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Abstract

The Keogh Report of 2013 proposed a major reconfiguration of the accident and emergency (A&E)

system under National Health Service (NHS) England to improve service. The proposed reconfig-

uration includes centralized facilities with multiple specialties as well as small local minor-injury

facilities. We use stylized queuing models to analyze cost and service implications of the proposed

reconfiguration. We find that increasing numbers of specialty patients that require admission to

hospital makes splitting off specialty A&Es from general ones more attractive. The same applies

for patients with minor injuries. Our work generally supports the reconfiguration recommended in
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the Keogh report but with some fine-tuning: For instance, a merger of A&Es (pooling) does not

always make sense even though it increases patient numbers when the patients in the two A&Es

are of different types. We provide simple quantitative rules to indicate whether the proposed recon-

figuration could lower costs in any particular region of the country. The results here are consistent

with some NHS England providers attempting specialty A&Es for geriatric patients and mobile

drunkenness treatment centers on weekends. Our rules and approach can be useful for identifying

candidate reconfiguration opportunities not only for NHS England but also for any other context

where pooling and arrival heterogeneity are important considerations.

Keywords: Healthcare policy, accident-and-emergency service, queuing models, pooling and split-

ting, merger

History: Received: September 2018, Accepted: February 2019 by Michael Pinedo, after two revi-
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1. Introduction

In accident-and-emergency (A&E) centers in England, attendance grew 67% from around 14 million

per year prior to 2003 to 24 million in 2017–2018 (NHS England 2018), resulting in a sharp

deterioration in service. Many hospital providers are in violation of the policy-mandated service-

level of no more than 5% of patients having to wait longer than four hours from the time of

entering the A&E to being formally released. To improve matters, Professor Sir Bruce Edward

Keogh, National Medical Director (2007-13), recommended fundamental reconfiguration of the

A&E system with the creation of mega-facilities in urban areas with multiple specialties as well

as smaller local sites for minor injuries (NHS 2013). Such a reconfiguration could be realized

by, for instance, merging existing generalist facilities across hospitals and then hiving off multiple

specialty clinics to treat specific categories of patients. We analyze the cost implications of such

reconfiguration, and in doing so, provide simple queuing-theory-based rules for such evaluation.

NHS England has three types of A&E facilities: Type 1 for all emergency patients, Type 2, with

a single specialty service such as ophthalmology-only, dentistry-only, or trauma-related emergency

services, and Type 3, for minor injuries only. A hospital may have any subset of these facilities and

may have more than one Type-2 A&Es for different specialties. The Keogh report recommendations

included a two-tier system in urban areas: small neighborhood-level Type-3 A&Es for minor injuries

at facilities including pharmacists and “mega” Type-1 facilities supported by multiple Type-2

A&Es at a few large centralized hospitals. Such a configuration could be achieved in urban areas

by creating new Type-3 A&Es, say, at pharmacists, by merging Type-1 facilities making them

much bigger, and by splitting off Type-2 services from the existing or merged Type-1 A&Es.

The recommendations also included “developing models and tools to improve...the management of

capacity”, which this paper seeks to do.

We develop stylized queuing models to identify the necessary and sufficient conditions to lower

costs while maintaining the target service level, noting that these simple models are robust against

more realistic assumptions that would be intractable analytically. First, we obtain the necessary
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and sufficient conditions for splitting off a specialty Type-2 A&E from a general Type-1 A&E,

as for instance, in creating a specialty A&E for geriatric patients. Second, we do the same for

splitting off a minor-injury Type-3 A&E from a Type-1 A&E, as for instance, using “booze buses”

in city centers on weekends to provide supplementary A&E services for over 2 million alcohol-

related emergencies (“Drunks should be treated in ‘booze buses’ to ease A&E overcrowding, nurses

say”, Daily Telegraph, 16 June, 2014). Lastly, we analyze the potential merger of two hospitals for

optimal reconfiguration of their A&Es.

Our contribution to the literature is demonstrating the application of queuing models to health-

care policy regarding a nationwide system of A&E facilities. We seek to contribute (a) to the

healthcare operations literature on policy by analyzing the Keogh recommendations, and (b) to

the queuing theory literature – including Cachon and Terwiesch (2009), van Dijk (2008), Man-

delbaum and Reiman (1998) and Song et al. (2015) – with a real-world application of pooling (or

splitting), given heterogenous arrivals. The setting we describe has alternative A&E configurations

that have not received enough attention in the literature thus far although Cawson et al. (2012)

and Green (2012) have highlighted the creation of specialty units and reconfiguration of service

units as important topics. Moreover, A&E departments have not been considered from a policy

perspective at a system-wide level in the operations literature to the best of our knowledge.

Our indicative results have at least two managerial implications. First, while Keogh recommen-

dations generally make sense from a cost perspective, equally, there are contexts where mergers to

produce mega-facilities may not make sense. Second, our work has yielded simply-to-apply rules

for policymakers to do a first-pass evaluation of any reconfiguration whether or not motivated by

the Keogh recommendations. These rules can indicate or rule out candidate reconfigurations for

a pair of hospitals or even for the A&E system as a whole for a region. For instance, these rules

indicate when it makes sense to create Type-2 A&Es for the elderly – a growing percentage of the

population – or to create Type-3 A&Es to respond to minor injuries, including those related to

weekend drunkenness in town centers, based on arrival rates. Similarly, these rules indicate how
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an increase in specialty-patient arrivals or in their admission rates to hospital makes splitting off

specialty Type-2 A&Es more attractive. Applying these rules to a merger of two hospitals’ A&Es

also indicate when it does not make sense to merge.

Section 2 looks at the pertinent queuing literature. Section 3 provides the real-world context for

this work and modeling preliminaries. In Section 4, we develop conditions under which splitting

off a specialty Type-2 A&E from a general Type-1 A&E is cost-effective while Section 5 does so

for splitting off a Type-3 A&E for minor injuries from a general Type-1 A&E. Section 6 develops

appropriate conditions for reconfigurations of a pair of A&E facilities targeted for merger. Section

7 concludes with ideas for further research.

2. Literature

Many healthcare systems have been analyzed using queueing theory; for example, intensive care

units (ICUs) (Chan et al. 2012 and Chan et al. 2014), general practice (Green and Savin 2008)

and outpatient services (Jiang et. al 2012). Regarding NHS England specifically, Mayhew and

Smith (2008) use queuing theory to analyze the four-hour completion target for A&E departments.

Armony et al. (2011) investigate an A&Es as just one part of a hospital as a queueing network.

Saghafian et al. (2015) and Saghafian et al. (2012) use queueing models – along with Markov

decision processes (MDPs) and hospital data – to study issues related to patient flow, patient

streaming, triage, and patient sequencing in A&Es. Other researchers have used mathematical

programming, optimization and simulation to analyze A&E performance; see review by Saghafian

et al. (2015).

Our study pertains to the benefits of pooling in simple and network queues because we investi-

gate whether or not it is more cost efficient to create specialty A&Es from an existing A&E or to

merge and/or reconfigure a pair of A&Es. The literature on pooling suggests that while pooling

lowers costs when patients are homogenous, doing so may increase costs when patients are het-

erogenous as doctors would need to have a broader range of skills, setup would be increased, and

variability of the service processes would increase. In this thread, Smith and Whitt (1981) show
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that operating a single queueing system with n1 + n2 servers is at least as effective as operating

two independent queueing systems with n1 and n2 servers respectively, when customer inter-arrival

and service times are identically distributed for all facilities. Benjaafar (1995) extends this work

for n independent queueing systems by providing performance bounds on the effectiveness of sev-

eral pooling scenarios and by offering capacity and utilization tradeoffs between independent and

pooled queueing systems. Mandelbaum and Reiman (1998) consider a particular queueing network

where the tasks at all nodes of the queueing network are processed by a single super server, and

compare independent and pooled systems under assumptions for traffic intensity and task vari-

ability. Andradottir et al. (2017) study the effects of resource pooling in the presence of failures.

They show that while pooling queues is always beneficial, pooling servers and queues increases

risk although it does improve efficiency. Cachon and Terwiesch (2009) summarize benefits and

drawbacks of pooling; see also van Dijk (2008), Mandelbaum and Reiman (1998), and Song et al.

(2015).

There is a gap in this literature regarding the application of queuing models to systemwide

multiple A&Es. Our paper contributes in narrowing this gap by providing and analyzing a par-

ticular real-world setting. Moreover, in our setting, heterogeneity stems from different treatment

of patients in a second stage in the queuing system. Our two-station tandem queue in the pooled

system is unlike Smith and Whitt (1981) or Benjaafar (1995) who have only one station in inde-

pendent and pooling queueing systems; the two-stage queue is used by Conroy et al. (2014) and

Wright et al. (2013). Our work is also different from Mandelbaum and Reiman (1998) because,

in the pooled system of our queueing network, tasks in different nodes are processed by different

servers whereas in the pooled system of Mandelbaum and Reiman (1998), the tasks at different

nodes are sequentially processed by a single super-server. We do not consider service failures like

Andradottir et al. (2017), but such failures only benefit pooling. Therefore, the pooling effect in

our setting is lower than that in the queueing systems in Smith and Whitt (1981) and Benjaafar

(1995). The implication is that our analysis is not a straightforward application of models from

the existing literature to compare pooled and independent queuing systems.
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3. Background and Modeling Preliminaries

Healthcare in the UK is devolved to the four constituent countries: England, Northern Ireland,

Scotland, and Wales. NHS England, as a public body responsible for health services for all residents

of England, in turn commissions provider organizations that include NHS Trusts, NHS Foundation

Trusts and private or independent sector organizations (ISO). Each provider organization manages

one or more hospitals that may offer A&E services or ambulance service. Of the 247 providers in

2015-16, 138 offered Type-1 A&Es, 31 offered Type-2 A&Es, 171 offered Type-3 A&Es, and 10

offered no A&E (Table 1; NHS England (2017b)).

No. provider organizations 16 10 60 1 52 4 94 10 247

Type-1 services X X X X 138

Type-2 services X X X X 31

Type-3 services X X X X 171

Table 1 Number of provider organizations offering A&E services in NHS England, March 2016.

Individual hospitals, not just their providers, may also offer more than one type of A&E services

(NHS England 2017a). Queens Hospital Romford operates one Type-1 A&E and several Type-

2 A&Es, which are for trauma, hyper-acute stroke, maternity, renal and neurosciences patients

respectively. In contrast, UCL Hospitals London offers only one Type-1 A&E. Moorfields Eye

Hospital in London has only a Type-2 A&E for ophthalmology but no Type-1 service. As, Table

1 shows, as many as 94 providers only have Type-3 A&Es to deal with “minor injuries” that only

have nurses (no doctors) so the facilities are less expensive to operate than Type-1 A&Es.

Patient flow. In case of an accident or other emergency, a patient can go to any A&E in any

hospital anywhere in the country nearest to them or be taken there by ambulance. (The ambulance

can take the patient directly to a Type-2 A&E, if applicable.) Upon arrival, the patient is registered

and the time noted. Shortly thereafter, a nurse performs triage to assess the urgency and severity

of the patient’s condition to assign priority. (If necessary, and if an appropriate Type-2 A&E is
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available on-site, the patient is directed there.) Next, the patient is seen by a doctor or nurse.

Tests may be carried out as necessary with results seen by the treating doctor. Eventually, the

patient is released from the A&E (time noted) in one of three ways: (a) discharge, (b) release for

admission to hospital and is placed in a temporary ward or on a trolley to taken to the appropriate

ward (the time between the decision to admit and that when admission actually takes place is also

monitored), or (c) transfer to some other A&E facility.

Waiting time and service policy. The difference between the release timestamp and the

arrival timestamp is the episode time – also referred to as waiting time or sojourn time in the

queuing literature – in the A&E system, which is an important performance measure for providers

and of NHS England as a whole. The provider organizations’ service level requirement requires that

no more than 5% of all patients over a measured period (a month) have waiting time exceeding

four hours. All providers are required to report this statistic, aggregated across the hospitals they

manage, as part of Hospital Episode Statistics (HES). Providers get paid based on arrivals and

treatments but are liable for a penalty of £120 per patient for all patients, whose waiting time

exceeds four hours above the 5% threshold (Department of Health 2016; Propper et al. 2008).

3.1. Queuing model

Although there are several performance measures such as the average queuing length, the average

waiting time, the average number of customers in the system, and the average sojourn time, we

focus on the tail probability for the sojourn time because it is a crucial performance measure with

service level specified as P (W > T ) ≤ α. For NHS England, T = 4 hours and α = 5% requiring

that more than 95% of all patients arriving in an A&E must be released – discharged, released for

admission to hospital, or transferred to some other facility – within four hours. In other words,

less than 5% of patients should have to wait longer than 4 hours. If the A&E were an M/M/1

system, we would have P (W >T ) = e−(ν−λ)T for arrival rate λ and service rate ν. The service level

requirement would then be equivalent to having a service rate

ν ≥ λ+
1

T
ln

(
1

α

)
, (1)
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Figure 1 Proportion of patients waiting in excess of four hours by month (solid line, left axis) with implied

utilization of A&E services in NHS England as a whole (dashed line, right axis). NHS England, May

2017.

thus providing the minimum acceptable service rate for this single-server A&E department. In

reality, an A&E is more complex than a G/G/s queue. However, an approximation helps us to

model A&E performance for analytical tractability under heavy traffic when utilization is close to

100% as is the case here (Figure 1).

The heavy traffic assumption allows us to assume, with justification from the literature, that

the tail probability for waiting times queue can be approximated by an exponential function for

many queuing systems under heavy traffic. This fact is especially useful here because service level

specification in NHS England is also in terms of tail probability. As such, throughout the paper,

our basis for analysis is

Assumption 1. The A&E operation has Poisson arrivals at rate λ that creates heavy traffic in

that, if µ is overall service rate of the system, then the utilization λ/µ→ 1. The tail probability of

the waiting time in the system, W , for large T is characterized by P (W > T )≈ e−κ(µ−λ)T , where

and the parameter κ is independent of the arrival rate.

There is a substantial body of literature on the exponential approximation under heavy traffic

and large T for different queuing systems including the M/G/s queue. Abate et. al (1995) analyze
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exponential approximations and Allon and Federgruen (2008) point out that such an approxima-

tion becomes exact for the G/M/s queue. Specifically for an M/G/s system under heavy traffic,

exponential approximation for the tail probability of the sojourn time, W , for large T is given by

P (W >T )≈ϕe−ηT , (2)

where ϕ and η depend on the characteristics of the queueing system. In Appendix A, we show

that under Assumption 1, ϕ and η can be approximated as constants:

ϕ≈ 1, η≈ 2

1 + τ 2s
(sν−λ) (3)

where λ is the arrival rate per hour, ν the service rate per hour for one server, and τs is the

coefficient of variation of the service time. Following (2) and (3), we approximate P (W > T ) by

e−κ(sν−λ)T , where κ = 2/(1 + τ 2s ). For the M/M/1 queue, the approximation is exact as we saw

earlier. Whitt (1993) reviews prior results and provides new approximations for G/G/s queue

with an exponentially decaying length of queue under heavy traffic (p.121).

Aggregate service rate approximation. Taking µ = sν, under Assumption 1, the service

level requirement P (W >T )≤ α implies that we require an aggregated service rate µ given approx-

imately by

µ≥ λ+
1

κT
ln

(
1

α

)
. (4)

to meet service level requirements. We use this approximation throughout the paper and refer to µ

as the aggregate service rate for the queuing system. When ν is a fixed parameter, calculating the

required value of µ is equivalent to determining the number of servers s in the queue. Equation (4)

indicates that the minimum aggregate service rate in the system must exceed the arrival rate plus

an additional capacity to meet the service requirements characterized by the waiting time target

T and service level α.

Our choice of any queuing system satisfying Assumption 1 extends some of the existing literature

using M/M/1 queues (cf. Green and Savin 2008 and Jiang et. al 2012). The assumption allows
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us to assume, for instance, the M/G/s system to represent the patient flow from A&Es to hospital

wards. This is still a simplification but it makes the modeling tractable for generating managerial

insight for answering policy-level questions such as those addressed in NHS (2013).

4. Case 1: Splitting off Type-2 A&Es from Type-1 A&Es

Many A&Es in NHS England are of Type 1 and treat all patients. A possible reconfiguration

would be to split off a Type-2 A&E for specialty patients who can immediately be categorized

for a specialty facility requiring, for instance, opthalmology, trauma or cardiac treatment. Other

patients would remain in the general pool for the Type-1 A&E. Taking this idea further, multiple

Type-2 A&Es can be created for different categories of specialty patients in the same hospital.

Consider pooled and split systems as in Figure 2 panels (a) and (b) respectively, along with

some notation we explain next.

Figure 2 An illustration of A&E configurations. (a) a pooled system. (b) a split system.

Pooled system. For a pooled or Type-1 A&E, general as well as specialty patients arrive at

the A&E at the rate λg and λs respectively. They receive services provided by generalist doctors,



12

not specialists. A proportion of the patients who visit the A&E have to be admitted to hospital

for further care from specialist doctors, with the remaining are either discharged or transferred to

other hospitals. The proportion of general patients and specialty patients released for admission to

hospital wards are pg and ps respectively. Any procedures or diagnoses that these released specialty

patients receive in A&E from generalist doctors will generally be repeated by specialty doctors in

hospital wards (Geddes 2013). Waiting time to get admitted (and get these preliminary services

in hospital wards) is specified by Ts with α ensuring a service level for the waiting time for formal

admission to hospital ward, with Ts specified at two thresholds, 4 hours and 12 hours. Thus, we

assume that admitted patients receive the same services at either stage – by generalists in the

A&E and by specialists in hospital wards. We treat these two stages individually as if the output

of the first stage is Poisson, noting that Burke (1956) has shown that the output is Poisson for an

M/M/s queue as has Mirasol (1963) for an M/G/∞ system. It follows from (4) that:

µg1 ≥ λg +λs +
1

κTg
ln

(
1

α

)
, (5)

where µg1 is the service rate (capacity) for meeting the required service level specified by Tg and

α for the queue in the first stage of the pooled system. Similarly, the service-level requirement in

the hospital ward for the preliminary services for specialty patients can be met if:

µs1 ≥ psλs +
1

κTs
ln

(
1

α

)
, (6)

where µs1 is the service rate (capacity) for meeting the required service level specified by Ts and α

for the specialty-patient queue in the second stage of the pooled system. As for costs of the pooled

system, let cg and cs be the unit costs per service rate for generalists and specialists, respectively.

Then the total hourly cost for the pooled system is cgµg1 + csµs1. Thus, (5) and (6) show that the

minimum total cost for the pooled system per hour is

π1 = cg

(
λg +λs +

1

κTg
ln

(
1

α

))
+ cs

(
psλs +

1

κTs
ln

(
1

α

))
. (7)

Split system. By contrast, for a split system, where a Type-2 A&E has been split off from the

existing Type-1 A&E (panel (b) of Figure 2), general patients and specialty patients enter the A&E
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through separate queues for their respective Type-1 and Type-2 A&Es. All general patients are

treated in the A&E by generalists in one M/G/s queue and specialty patients (identified through

triage) are treated by specialists in another M/G/s queue. As with the pooled system, patients are

discharged, released for admission to hospital, or transferred to other hospitals. Admitted patients

will receive further services and treatments in hospital wards. but duplication of preliminary assess-

ment is avoided in the split system. Bringing specialists into A&Es can also improve service quality

for specialty patients (Conroy et al. 2014) but specialists doctors are more expensive than general-

ist doctors. We use equation (4) to obtain service rates µg2 and µs2 such that µg2 ≥ λg + 1
κTg

ln
(
1
α

)
and µs2 ≥ λs + 1

κTg
ln
(
1
α

)
. Then, the minimum total cost for the split system is

π2 = cg

(
λg +

1

κTg
ln

(
1

α

))
+ cs

(
λs +

1

κTg
ln

(
1

α

))
. (8)

4.1. Comparison between Pooled and Split System

We now compare the minimum costs of the two configurations even though the relationship between

minimum costs of these configurations is not the same as the relationship between their actual (or

projected) costs. This is partly because we look at this issue from a policy perspective. So, we do

not include all costs especially if these appear to be equal for the two configurations. This would

be the case with triage costs when a nurse has to categorize a patient – in the configurations we

compare, there is one triage in either configuration, so we ignore this cost. Moreover, to compare

two configurations, we necessarily compare their optimized minimum costs because if one configu-

ration is assumed to be inefficient, its cost can always be lowered by making it run efficiently and

eliminating service level violations.

Therefore, splitting off a specialized Type-2 A&E from a pooled Type-1 A&E makes sense from

a cost perspective if and only if π1 ≥ π2, i.e.,

cg

(
λg +λs + 1

κTg
ln
(
1
α

))
+ cs

(
psλs + 1

κTs
ln
(
1
α

))
≥ cg

(
λg + 1

κTg
ln
(
1
α

))
+ cs

(
λs + 1

κTg
ln
(
1
α

))
.

(9)

We do not account for servicing general patients in hospital wards because the costs in pooled

and split systems are identical in both systems, and therefore cancel out in (9). Rearranging terms

in (9), we obtain
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Proposition 1. A split system is less costly than a pooled system if and only if

ps ≥ 1
λs

(
1
κTg
− 1

κTs

)
ln
(
1
α

)
+ 1− cg

cs
.

Proposition 1 implies that splitting off a separate Type-2 A&E becomes more attractive if there

are many specialty patients or if specialized capacity is cheap. For the case Ts = Tg = 4 hours and

specialty cost cs = 3
2
cg, a split is indicated if ps > 1/3. For the higher threshold of Ts = 12 hours, ps

will need to be higher for the split to be cost-effective although this increase can be mitigated by

an increasing arrival rate λs of specialty patients. Larger values for ps or λs makes the second-stage

service for specialty patients in a pooled (Type-1) system more costly. Although Tg is fixed by

government policy, a larger value would favor pooling, which is an idea floated by the Minister for

Health (Guardian, 9 Jan 2017).

Finally, the arrival rate for general patients λg is irrelevant to the choice of a pooled or split

system. This means we can apply the rule in the proposition sequentially to split off any number

of non-overlapping specialty Type-2 A&E. This allows us to evaluate the creation of mega-A&E

centers in urban areas in England with multiple Type-2 specialty A&Es (one for each specialty) as

recommended by the Keogh report.

Proposition 1 implies that the benefit of pooling is reduced and may even become negative when

customer heterogeneity increases. This is in line with van Dijk et al. (2008) in that there is no

single answer to the question of whether service capacity should be pooled or not. Green (2012)

has used intensive care units (ICU) to illustrate the advantages and disadvantages of specialization

and pooling and highlights the economies of scale generated by combining two or more ICUs.

Finally, while the proposition focuses on only one benefit of a split system over a pooled one, there

are other benefits – dedicated units reduce variability in treatment and length of stay, and enable

better coordination with other hospital units (Song et al. 2015).

4.2. Implications for specialty A&Es for geriatric patients

Elderly patients visiting A&Es in England have increased steadily in recent years both in absolute

numbers and as a percentage of total attendances (Age UK (2017b)) which was already about
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20% in 2013 (Geddes 2013). Moreover, total costs for geriatric patients are disproportionate: over

80% of admitted patients whose length of stay longer than two weeks are those who are over 65

years old (Wright et al. 2013). Some of these admissions could be avoided with A&Es devoted to

geriatric patients (Geddes 2013). In addition, the proportion ps of elderly patients being admitted

for further care is quite high at nearly half (47%), varying from about 40% for those over 65 to

over 60% for those over 80. Therefore there is need to consider splitting geriatric patients off from

Type-1 A&Es.

The rule from Proposition 1, using Tg = 4 hours, α = 5% (so ln(1/α) ≈ 3) and Ts = 12 hours,

approximates to ps − 1
2λs
≥ 1− cg

cs
. Assuming exponential service distribution, τs = 1 and conse-

quently κ= 1 as well. We use λs = 0.2λ (the total arrival rate λ= λs +λg) and assume cs = 1.5cg,

i.e., specialists are 50% more expensive than generalists, to compare with ps = 47% to check if any

of the 52 providers currently offered Type-1-only A&Es in 2016 should consider offering Type-2

A&Es for geriatric patients. Many of these 52 providers satisfy the above inequality (see the light

grey bars for each provider relative to the horizontal line in Figure 3). However, if we assume

cs = 1.2cg, i.e., the cost of specialists were only 20% more than that of generalists, realized by using

a higher proportion of nurses, then nearly all of the 52 providers can justify having geriatric Type-2

A&Es (see the dark grey bars of Figure 3).

This cost-based justification is only an indication and further analysis is necessary. Elderly

patients have high readmission rates compared to the general population. This means higher costs if

some elderly patients are incorrectly discharged in a Type-1 A&E or do not get the right treatment

in the general hospital; this is why ps for geriatric patients can be high to begin with, resulting

in admitting patients who would have been discharged in a dedicated Type-2 A&E. Thus, a sepa-

rate Type-2 A&E dedicated to elderly patients can lower costs for providers by reducing costs of

admission such patients to hospital.

The literature provides empirical evidence for cost reduction and improved care. Wright et al.

(2013) report that in September 2010, the Royal Free Hospital and Haverstock Healthcare Ltd, a
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Figure 3 Identifying 52 Type-1-only provider organizations for splitting off Type-2 A&Es for geriatric patients,

assuming cs = 1.5cg (light grey bars) or cs = 1.2cg (dark grey bars). Source: NHS data, March 2016.

general practitioner provider organization, introduced an admission-avoidance system for patients

aged 70+, called the Triage and Rapid Elderly Assessment Team (TREAT). A study reported

that TREAT reduced avoidable emergency geriatric admissions to the hospital and, in addition,

shortened the length of stay in the hospital for all geriatric patients who were admitted. Conroy et

al. (2014) report findings on a similarly motivated Comprehensive Geriatric Assessment (CGA)

team formed after the merger of two acute medical services (Leicester Royal Infirmary and Leicester

General Hospital) that resulted in improved discharge rates as well as reduced readmission rates for

older patients after being discharged from the hospital. Geddes (2013) reports a similar intervention

– with potential savings of £3m/year in hospital costs – in the North General Hospital in Sheffield

without using extra staff other than a staff nurse, although specialist doctors (geriatricians) had

to “adjust working hours so they were on call in the evenings and at weekends”. In light of such

evidence and our calculations from Proposition 1, there is a strong case for geriatric Type-2 A&Es

systemwide.
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5. Case 2: Splitting Type-3 A&Es from Type-1 A&Es

Consider general patients without minor injuries arriving at a rate of λg and those with minor

injuries arriving at a rate of λm. For the latter, the pooled system is simpler because there is

no second stage while the split system remains the same as that investigated in the previous

section. Let Tg be the waiting time targets for general patients in either system. Although the

waiting time requirement in Type-3 A&Es is currently the same as in a Type-1 A&E (Tg, α), it

is worthwhile introducing a separate waiting time target, Tm, for the split A&E with a different

service requirement αm. This is based on the idea of lowering service levels for those with minor

injuries floated by the UK Minister of Health (Guardian, Jan 9, 2017). Unit costs for serving general

and minor injuries patients are respectively cg and cm, with cm < cg as Type-3 A&Es are staffed

by nurses rather than doctors.

Repeating the analysis in the previous section adapting (9) without the second stage on the left

hand side and noting the potentially different service levels for the Type-3 A&E for minor injuries,

we obtain:

Proposition 2. Splitting off a dedicated Type-3 facility for minor injuries with cm < cg from a

pooled Type-1 facility lowers the service cost if and only if

λm ≥
(

cm
cg − cm

)
1

κTm
ln

(
1

αm

)
.

The above proposition provides a simple rule to aid decision-making just like Proposition 1 does.

The main implication is that the lower the service-level requirements on Type 3 or the cheaper the

capacity for Type 3, the better it is to split. The case for splitting is stronger in urban areas because

of large λm. Indeed, if λm were large enough, splitting off multiple Type-3 A&Es from the same

Type-1 facility may be justified. This supports the Keogh recommendation for multiple distributed

Type-3 A&Es, including services being provided by, say, the local pharmacy. The proposition also

shows that the case for splitting becomes stronger if the government were to weaken service levels

for minor-injury patients, by increasing Tm or αm, currently the same as with Type-1 A&Es (Tg
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and α). Given an arrival rate of minor-injury patients of λm, a separate Type-3 A&E becomes

more attractive with increasing values of cg and less attractive with increasing value of cm. Finally,

as with specialty patients in the previous section, justification for splitting is independent of the

arrival rate of general patients, λg. In similar vein, Mayhew and Smith (2008) advocate separating

patients who require ‘short’ (minor) treatments from those who need ‘long’ (major) treatments.

Cooke et al. (2002) provide empirical support for reduction in waiting time by using a variant of

a Type-3 A&E within a Type-1 A&E in a UK hospital.

Unlike geriatric patients, minor-injury patients require triage for classification into the ‘minor-

injury’ category. Ieraci et al. (2008) state that patient complexity must be factored into triage and

streaming, while Saghafian et al. (2014) show that complexity-based triage, as in this case, lowers

the risk of adverse patient events as well as the average length of stay.

5.1. Implications for providers

The Keogh report envisions more Type-3 A&Es because patients with minor injuries comprise a

high proportion – maybe as much as 60% – of all A&E arrivals. The NHS has noted that 57.7%

of all the 19m patients who visited A&Es in 2014-15 were discharged with only a GP follow-up or

with no follow-up required. This is why Type-3 facilities are common with 171 of the 247 provider

organizations in NHS England offering Type-3 A&Es in 2017, either in conjunction with a Type-1

or Type-2 A&E, or on their own. In 2016-17, nearly a third (32%) of all attendances were to Type

3 A&Es, in addition to patients with minor injuries who visited Type-1 A&Es.

Proposition 2 provides the following rule for splitting a Type-3 A&E from a Type-1 service:

(cg/cm)≥ 1 + ln
(
1
α

)
/(κTmλm). To apply the calculation to the 52 A&Es with Type-1 service only,

take Tm = Tg = 4 hours, τs = 1 and α= 0.05. Assuming 40% of all patients at each of these providers

have minor injuries only, we find this rule is satisfied for all but four of the 52 Type-1 A&Es,

indicating that it is attractive to split off Type-3 A&Es (light grey bars in Figure 4). Of course,

if the percentage were higher, say, 60%, the case becomes even stronger (dark grey bars in Figure

4). Thus, providers could lower costs by offering more and separate Type-3 A&Es as suggested by

the Keogh report.
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Figure 4 Most providers with Type-1-only A&Es would reduce cost by splitting off Type-3 A&Es. Source: NHS.

5.2. Mobile Type-3 Facilities for Minor Injuries including Weekend Drunkenness

A special case of minor injuries is “acute alcohol intoxication” where the A&E still has to examine

the patient for any other symptoms or injuries. Given routine drunkenness in city centers on

weekends, some cities are trying mobile A&E units dubbed ‘booze buses’ to respond quickly to

drunken patients as well as to not let service deteriorate in the regular A&E. Such a unit, the

Alcohol Recovery Centre, is a 65-foot truck trailer equipped with several beds, a waiting area and

showers. If the percentage of patients on a Friday or Saturday night in a town center were, say, 60%

of all patients for the nearest A&E as discussed above, the case for splitting off a mobile Type-3

A&Es for weekends would be strong for that town centre (Figure 4, dark grey bars). On nights

near New Year, the number can go up to 70% according to Simon Stevens, Chief Executive of NHS

England. An alternative is a holding area or “drunk tank”, a static version of the booze bus.

Yet another example of a mobile facility is the ambulance itself becoming a Type-3 A&E so that

the patient can be discharged without being brought into the A&E if the injuries are minor. The

frontline staff would share photographs or hold video consultations with colleagues based in clinical
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hubs in the control room; all 4,000 frontline staff already have iPads to access patient records

(“Frontline staff given iPads to access patient records at scene”, Evening Standard, 30 May, 2018).

London Ambulance Service responded to 1.2 million incidents in 2017-18, and wants to reduce the

proportion of people taken to the A&E from 63% to 53%.

5.3. Splitting off both Type-2 and Type-3 A&Es from Type-1 A&Es

Assume that a pooled Type-1 A&E has three distinct types of arrivals: general patients (with

non-minor injuries) at arrival rate λg, specialty patients (with non-minor injuries) at arrival rate

λs, and minor-injury patients at arrival rate λm. If we have to consider splitting off both a Type-2

and a Type-3 A&E from a Type-1-only A&E, there are four possible configurations: (i) staying as

Type-1 only, (ii) fully split with Type-2 and Type-3 A&Es, (iii) with only Type-3 split off, and

(iv) with only Type-2 split off. The optimal configuration is then characterized by:

Proposition 3. (a) If
(
cg
cm
− 1

)
λm < 1

κTm
ln
(
1
α

)
and

cg
cs
< 1− ps, then system (ii) has the

least cost.

(b) If
(
cg
cm
− 1

)
λm ≥ 1

κTm
ln
(
1
α

)
and

cg
cs
≥ 1− ps, then system (i) has the least cost.

(c) If
(
cg
cm
− 1

)
λm ≥ 1

κTm
ln
(
1
α

)
and

cg
cs
< 1− ps, then system (iv) has the least cost.

(d) If
(
cg
cm
− 1

)
λm <

1
κTm

ln
(
1
α

)
and

cg
cs
≥ 1− ps, then system (iii) has the least cost.

Proposition 3 shows that cost-effectiveness is determined by two comparisons: (1) whether(
cg
cm
− 1

)
λm is greater or smaller than 1

κTm
ln
(
1
α

)
to indicate whether or not to retain minor injury

patients with general patients, (2) whether
cg
cs

is greater or smaller than 1−ps to indicate whether

or not to retain specialty patients with general patients. Note that
(
cg
cm
− 1

)
λm < 1

κTm
ln
(
1
α

)
if

and only if it is cost-effective to split off a Type-3 A&E, which contrasts configurations (ii) and

(iii) above to configurations (i) and (iv). The condition depends on the parameters for Type-1

patients and Type-3 patients, but is independent of the parameters related to the Type-2 patients.

Furthermore,
cg
cs
< 1−ps if and only if it is cost-effective to split off a Type-2 A&E, which contrasts

configurations (ii) and (iv) to (i) and (iii). The comparison depends on the parameters related the

Type-1 patients and Type-2 patients, but is independent of the parameters related to the Type-3

patients. Thus, we have:
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Corollary 1. The decision to split off a Type-3 A&E for minor injuries can be made inde-

pendently of the decision to split off a Type-2 A&E for a particular specialty from the same Type-1

A&E.

For this reason, we exclude Type-3 A&Es from consideration in the following section to focus

only on specialty patients of a particular type, noting that a hospital can have multiple Type-2

facilities for different specialties.

6. Case 3: Reconfiguring an A&E Network: The case of two hospitals

We focus on a minimal network with only two hospitals and with the practical setting of Tg ≤ Ts to

show that mergers are not always cost-effective. Even in this minimal setting, there are six possible

network configurations based on (1) whether or not to close the A&Es in one hospital and, (2)

whether a pooled system (Type 1 only) or a split system (Type 2 along with Type 1) is used. If

the A&Es in two hospitals are not merged, then each hospital has the choice of having a pooled

or split system with regard to Type-1 and Type-2 patients, giving us Systems (I), (II), (V), and

(VI) in Table 2, and if the A&Es in two hospitals are merged, then a pooled or split system may

be created subsequently, giving us Systems (III) and (IV) respectively in Table 2.

System (I) (II) (III) (IV) (V) (VI)

Hospital 1 A&E P S - - P S

Hospital 2 A&E P S - - S P

Merged A&E service - - P S - -

Table 2 Six possible network configurations for a two-hospital A&E network (“P” for pooled and “S” for split).

System (III) dominates System (I) by always having a lower cost because of the pooling effect

in queueing and, likewise, System (IV) dominates System (II). Therefore, we drop Systems I and

II from consideration. As we evaluate costs for alternative reconfigurations in this stylized model

for policy insight, we note that for operational decisions other factors will have to be considered.

For example, some patients may have to travel more compared if there is a merger, unless this is
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in an urban area with the hospitals close to each other. Mergers also reduce choice for patients

to a point that the Competition and Markets Authority would not allow it. Such location-specific

factors notwithstanding, we consider only the cost of A&E service for systemwide comparisons.

6.1. Optimal network configurations

Recalling the notation already introduced – Tg, Ts, and α – we introduce superscript i (i= 1,2) for

hospital i in the network. Then, for hospital i the arrival rate for general (Type-1) patients is λig,

the arrival rate for speciality (Type-2) patients is λis, and the admission rate for specialty patients

is pis. We will use some intermediate parameters for our analysis:

ps =
λ1
sp

1
s +λ2

sp
2
s

λ1
s +λ2

s

; (10)

δ=
cg
cs

+ ps− 1− 1

λ1
s +λ2

s

(
1

κTg
− 1

κTs

)
ln

(
1

α

)
; (11)

βi =
cg
cs

+ pis− 1 +
cg
cs

1

κTgλis
ln

(
1

α

)
+

1

κTsλis
ln

(
1

α

)
, i= 1,2. (12)

γi =
cg
cs

+ pis− 1−
(

1 +
cg
cs

)
1

κTgλis
ln

(
1

α

)
, i= 1,2. (13)

These parameters are useful for characterizing the configuration landscape of the two-hospital A&E

network. Of particular interest are the two parameters:

δi =
cg
cs

+ pis− 1− 1

λis

(
1

κTg
− 1

κTs

)
ln

(
1

α

)
, i= 1,2. (14)

Taking Tg ≤ Ts as before, and that the status quo is that the A&Es of both hospitals operate

separately, we have the following from Proposition 1: (1) If δ1 ≥ 0 and δ2 ≥ 0, then it is optimal

to have a split system at each of the two hospitals; (2) if δ1 ≥ 0 and δ2 < 0, then it is optimal to

have a split system at Hospital 1 and a pooled system at Hospital 2; (3) If δ1 < 0 and δ2 ≥ 0, then

it is optimal to have a pooled system at Hospital 1 and a split system at Hospital 2; and (4) if

δ1 < 0 and δ2 < 0, then it is optimal to have a pooled system at each of the two hospitals. The

main results in this section are summarized in the proposition below and in Table 3:

Proposition 4. Assuming that Tg ≤ Ts and one of the two A&Es can be considered for closure

as a result of their merger:
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(A) If δ1 ≥ 0 and δ2 ≥ 0, then it is optimal to close the A&E in one hospital and operate a split

system in the merged organization.

(B) If δ1 ≥ 0 and δ2 < 0, then it is optimal to have

(i) A merged pooled system if and only if δ < 0 and γ1 < 0.

(ii) A merged-split system if and only if δ≥ 0 and β2 ≥ 0.

(iii) A split system for Hospital 1 and a pooled system for Hospital 2 if and only if (1) δ < 0

and γ1 ≥ 0 or (2) δ≥ 0 and β2 < 0.

(iv) A merged-split system if p1s = p2s.

(C) If δ1 < 0 and δ2 ≥ 0, then it is optimal to have

(i) A merged pooled system if and only if δ < 0 and γ2 < 0.

(ii) A merged split system if and only if δ≥ 0 and β1 ≥ 0.

(iii) A pooled system for Hospital 1 and a split system for Hospital 2 if and only if either (1)

δ < 0 and γ2 ≥ 0 or (2) δ≥ 0 and β1 < 0

(iv) A merged split system if p1s = p2s.

(D) If δ1 < 0 and δ2 < 0, then it is optimal to have

(i) A merged split system if δ≥ 0.

(ii) A merged pooled system if δ < 0.

The main insight drawn from Proposition 4 is that reconfiguration in line with the Keogh recom-

mendations by merging the A&Es of several hospitals and then creating multiple Type-2 specialties

is not necessarily cost-optimal. Indeed, the decision is rather nuanced as reflected by the main

results: (1) Even if closing the A&E in one hospital is an option, it is not necessarily optimal to

do so as pooling does not always reduce costs. (2) Even if it is optimal to merge the two A&E’s

into one hospital, the optimal configuration for the merged system could be split or pooled. (3)

Whether or not the A&E in one hospital should be closed and whether a merged split or pooled

system is used depends on the values of such parameters as the cost ratio
cg
cs

, the admission rate

pis, arrival rates λis, and waiting time targets Tg and Ts. (4) When p1s = p2s, the two hospitals’ A&Es
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are always merged and the merged organization operates with a split system if δ≥ 0 and a pooled

system if δ < 0. This shows that if the A&Es of the two hospitals are the same in terms of admission

rates for Type-2 patients, then it is optimal to merge them. (5) When δ≥ 0, a split system must be

employed by the two hospitals’ A&Es if they are merged. (6) When δ < 0, a pooled system must

be employed by the two hospitals’ A&Es if they are merged. This can be viewed as an extension

of Proposition 1 in an A&E network setting (Table 3).

δ2 ≥ 0 δ2 < 0

δ1 ≥ 0 (S, S) −→ [S] (S, P) −→ [P] iff δ < 0 and γ1 < 0

−→ [S] iff δ≥ 0 and β2 ≥ 0

−→ (S, P) iff δ≥ 0 and β2 < 0

or δ < 0 and γ1 ≥ 0

δ1 < 0 (P, S) −→ [P] iff δ < 0 and γ2 < 0 (P, P) −→ [S] iff δ≥ 0

−→ [S] iff δ≥ 0 and β1 ≥ 0 −→ [P] iff δ < 0

−→ (P, S) iff δ≥ 0 and β1 < 0

or δ < 0 and γ2 ≥ 0

Table 3 Optimal A&E reconfigurations with two hospitals (P=pooled and S=split)

6.2. Sensitivity analysis of network configurations

Proposition 4 shows that the signs for the parameters δ, δ1, δ2, β1, β2, γ1, and γ2 play an important

role in determining the optimal configuration for a given A&E network. In real life, λ1
s and λ2

s

change dynamically by hour during the day, by day during the week, and by month during the year.

Assuming that all other parameters are unchanged, we can explore how the optimal A&E network

configuration changes when demand parameters λ1
s and λ2

s change; for example, the conditions

under which the two hospitals’ A&Es should be merged and how the optimal network configuration

evolves with a change in the arrival rate for Type-2 patients.

Proposition 5. Assume that Tg ≤ Ts, that the two hospitals’ A&Es currently operate separately,

and that the A&E of one hospital is considered for closure.
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(a) If
cg
cs

+p1s−1 and
cg
cs

+p2s−1 have the same sign, then it is optimal to merge the two hospitals’

A&Es.

(b) If
cg
cs

+ pis− 1< 0, then increasing λis reinforces the pooling strategy.

(c) If
cg
cs

+ pis− 1≥ 0, then increasing λis reinforces the splitting strategy.

This leads to our second important managerial insight: when
cg
cs

+ p1s − 1 and
cg
cs

+ p2s − 1 have

the same sign, the optimal configuration for the two hospitals’ A&Es is a merger, extending the

fourth result in the previous subsection, where p1s = p2s. Depending on the population demographics

in the two hospitals’ catchment areas, say proportion of geriatric people, we note that if the two

hospitals’ A&Es have very similar admission rates to hospital for Type-2 patients, they should be

merged. This is in line with the queuing literature that recommends pooling to reduce costs when

customers are homogeneous (van Dijk 2008). Moreover, a merged split system as envisioned in

the Keogh report becomes more attractive when either λ1
s or λ2

s is increasing. This reinforces the

same observation for A&E departments in a single hospital.

When
cg
cs

+p1s−1 and
cg
cs

+p2s−1 have opposite signs, the two hospitals’ A&Es may or may not be

merged. On one hand, when
cg
cs

+pis−1≥ 0, an increase in λis makes a split system more attractive

for the A&E of hospital i. On the other hand, when
cg
cs

+ pis − 1 < 0, an increase in λis makes a

pooled system more attractive for hospital i. This observation cannot be made for the A&E in a

single-hospital setting because when
cg
cs

+ pis− 1< 0, it is optimal to have a pooled system for the

A&E in hospital i no matter how large λis is; i.e. a low admission rate pis and low cost ratio of cg/cs

outweigh a large arrival rate of λis.

The results in Proposition 5 are derived from a preliminary result in the proof in Appendix B,

which shows that the (λ1
s, λ

2
s) is divided into different regions where the same network configuration

is used. This result resembles the well-known two-dimensional switching curve policy, an extension

of the one-dimensional threshold policy in the operations management literature (Porteus 2002).

We further investigate the sensitivity of the A&E network configuration by changing admission

rates p1s and p2s but fixing all other parameters. Similar to Propositions 5, we obtain some com-

plementary comparative static results on the optimal network configuration with a change in the
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admission rates for specialty patients and the conditions related to the admission rates under which

the A&E systems should be merged or remain separate.

Proposition 6. Assume that Tg ≤ Ts, that the two hospitals’ A&Es currently operate separately,

and that the A&E in one hospital is considered for closure.

(a) If pis is increased, then it is more attractive to employ a splitting strategy.

(b) If both p1s and p2s are sufficiently close to 1, then it is optimal to have a merged split system.

(c) If both p1s and p2s are sufficiently close to 0, then it is optimal to have a merged pooled system.

(d) If one of p1s and p2s is sufficiently close to 1 and the other is sufficiently close to 0, then it is

optimal to run the two A&Es separately.

As with Proposition 5, the results in Proposition 6 are derived from the so-called switching

curve policies in the network configuration landscape in terms of admission rates. Furthermore,

Proposition 6 implies interesting monotone properties, e.g., an increase in pis makes a split system

more attractive than a pooled system. This is an extension of the equivalent observation for a

single-hospital A&E setting.

Overall, on one hand, a merged system is preferable when both pis are relatively large (a merged

split system) or both are relatively small (a merged pooled system). On the other hand, the two

hospitals’ A&Es operate separately when one has a relatively high admission rate for Type-2

patients and the other has a relatively low admission rate for Type-2 patients. Thus, the pooling

effect increases with customer homogeneity and diminishes with customer heterogeneity (van Dijk

2008).

6.3. Illustrations with City of Leicester and Hammersmith, London

After a merger of two hospitals’ A&Es in the city of Leicester, a dedicated A&E (Type 2) was

created for geriatric patients (Conroy et al. (2014)). We wish to verify whether the merger and

creation of a dedicated Type-2 A&E is supported by our analysis. Before the merger, the aggregated

arrival rate in the two units for patients aged 65 and older was 6 per hour and the aggregated

admission rate was 36%. Recall that Tg = 4, Ts = 12, and α = 5%. For further analysis, we take
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the ratio cg/cs as a parameter. Regarding the arrival and admission rates for geriatric patients at

the two A&Es, we assume that λ1
s +λ2

s = 6 and (p1sλ
1
s + p2sλ

2
s)/(λ

1
s +λ2

s) = 36%, which implies that

λ2
s = 6−λ1

s and p2s = (0.36(λ1
s +λ2

s)− p1sλ1
s)/λ

2
s. Thus, we vary the values for λ1

s and p1s and obtain

values for λ2
s and p2s using these relationships. Based on Proposition 4, we obtain the results on the

optimal A&E configurations prior to and following the merger shown in Table 4.

In all scenarios, our analysis supports the merger. However, whether or not to establish a separate

geriatric A&E depends on the relative cost cg/cs. When geriatric specialists are much more expen-

sive than generalists (e.g. cg/cs = 0.6), a pooled system is preferable after the merger; otherwise, a

split system is preferable (Table 4).

Consider another example of five A&Es in London in the Hammersmith area. It is natural to

consider possible mergers of A&Es. Five hospitals, with codes RQM, CXC, SMH, RJ1, and RRV,

are located in close proximity to each other. Based on Proposition 4, we analyze whether it would

be beneficial to merge any two of these five A&Es in terms of reducing costs and increasing service

quality.

Data for the five A&Es is presented in Table 5. Following Proposition 1 and using the data in

Table 5, we can see that the optimal configuration for all five A&Es is a split system provided that

the admission rate for geriatric patients is equal to or greater than 20%. The NHS data shows that

the national average admission rate for all A&E patients is around 20% and the admission rate for

geriatric patients is often significantly higher than this average.

Following Proposition 4, we can test whether any pair of the five A&Es should be merged and

if merged, whether Type-2 A&Es (a split system) should be created. For each A&E, we use three

different values for the admission rate of geriatric patients: 0.35, 0.50 and 0.65. Thus, for each

pair of A&Es we generate nine scenarios. The results are shown in Table 6 for cg/cs = 0.7 and

cg/cs = 0.6, where the admission rates for two A&Es are shown in the first row, ‘S’ indicates a

merged and split system, and ‘P’ indicates a merged and pooled system. Due to the high admission

rates in all five A&Es, our analysis shows that in all scenarios, a merger would be beneficial and

that a split system would be preferable to a pooled system when cg/cs and/or the admission rate

for geriatric patients is higher.
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(λ1
s , λ

2
s) (p1s , p

2
s) cg/cs = 0.6 cg/cs = 0.7 cg/cs = 0.8 cg/cs = 0.9

(4.5, 1.5) (0.30,0.54) (P, P) −→ [P] (P, P) −→ [P] (P, S) −→ [S] (S, S) −→ [S]

(0.33,0.45) (P, P) −→ [P] (P, P) −→ [P] (S, P) −→ [S] (S, S) −→ [S]

(0.36,0.36) (P, P) −→ [P] (P, P) −→ [P] (S, P) −→ [S] (S, P) −→ [S]

(0.39,0.27) (P, P) −→ [P] (P, P) −→ [P] (S, P) −→ [S] (S, P) −→ [S]

(0.42,0.18) (P, P) −→ [P] (S, P) −→ [P] (S, P) −→ [S] (S, P) −→ [S]

(4.0, 2.0) (0.30,0.48) (P, P) −→ [P] (P, P) −→ [P] (P, S) −→ [S] (S, S) −→ [S]

(0.33,0.42) (P, P) −→ [P] (P, P) −→ [P] (S, P) −→ [S] (S, S) −→ [S]

(0.36,0.36) (P, P) −→ [P] (P, P) −→ [P] (S, P) −→ [S] (S, S) −→ [S]

(0.39,0.30) (P, P) −→ [P] (P, P) −→ [P] (S, P) −→ [S] (S, P) −→ [S]

(0.42,0.24) (P, P) −→ [P] (P, P) −→ [P] (S, P) −→ [S] (S, P) −→ [S]

(3.5, 2.5) (0.30,0.44) (P, P) −→ [P] (P, P) −→ [P] (P, S) −→ [S] (S, S) −→ [S]

(0.33,0.40) (P, P) −→ [P] (P, P) −→ [P] (P, S) −→ [S] (S, S) −→ [S]

(0.36,0.36) (P, P) −→ [P] (P, P) −→ [P] (S, P) −→ [S] (S, S) −→ [S]

(0.39,0.32) (P, P) −→ [P] (P, P) −→ [P] (S, P) −→ [S] (S, S) −→ [S]

(0.42,0.28) (P, P) −→ [P] (P, P) −→ [P] (S, P) −→ [S] (S, P) −→ [S]

(3.0, 3.0) (0.30,0.42) (P, P) −→ [P] (P, P) −→ [P] (P, S) −→ [S] (S, S) −→ [S]

(0.33,0.39) (P, P) −→ [P] (P, P) −→ [P] (P, S) −→ [S] (S, S) −→ [S]

(0.36,0.36) (P, P) −→ [P] (P, P) −→ [P] (P, P) −→ [S] (S, S) −→ [S]

(0.39,0.33) (P, P) −→ [P] (P, P) −→ [P] (S, P) −→ [S] (S, S) −→ [S]

(0.42,0.30) (P, P) −→ [P] (P, P) −→ [P] (S, P) −→ [S] (S, S) −→ [S]

Table 4 Results for the Leicester merger and A&E configurations.

Code RQM CXC SMH RJ1 RRV

λg 30.81 5.81 11.63 23.05 21.37

λs 2.87 0.80 1.60 2.09 2.23

ps 50% 50% 50% 50% 50%

Table 5 A&E data for five London hospitals (RQM, CXC, SMH, RJ1, and RRV).



29

0.35,0.35 0.35,0.50 0.35,0.65 0.50,0.35 0.50,0.50 0.50,0.65 0.65,0.35 0.65,0.50 0.65,0.65

RQM,CXC P P P S/P S/P S/P S S S

RQM,SMH P P S/P S/P S/P S S S S

RQM,RJ1 P S/P S/P S/P S/P S S S S

RQM,RRV P S/P S/P S/P S S S S S

CXC,SMH P P S/P P P S/P P S/P S

CXC,RJ1 P P S/P P S/P S P S/P S

CXC,RRV P P S P S/P S P S/P S

SMH,RJ1 P P S/P P S/P S S/P S S

SMH,RRV P S/P S/P P S/P S S/P S S

RJ1,RRV P S/P S/P S/P S/P S S/P S S

Table 6 Alternative configurations with cg/cs = 0.7 and cg/cs = 0.6: a single letter implies the same

configuration (Split or Pooled) at both costs levels, two letters, S/P or P/S, imply different configurations.

7. Conclusion

We used stylized modeling to take a closer look at the reconfiguration of the A&E system in

NHS England as proposed by the Keogh report of 2013. First, we investigated when a Type-1

A&E should consider splitting off a Type-2 A&E. The results show how increasing volumes of

specialty patients tilt the balance in favor of Type-2 A&Es, thus giving support to the idea of

‘mega-centres’ of multiple Type-2 A&Es in densely-populated urban areas. One implication was

the case for splitting off geriatric A&Es. Second, we repeated this analysis for splitting off Type-3

services. These results support the Keogh recommendation of having many Type-3 A&Es for minor

injuries in urban centres. We also considered temporary facilities for weekend drunkenness. Finally,

we considered the optimal configuration of two hospitals’ A&E facilities and showed there were

cases where a merger-induced pooling (and then splitting off multiple Type-2 services in line with

the Keogh report) would not be optimal. We illustrated this with two hospitals in Leicester that

merged in 2011 and with five London hospitals in close proximity to each other.

Our work is aimed at healthcare policy for reconfiguring A&E facilities systemwide as envisioned
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by the Keogh report. Modeling has been successful at the hospital level (Green and Kolesar 2004,

Musafee 2016a and Musafee 2016b), now the focus needs to shift to the system-wide level to aid

healthcare policy given the rising costs of healthcare in general, not just of A&E services, in most

countries.

Thus, one extension of the work in this paper is to use more detailed modeling, for instance, to

further evaluate candidate reconfiguration identified by stylized models. Situation-specific models

are needed to additionally address increased travel times and reduced choice for patients. At the

hospital level specifically, the literature already looks at how to arrange patient flow in an A&E

using ‘triage’ to assign patients to different groups – including prioritizing as well as where to

send the patient. Williams (2006) argues that a fast-track lane for low-acuity patients reduces

overcrowding given that three quarters of A&E patients are non-urgent. Flinders Medical Center in

Australia has implemented a new method whereby patients are streamed based on their likelihood

of being admitted to hospital, resulting in a significant reduction in average waiting times (King

et al. 2006).

Heathcare policy would benefit also from empirical work within and across hospitals to obtain

the parameters that stylized and detailed models would require. Details of case studies, such as

those of the Leicester A&E unit (Conroy et al. 2014), would also be helpful in identifying the

benefits and challenges raised by mergers.

Much work remains, however, as regards system-wide modeling of A&E services. The paper by

Xu and Chan (2016) on proactive policies for preventing buildup of excessive waiting times by

diverting patients to other A&E facilities is a step in this direction. See also Henderson (2008)

for an overview of the challenges and the use of Approximate Dynamic Programming in this

regard. As was the case with aggregate planning with supply chain models, a mix of mathematical

programming and queuing models could be valuable for matching (forecasted) demand for A&E

services to propose an optimal A&E network. We hope this paper has provided a start.
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Appendix A: Justification of approximation of aggregate service capacity
requirement

We follow the various approximations for the M/G/s queue in Whitt (1999), where heavy traffic is assumed.

Let λ be the arrival rate, mi be the i-th moment for the service time, τ2s =
m2−m2

1

m2
1

the square coefficient of

variation, ν = 1
m1

the mean service rate per server, ρ= λ
sν

the traffic intensity, and Wq the waiting time in

the queue. Whitt (1999) shows that

E[Wq(M/M/s)|Wq(M/M/s)> 0] =
1

sν(1− ρ)
(15)

E[Wq(M/G/s)|Wq(M/G/s)> 0] ≈ 1 + τ2s
2

E(Wq[M/M/s)|Wq(M/M/s)> 0] (16)

=
(1 + τ2s )

2sν(1− ρ)
(17)

P (Wq(M/G/s)> 0) ≈ P (Wq(M/M/s)> 0) (18)

≈ ρ
√

2(s+1)−1. (19)

Thus

E[Wq(M/G/s)] = E[Wq(M/G/s)|Wq(M/G/s)> 0]P (Wq(M/G/s)> 0) (20)

≈ 1 + τ2s
2

E[Wq(M/M/s)|Wq(M/M/s)> 0]P (Wq(M/G/s)> 0) (21)

≈ 1 + τ2s
2

E[Wq(M/M/s)|Wq(M/M/s)> 0]P (Wq(M/M/s)> 0) (22)

≈ (1 + τ2s )

2sν(1− ρ)
ρ
√

2(s+1)−1. (23)

Whitt (1999) also shows that

P (Wq(M/G/s)>T ) ≈ P (Wq(M/G/s)> 0)e
− T
E[Wq(M/G/s)|Wq(M/G/s)>0] (24)

≈ P (Wq(M/M/s)> 0)e
− T
E[Wq(M/G/s)|Wq(M/G/s)>0] (25)

≈ ρ
√

2(s+1)−1e
− T
E[Wq(M/G/s)|Wq(M/G/s)>0)] (26)

≈ ρ
√

2(s+1)−1e
− 2sν(1−ρ)

(1+τ2s )
T
. (27)

We next follow the various approximations for the M/G/s queue in Abate et al. (1996). Let V , Wq and

W be the service time, waiting time and sojourn time random variables for the G/GI/1 queue. Theorem 1

in Abate et al. (1996) states the following (before Theorem 1, the authors also remark that the result can

be extended to G/GI/s easily). If eηTP (Wq >T )→ α1 as T →∞, then E[eηV ]<∞ and

eηTP (W >T )→ α2 = α1E
[
eηV

]
>α1, as T →∞.
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As such, we have

P (W >T )≈ α1e
−ηT ≈ ρ

√
2(s+1)−1e

− 2sν(1−ρ)
(1+τ2s )

T
E

[
e

2sν(1−ρ)
(1+τ2s )

V
]
. (28)

Note that when x is close to zero, ex ≈ 1 + x. Therefore, when ρ is close to 1 (under the heavy traffic

assumption), we have

E

[
e

2sν(1−ρ)
(1+τ2s )

V
]
≈ E

[
1 +

2sν(1− ρ)

(1 + τ2s )
V

]
(29)

= 1 +
2sν(1− ρ)

(1 + τ2s )
E [V ] (30)

= 1 +
2sν(1− ρ)

(1 + τ2s )

1

ν
(31)

≈ e
2s(1−ρ)
(1+τ2s ) . (32)

This shows that

P (W >T ) ≈ ρ
√

2(s+1)−1e
− 2sν(1−ρ)

(1+τ2s )
T
e

2s(1−ρ)
(1+τ2s ) (33)

= Ae−B(sν−λ)T , (34)

where

A= ρ
√

2(s+1)−1e
2s(1−ρ)
(1+τ2s ) , B =

2

1 + τ2s
. (35)

Here ρ is close to 1, which implies that A≈ 1.

Appendix B: Proofs

Proof of Proposition 2

Following an argument similar to that for Case 1, the minimum total cost for the dedicated system is

cg

(
λg +

1

κTg
ln

(
1

α

))
+ cm

(
λm +

1

κTm
ln

(
1

α

))
, (36)

and the minimum total cost for the pooled system is

cg

(
λg +λm +

1

κTg
ln

(
1

α

))
. (37)

The difference in costs in the pooled and dedicated systems is cgλm−cm
(
λm + 1

κTm
ln
(
1
α

))
. So, the dedicated

system is more cost-effective than the pooled system if and only if cgλm ≥ cm
(
λm + 1

κTm
ln
(
1
α

))
. �

Proof of Proposition 3
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The minimum total cost C(.) for the systems (i), (ii), (iii), and (iv) respectively is:

C(i) = cg

[
λg +λs +λm +

1

κTg
ln

(
1

α

)]
+ cs

[
psλs +

1

κTs
ln

(
1

α

)]
. (38)

C(ii) = cg

[
λg +

1

κTg
ln

(
1

α

)]
+ cs

[
λs +

1

κTs
ln

(
1

α

)]
+ cm

[
λm +

1

κTm
ln

(
1

α

)]
. (39)

C(iii) = cg

[
λg +λs +

1

κTg
ln

(
1

α

)]
+ cs

[
psλs +

1

κTs
ln

(
1

α

)]
+ cm

[
λm +

1

κTm
ln

(
1

α

)]
. (40)

C(iv) = cg

[
λg +λm +

1

κTg
ln

(
1

α

)]
+ cs

[
λs +

1

κTs
ln

(
1

α

)]
. (41)

Define differences between the minimum total costs for any pair of systems (i), (ii), (iii), and (iv), as

D(k,m) =C(k)−C(m), where k,m= i, ii, iii, iv and k 6=m to obtain:

D(i, ii) = cm

[(
cg
cm
− 1

)
λm−

1

κTm
ln

(
1

α

)]
+ cs

[
cg
cs
− (1− ps)

]
λs, (42)

D(i, iii) = cm

[(
cg
cm
− 1

)
λm−

1

κTm
ln

(
1

α

)]
, (43)

D(i, iv) = cs

[
cg
cs
− (1− ps)

]
λs, (44)

D(ii, iii) =−cs
[
cg
cs
− (1− ps)

]
λs, (45)

D(ii, iv) =−cm
[(

cg
cm
− 1

)
λm−

1

κTm
ln

(
1

α

)]
, (46)

D(iii, iv) =−cm
[(

cg
cm
− 1

)
λm−

1

κTm
ln

(
1

α

)]
+ cs

[
cg
cs
− (1− ps)

]
λs. (47)

We obtain the two equalities

D(i, iii) =−D(ii, iv), D(i, iv) =−D(ii, iii). (48)

to compare the cost-effectiveness of the four system configurations. The intuition behind these is as follows:

The key difference between (i) and (iii) is whether or not to split off a Type-3 A&E, which is the same as

that between (ii) and (iv). Similarly, the key difference between (i) and (iv) is whether or not to split off a

Type-2 A&E, which is the same as that between (ii) and (iii). �

Proof of Proposition 4

The results in (a)–(d) follow from Proposition 1. Next, we prove the results in (e)–(h). Recall that as

regards the total system cost, System (III) dominates System (I) and System (IV) dominates System (II).

Therefore, we only need to compare Systems (III), (IV), (V), and (VI). The system costs are:

C(III) = cg

[
λ1
g +λ1

s +λ2
g +λ2

s +
1

κTg
ln

(
1

α

)]
+ cs

[
p1sλ

1
s + p2sλ

2
s +

1

κTs
ln

(
1

α

)]
(49)
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C(IV ) = cg

[
λ1
g +λ2

g +
1

κTg
ln

(
1

α

)]
+ cs

[
λ1
s +λ2

s +
1

κTg
ln

(
1

α

)]
(50)

C(V ) = cg

[
λ1
g +λ1

s +
1

κTg
ln

(
1

α

)]
+ cs

[
p1sλ

1
s +

1

κTs
ln

(
1

α

)]
(51)

+cg

[
λ2
g +

1

κTg
ln

(
1

α

)]
+ cs

[
λ2
s +

1

κTg
ln

(
1

α

)]
(52)

C(V I) = cg

[
λ1
g +

1

κTg
ln

(
1

α

)]
+ cs

[
λ1
s +

1

κTg
ln

(
1

α

)]
(53)

+cg

[
λ2
g +λ2

s +
1

κTg
ln

(
1

α

)]
+ cs

[
p2sλ

2
s +

1

κTs
ln

(
1

α

)]
. (54)

We calculate the difference in costs between the two different systems. Again, we define D(k,m) =C(k)−

C(m), where k,m= III, IV,V,V I and k 6=m, giving us:

D(III, IV ) = cs
(
λ1
s +λ2

s

)
δ, (55)

D(IV,V I) =−csλ2
sβ

2, (56)

D(III,V I) = csλ
1
sγ

1, (57)

D(III,V ) = csλ
2
sγ

2, (58)

D(IV,V ) =−csλ1
sβ

1. (59)

(e) The result in (a) and Proposition 1 show that System (II) dominates Systems (I), (V), and (VI). We

only need to compare Systems (II), (III), and (IV). Because System (II) is always dominated by System (IV),

we only need to compare Systems (III) and (IV). Note that D(III, IV ) = cs(λ
1
s + λ2

s)δ ≥ 0 because δ1 ≥ 0,

δ2 ≥ 0, Tg ≤ Ts and δ ≥min{δ1, δ2}. This implies that System (IV) is preferable to System (III). Hence, we

have proved that it is optimal to close one A&E and have a merged split system (System (IV)).

(f) The result in (b) and Proposition 1 show that System (VI) dominates Systems (I), (II), and (V). We

only need to compare Systems (III), (IV), and (VI). Looking at the conditions in (i), (ii), and (iii) and the

values for D(III, IV ), D(III,V I), and D(IV,V I), it is easy to derive all the results in (i), (ii) and (iii).

When p1s = p2s , we have
cg

cs
+ ps − 1 > 0, δ ≥ 0 and β2 ≥ 0 because δ1 ≥ 0 and δ ≥ δ1. Therefore, we have

D(III, IV )≥ 0 and D(IV,V I)≤ 0, which shows that System (IV) is preferable.

(g) The result in (c) and Proposition 1 show that System (V) dominates Systems (I), (II), and (VI).

We only need to compare Systems (III), (IV), and (V). Looking at the conditions in (i), (ii), and (iii) and

the values for D(III, IV ), D(IV,V ), and D(III,V ), it is easy to derive all the results in (i), (ii) and (iii).

When p1s = p2s , we have
cg

cs
+ ps − 1 > 0, δ ≥ 0 and β1 ≥ 0 because δ2 ≥ 0 and δ ≥ δ2. Therefore, we have

D(III, IV )≥ 0 and D(IV,V )≤ 0, which shows that System (IV) is preferable.
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(h) The result in (d) and Proposition 1 show that System (I) dominates Systems (II), (V), and (VI). We

only need to compare Systems (I), (III), and (IV). However System (III) always dominates System (I), which

indicates that we only need to compare System (III) and System (IV).

D(III, IV ) = cs
(
λ1
s +λ2

s

)
δ. (60)

Therefore, if one of the two A&Es can be considered for closure, then it is optimal to close one A&E and

operate a merged split system (System (IV)) if δ ≥ 0, and a merged pooled system (System (III)) if δ < 0.

This completes the proof. �

Proof of Proposition 5

(a) Based on Table 3, there are four cases where the optimal configuration for the two A&Es is to have

one split system and another pooled system:

(1) δ1 < 0, δ2 ≥ 0, δ≥ 0, β1 < 0,

(2) δ1 < 0, δ2 ≥ 0, δ < 0, γ2 ≥ 0,

(3) δ1 ≥ 0, δ2 < 0, δ≥ 0, β2 < 0,

(4) δ1 ≥ 0, δ2 < 0, δ < 0, γ1 < 0.

We aim to prove that none of the above four cases occurs. Note that for all four cases we must have

cg

cs
+p1s −1> 0 and

cg

cs
+p2s −1> 0 because

cg

cs
+p1s −1 and

cg

cs
+p2s −1 have the same sign and δ1 and δ2 have

different signs. This shows that β1 > 0 and β2 > 0. Furthermore,

δ =
1

λ1
s +λ2

s

[(
cg
cs

+ p1s − 1

)
λ1
s +

(
cg
cs

+ p2s − 1

)
λ2
s −

(
1

κTg
− 1

κTs

)
ln

(
1

α

)]
> 0

if one of δ1 and δ2 is non-negative. This shows that none of the above four cases occurs.

(b) We prove the result by looking at all cases in Table 3. Because of the symmetry property, we only need

to prove the result for either p1s or p2s .

If λ1
s is increased, then δ1 and γ1 are increased and β1 is decreased but δ2, β2, and γ2 remain unchanged.

Note that δ1 < 0 and δ1 < 0 still hold even when λ1
s is increased. Thus, we only need to look at two cases:

(1) δ1 < 0 and δ2 ≥ 0 and (2) δ1 < 0 and δ2 < 0.

(1) Assume δ1 < 0 and δ2 ≥ 0. If δ < 0 and γ2 < 0, then the optimal configuration for the A&E network is

a merged pooled system. If we increase λ1
s , then we have δ < 0 and γ2 < 0 because

δ =
1

λ1
s +λ2

s

[(
cg
cs

+ p1s − 1

)
λ1
s +

(
cg
cs

+ p2s − 1

)
λ2
s −

(
1

κTg
− 1

κTs

)
ln

(
1

α

)]
.
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Thus, the optimal configuration for the A&E network remains a merged pooled system.

If δ < 0 and γ2 ≥ 0, then the optimal configuration for the A&E network is to have a pooled system for

A&E 1 and a split system for A&E 2. If we increase λ1
s , then we have δ < 0 and γ2 ≥ 0 because

δ =
1

λ1
s +λ2

s

[(
cg
cs

+ p1s − 1

)
λ1
s +

(
cg
cs

+ p2s − 1

)
λ2
s −

(
1

κTg
− 1

κTs

)
ln

(
1

α

)]
.

Thus, the optimal configuration for the A&E network remains a pooled system for A&E 1 and a split system

for A&E 2.

If δ≥ 0 and β1 ≥ 0, then the optimal configuration for the A&E network is to have a merged split system

that does not contain the pooling strategy at all. Thus, it is obvious that a new optimal configuration with

an increase in λ1
s would make the pooling strategy more attractive.

If δ ≥ 0 and β1 < 0, then the optimal configuration for the A&E network is to have a pooled system for

A&E 1 and a split system for A&E 2. If we increase λ1
s , then β1 is decreased and remains negative. Thus,

the two possible candidates for the optimal A&E network configuration are either a merged pooled system

(which would make the pooling strategy more attractive) or a pooled system for A&E 1 and a split system

for A&E 2 (which would not change the optimal configuration).

(2) Assume δ1 < 0 and δ2 < 0. Recall that

δ =
1

λ1
s +λ2

s

[(
cg
cs

+ p1s − 1

)
λ1
s +

(
cg
cs

+ p2s − 1

)
λ2
s −

(
1

κTg
− 1

κTs

)
ln

(
1

α

)]
.

Thus, the fact that
cg

cs
+ p1s − 1< 0 and δ2 < 0 shows that δ < 0. Therefore, the optimal configuration for the

two A&Es is to have a merged pooled system. When λ1
s is increased, we still have δ1 < 0 and δ2 < 0 and

δ < 0, which implies that the optimal configuration remains a merged pooled system.

(c) We prove the result by looking at all cases in Table 3. Because of the symmetry property, we only need

to prove the result for either p1s or p2s .

If λ1
s is increased, then δ1 and γ1 are increased, β1 is decreased and δ2, β2 and γ2 remain unchanged.

(1) Assume δ1 ≥ 0 and δ2 ≥ 0. If we increase λ1
s , then δ1 is increased. Therefore, we still have δ1 ≥ 0 and

δ2 ≥ 0 and the optimal network configuration remains a merged split system.

(2) Assume δ1 < 0 and δ2 ≥ 0. If we increase λ1
s , then δ1 is increased. Furthermore, if δ1 is switched to

positive after an increase in λ1
s , then the new optimal network configuration becomes a merged split system,

which would make the splitting strategy more attractive. Thus, we assume that δ1 remains negative after an

increase in λ1
s .
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If δ < 0 and γ2 < 0, then the optimal configuration for the A&E network is a merged pooled system.

Thus, with an increase in λ1
s , the new optimal network configuration would make the splitting strategy more

attractive.

If δ < 0 and γ2 ≥ 0, then the optimal configuration for the A&E network is to have a pooled system for

A&E 1 and a split system for A&E 2. If we increase λ1
s , then we have either δ < 0 and γ2 ≥ 0 or δ ≥ 0 and

γ2 ≥ 0. For the former, the new optimal network configuration remains unchanged, and for the latter, the

new optimal network configuration becomes a merged system. Thus, in both cases, an increase in λ1
s would

make the splitting strategy more attractive.

If δ≥ 0 and β1 ≥ 0, then the optimal configuration for the A&E network is to have a merged split system.

Note that

δ =
1

λ1
s +λ2

s

[(
cg
cs

+ p1s − 1

)
λ1
s +

(
cg
cs

+ p2s − 1

)
λ2
s −

(
1

κTg
− 1

κTs

)
ln

(
1

α

)]
.

Hence, if we increase λ1
s , then δ remains non-negative and β1 remains non-negative. Therefore, if we increase

λ1
s , then the new optimal network configuration remains a merged split system.

Note that the last case, where δ≥ 0 and β1 < 0, does not occur because
cg

cs
+ p1s − 1≥ 0.

(3) Assume δ1 ≥ 0 and δ2 < 0. An increase in λ1
s would still make δ1 ≥ 0 and δ2 < 0.

If δ < 0 and γ1 < 0, then the optimal configuration for the A&E network is a merged pooled system.

Thus, with an increase in λ1
s , the new optimal network configuration would make the splitting strategy more

attractive.

If δ≥ 0 and β2 ≥ 0, then the optimal configuration for the A&E network is to have a merged split system.

Note that

δ =
1

λ1
s +λ2

s

[(
cg
cs

+ p1s − 1

)
λ1
s +

(
cg
cs

+ p2s − 1

)
λ2
s −

(
1

κTg
− 1

κTs

)
ln

(
1

α

)]
.

If we increase λ1
s , then we still have δ≥ 0 and γ2 ≥ 0 and the new optimal configuration for the A&E network

remains a merged split system.

If δ ≥ 0 and β2 < 0, then the optimal network configuration is to have a split system for A&E 1 and a

pooled system for A&E 2. Once again, if we increase λ1
s , then we still have δ≥ 0 and β2 < 0. Thus, the new

optimal configuration for the A&E network with an increase in λ1
s would be the same as the original optimal

configuration for the A&E network.

If δ < 0 and γ1 ≥ 0, then the optimal network configuration for the A&E network is to have a split system

for A&E 1 and a pooled system for A&E 2. Then, an increase in λ1
s would not lead to γ1 < 0. Thus, with
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an increase in λ1
s , the new optimal network configuration is either to have a split system for A&E 1 and

a pooled system for A&E 2 (which would retain the same configuration) or to have a merged split system

(which would make the splitting strategy more attractive).

(4) Assume δ1 < 0 and δ2 < 0. Recall that

δ =
1

λ1
s +λ2

s

[(
cg
cs

+ p1s − 1

)
λ1
s +

(
cg
cs

+ p2s − 1

)
λ2
s −

(
1

κTg
− 1

κTs

)
ln

(
1

α

)]
.

If δ ≥ 0, then an increase in λ1
s would still imply that δ ≥ 0. If an increase in λ1

s still keeps δ1 < 0, then the

optimal network configuration before and after λ1
s is increased would be a merged split system. If an increase

in λ1
s makes δ1 ≥ 0, then δ remains non-negative and β1 becomes non-negative because β1 ≥ δ1. Therefore,

with an increase in λ1
s , the new optimal network configuration would be a merged split system, which still

makes the splitting strategy attractive.

If δ < 0, then the optimal network configuration is a merged pooled system. Thus, any change in the new

optimal network configuration after an increase in λ1
s makes splitting more attractive. �

Proof of Proposition 6

(a) We prove the result by looking at all cases in Table 3. Because of the symmetry property, we only

need to prove the result for either p1s or p2s . If p1s is increased, then δ, δ1, β1 and γ1 are increased but δ2, β2,

and γ2 remain unchanged. When δ1 ≥ 0 and δ2 ≥ 0, it is optimal to have a merged split system. When p1s is

increased, it still holds that δ1 ≥ 0 and δ2 ≥ 0 and with the new value for p1s , it is optimal to have a merged

split system.

Assume δ1 < 0 and δ2 ≥ 0. If δ < 0 and γ2 < 0, then it is optimal to have a merged pooled system.

When p1s is increased, the network configuration can be [P] or (P,S) or (S,P) or [S]. Thus, either the system

configuration does not change or the splitting strategy becomes more attractive. If δ≥ 0 and β1 ≥ 0, then it

is optimal to have a merged split system. When p1s is increased, it still holds that δ≥ 0 and β1 ≥ 0 and with

the new value for p1s , it is optimal to have a merged split system. If δ ≥ 0 and β1 < 0, then it is optimal to

have a separate (P, S) system. When p1s is increased, both δ and β1 are increasing. Thus, with the new value

for p1s , it is optimal to have a separate (P, S) system or a merged split system. If δ < 0 and γ2 ≥ 0, then it

is optimal to have a separate (P, S) system. When p1s is increased, both δ and β1 are increasing but γ2 does

not change. Thus, with the new value for p1s , it is optimal to have a separate (P, S) system or a merged split

system.
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Assume δ1 ≥ 0 and δ2 < 0. If δ < 0 and γ1 < 0, then it is optimal to have a merged pooled system. When

p1s is increased, the optimal network configuration can be [P] or (P,S) or (S,P) or [S]. Thus, either the system

configuration does not change or the splitting strategy becomes more attractive. If δ ≥ 0 and β2 ≥ 0, then

it is optimal to have a merged split system. When p1s is increased, it still holds that δ ≥ 0 and β2 ≥ 0 and

with the new value for p1s , it is optimal to have a merged split system. If δ≥ 0 and β2 < 0, then it is optimal

to have a separate (P, S) system. When p1s is increased, both δ and β2 are increasing. Thus, with the new

value for p1s , it is optimal to have a separate (P, S) system or a merged split system, which would make the

splitting strategy more attractive. If δ < 0 and γ1 ≥ 0, then it is optimal to have a separate (P, S) system.

When p1s is increased, both δ and γ1 are increasing but γ2 does not change. If with a new value for p1s ,

δ < 0 and γ1 ≥ 0, then the optimal network configuration remains unchanged. If with a new value for p1s ,

δ≥ 0, then the new optimal network configuration is either unchanged when β2 < 0 or to have a merged split

system when β2 ≥ 0. Therefore, with the new value for p1s , it is optimal to have a separate (P, S) system or

a merged split system.

Assume δ1 < 0 and δ2 < 0. If δ≥ 0, then it is optimal to have a merged split system. When p1s is increased,

δ1 and δ are increasing, but δ2 remains unchanged. If with the new value for p1s , δ
1 < 0, then it is optimal

to have a merged split system. If with the new value for p1s , δ
1 ≥ 0, then we have shown that δ ≥ 0 and will

show that β2 ≥ 0. Recall that

δ =
1

λ1
s +λ2

s

[(
cg
cs

+ p1s − 1

)
λ1
s +

(
cg
cs

+ p2s − 1

)
λ2
s −

(
1

κTg
− 1

κTs

)
ln

(
1

α

)]
.

Thus, δ ≥ 0 and δ1 < 0 implies that
cg

cs
+ p2s − 1 ≥ 0, which in turn shows that β2 ≥ 0. Therefore, with an

increase in p1s such that δ1 ≥ 0, the optimal network configuration is a merged split system. This shows that

the optimal system remains unchanged when we increase p1− s.

If δ < 0, then it is optimal to have a merged pooled system. Consequently, with an increase in p1s , the new

optimal network configuration would make the splitting strategy more attractive. For the remaining cases

(b)–(d), we have: (b) When both p1s and p2s are sufficiently close to 1, we have δ ≥ 0, β1 ≥ 0 and β2 ≥ 0.

Therefore, the results in Table 3 show that it is optimal to have a merged split system. (c) When both p1s and

p2s are sufficiently close to 0, we have δ < 0, β1 < 0 and β2 < 0. Therefore, the results in Table 3 show that it

is optimal to have a merged pooled system. (d) When p1s is sufficiently close to 1 but p2s is sufficiently close

to 0, we have β1 ≥ 0, β2 < 0, γ1 ≥ 0, and β2 < 0. Therefore, the results in Table 3 show that it is optimal to
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have a split system for A&E 1 and a pooled system for A&E 2. The same can be said for the case where p1s

is sufficiently close to 0 but p2s is sufficiently close to 1. �


