSE constructions is that the tokens they generate are

deterministic, in the sense that the same token will always be generated for the same

keyword. This means that searches leak statistical information about the user’s

search pattern. Currently, it is not known how to design efficient SSE schemes with

probabilistic trapdoors."

Efficiency is measured by performing the computational and algorithmic com-

plexity analysis of the SE schemes. Query Effectiveness refers to the usability of the

system and the types of queries that can be performed over the encrypted documents.

Considering these perimeters as vertices of a triangle an ideal SE scheme should

be able to preserve the equilateral property (all sides and angles are equal) of the

triangle shown in the figure 2.1, which is very difficult to achieve. It should be real-

ized that enhancing the query effectiveness may reduce the security and efficiency.
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For example, index-based SE schemes can achieve ranked searching at the cost of

leakage of statistics. Similarly, it is also possible that increased levels of security

and privacy may decrease the efficiency or query effectiveness of the system. For

example, homomorphic-based SE schemes enhance the security and privacy at the

cost of increased computations and reduced efficiency. Therefore, these perimeters

are directly related and dependent upon the design primitives presented in the next

section and the selection of these primitives influence the security and privacy, ef-

ficiency and query effectiveness. This aspect is highlighted in more detail in the

Section 2.4 while analyzing the existing schemes.

Fig. 2.1 Triangle of Searchable Encryption

2.2 Design Primitives

A SE framework is highly influenced by the domain usability [10] and the underlying

cloud architecture. Domain usability refers to the area/domain where the scheme is to

be deployed. For example, in the healthcare domain there may be many stakeholders

involved that leads to the requirement of asymmetric keys. Similarly, there are

certain requirements that arise by relying on a particular cloud server such as the
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use of an application encryption server (AE). Therefore, the following variations are

studied by relating them to the underlying architecture and the associated challenges

are identified. This discussion will lead us to formally outline our system model for

the individual proposed schemes.

2.2.1 Symmetric versus Asymmetric Primitives

These primitives are related to the security parameters of the system and are depen-

dent upon the underlying use case where the scheme is aimed to be deployed. These

primitives identify whether the cryptosystem will be using a single key or multiple

keys. A writer is a person who is the author/owner of the encrypted documents stored

in the cloud, whereas, a reader is a client who is searching for the keywords over

those documents. It is worth mentioning that a writer can also be a reader. Therefore,

if the SE scheme is single writer/single reader (S/S) [123][64] then by using the

symmetric primitives such as AES [90] based on a master key, the client can generate

trapdoors and search over the cipher texts respectively. If the architecture is multi-

writer/single-reader (M/S) [19][138], single-writer/multi-reader (S/M) [159][47] or

multi-writer/multi-reader (M/M) [12][73] then asymmetric primitives are used. This

may require a collection of multiple keys generated through public key encryption

(PKE) [27][81] schemes because multiple users are taking part in the search and

several keys are to be used and kept secure. This also requires a mechanism to

generate, store, distribute and revoke the keys across the network. Hence, the key

management is the responsibility of a key distribution manager (KDM) [124] or an

application encryption(AE) Server [118] may be required.

2.2.2 Forward Index versus Inverted Index

The purpose of using an index is to speed up the search process and make the scheme

efficient. As shown in Figure 2.2(a), a Forward index [79] also called a bloom
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filter [139][17], forms a searchable index of keywords against each document. Until

2006 the schemes developed were based on the use of the forward index. In 2006,

Curtmola et al. [46] introduced a new concept based on the use of an inverted index

that formed an index of documents corresponding to the keywords for developing

the SE schemes [33]. Figure 2.2(b) represents an inverted index table where RF are

the “relevance frequencies”. The selection of index table is totally dependent on the

underlying scheme but it is observed that searchable inverted index provides efficient

searching as compared to the forward index [22] because the forward index requires

a data structure corresponding to every document, whereas an inverted index is

formed collectively while considering individual keywords. Therefore, the searching

is more efficient while using an inverted index, however the forward index provides

scalability.

Fig. 2.2 Forward Index versus Inverted Index
Note: W1, · · · ,Wm represent the keywords, id(D1), · · · , id(Dn) represent the

document identifiers and RF represent the relevance frequencies.

2.2.3 Single Query versus Multiple Query

Single 1uery is referred to single keyword search [123][33][32][130], whereas,

multiple queries refers to schemes that allow multiple-keyword searching [56][30]

and complex queries such as fuzzy searching [142][83][49] or string searching

[38][34][113]. Therefore, the query effectiveness or expressiveness is based on the
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type of query a client can perform. From the previously developed schemes it is

noted that an increase in the query expressiveness affects the privacy and efficiency

of the scheme. Hence the choice between the single query and multiple queries is to

be made while maintaining a balance between the challenges already highlighted in

the Section 2.1.

2.2.4 Ranked Searching versus Non-Ranked Searching

Ranked searching [164][72][167][130][132][51] facilitates the search by identifying

the frequency of occurrence of a keyword within a set of documents and giving the

user the liberty to select the most relevant documents from a collection. Whereas,

non-ranked searching [157][153][58] returns all the documents to the user containing

particular keyword(s). Ranked searching is mainly used for single keyword search

because the server may find several files satisfying the query, whereas in complex

queries, the server might be able to identify a few files meeting the search query. It

is also observed that ranked searching is more resource consuming as compared to

unranked searching [132]. Ranking is discussed in more detail in the Chapter 3.

2.2.5 Index-based SE versus Homomorphic-based SE

Index-based SE (forward index or inverted index) requires the preprocessing of

the data to populate a data structure and generate an index table to carry out the

searches in the future. On the contrary, a homomorphic-based SE scheme does

not require a centralized data structure and eliminates the need of preprocessing

of the data. A comparison of homomorphic and index-based SE schemes is pre-

sented in [110]. There are three types of homomorphic encryption schemes that

depend upon the number of operations allowed on the encrypted text: (1) Partially

Homomorphic Encryption (PHE) [94][119][48] allows one operation to be carried

out unlimited number of times, (2) Somewhat Homomorphic Encryption (SWHE)
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[13][59][158] allows a few operations to be carried out limited number of times, (3)

Fully Homomorphic Encryption (FHE) [60][140][24] allows unlimited operations to

be carried out unlimited number of times. Therefore, the computation complexity of

homomorphic encryption schemes depend upon the mathematical operations that the

scheme supports [4].

2.3 Existing Security Definitions

The problem of searching over encrypted data has received attention for more than

a decade now. Back in 2000, Song et al. in [123] were the first to come up with a

practical way of searching symmetrically over encrypted data. Till then there was

no formal definition regarding security for SE. Since 2000 several definitions and

constructions related to SE have been presented. In 2003, Goh [64] for the first time

came up with the security definitions of SE called Semantic Security Against Adap-

tive Chosen Keyword Attack (IND-CKA). In the same paper, the author proposed

a SE scheme that satisfied the proposed definition. There were some assumptions

related to the definitions, i.e., the number of keywords (size of the documents) within

the document should be same in order to achieve indistinguishability and if the index

is indistinguishable, the trapdoors need not to be kept secure. Since their definitions

were focused towards secure indices and not probabilistic trapdoors, their definitions

could not be generalized.

In [32], authors came up with an extension of IND-CKA that aimed to counter the

assumption of same sized documents. They supported their definition by presenting

a secure index construction called z-index which was based on bloom filters. As

highlighted in [46], the definition was not secure and would be fulfilled by any

insecure SE scheme. Later Goh [64] introduced extended definitions IND1/2-CKA

and now the documents did not need to be of the same size, and the trapdoor was

again not kept secure. Curtmola et al. in [46][47] claimed that all the previous
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definitions did not provide adequate security and proposed two new definitions

Adaptive/Non-Adaptive Indistinguishability Security for SSE. Both of the newly

proposed definitions have their weaknesses and don’t provide an adequate level of

indistinguishability. We discuss the limitation of their slightly stronger definition,

i.e., Adaptive Indistinguishability below.

2.3.1 Limitations of Previous Definitions

As mentioned earlier, Curtmola’s definitions are widely accepted and used. They

introduce four terms in [47][77] incurred as a result of a search query i.e., History,

Access Pattern, Search Pattern and Trace. The history defines a tuple containing

the document collection and the keywords. Access patterns represents the outcome,

i.e., the documents that contain a particular keyword. The search pattern tells if the

same keyword is being searched every time. The trace of a history consists of the

exact information that we are willing to leak about a history after the search has

been performed. Their security definition is defined as nothing is leaked beyond

the access pattern and the search pattern while the trapdoor is deterministic. Their

definition of Indistinguishability refers to the indistinguishable index table generated

based on pseudo-random functions.

We remark that Curtmola’s work clearly provides the desired level of security

when the trapdoor is deterministic but their construction (SSE-2) lacks in maintain-

ing privacy associated to the trapdoor and hence it is prone to distinguishability

attacks. Their construction generates the same trapdoor (deterministic) every time

the same keyword is queried. As a result the search pattern reveals the trapdoors

that correspond to the same underlying keywords resulting in privacy concerns (cf.

Section 4.2 of [47]). The deterministic trapdoor reveals the corresponding history

tuple “prior” to the search. The drawbacks of having deterministic trapdoors are

discussed in Section 3.1.4.
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Hence, we term their definitions a primary “baseline” for any SE scheme but

improved definitions are required for enhancing the security and highlighting the

advantage of a probabilistic trapdoor under those improved definitions.

Therefore, based on the improved security definitions a secure construction is

required that primarily provides a secure index table and ensures trapdoor indistin-

guishability that results in increased security and privacy of the entire system.

Now, we can state the privacy concerns associated to the existing SE schemes

by extending the concerns highlighted in Section 1.1.3. So a SE scheme is privacy

preserving if it has the following attributes:

• The trapdoor should not reveal any information about the keyword (unen-

crypted) that is being queried and should maintain the privacy of search.

• The trapdoor should be probabilistic and should not disclose the corresponding

underlying encrypted keywords or document identifiers “prior” to the search.

• The outcome of the trapdoor should not uncover any information about the

encrypted document that is returned as a result of the query to the user.

The next section analyzes the security and privacy of the existing SE schemes by

relating them to the privacy concerns highlighted above and also discussed in the

Section 1.1.3.

2.4 Related Work

This section highlights the significant works already carried out in the field of

SE. This section takes a modular approach by dividing the schemes into different

categories based on the query effectiveness and discussing their pros and cons

thereafter.
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2.4.1 Single-keyword SE schemes

Wang et al. in [148][147] for the first time introduced the concept of ranked keyword

searching over encrypted data. The authors have proposed two schemes for single

keyword search over encrypted text. Their scheme is an extension of [46] (already

discussed in the previous section) and they have added secure ranking to it. Both

the schemes facilitate the server to perform ranked keyword searching on user’s

behalf. In both the schemes, the user will generate the same trapdoor while searching

for a particular file. Therefore, the schemes lack in providing resistance against

distinguishability attacks. There is an advantage of their later scheme as it provides

dynamic inverted index, i.e., whenever a new file is added to the server, the re-ranking

is not required but this comes at an increased computational cost. Furthermore, the

later scheme helps to keep the ranking score encrypted that will help to avoid leakage

of frequency of occurrence of a particular keyword to the server. However, in [84]

the authors have launched a successful differential attack on the aforementioned

scheme. The authors have demonstrated that the scheme still leaks the relevance

scores to the adversary from which the encrypted keywords can be inferred by using

the estimated distributions. Therefore, their scheme lacks in providing resistance

against distinguishability attacks and hence leaks information.

Kamara et al. in [78] have proposed a dynamic searchable symmetric encryption

scheme. Their work can be termed as an extension of their previous scheme that they

had proposed in [46]. Their scheme facilitates the addition, deletion or modification

of a document. The change is brought to the server at run time and comes with

minimal modification and recompilation of the inverted index. For the deletion of

the file they use an additional data structure that contains the pointers to the file

being deleted. For the modification they use homomorphic encryption to encrypt

the pointer so that based on the homomorphic encryption properties the server can

modify the file. Though this can be termed as a breakthrough in the field of SE, there
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is a drawback of this scheme, i.e., the generated trapdoor is deterministic and the

same trapdoor is generated for the same word every time, hence, it cannot resist

distinguishability attacks. Furthermore, they have also analyzed that their scheme

leaks even more information as compared to their previous construction [46], i.e.,

the CS is able to identify the exact frequency of the keywords and the their presence

within a document. As a result the adversary can launch more sophisticated attacks.

Therefore their construction cannot be termed as an ultimate solution.

Kamara and Papamanthou in [77] present a parallelizable and dynamic SE

scheme. Similar to an inverted index table, authors introduce keyword red-black

tree. The leaf nodes represent the document, whereas the internal nodes are the

vectors associated to a keyword. The vector helps identify the number of documents

containing the keyword. The tree traversal is highly parallelizable and supports

dynamic databases. The authors benefit from the multi-core processors to achieve

parallel processing. However, the authors say that;

“A more serious limitation of known SSE constructions (including ours) is that the

tokens they generate are deterministic, in the sense that the same token will always

be generated for the same keyword.”

Therefore, their scheme does not resist distinguishability attacks.

Wang et al. in [143] have proposed a range search scheme on encrypted spatial

data. Their scheme, i.e., Geometric Range Searchable Encryption (GRSE) supports

searchable symmetric encryption by mapping the datasets to a set of points lying

within a geometric shape. Their design is indeed remarkable as it is not dependent

upon a particular geometric shape and supports axis-parallel rectangles, circles, non-

axis-parallel rectangles and triangles. However, in this scheme all the data records

within a dataset will be returned as the result and the user may have to download

every file containing that particular keyword, hence, it will result in extra network

traffic. Furthermore, with the increase in the outsourced data, the size of the bloom
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filter is increased that will result in the slowing down of the searching. They have

also proposed an extension of their probabilistic GRSE by using trees to increase

the efficiency of searching. However, as we have mentioned earlier, this searching

comes with a trade-off of privacy as the tree may reveal the path pattern. So this

scheme does not provide the desired level of security and privacy and reveals too

much information.

Tang in [137] has proposed a multi-party searchable encryption (MPSE) scheme

that is an extension of [109] and based on symmetric primitives. In their scheme

they introduce a ‘Follow’ algorithm that allocates a token to the owner/writer to

be distributed among the readers (user) of the index table. This token authorizes

the reader to perform the search on the index table. This scheme facilitates the

dynamic users but does not allow dynamic databases. The authors assume that there

is a secure channel between the user and CS to transmit the trapdoors. The secure

channel hides the leakage of the trapdoor during transmission but since the trapdoor

is based on one-way hash function, the server itself can learn the search pattern and

the access pattern as the same trapdoor is generated for the same keyword searched

again. In other words the trapdoor is distinguishable. Their scheme uses forward

index, i.e., an index for each file due to which the ranking cannot be done.

In [114], authors introduce a secure searchable public-key encryption (PEKS)

scheme. The authors for the first time introduce the concept of “trapdoor indistin-

guishability” by designing probabilistic trapdoors. The scheme is based on bilinear

pairings to achieve the matching when the trapdoor is probabilistic. The probabilistic

trapdoors thwart keyword-guessing attacks but their construction cannot achieve

ranking as the authors are not forming an index table. This reduces the search time

and adds to the network latency.



2.4 Related Work 24

2.4.2 Multi-keyword SE schemes

In [20], authors introduce public-key systems that support conjunctive, subset and

range queries over encrypted data. Their proposed scheme uses bilinear maps and

may be termed better than the trivial constructions but it is prone to distinguishability

attacks as the trapdoors are probabilistic. Similarly, in [109], authors use bilinear

maps for performing search but their scheme also lacks in providing indistinguisha-

bility.

Moataz and Shikfa in [91] present a novel SE scheme that allows boolean queries

over the encrypted documents. The authors use the method of orthogonalization

of the keyword field according to the Gram-Schmidt process [39]. In the scheme,

a label is associated to every individual document that contains information about

the keywords that the document contain. Since there is no relationship between the

individual labels, ranked searching cannot be achieved that results in an increase in

the network latency, furthermore, slowing down the search process. However, this

does allow scalability by providing dynamic databases.

Wang et al. in [144] introduce the concept of probabilistic trapdoors over the

inverted index table. It is claimed that the scheme is efficient as compared to the

existing schemes as they are able to eliminate the need of pairing operations and use

multiplications and exponentiations instead. The proposed scheme uses the Pailier

homomorphic algorithm which is based on the quadratic residuosity problem [101]

to provide semantic security [120]. Where an encryption scheme is semantically

secure if no polynomially bound adversary can extract any partial information about

the plaintext from a given ciphertext [11]. The scheme is efficient as compared to

the pairing operations, however, the exponentiations still add to the computation

overhead and is more resource intensive as compared to the schemes presented in

this thesis.
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The concept of “coordinate matching” while performing multi-keyword search

is introduced in [28] by Cao et al.. The proposed scheme allows “as many matches

as possible” and enables ranked searching. To generate trapdoors they make use of

a vector similar to a bloom filter, where each entry of the bloom filter represents

the presence or absence of a keyword. It is also noted that the authors introduce

dummy keywords to the documents to hide the leakage associated to the index table.

It is observed that this helps to reduce the leakage but the dummy keywords also

reduce the accuracy of the results because the dummy keywords also add/increase

the rate of false positives. This also affects the accuracy associated with the ranking

functionality. The authors introduce two schemes to perform multi-keyword ranked

Searchable Encryption; MRSE_I and MRSE_II where the main difference between

MRSE_I and MRSE_II is that MRSE_II is more privacy preserving.

In [82], authors introduce a conjunctive query-enabled ranked SE scheme. Con-

junctive queries refer to the searching where the keywords to be searched are inter-

related, on the contrary, a disjunctive query is a search where the searched keywords

are independent and not inter-related. The authors aim to facilitate “conjunctive

keywords” but the search is performed similar to disjunctive keywords. The rele-

vance score generation formula is similar to [73]. The authors use inverted index

table for the blind storage. Similar to [28], the authors use a vector/bloom filter to

represent a trapdoor, where each element represents the presence or absence of a

keyword. They also introduce dummy integers to the vector to increase the privacy

of the trapdoor and reduce the leakage. However, the authors have not measured the

accuracy of the proposed scheme and the effect that the dummy keywords have on

the precision. In [125], authors propose a multi-keyword SE encryption scheme and

use homomorphic encryption for the index generation and the trapdoor generation.

Due to the inefficiency of homomorphic encryption the scheme cannot be deployed

onto a real world cloud offering. The authors have implemented their scheme using

multi-threading.
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2.4.3 Fuzzy-keyword SE schemes

In [83], authors for the first time introduce a privacy preserving construction that

enables fuzzy keyword searching. The proposed scheme takes the typographical

errors into account and performs fuzzy search. It requires to construct a fuzzy key-

word set and take all the possible erroneous keywords into consideration. Therefore,

for the keyword CASTLE the substitution operation on the first character of the

keyword produces the following set {AASTLE. BASTLE, DASTLE, · · ·, YASTLE,

ZASTLE}. This process is called ‘wildcard-based fuzzy set’ construction. This may

not be feasible for large datasets containing hundred thousand keywords because the

size of the index may grow exponentially. Since this task is performed by the data

owner having low memory and computational resources, it may lead to the entire

memory being consumed and wastage of resources. Shekokar et al. in [121] extend

the scheme presented in [83] and implement it to form a proof-of-concept prototype.

In [166], authors prove that the scheme presented in [83] is insecure and they prove

it through an adversarial model. The authors successfully demonstrate that the

adversary is able to distinguish between the search results. Few other constructions

based on the wildcard methodology include [150][149].

Wang et al. in [146] for the first time introduce the concept of utilizing Locality

Sensitive Hashing (LSH) into SE. Their scheme definitely brings a new perspective

to designing fuzzy SE schemes because a predefined dictionary spanning over the

entire possible set of keywords (correct and erroneous) as discussed in [83] was

not required. The authors present two schemes that are able to resist attacks in

the known ciphertext model and the known background model respectively. The

schemes require per-document bloom filter or vector to perform the fuzzy search

which is not feasible in real deployment as it may consume too much storage in the

cloud. Furthermore, due to the use of independent bloom filters, the ranking of the

documents cannot be achieved.
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Wang, Yu and Zhao in [76] present a novel dynamic ranked fuzzy SE scheme.

They also follow the wildcard-based approach for performing keyword search. The

authors have included a feedback pointer that helps to predict the future searches.

The authors claim that;

“Due to the system threat model regarded the cloud server ‘honest-but curious’,

feedback scheme may give rise to the leakage of user’s private retrieval information.

However, the scheme is suitable and applicable under the hybrid cloud

circumstances, which achieves the conduction of feedback operations in private

cloud, while public cloud accomplishes the rest cipher-text retrieval procedures”.

Although, the scheme may be applicable to their scenario, it contradicts the privacy-

guarantees that the existing SE schemes offer [146][78][83][132] and hence their

construction leaks too much information. Furthermore, the authors have not given

details of the trapdoor formation mechanism.

In [57] authors for the first time introduce uni-gram vectors for the fuzzy keyword

search. They claim to have improved the accuracy as compared to the scheme

proposed in [146]. They also propose a stemming algorithm that can query the

keywords with the same root, and the ranking of the results is based on it. Although

their scheme is novel and enhances the query effectiveness, the scheme does not

resist distinguishability attacks as the trapdoors are deterministic. Therefore, it

cannot be termed as the ultimate fuzzy SE scheme.

2.4.4 Homomorphic-based SE schemes

The first FHE scheme was presented in [60] and up until now many HE schemes

have been presented and analyzed [87][4][92][103] . However, fewer schemes have

been used for the purpose of SE due to the computational resources required.

Chase and Shen in [34][35] present a partially homomorphic-based SE scheme.

Their scheme enables substring-search over the PHE data. Their scheme uses suffix
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trees as a data structure to store the encrypted data. The authors claim that they are

able to achieve asymptotic efficiency which is comparable with the unencrypted

suffix trees. However, since the scheme uses a deterministic encryption algorithm,

the search pattern is leaked to the cloud [145]. Therefore, their scheme does not

resist distinguishability attacks. Chen et al. in [38] implement the scheme presented

in [34][35]. The authors demonstrate that the scheme does not give the correct

results in certain cases where the substring may be occurring many times. They

introduce leaf array to the suffice tree to represent the ending of the path. However,

the underlying problem of distinguishability remains unaddressed.

Papadimitriou et al. in [102] propose Seabed, a system that allows efficient

analytics over encrypted data. Seabed is based on additively symmetric homomorphic

SE scheme that is three orders of magnitude faster than Paillier [101]. The authors

propose two constructions, one is based on the randomized encryption such as

AES, whereas, the second construction requires deterministic or OPE to form join

operations. Even though the authors have presented an efficient construction by using

symmetric encryption, their scheme does not prevent frequency analysis attacks. The

attacks over OPE are discussed in [68][96].

Keita et al. in [52] introduce the concept of mis-operation in homomorphic-

based SE. Mis-operation refers to the modification that takes place when the cloud

performs operations over the entire data (whether the data is being searched for or

not). The authors introduce a homomorphic encryption scheme that is mis-operation

resistant by including an evaluation phase to the decryption process. The authors

follow the security model similar to [19] and do not introduce probabilistic trapdoors.

Furthermore, the authors claim that their work has the linear search complexity of

PEKS [19].

Authors in [113] present a string identification scheme that is based on [19]. The

scheme is based on deterministic trapdoors and proved to be adaptively secure under

the security definitions presented in [46], however, it does not resist distinguishability
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attacks. A few other homomorphic-based SE schemes have been proposed that are

based on deterministic trapdoors [163].

In [36], authors further study different methods of searching and sorting over

the FHE-based encrypted data and discuss their security implications. Their study

mainly includes two methodologies that are divided into further subcategories; linear

encrypted search and sorting on encrypted data.

We also refer readers to [126][70][136][22][108][85] that present a survey on

the existing SE schemes.

2.5 Summary

In this chapter the design primitives were presented that helped to give an overview

of the different domains involved in the field of SE. Through the literature it was

suggested the design primitives can be represented in the form of a triangle where

the vertices of the triangle represent efficiency, security and privacy, and query

effectiveness. Based on the query effectiveness, the existing works were broken

down into different categories and the schemes were discussed separately. Before

heading towards discussing the existing schemes, the existing security definitions

were presented and their limitations were discussed. The discussion highlighted the

pros and cons of the existing pioneering and state-of-the-art SE schemes.

It was identified that most of the existing schemes were based on deterministic

trapdoors, therefore, they are prone to passive attacks (further discussed in Chapter

3). It was also established that many schemes were based on data structures that

could not facilitate ranked searching. Furthermore, the schemes were not efficient

enough to be deployed onto a real-world cloud offering. The asymptotic comparative

analysis can be found in the proceeding chapters where the complexities of the

existing schemes are compared against the proposed schemes.
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Now that the limitations of the existing schemes have been highlighted, the

chapters hereafter present novel schemes that are focused towards enhancing the

security and privacy of the encrypted data stored on the cloud. Chapter 3 presents

a novel ranked single keyword SE scheme. Chapter 4 presents a novel parallelized

disjunctive query based ranked SE scheme. Similarly, Chapter 5 and 6 present novel

fuzzy-based ranked SE scheme and a homomorphic-based SE scheme respectively.

Unlike the schemes discussed in this chapter, the proposed schemes are based on

probabilistic trapdoors that provide higher levels of security and privacy guarantees.

The schemes are also implemented and the proof-of-concept prototype is deployed on

the British Telecommunications public cloud offering and tested over a real dataset

of encrypted documents. Further details can be found in the following chapters.



Chapter 3

Ranked Single Keyword Searchable

Encryption Scheme

Cloud is an environment that provides the utility of on-demand resource sharing and

data access to the clients and their devices remotely. Apart from the core categories

of cloud services, i.e., SaaS, PaaS, IaaS, nowadays, Database-as-a-Service (DaaS)

[69][45][16] enables people to store their files on the cloud. This DaaS helps in

achieving availability of the documents but there are some interrelated concerns

associated to DaaS that are security, trust, expectations, regulations and performance

issues [154]. The above concerns are interdependent and should be addressed

simultaneously. Encryption is probably the best solution that comes to one’s mind

while talking about security. However, in the context of DaaS, searching over the

encrypted text or SE is a difficult and resource consuming task. This requires a

SE scheme to be developed that would facilitate performing textual searches over

encrypted data. Such a scheme would help maintain privacy of the outsourced

documents while enabling the search over the encrypted documents.

This chapter is the first step towards the development of a framework that per-

forms ranked single-keyword SE. The following contributions to the field of SE are

made in this research:
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• In this chapter, a novel Ranked Searchable Encryption (RSE) scheme is de-

signed and presented. The proposed RSE scheme is completely based on a

probabilistic encryption algorithm to generate probabilistic trapdoors. The

probabilistic trapdoors resist distinguishability attacks and mitigate the risk of

successful passive attacks.

• The second contribution is that we enumerate the properties of a “privacy-

preserving” RSE scheme in the context of probabilistic trapdoors by formally

defining keyword-trapdoor indistinguishability and trapdoor-index indistin-

guishability.

• We design and implement a proof of concept prototype and deploy it onto a

real cloud environment. We then test our scheme with a real dataset of files

containing 120,000 keywords and more than 100,000 documents to analyze

the performance of our scheme.

3.1 Problem Formulation

SE allows to secure the data outsourced into the cloud and helps to preserve the

privacy of the search queries. A threat model helps to explain potential point of

threats and understand the entities from whom the data is to be kept secure. Our

approach is similar to [141] as it highlights the assumptions related to the system

being developed and the capabilities/ limitations of the adversary. The privacy

concerns introduced in the section 1.1.3 can be deduced directly from the threat

model presented below. This section also highlights the importance of RSE by

explaining the system model followed by the design goals. The threat model remains

the same throughout the following chapters however the system model is modified

as the query effectiveness or underlying use cases are remodeled.
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3.1.1 Threat Model and Assumptions

A SE framework mainly involves two entities: a cloud server (CS) and a data owner.

The data owner encrypts and outsources the documents to the CS. If there are multiple

data owners involved, it is assumed that they are fully trusted, i.e., the data owners

are no threat to the system. The main threat lies with the CS and while performing

the security analysis of the schemes it is assumed that the CS acts as an adversary

that intends to launch successful attacks. The characteristics of an adversary are

given below:

Trusted-but-curious or honest-but-curious server

In the proposed SE schemes it is assumed that the CS is a trusted-but-curious or

honest-but-curious server [104][41][23]. Being trusted/honest means that the CS

acts in a known and designated manner, but CS is also willing and curious to get a

hold of full or partial information about the documents uploaded and held within

it. The CS can only launch passive attacks [105] to analyze the data or monitor the

network traffic aiming to uncover any possible data or information related to the

encrypted documents stored in the CS. In this research it is also assumed that the CS

does not launch any active attacks that may lead to denial of service or modification

of the data.

Polynomial time adversary

The adversary may perform a polynomially bounded number of encryptions or other

operations i.e. the adversary is not allowed infinite steps to make a guess, instead the

adversary is limit to polynomial number of time steps to make the output.
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Adaptive adversary

The adversary (primarily known as the CS) is allowed to maintain a history of all the

past searches performed over the encrypted data. Therefore, the adversary knows the

trapdoors, the corresponding search patterns and the access patterns. To break the

system during the security analysis, the adversary is given access to the history and

it allowed to choose the keyword adaptively by analyzing the past history.

Standard Model

A model of computation in which the adversary is limit by only the time and

computational resources available and the system is not assumed to be ideal (replaced

by a random oracle). The schemes prove to provide high levels of security in the

standard model as the schemes are based on hard problems or complex problems

that cannot be solved in polynomial time, such as the integer factorization problem.

3.1.2 The System Model

We consider a single writer/single reader (S/S) architecture and use the client-server

infrastructure by visualizing a scenario in which there are two parties, Bob (client)

and a CS. Bob intends to upload all of his documents D = {D1,D2, . . . ,Dn} to the

CS to enable remote access. The CS performs the searching of relevant documents

on behalf of Bob. In this scheme, the CS is trusted-but-curious. Bob identifies a set

of keywords W = {W1,W2, . . . ,Wm} from the set of documents D , and generates a

relevance score based on the frequency of occurrence of the keywords within the

set of documents. These relevance scores help in performing the ranked search.

Ranked searching facilitates the search by giving the user the liberty of selecting

the most relevant documents from a collection, by identifying the frequency of the

occurrence of a keyword within a set of documents. Ranked searching is mainly

used for keyword search because the server may find several documents satisfying
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the query, whereas, in complex queries, the server might be able to identify a few

documents in response to the search query.

The relevance frequency (RF) helps to rank the documents. The RF formula [73]

presented here is widely accepted and already used in SE [49, 147, 130, 132]. So,

given a keyword W , and a document D, the relevance frequency (RF), is calculated

as:

RF(W,D) =
|W |

∑
U=1

1
|D|
· (1+ ln f(D,WU )) · ln(1+

n
fWU

) (3.1)

where |D| denotes the length of the document obtained by counting the keywords

appearing in the document D; f(D,U) denotes number of times a keyword U appears

within a particular document D; fU denotes the number of documents in the dataset

that contain the keyword U , and n denotes the total number of documents in the

dataset.

Apart from this ranking function other scoring functions such as Apache Lucene

[55] or Juru [29], after modification may be used. All the scoring functions vary in

computational time and quality of outcome. The Apache Lucene scoring function

developed by the Apache foundation is based on crawlers and mainly used for

the search engine optimization. The Juru ranking mechanism does not take into

consideration the entire dataset, instead considers the frequency of occurrence of a

keyword within the same document. In [43] a comparison of Lucene and Juru has

been performed. This research uses the RF formula (equation 3.1) that is widely used

in the literature and helpful for the doing a direct comparison with the state-of-the-art

in the following chapters.

Now Bob generates an index table I, and outsources I along with the encrypted

documents D to the CS.

If Bob wants to search for a document containing a specific keyword, he simply

generates a probabilistic trapdoor T and sends it to CS. CS uses the trapdoor T to

search the index table I and returns a set of relevant documents in a ranked order.
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Fig. 3.1 System Architecture Diagram for RSE

Figure 3.1 shows the flow of events in the RSE scheme where a client is interacting

with the CS. It can be seen that mainly all the tasks are performed on the client’s

side, whereas the searching is done on the CS.

3.1.3 Probabilistic Encryption

In order to highlight the advantage of indeterministic/ probabilistic trapdoors, we

revisit the definition of probabilistic encryption also termed as randomized encryption

[116].

Probabilistic Encryption: A probabilistic encryption system is a quadruple

(M,K,C,Π), where M is the message space, K is the key space, C is the ciphertext

space and Π represents a relation Π⊆M×K×C such that:

• for each key k ∈ K and each ciphertext c ∈C, there is at most one x ∈M such

that (x,k,c) ∈Π.
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• for each message x ∈M and each key k ∈ K there is at least one ciphertext

c ∈C such that (x,k,c) ∈Π.

The encryption process works as follows:

A bit sequence r ∈ R is chosen randomly. The value Ψ(r,x,k) would be com-

puted, where Ψ is a deterministic function such that Ψ : R×M ×K 7→ C and

Π = ∪r∈R,k∈K,x∈M(x,k,Ψ(r,x,k)).

If the trapdoor generation process is based on probabilistic encryption, then

the resulting trapdoors will also be probabilistic. The probabilistic trapdoors are

indistinguishable and resist distinguishability attacks. We explain this with the help

of a scenario highlighting passive attacks below.

3.1.4 Scenario related to Passive Attacks

Probabilistic trapdoors mean that for the same keyword being searched repeatedly, a

unique search token (trapdoor) may be generated every time. One may appreciate

the advantage of having a probabilistic trapdoor by considering an adversary A ,

capable of launching a passive attack. A passive attack over the network enables the

adversary to monitor, read and capture data exchanges. There are different types of

passive attacks including sniffing, interception, traffic analysis etc [5] [155]. Suppose

the adversary is able to sniff the transmitted trapdoor and uncover the keyword

from it, in such a case if the trapdoor is not probabilistic, this will reveal all the

future searches to the adversary A , and over a longer period of time the adversary

A may uncover the entire set of keywords. On the contrary, if the trapdoors are

probabilistic, then even if the adversary A is able to uncover the keyword from the

trapdoor, it may be effective only for that particular trapdoor and the adversary may

not be able to predict future trapdoors. Therefore, probabilistic trapdoors help to

thwart keyword-guessing attacks [114] and reduces the risks of successful brute-

force attacks [100]. As discussed in Chapter 2, the existing schemes are based on
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deterministic encryption or OPE, the attacks on deterministic encryption schemes

and Order Preserving Encryption (OPE) are discussed in [96]. Sections 3.2 and 3.4

further explain the advantages of using probabilistic trapdoors, and how the existing

schemes may be insecure against a passive adversary.

3.1.5 Design Goals

The proposed construction should bear the following security and performance goals:

• Trapdoor Unlinkability: The primary goal is that the trapdoor should be

probabilistic, therefore, for the same keyword searched again a new trapdoor

should be generated. This helps resist distinguishability attacks.

• Privacy Guarantee: The search pattern should be kept hidden, whereas, the

access pattern may be disclosed. It should be secure in the known cipher-

text model. In other words, apart from the outcome of the search, the CS

(referred to a polynomial time adversary) should not deduce any keyword

related information from the secure index and trapdoors even if an adaptive

query is made.

• Lightweight: The scheme should be secure and should offer lightweight

computations as compared to the state-of-the-art.

We now formally define our proposed RSE scheme that facilitates the search

over encrypted documents in ranked order. The following definition presents the

algorithms and the phases that our scheme comprises of:

Definition (Ranked Searchable Encryption (RSE) Scheme) A RSE comprises

of five polynomial time algorithms Π=(KeyGen, Build_Index, Build_Trap, Search_

Outcome, Dec) such that:
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(K,ks)← KeyGen(λ ): is a probabilistic key generation algorithm run by the client.

The algorithm takes a security parameter λ as input and returns a master key

K and a session key ks.

(I)← Build_Index(K,D): is a deterministic algorithm run by the client to generate

an index table I. The algorithm takes as input a master key K and a collection

of documents D to be outsourced to the CS. The algorithm returns a secure

index table I.

TW ← Build_Trap(K,ks,W,num): is a probabilistic algorithm run by the client.

The algorithm as input requires the master key K, a session key ks, a keyword

W and the number (num) of documents D required. The algorithm returns a

trapdoor TW .

X ← Search_Outcome(ks, I,TW ): is a deterministic algorithm run by the CS. The

algorithm takes the session key ks, index table I and the trapdoor TW as the input

and returns X , a set of desired encrypted document identifiers EncK(id(Di))

containing the keyword W in ranked order.

Di ← Dec(K,X): is a deterministic algorithm run by the client. The algorithm

takes the client’s master key K and encrypted set of document identifiers

EncK(id(Di)) as input to decrypt and recover the document id’s.

Correctness: A RSE scheme is correct if for the security parameter λ , the

master key K and the session key ks generated by KeyGen(λ ), for (I) output by

Build_Index(K,D), the search using the trapdoor TW always returns the correct set

of encrypted document identifiers EK(id(Di)) in ranked order. A RSE scheme is

correct if the following are true:

• If W ∈ Di, then the following should hold with an overwhelming probability:

Search_Outcome(ks, I,TW ) = D ∩Dec(K,X) = Di,where1≤ i≤ n (3.2)
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• If W ̸∈ Di, then the following should hold with an overwhelming probability:

Search_Outcome(ks, I,TW ) = D ∩Dec(K,X) = /0 (3.3)

Soundness: A RSE scheme is sound if for the security parameter λ , the master key

K and the session key ks generated by KeyGen(λ ), for (I) output by Build_Index(K,D),

the search using the trapdoor TW always returns sound results, i.e., the result should

not contain any false positives. A RSE scheme is sound if the following are true:

• If W ∈ Di, then the following should hold with an overwhelming probability

Search_Outcome(ks, I,TW ) = 1 (3.4)

• If W ̸∈ Di, then the following should hold with an overwhelming probability

Search_Outcome(ks, I,TW ) = 0 (3.5)

3.2 Security Definitions

This section proposes new definitions for indistinguishability in terms of ranked

searchable encryption. An ideal SE scheme should fulfill these definitions to en-

sure privacy. Section 3.4 proves that the proposed RSE scheme complies with the

following definitions.

3.2.1 Keyword-Trapdoor Indistinguishability for RSE

Keyword-Trapdoor Indistinguishability refers to the act of performing search over

encrypted text in such a way that the redundancy in the statistics of the (plaintext)

keywords should be dissipated into the associated trapdoor. Therefore, for the same
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keyword appearing twice, the trapdoor should not be distinguishable even if the

history (keyword, trapdoor) is generated adaptively. To guess the keyword or the

document’s content, the attacker has to intercept a tremendous amount of data to

uncover the underlying plaintext in polynomial time.

Description

The challenger begins by generating an index table I against a document collection D .

The adversary A selects a keyword W and sends it to the challenger. The challenger

generates a trapdoor and sends it back to the adversary A . This continues until the

adversary A has submitted polynomial-many keywords. Now the challenger tosses

a fair coin b, the adversary A has to submit two keywords (W0,W1) to the challenger

and receives a trapdoor corresponding to the keyword Wb. The adversary A has to

guess and output the bit b. If the guess is made with a probability of greater than

1/2 then the adversary wins when the security parameter λ is negligible i.e., λ is

sufficiently small that it can be ignored in the interests of expediency.

Definition 3.1 Let RSE= (KeyGen, Build_Index, Build_Trap, Search_Outcome,

Dec) be a Ranked Searchable Encryption scheme over a dictionary W , λ be the

security parameter, D be a set of documents and A = (A0,A1, · · · ,Am+1) be

adversaries such that m ∈ N. Consider the following probabilistic experiment

Trap_IndexRSE,A (λ ):

Trap_IndexRSE,A (λ )

(K,ks)← KeyGen(λ )

(I)← Build_Index(K,D)

f or 1≤ i≤ m

(stA ,Wi)←Ai(stA ,TW1, · · · ,TWi)

TWi ← Build_TrapK(Wi)

b $←− {0,1}
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(stA ,W0,W1)←A0(λ )

(TWb)← Build_Trap(K,ks,Wb,num)

b′←Am+1(stA ,TWb)

(TW ′)← Build_TrapK(Wj); j ∈ N

i f b′ = b,out put 1

otherwiseout put 0

where stA represents a string that captures A ’s state. The keyword-trapdoor

indistinguishability holds if for the polynomial time adversaries (A0,A1, · · · ,Am+1),

Pr[Key_TrapRSE,A (λ ) = 1]≤ 1
2
+negl(λ ) (3.6)

where probability is over the choice of b.

3.2.2 Trapdoor-Index Indistinguishability for RSE

Trapdoor-Index Indistinguishability relates to the complexity offered by a SE scheme.

The keywords, trapdoor and index table should be complex, and involved in such

a way that the trapdoor should not reveal the corresponding index table entries

prior to the search, and should not be distinguishable. Therefore, for the same

keyword appearing twice, the trapdoor should not be distinguishable even if the

history (keyword, trapdoor, index) is generated adaptively. Furthermore, a change of

one bit/character of the keyword, should completely change the Trapdoor and Index

Table or vice versa.

Description

The challenger begins by generating an index table against a data collection D . The

challenger sends the set of keywords W , the trapdoors generated for all the keywords

W , along with the associated index table entries I[0][Wm] to the adversary, while

maintaining the order in which they occur. Now the challenger tosses a fair coin b,
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the adversary has to submit two keywords (W0,W1) to the challenger and receives

a trapdoor corresponding to the keyword Wb. The adversary has to now decide the

corresponding index value and is challenged to output the bit b. If the adversary

is able to make a guess with a probability greater than 1/2 then the adversary has

succeeded and the scheme lacks in providing trapdoor-index indistinguishability.

The security parameter λ is negligible i.e., λ is sufficiently small that it can be

ignored to highlight the security of the scheme.

Definition 3.2 Let RSE= (KeyGen, Build_Index, Build_Trap, Search_Outcome,

Dec) be a Ranked Searchable Encryption scheme over a dictionary W , λ be the

security parameter, D be a set of documents and A = (A0,A1). Consider the

following probabilistic experiment Trap_IndexRSE,A (λ ):

Trap_IndexRSE,A (λ )

(K,ks)← KeyGen(λ )

(I)← Build_Index(K,D)

f or 1≤ i≤ m; where m ∈ N

let I′ = I[0][i]

let W = (W1, · · · ,Wi)

TWi ← Build_Trap(K,ks,Wi,num)

b $←− {0,1}

(stA ,W0,W1)←A0(stA ,λ ,Wm, I′,TWm)

(TWb)← Build_Trap(K,ks,Wb,num)

b′←A1(stA , IWb)

(TW ′)← Build_TrapK(Wj); j ∈ N

i f b′ = b,out put 1

otherwiseout put 0
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where stA represents a string that captures A ’s state. The trapdoor-index indis-

tinguishability holds if for the polynomial time adversaries (A0,A1),

Pr[Trap_IndexRSE,A (λ ) = 1]≤ 1
2
+negl(λ ) (3.7)

where probability is over the choice of b.

Theorem 3.1: The proposed RSE scheme provides Keyword-Trapdoor Indistin-

guishability and Trapdoor-Index Indistinguishability if the Inverted Index table (I) is

secure and the trapdoors are probabilistic.

3.3 Proposed RSE scheme

As discussed in Section 3.1.5, the proposed RSE scheme comprises of five phases.

This section presents and discusses each of the phases.

3.3.1 Scheme Construction

• Phase 1-KeyGen (λ ): Given a security parameter λ , generate a master key K

and session key ks; such that K,ks←{0,1}λ .

• Phase 2-Build_Index (K,D):

– Initialized dynamic 2D array A.

– Scan D = {D1,D2, · · · ,Dn} and build W = {W1,W2, · · · ,Wm}, a set of

unique and distinct keywords occurring in D .

– Initialize Prime number p of the size λ +1 bits.

– For 1≤ t ≤ m

- let a← HK(Wt)
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- compute a−1 and store it in A[1][t].

- compute EK(id(Dn)), store it in A[t][1]

- calculate the RF for each Wm occurring in D using the equation

3.1 and store the value at the respective locations within A.

– Mask(RF)

- for 1≤M ≤ number o f columns in A

- A[n+1][M+1] = A[n+1][M+1]× random values

The index table is generated (represented as A) and stored in the CS.

• Phase 3-Build_Trap (K,ks,W,num):

– let a← (HK(W ))

– let b← EncK(W )

– let c← a ·b

– let d← Hks(b)

– Set Trapdoor TW ← (d,c,num)

• Phase 4- Search_Outcome (ks, I,TW ): Identify the documents Di ∈D as the

outcome of the search as follows:

– Initialize dynamic Array X .

– For 1≤ l ≤ size o f I:

- if (d == Hks(c ·a−1)):

- for 1≤ N ≤ num:

- find highest RF , return EncK(id(Di));

– X [ ]← EncK(id(Di));

Return X to the client.
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• Phase 5-Dec (K,X): Given X ; a set of encrypted document identifiers, decrypt

X using the master key K to uncover the outcome of the search.

3.3.2 Description

We now briefly discuss each of the phases involved in the RSE scheme that have

been presented in the previous section.

KeyGen Phase

The KeyGen algorithm helps the client to generate the keys. The algorithm takes

as input a security parameter λ . The client generates a master key K; where,

K ∈ {0,1}λ , a session key ks; where, ks ∈ {0,1}λ . The master key K is kept secret

with the client whereas the session key ks is shared with the server prior to the

Build_Index phase.

Build_Index Phase

The client generates an index table I represented by a dynamic 2D array A. The

client uses a cryptographic Hash function:

H : {0,1}λ ×W → Zp

The keyed Hash function H uses the master key K to generate a Hash of the

keywords. The array A holds three attributes; the first row of the array consists of

values that are generated by calculating the inverse of the Hash of keywords, the first

column of the array A consists of the encrypted document identifiers EncK(id(Dn))

of all the outsourced documents, whereas, the remaining entries of the array are the

relevance frequencies of the keywords W among the documents D . The relevance

frequencies are calculated according to equation 3.1. Each column represents the

relevance frequencies associated to a particular keyword W . We multiply each

column (excluding the first row and first column of the array A) with a random number
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obtained from a CSPRNG, represented by Mask(RF). This way the relevance

frequencies are masked while maintaining proportion between the relevance scores

of the keyword W occurring in different documents. This helps to prevent frequency

analysis attack and disclosure of document size while maintaining correct ranking of

documents.

Build_Trap Phase

The client generates a trapdoor to search for documents containing a particular

keyword. The client using the master key K generates the hash H(·) of the keyword,

represented by a. Again, with a probabilistic symmetric encryption algorithm, the

client encrypts the keyword, represented by b. Now c is computed by multiplying a

with b. The client uses a cryptographic keyed Hash function:

H : {0,1}λ ×W → Zp

The keyed Hash function H uses the master key K to generate a; the hash of the

keyword, and uses session key ks to generate d; the Hks(b). The trapdoor consists

of d,c and the desired number of documents represented by num. The trapdoor is

transmitted to the CS.

Search_Outcome

The CS now performs the search based on the received trapdoor. The server has d,c

and num. The CS tries to find an index table’s column entry for which the following

condition holds true d == Hks(c ·a−1). On a positive hit, the CS returns client the

encrypted document identifiers in ranked order, based on the documents having the

highest relevance frequencies. The total number of documents returned will be equal

to num.
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Dec Phase

The client after receiving the ranked encrypted document identifiers, decrypts them

to uncover the document identifiers containing the searched keyword.

Remark 1: The index table I needs to be regenerated whenever the database is

modified, but this can be avoided if we remove ranking, because the re-ranking is to

be performed only whenever a modification is made to the outsourced database.

Remark 2: By multiplying the relevance score with random numbers, we mask

the actual frequency of the keywords and avoid the frequency analysis attack, while

performing effective and efficient ranked searching. This also helps to prevent the

disclosure of the size of the documents and maintaining privacy. To further enhance

the security of the index, one may also use Order Preserving Hashing (OPH) [152]

or Order Preserving Encryption (OPE) [18].

3.3.3 Correctness and Soundness

This section proves the correctness and soundness (defined in Section 3.1.5) of the

proposed RSE scheme.

Let (K,ks) represent the output of the KeyGen phase, where, the master key

is K ∈ {0,1}λ and the session key ks ∈ {0,1}λ . Given W,W ′ ∈ W , it is straight

forward to verify that the following are true:

• Given TW = Build_Trap(K,ks,W,num), the following equality holds with an

overwhelming probability:

TW =

Hks((EncK(W )) ·HK(W )),

((HK(W )) · (EncK(W ))), num

 (3.8)
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• Given TW = Build_Trap(K,ks,W ′,num), and W ′ ̸=W , the following inequal-

ity holds with an overwhelming probability:

TW ̸=

Hks((EncK(W ′)) ·HK(W ′)),

((HK(W ′)) · (EncK(W ′))), num

 (3.9)

In fact, this inequality can hold only if HK(W ) = HK(W ′) which is having a

negligible probability.

This leads to the conclusion that a unique trapdoor is mapped to a distinct

keyword. Since the index table contains encrypted document identifiers EncK(id(D))

for every document that maps to the keywords, therefore, as a result, the outcome

of the Search_Outcome phase corresponds to the value outlined in the correctness

and soundness definitions mentioned in Section 3.1.1 and equations 3.2, 3.3, 3.4, 3.5

respectively. Hence, the proposed RSE scheme is correct and sound.

3.4 Security Analysis

All of the previously known SE constructions leak some information because they

were based on deterministic trapdoors [78][77]. In [74] authors have studied the

search pattern disclosure of the previously known SE schemes. The proposed scheme

is based on a probabilistic trapdoor, so before mapping the proposed scheme against

the security definitions stated in Section 3.2, we formally highlight any information

that the proposed scheme leaks.

3.4.1 Leakage Profiles

The leakage profiles analyze any possible leakage of information significant or

insignificant, encrypted or unencrypted based on a set of assumptions. We analyze

all the three artifacts that are obtained from the five polynomial time algorithms
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explained previously, i.e., index table I, trapdoor TW and the outcome of a search.

While defining the leakage we assume that the attack is launched by an adversary

A in a standard model so we do not restrict the adversary by replacing our scheme

with any weak construction. The leakage focuses on the information that is revealed

within polynomial time. Our security analysis yields the following results:

Leakage L3.1

Description: The leakage L3.1 is associated to the index table I. It is assumed that I

is revealed to all the stakeholders, i.e., the client, the CS and the adversary A . This

leakage is defined as:

L3.1(I) =


((HK(Wm)))

−1, EncK(id(Dn)),

Mask(RF), (HK(Wm))

EncK(W ) ∈ EncK(D)∨EncK(W ) /∈ EncK(D)

 (3.10)

Leakage L3.2

The leakage L3.2 is associated to the Trapdoor TW generated for a particular keyword

W to be searched. It is assumed that TW is generated by the client and revealed to all

the stakeholders, i.e., the CS and the adversary A .

L3.2(TW ) =

a← HK(Wi) ·EncK(Wi),

b← Hks(EncK(Wi)), num

 (3.11)

Leakage L3.3

The leakage L3.3 is associated to search outcome (SO) of the Trapdoor generated for

a particular keyword TW .The search outcome is revealed to all the stakeholders, i.e.,
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the client, CS and the adversary A . This leakage is defined as:

L3.3(SO) =

{
OC(W ), EncK(id(Di))∀TW∈D

}
(3.12)

where OC represents the outcome corresponding to the searched keyword.

Discussion on Leakage: As the trapdoor is based on a probabilistic encryption

algorithm and a keyed hash function, therefore, we can say that the leakage associated

with the trapdoor is meaningless and we do not need to be concerned about it. In

other words, suppose if an adversary is accidentally given access to the trapdoor

generation oracle then all the future searches are still secure. We explain this with the

help of the leakage profile of the scheme presented in [77]. Their scheme gives away

the search pattern and access pattern (cf. Section 2 [77]). The search pattern identifies

whether the same keyword is being searched again. Since our proposed scheme is

based on probabilistic trapdoors, we are able to avoid the leakage associated with the

search pattern. However, similar to Kamara el al.’s scheme [77], our scheme also

leaks the access pattern. The access pattern reveals the documents that are accessed

as a result of a successful search.

As mentioned earlier, the relevance frequency can be masked using a random

number, or made highly secure by using Order-Preserving Hashing. However, both

of the techniques may reveal the presence or absence of an encrypted keyword

within a document. Although this leakage does not affect the property of trapdoor

unlinkability and indistinguishability, this is the only leakage related to the relevance

frequencies. Therefore, it is evident that L3.1 (equation 3.10) and L3.3 (equation 3.12)

might lead to the security and privacy concerns, but we will prove that these leakages

do not reveal any information related to the data outsourced. Another point to be

noted here is that these leakages and assumptions are interrelated and interdependent,

hence, to maintain security all the assumptions should be strictly met.
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3.4.2 Formal Security Proofs

Lemma 3.1. The Ranked Searchable Encryption Scheme (RSE) presented above

is “privacy-preserving” as it is (L3.1,L3.2,L3.3)-secure and according to Definition

3.1,3.2, where L3.1 is associated with the index table I and leaks the encrypted

document identifiers, masked relevance frequencies, inverse of hash of keyword and

presence/absence of an encrypted keyword within an encrypted document. Whereas,

L3.2 leaks a,b and the number of required documents and L3.3 leaks the outcome of

a trapdoor and the encrypted document identifiers.

Proof: We start the proof of this lemma by establishing evidence that the pro-

posed RSE scheme is in accordance with Theorem 3.1. This is achieved by simulating

the keyword-trapdoor indistinguishability and trapdoor-index indistinguishability

definitions for the proposed RSE scheme. The proof requires an adversary A and a

challenger C . We demonstrate if the adversary A is successfully able to distinguish

between outcome of the algorithms and between the keywords, trapdoors and associ-

ated index tables, it will result in compromising the privacy-preserving property of

RSE.

We take a game-based approach similar to [143] in which the security proof is

divided into phases, i.e., setup, challenge and the outcome phase.

Keyword-Trapdoor Indistinguishability in RSE:

Let RSE be a SE scheme. Suppose there are at most m keywords W = {W1,W2, · · ·

,Wm} and n documents D = {D1,D2, · · · ,Dn}, where n,m ∈ N (set of natural num-

bers) associated to an index table. The game is played between an adversary A and

a challenger C . The game is divided into three phases as follows:

• Setup Phase: The adversary A sends a keyword to the challenger C . The

challenger C returns a trapdoor to A . This continues between the adversary

A and the challenger C until trapdoors for all the keywords have not been
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generated and sent to the adversary. As a result the adversary forms a history

of trapdoors and the corresponding keywords.

• Challenge Phase: The adversary A selects two keywords W ′0,W
′
1 ∈W and

sends them to the challenger C . The selection of the keywords can be done;

such that the adversary A intends to search for unique keywords, i.e., W ′0 ̸=W ′1;

The challenger C in response tosses a fair coin b← {0,1} and generates a

trapdoor corresponding to the value of b, i.e., T ′W ′b
. After the challenge has

been completed, setup phase is run again. We allow the adversary to search

for the same keywords again if interested.

• Outcome Phase: The adversary A is given the generated Trapdoor T ′W ′b
. A

will now have to guess and output b′ ∈ {0,1} and if b = b′ then the adver-

sary wins. In other words the adversary A has to output the keyword W ′b

corresponding to T ′W ′b
to the challenger C in polynomial time. If the adversary

A correctly guesses the trapdoor corresponding to the keyword then it has

won otherwise RSE provides keyword-trapdoor indistinguishability and the

challenger C wins.

Since the trapdoors are probabilistic and unique, therefore the probability that

the adversary A wins is 1/2. That is the adversary can make a successful guess

with the probability of 1/2 which is according to the Definition 3.1 and equation

3.6. Therefore, the challenger wins and the RSE scheme provides keyword-trapdoor

indistinguishability.

Trapdoor-Index Indistinguishability in RSE:

Let RSE be a SE scheme. Suppose there are at most m keywords W = {W1,W2, · · ·

,Wm} and n documents D = {D1,D2, · · · ,Dn}, where m,n ∈ N (set of natural num-

bers) are associated to an index table. The game is played between an adversary A

and a Challenger C . The game is divided into three phases as follows:
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• Setup Phase: The challenger C generates an index table I corresponding to

the set of documents. The challenger C generates and sends the trapdoors for

all keywords W , the index table entries corresponding to the trapdoor and the

keywords to the adversary A .

• Challenge Phase: The adversary A is allowed to select two keywords

W ′0,W
′
1 ∈W and send them to the challenger C . The selection of the keywords

can be done in such a way that the adversary A intends to search for distinct

keywords W ′1 ̸=W ′2. The challenger C in response tosses a fair coin b←{0,1}

and generates a trapdoor corresponding to the value of b, i.e., T ′W ′b
. After

the challenge has been completed, the adversary A is given access to the

previously generated history that was sent in setup phase.

• Outcome Phase: A is given the generated trapdoor T ′W ′b
. Adversary A will

now have to guess and return the index table entry corresponding to the

trapdoor T ′W ′b
and W ′b in polynomial time. The adversary A wins if the guess is

correct otherwise RSE provides trapdoor-index table indistinguishability, and

the challenger C wins.

It is observed that although the adversary has a history of the past searches, it

cannot guess the index table entry because a unique trapdoor is generated every time.

Therefore, the probability that the adversary A wins is 1/2 which is in-line with the

Definition 3.2 and the equation 3.7 respectively.

Proof to the Theorem 3.1 leads to the following corollary:

Corollary 3.1: Keyword-Trapdoor Indistinguishability and Trapdoor-Index In-

distinguishability results in a Privacy Preserving Ranked Searchable Encryption

Scheme.

Proof: Let RSE=(KeyGen, Build_Index, Build_Trap, Search_Outcome, Dec) be

a Ranked Searchable Encryption scheme. We make the following claim that leads to

the proof of this corollary.
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Claim: If RSE is Keyword-Trapdoor Indistinguishable, then it is Trapdoor-Index

Indistinguishable.

Firstly, we assume that there exists a polynomial time adversary A that suc-

ceeds in the experiment Key_TrapRSE,A (λ ) with non-negligible probability over 1⁄2

(high probability), then there exists a polynomial time adversary B and a polyno-

mial time distinguisher Q that distinguishes between the output of the experiment

Trap_IndexRSE,A (λ ) with non-negligible probability over 1⁄2. Let adversary B

sample b $←− {0,1}; compute (stA ,W0,W1)← A0(λ ). The distinguisher Q is given

access to a history consisting of trapdoors and corresponding keywords. The adver-

sary proceeds as follows:

1. It parses (stA ,Wi)←Ai(stA ,TW2 , · · · ,TWi−1) where 2≤ i≤ m; m ∈ N

2. It computes b′← Ai+1(stA ,TWb)

3. It outputs 1 if b′ = b, and 0 otherwise.

Since Ai+1 are polynomial time adversary, hence, B and Q are also polynomial

time adversaries. Now, we have to guess the probability of Q’s success. Q will

output 1 if and only if Ai+1(stA ,TWb) succeeds in correctly guessing b. It is to be

noted that the Build_Trap phase is dependent upon trusted atomic primitives and

uses a probabilistic encryption algorithm therefore the outcome is independent of

b. Therefore, Ai+1 will guess b with the probability utmost 1/2 which is according

to the Definitions 3.1. Therefore, our initial assumption of such an adversary who

can succeed in the experiment Key_TrapRSE,A (λ ) with a non-negligible probability

over 1/2 is wrong. Hence the distinguisher Q that distinguishes between the output

of the experiment Trap_IndexRSE,A (λ ) with non-negligible probability over 1/2

does not exist and it is according to our Definition 3.2. Hence our claim (stated

above) is correct.
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Now, we prove that an RSE is “Privacy Preserving”. As discussed earlier, the

entire scheme is dependent upon a probabilistic trapdoor and provides Keyword-

Trapdoor and Trapdoor-Index indistinguishability. According to definition 3.1,

since a probabilistic trapdoor maps to an index location while maintaining privacy,

the privacy of the corresponding document identifiers is also preserved. Due to

the probabilistic trapdoor, the indistinguishability and privacy between the entities

involved in the RSE is maintained on the whole that results in privacy preservation.

Now we need to prove the security of our scheme against the leakages L3.1,L3.2

and L3.3 (represented by equations 3.10, 3.11 and 3.12 respectively). We argue that

the leakages L3.1,L3.2 and L3.3 are meaningless and do not affect our scheme. The se-

curity of our proposed scheme is dependent upon trusted atomic primitives, therefore,

we claim that our scheme adds to the security of these primitives and does not weaken

the security provided by the atomic primitives. We refer to the algorithm explained

in Section 3.3. The KeyGen phase generates two keys (K,ks)← KeyGen(λ ). The

Setup phase generates an index table (I)← Setup(K,D) corresponding to the set of

documents. The Build_Trap(K,ks,W,num) generates a trapdoor TW corresponding

to the keyword W to be searched and Search_Outcome(ks, I,TW ) represents the out-

come of the search. Since our scheme uses indeterminisitic/ probabilistic encryption

for the trapdoor generation, the generated trapdoor T is also indeterministic and

unique for the same keyword searched repeatedly. It is hard for an adversary to map

the trapdoor to the keyword or form a relationship between the keyword, trapdoor and

index table prior to the search. This also holds true for an adversary maintaining a

history of the search and outcome. Hence it satisfies the security Definitions 3.1,3.2.

It can be seen that the three leakages are either encrypted, masked or hashed

values. Based on the assumption of the master key (K) being secret, the hash cannot

be regenerated by an adversary. To be more precise, the hash is hard to invert given

the image of an input. Furthermore, we use a probabilistic encryption algorithm

for the encryption due to which no meaningful information can be obtained in
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polynomial time. Therefore, the trapdoor leads to the integer factorization problem

which is a hard problem. Therefore our scheme is (L3.1,L3.2,L3.3)-secure against

adaptive/non-adaptive indistinguishability attacks and provides keyword-trapdoor

indistinguishability and trapdoor-index indistinguishability.

3.5 Performance Metrics

This section focuses on the algorithmic performance evaluation of the proposed RSE

scheme. This is performed two fold; firstly the asymptotic analysis is performed,

then the storage overhead is analyzed to highlight the memory consumption of the

proposed RSE scheme.

3.5.1 Algorithmic Analysis

The algorithmic analysis presented here is based on the complexity analysis of the

target schemes. This analysis is based on upper bound analysis of the set of keywords

(W ) and set of documents (D). In the asymptotic analysis, the complexities of a set

of keywords (W ) is denoted by m, whereas the complexity of the set of documents

D is denoted by n. The complexity for hashing is denoted by h and the encryption is

denoted by e. As discussed previously, each scheme mainly comprises of 5 phases,

i.e., KeyGen, Build_Index, Build_Trap Search_Outcome and Dec phase. KeyGen

and Dec phases are fairly identical to the other existing schemes. This is why we

skip the comparative analysis of these phases and move onto the Build_Index phase.

We extend the analysis of the remaining phases for all the schemes. We analyze our

scheme while considering ranking and no-ranking. This way the readers can easily

relate and evaluate the efficiency of our scheme compared to existing schemes under

discussion.
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Table 3.1 Algorithmic Comparative Analysis RSE vs. Existing Schemes

Schemes Build_Index Build_Trap Search_Outcome

[148][147] O(mn+3n) O(2hm) O(mn)
[78] O(mn+m) O(m) O(3n)
[143] & [137] O(mn+n) O(m) O(mn)
Proposed RSE (ranked) O(mn+m) O(2h+ e) O(mn)
Proposed RSE (unranked) O(mn) O(2h+ e) O(m+1)

Note: For the direct comparison the complexities of h and e are assumed to be 1.

From the complexity analysis of our scheme, it is evident that the Build_Index

phase requires O(mn +m). The Build_Trap phase is bound by O(h + e). The

Search_Outcome phase is bound by O(mn). We would like to highlight that if

we remove the ranking functionality from our scheme then the efficiency of the

Build_Index phase increases to O(mn). Whereas, the efficiency of the Search_

Outcome phase can be increased to O(n+1).

Table 3.1 shows the algorithmic comparative analysis of the proposed RSE

scheme against the schemes presented in the Section 2.4.1. From the table, it is

evident that our scheme is efficient as compared to the existing schemes.

3.5.2 Storage Overhead

As discussed in Section 3.3, the client stores a master key K, a session key ks and a

prime number p. Having the security parameter λ , the prime number p is of the size

λ +1 bits, whereas, the keys ks and K are of the size 128 bit. Having λ = 160 bits

(obtained from the output of the hash), we get p = 161 bits. Hence the client stores

(2 · 128+ 161)/8 bytes. Thus the client requires 52.125 bytes in terms of storage

overhead.

Referring to the CS, the CS preserves the encrypted documents and the secure

index table. The storage of the encrypted documents can be represented as n ·Davg,

where n represents the total number of documents and Davg is the average size of

the documents. For the secure index, the storage overhead is 8(mn) bytes, where
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m represents the total number of keywords and n is the total number of documents.

Hence the total storage overhead at the CS would be 8(mn)+n ·Davg. In [82], the

storage overhead of existing ranked SE schemes is presented. It may be observed

that the proposed RSE scheme also outperforms existing schemes in terms of storage

overhead.

3.6 Computational Analysis

This section analyses the performance of the proposed RSE scheme by deploying it

onto British Telecommunication’s cloud service (BTCS) and testing it over a real-

world corpus of encrypted documents. Before proceeding towards discussing the

computational costs, a few preliminary details about the BTCS architecture, dataset

and the specification of the system used for the deployment are given.

3.6.1 Application Encryption Service

The Application Encryption (AE) service is available as a part of the BTCS that im-

plements and offers cryptographic services for its clients. These services include core

cryptographic operations like encryption/ decryption based on symmetric ciphers and

cryptographic-hash based integrity checking, as well as supporting operations like

key management, key storage and key retrieval etc, through a Key Management Ser-

vice (KMS). The KMS component, in addition to the storage and management of the

cryptographic keys, also enforces policy-based access control over the client’s keys.

The AE service can also be hosted inside the client’s premises for their complete

control and trust in the cryptographic operations, or the clients can even construct

their own version of the AE service from scratch as it is based on open standards

and technologies. However, in our deployment the AE service offered by British
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Telecommunication (BT) is FIPS-140-1 [111] certified and is treated as a trusted

third party.

AE service provides the following features to the clients:

• Centralized control and management of application-layer encryption services

through XACML policies.

• NIST [54][97] standard implementation of Advanced Encryption Standard

(AES-256) [90], RSA [115], Secure Hash Algorithm (SHA-256) [50] and

other cryptographic primitives.

• Provides a library that implements the OASIS PKCS#11 APIs [65], which the

clients can integrate in their applications.

Figure 3.2 illustrates a layered architecture that highlights the pre-processing required

for the index generation. AE service provides the keys, key management and AES

based cryptographic operations to the client. BTCS contains the index table and

encrypted set of documents.

Figure 3.3 illustrates the flow of events that take place when the proposed

RSE scheme is deployed onto the BTCS using the AE service. The cryptographic

primitives are taken from the AE server and the standard SE algorithm is followed.

3.6.2 Dataset Description

The Switchboard-1 Telephone Speech Corpus (LDC97S62) [63] was originally

collected by Texas Instruments in 1990-1, under DARPA sponsorship. The first

release of the corpus was published by NIST and distributed by the LDC in 1992-3.

The Switchboard-1 speech database [62] is a corpus of spontaneous conversations

which addresses the growing need for large multi-speaker databases of telephone

bandwidth speech. The corpus contains 2430 conversations averaging 6 minutes in

length; in other words, over 240 hours of recorded speech, and about 3 million words
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Fig. 3.2 Layered Architecture Inspired by the BTCS and AE Server.

Fig. 3.3 Flow of Events of the RSE Deployed on the BTCS.
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of text, spoken by over 500 speakers of both genders from every major dialect of

American English. The dataset comprises of 120,000 distinct keywords and 115,998

documents. A time-aligned word for word transcription accompanies each recording.

As such it constitutes a realistic dataset of telephone speech, and for this reason

the Switchboard-1 transcriptions were used to illustrate the functionality of the SE

presented in this research.

3.6.3 System Specification

To demonstrate the feasibility of the proposed RSE scheme, we have implemented our

algorithms in Java and present the results in the form of graphs using MATLAB2016.

The implementation helps us analyse the time that each phase of the algorithm takes.

We have deployed the server side on a public cloud platform (BTCS). The client is

able to interact with the AE service. Hence, the results include the network latency

occurring as a result of the communication with BTCS and AE service.

• Client side

The workstation used for the client side demonstration runs with an Intel Core

i5 CPU running at 3.00 GHz and 8 GB of RAM.

• Server side

The resources allocated at the BTCS include a Dual Core Intel (R) Xeon (R)

CPU E5-2660 v3 running at 2.60 GHz and 8GB of RAM.

3.6.4 Implementation Details

The implementation helps us analyze the time that each phase of the algorithm takes

while gradually scaling the input (documents or keywords). In order to highlight the

cost of encryptions, we have implemented the testbed such that; firstly the client and

server side implementation is done on the same machine, and then it is deployed
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on the BTCS. Hence, initially the analysis does not take into consideration the cost

incurred while transferring the documents, index tables or trapdoor over the network,

to the CS. Then we deploy the scheme on the BTCS and measure the network latency.

Phases 1-3, 5 of the RSE scheme proposed in Section 3.3 are implemented on

the client’s system. Phase 4 of the RSE proposed in Section 3.3 is implemented on

the BTCS. Therefore, all the searching is performed at the BTCS.

The implementation uses all the algorithms presented in Section 3.3. We achieve

confidentiality by implementing 128-bit AES-CBC and the keyed cryptographic

hash function used is SHA-128. The dataset used is of the size 2.6GB and it contains

115,998 documents in total.

3.6.5 Computation Overhead

To determine the computation overhead of the proposed RSE scheme, we analyze the

performance of individual phases separately. The individual phases are represented in

the form of graphs. The graphs are analyzed via the curve fitting/ linear interpolation

[86][106] that helps to identify the trend and highlight the R-squared value. The

R-squared value [26] is a statistical measure of how close the data are to the fitted

regression line. In the analysis of the phases, since KeyGen and Dec phase are fairly

identical to that of other schemes, we therefore skip the performance analysis of these

phases and shift our focus onto the remaining phases starting from the Build_Index

phase.

Build_Index Phase

The Build_Index phase comprises of index generation. After the index table is

generated it is transmitted to the CS. We analyze the computation time for the

index table generation by running the code on a total of 120,000 distinct keywords

identified and extracted from a dataset of 100,000 documents.
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Our scheme facilitates both ranked and un-ranked searches depending upon the

required functionality and area of application. The proposed scheme provides ranking

that comes with an increase in the number of computation performed, resulting in

an increase in the computational time. Therefore, we execute ranked and un-ranked

index generation separately.

Figure 3.4 shows a graphical representation of the computational time for the

index generation (ranked vs unranked) in minutes (min). The solid line represents

the time required for the ranked index generation. We execute this phase for a

total of 100,000 documents, starting from 10,000 documents and gradually scaling

the number of documents to 100,000. For 10,000 documents, the ranked index

generation takes a total of approximately 1.3 minutes and that increases to 16.23

minutes for 100,000 documents. The spikes are observed due to the variations in the

number of keywords within a document. Due to which the search space increases

and more computation is required to calculate the relevance frequencies. For fewer

keywords or documents having constant size, these spikes may not appear. The

linear trend is highlighted by applying curve fitting/ linear interpolation that shows

y = 0.0002x−0.1127 and R2 = 0.9443 for ranked searching.

The dotted line represents the computational time for the unranked index genera-

tion. In this case the index table only shows the presence or absence of a keyword

within a document. Therefore, the results are not ranked. For 10,000 documents the

index generation takes only 0.43 minutes that gradually increases to 5.75 minutes

over 100,000 documents. Therefore, it is evident that ranked index generation is

more resource consuming as compared to unranked index generation. The linear

trend is also depicted for the unranked index generation by applying curve fitting/

linear interpolation that signifies y = 6E−05x−0.488 and R2 = 0.901.
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Fig. 3.4 RSE: Computational Time for Index Generation

Build_Trap Phase

As discussed earlier, the trapdoor acts as a search query and is generated by the

client for a particular keyword. The generated trapdoor is transmitted to the server

and it facilitates the search of the relevant documents. The trapdoor generation is

not affected by the ranked or unranked searching so the computational time remains

constant. The Build_Trap phase is executed for the keyword “about” and the trapdoor

generation takes a constant time of a mere 0.016 seconds. Therefore, the Build_Trap

phase is optimized and efficient.

Search_Outcome Phase

Once the encrypted documents along with the index table are uploaded into the CS

and the trapdoor has been generated and transmitted to the CS, the next step is the

searching of the relevant documents. Figure 3.5, represents the graph generated on

executing the Search_Outcome phase against the trapdoor generated for the keyword
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“about”. The number of documents are represented along the x-axis and the time in

seconds is along the y-axis. The searching takes a total of mere 3.42 seconds against

100,000 documents and shows a fairly linear growth. The outcome of the search is

ranked. The labels on the nodes represent the number of documents that are returned

against the trapdoor, containing the searched keyword. For example, out of the total

100,000 documents in the dataset, 98,144 documents contain the keyword “about”.

It is observed that the searching process is highly efficient and shows a linear trend

when the dataset contains 100,000 documents. This trend is observed by applying

curve fitting/ linear interpolation that shows y = 4E−05x−0.47 and R2 = 0.9614.

Fig. 3.5 RSE: Computational Time for Searching for the Keyword “about"

To demonstrate the feasibility of the proposed RSE scheme, the scheme is

deployed onto the BTCS. As mentioned earlier, the index table and the trapdoor is

generated by the client and the searching is done on the BTCS. Figure 3.6 represents

the time that the BTCS takes while searching without considering the network

latency. Along the x-axis we have the number of documents that are scaled to 2000,

whereas along the y-axis we have the time in seconds. While searching for the
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keyword “about” our RSE scheme takes 0.061 seconds to perform the search for the

documents in the ranked order. The curve fitting/ linear interpolation shows a linear

trend of y = 2E−05x+0.015 and R2 = 0.9661 when the search is applied over the

encrypted documents stored on the BTCS.

Fig. 3.6 RSE: Computational Time for Searching for the Keyword “about" on the
BTCS without Network Latency

In Figure 3.7, we perform the same searching as done in the Figure 3.6 but

this time we include the network latency that occurs while communicating with

the BTCS. Now, every node represents the number of documents that are returned

against the trapdoor generated for the keyword “about”. To search for the keyword

“about” over 2000 documents, 1943 documents are returned in ranked order and

the search takes 11.4 minutes inclusive of the network latency. The number of

documents are represented along the x-axis and the time in minutes along y-axis.

Since this graph represents a real-world cloud deployment, the reduction in network

latency is depicted in the graph for 1700 documents. This fluctuation observed is

not because of the proposed RSE scheme rather it is entirely because of the network
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Fig. 3.7 RSE: Computational Time for Searching for the Keyword “about" on the
BTCS including Network Latency

latency. On analyzing the graph via curve fitting/ linear interpolation, the graph

signifies y = 0.006x+0.2321 and R2 = 0.9872 depicting a linear trend.

3.7 Summary

This chapter has readdressed the problem of supporting keyword search on encrypted

data outsourced to the cloud. A novel ranked SE scheme has been presented that

exploits the properties of modulo inverse to generate a probabilistic trapdoor. The

proposed RSE scheme aims to maintain a balance between security, efficiency and

query expressiveness.

In order to perform the security analysis of the proposed RSE scheme, this chapter

introduced the concept of indistinguishability and proved the security of the scheme

by giving formal proofs to the new security definitions and designing games in the

standard model. Since the RSE scheme leads to the integer factorization problem,

it enhances the security and reduces the risk of a successful attack and provides
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security in the standard model. From the security analysis of the construction it is

realized that the scheme provides greater security under these proposed definitions as

compared to previous schemes. In order to prove the efficiency of the proposed RSE

scheme, this chapter presented an asymptotic analysis of existing schemes against

the proposed RSE scheme. The results yield that the presented scheme is lightweight

and outperforms existing schemes in terms of required computational resources.

In this research, a proof-of-concept prototype is designed and implemented, and

tested over a real dataset of encrypted files. The analysis of the result yields that the

proposed scheme shows a linear growth with the increase in the input. Therefore, the

proposed RSE scheme is optimized and can be deployed onto a real cloud offering.

Based on the results the proposed RSE scheme can be termed to be extremely

lightweight and resource optimized as compared to the state-of-the-art.

Although this chapter addresses the primary issue of performing keyword search,

it is observed that single-keyword searching may not be useful in scenarios where

large amounts of data appear as result of a search. The next chapter extends the

RSE scheme proposed in this chapter and increases the query effectiveness by

supporting multi-keyword disjunctive searching instead of allowing only single

keyword searching. To enhance the efficiency, the use of multi-core processors and

multi-threads are explored in the next chapter.



Chapter 4

Parallelized Disjunctive Query based

Searchable Encryption Scheme

Searching for a keyword over the encrypted data stored in the cloud is desirable

and it requires to design sophisticated SE schemes. The single keyword SE scheme

presented in the previous chapter is helpful for the databases that mainly comprise of

distinct/ unique data tuples. Therefore, the search results could easily be narrowed

down to a few. In scenarios where a single keyword search is not helpful in reducing

the outcome, multi-keyword searching may be required.

Multi-keyword searching allows a client to search for keywords that collectively

reduce the search space as only a few keywords qualify against the search query.

There are two types of multi-keyword queries; conjunctive and disjunctive. Con-

junctive queries refer to the searching where the keywords are inter-related, on the

contrary, a disjunctive query is a search where the keywords are independent and not

inter-related. In case of a disjunctive query, one may benefit from the advancements

made in the field of multi-core and multi-threading to enhance the search process.

This chapter extends the SE scheme presented in the previous chapter to perform

parallelized disjunctive searching. The following contributions to the field of SE are

made through this research:
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• A novel Ranked Multi-keyword Searchable Encryption (RMSE) scheme is

proposed. The proposed scheme is a lightweight (as compared to the exist-

ing schemes) and optimized ranked multi-keyword SE scheme that supports

disjunctive queries.

• The RMSE scheme is based on probabilistic trapdoors that resist distinguisha-

bility attacks. To appreciate the advantage gained from the probabilistic

trapdoors, security definitions are proposed and the security of the RMSE

scheme is validated.

• The performance is measured two-fold; firstly by implementing the proof

of concept prototype and deploying it onto the BTCS. Secondly, tuning the

scheme to enable multi-threading to achieve parallelization in a multi-core

setup. Both variants are tested over an encrypted telephone speech corpus (real

dataset).

4.1 Problem Formulation

This section sheds light on the significance of SE by discussing the system model

and the design goals.

4.1.1 The System Model

As illustrated in Figure 4.1, the Ranked Multi-Keyword Searchable Encryption

(RMSE) scheme mainly comprises of two entities: Bob (client/ data owner) and

the cloud server (CS). Bob is in possession of a corpus containing n documents

D = {D1,D2, · · · ,Dn}. Bob wants to encrypt and outsource his documents to the

CS while being able to search for keyword(s) over the encrypted corpus. Instead of

single keyword search, Bob is interested in performing disjunctive multi-keyword

search over the encrypted corpus while preserving the privacy of the documents and
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the search. Bob identifies a set of unique keywords W = {W1,W2, . . . ,Wm} from the

documents D and forms a dictionary. There is a high probability that Bob’s trapdoor

(search query) may be disjunctively mapped to multiple documents, therefore, he

wishes to retrieve documents based on some ranking mechanism. The ranking comes

with an increase in the computational time as discussed in the Section 4.6. The

proposed construction also uses Equation 3.1 for ranking the documents.

Fig. 4.1 The System Architecture for the RMSE scheme.

Using the master key K, Bob generates a secure ranked index table (I) and

encrypts the corpus (represented as step-a). The index table along with the encrypted

documents are outsourced to the CS (step-b). The CS is assumed to be “trusted-but-

curious" or “honest-but-curious” (i.e., semi-honest), in other words the CS provides

reliable services but it is also interested in learning private information that can

be extracted from the outsourced documents, index table or trapdoor. In order to

perform a disjunctive keyword search, Bob using his private key generates a valid

probabilistic trapdoor and sends it to the CS. The CS splits the trapdoor over different
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threads that will search in parallel over the secure index table (I) on Bob’s behalf

and reduce the obtained result to return the encrypted document identifiers in the

ranked order, as shown in Figure 4.2.

The benefits of multi-threading are already highlighted in [122]. Multi-threading

coupled with SE offers the following advantages:

• Effective resource sharing; especially the resources that will be idle otherwise.

• Accelerated efficiency and reduced search time.

• Utilization of advances made in the multi-core and multi-processor architec-

tures.

• Increase in the responsiveness of the system by performing parallel searches.

From here on, Bob will be represented as a client throughout the remaining of the

chapter.

Fig. 4.2 Parallel Searching using the MapReduce Framework.
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4.1.2 Design Goals

The proposed construction bears the following security and performance goals:

• Trapdoor Unlinkability: The primary goal is that the trapdoor should be

probabilistic, therefore, for the same keyword searched again a new trapdoor

should be generated. This helps resist distinguishability attacks.

• Privacy Guarantee: Apart from the outcome of the search, the CS should not

deduce any keyword related information from the secure index and trapdoors.

Therefore, the scheme should provide security in the known cipher-text model,

i.e., it should provide security against an adaptive polynomial time adversary.

• Lightweight and parallelizable: The scheme should be lightweight by default,

i.e., based on efficient primitives as compared to the state-of-the-art. To

accelerate the performance of the scheme in the disjunctive keyword scenario,

the proposed scheme should support parallel search.

Now that the goals have been mentioned, we formally define our RMSE Scheme.

Definition (Ranked Multi-Keyword Searchable Encryption Scheme (RMSE)):

The proposed RMSE comprises of five polynomial time algorithms Π = (KeyGen,

Build_Index, Build_Trap, Search_Outcome, Dec) such that:

(K,ks)← KeyGen(λ ): is a probabilistic key generation algorithm that takes a

security parameter λ as the input. It outputs a master key K and a session key

ks. This algorithm is run by the client.

(I)← Build_Index(K,D): is a deterministic algorithm that takes the master key K

and collection of documents D as the input. The algorithm returns a secure

index I. This algorithm is run by the client.

Tw← Build_Trap(K,ks,w,num): is a probabilistic algorithm that takes the master

key K, a session key ks, set of disjunctive keywords w⊂W , the number (num)
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of documents D required as the input. The algorithm returns a trapdoor Tw.

The algorithm is run by the client.

X ← Search_Outcome(ks, I,Tw): is a deterministic algorithm run by the CS. The

algorithm takes the session key ks, index table I and the trapdoor (Tw) as the

input and returns X , a set of desired number of encrypted document identifiers

EncK(id(Di)) containing the set of disjunctive keywords w in ranked order.

Di← Dec(K,X): is a deterministic algorithm. The algorithm requires the client’s

master key K and encrypted set of document identifiers EncK(id(Di)) to

decrypt and recover the document id’s. This algorithm is executed by the

client.

4.2 Security Definitions

This section extends the security definitions presented in the Section 3.2 to be applied

to the proposed RMSE scheme.

4.2.1 Keyword-Trapdoor Indistinguishability for RMSE

Keyword-Trapdoor Indistinguishability is the ability of a SE scheme to hide and

dissipate the redundancy in the statistics of the keywords into the trapdoor. This helps

to achieve adaptive security, i.e., for the same keywords being searched repeatedly

a new and unique trapdoor will be generated. Hence, even if the adversary is

maintaining a history of keywords and associated trapdoors, it cannot guess the

future searches. Therefore, to guess the keywords or the content of the documents a

large amount of data needs to be intercepted in polynomial time.
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Description

The challenger generates an index table for the document collection D . The adversary

maintains a history containing the set of disjunctive keywords wi, where f or 1 ≤

i ≤M;M = |P(W )−φ | and the trapdoors generated for all the keywords wi. The

adversary submits two keywords (w0,w1) to the challenger and receives a trapdoor

corresponding to the keyword wb, where b represents the outcome of tossing a fair

coin. The adversary is challenged to output the bit b. If the adversary is able to make

a guess with a probability greater than 1/2 then the adversary has succeeded and

the scheme lacks in providing keyword-trapdoor indistinguishability. The security

parameter λ is negligible i.e., λ is sufficiently small that it can be ignored to highlight

the security of the scheme.

Definition 4.1 Let RMSE=(KeyGen, Build_ Index, Build_Trap, Search_Outcome,

Dec) be a Ranked Multi-keyword Searchable Encryption Scheme over a dictionary of

keywords W = {W1,W2, · · · ,Wm}, set of documents D = {D1,D2, · · · ,Dn}, λ be the

security parameter, P(W )−φ represent a power set containing M = 2m−1 possible

disjunctive members and A j;0≤ j≤M+1 be a non-uniform adversary. Consider the

following probabilistic experiment Key_TrapRMSE,A (λ ):

Key_TrapRMSE,A (λ )

(K,ks)← KeyGen(λ )

(I)← Build_Index(K,D)

f or 1≤ i≤M;M = |P(W )−φ |

(stA ,wi)←Ai(stA ,Tw1, · · · ,Twi)

Twi ← Build_TrapK(wi)

(stA ,w0,w1)←A0(λ ); (w0,w1) ∈ P(W )−φ

b $←− {0,1}

(Twb)← Build_Trap(K,ks,wb,num)

b′←AM+1(stA ,Twb)
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T ′w← Build_Trapks(wl); l ∈M

i f b′ = b,out put 1

otherwiseout put 0

where stA represents a string that captures A ’s state. The keyword-trapdoor

indistinguishability holds for all the polynomial time adversaries (A0,A1, · · · ,AM+1)

such that N = poly(λ ),

Pr[Key_TrapRMSE,A (λ ) = 1]≤ 1
2
+negl(λ ) (4.1)

4.2.2 Trapdoor-Index Indistinguishability for RMSE

Trapdoor-Index Indistinguishability refers to the complexity offered by a SE scheme

that keeps an adversary from identifying the index table entries and documents

corresponding to the search query prior to the search. This should hold true even if

the adversary maintains a history of keywords, trapdoor and outcome of the searches.

Such a property can only be achieved if the trapdoors are probabilistic. Therefore, to

guess the index table entry corresponding to a trapdoor and associated keywords, a

large amount of data needs to be intercepted in polynomial time.

Description

The challenger generates an index table against a data collection D . The challenger

sends adversary the set of disjunctive keywords wi, where (w0,w1, · · · ,wi)∈P(W )−

φ , the trapdoors generated for all the keywords wi, along with the associated index

table entries I[0][wi], while maintaining the order in which they occur. Now the

adversary submits two disjunctive keywords (w0,w1) to the challenger and receives

a trapdoor corresponding to the keyword wb. The adversary has to now decide the

corresponding index value and is challenged to output the bit b. If the adversary

is able to make a guess with a probability greater than 1/2 then the adversary has
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succeeded and the scheme lacks in providing trapdoor-index indistinguishability.

The security parameter λ is negligible i.e., λ is sufficiently small that it can be

ignored to highlight the security of the scheme.

Definition 4.2 Let RMSE=(KeyGen, Build_Index, Build_Trap, Search_Outcome,

Dec) be a Ranked Multi-keyword Searchable Encryption Scheme over a dictionary of

keywords W = {W1,W2, · · · ,Wm}, set of documents D = {D1,D2, · · · ,Dn}, λ be the

security parameter, P(W )−φ represent a power set containing M = 2m−1 possible

disjunctive members and A = (A0,A1) be a non-uniform adversary. Consider the

following probabilistic experiment Key_TrapRMSE,A (λ ):

Trap_IndexRMSE,A (λ )

(K,ks)← KeyGen(λ )

(I)← Build_Index(K,D)

f or 1≤ i≤M

let I′ = I[0][i] = H−1
K (W )

Twi ← Build_Trap(K,ks,wi,num)

where (w0,w1, · · · ,wi) ∈ P(W )−φ

b $←− {0,1}

(stA ,w0,w1)←A0(stA ,λ ,wM, I′,TwM);

where (w0,w1) ∈ P(W )−φ

(Twb)← Build_Trap(K,ks,wb,num)

b′←A1(stA , Iwb)

i f b′ = b,out put 1

otherwiseout put 0

where stA represents a string that captures A ’s state. The trapdoor-index indis-

tinguishability holds if for the polynomial time adversaries (A0,A1),

Pr[Trap_IndexRMSE,A (λ ) = 1]≤ 1
2
+negl(λ ) (4.2)
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where probability is over the choice of b.

4.3 Proposed RMSE Scheme

This section presents the RMSE scheme along with the description that helps to

explain the scheme.

4.3.1 Scheme Construction

• Phase 1-KeyGen (λ ): Given a security parameter λ , the client generates the

cryptographic keys K,ks←{0,1}λ ; where K,ks are the master key and session

key respectively.

• Phase 2-Build_Index (K,D): Given a set of documents D , dictionary of

keywords W , a master key K, hash functions H(·), prime number p of the size

λ +1 bits, random number R←CSPRNG(1λ ), the index table (I) is generated

by the client and sent to the Server. The index table has the dimensions

(n+ 1)× (m+ 1), where, m represents the total number of keywords and n

represents the total number of documents. The index table is generated as

follows:

– For 1≤ t ≤ m:

- let a← (HK(Wt))

- Compute I[1][t] = a−1;

– For 1≤ u≤ n:

- Compute I[u][1] = EK(id(Du));

- Calculate the RF for Wt occurring in Du using Equation 3.1

and store as I[u][t];

– Mask(RF) :
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- For 1≤ j ≤ m:

- Choose R in Zp;

- I[n+1][ j+1] = I[n+1][ j+1]×R;

• Phase 3-Build_Trap (K,ks,w,num): Given the master key (K), the session

key (ks), a Hash function H(·), desired number of documents (num), the

trapdoor Tw is generated by the client as follows:

– let b← EncK(w)

– For 1≤ u≤ |w|, where w⊂W :

- let a← (HK(wu));

- let c← a×b;

- B[u] = c;

– let d← Hks(b);

– Tw← (d,B,num)

• Phase 4-Search_Outcome (ks, I,Tw): Given a trapdoor Tw transmitted by the

client, a session key ks, a hash function H(·) (same as Build_Trap phase) and

the index table I, the search is done by the server and the ranked encrypted

documents are returned to the client. The search is done as follows:

– Split trapdoor into q = |w| parts, assign to an individual thread.

– For each thread do the following:

- For 1≤ l ≤ sizeo f I:

- if (d == Hks(B[q]×a−1)):

- Y [q] = l

- Sort the RFs in descending order.

- Xw[ ]← EncK(id(Di))
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– Add all the Xw into another array Y .

– Input the arrays Y into the MapReduce framework to obtain the docu-

ments containing the keywords. Store the obtained results in an array

X .

• Phase 5-Dec (K,X): Given the master key (K) and a set X of encrypted

document identifiers stored in ranked order, the decryption is achieved using

the master key (K).

4.3.2 Description

A brief description of the client side and the server side tasks are given below:

KeyGen Phase

The client triggers the KeyGen algorithm. Having the security parameter λ , the

client generates two cryptographic keys, i.e., a master key K and a shared key ks.

The master key is kept secret whereas the shared key is shared with the CS.

Build_Index Phase

This phase is run by the client. The client initializes a prime number p of the order

λ +1 bits. Using the master key, the client computes the hashes of all the keywords

in the dictionary as HK(W ) and stores their inverses in the first row of the index table

I. The encrypted document identifiers EK(id(D)) are placed along the first column

of the index table I. Using the Equation 3.1, the client calculates the relevance

frequencies that represent the frequency of the occurrence of a keyword within a

document and the entire dataset thereafter. The RFs are calculated and placed at the

respective location within the index table I. A frequency analysis attack is the study

of the frequency of the keywords within a ciphertext or encrypted document. In order

to enhance the security of the index table and to prevent frequency analysis attacks
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the RFs are masked in such a way that the correlation between the RFs remains

entire but deters the possibility of an attack. Upon the successful generation of the

index table I, it is outsourced to the CS.

Build_Trap Phase

In order to search for a keyword, the client runs the Build_Trap phase. This phase

requires a probabilistic encryption algorithm such as AES-CBC to produce proba-

bilistic trapdoors. The algorithm also makes use of the hash function used in the

Build_Index phase by taking the master key and the keyword as the input. It is to be

noted that the inverse is already present in the index table. So even though the trap-

door is probabilistic but it can easily be mapped to the entry where a×b×a−1 = b.

Now the server only needs to compute the hash using the shared key ks. The

Build_Trap algorithm is designed in such a way that it can facilitate single keyword

search or multi-keyword searching.The trapdoor is generated and sent to the CS.

Search_Outcome Phase

This algorithm is run by the CS. Depending upon the number of keywords for which

the trapdoor Tw is generated, the CS splits the trapdoor into |w| parts among different

threads. Since the search can be performed in parallel, the encrypted document

identifiers are identified for each thread. Then the results from the individual threads

are fed as the input to another thread that reduces to identify encrypted document

identifiers in ranked order. The results are shared with the client.

Dec Phase

The client using his master key K decrypts the results to uncover the underlying

document identifiers.
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4.4 Security Analysis

This section analyzes the security of the proposed RMSE scheme in relation to the

security definitions presented in the Section 4.2. Firstly the leakage profiles are

discussed to highlight any leakage that the RMSE scheme has and then the formal

security proofs are presented.

4.4.1 Leakage Profiles

In order to validate the security of a scheme, it is important to analyze the leakage

profile of the proposed RMSE scheme. This helps to examine the affects of the

scheme on the security definitions by demonstrating whether the scheme is in line

with the security definitions proposed in the Section 4.2. This analysis includes all

the artifacts that evolve during the lifetime of the system and we analyze them individ-

ually. The leakages L4.1,L4.2,L4.3 are associated with the Index Table (I), Trapdoor

(Tw) and the Search Outcome (SO) respectively. The leakages are explained below:

Leakage L4.1

This leakage is linked with the Index Table I and highlights the information revealed

by the index table. The index table is generated by the data owner (client) and

outsourced to the CS. This leakage is defined as:

L4.1(I) =


((HK(Wm)))

−1, EncK(id(Dn)),

Mask(RF), (HK(Wm))

EncK(W ) ∈ EncK(D)∨EncK(W ) /∈ EncK(D)

 (4.3)

Leakage L4.2

This leakage is related to the trapdoor generated for a set of keywords (w) and

represented by Tw. This leakage is defined as follows:
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L4.2(Tw) = {(i = |w|,B[i]← EncK(Wi)(HK(Wi))),(d← Hks(Wi)),num} (4.4)

Leakage L4.3

This leakage incurs due to the outcome of the search when the CS searches for the

disjunctive keywords (w) against which trapdoor is formed. The leakage is defined

as follows:

L4.3(SO) = {OC(w),EncK(id(Di))∀Twi∈Di} (4.5)

where OC represents the outcome of the search against the keyword set.

4.4.2 Formal Security Proofs

In order to validate the security of the proposed RMSE scheme, we present a theo-

rem that confirms whether the proposed scheme provides Keyword-Trapdoor and

Trapdoor-Index indistinguishability. This leads to a lemma that helps validate the

conformance of the proposed RMSE scheme to the privacy preserving property by

taking the leakage profile into account.

Theorem 4.1: RMSE provides Keyword-Trapdoor and Trapdoor-Index Indistin-

guishability.

Proof: We now prove that the scheme presented in the Section 4.3.1 provides

indistinguishability. The proof is two fold; firstly we prove that the scheme provides

Keyword-Trapdoor Indistinguishability and then we prove that it is Trapdoor-Index

indistinguishable. We present the game based proofs as follows:
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Keyword-Trapdoor Indistinguishability

The term Keyword-Trapdoor Indistinguishability states that an adversary should

not be able to distinguish between two trapdoors generated for different keywords.

Therefore, a unique trapdoor should be generated for the same keywords being

searched again. The game proceeds as follows:

Let RMSE be a ranked multi-keyword SE scheme. Suppose an index table (I) is

generated over a dictionary of keywords W = {W1,W2, · · · ,Wm} extracted from a set

of documents D = {D1,D2, · · · ,Dn} where m,n ∈ N. The game is played between

an adversary A and a challenger C and comprises of three phases:

• Setup Phase: The adversary A sends a keyword to the challenger C . The

challenger runs Build_Trap algorithm and generates a trapdoor corresponding

to the disjunctive set of keywords w ∈ P(W )−φ and sends it to the adversary

A . This may continue until the adversary has not queried all the possible

keyword subsets of W and received the associated trapdoors. Hence now the

adversary has formed a dictionary against all the previous search queries.

• Challenge Phase: The adversary A outputs two set of disjunctive keywords

w′1,w
′
2 such that w′1 ̸= w′2. The challenger C tosses a fair coin b←{0,1} and

runs Build_Trap phase to generate a trapdoor T ′w′b
. The trapdoor T ′w′b

is sent to

the adversary A . The adversary A is allowed to run the setup phase again

and query the same keywords again if interested.

• Outcome Phase: The adversary A returns a guess b′ ∈ {0,1} of b

Adversary’s advantage is the measure of how successfully an adversary can

attack the cryptosystem. Since the RMSE scheme is based on probabilistic trapdoors,

the advantage of the adversary A in winning the game is defined as:

KTAdvA = |Pr[b′ = b]−1/2| (4.6)
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The above equation is simplified to give an adversarial advantage of 1/2, since the

trapdoors are probabilistic the Pr[b′ = b] = 0. Therefore the adversarial advantage

of the keyword-trapdoor indistinguishability for the RMSE scheme is 1/2. This is

according to the definition 4.1 and the equation 4.1 respectively.

Trapdoor-Index Indistinguishability

The term Trapdoor-Index Indistinguishability states that an adversary should not be

able to distinguish between two index table entries corresponding to the trapdoors

prior to the search. Therefore, a unique trapdoor should be generated for the same

keywords being searched again in such a way that the corresponding index entries

should not be revealed. The game proceeds as follows:

Let RMSE be a ranked multi-keyword SE scheme. Suppose an index table (I) is

generated over a dictionary of keywords W = {W1,W2, · · · ,Wm} extracted from a set

of documents D = {D1,D2, · · · ,Dn} where m,n ∈ N. The game is played between

an adversary A and a challenger C . The game proceeds as follows:

• Setup Phase: The adversary A sends a disjunctive keyword w∈ P(W )−φ to

the challenger C . The challenger C runs Build_Trap algorithm and generates

a trapdoor corresponding to the keyword. The challenger also identifies the

index table entries corresponding to the trapdoor and sends the keywords w,

trapdoor and index table entries to the adversary A . This may continue until

the adversary has not queried all the possible keywords w ∈ P(W )−φ and

received the associated trapdoors and index table IW entries. Hence now the

adversary has formed a dictionary against all the previous search queries and

associated outcomes.

• Challenge Phase: The adversary A outputs two disjunctive keywords w′1,w
′
2

such that w′1 ̸= w′2 and w′1,w
′
2 ∈ P(W )− φ . The challenger C tosses a fair

coin b← {0,1} and runs Build_Trap phase to generate a trapdoor T ′w′b
. The
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trapdoor T ′w′b
is sent to the adversary A . The adversary A is allowed to run

the setup phase again and query the same keywords again if interested.

• Outcome Phase: The adversary A returns a guess of the index entry I′w′
b′

such

that b′ ∈ {0,1} of b.

In the RMSE scheme, the advantage of the adversary A in winning the game is

defined as:

T IAdvA = |Pr[β ′ = β ]−1/2| (4.7)

The simplification of the above equation leads to an adversarial advantage of 1/2,

since the trapdoors are probabilistic the Pr[b′ = b] = 0. Therefore the adversarial

advantage of the trapdoor-index indistinguishability for the RMSE scheme is 1/2.

This is according to the definition 4.2 and the equation 4.2 respectively.

Hence, from the equations 4.6 and 4.7 it is inferred that the proposed RMSE

scheme provides Keyword-Trapdoor and Trapdoor-Index Indistinguishability.

Lemma 4.1: The proposed RMSE is a Privacy Preserving SE scheme as it

provides (L4.1,L4.2,L4.3)−security and is according to the definitions 4.1 and 4.2.

Proof Sketch: Theorem 4.1 already proves that the proposed scheme conforms

to the Definitions 4.1, 4.2 and provides keyword-trapdoor and trapdoor-index in-

distinguishability. We now have to examine the impacts of the leakages onto the

definition’s conformity. Referring to the leakages (L4.1,L4.2,L4.3) defined above,

similar to the RSE scheme proposed in the Chapter 3, it is observed that most of the

leakages are either encrypted or hashed and do not lead to any privacy or security

concerns. We also make use of a masking function (represented as Mask(RF) in the

Build_Index phase, section 4.3.1) that helps to enhance the security and privacy of

the scheme as the masking function helps to deter frequency analysis attacks. The

masking function hides the frequencies of the occurrence of keywords while being

able to correctly rank the documents. Our proposed masking function can also be
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replaced with Order Preserving Encryption (OPE). The proposed trapdoors are also

probabilistic that help to prevent the distinguishability attacks if eavesdropping takes

place. Therefore, the proposed RMSE is privacy preserving.

Lemma 4.2: The proposed RMSE provides correctness and soundness

It may be observed that the RMSE scheme is an extension of the RSE scheme

presented in the Chapter 3. Similar to the RSE scheme, the proposed RMSE scheme

exploits the property of modular inverse to generate probabilistic trapdoors, to

perform the search and lead to the exact matching of the disjunctive keywords.

Therefore, the proof of this lemma flows directly from the correctness and soundness

proof of RSE scheme presented in the Section 3.3.3.

4.5 Performance Metrics

This section discusses the algorithmic performance of the RMSE scheme by per-

forming the asymptotic analysis followed by the storage overhead analysis.

4.5.1 Algorithmic Analysis

The asymptotic analysis of the proposed scheme is performed. This algorithmic

analysis includes the Build_Index, Build_Trapdoor and Search_Outcome phases.

The analysis is the upper bound complexity analysis. The complexities associated to

the set of keywords W and documents D is denoted by m and n respectively. Similar

to the complexity of the RSE scheme (Chapter 3) presented in the Section 3.5.1,

the Build_Index phase of the proposed RMSE scheme takes O(mn+m) for ranked

index generation and O(mn) for unranked index generation.

The complexity related to the trapdoor generation is O(m(2h+ e)) where h and

e represent the complexities associated to the hash and encryption. Having c cores,
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Table 4.1 Algorithmic Comparative Analysis RMSE vs. Existing Schemes

Schemes Build_Index Build_Trap Search_Outcome

[28]:MRSE_I O(md2) O(d2) O(md)
[28]:MRSE_II O(md2 +U2) O(d2) O(md +U)

[82] O(md2 +d2) O(d2) O(d
′
ds
′
)

[144] O(mLE +m3M) O(m2M+E) O((m2+1)M+mE)
Proposed RMSE (ranked) O(mn+m) O(m(2h+ e)) c/O(m2n+n)
Proposed RMSE (unranked) O(mn) O(m(2h+ e)) c/O(m2 +n)
Note: L is a constant decided by the dataset and E denotes an exponentiation

function. U denotes the dummy keywords added to deter frequency analysis attacks,
M represents the multiplications and d denotes the number of fields for each record.

the Search_Outcome phase is bound by c/(O(m2n+n)). We would like to highlight

that if we remove the ranking functionality the efficiency of the proposed RMSE

scheme can be enhanced by O(mn+ n). In terms of unranked parallel search the

complexity will be c/O(mn+n)

Table 4.1 shows the algorithmic comparative analysis of the proposed RMSE

scheme against the existing schemes presented in the Section 2.4.2. To achieve direct

comparison it is assumed that the complexities of the encryption and hashing are

O(1). From the table, it is evident that our scheme is efficient as compared to the

other existing schemes.

4.5.2 Storage Overhead

Storage overhead is an important metrics that helps to analyze the memory acquired

by the proposed RMSE scheme. The memory consumption is highly dependent upon

the underlying data structure. Referring to the Section 4.3.1, it is observed that two

keys (i.e., K and ks) and a prime number p are stored at the client side. Having the

security parameter λ , the keys are of the size 128 bit. Since the prime number p is of

the size λ +1 bits, having λ = 160 bits (obtained from the output of the hash), we get

p = 161 bits. Hence the total storage at the client side is 161+128×2/8 = 52.125

bytes.



4.6 Computational Analysis 90

Now we analyze the storage overhead of the CS. It is observed that the CS

has to store the session key ks, the index table I and the encrypted documents D .

The session key ks is similar to the client’s, i.e., 128 bits. Given n documents and

m keywords, the storage overhead of the index table I is 8(m× n). The storage

incurred as a result of the stored encrypted documents is n×Davg, where Davg

represents the average size of the document. Hence the storage required at the CS is

128/8+8(m×n)+n×Davg bytes.

As already discussed in the Section 4.1, multi-threading is dependent upon the

number of queried keywords. Each thread has to search over the entire index table I

so the space complexity in the worst-case scenario would be O(m×n), where m and

n represent the number of keywords and the number of documents respectively.

4.6 Computational Analysis

This section discusses the computational time when the proposed RMSE scheme is

implemented and the proof-of-concept prototype is deployed onto the BTCS. The

details of the Application Encryption (AE) server can be found in the Section 3.6.1.

Figures 4.3 and 4.4 represent the activity diagrams that illustrate the flow of

events that take place during the life cycle of the RMSE scheme when deployed

onto the BTCS. It is observed that the index generation is done by the client and the

cryptographic primitives are obtained from the AE server to encrypt the documents.

Upon the successful encryption of the documents, they are stored in the BTCS along

with the secure inverted index table.

Whenever a client wants to search for a keyword, the trapdoors are generated

using the client’s credentials and then the trapdoor is sent to the BTCS. The trapdoor

is fed to the Map Reduce framework and the search is performed over the secure

index table. The ranked result is sent back to the client and the related documents
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Fig. 4.3 RMSE Activity Diagram: Setup

Fig. 4.4 RMSE Activity Diagram: Searching

are downloaded from the BTCS. The obtained encrypted document identifiers are

then decrypted using the symmetric key.
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4.6.1 System Specification and implementation details

The proposed RMSE scheme is implemented in Java and the results have been

generated in Matlab R2016a. The client-server architecture has been implemented

on separate machines. The client-side is our workstation and server-side is the BTCS.

The communication takes place through sockets.

• Client side: The confidentiality is achieved by implementing 128-bit AES-CBC

and the keyed cryptographic hash function used is SHA-256. The specification

of the workstation is 2.7 GHz Intel Core i5 processor, 8GB RAM, running at

1867 MHz DDR3.

• Server side: The searching is performed at the BTCS. The resources allocated

at the BTCS include a Dual Core Intel (R) Xeon (R) CPU E5-2660 v3 running

at 2.60 GHz and 8GB of RAM.

The details related to the dataset used in the implementation and testing of the

proposed RMSE scheme can be found in the Section 3.6.2.

4.6.2 Computation Overhead

To analyze the performance of the proposed RMSE scheme in a multi-threaded

environment, we analyze each of the phases (already discussed in Section 4.3.1)

separately. Since the KeyGen phase and the Dec phase are identical to other schemes,

we do not evaluate them. The performance estimation for the remaining phases is

discussed below:

Build_Index Phase

Figure 4.5 graphically represents the computational time of the proposed RMSE

scheme for the index generation. With the addition of ranking to the scheme the query

effectiveness increases but as a result the performance also decreases. Therefore,
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we measure the computational time for the ranked and unranked index generation

separately. We start by generating the index for 100 documents and gradually scale

them to 2,000 documents while keeping the number of keywords fixed to 120,000.

We experience several peak values in the graphs due to the inconsistency among the

documents, i.e., due to the different size of documents. The number of documents

are represented along the x-axis whereas the time in seconds is along the y-axis.

The curve fitting/ linear interpolation when applied to the graph tends to show

a linear trend of y = 0.01x− 1.4898 and R2 = 0.9294 for ranked searching and

y = 0.0047x+0.5343 and R2 = 0.8106 for unranked searching. It is also observed

that although in general our construction shows a linear growth, however, unranked

index generation is efficient as compared to the ranked index generation. The ranked

scheme for 2,000 documents takes 20.3 seconds for the index generation, whereas,

the unranked index generation takes 11 seconds. Hence, in scenarios where ranking

is not required the proposed RMSE construction, modified as unranked, can ensure

much better results. It is to be noted that the index generation is a one time process

and does not need to be generated for every query.

Build_Trap Phase

Figure 4.6 illustrates the computational time that the proposed RMSE scheme re-

quires for the trapdoor generation. We start with 1 keyword and scale it to 5 keywords.

The time in seconds is represented along the y-axis, whereas, the number of key-

words are along the x-axis. The rise in the computational time is experienced while

generating a trapdoor for two keywords. The plaintext input (keywords) exceeds the

128bit AES block size, and therefore this rise depicts the padding of the blocks for

the AES calculations. A slight drop in the computation time is observed once the

computations are complete and the CPU resources are free. It can be seen that the

proposed RMSE scheme on applying graph normalization tends towards a constant
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Fig. 4.5 RMSE: Computational Time for the Index Generation.

trend with the increase in the number of disjunctive keywords. This is also evident

in the readings depicted in the graph. Hence for generating a trapdoor containing 5

keywords, we require 5.21 seconds.

Fig. 4.6 RMSE: Computational Time for the Trapdoor Generation.



4.6 Computational Analysis 95

Fig. 4.7 RMSE: Computational Time for Multi-threaded Search.

Search_Outcome Phase

Search_Outcome phase refers to the computational time required for performing

disjunctive search and obtaining ranked documents. We delegate the search across

multiple threads. The threads search for the individual keywords and reduce the

result from all the threads to an outcome. The total number of threads used are equal

to the number of keywords in our search query.

Figure 4.7 shows the computational time while searching for disjunctive key-

words. In the graph, ST represents single-thread and MT represents multi-threads.

Firstly we search for two keywords “about time" using a single thread. Later on we

perform search over multiple threads. It can be observed that the efficiency increases

by extending the search over multiple threads as compared to the single-threaded

search. The increase in the efficiency is due to the parallel and concurrent execution

of the search algorithm across multiple threads. Since the designed system supports

multi-threading architecture, the computational time of the algorithm can be inter-

preted as a function of the number of threads. For multiple threads the keywords
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Fig. 4.8 RMSE: Computational Time for Search on the BTCS Including the Network
Latency.

used are {about, time, and, is, or}. Each thread processes a particular keyword to be

searched across the database. The number of documents are represented along the

x-axis and the time in seconds is along the y-axis. We observe the peak values across

the results because of the varying size of the documents, i.e., with the increase in the

size of the documents the number of keywords increases, resulting in an increase

in the search space. For 5 keywords the multi-threads takes a maximum of 0.04

seconds, whereas, for 2 keywords the single threaded system takes 0.052 seconds.

All the searches have been performed over 2,000 documents.

It is evident that by using multiple threads the performance increases significantly.

We now deploy the RMSE scheme onto the BTCS. To do a comparison, we deploy

the RMSE (Multi-threading) scheme and RMSE (Single-threading) scheme. The

communication between the client and the BTCS takes place through sockets, there-

fore, the results also include the network latency incurred during the communication.

The network latency also includes the communication with the AE Service.
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Figure 4.8 shows a comparison among the single-thread RMSE scheme and the

multi-thread RMSE scheme on the BTCS. We again validate our claim of the multi-

thread RMSE scheme being more efficient than the single-thread RMSE scheme. The

number of documents are presented along the x-axis and the time in minutes is along

the y-axis. For the query “about time" the single-thread search takes 13.49 minutes,

whereas, the multi-thread search takes 13.1 minute. With the increase in the number

of queried keywords in the multi-threading setting, we believe that we will not see

an exponential growth in the computational time of the scheme when deployed

onto the BTCS. The curve fitting/ linear interpolation highlights a linear trend of

y = 0.007x−0.04 with R2 = 0.9577 for multi-threading and y = 0.0067x+1.0342

with R2 = 0.9945 for single-threading. Therefore, by extending the proposed scheme

over multiple threads we are able to enhance the efficiency of the proposed RMSE

scheme.

4.7 Summary

SE is an approach that allows to search for keyword(s) over the encrypted set

of documents. With the reliance onto the cloud, users are outsourcing enormous

amounts of data to the cloud. Since the data continues to increase this gives rise to

the term “Big data". Prior SE schemes fail to maintain efficiency when extended

over the Big Data because they primarily perform sequential search over the data.

Searching for a single-keyword may not be adequate in certain scenarios where the

documents are closely related. Hence, complex queries may be required to achieve

effective search. This leads to a compelling case to have a parallel search mechanism

that allows to search for multiple keywords over large amounts of data using parallel

processing.

This chapter presented a disjunctive keyword-based SE scheme that could per-

form parallelized searching by benefiting from the multiple cores and processors.
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The scheme supported the map-reduce framework and was implemented over multi-

ple threads. The extension may have led to security and privacy concerns, but formal

security analysis yields that the scheme still maintains the property of probabilistic

trapdoors. The performance of the proposed RMSE scheme was measured two-fold;

firstly the asymptotic analysis was performed, followed by the storage overhead

analysis. It was observed that the proposed RMSE scheme outperformed the existing

schemes. To perform the computational analysis, the proposed scheme was devel-

oped and the PoC prototype was deployed onto the BTCS. The implementation was

then tested over a real-dataset and the performance gain between the primary scheme

and the multi-threaded scheme was measured. It was observed that the efficiency of

the disjunctive keyword searching could be enhanced further by taking advantage of

the multi-core processors and multi-threading respectively.

The schemes proposed until now do not take the human typographical errors

or closely related keywords into consideration. Therefore, these schemes perform

exact matching and may return a null result in case the queried keyword is misspelt.

To address this problem, the next chapter presents a fuzzy-based SE scheme that

takes human typographical errors into account and allows similarity search instead

of exact matching.



Chapter 5

Fuzzy Ranked Searchable

Encryption Scheme

Cloud storage is a service that enables clients to maintain, manage and backup

their data onto the cloud. To achieve confidentiality of sensitive data stored in the

cloud, the data is encrypted prior to being outsourced to the cloud. This gives rise

to the problem of searching and sifting through the large amounts of encrypted

data. Although, searchable encryption makes the searching over the encrypted data

possible, from time to time it may be observed that while searching for a keyword the

search result is null. This may be due to a typographical error in the search query or

alternative spellings (such as the American and British English spelling differences).

The schemes discussed in the previous chapters do not take the human typographical

errors or spelling differences into account and rely on the exact matching of the

trapdoor to a keyword already existing in the dictionary.

Fuzzy logic [93][161] is an approach that instead of the usual ’true or false’ or

boolean logic considers the degree of truth. The use of fuzzy logic in SE allows us

to take the human typographical errors and spelling variations into account. This can

benefit law enforcement agencies (LEAs) to perform search when the spellings of an

individual’s name may not be known.
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The following contributions to the field of SE are made through this research:

• This chapter presents a novel Fuzzy Ranked Searchable Encryption (FRSE)

scheme. The proposed scheme is privacy preserving by design and provides

privacy in the known cipher-text model. The proposed FRSE scheme is based

on probabilistic trapdoors that resist distinguishability attacks and preserve the

privacy of the outsourced documents and search queries.

• The proposed FRSE scheme is designed in such a way that it is pluggable with

any existing single-keyword or multi-keyword SE schemes.

• Searchable Encryption-as-a-Service (SEaaS) is achieved in terms of fuzzy

searching for the existing cloud architectures by designing and developing a

proof-of-concept prototype and testing it over an encrypted real-world corpus

of speech transcriptions outsourced to the BTCS.

This chapter discusses the FRSE architecture and the important design primitives

that are used to achieve fuzzy searching. The security definitions are tuned according

to the FRSE scheme and the formal security proofs are presented. This chapter also

presents the algorithmic analysis and the computational complexity analysis of the

proposed FRSE scheme.

5.1 Problem Formulation

A Fuzzy Ranked Searchable Encryption (FRSE) scheme is designed so that it can be

deployed on the cloud server (CS). The CS is assumed to be an honest-but-curious

component of the system. The entire architecture is explained with the help of the

following scenario:
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5.1.1 System Model

Bob outsources his encrypted documents D={D1,D2, · · · ,Dn} to the CS. He wants to

perform fuzzy search over the encrypted set of documents. Typically, a SE algorithm

does not take the user’s typographical errors into account. Therefore, for the wrongly

spelt keyword (e.g., “aboot" instead of “about"), the search outcome will return

null. On the contrary, a fuzzy SE algorithm will still successfully infer a meaningful

keyword from the misspelt keyword. So the search result will include the documents

containing the keywords “about”, “abort” etc.

To perform efficient search, Bob will extract a dictionary of keywords W ={W1,

W2, · · · ,Wm} from D and form an inverted index table and fuzzy index table respec-

tively. The inverted index table (I) makes use of relevance score generator for the

ranking of the documents, whereas, the fuzzy index table (FI) enables the fuzzy

matching of the keywords. The formation of the secure index table (I) is based on the

use of cryptographic primitives. Upon the successful generation of the index tables

(I,FI), Bob outsources the index tables along with the encrypted set of documents

to the CS. This is a one time process.

As mentioned above, the CS is assumed to be “honest-but-curious” or “trusted-

but-curious”. Here honesty means that the CS performs all its operations properly

and correctly, but it is also curious to learn any information that it can infer from the

outsourced documents it is storing on behalf of the client, or from the search queries

it receives from the client. In future, to search for a keyword over the encrypted set

of documents, Bob uses his private key to generate a probabilistic trapdoor and send

it to the CS. The probabilistic trapdoor is unique even for the same keyword being

searched repeatedly, hence, it resists distinguishability attacks. Now the CS using

the trapdoor performs the search over the index tables and returns the results, i.e.,

the encrypted document identifiers in a ranked order. Figure 5.1 illustrates the flow

of events that take place during the entire life cycle of the FRSE scheme.
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Fig. 5.1 The System Architecture for FRSE Scheme

Definition (Fuzzy Ranked Searchable Encryption Scheme (FRSE)): The pro-

posed FRSE scheme comprises of five polynomial time algorithms Π = (KeyGen,

Build_Index, Build_Trap, Search_Outcome, Dec) such that:

(K,ks,r)← KeyGen(λ ): is a probabilistic key generation algorithm that takes a

security parameter λ as the input. It outputs a master key K, a session key ks

and a random number r. This algorithm is run by the client.

(I,FI)← Build_Index(S′,D): is a probabilistic algorithm that takes a randomly

permuted shingle vector S′ and collection of documents D as the input. The

algorithm returns an inverted index table I and a fuzzy index table FI. This

algorithm is run by the client.

TW ← Build_Trap(S′,ks,W,num): is a probabilistic algorithm that takes a randomly

permuted shingle vector S′, session key ks, keyword(s) W , number (num) of

required documents as the input. The algorithm returns a trapdoor, TW . The

algorithm is run by the client.
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X ← Search_Outcome(ks, I,FI,TW ): is a deterministic algorithm run by the CS.

The algorithm takes the session key (ks), inverted index table (I), fuzzy index

table (FI), the trapdoor (TW ) as the input and returns (X), a set of required

encrypted document identifiers EncK(id(Di)) in ranked order.

Di← Dec(K,X): is a deterministic algorithm. The algorithm requires the client’s

master key K and encrypted set of document identifiers EncK(id(Di)) as input

to decrypt and recover the document ids. This algorithm is executed by the

client.

It is important to examine the correctness that a scheme has to offer. We revisit the

definition on correctness proposed in [132] and extend it according to the FRSE

scheme.

Correctness: An FRSE scheme is correct if for the security parameter λ , the mas-

ter key K, the session key ks and the random number r generated by the KeyGen(λ ),

for (I,FI) output by Build_Index(S′,D), the search against the trapdoor TW always

returns the correct set of ranked encrypted document identifiers EncK(id(Di)) to the

client. A FRSE scheme is correct if the following hold true:

• If W ∈ Di then the following should hold with an overwhelming probability:

Search_Outcome(ks, I,FI,TW ) = D ∩Dec(K,X) = Di; (5.1)

where 1≤ i≤ n

• If W ′ /∈ Di then the following should hold with an overwhelming probability:

Search_Outcome(ks, I,FI,TW ′) = D ∩Dec(K,X) = Di; (5.2)

where 1≤ i≤ n, W ′∼W , W ∈Di
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5.2 Preliminaries

This section presents a brief overview of the design primitives that lead to the

conceptualization of the proposed FRSE scheme.

5.2.1 Design Primitives

The design of the proposed scheme is primarily based on several important primitives

i.e. Relevance score, Shingling [25][9], Min Hashing [107], Jaccard Similarity [162]

and Euclidean Norm [31]. A brief introduction is given below:

Relevance Frequency

The relevance frequency (RF) helps to rank the documents. This scheme uses the

equation 3.1 for the ranking of the documents (further details on RF generation can

be found in the Section 3.1.1).

Inverted Index Table

An inverted index table I is a matrix of the order (n+1)× (m+1). All the entries

are initially set to zero. Given a set D of documents {D1,D2, . . . ,Dn} and a set

W of keywords {W1,W2, . . . ,Wm}, the entry located at the position (1, j+1)1≤ j≤m

contains the corresponding masked keyword identifier mask(id(W )). Moreover,

the entry located at (i+1,1)1≤i≤n contains the corresponding encrypted document

identifier EncK(id(D)). The remaining entries of the index table I represent the

corresponding RFs generated by the equation 3.1.

Shingled Keywords

Given a set W of keywords {W1,W2, . . . ,Wm}, let l be a constant that represents the

sequence of l characters to appear within the keywords W . The choice of l is made

such that the probability of any shingle appearing within a keyword should be low.
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The keyword is firstly transformed into a shingle set S consisting of contiguous l

characters appeared in the keyword. The shingle set is converted to a vector S that

represents the presence or absence of a particular shingle. Hence for each shingled

keyword, a vector S of length γ l-bit is required, where γ represents the characters,

i.e., the entries of the vector S represent the occurrence of shingles within a keyword.

Min Hashing

Min Hashing [107] in SE is defined as; given q number of random hash functions (i.e.

random permutations), represented as fq : S→ R, Min Hashing reduces the shingle

vector S and assigns a real number R to form a signature vector (SV). Let Sa and Sb

represent two shingle vectors for two different keywords. The random hash function

permutations should satisfy the condition: fq(Sa) ̸= fq(Sb). Hence the permutations

are independent. The Min Hash value of any vector is the number of first row, in the

permuted order, in which the vector has a 1. As a result a signature vector (SV) is

formed.

Min hashing and Jaccard similarity

With reference to [75], Min Hashing and Jaccard similarity (JS) are closely related

as follows:

• Given two shingled vectors Sa and Sb. The probability of JS( fq(Sa), fq(Sb))

is equal to the JS(Sa,Sb), where vectors Sa and Sb have been converted to a

set.

The Jaccard similarity between two sets X and Y is calculated by:

JS(X ,Y ) =
|X ∩Y |
|X ∪Y |

(5.3)

Corollary 5.1: The Jaccard Similarity between two sets X and Y is 0 if and only

if X ∩Y = φ .
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Euclidean Norm

Given two vectors A = [a1,a2, · · · ,ai] and B = [b1,b2, · · · ,bi], the Euclidean Norm

d represents the distance between the vectors (A,B). The distance between the two

i-dimensional vectors A and B is represented as:

d(A,B) =

√√√√ i

∑
g=1

(ag−bg)
2 (5.4)

5.2.2 Scheme Conceptualization

Prior to presenting the proposed scheme, this section introduces the crux that help

to conceptualize the scheme. This section is explained keeping in view the public

cloud infrastructure. Before going into the explanation a toy example is presented in

Figure 5.2 to illustrate the significant FRSE phases.

• Step 1 is to transform a keyword into a shingle vector.

• Step 2 is to permute a random vector from the shingle vector.

• Step 3 is to form a Fuzzy Index table comprising of the signature vectors after

applying q permutations for the Min Hashing.

• Step 4 is to calculate the RFs and form an inverted index by masking the RFs.

• Step 5 is to generate a trapdoor, form a shingle vector and a randomized vector.

Then using the q permutations calculate the Min Hashes and compute the

Euclidean Norm between the two vectors.

• Step 6 is to compute the Jaccard Similarity between the Fuzzy index entries

and the trapdoor.

• Step 7 is to obtain documents in ranked order.
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Fig. 5.2 FRSE: Toy Example

Inverted Index Table Generation and Document Encryption

The scheme identifies a dictionary of keywords W from the document set D . The

inverted index is formed such that the corresponding entries are populated using the

RF generation mechanism (equation 3.1). On the successful generation of the index

table I, the documents are encrypted using the client’s master key K.

Fuzzy Index Generation

The fuzzy index table (FI) generation requires the client to shingle the keywords

and compute the signature vectors (SV). Each keyword can be represented in the

form of shingles. The keywords containing uppercase letters, lowercase letters,

numbers, duplicate letters and special characters are also considered. Therefore,

each keyword can be represented in the form of a vector having the length γ l-bits,

where γ represents characters including letters, numbers, special characters etc and l

represents the sequence of characters. This is explained with the help of an example,

suppose the keyword is “university". The shingled set representation of “university"

is {un,ni,iv,ve,er,rs,si,it,ty}. The next phase is to represent the shingled set in the form
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of a vector S {aa,ab,ac, · · · ,zz}, such that; if a shingle appears within a keyword

then set the corresponding entry in S as 1 otherwise 0. This yields the length of

the shingle vector to be 262 = 676-bits. The default shingle vector may reveal the

keyword to the CS, so S needs to be randomized such that the total number of

permutations are 676!. As mentioned in [7], the permutations are done as:

Algorithm (PermS): Let S = [e1,e2, · · · ,ey] denote a vector containing y entries.

The random permutation of the indexes of the vector Sy to the vector S′y is represented

by V : Sy→ S′y. The vector S′ is generated such that:

For k = 1,2, · · · ,y, do:

Select at random Sy such that Sy /∈ S′k.

Set S′k=Sy.

Therefore, the first element is picked at random from all the y elements contained

in S, the second element is picked from y− 1 elements and so on. There are y!

different ways to form a randomly permuted vector S′.

The advantage behind randomizing the vector S is that the keywords cannot

be guessed in polynomial time. This is highlighted in more detail in the security

proofs presented in the Section 5.5. After the selection of a particular instance of

the random permutation, the entire dictionary of the keywords is represented in the

form of individual randomly permuted shingled vectors. As the vectors are mostly

sparse, the technique of Min Hashing is applied to all the vectors so that the search

space may be reduced and a signature vector may be formed (already discussed in

the Section 5.2).

Trapdoor Generation

Let W denote the keyword to be searched for. Given a vector T, the keyword is

shingled to populate the randomly permuted vector S′ accordingly such that T = S′.

Since T is mostly sparse, calculating the Jaccard similarity JS and Euclidean norm of
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T against all the signature vectors in the Fuzzy Index FI is a resource intensive task.

Therefore, Min Hashing is applied to T. Up until now, the trapdoor was deterministic

and to make the trapdoor probabilistic a random vector T′ is selected, the selection

is done as follows:

Algorithm (ProbT): Let T = [t1, t2, · · · , ty] denote a vector containing y elements.

Suppose each element represents a Min Hashed value associated to a keyword W .

Initialize a vector T′. A random permutation Q : T→ T′ is generated as:

For j = 1,2, · · · ,y, do:

Let U be a uniform random variable in the range [1,γ l]

and U /∈ T,T′.

Set T′j =U .

Therefore, the vectors do not have any elements in common.

Upon the successful generation of random vector T′, the Euclidean Norm d =

d(T,T′) is computed using Equation 5.4. The trapdoor Encks(d,T
′) is transmitted

to the CS. The next step is to perform search and identify the documents that contain

the queried keyword.

Searching

Upon receiving the trapdoor, the CS using the session key ks decrypts the trapdoor

to uncover the underlying content. The search is based on the corollary 5.1. Since

JS is applicable to sets only, so the CS calculates the JS(T′,SVW ) (using equation

5.3) that requires the representation of vectors into sets. The conversion is done as

follows:

Algorithm (ExtendedVector): Let T = [t1, t2, · · · , tn] denote a vector containing

n entries. Initialize an empty set L. The ExtendedVector E : T→ L is generated as:

For j = 1,2, · · · ,n, do:

Add t j to L such that t j /∈ L .
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It may be observed that the ExtendedVector algorithm transforms a vector to a set.

Although, the properties of a set and a vector vary, this algorithm is only triggered

once the vector properties are no more required and hence only distinct elements are

required in the set.

The trapdoor is formed in such a way that the CS looks for the entries where

the JS is 0. On identifying the relevant entries, the CS computes the Euclidean

Norm d(T′,SVW ), where SVW ∈ FI and T′ ∈ Trapdoor. If the searched keyword is

contained in the dictionary, calculated Euclidean Norm will be equal to d (computed

in the trapdoor generation phase). Otherwise, if the keyword is not contained in the

dictionary, the most relevant keyword will be having a Euclidean Norm ≈ d varying

by ε . ε is the variance from the existing keywords and represents the threshold that

can be controlled by the client.

Upon the identification of the corresponding masked keyword identifier mask−

(id(W )), the CS refers to the Inverted Index Table, I. After identifying the relevant

column, the CS returns ranked encrypted document identifiers to the client.

Note: The sole purpose of using session key ks between the client and the CS is

to avoid any passive attacks that may be carried out by an outsider. Session key may

not be required if the channel is secure.

5.3 Security Definitions

This section revisits the existing security definitions already presented in the Chapter

3,4 related to probabilistic trapdoors. The definitions are extended to fit the proposed

construction.
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5.3.1 Keyword-Trapdoor Indistinguishability for FRSE

Keyword-Trapdoor indistinguishability allows the adversary to select a keyword adap-

tively based on the history; more precisely, the adversary is given tuples (W ,TW ).

Since the adversary now has all the possible keywords and associated trapdoors, it

has to submit two distinct keywords (Wo,W1). The challenger tosses a fair coin b and

sends the trapdoor corresponding to the keyword Wb to the adversary. This process

continues until the adversary has submitted polynomially-many queries and is then

challenged to output the bit b. If the guess is made with a probability of greater than

1/2 then the adversary wins when the security parameter λ is negligible i.e., λ is

sufficiently small that it can be ignored.

Definition 5.1 Let FRSE= (KeyGen, Build_Index, Build_Trap, Search_Outcome,

Dec) be a fuzzy-based ranked searchable encryption scheme over a dictionary ∆, λ

be the security parameter, and A j;1≤ j≤m+1 be non-uniform adversaries. Consider

the following probabilistic experiment Key_TrapFRSE,A (λ ):

Key_TrapFRSE,A (λ )

(K,ks,r)← KeyGen(λ )

(I,FI)← Build_Index(S′,D)

f or 1≤ i≤ m

(stA ,Wi)←Ai(stA ,TW1, · · · ,TWi)

TWi ← Build_Trapks(Wi)

(stA ,W0,W1)←A0(λ )

b $←− {0,1}

(TWb)← Build_Trap(S′,ks,Wb,num)

b′←Am+1(stA ,TWb)

T ′W ← Build_Trapks(Wo);o≤ m

i f b′ = b,out put 1

otherwiseout put 0
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where stA represents a string that captures A ’s state. The keyword-trapdoor

indistinguishability holds for all the polynomial time adversaries (A0,A1, · · · ,Am+1)

such that N = poly(λ ),

Pr[Key_TrapFRSE,A (λ ) = 1]≤ 1
2
+negl(λ ) (5.5)

where probability is over the choice of b.

5.3.2 Trapdoor-Index Indistinguishability for FRSE

Trapdoor-Index indistinguishability refers to the complexity offered by a fuzzy

ranked searchable encryption scheme. More precisely, the adversary is given tuples

(W ,TW ),FI. Since the adversary now has all the possible keywords, associated

trapdoors and fuzzy index table entries, he submits two distinct keywords (Wo,W1).

The challenger now tosses a fair coin b and submits the trapdoor, fuzzy index table

entries corresponding to the keyword Wb to the adversary. This process continues

until the adversary has submitted polynomially-many queries and is then challenged

to output the bit b. f the adversary is able to make a guess with a probability greater

than 1/2 then the adversary succeeds and the scheme lacks in providing trapdoor-

index indistinguishability. The security parameter λ is negligible i.e., λ is sufficiently

small that it can be ignored to highlight the security of the scheme.

Definition 5.2 Let FRSE= (KeyGen, Build_Index, Build_Trap, Search_Outcome,

Dec) be a fuzzy ranked searchable encryption scheme over a dictionary ∆, λ be the

security parameter, and A = (A0,A1) be non-uniform adversaries. Consider the

following probabilistic experiment Trap_IndexFRSE,A (λ ):

Trap_IndexFRSE,A (λ )

(K,ks)← KeyGen(λ )

(I,FI)← Build_Index(S′,D)

f or 1≤ i≤ m
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let I′ = FI[0][i] = EncK(Wi)

TWi ← Build_Trapks(Wi)

b $←− {0,1}

(stA ,W0,W1)←A0(λ , I′,TWm,Wm)

(TWb)← Build_Trap(S′,ks,Wb,num)

b′←A1(stA ,FIWb)

i f b′ = b,out put 1

otherwiseout put 0

where stA represents a string that captures A ’s state. The trapdoor-index indis-

tinguishability holds if for the polynomial time adversaries (A0,A1),

Pr[Trap_IndexFRSE,A (λ ) = 1]≤ 1
2
+negl(λ ) (5.6)

where probability is over the choice of b.

In SE, Privacy Preservation refers to getting valid search results without letting

the CS learn the underlying data. This also includes anything that can be inferred

from the trapdoors, index tables and the encrypted documents outsourced to the

cloud. This leads to the following corollary:

Theorem 5.1: The proposed FRSE scheme provides Keyword-Trapdoor Indistin-

guishability and Trapdoor-Index Indistinguishability if the Inverted Index table (I)

and Fuzzy index table (FI) are secure and the trapdoors are probabilistic.

5.4 Proposed FRSE scheme

This section formally presents the detailed description of the proposed scheme and

discusses its correctness and soundness.
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5.4.1 Scheme Construction

As mentioned earlier, the proposed scheme comprises of the following five polyno-

mial time algorithms:

• Phase 1-KeyGen (λ ): Given a security parameter λ , generate the keys

K,ks←{0,1}λ and a random number r←CSPRNG(1λ ).

• Phase 2-Build_Index (S′,D):

– Inverted Index (I) Generation: Construct a matrix (I) of the order (n+

1)× (m+1) as follows:

1. Extract a keyword set W = {W1,W2, · · · ,Wm} from a set of docu-

ments D = {D1,D2, · · · ,Dn}.

2. Set entries at (i+1,1) = EncK(id(Di)); 1≤ i≤ n.

3. Set entries at (1, j+1) = EncK(Wj); 1≤ j ≤ m.

4. Calculate the RF using equation 3.1 and populate the remaining

entries (i+1, j+1) = RF(Wj,Di).

5. Mask the RFs as:

- For a = 1,2, · · · ,m

- (n,b) = (n,b)× r

Note: To further enhance the security, Order Preserving Encryption

(OPE) may be used instead.

6. Output the matrix (I) that represents the inverted index table I.

– Fuzzy Index (FI) Generation: Construct a matrix FI of the order (Q+

1)× (m+1) where Q ∈ q represents the random permutations used for

Min Hashing represented as fq : S→ R and m are the total number

keywords. Construct FI as follows:

1. Form a shingle vector S of the order γ2 and randomize it to form S′

using the algorithm PermS (presented previously in the Section 5.2).
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2. For each keyword Wm form a shingle set and permute according to

S′.

3. For each S′ compute the Min Hashes and form the corresponding

Signature Vectors SV having Q-bit length.

4. Set FI at (1, i) = EncK(Wi);1≤ i≤ m

5. Set FI at (i, j) = SV[Q];1≤ j ≤ q.

• Phase 3-Build_Trap (S′,ks,W,num): Generate a probabilistic trapdoor vector

T′ as follows:

– Represent the search keyword(s) in the form of shingle set(s).

– Permute the same random vector S′ according to the shingle set.

– Using the same Q permutations form a signature vector(s) represented as

T.

– According to the algorithm (ProbT) (presented previously in the Section

5.2) randomize the vector T to obtain T′.

– Compute the Euclidean Norm d(T, T′) using Equation 5.4.

The Trapdoor TW = (d,T′,num); where num represents the total number of

required documents. Compute Encks(TW ) and send it to the CS.

• Phase 4- Search_Outcome (ks, I,FI,Encks(TW )): Identify the documents

Dnum ∈D as the outcome of the search as follows:

– Using the session key ks decrypt Encks(TW ).

– Using algorithm (ExtendedVector) (presented in the Section 5.2) Convert

T′ to a set L.

– For each signature vector SVm stored in FI, convert SVm to a set L′

using the algorithm (ExtendedVector). Calculate the Jaccard Similarity
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JS(L,L′) using Equation 5.3.

- If JS is 0 do:

- Calculate the Euclidean Norm d′(T′,SVm)

– The required keyword will have d ≈ d′ varying by ε (threshold).

– Identify the corresponding masked keyword identifier mask(id(W )) in I

and the encrypted document identifiers X = EncK(Dnum) in ranked order.

Return X to the client.

• Phase 5-Dec (K,X): Given X a set of encrypted document identifiers, decrypt

X using the master key K to uncover the outcome of the search.

5.4.2 Correctness of FRSE Scheme

The correctness of the result is primarily based on the correctness of the Euclidean

Norm. To prove the correctness we revisit the theorem proposed in [151, 83]:

Theorem 2: The intersection of the fuzzy index table entries FIW and FIWi for

the keywords W and Wi is not null iff Euclidean Norm dis(W,Wi)≤ d .

Proof: We prove that FIW ∩FIWi ̸= φ iff dis(W,Wi) ≤ d. This leads to finding

the elements in FIW ∩ FIWi . If the Euclidean Norm dis(W,Wi) ≤ d then W ∼

Wi. Let W be represented by a shingle vector S formed from the shingle set

S = {(α|β )(α|β ), · · · ,(α|β ) : α,β ∈ set o f characters} and Wi be represented by a

shingle vector S obtained from the shingle set S = {(α∗|β ∗)(α∗|β ∗), · · · ,(α∗|β ∗) :

α∗,β ∗ ∈ set o f characters}. After dis(W,Wi) edit operations, W can be changed

to Wi. Let W ∗ = {(α+|β+)(α+|β+), · · · ,(α+|β+) : α+,β+ ∈ set o f characters},

where W ∗[i] = W [ j] on applying any operation at this position. On applying

dis(W,Wi) edit operations on the same positions containing ∗ at W ∗, W ∗ can be

transformed into Wi. Therefore, W ∗ is an element in both FIW ∩FIWi .
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Now we prove that dis(W,Wi)≤ d if FIW ∩FIWi ̸= φ . As proved earlier, let W ∗

represent the common elements in FIW ∩FIWi . The proof is divided into two cases:

Case-1: Suppose dis = 0, i.e., no edit operation is required to transform Wi into W

and as a result W =Wi =W ∗. So Euclidean Norm dis(W,Wi) = 0≤ d.

Case-2: Suppose dis > 0, i.e., for ∗ in W ∗, ∗ edit operations can be performed to

transform W ∗ to Wi and W . d is variable that depends upon the allowed edit operation.

The proposed FRSE scheme achieves ranked fuzzy keywords search therefore we

allow more than one edit operation. For the clarity of the proof, we consider an edit

operation of one shingle, therefore, W ∗ can be transformed to W by at most 1 edit

operation, thus the Euclidean Norm dis(W ∗,W ) ≤ 1. Since W ∗ ∈ FIWi ∩FIW , the

total number of edit operations ∗ is not greater than d. Hence the Euclidean Norm

dis(W,Wi)≤ d.

5.5 Security Analysis

Firstly we discuss the leakage of the proposed FRSE scheme, then we present the

formal game-based security proofs of the proposed scheme.

5.5.1 Leakage Profiles

It is not possible to present a SE construction that does not leak information to

the adversary. The proposed scheme limits the leakage by generating probabilistic

trapdoors. Although the proposed scheme leaks very less information as compared

to prior existing schemes, it is important to analyze the leakage profiles. The leakage

profile is formed over the evolved artifacts; including the inverted index table I, fuzzy

index table FI, trapdoor TW generated for a particular keyword and the outcome of

the search. The leakages are as follows:
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Leakage L5.1

This leakage highlights the information revealed by the index table I. The index table

I is generated by the client and outsourced to the CS. This leakage is defined as:

L5.1(I) =


Total number of keywords,

Total number of documents

EncK(W ) ∈ EncK(D)∨EncK(W ) /∈ EncK(D)

 (5.7)

Leakage L5.2

This leakage highlights the information revealed by the fuzzy index table FI. FI is

generated by the client and outsourced to the CS. This leakage is defined as:

L5.2(FI) =
{

Total number of keywords, SVW [Q]

}
(5.8)

Leakage L5.3

This leakage is associated to the information revealed by the trapdoor TW generated

for a particular keyword W . The probabilistic trapdoor T is generated by the client

and sent to the CS. Using the trapdoor, the CS searches on the client’s behalf. The

leakage is defined as:

L5.3(TW ) =


ProbabilisticTrapdoorT′,

EuclideanNorm(d(T,T′)),

Number of required documents (num)

 (5.9)

Leakage L5.4

This leakage is bound to the search outcome (SO) of the trapdoor generated for a

particular keyword represented as TW . This leakage is induced as a result of the

search carried out by the CS. This leakage is defined as:
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L5.4(SO) =

{
OC(W ), EncK(id(Di))∀TW∈D

}
(5.10)

where OC represents the relevant outcome corresponding to the searched keyword.

Discussion on Leakage: In [96] the possible attacks are studied on the SE schemes

that require a relational database and based on Order Preserving Encryption (OPE).

It may be observed that the proposed scheme does not require a relational database,

therefore, the masking function can be strengthened by using OPE.

Referring to the leakage associated to the inverted index table (I), it may be

observed that the index may only leak the presence or absence of an encrypted

keyword within a document, the total number of keywords and the total number of

documents. The leakage related to fuzzy index table (FI) leaks the total number

of keywords that form a fuzzy index table (FI) but the keywords itself can never

be uncovered. The trapdoor is unlinkable as it is probabilistic, therefore, it does

not reveal the access pattern prior to the search. The outcome of the search is only

revealed. We now discuss the impact of these leakages on the security of the system

as done in [132].

5.5.2 Formal Security Proofs

Lemma 1. The Fuzzy Ranked Searchable Encryption Scheme (FRSE) presented

in the Section 5.4 is “privacy preserving” according to Theorem 5.1, as it is

L5.1,L5.2,L5.3,L5.4-secure (represented as equations 5.75.85.95.10) and according

to Definition (5.1,5.2) where L5.1 is associated with the inverted index table (I)

and leaks the total number of keywords, total number of documents and the pres-

ence/absence of an encrypted keyword within an encrypted document. L5.2 is related

to the fuzzy index table (FI) and leaks the total number of keywords, signature

vectors (SV). L5.3 leaks a probabilistic vector T′, Euclidean norm and number of

required documents. L5.4 leaks the outcome of a trapdoor and the encrypted file
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identifiers containing the searched keywords.

Proof: We start the proof by simulating the keyword-trapdoor indistinguishability

and trapdoor-index indistinguishability definitions for the proposed FRSE scheme.

The proof requires an adversary A and a challenger C . We demonstrate that if the

adversary A is successfully able to distinguish between outcome of the algorithms

and between the keywords, trapdoors and associated index tables, it will result in

compromising the privacy-preserving property of FRSE.

We take a game-based approach similar to [143] in which the security proof is

divided into phases i.e. setup, challenge and the outcome phase.

Keyword-Trapdoor Indistinguishability in FRSE:

• Setup Phase: The challenger runs the KeyGen(λ ) phase to generate a master

key K, a session key ks and a random number r. The master key K is kept

private, whereas, the session key ks is shared with the adversary A . The

challenger runs the Build_Index(S′,D) phase to generate the inverted index

table (I) and the fuzzy index table (FI). The adversary submits each keyword

W ∈W where W = {W1,W2, · · · ,Wm}, to the challenger. The challenger runs

the Build_Trap(S′,ks,W,num) phase to generate the corresponding trapdoors.

The trapdoor generation every time requires to compute a randomized shingle

vector S′ and random vectors (S′,T,T′). The randomized vector S′ is of the

order γ l . The Euclidean Norm (d) is calculated between the random vectors

(T,T′). The trapdoors TW = (d,T′,num) are generated for every keyword and

sent to the adversary one-by-one. This leads to the leakage L5.3.

Note: The adversary can send any value of num where 1≤ num≤ n as a result

the leakage L5.1 is induced. It may also be observed that distinct random vectors

(S′,T,T′) are generated at every instance, therefore, every time a new Euclidean
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Norm d is generated. Hence, a probabilistic trapdoor is generated even for the same

keywords queried again making the leakage L5.3 harmless.

• Challenge Phase: The adversary A adaptively issues two distinct keywords

W0,W1 to the challenger where (W0,W1) ∈ W . The challenger tosses a fair

coin b ∈ {0,1} and generates a trapdoor TWb . The trapdoor is generated in the

same way as done during the setup phase and is shared with the adversary.

The adversary A continues to issue a number of keywords to the challenger

again to receive the corresponding trapdoors. The adversary A is also allowed

to send the same keyword as in the challenge phase.

• Outcome Phase: The adversary A takes a guess b′ of b.

Now that we have successfully simulated the game representing the keyword-

trapdoor indistinguishability for the proposed FRSE scheme. If the adversary is

successfully able to guess b, then it is able to distinguish between the generated

trapdoor i.e. TW0 and TW1 . If we generalize this then the adversary can actually

distinguish between all the generated n trapdoors in the past (history) and the ones

that will appear in the future, which is impossible. Thus the advantage can be

interpreted as:

Pr[Key_TrapFRSE,A (λ ) = 1]≤ 1
2
+negl(λ )

which is according to the definition 5.1 and equation 5.5.

Trapdoor-Index Indistinguishability in FRSE:

• Setup Phase: The challenger runs the KeyGen(λ ) phase to generate a master

key (K), a session key (ks) and a random number (r). The master key (K) is

kept private, whereas, the session key (ks) is shared with the adversary A . The

challenger runs the Build_Index(S′,D) phase to generate the inverted index

table (I) and the fuzzy index table (FI). The inverted index table (I) stores
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the information related to the presence of a keyword within the document

along with the relevance scores, which are masked. The fuzzy index table

(FI) is formed with the help of a randomly permuted shingle vector S′ of the

order γ l . Calculate Min Hash of S′ to generate a Signature Vector (SV) of

the order Q-bit. The index tables (I) and (FI) are shared with the adversary.

The adversary submits each keyword W ∈W where W = {W1,W2, · · · ,Wm},

to the challenger. The challenger runs the Build_Trap(S′,ks,W,num) phase to

generate the corresponding trapdoors. Every time the Build_Trap computes a

shingle vector and random vectors (S′,T,T′). The euclidean norm (d) is cal-

culated between the random vectors (T,T′). The challenger also performs the

search over the fuzzy index table (FI) using the generated trapdoor. Therefore,

the trapdoors TW = (d,T ′,num) are generated for every keyword and sent to

the adversary along with the FIW one-by-one.

• Challenge Phase: The adversary A adaptively issues two distinct keywords

W0,W1 to the challenger where (W0,W1) ∈ W . The challenger tosses a fair

coin b ∈ {0,1} and generates a trapdoor TWb . The trapdoor is generated in the

same way as done during the setup phase and is shared with A .

The adversary A continues to issue a number of keywords to the challenger

again to receive the corresponding trapdoor and fuzzy index table entries (FI).

The adversary A is also allowed to send the same keyword as in the challenge

phase.

• Outcome Phase: The adversary A takes a guess b′ of b and sends FIWb .

Now that we have successfully simulated the game representing the trapdoor-

index indistinguishability for the proposed FRSE scheme. If the adversary is success-

fully able to guess b, then it is able to distinguish between the generated trapdoors,

i.e., TW0 and TW1 . If the trapdoors are distinguishable then the fuzzy index table
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entries are also distinguishable prior to the search. Hence, leading to the revealing

of the access pattern and the search pattern prior to the search, which is impossible.

Thus the advantage can be interpreted as:

Pr[Trap_IndexFRSE,A (λ ) = 1]≤ 1
2
+negl(λ )

which is according to the definition 5.2 and equation 5.6 respectively.

Remark: It may be observed that the inverted index table is masked and en-

crypted using trusted atomic primitives, hence, the index table (I) only leads to the

leakage L5.1 already defined above. The fuzzy index table (FI) is again based on

a random permuted vector that is of the order γ l . The total number of possible per-

mutations are γ l! that cannot be solved in polynomial time making the leakage L5.2

meaningless. The trapdoors are probabilistic, preventing the adversary from launch-

ing a brute force attack on the generated trapdoors. So the leakages L5.1,L5.2,L5.3

do not effect the security of the proposed FRSE scheme.

The leakage L5.4 is the search outcome, that is the encrypted set of document

identifiers giving out no information other than the encrypted outcome of the search.

Therefore, considering the conformance to the definitions (5.1,5.2), theorem 5.1, the

leakages L5.1,L5.2,L5.3,L5.4 and the associated proofs, the proposed FRSE scheme

is Privacy Preserving.

5.6 Performance Metrics

The feasibility analysis of the proposed FRSE scheme is performed in this section

that mainly focuses on the algorithmic analysis and the storage overhead analysis.

5.6.1 Algorithmic Analysis

In order to analyze the computational complexity, it is important to perform the

asymptotic analysis of the proposed scheme against similar existing schemes. The
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Table 5.1 Algorithmic Comparative Analysis FRSE vs. Existing Schemes

Schemes Build_Index Build_Trap Search_Outcome

[83] O(mS) O(mS+1) O(m2)
[146] and [57] O(mn+Qm) O(Qm+1) O(2m2)
Proposed FRSE (ranked) O(2mn+m+Qm) O(Q+1) O(2Qm+mn)
Proposed FRSE (unranked) O(mn+Qm) O(Q+1) O(2Qm+n+1)

asymptotic analysis helps to measure the upper bound time complexity of the

schemes. The complexity associated to a set of documents is represented by n

and for the keywords by m. As most of the schemes comprise of all the 5 phases i.e.,

KeyGen, Build_Index, Build_Trap, Search_Outcome and the Dec phase, therefore,

we analyze these phases separately to perform the asymptotic comparative analysis.

It may also be observed that since the KeyGen and Dec phases are identical to any

other scheme, we do not take their complexities into consideration. Our analysis

also considers ranking and non-ranking separately because the well known existing

fuzzy scheme presented in [146] does not rank the documents. Therefore, this will

help readers to easily relate the complexities of the proposed scheme against similar

existing schemes. Table 5.1 shows the comparative algorithmic analysis against

similar existing schemes.

From the complexity analysis it can be observed that the proposed FRSE scheme,

in the Build_Index phase, builds two indexes i.e. the inverted index table (I) and the

fuzzy index table (FI). The inverted index table I enabling ranking is asymptotically

bound by O(2mn+m) and unranked inverted index generation requires O(mn+m).

The ranked or unranked searching does not have an impact on the fuzzy index table

FI, therefore, the complexity induced is O(Qm), where Q represents the random

permutations used for Min Hashing. As a result the total complexity of the ranked

Build_Index phase is O(2mn+n+Qm). The Build_Trap phase is asymptotically

bound by O(Q+1). As mentioned in Section 5.4, the Search_Outcome is performed

at the CS side. This phase is asymptotically bound by (2Qm+mn) in terms of
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ranked searching and (2Qm+n+1) for unranked searching. Apart from the com-

plexities already mentioned, S is the complexity associated to [83] and represents the

wildcard-based fuzzy set construction. It may be observed that the proposed FRSE

scheme does not outperform the existing schemes, the reason being ranked searching,

probabilistic trapdoors and eliminating the need of a predefined dictionary. It may be

noted in the next section that in terms of the storage complexity, the proposed FRSE

scheme outperforms the state-of-the-art, therefore, the performance analysis needs

to be measured in relation with the asymptotic analysis and the storage overhead.

5.6.2 Storage Overhead

Another important metrics for measuring the performance of the scheme is the

storage overhead analysis. This is dependent upon the data structure and helps

analyze the amount of data stored either on the client-side or the server-side. We

analyze both of the storages (i.e., the client and the server) separately. Referring

to the proposed FRSE scheme, it may be observed that the client stores the master

key K and the session key ks. Having the security parameter λ , the size of the

keys are 128bit. Here, we consider the dataset contains only lowercase letters so

the client stores a randomized shingle vector S′ having the size 262 = 676 bits.

Furthermore, Q permutations are also stored that are used to form a signature vector

SV. As mentioned earlier the variable Q increases/decreases the accuracy of the

results. Considering Q = 10×676 bits, the total storage required at the client’s side

is 128+ 128+ 676+ 10× 676 = 7016 bits= 7016/8 bytes. This means the client

requires only 877 bytes in terms of storage overhead.

Referring to the storage overhead of the CS, firstly the encrypted documents need

to be stored. Having n documents and avg representing the average size of documents,

this storage can be represented as n×Davg. The fuzzy index table FI requires a

storage space of (m×Q), where m are the total number of keywords. The inverted
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index table I incurs a storage overhead of 8(m×n). The session key ks is also stored

at the CS. The total storage overhead at the CS is n×Davg+m×Q+8(m×n)+128

bits.

We now discuss the storage overhead of the scheme presented in [146]. For

clear and concise comparison we use abbreviations similar to the proposed FRSE

scheme. Having the security parameter λ , the scheme requires to store the secret

key K which is a combination of (M1,M2,S), where M1,M2 are matrices of the order

λ x λ and S is a vector of the order λ . So having λ = 128 bits, the client requires

128×128+128 = 2064 bits. The CS stores the secure index that is similar to a per

document bloom filter i.e., n× (n×m×128) bit. Whereas, the outsourced encrypted

documents require the same storage as the proposed scheme.

It can be observed that the proposed FRSE scheme outperforms the scheme

presented in [146] in terms of client and CS storage overhead.

5.7 Computational Analysis

Before discussing the computational overhead, it is important to discuss the BTCS

architectural details, the dataset related information and the system specifications

that are presented previously in the Sections 3.6.1, 3.6.2 and 3.6.3 respectively. This

also helps to give more insight on the performance of the proposed scheme.

Figures 5.3 and 5.4 illustrate the activity diagrams depicting the flow of events

when the proposed FRSE scheme is deployed onto the BTCS using the AE service.

5.7.1 Computation Overhead

This section analyzes the computational time for the different phases of the proposed

FRSE scheme. As discussed in the Section 5.4, the proposed scheme comprises of

five polynomial time algorithms. We skip the computational time analysis of the
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Fig. 5.3 FRSE Activity Diagram: Setup.

Fig. 5.4 FRSE Activity Diagram: Searching.
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Fig. 5.5 FRSE: Computational Time for the Inverted Index Generation.

KeyGen phase and the Dec phase. It is to be mentioned here that these graphs are

generated directly from actual results obtained from the experiments and no data

normalization techniques have been applied on the results.

Build_Index Phase

Starting with the Build_Index phase, two main tasks are performed in this phase, i.e.,

the inverted index generation and the fuzzy index generation. It is again emphasized

that the Build_Index is a one-time process. The computational cost for the inverted

index generation mainly comes from the RF generator. Figure 5.5 highlights the

computational cost of the algorithm. The inverted index is generated for fixed number

of keywords, 120,000, and variable amount of documents. The experiment starts with

100 documents that are incremented by 100 on every iteration to a maximum of 1600

documents. The number of documents are presented along the x-axis and the time in

seconds is presented along the y-axis. The trend followed by the graph is dependent

upon the size of the documents at hand. Our corpus contains documents placed in
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ascending order of their sizes. The size of the documents continues to grow up until

1200 documents after which the size of the documents is static. This fact is clearly

visible by the trend followed by the graph Figure 5.5. For 1600 documents, inverted

index generation takes 14.68 seconds. The curve fitting/ linear interpolation also

signifies the graph showing a linear trend with y = 0.0112x−1.2583 and R2 = 0.954.

In the next step we analyze the computational time for the fuzzy index generation.

This computation is mainly incurred due to the shingling of keywords and applying

Min Hashing. The fuzzy index is not effected by the number of documents, therefore,

only the number of keywords are varied. The results are presented in the form of a

graph in Figure 5.6. The experiment starts with 10,000 keywords that are scaled to a

maximum of 120,000 by gradually adding 10,000 on every iteration. The number

of keywords are along the x-axis and the time in seconds is along the y-axis. It is

observed that the fuzzy index shows a fairly linear growth with the increase in the

number of keywords. The curve fitting/ linear interpolation highlights this linear

trend with y = 2E − 05x− 0.0389 and R2 = 0.9927. For 120,000 keywords, the

fuzzy index generation requires approximately 2.84 seconds.

Build_Trap Phase

The Build_Trap phase is effected by the number of keywords to be searched, i.e., the

trapdoor generated for multi-keyword search will take more computational time as

compared to single keyword search. Currently the implementation only facilitates

single keyword search queries. In the experiment, the trapdoor is generated for

the wrongly spelt keyword “aboot". The same keyword is used to analyze the

computational time of proceeding phases. The proposed scheme takes an average

time of 0.09 seconds for generating the trapdoor.
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Fig. 5.6 FRSE: Computational Time for the Fuzzy Index Generation.

Search_Outcome Phase

The next phase is the Search_Outcome phase and performed on the BTCS. The

computational time is analyzed threefold; firstly, the effect of varying number of

keywords on the search results is analyzed on a stand alone workstation, secondly,

the efficiency of search is analyzed by varying the number of documents on a stand

alone workstation. Lastly, the result is analyzed that deploys the scheme onto the

BTCS and hence includes the network latency incurred while retrieving the results

directly from the BTCS.

It is observed that the Build_Index is highly affected by the change in the number

of keywords and documents. This also means that with the change in the size

of the index table the computational time of the Search_Outcome phase is also

effected. Firstly, we analyze the effects of varying number of keywords on the

scheme. Referring to the Figure 5.7, the number of keywords are changed ranging

from 10,000 to 120,000. The number of keywords are presented along the x-axis and

the time in seconds is along the y-axis. It is observed that for 100 documents and
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Fig. 5.7 FRSE: Computational Time for Search Having Fixed Number of Documents
and Varying Amounts of Keywords.

with the increase in the number keywords, the efficiency decreases while searching

for the keyword “aboot”. A non-uniform trend is observed because the trapdoors

are probabilistic and more keywords show a Jaccard Similarity equal to 0, and

therefore, more Euclidean Norms are to be calculated. However, curve fitting/ linear

interpolation depicts a linear trend with y = 2E−05x−0.2192 and R2 = 0.86. It is

also worth mentioning that the probabilistic trapdoors increase the security but at

the cost of the increase in computation. Hence, for scenarios that require a few set

of keywords, the search is very efficient. The search time for 10,000 and 120,000

keywords are 0.17 and 2.56 seconds respectively.

The effects of altering the number of documents is analyzed next. With the

increase in the number of documents the performance decreases. This decrease is

because with the increase in the documents, the search space increases and more

computation is required for achieving ranking. The ranking is achieved through

the sorting of the RFs which affects the computational cost. Searching for the

keyword “aboot" takes around 2.17 seconds for 100 documents and 43.1 seconds for
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1600 documents as shown in Figure 5.8. The graph tends towards a linear trend on

applying curve fitting/ linear interpolation with y = 0.0251x−2.8 and R2 = 0.89.

Fig. 5.8 FRSE: Computational Time for Search Having Varying Number of Docu-
ments and Fixed Number of Keywords.

On studying the influence of varying number of keywords and documents on

the FRSE scheme, we search for the keyword “aboot”, where we have an inverted

index table generated for 1600 documents and fuzzy index table comprising of

120,000 keywords. We only vary the number of required documents starting from

100 and incrementing in steps of 100 to attain a maximum of 1600. The results

are illustrated in Figure 5.9, that includes the network latency incurred due to the

communication between the BTCS and the client through sockets. While searching

for the keyword “aboot” the fuzzy search result includes the documents containing

the keywords “about, abort, abouts”. It is observed that the scheme shows a fairly

linear growth that is also depicted on applying curve fitting/ linear interpolation that

givesy = 0.0065x+ 0.0892 and R2 = 0.9901. The number of required documents

are presented along the x-axis and the time in minutes is along the y-axis. The search

time for 1600 documents is around 11.1 minutes. The network latency is the amount
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of time the result takes to be received by the client. This does not depend upon the

scheme rather it is directly affected by the location of the CS. The farthest from the

CS higher is the latency. Hence, the time in minutes is acceptable.

Fig. 5.9 FRSE: Computational Time for Search on the BTCS Including the Network
Latency.

5.7.2 Result Accuracy

To discuss the accuracy of the scheme, we analyze the precision and recall as

described in [99]. The precision is represented as tp
tp+ fp

, whereas, the recall is

defined as tp
tp+ fn

. Before proceeding further, it is important to define false positive

fp and false negatives fn. In the proposed construction, false positives are those

keywords that are not required but appear in the search. Similarly, a false negative

represents the set of keywords expected to appear in the search but do not show

up. For the experiment we randomly pick 100 keywords from the possible 120,000

keywords and we generate the results for the keyword “aboot”. Figure 5.10 shows the

performance of the proposed scheme while varying the threshold ε . If the keyword
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Fig. 5.10 FRSE: Performance Metrics Considering the Precision and Recall.

is correctly spelt then the exact matching takes place and that would lead to 100%

accuracy, however, in fuzzy search we use Min Hashing and apply Euclidean Norm

and Jaccard similarity to compute the similarity between the trapdoor and the fuzzy

index. It is also worth mentioning that while doing exact matching we can get 100%

accuracy but the recall is not 100%. This is because although we are searching

for the exact keywords but the proposed algorithm performs fuzzy searching i.e.,

even though we are searching for a correctly spelt keyword “about”, the search

results should also include results for “abort”. By varying the ε value, the accuracy

of the results changes. It is observed that with the increase in the threshold value

the precision increases. For the threshold value of 0.1, the precision is 25% that

increases to 67% when ε is 0.6 and to a maximum of 100% for ε value of 0.9. A

slight fluctuation in the precision at different intervals is also observed that is due to

the use of probabilistic trapdoor. During our experiment the fluctuation took place

when the value of ε was 0.8. It is also observed that unlike [146] with the increase in

ε , the recall also increases. This is due to the reason that we are seeing an increase
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in the true positives with the increase in the ε value. The proposed scheme attains a

maximum of 67% recall value when the value of ε approaches 0.9. It is also observed

that the accuracy of [146] is better as compared to the proposed scheme, the reason

being the small dataset that the authors have used for the experiment comprising of

only 20 keywords. The accuracy of the proposed FRSE scheme can also be increased

by reducing the number of keywords in the fuzzy index table.

5.8 Summary

Human typographical errors are common when performing a search. In this chapter,

a Fuzzy Ranked Searchable Encryption (FRSE) scheme has been presented that

takes the human typographical errors into account. The FRSE scheme unifies the

inverted index table and the fuzzy index table by making use of Min Hashing, Eu-

clidean Norm, and Jaccard Similarity. The FRSE scheme shingles the keywords to

breakdown the keyword into characters and then generates a probabilistic trapdoor.

The probabilistic trapdoors generate a unique query each time a keyword is searched.

The intensive security analysis yields that the proposed scheme is in accordance

with the newly proposed definitions of keyword-trapdoor and trapdoor-index indis-

tinguishability. Hence, the FRSE scheme does not leak the search pattern and resists

against distinguishability attacks.

The asymptotic analysis and the storage overhead analysis yield that the scheme

shows a better performance as compared to the state-of-the-art. To analyze the

computational complexity, the PoC prototype has been simulated and deployed onto

the British Telecommunication’s cloud service (BTCS). The deployed FRSE scheme

is then tested over a real corpus of encrypted data and the computational time is

calculated. The analysis proves that the proposed scheme competes closely with the

existing schemes in terms of computational time and accuracy, while enhancing the

security and the query effectiveness.
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Despite the fact that the proposed FRSE scheme enhances the query effectiveness

to the maximum but it comes with a trade-off of lack of scalability and moderate

amount of security and privacy as compared to a Homomorphic-based SE (HSE)

Scheme. The next chapter proposes a novel HSE scheme that is aimed to enhance

the security and privacy while supporting scalability by allowing dynamic updates to

the database.



Chapter 6

Homomorphic-based Searchable

Encryption Scheme

The emergence of cloud as Database-as-a-Service (DBaaS) [45] [69] platform to

store large amounts of data poses the challenge of searching for keyword(s) over the

encrypted data. Previous chapters aimed towards enhancing the query effectiveness.

This enhancement in the query effectiveness comes with the trade-off of scalability.

This chapter presents a novel SE scheme that is based on homomorphic encryption.

The proposed construction aims to enhance the security of the system and present

a highly scalable solution for the cross-cloud, cloud-of-clouds or nested cloud

platforms [15][66]. The proposed Homomorphic-based Searchable Encryption

(HSE) scheme presents probabilistic trapdoors and provides non-repudiation [42].

The proposed construction eliminates the requirement of a centralized data-

structure such as an index table to achieve effective search. Different types of

homomorphic encryption schemes are already discussed in the Section 2.2.5. To

present a solution that is lightweight, practical and feasible, the proposed HSE

scheme is based on a partial homomorphic encryption scheme.

The following contributions to the field of SE are made through this research:
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• We design and present a novel SE scheme that is based on the partially homo-

morphic property of RSA [115].

• The proposed scheme may be termed an extension of the schemes proposed

in the chapter 3 and 4 as it also explores the property of modular inverse to

generate probabilistic trapdoors that makes the scheme privacy-preserving and

prevents against the search pattern leakage. The proposed scheme provides

non-repudiation and thwarts an adaptive adversary from successful distin-

guishability attacks.

• The proposed scheme eliminates the need of an index table and reduces the

client-side computations that are incurred in the conventional index-based

system whenever the documents are added, deleted or modified. The removal

of an index table reduces the network latency and the storage overhead. We

design and implement a proof of concept prototype over a real dataset of

encrypted documents.

6.1 Problem Formulation

This section discusses the system model and highlights the design goals. This

discussion further leads to presenting the security definitions.

6.1.1 System Model

Bob wants to upload his documents D = {D1,D2, · · · ,Dn} to the cloud server (CS).

To maintain confidentiality of the documents he encrypts the documents prior to

outsourcing them to the CS. The CS is “trusted-but-curious” or “honest-but-curious”,

i.e., the CS is keen on learning any information related to the documents that can be

extracted directly from the encrypted documents or the searched keywords.
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In order to search for the document containing a particular keyword W , a naive

method would be to download all the documents from the CS, decrypt all the

documents and then search for a particular keyword, but this leads to increased

network latency. Another method would be to pre-process the documents to generate

an index table. The index generation results in increased client-side computations

that become apparent whenever the database is modified, increased network latency

and increased storage at the server-side. Therefore, Bob requires a Homomorphic-

based Searchable Encryption scheme (HSE) to search for keywords directly over the

encrypted documents. The HSE scheme should allow the addition, modification and

deletion of the documents on run time.

Whenever Bob wants to search for a keyword, he generates a trapdoor and sends

it to the CS. The CS searches directly over the encrypted documents and identifies

the encrypted documents containing the required keyword. The CS then sends the

corresponding encrypted document identifiers to Bob. Figure 6.1 illustrates the above

scenario where Bob represents the client.

Fig. 6.1 The System Architecture for HSE Scheme
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6.1.2 RSA and Homomorphic Encryption

Homomorphic encryption (HE) [60] is the property that allows mathematical com-

putations on the encrypted data to generate an encrypted result. The decryption of

the ciphertext matches the result set as if the operations were carried out directly on

the plaintext.

An encryption scheme is homomorphic over the operation ‘⋆’ if the following

property holds true:

Enc(M1)⋆Enc(M2) = Enc(M1 ⋆M2),∀M1,M2 ∈M (6.1)

where M represents a set of messages.

RSA [115] is an asymmetric cryptographic algorithm that is partially homomor-

phic under multiplication. Although RSA is homomorphic, since it is a deterministic

scheme it does not provide security against an adaptive adversary, i.e., the adversary

can identify the search pattern and launch successful distinguishability attacks lead-

ing to passive attacks. The proposed scheme couples symmetric encryption with

RSA to provide indistinguishability and prevent for adaptive adversaries.

6.1.3 Design Goals

The proposed Homomorphic-based Searchable Encryption Scheme (HSE) should

have the following design objectives:

• Trapdoor Unlinkability: The trapdoors should be probabilistic and able to

resist distinguishability attacks. This will also prevent against search pattern

leakage. The HSE scheme should provide security in the known-ciphertext

model, i.e., it should provide security against an adaptive polynomial time

adversary.



6.1 Problem Formulation 141

• Dynamic Database: The scheme should allow update, insertion or deletion

of the document to the database without the need of pre-processing and re-

encrypting the entire database.

Definition (Homomorphic-based Searchable Encryption Scheme (HSE)): The pro-

posed HSE comprises of five polynomial time algorithms Π = (KeyGen, Encryption,

Build_Trap, Search_Outcome, Decryption) such that:

(kpub,kpri,K,ks)← KeyGen(p,q,λ ): represents a probabilistic key generation

algorithm. The algorithm takes the security parameter (λ ) and large prime

numbers (p,q) as the input. The output is a master key (K), session key (ks),

public key kpub = (e,n) and a private key kpri = (d,n). This algorithm is run

by the client.

(Enc(D))← Encryption(K,kpri,D): is a deterministic algorithm run by the client.

The algorithm takes the master key (K), private key (kpri) and the document

set D as the input and outputs an encrypted document (Enc(D)).

TW ← Build_Trap(K,ks,kpri,W ): is a probabilistic algorithm run by the client. The

algorithm takes the master key (K), session key (ks), private key (kpri) and the

keyword (W ) as the input and outputs a probabilistic trapdoor (TW ) generated

for the keyword (W ).

X ← Search_Outcome(ks,kpub,Enc(D),TW ): is a deterministic algorithm run by

the CS. The algorithm takes the session key (ks), the public key (kpub), en-

crypted documents Enc(D), and the trapdoor (TW ) as the input and outputs a

set (X) of encrypted document identifiers EncK(id(Di)).

Di← Dec(K,kpub,X): is a deterministic algorithm that requires the client’s master

key (K), public key kpub and encrypted set of document identifiers EncK(id(Di))

to decrypt and recover the document id’s. This algorithm is run by client.
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6.2 Security Definitions

This section extends the security definitions proposed in the Section 3.2 to apply

them to the HSE scheme. Although the security definition of Trapdoor-Index in-

distinguishability requires an index table, the proposed HSE scheme eliminates the

need of an index table so the security definitions are also tuned accordingly.

6.2.1 Keyword-Trapdoor Indistinguishability for HSE

Keyword-Trapdoor Indistinguishability refers to the capability of a SE scheme to

resist distinguishability attacks. Therefore, even for the same keyword searched

again, a unique trapdoor is generated. This keeps the adversary from launching

passive attacks. Keyword-Trapdoor indistinguishability should hold true even if the

adversary is maintaining a history of searches and adaptively chooses the keyword

to be searched.

Description

The challenger encrypts the documents using the HSE scheme. The adversary A

selects a keyword W and sends it to the challenger. The challenger generates a

trapdoor and sends it back to the adversary A . This continues until the adversary

A has submitted polynomial-many keywords. Now the adversary A has to submit

two keywords (W0,W1) to the challenger and receives a trapdoor corresponding

to the keyword Wb, where the selection of b is made by tossing a fair coin. The

adversary A has to guess and output the bit b. If the guess is made with a probability

greater than 1/2 then the adversary wins when the security parameter λ is negligible

i.e., λ is sufficiently small. Otherwise the HSE scheme provides keyword-trapdoor

indistinguishability.

Definition 6.1 Let HSE=(KeyGen, Encryption, Build_Trap, Search_Outcome,

Dec) be a Homomorphic-based Searchable Encryption Scheme over a set of docu-
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ments D = {D1,D2, · · · ,Dn}, λ be the security parameter, p,q be the prime numbers

and A = (A1, · · · ,Am+1) represent adversaries. Consider the following probabilis-

tic experiment Key_TrapHSE,A (λ ):

Key_TrapHSE,A (λ )

(kpub,kpri,K,ks)← KeyGen(p,q,λ )

(Enc(D))← Encryption(K,kpri,D)

f or 1≤ i≤m; where m =|W |; W = {W1,W2, · · · ,Wm}and W ∈D

(stA ,Wi)←Ai(stA ,TW1, · · · ,TWi)

TWi ← Build_Trap(K,ks,kpri,Wi)

b $←− {0,1}

(stA ,W0,W1)←A0(λ )

(TWb)← Build_TrapK,kpri(ks,Wb)

b′←Am+1(stA ,TWb)

T ′W ← Build_TrapK,kpri(ks,Wj);1≤ j ≤ m

i f b′ = b,out put 1

otherwiseout put 0

where stA represents a string that captures A ’s state. The keyword-trapdoor

indistinguishability holds for all the polynomial-time adversaries (A0,A1, · · · ,Am+1)

such that m = poly(λ ),

Pr[Key_TrapHSE,A (λ ) = 1]≤ 1
2
+negl(λ ) (6.2)

6.2.2 Trapdoor-Document Indistinguishability for HSE

Trapdoor-Document Indistinguishability refers to the complexity offered by a HSE

scheme. The keywords, trapdoor and encrypted documents should be complex,

and involved in such a way that the trapdoor should not reveal the corresponding

document/ document identifiers prior to the search, and should not be distinguishable.
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This holds true for the same keyword searched again and the trapdoor should not

be distinguishable even if the history (keyword, trapdoor, encrypted document) is

generated adaptively.

Description

The challenger encrypts the data collection D . The challenger sends the set of

keywords W , the trapdoors generated for all the keywords W , along with the

associated document identifiers to the adversary, while maintaining the order in

which they occur. The adversary adaptively submits two keywords (W0,W1) to the

challenger and receives a trapdoor corresponding to the keyword Wb. The adversary

has to now decide the corresponding document identifiers and is challenged to output

the bit b. If the adversary is able to make a guess with a probability greater than

1/2 then the adversary has succeeded and the scheme lacks in providing trapdoor-

document indistinguishability. The security parameter λ is negligible i.e., λ is

sufficiently small that it can be ignored to highlight the security of the scheme.

Definition 6.2 Let HSE= (KeyGen, Encryption, Build_Trap, Search_Outcome,

Dec) be a Homomorphic-based Searchable Encryption scheme over a set of doc-

uments D = {D1,D2, · · · ,Dn}, λ be the security parameter and p,q be the prime

numbers, A = (A0,A1) represent the adversaries. Consider the following proba-

bilistic experiment Trap_DocHSE,A (λ ):

Trap_DocHSE,A (λ )

(kpub,kpri,K,ks)← KeyGen(λ )

(Enc(D))← Encryption(K,kpri,D)

f or 1≤ i≤ n;

let D′ = D′∪Enc(Di)

let W = (W1, · · · ,Wi)

TWi ← Build_Trap(K,kpri,ks,Wi)
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b $←− {0,1}

(stA ,W0,W1)←A0(stA ,λ ,Wm,D′,TWm)

(TWb)← Build_TrapK,kpri(ks,Wb)

b′←A1(stA ,DWb,kpub)

i f b′ = b,out put 1

otherwiseout put 0

where stA represents a string that captures A ’s state. The keyword-trapdoor

indistinguishability holds if for the polynomial-time adversaries (A0,A1),

Pr[Trap_DocHSE,A (λ ) = 1]≤ 1
2
+negl(λ ) (6.3)

where probability is over the choice of b.

Theorem 6.1: The proposed HSE scheme provides Keyword-Trapdoor Indis-

tinguishability and Trapdoor-Document Indistinguishability if the trapdoors are

probabilistic and the documents are homomorphically encrypted.

6.3 Proposed HSE scheme

This section gives the details of the proposed HSE scheme already defined in the

Section 6.1.1.

6.3.1 Scheme Construction

• Phase 1-KeyGen (p,q,λ ): Given a security parameter λ , two prime numbers

p and q, and generate random keys K,ks←{0,1}λ . Compute:

– N = p∗q and ϕ(N) = (p−1)(q−1).

– a random integer e | (gcd(e,ϕ) = 1,ed ≡ 1 mod ϕ(N)).

– d | ed ≡ 1 mod ϕ(N)).
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Output the master key K, session key ks, public key kpub = (e,N) and private

key kpri = (d,N).

• Phase 2-Encryption (K,kpri,D):

– For 1≤ t ≤ n:

- For 1≤ u≤ |Dt |:

- let a← (EncK(Wu)), where Wu ∈ Dt and EncK represents a

symmetric encryption algorithm.

- Compute r = ad mod N.

- Wu← r .

- Compute Enc− ProbK(id(Dt)), where Enc− ProbK repre-

sents a probabilistic symmetric encryption algorithm

Output encrypted documents Enc(D) and outsource to the CS.

• Phase 3-Build_Trap (K,ks,kpri,W ):

– let b← (Enc−ProbK(W )).

– let z← (EncK(W )).

– let c← z−1 mod N.

– let j← cd mod N.

– let f ← b · j mod N.

– let g← Hks(b).(Enc(1))d mod N.

– t← ( f ,g).

– (TW )← td mod N.

Transmit TW to the CS.

• Phase 4- Search_Outcome (ks,kpub,TW )): Identify the documents Di ∈D as

the outcome of the search as follows:
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– Initialize dynamic array X .

– ( f ,g)←(TW )e mod N

– for 1≤ h≤ n:

- for 1≤ i≤ |Enc(Dh)|:

- if (g == Hks( f ·Wi) mod N):

- X ← EncK(id(Dh)).

Output X , a set of encrypted document identifiers and return to the client.

• Phase 5-Dec (K,kpub,X): Given X a set of encrypted document identifiers,

decrypt X using the public key kpub and the master key K to uncover the

outcome of the search.

6.3.2 Description

This section briefly discusses each of the phases presented in the previous section, in

detail below:

KeyGen Phase

The client generates a master key K used for the symmetric key encryption, a

session key ks used for the computing the cryptographic keyed hash function and the

asymmetric key pairs (kpub,kpri) for the RSA. The session key ks and the public key

kpub is shared with the CS.

Encryption Phase

The client encrypts the documents D . The encryption is done such that the client

accesses each keyword within each document. Firstly the symmetric encryption

(AES-ECB) of the keyword using the master key K is performed, then the RSA using

the private key (kpri) is computed. The document identifiers are also encrypted using
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AES-CBC, where AES-CBC represents a probabilistic encryption algorithm. The

entire encryption algorithm can be processed in parallel by using the advancements

made in multi-threading. This algorithm also supports the update, addition or removal

of a document from the database as a predefined data structure is not required in the

proposed HSE scheme.

Build_Trap Phase

The client generates a trapdoor (search query) for a keyword and sends it to the

CS. The trapdoor is generated such that the client computes b using a probabilistic

symmetric encryption algorithm and then computes z using a deterministic symmetric

encryption algorithm. It may be observed that z is already computed in the encryption

phase and represented as a. Now the client computes the modular inverse c← z−1

mod N and performs the RSA represented as j. To make the trapdoor probabilistic,

the client multiplies b and j. The trapdoor is encrypted using the private key kpri and

TW transmitted to the CS.

Search_Outcome Phase

The CS using the public key kpub decrypts the trapdoor. This provides non-repudiation

as it proves the authenticity and integrity of the data originating from the source.

Using the trapdoor TW , the CS searches for the documents containing the required

keyword. The search is done against every encrypted keyword within the docu-

ments. The desired keyword is identified such that g == Hks( f · r) mod N. The

searching is entirely based on the partially homomorphic property of RSA (equa-

tion 6.1), i.e., it is observed that f and r are actually inverses of each other so the

E( f ) ·Enc(r) = Enc( f · r) = Enc(1). The hash is computed in order to identify

the keyword when the trapdoor is probabilistic. Therefore, in such a way every

time a unique trapdoor appears before the CS even for the same keyword searched
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repeatedly. This helps resist distinguishability attacks and prevent from the search

pattern leakage. Upon the identification, the encrypted document identifiers are sent

to the client. Since the underlying encryption and inverses are distinct, this leads to

the correctness of the scheme. Furthermore, since the trapdoor generation is based on

the mechanism proposed in the RSE and RMSE schemes presented in the Chapters 3

and 4 respectively, therefore, the correctness of the HSE scheme flows directly from

the correctness of the RSE and RMSE schemes.

Decryption Phase

This phase is run by the client to uncover the underlying document identifiers. Later

on, the identified documents can be downloaded from the CS and may be decrypted

using the public key kpub.

6.4 Security Analysis

This section analyses the security of the proposed HSE scheme according to the

security definitions presented in the Section 6.2. Before proceeding towards the

formal security proofs the leakage profiles are analyzed.

6.4.1 Leakage Profiles

The leakage profiles highlight all the information given out by the artifacts evolved

during the execution of phases of the HSE scheme that may lead to possible security

and privacy concerns. The analysis includes the artifacts obtained from the five

polynomial time algorithms explained previously, i.e., encrypted documents, trapdoor

TW and the outcome of the search. The leakage focuses on the information that is

revealed within polynomial time.



6.4 Security Analysis 150

Leakage L6.1

Description: The leakage L6.1 is associated to the encrypted documents Enc(D). It

is assumed the encrypted documents are revealed to all the stakeholders, i.e., the

client, the CS and the adversary A . This leakage is defined as:

L1(Enc(D)) =



Encrypted keywords(r), total number o f documents(n),

Encrypted document identi f iers(Enc−ProbK(id(Dn))),

Total number o f encrypted keywords(m),

Encrypted documentsEnc(D)


(6.4)

Leakage L6.2

The leakage L6.2 is associated to the Trapdoor TW generated for a particular keyword

W to be searched. It is assumed that TW is generated by the client and revealed to all

the stakeholders, i.e., the CS and the adversary A .

L6.2(TW ) =

 f ← (Enc−ProbK(Wm)) · z−1mod N,

g← Hks(Enc−ProbK(Wm))

 (6.5)

Leakage L6.3

The leakage L6.3 is associated to search outcome (SO) of the trapdoor generated for

a particular keyword TW .The search outcome is revealed to all the stakeholders, i.e.,

the client, CS and the adversary A . This leakage is defined as:

L6.3(SO) =

{
OC(W ), EncK(id(Di))∀TW∈D

}
(6.6)

where OC represents the relevant outcome corresponding to the searched keyword.

Discussion on Leakage: It may be observed that majority of the leakages

L6.1, L6.2 and L6.3 are either hashed or encrypted. Furthermore, the proposed scheme
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is based on probabilistic trapdoors that resist distinguishability attacks and prevent

against search pattern leakage.

The next section extends the security analysis by taking these leakage profiles

into consideration.

6.4.2 Formal Security Proofs

Lemma 6.1. The Homomorphic-based Searchable Encryption Scheme (HSE) pre-

sented is “privacy-preserving” as it is (L6.1,L6.2,L6.3)-secure (represented as equa-

tions 6.46.56.6) and according to Definition 6.1,6.2, where, L6.1 is associated with

the encrypted documents Enc(D) and leaks the encrypted keywords, total number of

documents, total number of encrypted keywords and the encrypted documents. L6.2

is associated to the trapdoor TW , generated for a keyword and leaks f ,g and L6.3

leaks the outcome of a search against the trapdoor TW and the encrypted document

identifiers.

Proof: The proof of this lemma flows directly from the proof of the Theorem

6.1. This is done by taking a game-based approach and by simulating the keyword-

trapdoor indistinguishability and trapdoor-document indistinguishability definitions

for the proposed HSE scheme. The proof requires an adversary A and a challenger

C . The proof is based on the assumption that if the adversary is able to distinguish

between the outcome of the algorithms and between the keywords, trapdoors and the

encrypted document identifiers, it will result in compromising the privacy-preserving

property of HSE scheme. The game-based approach is divided into three phases, i.e.,

the setup phase, challenge phase and the outcome phase.
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Keyword-Trapdoor Indistinguishability in HSE:

Let HSE be a Homomorphic-based Searchable Encryption scheme. Given n docu-

ments D = {D1,D2, · · · ,Dn} and m keywords W = {W1,W2, · · · ,Wm}where W ∈D .

The game is played between an adversary A and a challenger C as follows:

• Setup Phase: The adversary A selects a keyword W ∈W and sends it to the

challenger C . The challenger C returns a trapdoor TW corresponding to the

keyword W to the adversary A . This continues between the adversary A and

the challenger C until all the trapdoors and associated keywords have not been

shared with the adversary.

• Challenge Phase: The adversary A selects two keywords W ′0,W
′
1 ∈W and

sends them to the challenger C . The selection of the keywords is done; such

that the keywords are unique i.e., W ′0 ̸= W ′1. The challenger C in response

tosses a fair coin b←{0,1} and generates a trapdoor T ′W ′b
. After the challenge

has been completed, the setup phase is run again and the adversary is allowed

to query the same keywords again.

• Outcome Phase: Adversary A is given the generated Trapdoor T ′W ′b
and it will

now have to guess and output b′ ∈ {0,1} and if b = b′ then the adversary wins.

In other words the adversary A has to correctly guess the keyword associated

to the trapdoor T ′W ′b
in polynomial time. If the adversary A correctly guesses

the keyword corresponding to the trapdoor then it has won otherwise HSE

provides keyword-trapdoor indistinguishability and the challenger C wins.

Therefore, as the trapdoors are probabilistic, the probability that the adversary

A wins is 1/2 which is according to the definition 6.1 and the equation 6.2
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Trapdoor-Document Indistinguishability in HSE:

Let HSE be a Homomorphic-based Searchable Encryption scheme. Let D rep-

resent the set of documents {D1,D2, · · · ,Dn} and W represent a set of keywords

{W1,W2, · · · ,Wm} contained in D . The game is played between an adversary A and

a challenger C . The game is divided into three phases as follows:

• Setup Phase: The adversary A chooses a keyword W ∈ W and sends it

to the challenger C . The challenger generates a trapdoor TW and sends the

associated encrypted document identifiers Enc(id(Di)) to the adversary A .

This continues until the adversary A has not queried all the keywords.

• Challenge Phase: The adversary A selects two keywords W ′0,W
′
1 ∈W and

sends them to the challenger C . The selection of the keywords is done such

that W ′0 ̸= W ′1. The challenger C in response tosses a fair coin b← {0,1}

and generates a trapdoor corresponding to the value of b, i.e., T ′W ′b
. After

the challenge has been completed, the adversary A is given access to the

previously generated history that was sent in setup phase and allowed to query

the same keywords again.

• Outcome Phase: A is given the generated Trapdoor T ′W ′b
. Adversary A

will now have to guess and return the document identifiers corresponding to

the Trapdoor T ′W ′b
in polynomial time. The adversary A wins if the guess is

correct, otherwise HSE provides trapdoor-document indistinguishability, and

the challenger C wins.

Therefore, the probability that the adversary A wins is 1/2 which is in-line with

the above stated definition 6.2 and equation 6.3.

Proof of the Theorem 6.1 leads to the following corollary:
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Corollary 6.1: Keyword-Trapdoor Indistinguishability and Trapdoor-Document

Indistinguishability results in a Privacy Preserving Homomorphic-based Searchable

Encryption Scheme.

Proof Sketch: Let HSE=(KeyGen, Encryption, Build_Trap, Search_Outcome,

Dec) be a Homomorphic-based Searchable Encryption scheme. It is already proved

that the scheme provides Keyword-Trapdoor Indistinguishability and Trapdoor-

Document Indistinguishability. It is now to prove that the leakages L6.1,L6.2 and

L6.3 do not effect the security of the HSE scheme and is privacy-preserving. It may

be observed that the proposed HSE scheme is based on trusted atomic primitives

such as Hash, RSA, AES etc. The only leakage associated to L6.1 is the total

number of documents and the total number of keywords that are contained within the

dataset. However, the documents and the keywords themselves are fully encrypted

and the adversary cannot uncover them. Whereas, the leakages L6.2 and L6.3 are

fully encrypted or hashed and do not leak any information that would weaken the

Keyword-Trapdoor Indistinguishability or Trapdoor-Document Indistinguishability

properties of the HSE.

Therefore, the proposed HSE is privacy-preserving and provides Keyword-

Trapdoor Indistinguishability or Trapdoor-Document Indistinguishability.

6.5 Performance Metrics

This section analyses the performance of the proposed HSE scheme. This is achieved

two-fold; firstly the asymptotic analysis is performed and then the storage overhead

is discussed. The performance analysis highlights the theoretical feasibility of the

proposed HSE scheme.
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6.5.1 Algorithmic Analysis

This section further studies the proposed scheme by performing the asymptotic

analysis. The analysis includes the upper bound complexity analysis of the individual

phases that are involved in the scheme. The complexity associated to the keywords

and the documents is represented by m and n respectively. As discussed in Section

6.3, the proposed HSE scheme comprises of 5 polynomial time algorithms.

The computational complexity of the KeyGen phase comprises of the multiplica-

tion of two large prime numbers p and q represented by O(l2) where l represents

the size of the prime numbers p and q. The greatest common divisor (GCD) is

also computed twice which is represented by O(2log(N)). As a result the total

computational complexity of the KeyGen phase is O(l2 +2log(N)).

The computational complexity of the Encryption phase is calculated such that

it requires a nested for-loop over encryption of the keywords, performing the ex-

ponentiation and encrypting the document’s identifiers. Thus, the complexity is

O(E(Umn+ n)), where E represents the complexity associated to the encryption

and U represents the exponentiation complexity against the random number e.

The computational complexity for the trapdoor generation is O(2E+2Ulog(m)+

2). The complexity for the Search_Outcome is O(mn+ 1). Table 6.1 includes

the algorithmic complexities of the proposed HSE scheme against a scheme that

will be based on the standard RSA without probabilistic trapdoors. This clearly

highlights that the proposed HSE scheme provides higher levels of security and

privacy guarantees at the cost of increased computations.

Table 6.2 highlights the computational complexities of the proposed HSE schemes

against some of the similar and relevant schemes that have been presented in the

literature review (Chapter 2). It is evident that by introducing probabilistic trapdoors

to the algorithm, the complexity has also increased.
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Table 6.1 Algorithmic Comparative Analysis HSE vs. RSA-based SE

Schemes Encryption Build_Trap Search_Outcome

Proposed HSE O(E(Umn+n)) O(2E +U +2) O(mn+1)
RSA-based SE O(Umn+En)) O(U +2) O(mn+1)

Table 6.2 Algorithmic Comparative Analysis HSE vs. Existing Schemes

Schemes Encryption Build_Trap Search_Outcome

[34] & [35] O(3λmn) O(λm) O(2n(λm+m+num))
[102] O(E(3mn+n)) O(E(3m+1) O(mn+n)
Proposed HSE O(E(Umn+n)) O(2E +U +2) O(mn+1)

Note: λ represents the security parameter, num represents the number of
occurrences of a substring within a path.

6.5.2 Storage Overhead

This section discusses the storage overhead of the proposed HSE scheme. As

mentioned in the Section 6.3, the client has to store the master key K, a session key ks

and asymmetric key pairs (kpub,kpri).The storage overhead for storing the master key

K, a session key ks is 128 bits each. Whereas, the asymmetric key pairs (kpub,kpri)

require 2048 bits. Therefore, the storage at the client-side is 128× 2+ 2048 =

(2304/8) bytes. Referring to the storage at the CS, it has to store a session key ks

and a public key kpub requiring 128+1024=1152 bits. Suppose the average storage

required by an encrypted document is represented by Davg, the storage at CS will be

1152+n×Davg bits.

6.6 Computational Analysis

This section implements the proof of concept prototype and tests it over a real-world

dataset already presented in the Section 3.6.2.
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6.6.1 System Specification

The implementation is done in JAVA and the workstation used is an Intel Core i5

CPU running at 3.00 GHz and 8GB of RAM. The symmetric encryption algorithm

used is 128-bit AES-ECB and AES-CBC mode. RSA-1024 is used to achieve

partially homomorphic asymmetric encryption. The cryptographic hash function

used is SHA-256. The client side and the server side are implemented on the same

machine, and the graphs are generated using MATLAB2016.

6.6.2 Computation Overhead

The KeyGen phase and the Decryption phase are similar to nearly all the existing

schemes, therefore, the computational analysis focuses mainly on the Encryption

phase, Build_Trap phase and the Search_Outcome phase. We analyze the phases

below:

To analyze the computational time of the encryption phase we run our imple-

mentation over 10 documents and scale it to 100 documents. In the Figure 6.2, the

number of documents are represented along the x-axis and time in seconds is along

the y-axis. It is observed that the scheme shows a linear growth with the increase

in the number of documents and takes a total of 2806 seconds for encrypting 100

documents. The linear trend is depicted by applying curve fitting/ linear interpolation

that shows y = 27.879x−13.333 and R2 = 0.9986. It may be observed that unlike

the index-based schemes presented in the chapters 3,4,5, the HSE scheme is more

resource consuming, however, it is scalable and allows dynamic databases.

To measure the computational time for the trapdoor generation, we generate a

trapdoor for the keyword “about" and it takes a constant time of 0.78 seconds.

To analyze the time for searching required by the CS, we search for the keyword

“about" over the encrypted documents. As shown in Figure 6.3, we range the search

space between 10 to 100 by varying the number of documents. The number of
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Fig. 6.2 HSE: Computational Time for the Encryption Phase.

Fig. 6.3 HSE: Computational Time for the Searching Phase.
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documents are presented along the x-axis and the time in seconds is along the y-axis.

The search phase shows a linear growth by taking 3.7 seconds over 100 documents.

The linear trend is again observed by applying curve fitting/ linear interpolation that

shows y = 0.0204x+1.5013 and R2 = 0.9731.

6.7 Summary

This chapter presented a novel Homomorphic-based SE scheme. The proposed

scheme utilized the partial homomorphic property of the RSA algorithm. RSA is

an asymmetric cryptographic algorithm and by default it does not provide security

against adaptive adversaries, hence, it is prone to distinguishability attacks. The

proposed scheme used RSA over symmetrically encrypted keyword that helped to

mitigate distinguishability attacks. The proposed scheme used the modular inverses

to introduce probabilistic trapdoors that resist distinguishability attacks and pre-

vented search pattern leakage. Benefiting from the RSA algorithm, the proposed

HSE scheme also provided non-repudiation of the trapdoors that were sent by the

client. Therefore, the proposed scheme achieved higher levels of security and pri-

vacy as compared to a SE scheme based on the standard RSA. The designed and

developed proof-of-concept prototype was tested over a real-world speech corpus.

The computational complexity showed that the scheme eliminates the need of the

pre-processing of the data as an index table is no more required.

A very important aspect of the proposed HSE scheme is that it removed the need

of a centralized data-structure, resulting in the scalability across cross-cloud and

nested-cloud platforms. Since the client did not have to form an index table and

outsource it to the cloud, it reduced the network latency and the storage overhead

respectively. However, these advantages came at the cost of increased computations

on the client side and the server side. So the proposed scheme can be deployed in
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scenarios where data security is very important and the data is dispersed on the cloud

hosted across different geographic locations.



Chapter 7

Conclusions and Future Directions

With the advancements made in the field of cloud computing and cloud storage,

clients are determined to outsource their data to the cloud. The outsourcing of

unencrypted data on its own is quite straight forward, however, it leads to the

lack of data confidentiality and results in security and privacy concerns. These

factors prevent clients from fully benefiting from the advantages the cloud offers

and discourages them from storing sensitive data on the cloud. Encrypting the data

before outsourcing it to the cloud mitigates the risks associated to the data theft and

misuse.

SE is a technique that enables clients to search and sift through the encrypted

data stored on the cloud. This research presents a SE framework that makes the

security and privacy of the data stored in the cloud achievable. This chapter gives an

overview of the work done and goals achieved through this research. This chapter

also sheds light on the challenges encountered during this research and how they can

lead to impacting research in the future.
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7.1 Overview of Research

When it comes to the utilization of the cloud as a platform to store large amounts of

data, the security and privacy of the document’s and the client’s need to be dealt with

accordingly and simultaneously. Current SE schemes are based on deterministic

trapdoors, and hence do not preserve the privacy of the search. Majority of the

existing SE schemes are prone to distinguishability attacks or extremely resource

consuming due to which they cannot be deployed on to the existing cloud architec-

tures. To counter this fundamental yet common problem, we introduce lightweight

constructions of SE schemes that are based on randomized cryptographic primitives

to generate probabilistic trapdoors.

The contributions of this research in the domain of SE have helped in developing

state of the art SE schemes that are privacy preserving and resist distinguishability

attacks. Perhaps the greatest advantage of this research is that the designed schemes

are lightweight and can inter-operate with existing cloud architectures and consume

very less client-side and server-side computational resources. The next section gives

a summary of the contributions made through this research.

7.2 Summary of Contributions

The cloud is used to store large amounts of data for the on-demand data and resource

sharing. Although the cloud storage has many advantages, the other side of the

picture is quite grim as the clients lose control of the data once it is outsourced and

stored into the cloud. This implies that sophisticated solutions are required that allow

the client to store encrypted data on the cloud while facilitating keyword(s) search.

This thesis presents novel SE schemes based on probabilistic trapdoors. The term

probabilistic trapdoor is associated to the randomization offered by a SE scheme

by generating unique search queries for the same keywords searched repeatedly. A
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limitation of the existing SE schemes is that they are deterministic and generate same

tokens/ trapdoors for the keywords searched repeatedly. Thus lead to successful

distinguishability and passive attacks.

As mentioned in the Chapter 2, the existing security definitions adopted in SE

have limitations due to which they cannot be used to validate the security of the

schemes presented in this thesis when the trapdoors are probabilistic. Thus, this

thesis presents new security definitions of keyword-trapdoor indistinguishability and

trapdoor-index indistinguishability to appreciate the advantage of having probabilistic

trapdoors.

Typically, a SE scheme is designed by taking into consideration the underlying

infrastructures and target cloud architectures. In relation to this, Chapter 2 also

discusses the existing SE schemes, their design primitives and highlights their pros

and cons.

To address the problem of performing keyword search over the encrypted data

stored on the cloud, Chapter 3 proposes a novel ranked single-keyword Searchable

Encryption (RSE) scheme. The scheme is based on the property of modular inverse

that generates probabilistic trapdoors. The probabilistic trapdoors provide indistin-

guishability and prevents against the search pattern leakage. Therefore, based on

the new security definitions, the proposed scheme provides higher levels of security

and privacy. The scheme is implemented and deployed onto the British Telecommu-

nications alpha cloud testbed. The proof-of-concept (PoC) prototype is deployed

and tested over a real-world dataset. The chapter analyses the storage overhead and

algorithmic complexities of the scheme.

Disjunctive query allows a client to perform more targeted search for independent

keywords, hence allowing to narrow down the outcome of the search. Chapter 4

extends the RSE scheme to facilitate ranked disjunctive query-based multi-keyword

SE. To enhance the usability and efficiency of the scheme, the algorithm is designed

such that it can explore the advantages of multi-cores and multi-threading to allow
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parallelized searching. The scheme in effect will allow to search across sub-folders

and sub-directories. The scheme is not only privacy-preserving but it is also efficient.

The RMSE scheme is also deployed on the BT cloud server and tested over a dataset

of encrypted documents.

The previous SE schemes presented in the chapters 3 and 4 do an exact matching

and do not take human typographical errors into account. The novel Fuzzy ranked

SE scheme is presented in the Chapter 5 and takes the human typographical errors

into consideration and performs search based on the similarity of keywords. The

scheme is also based on probabilistic trapdoors and utilizes the concepts of Shingling,

Minhashing, Jaccard Similarity and Euclidean Norm to achieve successful search.

The scheme makes use of two index tables; fuzzy index table and inverted index table.

The FRSE scheme is in accordance with the definitions of the Keyword-Trapdoor

and Trapdoor-Index indistinguishability, hence, it is privacy preserving. The FRSE

scheme provides correctness and soundness. The scheme is deployed onto the BTCS

and the computational complexity is analyzed over a real-world dataset.

Chapter 6 presents a novel homomorphic-based SE scheme. The scheme elim-

inates the need of a predefined index-table, therefore, allowing the modification,

updation and deletion of the documents on runtime. The HSE scheme is based on

the partial homomorphic property of RSA and generates probabilistic trapdoors. The

removal of an index table reduces the storage overhead and the network latency.

The HSE scheme also provides non-repudiation of the trapdoor transmitted to the

CS. Since the HSE scheme proposed in the Chapter 6 does not require an index

table, therefore, the security definitions are tuned accordingly and provide Keyword-

Trapdoor and Trapdoor-Document Indistinguishability. The scheme is implemented

and tested over the real-world dataset.
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7.3 Challenges and Future Directions

This section discusses the challenges we came across during this research. These

challenges will be addressed in the future research.

7.3.1 Malicious Cloud Server

SE is a technique that gives users full control of their personal data stored on the

cloud. This thesis has presented SE schemes that focus on enhancing the security

and privacy of the clients and their data. These schemes are based on the assumption

of the cloud server being trusted-but-curious or honest-but-curious that requires the

trapdoors to be probabilistic. In order to further enhance the usability of the SE

schemes, the future research should be aimed at towards designing SE schemes for

scenarios where the CS is malicious. This may require the SE schemes to provide

Proof of Deletion (POD) for data removal in the cloud and Provable Data Possession

(PDP) for integrity verification [160].

7.3.2 Multi-user setting

With the growth in the global cloud market, enterprises have started to realize the

advantages cloud has to offer and now they have started to migrate their workloads

into the cloud. An enterprise is formed by individuals, stakeholders and employees

thriving towards the goals of the enterprise. Since, enterprises offer a collaborative

environment, in order to fully benefit from the cloud and the resource sharing, a SE

scheme can function in a multi-user setting. However, this is not straight-forward

and may require system monitoring, governance and access control in place along

with sophisticated SE schemes. The SE schemes presented in this thesis are designed

for the Single Writer/ Single Reader (S/S) architectures. As discussed in the Section

3.6.1, an Application Encryption (AE) Server can provide the key management
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for the multi writer/ multi reader (M/M) settings. Therefore, the incorporation of

role-based access control [117][53] with the AE server can significantly enhance

the usability of the SE schemes in multi-party settings. This amalgamation in effect

could give enterprises and their customers trust onto the cloud and the benefit from

the extensive resources cloud has to offer.

7.3.3 Dynamic Databases

With the reliance and trust onto the cloud, people will store more and more data onto

the cloud. The thesis has focused mainly on presenting SE schemes that are based on

probabilistic trapdoors to prevent distinguishability attacks and the proposed schemes

are lightweight. The index-based SE schemes that are presented in this thesis require

the pre-processing of the data to generate an index table. The proposed index-based

SE schemes can be extended to generate sub-indexes whenever a document is added.

In this way, the cloud server can benefit from the multi-core processes and execute

parallel searching. Although this is achievable at the cost of the pre-processing the

data, the ranking of the documents in the true sense cannot be achieved until the

entire index tables are not recomputed. This requires to design a SE scheme that

allows the index generation on runtime. This research can be extended to facilitate

modification, deletion and updation of the index table on run time. Currently, we

achieve this by presenting a homomorphic-based SE scheme in the Chapter 6.

7.3.4 ICMetrics Technology and SE

SE allows only an authorized person (in possession of the cryptographic keys) to

perform the search. Apparently, SE does not provide protection against the key-theft.

ICMetrics [6][80] technology prevents the key theft by extracting the device features

and generating the cryptographic keys on run time. Therefore, eliminating the need

of storing the cryptographic keys as the same key can be generated whenever required.
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Extensive research is being done in the field of ICMetrics for the key generation in

one-to-one and group communication [131][127][128]. This leads to a convincing

case to combine the ICMetrics technology to prevent key theft and further enhancing

the security of the entire system. The merger of ICMetrics and SE could have a

profound impact on different verticals including healthcare and the IoT sectors where

the devices have very limited resources to securely store the cryptographic keys.

7.3.5 Blockchain and SE

Searchable Encryption is a technology that maintains the confidentiality of the

data stored on the cloud. Although, SE has many benefits, it lacks in providing

transparency, provenance and immutability of the data. To address this issue, SE

can be merged with the blockchain technology. Bitcoin was proposed by Satoshi

Nakamoto in [95]. Bitcoin is a peer-to-peer version of electronic cash that does

not require a financial institution to govern all the transactions. Blockchain is the

underlying technology that turns the concept of Bitcoin into reality. Blockchain has

attracted a lot of attention owing to the advantages it offers over the centralized cloud

server environment. Blockchain is a distributed architecture that maintains all the

data and transactions in the form of a ledger distributed across the nodes. Blockchain

offers integrity, provenance and immutability but does not provide confidentiality.

The amalgamation of SE with blockchain would allow the users to benefit from the

security advantages that both of the technologies offer. To further emphasize on the

benefits of this fusion, the areas of application include financial services by bringing

trust, simplicity and efficiency to the financial transactions [21]. Blockchain and SE

in the field of healthcare provides secure and efficient availability of the data across

the peers [89]. Similarly blockchain and SE could have a profound impact in the

domains of digital voting [98], driverless cars [37], Internet of Things (IoT) [40] and

the education sector [67].
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