
This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/21813/

Link to published version: http://dx.doi.org/10.1016/j.ijheatfluidflow.2019.02.010

Copyright and reuse: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.
Improved droplet breakup models for spray applications

Affiliations
Dionisis Stefanitsis*1,2, George Strotos3, Nikolaos Nikolopoulos1, Emmanouil Kakaras1, Manolis Gavaises2
1Centre for Research and Technology Hellas/Chemical Process and Energy Resources Institute (CERTH/CPERI), Egialeias 52, Marousi, Greece
2City University London, School of Engineering and Mathematical Sciences, Northampton Square, EC1V 0HB London, UK
3Technological Educational Institute of Thessaly, Mechanical Engineering Department, 41110 Larissa, Greece
*Corresponding author: stefanitsis@certh.gr
gstrot@teilar.gr, n.nikolopoulos@certh.gr, ekak@central.ntua.gr, M.Gavaises@city.ac.uk

Abstract
The current study examines the performance of two zero-dimensional (0D) aerodynamically-induced breakup models, utilized for the prediction of droplet deformation during the breakup process in the bag, multi-mode and sheet-thinning regimes. The first model investigated is an improved version of the widely used Taylor analogy breakup (TAB) model, which compared to other models has the advantage of having an analytic solution. Following, a model based on the modified Navier-Stokes (M-NS) is examined. The parameters of both models are estimated based upon published experimental data for the bag breakup regime and CFD simulations with Diesel droplets performed as part of this work for the multi-mode and sheet-thinning regimes, for which there is a scarcity of experimental data. Both models show good accuracy in the prediction of the temporal evolution of droplet deformation in the three breakup regimes, compared to the experimental data and the CFD simulations. It is found that the best performance of the two is achieved with the M-NS model. Finally, a unified secondary breakup model is presented, which incorporates various models found in the literature, i.e. TAB, non-linear TAB (NLTAB), droplet deformation and breakup (DDB) and M-NS, into one equation using adjustable coefficients, allowing to switch among the different models.

Keywords
droplet breakup models; droplet deformation; TAB; CFD;

Nomenclature
Roman symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>Density ratio [-]</td>
</tr>
<tr>
<td>μ</td>
<td>Dynamic viscosity [kg/(m·s)]</td>
</tr>
<tr>
<td>ρ</td>
<td>Density [kg/m³]</td>
</tr>
<tr>
<td>σ</td>
<td>Surface tension [N/m]</td>
</tr>
<tr>
<td>D</td>
<td>Droplet diameter [m]</td>
</tr>
<tr>
<td>E</td>
<td>Energy [J]</td>
</tr>
</tbody>
</table>

Subscripts/Superscripts
* Non-dimensional quantity
Research on liquid sprays has received a lot of attention due to their numerous applications, ranging from pharmaceutical to internal combustion engines [1]. Modeling of such systems is difficult due to the complex physical phenomena involved in them, also occurring in various time and length scales. One way to model as fast as possible such systems with acceptable accuracy, is by utilizing macroscopic CFD spray codes following the Lagrangian approach, which estimate the trajectory of each droplet as well as its deformation [2]. The former can be calculated using the drag coefficient of each droplet and the droplet motion equation. The drag coefficient of deforming droplets has been thoroughly studied in [3-17]. The droplet deformation, which is the focus of this study, is usually quantitatively described by the cross-stream droplet diameter (Figure 2) and several models have been developed for its estimation as a function of time. These can be classified into empirical correlations based on experimental observations and semi-analytic/theoretical models, which are based on physical principles. Various studies in the literature conducted experiments of aerodynamic droplet breakup and based on their results they proposed empirical correlations for the prediction of the droplet deformation as a function of the non-dimensional time. These correlations can be written in the general form of $y =$
\[c_0+c_1(t^*)^2+c_2(t^*)^3, \] where \(y \) is the non-dimensional deformation (Figure 2), whilst the coefficients \(c_0, c_1, c_2 \) and \(c_3 \) are summarized for each study in Table 1, along with their range and conditions of applicability. Apparently, these correlations perform quite well when compared against the experimental data that they were based upon, and the question arises is if they also perform well against other data at a) similar conditions and b) at different breakup modes. This is addressed in Appendix A in which the model results are compared against the experimental data of [12, 18-22] in the three main breakup regimes (bag, multi-mode and sheet-thinning) for Weber numbers in the range of 15 to 101. In the bag breakup regime (\(We=15-20 \)) the model of Chou and Faeth [18] shows the best agreement with the experimental data, in the multi-mode regime (\(We=52.6 \)) that of Cao et al. [23] and in the sheet-thinning regime the model of Gel’fand et al. [24] (\(We=101 \)). None of the models is able to accurately predict the droplet deformation in all the examined regimes.

<table>
<thead>
<tr>
<th>Study</th>
<th>(c_0)</th>
<th>(c_1)</th>
<th>(c_2)</th>
<th>(c_3)</th>
<th>Non-dimensional numbers</th>
<th>Breakup mode</th>
<th>Time range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gel’fand et al. [24]</td>
<td>1</td>
<td>(1 \cdot \frac{We}{We_{cr}})</td>
<td>1</td>
<td>0</td>
<td>(We=24-180)</td>
<td>Bag, multi-mode, sheet-thinning</td>
<td>(t^* \leq 1.5)</td>
</tr>
<tr>
<td>Hsiang and Faeth [20]</td>
<td>1</td>
<td>0.23(We^{1/2})</td>
<td>1</td>
<td>0</td>
<td>(We=4 \times 10^5)</td>
<td>Deformation up to sheet-thinning</td>
<td>-</td>
</tr>
<tr>
<td>Chou and Faeth [18]</td>
<td>(1)</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td>(We=13-20, Oh<0.05)</td>
<td>Bag</td>
<td>(t^* \leq 2)</td>
</tr>
<tr>
<td></td>
<td>1.43</td>
<td>-0.18</td>
<td>1</td>
<td>0.25</td>
<td></td>
<td></td>
<td>(2 \sigma \leq 4)</td>
</tr>
<tr>
<td></td>
<td>-2.51</td>
<td>1.79</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>(4 \sigma \leq 6)</td>
</tr>
<tr>
<td>Cao et al. [23]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(We=28-41, Oh<0.003)</td>
<td>Multi-mode</td>
<td>(t^* \leq 0.3)</td>
</tr>
<tr>
<td></td>
<td>0.59</td>
<td>1.34</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>(0.3 \sigma \leq t^* \leq 0.99)</td>
</tr>
<tr>
<td>Zhao et al. [25]</td>
<td>1</td>
<td>0.54</td>
<td>1.67</td>
<td>0</td>
<td>(We=16-26, Oh<0.4)</td>
<td>Multi-mode</td>
<td>(t^* \leq 1.5)</td>
</tr>
</tbody>
</table>

\(^1\) Refers to the conditions of the experiments that the corresponding model was based upon. The models are generally valid for low \(Oh \) numbers.

Turning now to the theoretical and semi-analytical models for the droplet deformation and breakup, the majority of them is based on one of the two basic principles: i) conservation of momentum or ii) conservation of energy. O’Rourke and Amsden [26] proposed the so called Taylor analogy breakup (TAB) model, in which the droplet is assumed to oscillate between its initial spherical shape and that of the deformed oblate shape. The droplet oscillates similarly to a mass-spring-damper system with the surface tension force being the restoring force, the viscosity representing the damping force and the aerodynamic force being the external force acting on the droplet. Lee et al. [27] indicated later
that the TAB model shows good agreement with the experiment of Krzeczkowski [22] for the breakup of a water droplet with $We=101$. Later, Kim et al. [28] tuned these coefficients to match the results of their experiments for Diesel droplets at We numbers in the range of 9.6 up to 26.6. Finally, Marek [29] introduced another degree of freedom to the mathematical formulation of TAB, so as to include also the translational motion of the droplet. A second mass was added to the system, which could move and oscillate independently, and thus the system resembled the system configuration of a double mass-spring-damper giving the name to the model as double mass TAB (DMTAB). The DMTAB is applicable to the deformation and bag breakup regimes and its advantage over the TAB model is that it can treat cases with low density ratios (ε) and high Oh numbers, in which the droplet translational velocity changes significantly.

Another approach on breakup models still based on the momentum balance, is that of Villernaux and Bossa [30], in which they utilized the inviscid Navier-Stokes equations in cylindrical coordinates for the liquid droplet and the quasi-steady conservation of momentum and mass for the gas phase, to estimate the temporal variation of the droplet deformation in the bag breakup regime. Opfer et al. [31] used the momentum balance on the droplet as well, which was approximated by a cylinder of the same radius, to predict the droplet deformation in the bag breakup regime. Later, Kulkarni and Sojka [19] added the effect of viscosity to the model of [30] and it showed good agreement with their own experimental data for We numbers ranging from 13 up to 15.

Instead of utilizing the momentum balance on the droplet, Detkovskii and Frolov [32] and later Wang et al. [33, 34] utilized the equation of the linear strain of the droplet along its cross-stream axis to estimate the droplet deformation. They called the model BTB (bag-type breakup) and its results showed good agreement against the experimental data of [18, 22] in the bag breakup regime.

Regarding the theoretical models based on the conservation of energy, Ibrahim et al. [35] developed the so called deformation and breakup model (DDB), which is applicable to deforming droplets for We numbers greater than 20. Rimbert et al. [36] improved the DDB model by assuming potential flow around the droplet and extensional flow (i.e. with no shear) inside the droplet. The resulting model showed acceptable agreement with the experimental data of [22, 31] for We numbers equal to 11.5, 18.4 and 103.5, while the agreement was not good for the case of $We=13.5$. Schmehl and co-workers [37, 38] utilized the mechanical energy balance on the droplet to derive a non-linear differential equation similar to that of TAB, which they named non-linear TAB (NLTAB). This equation accounts for the modification of the aerodynamic forces imposed by the deformation of the droplet, and it showed good agreement with the experimental data of [21, 39] for the time variation of droplet deformation.

Finally, Sichani and Emami [40] utilized the virtual work principle to describe the droplet deformation in the deformation and bag breakup regimes. The results of the model showed good agreement with the experimental data of [18, 21, 22, 41, 42] for We numbers ranging from 12.5 up to 20.

The aforementioned theoretical models are summarized in Table 2 along with their basic characteristics. In addition, the performance of selected models (TAB, DDB, NLTAB, Rimbert et al. [36] and Kulkarni and Sojka [19]) is evaluated by comparing their results with the experimental data of [12, 18-22] in the three breakup regimes (bag, multi-mode and sheet-thinning) for $We=15-101$, as presented in Appendix A. For $We=15$ the model of Kulkarni and Sojka [19] agrees well with the experimental data, while for $We=52.6$ and $We=110$ the DDB model gives the best results overall.
We all models deviate from the experimental data. Similar to the empirical models, none of the examined theoretical models is able to accurately predict the droplet deformation in all the examined regimes.

Table 2. Summary of theoretical and semi-analytical models for droplet breakup.

<table>
<thead>
<tr>
<th>Model</th>
<th>Basic principle</th>
<th>Droplet shape</th>
<th>Pressure distribution around the droplet</th>
<th>Internal circulation</th>
<th>Coupling with translational motion</th>
<th>Breakup condition</th>
<th>Adjustable parameters</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAB [43]</td>
<td>Momentum conservation</td>
<td>Ellipsoid</td>
<td>Uniform</td>
<td>No</td>
<td>No</td>
<td>(y_c = 2)</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>NLTAB [37, 38]</td>
<td>Energy balance</td>
<td>Ellipsoid</td>
<td>Spatial</td>
<td>Yes</td>
<td>No</td>
<td>(y_c = 1.8) and (\dot{y} = 0) or (y_c = 2.1)</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>DMTAB [29]</td>
<td>Momentum conservation</td>
<td>Ellipsoid</td>
<td>Uniform</td>
<td>No</td>
<td>Yes</td>
<td>(y_c = 2)</td>
<td>3</td>
<td>(We \leq 50), large and small (\epsilon) and (Oh)</td>
</tr>
<tr>
<td>DDB [35]</td>
<td>Energy balance</td>
<td>Elliptic cylinder</td>
<td>Uniform</td>
<td>No</td>
<td>No</td>
<td>(y_c = (We/2)/(6\pi))</td>
<td>0</td>
<td>(We > 20)</td>
</tr>
<tr>
<td>Rimbert et al. [36]</td>
<td>Energy balance</td>
<td>Ellipsoid</td>
<td>Spatial (potential flow)</td>
<td>Yes</td>
<td>(homothetical deformation)</td>
<td>(y_c = 2)</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>BTB [32-34]</td>
<td>Linear strain equation</td>
<td>Ellipsoid</td>
<td>Uniform</td>
<td>No</td>
<td>No</td>
<td>((B_1^2 + B_2^2 - 2B_1 B_2 \epsilon^2)/30 > We, B = (3\pi/4)\epsilon)</td>
<td>1</td>
<td>(10 < We < 35, Oh < 0.1)</td>
</tr>
<tr>
<td>Opfer at al. [31]</td>
<td>Momentum conservation</td>
<td>Cylinder</td>
<td>Spatial (parabolic)</td>
<td>No</td>
<td>No</td>
<td>-</td>
<td>2</td>
<td>(11 < We < 25)</td>
</tr>
<tr>
<td>Kulkarni and Sojka [19]</td>
<td>Momentum and mass conservation (Navier-Stokes)</td>
<td>Bag</td>
<td>Spatial (stagnation point)</td>
<td>No</td>
<td>No</td>
<td>-</td>
<td>1</td>
<td>(12 < We < 16)</td>
</tr>
</tbody>
</table>
The aforementioned observations lead to the conclusion that there is a lack of a single accurate enough model for the prediction of droplet deformation for a wide range of We numbers in the three basic breakup regimes: i) bag, ii) multi-mode and iii) sheet-thinning. So far, the TAB model is widely used in spray codes due to its simplicity, since it has an analytic solution. However, it predicts purely oscillatory deformation for all breakup regimes, something that is not realistic (see Figures 4 to 6). On the other hand, the recently developed model of Kulkarni and Sojka [19] (termed as bag-Navier-Stokes or bag-NS for the remaining of the paper) predicts an exponential growth, which agrees well with experimental observations for the bag breakup mode, but it cannot be used to other breakup modes. The scope of the present work is to extend these two models. Nevertheless, it should be noted that an oscillatory deformation superimposed to an exponential function might result in a more accurate model, however, its implementation is complicated, possibly without significantly improving its performance compared to the models that follow one of the two approaches.

Regarding the TAB model, its coefficients are re-estimated to match the actual deformation, whilst the bag-NS is modified so it can be extended to other breakup modes and is termed as M-NS (modified Navier-Stokes). The parameters of both models are specified in each breakup regime, based both on experimental data available in the literature (We=15-20) and CFD simulations performed as part of this study (We=20-350). Finally, in Appendix B several breakup models (TAB, DDB, NLTAB and NS) are presented in a unified way using a common equation along with adjustable coefficients to switch to the different models (termed as unified secondary breakup model). It should be mentioned that this work focuses only on the effect of We number, while a sperate investigation is required for the effect of other non-dimensional numbers (Oh, e, Re) as well as the effect of ambient temperature.

In the following sections, initially the computational setup and examined conditions of the CFD simulations are presented, followed by the description of the mathematical models of the TAB and M-NS models. It follows the presentation of the results of each model along with experimental data and the results of the CFD simulations. Finally, the conclusions and recommendations are summarized in the last section of the paper.

2 Computational setup and examined conditions

Apart from utilizing experimental data for the estimation of the model parameters, complimentary CFD simulations have also been performed. The CFD simulations are utilized for the derivation of the parameters of the improved TAB and M-NS models in the multi-mode and sheet-thinning regimes, in which there is a scarcity of experimental data to cover substantially the whole range of We numbers (We=21-350). In addition, the simulations provide useful information regarding the critical...
deformation, which is necessary for the extraction of a breakup condition that is utilized in both
breakup models.

The numerical CFD model solves the Navier-Stokes equations coupled with the Volume of Fluid (VOF)
methodology [44] for tracking the interface between the liquid droplet and the surrounding gas. The
surface tension forces are modelled with the Continuum Surface Stress (CSS) model of [45]. The
simulations are performed in a two-dimensional axisymmetric domain with the commercial CFD tool
ANSYS FLUENT v16 [46]. At low Reynolds numbers, such as those examined in this work (Table 4), the
axisymmetric approximation has proven to be relatively accurate during the deformation stages of
breakup [16, 47, 48]. Various User Defined Functions (UDFs) are employed for i) the adaptive local grid
refinement technique around the liquid-gas interface [49], ii) the adaptive time-step scheme for the
implicit VOF solver based on the velocity at the droplet interface [13], and iii) the moving mesh
technique based on the average velocity of the droplet. The CFD model has been developed and
validated in previous works for the case of aerodynamic droplet breakup [13, 16, 17, 50-53], as well as
for other applications such as the free fall of droplet [49], the droplet impingement on a flat wall [54]
or a spherical particle [55-57], and the droplet evaporation [13, 52, 58].

The 2-dimensional axisymmetric computational domain and boundary conditions are presented in
Figure 1. The droplet is initially stagnant, while air flows from the left boundary with a constant velocity
U_g, causing it to move and deform. The computational cells have a rectangular shape with a base grid
resolution equal to 3cpR (cells per radius), while 6 levels of local grid refinement are applied to obtain
the desired resolution of 192cpR around the liquid-gas interface. The resolution of 192cpR is adequate
for the simulations of droplet breakup, since simulations with 48, 96, 192 and 384cpR have shown that
the average drop velocity and deformation change less than 1% when a finer grid is used.

The liquid properties correspond to those of Diesel fuel, while the surrounding gas is air at temperature
of 293.15K and pressure of 1bar (energy equation not solved). Although Diesel is utilized as test fuel in
the current work, the results can be considered valid for low viscosity fuels as long as the Ohnesorge
number is kept below 0.1 [59]. The same is true for the effect of ambient pressure or equivalently that
of the density ratio, which becomes important approximately below 32 [53, 60]. Both the properties
of Diesel and air as well as the droplet diameter are based on [61] as presented in Table 3. The
The corresponding non-dimensional numbers are \(\varepsilon = 678 \), \(Oh = 0.038 \) and \(N = 117 \) (eq. (3)). The high density ratio \(\varepsilon \) and low \(Oh \) number ensure that their effect is minimized, focusing only on the effect of \(We \) number. By altering the gas velocity, the resulting \(We \) numbers range from 20 up to 350, resulting in 21 simulations in the three breakup regimes, i.e. those of bag, multi-mode and sheet-thinning, as shown in Table 4. The corresponding \(Re \) numbers range from 531 to 2221.

Table 3. Properties of liquid Diesel and air at \(T = 293.15 \text{K} \) and \(P = 1 \text{bar} \) based on [61].

<table>
<thead>
<tr>
<th>(Do) ((\mu \text{m}))</th>
<th>(P) (bar)</th>
<th>(T_0) (K)</th>
<th>(\mu_0)(kg/s·m)</th>
<th>(\rho_0)(kg/m(^3))</th>
<th>(T_1) (K)</th>
<th>(\mu_1)(kg/m·s)</th>
<th>(\rho_1)(kg/m(^3))</th>
<th>(\sigma) (N/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>198</td>
<td>1</td>
<td>293.15</td>
<td>1.85E-05</td>
<td>1.215</td>
<td>293.15</td>
<td>0.00217</td>
<td>824</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Table 4. Examined cases of CFD simulations.

<table>
<thead>
<tr>
<th>Case</th>
<th>(U_{\text{ao}}) (m/s)</th>
<th>(We)</th>
<th>(Re)</th>
<th>(Oh)</th>
<th>(\varepsilon)</th>
<th>(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40.8</td>
<td>20</td>
<td>531</td>
<td>0.038</td>
<td>678</td>
<td>117</td>
</tr>
<tr>
<td>2</td>
<td>43.7</td>
<td>23</td>
<td>569</td>
<td>0.038</td>
<td>678</td>
<td>117</td>
</tr>
<tr>
<td>3</td>
<td>49.1</td>
<td>29</td>
<td>639</td>
<td>0.038</td>
<td>678</td>
<td>117</td>
</tr>
<tr>
<td>4</td>
<td>53.2</td>
<td>34</td>
<td>692</td>
<td>0.038</td>
<td>678</td>
<td>117</td>
</tr>
<tr>
<td>5</td>
<td>57.7</td>
<td>40</td>
<td>751</td>
<td>0.038</td>
<td>678</td>
<td>117</td>
</tr>
<tr>
<td>6</td>
<td>64.5</td>
<td>50</td>
<td>839</td>
<td>0.038</td>
<td>678</td>
<td>117</td>
</tr>
<tr>
<td>7</td>
<td>67.6</td>
<td>55</td>
<td>880</td>
<td>0.038</td>
<td>678</td>
<td>117</td>
</tr>
<tr>
<td>8</td>
<td>70.6</td>
<td>60</td>
<td>920</td>
<td>0.038</td>
<td>678</td>
<td>117</td>
</tr>
<tr>
<td>9</td>
<td>76.3</td>
<td>70</td>
<td>993</td>
<td>0.038</td>
<td>678</td>
<td>117</td>
</tr>
<tr>
<td>10</td>
<td>81.5</td>
<td>80</td>
<td>1062</td>
<td>0.038</td>
<td>678</td>
<td>117</td>
</tr>
<tr>
<td>11</td>
<td>86.5</td>
<td>90</td>
<td>1126</td>
<td>0.038</td>
<td>678</td>
<td>117</td>
</tr>
<tr>
<td>12</td>
<td>91.2</td>
<td>100</td>
<td>1187</td>
<td>0.038</td>
<td>678</td>
<td>117</td>
</tr>
<tr>
<td>13</td>
<td>95.6</td>
<td>110</td>
<td>1245</td>
<td>0.038</td>
<td>678</td>
<td>117</td>
</tr>
<tr>
<td>14</td>
<td>99.9</td>
<td>120</td>
<td>1300</td>
<td>0.038</td>
<td>678</td>
<td>117</td>
</tr>
<tr>
<td>15</td>
<td>103.9</td>
<td>130</td>
<td>1354</td>
<td>0.038</td>
<td>678</td>
<td>117</td>
</tr>
<tr>
<td>16</td>
<td>107.9</td>
<td>140</td>
<td>1405</td>
<td>0.038</td>
<td>678</td>
<td>117</td>
</tr>
<tr>
<td>17</td>
<td>111.7</td>
<td>150</td>
<td>1454</td>
<td>0.038</td>
<td>678</td>
<td>117</td>
</tr>
<tr>
<td>18</td>
<td>128.9</td>
<td>200</td>
<td>1679</td>
<td>0.038</td>
<td>678</td>
<td>117</td>
</tr>
<tr>
<td>19</td>
<td>144.1</td>
<td>250</td>
<td>1877</td>
<td>0.038</td>
<td>678</td>
<td>117</td>
</tr>
<tr>
<td>20</td>
<td>157.9</td>
<td>300</td>
<td>2056</td>
<td>0.038</td>
<td>678</td>
<td>117</td>
</tr>
<tr>
<td>21</td>
<td>170.6</td>
<td>350</td>
<td>2221</td>
<td>0.038</td>
<td>678</td>
<td>117</td>
</tr>
</tbody>
</table>

3 Mathematical model

3.1 Non-dimensional numbers

The non-dimensional numbers that are commonly used to describe the breakup of isolated droplets are the Weber (\(We \)), Ohnesorge (\(Oh \)) and Reynolds (\(Re \)) numbers as well as the density (\(\varepsilon \)) and viscosity ratios (\(N \)) of the two phases [59].

\[
We = \frac{\rho g U_0^2 D_0}{\sigma} \quad Oh = \frac{\mu_L}{\sqrt{\rho_L \sigma \mu g D_0}} \quad Re = \frac{\rho g U_0 D_0}{\mu g} \quad \varepsilon = \frac{\rho L}{\rho g} \quad N = \frac{\mu_L}{\mu g}
\]
The breakup timescale proposed by Nicholls and Ranger [62] is used as a convenient non-dimensionalisation parameter for time ($t^* = t/t_{sh}$):

$$t_{sh} = \frac{D_0}{U_0} \sqrt{\varepsilon}$$

Finally, the non-dimensional droplet deformation (y), which is the quantity of most importance in this work, is quantitively described by the non-dimensional cross-stream diameter of the droplet (D_{cr}/D_0), as shown in Figure 2.

![Figure 2. Definition of the cross-stream droplet diameter and the non-dimensional droplet deformation.](image)

3.2 Improved TAB model

O’Rourke and Amsden [43] derived the differential equation of the TAB model for the displacement of the drop equator compared to that of a spherical shape. By introducing the non-dimensional droplet deformation (y) and time (t^*), as well as the We and Oh numbers the equation becomes:

$$\ddot{y} + 4C_d \frac{Oh}{\sqrt{We}} \dot{y} + \frac{8C_k}{We} (y - 1) = 4C_F$$

where $\dot{y} = dy/dt^*$ is the dimensionless deformation rate and $\ddot{y} = d^2y/dt^{*2}$ the dimensionless deformation acceleration.

The parameters of the improved TAB model (C_k and C_l) are found by fitting to the results for the temporal evolution of droplet deformation of a) the experimental studies of [12, 18-21] (bag regime) and b) the results of the CFD simulations (multi-mode and sheet-thinning regimes), as presented in Table 5 along with those of the original TAB of [26]. The value of zero for the surface tension term C_k was found to fit better to the aforementioned group of results for $We \geq 60$, something that results in the negation of the surface tension term in the modified TAB model (eq. (3)). Thus, its solution for the droplet deformation results in an exponential function of time instead of an oscillation. The physical interpretation of this, is that for high We numbers the aerodynamic forces are much higher than the surface tension forces, and therefore the latter can be neglected. Finally, the value of the viscosity
parameter C_d is taken constant and equal to 10, in agreement with [29, 63]; this parameter is expected to be a function of Oh number, which has a constant low value throughout this study and has a minor effect on the breakup process.

Table 5. Parameters of the original and improved TAB models.

<table>
<thead>
<tr>
<th>Breakup mode</th>
<th>Original TAB</th>
<th>Improved TAB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_d</td>
<td>C_f</td>
</tr>
<tr>
<td>Bag</td>
<td>10</td>
<td>0.13 + 0.0026We</td>
</tr>
<tr>
<td>Multi-mode</td>
<td>5</td>
<td>1/3</td>
</tr>
<tr>
<td>Sheet-thinning</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3 Modified Navier-Stokes (M-NS) model

In this work we introduce a numerical improvement of the bag-NS breakup model, which has been developed in [19]; however, its derivation is repeated in Appendix C due to an erroneous calculation, which is corrected in this work. This is the multiplier of the viscosity term (2^{nd} term from the left of eq. (28)), which is found equal to 16 in this work, while in [19] it was estimated equal to 8, probably due to a miscalculation in the algebraic manipulations. Either way, the contribution of this term in the calculation of the droplet deformation is low for the current examined conditions of low Oh numbers ($Oh < 0.04$) and thus it is not affecting the results. However, its contribution is expected to increase at higher Oh numbers.

In the M-NS model the droplet deformation is described by equation (4). The difference with the original bag-NS model lies in the estimation of the pressure term, which is a function of y^n instead of y (4^{th} term from the left of eq. (4)). Eq. (4) is a second-order non-linear differential equation with no analytical solution, the numerical solution of which is obtained in this work using an explicit 4^{th} order Runge-Kutta method [64, 65].

\[
\ddot{y} + 16 \frac{Oh}{\sqrt{We^2}} \frac{1}{y^2} \dot{y} + \frac{24}{We^2} y - \frac{a^2}{4} y^n = 0 \tag{4}
\]

The parameter a is called rate of stretching, while the parameter n is called pressure exponent and has been introduced in the present work to provide a more flexible numerical consideration of the pressure contribution. For $n \geq 1$, the deformation grows exponentially in time (note that $n = 1$ corresponds to the original model of [19], as shown in Table 6), while for $n < 1$ the deformation becomes oscillatory. More specifically, for $n = 0$ the equation becomes similar to that of the TAB model, while for $n = 1$ it becomes similar to that of the NLTAB, since the pressure term is proportional to $1/y$. For each breakup mode, the value of n that gives the higher coefficient of determination (R^2) is selected, compared to the results of the experimental studies of [12, 18-21] (bag regime) and the CFD simulations (multi-mode and sheet-thinning regimes), as shown in Table 6.

Finally, instead of using a constant value for the parameter a, the current study proposes this to be a function of the We number for each breakup mode (bag, multi-mode and sheet-thinning), as presented in Table 6. For the bag breakup regime, the experimental data of [12, 18-21] for the temporal evolution
of droplet deformation are utilized, while for the multi-mode and sheet-thinning regimes the results of the CFD simulation are employed instead; \(\alpha \) is found for each \(\textit{We} \) number by fitting eq. (4) to the results and by assuming a linear dependence on the \(\textit{We} \) number. It should be mentioned that the equation of \(\alpha \) in the bag breakup regime gives a value of \(\alpha \) equal to 2.88 for \(\textit{We}=15 \), which is close to the value of 2.83 proposed by [19] for the same \(\textit{We} \) (Table 6).

Table 6. Parameters of the bag-NS and M-NS models.

<table>
<thead>
<tr>
<th>Breakup mode</th>
<th>Original bag-NS</th>
<th>Proposed M-NS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n)</td>
<td>(\alpha)</td>
</tr>
<tr>
<td>Bag</td>
<td>1</td>
<td>2.83</td>
</tr>
<tr>
<td>Multi-mode</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sheet-thinning</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

3.4 Breakup condition

Most breakup models of the literature assume a constant critical deformation (onset of breakup) in the range of 1.8 to 2.1 (see Table 2), with the exception of the BTB model in which the critical deformation is a function of \(\textit{We} \). In this study we assume that the breakup occurs when either the maximum deformation is reached (\(y' = 0 \)) or when a critical deformation is exceeded (\(y_c = 3.5 \)), whichever comes first. The condition of \(y_c = 3.5 \) is calculated based on the results of the CFD simulations for a range of \(\textit{We} \) numbers from 20 up to 350 and it is also in agreement with the experimental data of [18] for a \(\textit{We} \) number equal to 20, as shown in Figure 3. The critical deformation of the various models of the literature is presented in the figure as well.

![Figure 3](image)

4 Results and discussion

The temporal evolution of droplet deformation can be calculated using the two models (improved TAB and M-NS) with their respective equations and parameters: i) improved TAB model using eq. (3) and the parameters of Table 5 and ii) M-NS model using eq. (4) and the parameters of Table 6. The results
are presented in the following sub-sections as calculated by the two models in the bag, multi-mode and sheet-thinning regimes, against the results of experimental studies (bag breakup regime) and those of the CFD simulations (multi-mode and sheet-thinning regimes).

4.1 Bag breakup regime - We=10-20

The results of two breakup models (improved TAB and M-NS) are illustrated in Figure 4 for two We numbers in the bag breakup regime (We=15 and 20), along with those of the experimental studies for the same We numbers [12, 18-21]. Both models show a good agreement with the experimental data for both We numbers. The TAB model predicts lower values for the deformation compared to the M-NS model at higher t^* (≥ 2.5), owing to the assumption that the droplet deformation is modeled as an oscillation in the TAB model, in comparison with the exponential behavior predicted by the M-NS model. It should be noted that the experimental data of Chou and Faeth [18] exhibit a fluctuation for the case of We=20 and at $t^*\geq 2$, something that pertains to a combined exponential and oscillatory droplet deformation. This behavior is also observed in the simulations of Figure 5 and Figure 6 and it is something that has not been reported before in the literature. Nevertheless, the exponential part seems to dominate, while further experimental and numerical studies are required to verify this observation.
4.2 Multi-mode breakup regime - $We=21-65$

The results of the two breakup models are presented in Figure 5 for two We numbers, 23 and 60, in the multi-mode regime, along with those of the simulations for the same We numbers. The agreement is good between the models and the simulations, apart from the prediction of a slightly higher breakup initiation time for the case of $We=23$. This is attributed to the oscillatory behavior of the models and the consequent occurrence of breakup at the time when $\dot{y}=0$ and not at $y_c=3.5$. Note that a selection of an exponential solution for the M-NS model (parameter $n\geq1$), although it gives slightly better results for the case of $We=60$, it does not agree will with the simulations for the case of $We=23$, and therefore is not selected.
Figure 5. Temporal evolution of droplet deformation as predicted by the improved TAB and M-NS models with the results of the simulations for two We numbers in the multi-mode regime (60 and 23).

4.3 Sheet-thinning breakup regime - We=66-350

In Figure 6 the results from the two breakup models are presented for two We numbers (80 and 250) in the sheet-thinning regime, along with those of the simulations for the same We numbers. Good agreement is observed again for both models, although a slight underestimation of y_c is noticed for both We numbers, due to the higher value of y_c as predicted by the simulations in the current regime. In addition, the results of the M-NS model are closer to those of the simulations due to their steeper inclination.

Figure 6. Temporal evolution of droplet deformation as predicted by the improved TAB and M-NS models along with the results of the simulations for two We numbers in the sheet-thinning regime (80 and 250).

5 Conclusions and future work

The present work examined the droplet deformation and breakup models for the three basic regimes of droplet breakup, i.e. the bag, multi-mode and sheet-thinning. The publicly available empirical models of [18, 20, 23, 24] were examined as well as the theoretical models TAB, DDB, NLTAB, Rimbert et al. [36] and bag-NS [19], for their range of validity against available experimental data (We=15-101). It was found (see Appendix A) that none of them was capable of accurately predicting the droplet
deformation in all the three breakup regimes. For this reason, two existing models were improved and modified, namely i) an improved TAB model and ii) the M-NS model, which is a modified version of an existing model based on the Navier-Stokes equations.

The parameters of both models were estimated for each breakup regime, based both on experimental data found in the literature (bag regime) and CFD simulations with Diesel droplets performed as part of this study in the multi-mode and sheet-thinning breakup regimes, for which available experimental data are not enough to cover the entire range of values for the necessary parameters. In addition, a breakup condition was introduced (\(y=0\) or \(y_c=3.5\)) based on the results of the CFD simulations and those of the experiments, which gives acceptable results for all examined cases.

Regarding the prediction of droplet deformation, both models showed a good agreement against the experimental data in the bag breakup regime and the CFD simulations in the multi-mode and sheet-thinning regimes, with the M-NS model showing the best performance overall.

It should be noted that the proposed parameters and breakup conditions for both models are valid for low Oh (low viscosity fuels), high \(\varepsilon\) and for isolated droplets, and thus a separate investigation is required for the estimation of the parameters at different conditions. Finally, a unified secondary breakup model is introduced, which consolidates into a single equations various models of the literature (TAB, NLTAB, DDB and NS), by using adjustable coefficients (see Appendix B). As a future work, the parameters of this model can be estimated based on CFD simulations, which in return may result in the formulation of a completely new deformation and breakup model.

Acknowledgements

Financial support from the MSCA-ITN-ETN of the European Union’s H2020 programme, under REA grant agreement n. 675676 is acknowledged.

Appendix A. Comparison of the existing deformation and breakup models with experimental data.

The temporal evolution of droplet deformation as predicted by the various models of Table 1 and selected models of Table 2 are presented in Figure 7 and Figure 8, respectively, along with various experimental data found in the literature in three breakup regimes (bag, multi-mode and sheet-thinning) for \(We=15\) [18-20], \(We=20\) [12, 18, 21], \(We=52.6\) [22] and \(We=101\) [22]. It should be noted that the applicability of some models has been extended beyond the range presented in Table 1 and Table 2 in order to assess if their range of applicability can be extended. The experiments are plotted up to the breakup initiation time, while those by [22] have been shifted in terms of time based on the results of CFD simulations at the same conditions. In the bag breakup regime (\(We=15-20\)) the empirical model of Chou and Faeth [18] and the theoretical model of Kulkarni and Sojka [19] show the best agreement, in the multi-mode regime (\(We=52.6\)) that of Cao et al. [23] and the DDB, and in the sheet-thinning regime (\(We=101\)) that of Gel’fand et al. [24] and the DDB again.
Figure 7. Comparison between experimental data and the predictions of the various empirical models for the temporal evolution of droplet deformation for a) $We=15$, b) $We=20$, c) $We=52.6$ and d) $We=101$.
Figure 8. Comparison between experimental data and the predictions of the various theoretical models for the temporal evolution of droplet deformation for a) $We=15$, b) $We=20$, c) $We=52.6$ and d) $We=101$.

Appendix B. Unified secondary breakup model.
In order to develop the unified secondary breakup model, a similar procedure to that of Schmehl at al. [37] for the derivation of the NLTAB model is followed, but the appearing terms are expressed in a more generic way. This is accomplished by utilizing basic equations, (e.g. the work is given by the multiplication of a force with an area), along with reference values for these variables (e.g. reference force and area). In addition, adjustable parameters are introduced to account for the effects of physical parameters/mechanisms that are not included in the equations, since they are expressed by using reference magnitudes, such as the internal flow in the droplet and the pressure distribution around it.

For convenience the mechanical energy balance of the droplet is employed first, which is written in rate form in eq. (5):

$$\frac{dE_d}{dt} = W_{press} - W_{vis,d}$$ (5)

The droplet energy consists of three parts, i.e. a) the kinetic translational energy, b) the surface energy and c) the kinetic energy as the droplet deforms. It should be noted also that heat transfer effects could be also added in eq. (5), which are not within the scope of the current work and therefore are neglected. It is mathematically proved that the translational droplet energy cancels the work of
pressure forces in the direction of the flow, using the droplet momentum equation in the streamwise
direction. Thus, the translational terms will not be included.

Starting with the kinetic energy this can be calculated as:

$$E_{\text{kin},d} = f_{\text{kin}} \frac{1}{2} m_\text{t} U_{\text{def},y} = f_{\text{kin}} \frac{1}{2} \rho_t \frac{\pi D_0^3}{6} \left(\frac{dR}{dt} \right)^2$$ \hspace{1cm} (6)

The term $U_{\text{def},y} = dR/dt$ denotes the deformation velocity in the cross-stream direction and serves as a
scaling velocity for the calculation of the kinetic energy, while the coefficient f_{kin} is used to include the
secondary effects appearing during droplet deformation. These are: i) the secondary kinetic energy
arising from the axial (transverse) deformation, ii) the variation of liquid velocity along the cross-
diameter (it is 0 at the symmetry axis and dR/dt at the peripheral tip), and iii) the internal liquid
flow/circulation. In the TAB and DDB models the value of f_{kin} is equal to 1, while in the NLTAB it is a
decreasing function of y (see Table 7).

The rate of kinetic energy is:

$$\frac{dE_{\text{kin},d}}{dt} = \frac{1}{2} \rho_t \frac{\pi D_0^3}{6} \left(f_{\text{kin}} \frac{dR}{dt} \right)^2 + \frac{d}{dy} f_{\text{kin}} (y)^3$$ \hspace{1cm} (7)

And by introducing the non-dimensional numbers: $y = \frac{2R}{D_0} \rightarrow R = y \frac{D_0}{2}$ (see Figure 2) and $t^* = \frac{t}{D_0 \sqrt{U_0}}$, the equation becomes ($\dot{y} = \frac{dy}{dt^*}$):

$$\frac{dE_{\text{kin},d}}{dt} = \frac{2}{3} \left(\rho_t \frac{\pi D_0^3 U_0^3}{16 \sqrt{\varepsilon}} \right) \left(f_{\text{kin}} \dot{y} \ddot{y} + \frac{1}{2} \frac{d}{dy} (y)^3 \right)$$ \hspace{1cm} (8)

Next, the rate of surface energy is given in eq. (9):

$$\frac{dE_{\text{surf},d}}{dt} = \frac{d}{dt} (\sigma S) = \sigma \frac{dS}{dy} \frac{dy}{dt} = \sigma \frac{D_0^2}{dy} \frac{dS^*}{dy} dt^*$$ \hspace{1cm} (9)

where S^* represents the dimensionless droplet surface ($S^* = S/\pi D_0^2$).

Introducing the non-dimensional time (t^*) the equation becomes:

$$\frac{dE_{\text{surf},d}}{dt} = \sigma \frac{D_0^2}{dy} \frac{dS^*}{dy} \frac{dy}{dt^*} D_0 \sqrt{\varepsilon} \frac{U_0}{ \sqrt{\varepsilon} dy} = \left(\rho_t \frac{\pi D_0^3 U_0^3}{16 \sqrt{\varepsilon}} \right) 16 \frac{dS^*}{dy^*} \dot{y}$$ \hspace{1cm} (10)

In eq. (9), the term dS^*/dy is a characteristic of the droplet shape and depends on the breakup mode
and breakup phase (e.g. flattening phase, bag creation, etc). The majority of the breakup models
assumed ellipsoid shape (either cylinder or axisymmetric, see Table 2) and provided the term dS^*/dy
as a function of the instantaneous deformation y, using either a simplified analytic formula or a
polynomial fitting. Although the assumption of an ellipsoidal shape is an oversimplification it reflects with low error the droplet surface area when compared with the results of CFD (comparison not presented here).

For the pressure work term, it is assumed that this is obtained by multiplying a reference force \(F_{\text{ref}} \) with the reference deformation velocity \(U_{\text{def,y}} \):

\[
W_{\text{press}} = f_{\text{press}} \cdot F_{\text{ref}} \cdot U_{\text{def,y}} = f_{\text{press}} \frac{1}{2} \rho_g u_{\text{rel}}^2 \frac{\pi D_0^2}{4} \frac{dR}{dt}
\]

(11)

The introduction of non-dimensional numbers: \(y, t^* \) and \(u_{\text{rel}}^* = \frac{u_{\text{rel}}}{U_0} \), gives:

\[
W_{\text{press}} = f_{\text{press}} \left(\frac{\rho_g U_0^3 \pi D_0^5}{16 \sqrt{\varepsilon}} \right) u_{\text{rel}}^2 y^2
\]

(12)

The coefficient \(f_{\text{press}} \) is used to account for the effect of pressure distribution around the droplet as also the change of frontal area during droplet deformation. In the NLTAB model this term is proportional to \(\dot{y}/y \), while in the model of Rimbert et al. it is proportional to \(K_P(y) \cdot \dot{y} \), where \(K_P \) is a polynomial function of \(y \) (see Table 7). The term \(u_{\text{rel}}^* \) includes the effect of change of the relative drop-gas velocity; the inclusion of this effect implies that an additional equation has to be solved for the droplet motion (see [16]), while ignoring this effect, implies that \(u_{\text{rel}}^* \) is unity. The CFD simulations showed that \(u_{\text{rel}}^* \geq 0.8 \) for all examined cases even at the instance of breakup, where it takes its minimum value.

Finally, for the viscous dissipation term the approximation of NLTAB [37] is used (\(n \) is the unit vector in the direction of \(y \)):

\[
W_{\text{vis,d}} = f_{\text{vis}} 12 \mu_L \left(\frac{\partial u_{\text{cm}}}{\partial n} \right) ^2 \pi D_0^3 \frac{d}{6} = f_{\text{vis}} 2 \mu_L \left(\frac{1}{y} \frac{dy}{dt} \right) ^2 \pi D_0^3
\]

(13)

With the introduction of the non-dimensional time \((t^*) \) and the numbers \(\text{We} \) and \(\text{Oh} \), the equation becomes:

\[
W_{\text{vis,d}} = f_{\text{vis}} \left(\frac{\rho_g \pi D_0^5 U_0^3}{16 \sqrt{\varepsilon}} \right) 32 \frac{\text{Oh}}{\sqrt{\text{We}}} \left(\frac{\dot{y}}{y} \right) ^2
\]

(14)

The coefficient \(f_{\text{vis}} \) is used to account for the effect of energy dissipation in the streamwise direction.

By substituting equations (8), (10), (12) and (14) into (5), the final expression for \(y \) is derived in (15).

One more coefficient has been added to the equation for the effect of surface energy \((f_{\text{st}}) \) and all constants have been incorporated inside the parameters.

\[
\left(f_{\text{kin}} \frac{1}{2} \frac{df_{\text{kin}}}{dy} y^2 \right) + f_{\text{vis}} \frac{\text{Oh}}{\sqrt{\text{We}}} \frac{\dot{y}}{y^2} + f_{\text{st}} \frac{dS^*}{We \, dy} = f_{\text{press}} u_{\text{rel}}^2
\]

(15)
By giving the appropriate values to the parameters $f_{\text{kin}}, f_{\text{vis}}, f_{\text{st}}, f_{\text{press}}, dS^*/dy$ and u_{rel}^*, equation (15) matches the equations of the models TAB, NLTAB, DDB and NS, as shown in Table 7. Finally, the values of the coefficients can be estimated based on the results of the CFD simulations resulting in a completely new model. However, their derivation is complex and is still a work in progress.

Table 7. Parameters of the unified secondary breakup model to match the various models of the literature.

<table>
<thead>
<tr>
<th></th>
<th>TAB</th>
<th>NLTAB</th>
<th>DDB</th>
<th>Bag-NS</th>
<th>M-NS</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{kin}</td>
<td>1</td>
<td>$\pi^2 + 16\frac{y^6}{y^6}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>f_{vis}</td>
<td>$4y^2C_d, C_d=5$</td>
<td>40</td>
<td>$9\pi^2$</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>f_{st}</td>
<td>$8C_k, C_k=8$</td>
<td>29</td>
<td>$\frac{27\pi^2}{2}$</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>f_{press}</td>
<td>$4C_k, C_k=1/3$</td>
<td>$\frac{2C_k}{y}$, $C_k=2/3$</td>
<td>$9\pi/8$</td>
<td>a^2, a^2y^n,</td>
<td>$a = 2\sqrt{2}$ $a = f(We)$</td>
</tr>
<tr>
<td>dS^*</td>
<td>$\frac{d}{dy}$</td>
<td>$y^2 - 1$</td>
<td>Ellipsoid</td>
<td>$(1 - 2y^{-6})y$</td>
<td>y</td>
</tr>
<tr>
<td>u_{rel}^*</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Appendix C. Derivation of the bag-NS model.

Initially, the viscous Navier-Stokes equations in cylindrical axisymmetric coordinates are employed (see Figure 9):

$$
\rho L \left(\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} \right) = - \frac{\partial p}{\partial r} + \mu L \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r \frac{\partial u_r}{\partial r} \right) - \frac{u_r}{r^2} \right] \tag{16}
$$

$$
r \frac{\partial h}{\partial t} + \frac{\partial (ru_r h)}{\partial r} = 0 \tag{17}
$$

Moreover, the mass conservation gives the rim thickness as:

$$
h(t) = \frac{D_0^3}{6R^2} \tag{18}
$$
The parameter u_r is found by substituting eq. (18) into (17) and solving for it:

$$u_r = \frac{r}{R} \frac{dR}{dt}$$

Eq. (16) requires the calculation of the pressure gradient (dp/dr). First, the normal stress balance across the interface is employed:

$$\sigma \kappa = T_{rr}(g) - T_{rr}(l)$$ \hspace{1cm} (20)

$T_{rr}(l)$ and $T_{rr}(g)$ represent the normal stress components associated with the liquid and the surrounding gas, given by $-p_L(r) + 2\mu_L \frac{\partial u_r}{\partial r}$ and $-p_g(r)$, respectively. At $r=R$ equation (20) gives:

$$p_L(R) = p_g(R) + \sigma \kappa + 2\mu_L \frac{\partial u_r}{\partial r}$$ \hspace{1cm} (21)

The gas pressure field around the droplet (p_g) can be estimated using the momentum and mass conservation in the gas phase, with the assumptions of inviscid flow, incompressible fluid and quasi-steady state. Moreover, the local gas flow is assumed to have the structure of a stagnation point: $U_x = -a U_0/D_0$, where a is an indicator of the rate of stretching. The resulting equation is (22):

$$p_g(r, x) = p_g(0) - \rho_g \frac{a^2 U_0^2}{8D_0^2} r^2 + \rho_g \frac{a^2 U_0^2}{8D_0^2} x^2$$ \hspace{1cm} (22)

At $x=0$ eq. (22) becomes:

$$p_g(r) = p_g(0) - \rho_g \frac{a^2 U_0^2}{8D_0^2} r^2$$ \hspace{1cm} (23)
\(p_g(0) \) is the stagnation pressure at \(r = x = 0 \) given by \(p_g(0) = \rho_g U_0^2 / 2 \). Substituting eq. (23) and (19) into (21) gives:

\[
p_L(R) = p_g(0) - \rho g \frac{a^2 U_0^2}{8D_0^2} R^2 + \frac{2\sigma}{h} + 2\mu_L \frac{\partial u_r}{\partial r}
\]

(24)

The curvature is given by \(k = \left(\frac{h(t)}{2} \right)^{-1} \) due to the rounded periphery of the liquid disk. The pressure gradient can finally be calculated using eqs. (24) and (18) as:

\[
\frac{\partial p}{\partial r} = \frac{p_L(R) - p_g(R)}{R} = \frac{1}{R} \left(-\rho g \frac{a^2 U_0^2}{8D_0^2} R^2 + \frac{12\sigma}{D_0^3} R^2 + \frac{2\mu_L dR}{dt} \right)
\]

(25)

Substituting eqs. (25) and (19) into (16):

\[
\rho L \frac{d^2 R}{dt^2} = -\frac{1}{R} \left(-\rho g \frac{a^2 U_0^2}{8D_0^2} R^2 + \frac{12\sigma}{D_0^3} R^2 + \frac{2\mu_L dR}{dt} \right)
\]

(26)

The integration from \(r=0 \) to \(r=R \) gives:

\[
\frac{d^2 R}{dt^2} = \left(\frac{\rho g}{\rho_L} \frac{a^2 U_0^2}{4D_0^2} - \frac{24\sigma}{\rho_L D_0^3} - \frac{4\mu_L}{\rho_L R^3} \frac{dR}{dt} \right) R
\]

(27)

Finally, the non-dimensional parameters are introduced: \(We, Oh, y = R/(\frac{D_0}{2}), t^* = t/t_{sh} = > t = t^* \frac{D_0 \sqrt{\epsilon}}{U_0} \), and the final differential equation for the droplet deformation is given in (28):

\[
\ddot{y} + 16 \frac{Oh}{\sqrt{We}} \frac{\dot{y}}{y^2} + 24 \frac{We}{4} y = \frac{a^2}{4} y
\]

(28)

References

