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Abstract

We propose a multi-agent approach to compare the e�ectiveness of macro-

prudential capital requirements, where banks are embedded in an arti�-

cial macroeconomy. Capital requirements are derived from alternative

systemic-risk metrics that re�ect both the vulnerability or impact of �nan-

cial institutions. Our objective is to explore how systemic-risk measures

could be translated in capital requirements and test them in a compre-

hensive framework. Based on our counterfactual scenarios, we �nd that

macro-prudential capital requirements derived from vulnerability measures

of systemic-risk can improve �nancial stability without jeopardizing output

and credit supply. Moreover, macroprudential regulation applied to sys-

temic important banks might be counterproductive for systemic groups of

banks.
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1. Introduction

The concept of systemic risk (SR) is relatively recent in economic and �nancial

literature. The �rst appearance in scienti�c articles dates back to the early '90s,

even if citations reveal that most of these contributions have been revived after

2008, when the term regained strength with the crisis. ECB (2009, p. 134) pro-

vide a general de�nition: �it refers to the risk that �nancial instability becomes

so widespread that it impairs the functioning of a �nancial system to the point

where economic growth and welfare su�er materially." The European Systemic

Risk Board (ESRB) was established by the EU on 16 December 2009, based

on the recommendation of the �de Larosière report" of bringing the European

Union forward. The ESRB has a macroprudential mandate whose objective is

to prevent and mitigate systemic risk in the EU. The recommendation of ESRB

have shaped the conduct of macroprudential policies in EU countries and pro-

vided guidance for its implementation through a set of macroprudential policy

tools (ESRB, 2014a,b). Within this framework, the systemic risk bu�er (SRB)

is designed to prevent and mitigate structural systemic risks of a long-term,

non-cyclical nature that are not covered by the Capital Requirements, includ-

ing excessive leverage. The SRB is an additional capital requirement imposed

on credit institutions, proportional to their total risk exposure, to cover unex-

pected losses and keep themselves solvent in a crisis. The introduction of a cap-

ital bu�er applies to all systemically important institutions, both at the global

(G-SIIs) and national (O-SIIs) levels. While for some instruments authorities

have recommended to use prescriptive measures (such as the credit-to-gdp gap

for the countercyclical capital bu�er), considerable di�erences across countries

exist regarding the level, range and calculation basis of the SRB. There is no

maximum limit for the SRB, but authorisation from the European Commission

is required for bu�er rates higher than 3%. Caps on the SRB have been un-

der the spotlight as often perceived as being too low to mitigate the risk some

institutions pose to the �nancial system. Furthermore, SRB are hard to im-

plement, inter alia because they need to be computed from a reliable measure

of systemic risk: it is however unclear which metric performs better and under

what circumstances. The task is more intricate given that systemic events are

observed infrequently, as a banking crisis is observed on average every 35 years

for OECD countries (Danielsson et al., 2018).

In this article we propose a methodology to explore the e�ectiveness of cap-

ital surcharges implemented in the form of a systemic-risk bu�er derived from

di�erent systemic risk measures. Banks are required to maintain a level of com-

mon equity tier 1 adequate to meet a systemic-risk weighted share of their as-

sets. By assuming that banks adopt di�erent capital rules within a multi-agent

macro-economic model, we quantify the impact of such policies in a stress-test

scenario-based analysis. Many techniques have been proposed so far to measure

systemic risk, but there is no consensus among scholars on which is most appro-

priate. We consider two alternative classes, namely market-based and network
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approaches. Each one can measure systemic-risk in terms of both vulnerability

or impact. Vulnerability focuses on the e�ect of a systemic event on the capital

of a given bank, while impact captures the losses to produced by the distress of

one, or few, institutions on the rest of the �nancial system.

We conduct counterfactual policy experiments in an agent-based model (ABM)

of the economy based on Gurgone et al. (2018). The original model is expanded

to allow banks to employ systemic-risk measures to determine their capital re-

quirements.1 In the �rst set of experiments we assume that capital requirements

are set on the basis of vulnerability metrics, so that fragile banks are required

to hold more equity capital than sound banks. However, this might not be

satisfactory, as it does not operate on systemic impact of banks. Hence in the

second set of experiments capital requirements depend on the impact of banks

on the system, or the extent of externalities they produce in case of default.

We �nd that systemic-capital requirements based on vulnerability are able

to stabilize the economy. Having them in place is preferable to a standard rule

that determines regulatory equity as a �xed fraction of assets. On the other

hand, systemic-capital requirements based on impact may lead to suboptimal

outcomes and produce detrimental e�ects on �nancial stability. This is relevant

when systemic-risk is not concentrated in few superspreaders, but is diluted in

groups of banks with similar behavior and exposures to risk. Moreover, both

market and network policies turn out to be procyclical. They also di�er in some

aspects: the former exhibit a regime switch during the �rst period of a crisis,

while the latter can better capture the evolution of systemic risk but are highly

correlated with the exposures to equity ratio prevailing in the �nancial system.

This paper is the �rst attempt to: (i) compare systemic risk measures re-

cently proposed in the literature from both the perspectives of vulnerability of

single institutions to system wide shocks and the individual impacts of insti-

tution distress on the �nancial system overall; (i) suggest how to incorporate

heterogeneous systemic-risk metrics into banks' capital requirements; (iii) anal-

yse the impact of the SRB macroprudential tool by means of simulated data

generated by a multi-agents model, rather than empirically observed data that,

given the rare occurrence of systemic crisis, are scant. Our simulated economy

produces data on returns on equities of banks and at the same time includes

a network structure of interlocked balance sheets, thus it allows for a double

comparison.

The usage of an ABM allows to apply both network and market-based tech-

niques to measure systemic risk. Financial networks between banks and �rms

and within the interbank sector arise endogenously as a consequence of interac-

tion in ABMs. This feature can be employed to run network-based algorithms

as DebtRank. This would not be feasible in an aggregate macroeconomic model.

Moreover, working with a model rather than a dataset permits to design how to

1Note that we do not consider in our model the full range of capital bu�ers typically used
by macroprudential authorities e.g. countercyclical capital bu�ers, liquidity bu�er ratio, etc
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make comparisons, and explore counterfactual scenarios that generate arti�cial

data.

The paper is organized as follows: Section 2 presents the related literature.

Section 3 describes the modelling framework, distress dynamics, systemic-risk

measures and macro-prudential policies. Section 4 goes through the results of

the simulations and the policy experiments. Conclusions are in Section 5.

2. Related literature

Our paper contributes to a vast, post-crisis, literature that focusses on empiri-

cal testing and comparison of systemic risk methodologies. The most common

measures of systemic risk used in the literature are: Marginal Expected Short-

fall (MES), de�ned as the expected daily percentage decrease in equity value

of a �nancial institution when the aggregate stock market declines by at least

2 percent on a single day; Long Run Marginal Expected Shortfall (LRMES)

de�ned as the expected equity loss, over a given time horizon, conditional on

a su�ciently extreme phenomenon (such as an hypothetical 40% market index

decline over a six months period); SRISK introduced by Acharya et al. (2012)

and Brownlees and Engle (2016) which measures the expected capital shortfall,

or the capital a �rm is expected to have, conditional on a prolonged market de-

cline (SRISK can be expressed in terms of LRMES). The sum of SRISK across

all �rms provides the total systemic risk of the system and can be thought of as

the capital required by the system in the case of a bailout; CoVaR Adrian and

Brunnermeier (2016) and Chun et al. (2012) which is de�ned as the risk (VaR)

of the �nancial system conditional on an institution being in distress, i.e. at

its own VaR level; Delta conditional value at risk (∆CoV aR) which measures

the risk materializing at the system level if an institution is in distress rela-

tive to a situation where the same institution is at its median; Codependence

risk (CoRisk) (Giudici and Parisi, 2018) the change in the survival probability

of an institution when potential contagion deriving from all other institutions

is included; Lower Tail Dependence (LTD) introduced by Zhou (2010) is es-

timated from the joint probability return distributions of individual �nancial

institutions and the industry index, and aims to measure the probability of a

simultaneous extreme, lower tail event in the �nancial sector as a whole and

the equity values of individual �nancial institutions. A large part of the empir-

ical literature has focussed on empirical testing and comparison of alternative

systemic risk methodologies by means of econometric methods. Benoit et al.

(2013) provide a theoretical and an empirical comparison of three market-based

measures of systemic risk, namely MES, SRISK and ∆CoV aR. They �nd that

there is no measure able to fully account for multiple aspects of systemic risk,

but SRISK is better than ∆CoV aR for describing both the too-big-to-fail and

too-interconnected-to-fail dimensions. This may be possibly be because SRISK

is a combination of market and balance sheet metrics and as such not purely
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a market-based measure given the inclusion of leverage. Kleinow et al. (2017)

empirically compare four widespread measures of systemic risk, namely MES,

Co-Risk, ∆CoV aR and LTD using data on US �nancial institutions. Their

estimates point out that the four metrics are not consistent with each other

over time, hence it is not possible to fully rely on a single measure. Rodríguez-

Moreno and Peña (2013) consider six measures of systemic risk using data from

stock, credit and derivative markets. They quantitatively evaluate such metrics

through a �horse race", exploiting a sample composed of the biggest European

and US banks. Their results favour systemic risk measures based on simple in-

dicators obtained from credit derivatives and interbank rates, rather than more

complex metrics whose performance is not as satisfactory. Similarly Pankoke

(2014) opposes sophisticated to simple measures of systemic risk and concludes

that simple measures have more explanatory power. Overall these papers �nd

that di�erent systemic risk measures focus on di�erent characteristics of sys-

temic risk and do not appear to capture its complex multidimensional nature,

resulting in di�erent rankings. Nucera et al. (2016) and Giglio et al. (2016)

both apply principal component analysis to a range of systemic risk measures in

the attempt to capture the multiple aspects of systemic risk. A useful discussion

on the di�culty in �nding a measure that can capture all aspects of systemic

risk can be found in Hansen (2013).

Other studies assume that the regulator is disposed to tolerate a systemic-

wide risk level and aims to reach the most parsimonious feasible capitalization

at the aggregate level. Such objective is formally translated into a constrained

optimization problem, whose solution includes both the unique level of capital

in the banking system and its distribution across banks. Tarashev et al. (2010)

�nd that if capital surcharges are set in order to equalize individual contribu-

tions to systemic risk, then a lower level of aggregate capital is needed to reach

the system-wide risk objective. Webber and Willison (2011) �nd that optimal

systemic capital requirements increase in balance sheet size and in the value of

interbank obligations. However, they are also found to be strongly pro-cyclical.

Another set of contributions presents network approaches to quantify sys-

temic risk. Battiston et al. (2016) propose a network-based stress test building

on the DebtRank algorithm. The framework is �exible enough to account for

impact and vulnerability of banks, as well as to decompose the transmission of

�nancial distress in various rounds of contagion and to estimate the distribution

of losses. They perform a stress-test on a panel of European banks. The outcome

indicates the importance of including contagion e�ects (or indirect e�ects) in fu-

ture stress-tests of the �nancial system, so as not to underestimate systemic risk.

Alter et al. (2014) study a reallocation mechanism of capital in a model of in-

terbank contagion. They compare systemic risk mitigation approaches based on

risk portfolio models with reallocation rules based on network centrality metrics

and show that allocation rules based on centrality measures outperform credit

risk measures. Gauthier et al. (2012) compare capital allocation rules derived
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from �ve di�erent measures of systemic risk by means of a network-based model

of interbank relations applied to a dataset including the six greatest banks of

Canada. They also employ an iterative optimization process to solve the optimal

allocation of capital surcharges that minimizes total risk, while keeping constant

the total amount of capital to be kept aside. The adopted framework leads to a

reduction of the probability of systemic crises of about 25%; however, results are

sensitive to including derivatives and cross shareholdings in the data. Poledna

et al. (2017) propose to introduce a tax on individual transactions that may lead

to an increase in systemic risk. The amount of the tax is determined by the

marginal contribution of each transaction to systemic risk, as quanti�ed by the

DebtRank methodology. This approach reduces the probability of a large-scale

cascading event by re-shaping the topology of the interbank networks. While

the tax deters banks from borrowing from systemically important institutions,

it does not alter the e�ciency of the �nancial network, measured by the overall

volume of interbank loans. The scheme is implemented in a macro-�nancial

agent-based model, and the authors show that capital surcharges for G-SIBs

could reduce systemic risk, but they would have to be substantially larger than

those speci�ed in the current Basel III proposal in order to have a measurable

impact.

Finally our paper provides a contribution to the literature that estimates

macroprudential capital requirements using systemic risk measures. Brownlees

and Engle (2016) and Acharya et al. (2012) have estimated the capital shortfall

of an institution given a shock in the system. Gauthier et al. (2012) compare �ve

approaches to assigning systemic capital requirements to individual Canadian

banks based on each bank's contribution to systemic risk while van Oordt (2018)

apply market-based measures to calculate the countercyclical capital bu�er.

3. The model

3.1. Macroeconomic Model

The macroeconomy is based on an amended version of the agent-based-model

(ABM) in Gurgone et al. (2018). The economy is composed of several types

of agents: households, �rms, banks, a government, a central bank and a spe-

cial agency. The (discrete) numbers of households, �rms and banks are NH ,

NF , NB respectively. Interactions take place in di�erent markets: �rms and

households meet on markets for goods and for labour, while �rms borrow from

banks on the credit market and banks exchange liquidity on the interbank mar-

ket. The CB buys government-issued bills on the bond market. The role of

the government is to make transfer payments to the household sector. The gov-

ernmental budget is balanced, namely the transfers are funded by taxes while

the level of the public debt is maintained at a steady level. The CB generates

liquidity by buying government bills and providing advances to those banks
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that require them; it furthermore holds banks' reserve deposits in its reserve

account. Households work and and buy consumption goods by spending their

disposable income.2 It is made up of wage and asset incomes after taxes and

transfers. In the labour market, households are represented by unions in their

wage negotiations with �rms, while on the capital market, they own �rms and

banks, receiving a share of pro�ts as part of their asset income. Firms borrow

from banks in order to pay their wage bills in advance, hire workers, produce

and sell their output on the goods market. The banking sector provides credit

to �rms, subject to regulatory constraints. In each period every bank tries to

anticipate its liquidity needs and accesses the interbank market as a lender or

a borrower. If a bank is short of liquidity, it seeks an advance from the CB.

The special agency was not present in Gurgone et al. (2018). It has been

introduced as a convenient way to model the secondary market for loans. It

acts as a liquidator when banks default or when banks exceed the regulatory

constraint and thus must de-leverage. The assets in its portfolio are then put

on the market and can be purchased by those banks that have a positive credit

supply. Further details about the working of the special agency are described

in the section below.

Banks

Assets Liabilities

L Dep

I l Ib

R Adv

nwB

Firms

Assets Liabilities

Dep L

nwF

Table 1: Balance sheets of banks (left) and �rms (right). Loans to �rms (L),

interbank lending (I l), liquidity (R), deposits (Dep), interbank borrowing (Ib),

advances from the central bank (Adv).

3.2. Distress dynamics

Banks and �rms default if their equity turns negative. Distress propagates

through defaults in the credit and interbank markets and banks' deposits. The

transmission begins when �rms cannot re-pay loans due to a negative outcome in

the goods market. Shocks propagate from �rms to banks, within the interbank

2The reference model (Gurgone et al., 2018) does not include households' borrowing since
it is mainly focused on credit to �rms and on the interbank market.
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market and from banks to �rms.3 The process is illustrated in Fig. 1 and

terminates only when there are no new losses. The balance sheets of �rms and

banks are illustrated in Table 1.

�rm-bank

bank-bank

bank-�rm

Figure 1: Diagram of the distress transmission. The distress is transmitted through

the credit market (�rm-bank), the interbank market (bank-bank) and banks' deposits

(bank-�rms).

Liquidation of assets The contagion dynamic is enhanced by the forced

liquidation of assets sold by defaulted banks in order to repay creditors. The

role of liquidator is operated by a special agency that buys the assets of bank i

at price p:

pτ = pτ−1

(
1− ∆qi,τ

qt

1

ε

)
(1)

where ∆qi,τ is the quantity of loans that bank i needs to liquidate,4 ε is the

asset price elasticity, qt is the total quantity of loans in period t. Banks that

need liquidity enter the market in a random order represented by the subscript

τ ; we assume that at the end of each period of the simulation, the initial asset

price is set again at p0 = 1. The assets purchased by the agency are then put

on sale before the credit market opens (lending to �rms). Banks with positive

net worth and complying with regulatory leverage rate can buy them at their

net present value.

Recovery rates The e�ective loss on a generic asset Aij owed by j to i is

Aij(0)(1−ϕij(t)), where ϕ is the recovery rate. Each of j's creditors can recover

3If the net worth of a bank is negative, it defaults on its liabilities including the deposits
of �rms and households. A deposit guarantee scheme is not implemented.

4 Banks �rst determine their liquidity need, then compute the fair value of their portfolio
loan by loan. Next they determine ∆q taking into account eq. (1). Lastly, they choose which
loans should be liquidated to reach their objective.
The loans for sale are evaluated at their fair market value by discounting cash �ows:

Lfvij =
Lij(1 + Srf )(1− ρfj )

rS

where Li,j is the book value of the loan of bank i to �rm j, S is the residual maturity, rf is
the interest rate on the loan, ρf is the default probability of �rm j, and r is the risk-free rate.
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ϕij =
Aj
Lj , i.e. the ratio of borrower's assets (A) to liabilities (L). However, the

nominal value of illiquid assets is not immediately convertible in cash and must

be �rst liquidated to compensate creditors. We denote the liquidation value of

the assets of bank j with Aliqj,t , with A
liq
j,t ≤ Aj,t. The actual recovery rate can

be written as:

ϕij ≡
Aliqj
Lj

Furthermore, we assume that there is a pecking order of creditors, so that

they are not equal from the viewpoint of bankruptcy law: the most guaranteed

is the central bank, then depositors and �nally banks with interbank loans.

For instance, those creditors who claim interbank loans towards the defaulted

bank j recover the part of j's assets left after the other creditors have been

compensated. The recovery rate on an interbank loan, can be expressed as:

ϕij = max

(
0,
Aliqj −ACBj −Dj

Lj −ACBj −Dj

)
(2)

where ACB are central bank's loans to j and D are j's deposits. It is worth

noticing that loss given default is LGD ≡ 1−ϕ, so that the net worth of creditor
i updates as nwBi,t = nwBi,t−1 − LGDij,tI

l
i,t.

3.3. Measuring systemic risk

Before de�ning systemic risk adjusted capital requirements (SCR) we clarify

how we measure SR. We do it along two dimensions, that is vulnerability and

impact. Vulnerability should be understood as the sensitivity of banks to a

system-wide shock in terms of reduction in their equity. Conversely, impact

measures the equity losses of the �nancial system originated from the distress

of a chosen bank. Two distinct techniques are adopted to quantify vulnerability

and impact, that is network and market-based approaches.

Network approach: DebtRank

DebtRank is a systemic-risk measure and an algorithm introduced by Battis-

ton et al. (2012). It is conceived as a network measure inspired by feedback

centrality with �nancial institutions representing nodes. Distress propagates

recursively from one (or more) node to the other, potentially giving rise to more

than one round of contagion. Despite DebtRank is a measure of impact in strict

sense, the algorithm can provide both measures of vulnerability and impact (see

Section 6.2 for details), that we denote respectively by DRvul and DRimp.

When accounting for vulnerability, we impose a common shock on the bal-

ance sheets of all banks and let that the algorithm computes how the equities

were a�ected after the shock had died out. Individual vulnerabilities produced
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by the stress test are expressed in terms of the relative equity loss of each bank

(h) at the last step of the algorithm (τ = T ) after we impose a shock on assets.

hi,T ≡
nwBi,T − nwBi,0

nwBi,0
(3)

If impact is considered, we impose the default of one bank at a time and

observe the e�ects on equities of all the other. The impact of each bank on the

rest of the system is the overall loss in capital produced by the default of bank

i. The value for each institution (g) are obtained by imposing its default at the

beginning of the algorithm.

gi =
Nb∑
j=1

hj,T nwBi,0 (4)

Each measure is computed by repeating DebtRank 1000 times for vulnera-

bility and 500 for impact.5 In each run recovery rates are randomly distributed

between 0 and 1. At the end, the value of SR indexes is determined by an

expected-shortfall, that is by computing the average over the observations ex-

ceeding the 99th percentile. Finally, the items on the balance-sheets of �rms

and banks that are the input of the algorithm are entered as weighted averages

over the last 30 periods. This avoids excessive time volatility of SR measures

which would occur if DebtRank were computed with period-by-period inputs.

Further details and the calibration procedure are detailed in Sections 6.2 and

6.1.

Market-based approach: LRMES and ∆CoVaR

Long Run Marginal Shortfall or LRMES (Brownlees and Engle, 2012) describes

the expected loss of equity conditional on a prolonged market decline. The last

represent a systemic event which is de�ned as a drop of 40% of the market

index over a period of six months. Considering this, we interpret LRMES as a

measure of vulnerability. Following Acharya et al. (2012), LRMES is computed

as an approximated function of Marginal Expected Shortfall (MES)

LRMESi,t = 1− exp{−18MESSysi,t+h|t} (5)

where MESSysi,t+h|t = Et
(
ri,t+h|t|r < Ω

)
is the tail expectation of the �rm

equity returns conditional on a systemic event, that happens when i's equity

returns r from t− h to t are less than a threshold value Ω. Further details can

be found in Section 6.3. Banks compute their LRMES based on the last 200

5The number of repetitions is lower in DR-imp to contain its computational time: by
imposing the default bank-by-bank we end up with 500xNB runs of DebtRank for each period
in the simulation.
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observations starting from 50 periods prior the external shock. The required

information are individual and market monthly returns. The �rst are computed

as returns on equity (ROE) of bank i, that correspond to the relative change in

i's net worth during each step of the simulation.6 The same logic is applied to

obtain market returns, which are weighted by the net worth of each bank. Being

LRMES a function of the individual and market cross-correlation, LRMES

accounts somehow the interconnectedness of banks in the �nancial system.

Another well-known measure of systemic risk is ∆CoV aR, which quanti-

�es the systemic distress conditional to the distress of a speci�c �nancial �rm,

namely it accounts for the impact of a bank on the �nancial system.

CoVaR is implicitly de�ned as the VaR of the �nancial system (sys) condi-

tional on an event C(ri,t) of institution i:

Pr
[
rsys,t ≤ CoV aRsys|C(ri) | C(ri,t)

]
= α (6)

where r represents ROE and the conditioning event C(ri) corresponds to a

loss of i equal or above to its V ariα level.

∆CoV aR is a statistical measure of tail-dependency between market returns

and individual returns, which is able to capture co-movements of variables in

the tails and account for both spillovers and common exposures. ∆CoV aR is

the part of systemic risk that can be attributed to i: it measures the change in

value at risk of the �nancial system at α level when the institution i shifts from

its normal state (measured with losses equal to its median Var) to a distressed

state (losses greater or equal to its Var).

∆CoV aRsys|iα = CoV aRsys|ri=V aRi,αα − CoV aRsys|ri=V aRi,0.5α (7)

A �aw of ∆CoV aR is its (at best) contemporaneity with systemic risk: it fails

to capture the build-up of risk over time and su�ers of procyclicality. Further-

more, contemporaneous measures lead to the �volatility paradox �(Brunnermeier

and Sannikov, 2014), inducing banks to increase the leverage target when con-

temporaneous measured volatility is low. A workaround would be to substi-

tute contemporaneous with a forward-looking version of ∆CoV aR (Adrian and

Brunnermeier, 2016, p.1725). The latter is obtained by projecting on the regres-

sors of ∆CoV aR their estimated coe�cients, where the independent variables

include individual banks' characteristics and macro-state variables. Neverthe-

less our model lacks of the wide range of variables that can be employed in

empirical works, as a results our measure of forward ∆CoV aR turns out to be

strongly proportional to the V aR of banks, thus failing to capture the build up

of systemic risk.

6We account the �nal value of the new worth before a bank is recapitalized, otherwise
returns would be upwards biased by shareholders' capital.
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3.4. Adjusted Capital Requirements

In the benchmark case, i.e. without employing any SR measures, banks comply

with a standard regulatory capital requirements. The net worth must be greater

or equal than a fraction 1
λ = 4.5% of their risk-weighted-assets (RWA).7

nwBi,t ≥
1

λ
RWAi,t (8)

Di�erently, Systemic-risk adjusted Capital Requirements (SCR) are derived

from measures of SR. These metrics are then mapped into a coe�cient that can

be interpreted as weighting the total assets by systemic-risk.8 In other words,

banks must hold a minimum net worth equal to a fraction of their assets given

by the risk-weight coe�cient ψ.

nwBi,t ≥ ψi,tAi,t (9)

where ψi,t ≡
1
λ

1−(1− 1
λ )sri,t

and sr is a generic SR index.9

If a sr = 0, then ψ = 1
λ and a bank must have a capital greater or equal

than a standard regulatory threshold. When sr = 1, then ψ = 1 and capital

requirements are as strict as possible, so that equity should equal assets, nwB =

A.
Banks manage their balance sheet to meet capital requirements by setting

their lending to �rms and banks (which is limited upwards by (8) or (9)) and

passively raising new capital by cumulation of pro�ts.

Equation (9) can be obtained starting from the approach of Acharya et al.

(2012) and setting the expected capital shortfall (CS) equal to zero.10 CS is the

capital needed to restore capital adequacy ratio to the value set by the regulator:

it is the di�erence between minimum regulatory capital expressed as a fraction
1
λ of assets and the value of equity in case of a crisis. Following Acharya et al.

(2012), to obtain (10) we assume that debt and liquidity are unchanged in case

7We assign a weight ω1 = 100% to loans to �rms and ω2 = 30% to interbank lending.
Liquidity is assumed to be riskless, hence its weight is ω3 = 0. Risk weighted assets of bank i
can be expressed as RWAit = ω1LFit + ω2Ilit + ω3Rit = LFit + ω2Ilit.

8We do not de�ne an objective in terms of macroprudential policy, but each bank is subject
to capital requirements as a function of its measured systemic-risk.

9SR metrics (sr) are normalized in the interval [0, 1].
10We consider the nominal value of equity rather than its market value to accommodate

for the characteristics of the macroeconomic model. If the market values is considered, CS
corresponds to SRISK.
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of a systemic crisis, hence Et [Li,t+τ | crisist+τ ] = Li,t.

CSi,t+τ |t = Et

[
1

λ
Ai,t+τ − nwBi,t+τ | crisist+τ

]
= Et

[
1

λ
Li,t+τ | crisist+τ

]
− Et

[(
1− 1

λ

)
nwBi,t+τ | crisist+τ

]
=

1

λ
Li,t+τ − Et

[(
1− 1

λ

)
nwBi,t+τ | crisist+τ

] (10)

In other words, (9) determines the minimum level of capital that a bank

should hold in order that its expected capital shortfall conditional to a systemic

event equals zero.

Vulnerability adjusted capital requirements

Adjusted capital requirement based on vulnerability are obtained under the as-

sumption that the conditional value of net worth is determined by a vulnerability

measure:

Et
[
nwBi,t+τ | crisist+τ

]
= (1− vulji,t)nw

B
i,t (11)

where j = {LRMES, DRvul}.
Capital requirements for bank i are then obtained in (12) by imposing CS =

0, so that it should always maintain a capital bu�er great enough to avoid

recapitalization during periods of distress.

nwBi,t ≥
1
λ

1− (1− 1
λ )LRMESi,t

Ai,t (12)

Impact-adjusted capital requirements

We adopt a top-down approach to ensure consistency with the previous rule.

Otherwise stated, capital requirements are determined to zero expected capital

shortfall, which is computed top-down proportionally to the impact of each

agent. Adjusted capital requirements are de�ned by deriving the equity values

that each bank must satisfy to o�set aggregate capital shortage. The idea is that

banks contribute to the aggregate CS in proportion to their systemic impact.

To this end, we rewrite CS in aggregate terms as the sum of the individual

capital shortages. To keep internal consistency and to avoid aggregation issues

we also assume that the individual capital shortages values are computed with

the same procedure in Sect. 3.4 (respectively by LRMES and DRvul).

Each bank should contribute to expected capital shortage in proportion to

its systemic importance. We follow the approach in Gauthier et al. (2012), but

rather than determining the equity capital that should be reallocated to bank i

13



from the total capitalization of the system, the left-hand side of (13) states the

extra amount of CET1 capital as a fraction of the aggregate CS. This means

that the additional capital required for each bank is:

nw+
i,t =

impji,t∑Nb

i=1 imp
j
i,t

Nb∑
i=1

CSi,t+τ |t (13)

where j = {∆CoV aR, DRimp}.

impi,t =


∆CoV aR

sys|i
t

CoV aRsys|ri=V aRi,α
if j = ∆CoV aR

DRimpt,i∑
i nw

B
i,t+

∑
k nw

F
k,t

if j = DRimp

Hence the target level of capital for bank i is given by the minimum regula-

tory level of capital plus the additional capital,

nwtagi,t =
1

λ
Ai,t + nw+

i,t (14)

We can write adjusted capital requirement in the same form of (12).

nwtagi,t ≥
1
λ

1− (1− 1
λ )ζi
Ai,t (15)

with ζi =
nw+

i,t

(1− 1
λ )( 1

λAi,t+nw
+
i,t)

4. Results

This section presents the results of simulations and policy experiments. We

compare the benchmark scenario, where all banks are subject to the same �xed

regulatory ratio of RWA, to those where SCR are derived from measures of

vulnerability or impact of �nancial institutions, as described in Section 3.4. We

run a set of 100 Monte Carlo simulations for each scenario under di�erent seeds

of the pseudo-random numbers generator.

t=0

transient

turn on SCR

lending boom

�scal shock

t=T

Figure 2: Timeline of the simulations.

The simulations are based on a variant of the macroeconomic model in Gur-

gone et al. (2018) in which the wage-price dynamics is dampened by setting

the wage rate constant, so that business-cycle �uctuations are eliminated and

the model converges to a quasi-steady-state after a transient period. Moreover,
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we supply to the lack of �uctuations of credit by simulating a lending boom,

that is increasing the credit demand of �rms in the periods before an external

shock. It increases the exposures of banks and contributes to the build-up of the

risk. Note that despite the elimination business cycles, the baseline dynamics

produces a series of defaults and bankruptcies of �rms and banks. These have

a very lower extent before the shock than after. The presence of such �nan-

cial distress helps systemic risk measures to better capture the characteristics of

banks. We turn on systemic-capital requirements at the beginning of the lending

boom, so that macroprudential regulation becomes binding. We �nally impose

a �scal-shock of 10 periods that consists in a progressive reduction of transfers

to the household sector. The purpose of the shock is to reduce the disposable

income of households, that in turn a�ects consumption and �rms' pro�ts. Firms

with negative equity then cannot repay their debts to the banking sector, thus

the initial shock triggers a series of losses through the interlocked balance sheets

of agents. At the time of the shock transfers are reduced by 20% and then by

an additional 1% per period with respect to the period before the shock. Fig. 2

summarizes what happens during each simulation.

The behaviour of SR measures over time is shown in 4.1. Autocorrelation is

analysed in 4.2, and the e�ects of SCR are presented in Section 4.3.

4.1. SR measures over time

In the next lines we conduct a qualitative analysis of the behaviour of SR metrics

over the shock. For this purpose SCR are not active, rather the results show

the evolution of risk measures to understand their di�erences.

Fig. 3 show a comprehensive representation of the time pattern of SR metrics.

The evolution of impact and vulnerability presents a parallel trend within mar-

ket and network-based measures. This re�ects their construction: for market-

based measures, conditional volatility of returns, which is estimated by a TGARCH

model, is employed to construct LRMES and ∆CoV aR (see Sect.6). Market-

based measures exhibit a regime switch during the initial phase of the shock,

persistently shifting from lower to higher values and exceeding the network-

based counterparts in the immediate aftermath of the crisis. On the other side,

network-based measures re�ect the leverage dynamics of banks's balance sheets,

that is the increase in credit demand prior to the shock and reduced equity after

it. Their trend is approximated by the exposure to equity ratio of the economy.

Some observation can be inferred with the help of Fig. 3. First, all measures

are pro-cyclical. SR metrics are not able to anticipate the forthcoming crisis be-

fore the shock, hence they cannot be used as early warning signals. This could

partially depend on the exogenous nature of the shock imposed in our simpli�ed

framework, whereas alternatively a crisis might arise from the endogenous de-

velopments in the system. Moreover, measured systemic risk adjusts only after

the beginning of the shock. Of course, this descends from the construction of

our variables. In particular, the behaviour of network-based measures is sen-
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Figure 3: Time average and standard deviation of SR indexes.

sitive to the length of the time windows considered to input the past values

of balance-sheet items, as there is a trade-o� between shortening the windows

and the volatility of network-based indexes. Second, network metrics have a

smooth adjustment process, while market indicators show an �o�-on" pattern.

Therefore, the �rst should be preferred because it would be more desirable to

conduct macroprudential policy smoothly than suddenly imposing restrictions

on banks' capital requirements, even more so if the change cannot be easily

anticipated. Third, a stylized behavior of SR indexes can be characterized de-

spite the time series are computed for the average. Vulnerability and impact of

network-based measures are higher before the shock and lower after compared

to market-based. This is clear looking at t ∈ [450, 460] in Fig. 3, or at the in-

dividual breakdown represented in Fig. 4. The latter is also useful to point out

the limits of our approach: capital requirements are determined separately for

vulnerabily and impact. Instead, they could be considered jointly, because oth-

erwise low-vulnerability but high-impact banks would be penalized by capital

requirements built on impact and viceversa.
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Figure 4: Market and network-based SR measures over the shock. Sizes represents

assets, colour is total equity, with dark (light) corresponding to the highest (lowest)

value.

4.2. Rank correlation

Banks behavior could be consistent with the objective of macroprudential regu-

lation if such policies are based on stable values of the variables measuring SR.

Therefore, a desirable property of SR measures is stability over time, that is the

ranking of systemically important �nancial institutions has no high variability

and identi�es the same set of subjects in a given time span absent substan-

tial changes in the �nancial environment. We study the auto-correlation of SR

metrics to understand how stable they are.

We consider a measure of rank correlation, Kendall's tau (τk), which is a

non-parametric measure of correlation between pairs of ranked variables with

values between −1 and 1. If two variables are perfectly correlated τk = 1,

otherwise if there is no correlation at all τk = 0.

τk =
C −D

n(n− 1)/2

where C and D are the total number of concordant and discordant pairs and

n is the sample size. Moreover when two variables are statistical independent,

a z statistics built on τk tends to distribute as a standard normal, therefore

it can be tested the null of no correlation versus the alternative of non-zero

correlation. We compute τk between the rank of SR measures of each bank and

its lagged values. Results are reported in Tab. 2. When market-based measures

are considered, the ranking has a high and persistent autocorrelation. On the

other hand network-based measures are autocorrelated to a lower extent. The

di�erence could be explained in terms of construction, as market-based measures

are obtained from conditional variances (or conditional VaR), which in turn are

estimated through a TGARCH model, where conditional variances are assumed

to follow an autoregressive process (see Section 6.3). Conversely, network-based

measures do not assume any dependence on past values, rather they depend on
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the network structure and credit-debt relationships, so that the outcome of the

DebtRank algorithm might change as a result of small variations in con�guration

of the network.

Kendall's tau

Lags

SR metric +1 +5 +10 +15

LRMES 0.834 0.616 0.465 0.340
(0.000) (0.000) (0.020) (0.160)

∆CoV aR 0.807 0.618 0.457 0.334
(0.000) (0.000) (0.020) (0.140)

DR-vul 0.784 0.598 0.423 0.286
(0.000) (0.000) (0.080) (0.300)

DR-imp 0.875 0.681 0.493 0.343
(0.000) (0.000) (0.040) (0.180)

Table 2: Kendall's correlation coe�cients. Reported statistics refers to the

average of τk computed for each bank. Permutations p-values are reported in

parenthesis, that is p = 1 − #successes
#experiments , where successes is the number of

times when p < 0.01.

4.3. Policy Experiments

We present here the results of the policy experiments obtained under the four

scenarios with active SCR and the benchmark case. Results for each policy are

elaborated out of 100 Monte-Carlo runs. We cleaned the data to remove the

outliers by trimming the observations above (below) the third (�rst) quartile

plus (minus) 3 times the interquartile range.

We start by focusing on the macroeconomic performance under SRC in

Fig.s 5 and 6. Within the vulnerability-based rules, market and network mea-

sures have approximately the same behavior for credit and output. They pro-

duce dynamics similar to the benchmark prior to the shock and yield a de-

terioration after. Most certainly the prociclicality of SR measures leads to a

restriction in the credit supplied to the real economy after t = 450 and con-

sequently to the lowered output. Looking at impact-based measures, they do

worse than the benchmark even before the shock. In this case DR-imp produces

a slighty better performance than ∆CoV aR on average, but in both cases with

remarkable volatility. We have hyphotesized several reasons at the roots of the

pattern for impact-based rules. The �rst is that the map from SR measures

to SCR might non achieve an optimal distribution of capital: for instance, de-

manding to hold extra capital in proportion to impact only does not account

for the actual default probabilities, so that �nancially sound banks might be

18



Credit (vulnerability)

350 400 450 500

t

1500

2000

2500

LRMES
DR-vul
Bench
Shock

Credit (impact)

350 400 450 500

t

1500

2000

2500

dCoVaR
DR-imp
Bench
Shock

Figure 5: Time average and standard deviation of credit. (Left) Measures of vulnera-

bility. (Right) Measures of impact.
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Figure 6: Time average and standard deviation of output. (Left) Measures of vulner-

ability. (Right) Measures of impact.

required to further increase their capital. This results in hindering the lend-

ing activity. Another reason is that the model dynamics might be defective of

the emergence of high-impact systemic-important banks: impact-based capital

requirements would work better if applied to few highly systemic banks than

to many banks which are systemic to a lower degree. SCR would allow to iso-

late the �rst group without impairing too much lending. The second group of

banks, which seems prevailing in our simulations, can be de�ned �systemic as a

herd" (Adrian and Brunnermeier, 2016) because its members show moderate

values of impact but present similar behaviors and exposures to risk. Thus,

SCR can be conter-productive because they limit lending capacity of a part of

the �nancial system. Following this line of thinking, SCR based on impact lead

to an increase in the variance of the distribution of equity (Fig. 9), as they

a�ect the pro�tability of some banks but allow others for high exposures. As a

result, under impact-SCR the capitalization of the �nancial system as a whole

is worse-o� (Fig. 8). In light of this, the probability of contagion is greater
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under rules based on impact, as in Fig. 7. The greater �nancial fragility of the

banking sector makes it more likely that at least 10% of all banks (or �rms) are

simultaneously in bankruptcy. Conversely, vulnerability based policies decrease

the likelihood of contagion.
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Figure 7: Probability that at least 10% of all banks (left) or �rms (right) are in

bankruptcy.
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Figure 8: (Top-left) Aggregate equity of banks. (Top-right) Aggreate exposures of

banks. (Bottom-left) Aggregate exposures/equity ratio of banks. (Bottom-right) Max-

imum aggregate exposures/equity ratio allowed under SCR.

Fig.s 10 and 9 illustrates the feasibility of SCR. Demanded capital require-

ments cannot be attained by a part of those banks with lower values of equity,

which are represented above the 45◦ line in Fig. 9. This is more marked in the

case of DR-imp. However the scatter plots do not provide an adequate repre-

sentation of density, so we compare the feasibility of SCR by means of a CDF

in Fig. 10. About 92% of observations have a CR/equity < 1 in the benchmark
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case, around 88% under LRMES and DR-vul, 79% under ∆CoV ar, and 76%

under DR-imp. So, it is less likely that banks comply with rules based on impact

compared to rules based on vulnerability.
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Figure 9: Capital Requirements (CR) versus equity of banks under di�erent rules.

The x and y-axis represent respectively the left and right-hand sides of eq. (9).
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We conclude that SCR built on vulnerability minimize the probability of a

contagion and achieve a macroeconomic performance comparable to the bench-

mark case before the shock. Due to their prociclicality, all SCR bring about

credit rationing and reduced output after the crisis. This calls for a relaxation

of macroprudential rules after the shock. Despite capital requirements based on

impact should reduce the damages caused by systemic banks, we do not observe

an improvement with respect to the benchmark case. This could descend from

the construction of impact-based SCR, or because the model dynamics rarely

let arise �too big-to-fail" or �too interconnected-to-fail" banks, but rather �nan-

cial institutions are �systemic as a herd". Hence, imposing restrictions based

on impact a�ects the lending ability of a number of banks and in turn their

net-worth, reducing �nancial soundness and paving the way to instability.
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5. Concluding remarks

We presented a methodology to compare a set of lender-targeted macro-prudential

rules in which banks are subject to capital requirements built on systemic risk

measures. Four metrics are considered: the �rst set is composed by two market-

based measures (LRMES and ∆CoVaR), while the second one includes network-

based measures (DR-vul and DR-imp). Each set contains a metric for vulner-

ability, which states how much a �nancial institution is systemically vulnerable

to an adverse shock, and one measure for impact, which accounts for the e�ects

of distress of single banks on the �nancial system. Capital requirements are

derived in Section 3 so that required capital is proportional to each bank's ex-

pected (or induced) capital shortage, which in turn depend on the SR measures.

The construction and the calibration of SCR aims to ease the comparison within

each set of market and network based measures.

In Section 4 we employ an agent-based macroeconomic model to analyse and

compare qualitatively and quantitatively macroprudential rules. We �nd that

all systemic-risk measures are prociclical to some degree. While market-based

metrics display a regime switch after the exogenous shock, the network-based

ones smoothly adjust with the exposures to equity ratio of the banking sector.

This suggests that they lack of predictive power and thus cannot be used to build

early warning systems. In particular the performance of market-based measures

is sensitive to the past values of return-to-equity of �nancial institutions. If

the time series of each bank is volatile enough, the SR measures can capture

the dependency between individual and market changes and re�ect the true

systemic-risk. Otherwise, systemic-risk is underestimated. On the other hand,

network-based measures exhibit a trade-o� between pro-cyclicality and variance:

the longer the time windows of past input balance-sheet data, the lower the

variance. Using alternative calibrations, network-based measures could capture

better the build-up of systemic-risk but the ranking of individual institutions

would show lower autocorrelation. This translates in less reliable measures and

a more di�cult implementation of macroprudential policy.

Another key results is that SCR based on vulnerability are able to reduce

contagion and to achieve a macroeconomic performance similar to the bench-

mark case before the aggregate shock. After it they should be relaxed to ac-

commodate credit demand from �rms. Despite procyclicality, the map from

vulnerability to capital requirement provides an improvement with respect to

the benchmark case. This can be interpreted as evidence that the individual

measured values re�ect the actual vulnerability of banks in case of a systemic

event.

Di�erently, SCR based on impact cannot beat the benchmark. This result

is speci�c to our model and have several interpretations: while SCR based on

vulnerability are derived assuming that banks must be recapitalized depending

on its expected losses conditional to a systemic-event, this is not true using a

measure of impact. In this case capital requirements depends on the individual
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contribution to the expected aggregate shorfall, which is not directly connected

to the equity of banks. Even though it is widely accepted that systemic banks

can be identi�ed and regulated conditional to the impact on the �nancial system,

this logic does not work well in our framework. One explanation is that raising

additional capital to comply with regulation is easier for banks with high equity

than for small ones, being equal their impact. This puts small banks at a

disadvantage by impairing their lending ability and creates a less equal equity

distribution, and a lower aggregate capitalization of the banking system than

in the other scenarios. Moreover, results suggest that macroprudential policy

should treat di�erently �too-big" or �too-interconnected to-fail" and �systemic

as a herd" institutions. In the �rst case the impact of one bank have critical

e�ects on the �nancial system, hence it is rational to impose capital surcharges.

In the latter case -as emerges in our model- banks are part of a homogeneous

group in terms of indiviudal impacts, behavior, risk exposures. When hit by

a common shock, the herd might produce systemic-e�ects. However, imposing

capital requirements based on individual impacts may not be e�cient at the

macroeconomic level because it a�ects lending of a relevant part of the �nancial

system, reduces pro�ts and equity and makes the �nancial system more fragile.

This work can be extended in several ways. The regulation of systemic

groups of banks, as opposite to SIFIs, can be studied in-depth; macroprudential

rules could be built to combine indicators of both impact and vulnerability to

derive SCR; the analysis of systemic risk can be repeated in a model capable

to generate endogenous crisis without any exogenous shocks; �nally, the model

can be feed with real data for an empirical comparison.
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6. Appendix

6.1. Calibration of DebtRank

In general, our approach is similar to that adopted in Battiston et al. (2016), but we have
adapted the algorithm to account for the structure of the underlying macro-model, as described
in greater detail in Sect. 6.2. Given that the macro-environment includes �rms, we �rst
impose the shock on �rms' assets to compute the systemic vulnerability index DRvul. Next
the induced distress transmits linearly to the assets of creditors (i.e. banks). This allows to
capture the speci�c dynamics of the distress process.

Our calibration strategy aims to compare market and network-based measures on a com-
mon ground. To do so, we apply to DebtRank the de�nition of systemic crisis employed in
the SRISK framework. SRISK is computed by LRMES, which represents the expected equity
loss of a bank in case of a systemic event. This is represented by a decline of market returns
of 40% over the next six months. We run 100 Monte-Carlo simulations of the macro-model,
record the market ROE and the �rms' losses to equity ratio. Then we compute the change in
market ROE over the past 180 periods (approximately six months). Finally we construct a
vector of the losses of �rms to their equities in those periods where the ROE declined at least
by −40%.

To compute vulnerabilities by DebtRank we randomly sample from the vector of the
empirical distribution of losses/equity at each repetition of the algorithm. Finally we obtain
DRvul for each bank as an average of the realized values, after removing the 1st and the 99th
percentiles.

Figure 11: (Top-left) rescaled market ROE from a random Monte-Carlo run. (Top-

right) Six month chance of market ROE. The red dashed line represents the threshold

of −40%. (Bottom-left) Histogram of the square root of the losses/loans ratio of �rms,

where values equal to zero are ignored. (Bottom-right) Histogram of the losses/loans

ratio of �rms.
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6.2. DebtRank

We employ a di�erential version of the DebtRank algorithm in order to provide a network
measure of systemic risk. Di�erential DebtRank (Bardoscia et al., 2015) is a generalization of
the original DebtRank (Battiston et al., 2012) which improves the latter by allowing agents
to transmit distress more than once. Moreover our formulation has similarities with Battiston
et al. (2016), where it is assumed a sequential process of distress propagation. In our case we
�rst impose an external shock on �rms' assets, then we sequentially account for the propa-
gation to the banking sector through insolvencies on loans, to the interbank network and to
�rms' deposits.

The relative equity loss for banks (h) and �rms (f) is de�ned as the change in their net
worth (respectively nwB , and nwF ) from τ = 0 to τ with respect to their initial net worth.
In particular the initial relative equity loss of �rms happens at τ = 1 due to an external shock
on deposits:

hi(τ) = min

[
nwBi (0)− nwBi (τ)

nwBi (0)

]

fj(τ) = min

[
nwFj (0)− nwFj (τ)

nwFj (0)

]

The dynamics of the relative equity loss in �rms and banks sectors is described by the
sequence:

• Shock on deposits in the �rms sector:

fj(1) = min

[
1,

DFj (0)−DFj (1)

nwFj (0)

]
= min

[
1,

lossj(1)

nwFj (0)

]
• Banks' losses on �rms' loans:

hi(τ + 1) = min

1, hi(τ) +
∑
j∈J

Λfbij (1− ϕloanj )(pj(τ)− pj(τ − 1))


• Banks' losses on interbank loans:

hi(τ + 1) = min

1, hi(τ) +
∑
k∈K

Λbbik(1− ϕibk )(pk(τ)− pk(τ − 1))


• Firms' losses on deposits:

fj(τ + 1) = min
[
1, fj(τ) + Λfbjk(1− ϕdepk )(pk(τ)− pk(τ − 1))

]
Where pj is the default probability of debtor j and ϕi, i = {loan, ib, dep} is the recovery

rate on loans, interbank loans and deposits. Recovery rates on each kind of assets are randomly
extracted from a vector of observations generated by the benchmark model.

For the sake of simplicity we can de�ne it as linear in fj (hk for banks), so that pj(τ) =
h(τ) 11. Λ is the exposure matrix that represents credit/debt relationships in the �rms-banks

11In a more realistic setting the default probability could be written as

pj(τ) = fj(τ) exp(α(hj(τ))− 1)

where if α = 0 it corresponds to the linear DebtRank, while if α → ∞ it is the Fur�ne
algorithm (Bardoscia et al., 2016). Moreover we can assume that deposits are not marked-
to-market, but they respond to the Fur�ne algorithm, in other words the distress propagates
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network. It is written as a block matrix, where Λbb refers to the interbank market, Λbf refers
to deposits, Λfb refers to �rm loans and Λff is a matrix of zeros.

Λ =

[
Λbb Λbf

Λfb Λff

]
The exposure matrix Λ represents potential losses over equity related to each asset at

the beginning of the cycle, where each element has the value of assets at the numerator and
the denominator is the net worth of the related creditor. in our speci�cation �rms have no
intra-sector links, hence Λff = 0. In case there are Nb = 2 banks and Nf = 3 �rms, the
matrix Λ looks like:

Λ =



0 Ib12
nwB2

D13

nwF1

D12

nwF2

D15

nwF3

Ib21
nwB1

0 D23

nwF1

D24

nwF2

D25

nwF3

L
f
31

nwB1

L
f
32

nwB2
0 0 0

L
f
41

nwB1

L
f
42

nwB2
0 0 0

L
f
51

nwB1

L
f
52

nwB2
0 0 0



6.3. SRISK

SRISK (Brownlees and Engle, 2012) is a widespread measure of systemic risk based on the
idea that the latter arises when the �nancial system as a whole is under-capitalized, leading
to externalities for the real sector. To apply the measure to our model we follow the approach
of Brownlees and Engle (2012). The SRISK of a �nancial �rm i is de�ned as the quantity of
capital needed to re-capitalize a bank conditional to a systemic crisis

SRISKi,t = min

[
0,

1

λ
Li −

(
1−

1

λ

)
nwBi,t(1−MESSys

i,t+h|t)

]
where MESSys

i,t+h|t = E
(
ri,t+h|t|r < Ω

)
is the tail expectation of the �rm equity returns

conditional on a systemic event, that happens when i's equity returns r from t − h to t are
less than a threshold value Ω.

Acharya et al. (2012) propose to approximate MESSys with its Long Run Marginal
Expected Shortfall (LRMES), de�ned as a

LRMESi,t = 1− exp{−18MES2%
i,t }

LRMES represents the expected loss on equity value in case the market return drops by 40%
over the next six months. Such approximation is obtained through extreme value theory, by
means of the value of MES that would be if the daily market return drops by −2%.

The bivariate process driving �rms' (ri) and market (rm) returns is

only in case of default of the debtor. For deposits it might be reasonable to assume

pDj (τ − 1) =

{
1 if hk(τ − 1) = 1

0 otherwise
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rm,t = σm,tεm,t

ri,t = σi,tρi,tεm,t + σi,t

√
1− ρ2

i,tξi, t

(ξi,t, εm,t) ∼ F

where σm,t is the conditional standard deviation of market returns, σi,t is the conditional
standard deviation of �rms' returns, ρi,t is the conditional market/�rm correlation and ε and
ξ are i.i.d. shocks with unit variance and zero covariance ε and ξ are i.i.d. shocks with unit
variance and zero covariance.

MES2% is expressed setting Ω = −2%:

MESΩ
i,t−1 = σi,tρi,tEt−1

(
εm,t|εm,t <

Ω

σm,t

)
+ σit

√
1− ρ2

i,tEt−1

(
ξi,t|εm,t <

Ω

σm,t

)
Conditional variances σ2

m,t, σ
2
i,t are modelled with a TGARCH model from the GARCH

family (Rabemananjara and Zakoian, 1993). Such speci�cation captures the tendency of
volatility to increase more when there are bad news:

σ2
m,t = ωm + αmr

2
m,t−1 + γmr

2
m,t−1I

−
m,t−1 + βmσ

2
m,t−1

σ2
i,t = ωi + αir

2
i,t−1 + γir

2
i,t−1I

−
i,t−1 + βiσ

2
i,t−1

I−m,t = 1 if rm,t < 0 and I−i,t = 1 when ri,t < 0, 0 otherwise.
Conditional correlation ρ is estimated by means of a symmetric DCC model (Engle, 2002).

Moreover to obtain the MES it is necessary to estimate tail expectations. This is performed
with a non-parametric kernel estimation method (see Brownlees and Engle, 2012).

Open-source Matlab code is available thanks to Sylvain Benoit, and Gilbert Colletaz,
Christophe Hurlin, who developed it in Benoit et al. (2013).

6.4. ∆CoVaR

Following Adrian and Brunnermeier (2016) ∆CoV aR is estimated through a quantile regres-
sion (Koenker and Bassett Jr, 1978) on the αth quantile, where rsys and ri are respectively
market-wide returns on equity and bank i's returns. Quantile regression estimates the αth

percentile of the distribution of the dependent variable given the regressors, rather than the
mean of the distribution of the dependent variable as in standard OLS regressions. This allows
to compare how di�erent quantiles of the regressand are a�ected by the regressors, hence it is
suitable to analyse tail events. While Adrian and Brunnermeier (2016) employ an estimator
based on an augmented regression, we further simplify the estimation of ∆CoV aR following
the approach in Benoit et al. (2013), which is consistent with the original formulation.

First we regress individual returns on market returns:

rsys,t = γ1 + γ2ri,t + ε
sys|i
α,t

The estimated coe�cients (denoted by ̂) are employed to build CoVaR. The conditional
VaR of bank i (V ariα,t) is obtained from the quasi maximum likelihood estimates of conditional
variance generated by the same TGARCH model described above (see Benoit et al., 2013,
p.38).
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CoV ar
sys|i
α,t = γ̂1 + γ̂2V ar

i
α,t

Finally ∆CoV ar is obtained from the di�erence between the αth and the median quantile
of CoV ar.

∆CoV ar
sys|i
α,t = CoV ar

sys|i
α,t − CoV ar

sys|i
0.5,t

∆CoV ar
sys|i
α,t = γ̂2

(
V aRiα,t − V aRi0.5,t

)
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