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a b s t r a c t 

Population structure can have a significant effect on evolution. For some systems with sufficient sym- 

metry, analytic results can be derived within the mathematical framework of evolutionary graph theory 

which relate to the outcome of the evolutionary process. However, for more complicated heterogeneous 

structures, computationally intensive methods are required such as individual-based stochastic simula- 

tions. By adapting methods from statistical physics, including moment closure techniques, we first show 

how to derive existing homogenised pair approximation models and the exact neutral drift model. We 

then develop node-level approximations to stochastic evolutionary processes on arbitrarily complex struc- 

tured populations represented by finite graphs, which can capture the different dynamics for individual 

nodes in the population. Using these approximations, we evaluate the fixation probability of invading 

mutants for given initial conditions, where the dynamics follow standard evolutionary processes such as 

the invasion process. Comparisons with the output of stochastic simulations reveal the effectiveness of 

our approximations in describing the stochastic processes and in predicting the probability of fixation of 

mutants on a wide range of graphs. Construction of these models facilitates a systematic analysis and is 

valuable for a greater understanding of the influence of population structure on evolutionary processes. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Models of evolutionary dynamics were originally determinis-

ic and assumed well-mixed populations in which every individ-

al of a given type is identical. Stochastic models of these finite

ell-mixed populations have been studied ( Moran, 1958 ), however

eal populations are usually characterised by a complicated rela-

ionship structure between individuals ( Zhang et al., 2007 ). To ac-

ount for this, a class of mathematical models known as evolution-

ry graph theory have been developed which show that the pop-

lation structure can significantly influence the outcome of evo-

utionary dynamics ( Lieberman et al., 2005; Traulsen and Hauert,

010 ). In these models, structured populations are represented by

nite graphs, where each node represents an individual in the pop-

lation and relationships between individuals are represented by

he edges of the graph. Stochastic evolutionary processes can be

onsidered analytically and precise results can be derived for a
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umber of simple graphs, such as the circle, star and complete

raphs ( Broom et al., 2010; Broom and Rychtář, 2008; Lieberman

t al., 2005 ), mainly due to their symmetry. Analytic approaches

or investigating evolutionary dynamics on complex graphs have

lso been proposed. However, such methods are usually limited by

ssumptions such as large populations ( Nowak et al., 2010; Ohtsuki

t al., 2006 ) or are specifically designed for investigating evolution-

ry processes under weak selection ( Allen et al., 2017; Zhong et al.,

013 ), where the evolutionary game has only a small effect on re-

roductive success. 

Important quantities of interest such as the exact fixation prob-

bility and time can, in principle, be obtained by solving the

iscrete-time difference equations of the underlying stochastic

odel ( Hindersin et al., 2016 ), although this is only feasible for

ery small populations unless there are simplifying symmetries.

ndividual-based stochastic simulations ( Barbosa et al., 2010; Ma-

iejewski et al., 2014 ) provide numerically accurate representations

f the evolutionary process on arbitrary graphs but have limited

cope for generating conceptual insights into the dynamics on their

wn. They can also be computationally expensive on larger graphs,
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.jtbi.2019.02.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2019.02.009&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:C.Overton@liverpool.ac.uk
https://doi.org/10.1016/j.jtbi.2019.02.009
http://creativecommons.org/licenses/by/4.0/


46 C.E. Overton, M. Broom and C. Hadjichrysanthou et al. / Journal of Theoretical Biology 468 (2019) 45–59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V  

 

 

 

a  

i  

t  

i  

l  

t  

a  

j  

i  

n  

s  

i

w  

a  

v  

a

 

t  

e  

a  

 

u  

b  

t

 

t

 

a  

b

 

I  

u  

i

s

 

M  

p  

p  

p  

a  

t  

m  

w  

d  

w  

s  

o  

a  

f  

I  

p  

s  

d

but as a precise representation of the underlying stochastic model,

they allow us to evaluate the accuracy of approximate models by

comparison. 

Here we develop approximations to the stochastic model by

using insights from methods in statistical physics that have also

been used extensively for epidemic modelling ( Born and Green,

1946; Keeling and Eames, 2005; Kirkwood, 1947; Pellis et al.,

2015; Sharkey, 2008; Sharkey et al., 2015 ). Such methods have

been applied to develop pair approximations for evolutionary

processes on graphs which satisfy the homogeneity assump-

tion that all individuals can be considered identical and inter-

changable ( Hadjichrysanthou et al., 2012; Hauert and Szabó, 2005;

Morita, 2008; Pena et al., 2009; Szabó and Fath, 2007 ). However,

the underlying assumptions linking these models to the underly-

ing stochastic dynamics are not always clear. One contribution of

this work is to derive these models explicitly by identifying the re-

quired assumptions. The starting point for all of our approxima-

tions is to derive an equation to describe the time-evolution of

the state of any given individual node. From this equation, various

routes to approximation become apparent by applying different as-

sumptions. We then investigate the applicability and accuracy of

the resulting approximation methods. 

Evolutionary graph theory is traditionally explored as a

discrete-time stochastic model. While it is possible to work with

these dynamics, it is easier to work with a continuous-time ap-

proximation to the process. The continuous-time system is repre-

sented by a master equation describing how the probability of be-

ing in each system state changes. From the master equation we ob-

tain exact equations (with respect to the continuous-time process)

for the probabilities of the states of individual nodes ( Theorem 2.1 ).

These equations can then be approximated by adopting moment-

closure methods. We focus on evaluating the probability that at the

end of the evolutionary process, an initial subset of mutants placed

on the graph will take over the whole population and ‘fixate’. Us-

ing this continuous-time system is justified because the fixation

probability and expected time to fixation are identical to those of

the original discrete-time process. Within this framework we study

when accurate approximations can be derived. 

In Sections 2.1 –2.3 we introduce the stochastic evolutionary dy-

namics and the master equation, and derive a description of how

node-level quantities change in the master equation. We then dis-

cuss and develop various techniques that can be used to approx-

imate these systems of equations in Section 3 . Within these ap-

proximation frameworks we derive the pair approximation mod-

els used in the literature, which we will call the homogenised pair

approximation, and the exact neutral drift model, and build new

node level approximation methods. In Section 4 we demonstrate

how the different methods can be used to approximate the dynam-

ics of the original discrete-time process. Section 4.1 studies how

the methods perform when approximating the fixation probabil-

ity of a single initial mutant placed on idealised and on complex

graphs. Section 4.2 then shows how the methods perform when

studying the evolutionary game dynamics in a Hawk–Dove game.

In Section 5 we discuss the results obtained from the methods de-

veloped and the insights these can give. 

2. The stochastic model 

2.1. Stochastic evolutionary dynamics 

We consider a population whose relationship structure is rep-

resented by a strongly connected undirected graph ( V, E ) where

 = { 1 , 2 , . . . , N} is the set of nodes and E denotes the set of edges.

This can be represented by an adjacency matrix G , where G i j = 1

if j is connected to i , and G i j = 0 otherwise, with G ii = 0 for all

i ∈ V . We consider populations consisting of two types of individu-
ls, type A and type B , either of which can be in the role of invad-

ng mutant in a resident population. Each node is occupied by ei-

her an A or a B individual. Therefore we can let A i = 1 if and only

f node i is occupied by an A individual and A i = 0 otherwise and

et B i denote the same for individuals of type B . Since B i = 1 − A i ,

he state of the system can be represented by the values of A i at

ny given time. If there exists an edge ( i, j ) ∈ E between nodes i,

 ∈ V , then the offspring of the individual in node j can replace the

ndividual in node i and vice versa. To study the evolutionary dy-

amics between these two types of individual we require a mea-

ure of fitness. We can describe the fitness payoff received from

nteractions between individuals by the following payoff matrix: 

A B 

A 

B 

(
a b 
c d 

)
, 

here an A individual obtains a payoff a when interacting with

nother A individual and payoff b when interacting with a B indi-

idual. Similarly, a B individual obtains payoffs c and d when inter-

cting with an A individual and a B individual respectively. 

To define fitness based on the payoff, following similar defini-

ions in the literature ( Hadjichrysanthou et al., 2011; Lieberman

t al., 2005; Ohtsuki et al., 2006; Taylor et al., 2004; Traulsen

nd Hauert, 2010 ), the fitness of each individual is assumed to be

f = f back + wP, where f back is the background fitness of all individ-

als, P is the average payoff received from interactions with neigh-

ours, and w ∈ [0, ∞ ) is a parameter which controls the contribu-

ion of the game payoff to fitness. 

The fitness of an A individual which occupies node j , f 
j 

A 
, is

herefore given by 

f j 
A 

= f back + w 

a 
∑ N 

i =1 G i j A i + b 
∑ N 

i =1 G i j B i ∑ N 
i =1 G i j 

, (1)

nd similarly the fitness of a B individual occupying node j is given

y 

f j 
B 

= f back + w 

c 
∑ N 

i =1 G i j A i + d 
∑ N 

i =1 G i j B i ∑ N 
i =1 G i j 

. (2)

n the special case of constant fitness, where the fitness of individ-

als remains constant independent of the interactions with other

ndividuals, we take the payoff matrix as 

A B 

A 

B 

(
r r 
1 1 

)
, 

o that A individuals have relative payoff equal to r . 

Traditional evolutionary graph theory considers a discrete-time

arkovian evolutionary process in which only one event can hap-

en at each time step. When an event occurs, one individual re-

roduces and a connected individual dies, with the offspring re-

lacing it. We refer to the mechanism by which this takes place

s an update mechanism or rule. The probability of a certain event

aking place depends upon this update mechanism. Some of the

ost commonly considered update mechanisms are birth–death

ith selection on birth (invasion process) ( Lieberman et al., 2005 ),

eath–birth with selection on birth ( Masuda, 2009 ), birth–death

ith selection on death ( Antal et al., 2006 ) and death–birth with

election on death (voter model) ( Ohtsuki et al., 2006 ). The meth-

ds developed in this paper will be presented in the general case,

nd can be applied to any of the above update rules, but we shall

ocus on the invasion process when generating specific examples.

n the invasion process, we select an individual to reproduce in

roportion to their fitness (selection on birth) and then the off-

pring replaces a connected individual selected uniformly at ran-

om for death (birth then death). 
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.2. The master equation 

To approximate the discrete-time evolutionary process we first

ranslate the discrete-time system to an approximate continuous-

ime system. To do this we model each (replacement) event using

 Poisson process. The rate at which each event happens is equal

o the probability of that event in the discrete-time model. There-

ore the total event pressure will be the sum of all such probabil-

ties, which is equal to one, so that the time until the next event

ollows a Poisson process with rate parameter one. We then deter-

ine which event takes place using the relevant probability. Under

his continuous-time system the fixation probability and expected

ime to fixation will be identical to those of the discrete-time sys-

em, since we use the same probabilities whenever an event occurs

nd the expected time between events is constant. This is impor-

ant because these are the main quantities of interest in evolution-

ry dynamics. 

We will use this system to build approximation methods

o study the original discrete-time process. We choose to use

ontinuous-time because it enables us to build a system of ordi-

ary differential equations to approximate the dynamics, which al-

ow us to make use of efficient numerical solvers and enable us to

erive some analytic results. 

Since this evolutionary process is a continuous-time Markov

rocess, we can construct a master equation to describe the dy-

amics. Let S i = (s 1 , s 2 , . . . , s N ) be a state of the system, where

 ∈ { 1 , . . . , 2 N } and where s j = 1 if node j is a type A individ-

al and s j = 0 otherwise. We define S 1 = (0 , 0 , . . . , 0) and S 2 N =
(1 , 1 , . . . , 1) to be the states consisting of only B individuals and

nly A individuals, respectively. 

We introduce a vector p (t) which represents the probabilities

f each system state at time t . That is, the ith entry of p (t) , p i ( t ), is

he probability that the system is in state S i at time t . This Marko-

ian evolutionary process has 2 N possible states and the transitions

etween them are governed by a 2 N × 2 N transition rate matrix R

hose entries depend upon the graph and update mechanism we

onsider. 

We write the rate of change in the state probabilities using the

aster equation of the Markov process: 

d p 

dt 
= R p . (3) 

uch an equation can be constructed for any graph under a Marko-

ian update mechanism. The absorbing states correspond to the all

ype B or all type A states, S 1 and S 2 N , so are given by p 1 and p 2 N .

Since we consider a strongly connected adjacency matrix G ,

rovided we have at least one type A and one type B it is pos-

ible to get to either of the absorbing states and therefore from

ny mixed initial condition the system will always end up dis-

ributed between these two states. We define the fixation proba-

ility P A 
f ix 

(S(i )) of type A from an initial state S ( i ) to be the proba-

ility of being in the all A absorbing state, that is 

 

A 
f ix (S i ) = lim 

t→∞ 

(p 2 N (t) | p i (0) = 1) , 

here p i (0) is the probability of being in the state S i at time t = 0 .

imilarly we define the fixation probability of type B as 

 

B 
f ix (S i ) = lim 

t→∞ 

(p 1 (t) | p i (0) = 1) . 

he computational cost of implementing system (3) increases ex-

onentially with N ( Hindersin et al., 2016 ), and thus the compu-

ation of the fixation probability becomes infeasible as the popu-

ation size increases. Therefore it is of interest to build approxi-

ation methods. Pair approximations of the master equation have

een developed under the homogeneity assumption that all nodes

n the underlying graph are identical and interchangeable ( Hauert

nd Szabó, 2005; Szabó and Fath, 2007 ), which can give interesting
nsight into the evolutionary dynamics. However the homogeneity

ssumptions made in these approximations result in the loss of in-

ight into graph and node-specific dynamics, so we aim to develop

pproximations of the master equation which can capture this in-

ormation. 

.3. Node level equations 

We approximate the master equation by approximating the dy-

amics of the state probabilities of individual nodes in the popula-

ion. This is motivated by approaches in statistical physics and epi-

emic modelling ( Born and Green, 1946; Kirkwood, 1947; Sharkey,

008; Sharkey et al., 2015 ), and first requires exact equations de-

cribing how the probability of each node being occupied by a cer-

ain type changes with time, which can be derived from the master

quation (3) . 

efinition 2.1. Let χ(�t 
j→ i 

| S t ) denote the rate at which the indi-

idual in node j replaces the individual in node i at time t given

hat the system is in state S at time t ; we refer to this as the re-

lacement rate. 

efinition 2.2. X t 
C 

denotes the event that the set of nodes C is in

tate X at time t ; for example A 

t { i } is the event that node i is in the

ype A state at time t . 

Throughout this paper we shall use the shorthand B t { i } A 

t { j} X t C 
to

epresent the intersection of events B t { i } ∩ A 

t { j} ∩ X t 
C 

. 

heorem 2.1. Under any Markovian update mechanism, for a struc-

ured population represented by the adjacency matrix G, the rate of

hange of the probability that the individual in node i is an A individ-

al is 

d P (A 

t 
{ i } ) 

dt 
= 

N ∑ 

j=1 

∑ 

X V\{ i, j} 

G i j P (B 

t 
{ i } A 

t 
{ j} X 

t 
V \{ i, j} ) χ(�t 

j→ i | B 

t 
{ i } A 

t 
{ j} X 

t 
V \{ i, j} ) 

−
N ∑ 

j=1 

∑ 

X V\{ i, j} 

G i j P (A 

t 
{ i } B 

t 
{ j} X 

t 
V \{ i, j} ) χ(�t 

j→ i | A 

t 
{ i } B 

t 
{ j} X 

t 
V \{ i, j} ) , 

(4)

here the sum over X V \ { i,j } is over all possible states of the nodes

 \ { i , j } . 

roof. See Appendix A . �

This theorem can be applied to any update mechanism by

hoosing an appropriate definition for the replacement rate,

(�t 
j→ i 

) , which we shall define for the invasion process as an ex-

mple. 

xample 2.1 (Invasion process) . The invasion process is an adapta-

ion of the Moran process ( Moran, 1958 ) to structured populations.

ach event is determined by selecting an individual to reproduce

ith probability proportional to its fitness. It produces an identical

ffspring which replaces one of the connected individuals which is

hosen uniformly at random. Therefore the rate at which the indi-

idual in node j replaces the individual in node i at time t under

he invasion process rules is given by 

(�t 
j→ i | S) = 

f t 
j 
| S 

F t | S 
1 

k j 
, (5) 

here f t 
j 

is the fitness of the individual occupying node j at time t ,

 

t = 

∑ N 
m =1 f 

t 
m 

is the total fitness of the population, and k j denotes

he degree of node j . Here, the factor f t 
j 
/F t is the rate at which

ode j is selected to reproduce, and 1/ k j is the probability of re-

lacing the neighbouring individual i which is selected uniformly

t random. 
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When calculating χ(�t 
j→ i 

) in equation (4) , we will use the fol-

lowing expression for the fitness of the individual at a given node

j at time t , 

f t j = f back + wP (A 

t 
{ j} ) 

a 
∑ N 

i =1 G i j P (A 

t 
{ i } ) + b 

∑ N 
i =1 G i j P (B 

t 
{ i } ) ∑ N 

i =1 G i j 

+ wP (B 

t 
{ j} ) 

c 
∑ N 

i =1 G i j P (A 

t 
{ i } ) + d 

∑ N 
i =1 G i j P (B 

t 
{ i } ) ∑ N 

i =1 G i j 

, (6)

which is a sum of equations (1) and (2) weighted by the node

probabilities. We use this definition because when we evaluate

equation (6) given that the system is in a particular state S , as re-

quired by equation (4) , the values of P (A 

t 
{ k } ) and P (B t { k } ) are either

1 or 0, which leads to the fitness of node j in that particular system

state equations (1) and (2) . However, by defining fitness in terms of

the node probabilities, this allows us to have a description of fit-

ness which we can approximate (see Sections 3.2 and 3.3 ). 

3. Approximating the stochastic model 

In other fields, such as epidemiology, the construction of node-

level equations such as equation (4) can lead to a hierarchy of

moment equations whereby these equations are written in terms

of pair probabilities, pairs are written in terms of triples and so

on, until the full system state size is reached and the hierarchy

is closed. This is useful when we can find appropriate closure ap-

proximations to close this hierarchy at a low order. However, we

see that such an approach cannot be used here because we condi-

tion against the full system state in equation (4) which means that

the full system size appears even at the first order. We therefore

attempt to find other methods to simplify this system of equations.

In this section we will describe three different techniques to

derive approximations for this system. The first technique yields

a system of equations which become computationally infeasible

in some circumstances, but by applying homogeneity assumptions

to the underlying graph, we can derive the existing pair approxi-

mation models currently used in the literature ( Hadjichrysanthou

et al., 2012; Hauert and Szabó, 20 05; Morita, 20 08; Pena et al.,

20 09; Szabó and Fath, 20 07 ) ( Section 3.1 ). To reduce computation

costs, we then develop methods based on restricting the number

of states which we condition against in the replacement rate. We

first obtain a method whose computational complexity scales lin-

early with the population size N and, after an appropriate scal-

ing, approximates the fixation probability well on a wide range

of graphs ( Section 3.2 ). Then, in Section 3.3 , we obtain a method

which, although it scales with N 

2 , provides a good approximation

to the evolutionary dynamics over the whole time series for var-

ious graphs, and in particular provides a very accurate approxi-

mation to the initial dynamics of the evolutionary process on all

graphs. 

3.1. Deriving the homogenised pair approximation model 

One way of simplifying (4) is to assume that the fitness f t 
j 

does

not need to be normalised by the total fitness F t in the replace-

ment rate (e.g. as in equation (5) for the invasion process). This ap-

proximation is justified because it does not change the final value

to which the exact node-level equations converge (and therefore

the fixation probability), and will only transform the time series

until fixation. Making this assumption, the node level equations

simplify so that we only sum over the neighbours of the individ-

ual that we selected based on fitness. That is, when looking at the

event where node j replaces node i , if we are selecting on death

we need to condition against the state of all neighbours of i , and

if selecting on birth we need to condition against the state of all
eighbours of j . As an example, we shall assume here that selec-

ion occurs on birth so that we require conditioning on the neigh-

ourhood of node j , however we can also make similar arguments

hen selecting on death. Using χ̄ to represent this modification of

in (4) and Q to represent the new probability distribution with

he modified time series we obtain 

d Q(A 

t 
{ i } ) 

dt 
= 

N ∑ 

j=1 

∑ 

X N j \{ i } 

G i j Q(B 

t 
{ i } A 

t 
{ j} X 

t 
N j \{ i } ) ̄χ(�t 

j→ i | B 

t 
{ i } A 

t 
{ j} X 

t 
N j \{ i } ) 

−
N ∑ 

j=1 

∑ 

X N j \{ i } 

G i j Q(A 

t 
{ i } B 

t 
{ j} X 

t 
N j \{ i } ) ̄χ(�t 

j→ i | A 

t 
{ i } B 

t 
{ j} X 

t 
N j \{ i } ) ,

(7)

here N j is the neighbourhood of node j ; i.e. all nodes that are

onnected to j . To solve this system exactly requires the develop-

ent of equations describing how the probability of each possible

eighbourhood of nodes changes. This in turn would lead to a hier-

rchy of equations which is computationally similar to the master

quation. However it is possible to develop approximation methods

y assuming independence at the level of lower-order terms, such

s individuals or pairs of nodes, and approximating the neighbour-

ood probabilities as a function of these. 

For example, we can make a pair approximation by applying

ayes’ Theorem and assuming statistical independence at the level

f pairs to rewrite the neighbourhood probability in terms of pair

robabilities. Applying Bayes’ Theorem to the probabilities on the

ight hand side of equation (7) we get 

d Q(A 

t 
{ i } ) 

dt 
= 

N ∑ 

j=1 

∑ 

X N j \{ i } 

G i j Q (A 

t 
{ j} ) Q (B 

t 
{ i } X 

t 
N j \{ i } | A 

t 
{ j} ) 

× χ̄ (�t 
j→ i | B 

t 
{ i } A 

t 
{ j} X 

t 
N j \{ i } ) 

−
N ∑ 

j=1 

∑ 

X N j \{ i } 

G i j Q (B 

t 
{ j} ) Q (A 

t 
{ i } X 

t 
N j \{ i } | B 

t 
{ j} ) 

× χ̄ (�t 
j→ i | A 

t 
{ i } B 

t 
{ j} X 

t 
N j \{ i } ) . (8)

f we assume statistical independence of all nodes in the neigh-

ourhood of j , given the state of j , we can rewrite the neighbour-

ood probability Q (A 

t { j} ) Q (B t { i } X t N j \{ i } | A 

t { j} ) as 

 (A 

t 
{ j} ) Q (B 

t 
{ i } X 

t 
N j \{ i } | A 

t 
{ j} ) ≈ Q (A 

t 
{ j} ) Q (B 

t 
{ i } | A 

t 
{ j} ) 

∏ 

l∈ N j \{ i } 
Q (X 

t 
{ l} | A 

t 
{ j} ) , 

here X t { l} is event where node l is in the same state as it is in the

vent X t N j \{ i } . Substituting this into equation (8) gives 

d Q(A 

t 
{ i } ) 

dt 
≈

N ∑ 

j=1 

∑ 

X N j \{ i } 

G i j Q (A 

t 
{ j} ) Q (B 

t 
{ i } | A 

t 
{ j} ) 

×
∏ 

l∈ N j \{ i } 
Q(X 

t 
l | A 

t 
{ i } ) ̄χ(�t 

j→ i | B 

t 
{ i } A 

t 
{ j} X 

t 
N j \{ i } ) 

−
N ∑ 

j=1 

∑ 

X N j \{ i } 

G i j Q (B 

t 
{ j} ) Q (A i | B 

t 
{ I} ) 

×
∏ 

l∈ N j \{ i } 
Q(X 

t 
l | B 

t 
{ I} ) ̄χ(�t 

j→ i | A 

t 
{ i } B 

t 
{ j} X 

t 
N j \{ i } ) . 

ince Q(B t { i } | A 

t { j} ) = Q(B t { i } A 

t { j} ) /Q(A 

t { j} ) , in order to evaluate these

quations we require additional equations describing how pair

robabilities change with time or some appropriate closure of pairs

n terms of single node probabilities. From the master equation
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A  
e can derive exact equations describing pairs. For the probabil-

ty P (B t { i } A 

t { j} ) we obtain 

d P (B 

t 
{ i } A 

t 
{ j} ) 

dt 
= 

N ∑ 

k =1 

∑ 

X V\{ i, j,k } 

G jk P (B 

t 
{ i } B 

t 
{ j} A 

t 
{ k } X 

t 
V \{ i, j,k } ) 

×χ(�t 
k → j | B 

t 
{ i } B 

t 
{ j} A 

t 
{ k } X 

t 
V \{ i, j,k } ) 

−
N ∑ 

k =1 

∑ 

X V\{ i, j,k } 

G jk P (B 

t 
{ i } A 

t 
{ j} B 

t 
{ k } X 

t 
V \{ i, j,k } ) 

×χ(�t 
k → j | B 

t 
{ i } A 

t 
{ j} B 

t 
{ k } X 

t 
V \{ i, j,k } ) 

+ 

N ∑ 

k =1 

∑ 

X V\{ i, j,k } 

G ik P (B 

t 
{ k } A 

t 
{ i } A 

t 
{ j} X 

t 
V \{ i, j,k } ) 

×χ(�t 
k → i | B 

t 
{ k } A 

t 
{ i } A 

t 
{ j} X 

t 
V \{ i, j,k } ) 

−
N ∑ 

k =1 

∑ 

X V\{ i, j,k } 

G ik P (A 

t 
{ k } B 

t 
{ i } A 

t 
{ j} X 

t 
V \{ i, j,k } ) 

×χ(�t 
k → i | A 

t 
{ k } B 

t 
{ i } A 

t 
{ j} X 

t 
V \{ i, j,k } ) . (9) 

e can now apply the same assumption regarding total fitness

hat we used for the single node probabilities so that 

d Q(B 

t 
{ i } A 

t 
{ j} ) 

dt 
= 

N ∑ 

k =1 

∑ 

X N k \{ i, j} 

G jk Q(B 

t 
{ i } B 

t 
{ j} A 

t 
{ k } X 

t 
N k \{ i, j} ) 

× χ̄ (�t 
k → j | B 

t 
{ i } B 

t 
{ j} A 

t 
{ k } X 

t 
N k \{ i, j} ) 

−
N ∑ 

k =1 

∑ 

X N k \{ i, j} 

G jk Q(B 

t 
{ i } A 

t 
{ j} B 

t 
{ k } X 

t 
N k \{ i, j} ) 

× χ̄ (�t 
k → j | B 

t 
{ i } A 

t 
{ j} B 

t 
{ k } X 

t 
N k \{ i, j} ) 

+ 

N ∑ 

k =1 

∑ 

X N k \{ i, j} 

G ik Q(B 

t 
{ k } A 

t 
{ i } A 

t 
{ j} X 

t 
N k \{ i, j} ) 

× χ̄ (�t 
k → i | B 

t 
{ k } A 

t 
{ i } A 

t 
{ j} X 

t 
N k \{ i, j} ) 

−
N ∑ 

k =1 

∑ 

X N k \{ i, j} 

G ik Q(A 

t 
{ k } B 

t 
{ i } A 

t 
{ j} X 

t 
N k \{ i, j} ) 

× χ̄ (�t 
k → i | A 

t 
{ k } B 

t 
{ i } A 

t 
{ j} X 

t 
N k \{ i, j} ) . (10) 

pplying Bayes’ Theorem to the neighbourhood probability

(B t { i } B t { j} A 

t 
{ k } X 

t 
N k \{ i, j} ) we obtain 

(B 

t 
{ i } B 

t 
{ j} A 

t 
{ k } X 

t 
N k \{ i, j} ) = Q(B 

t 
{ j} A 

t 
{ k } ) Q(B 

t 
{ i } X 

t 
N k \{ i, j} | B 

t 
{ j} A 

t 
{ k } ) 

e can now assume statistical independence of the remaining

odes given the state of j and k so that 

(B 

t 
{ i } B 

t 
{ j} A 

t 
{ k } X 

t 
N k \{ i, j} ) ≈ Q (B 

t 
{ j} A 

t 
{ k } ) Q (B 

t 
{ i } | B 

t 
{ j} A 

t 
{ k } ) 

×
∏ 

l∈N k \{ i, j} 
Q(X 

t 
{ l} | B 

t 
{ j} A 

t 
{ k } ) . 

ince we know that node i is connected to node j we can assume

hat given the state of node j , the state of node i is independent of

ode k , and similarly the state of any node in the neighbourhood

f k is independent of node j , which gives us 

(B 

t 
{ i } B 

t 
{ j} A 

t 
{ k } X 

t 
N k \{ i, j} ) ≈ Q (B 

t 
{ j} A 

t 
{ k } ) Q (B 

t 
{ i } | B 

t 
{ j} ) 

×
∏ 

l∈N k \{ i, j} 
Q(X 

t 
{ l} | A 

t 
{ k } ) . 
ubstituting this into equation (10) gives 

d Q(B 

t 
{ i } A 

t 
{ j} ) 

dt 
≈

N ∑ 

k =1 

∑ 

X N k \{ i, j} 

G jk Q (B 

t 
{ j} A 

t 
{ k } ) Q (B 

t 
{ i } | B 

t 
{ j} ) 

×
∏ 

l∈N k \{ i, j} 
Q(X 

t 
{ l} | A 

t 
{ k } ) ̄χ(�t 

k → j | B 

t 
{ i } B 

t 
{ j} A 

t 
{ k } X 

t 
N k \{ i, j} ) 

−
N ∑ 

k =1 

∑ 

X N k \{ i, j} 

G jk Q (A 

t 
{ j} B 

t 
{ k } ) Q (B 

t 
{ i } | A 

t 
{ j} ) 

×
∏ 

l∈N k \{ i, j} 
Q(X 

t 
{ l} | B 

t 
{ k } ) ̄χ(�t 

k → j | B 

t 
{ i } A 

t 
{ j} B 

t 
{ k } X 

t 
N k \{ i, j} ) 

+ 

N ∑ 

k =1 

∑ 

X N k \{ i, j} 

G ik Q (A 

t 
{ i } B 

t 
{ k } ) Q (A 

t 
{ j} | A 

t 
{ i } ) 

×
∏ 

l∈N k \{ i, j} 
Q(X 

t 
{ l} | B 

t 
{ k } ) ̄χ(�t 

k → i | A 

t 
{ i } A 

t 
{ j} B 

t 
{ k } X 

t 
N k \{ i, j} ) 

−
N ∑ 

k =1 

∑ 

X N k \{ i, j} 

G ik Q (B 

t 
{ i } A 

t 
{ k } ) Q (A 

t 
{ j} | B 

t 
{ i } ) 

×
∏ 

l∈N k \{ i, j} 
Q(X 

t 
{ l} | A 

t 
{ k } ) ̄χ(�t 

k → i | B 

t 
{ i } A 

t 
{ j} A 

t 
{ k } X 

t 
N k \{ i, j} ) . 

hile this system is closed, its computational complexity increases

xponentially with the maximum node degree of the graph, so it

s not numerically feasible for graphs with highly connected nodes.

hile this could potentially be addressed by introducing approxi-

ations for nodes with high degree and this may lead to accu-

ate models, here we continue towards a simplified model. To do

his, we follow the same process as in epidemic models and make

 homogeneity assumption by assuming that any pair is equally

ikely to be in any given state ( Kiss et al., 2017; Sharkey, 2008 ); i.e.

(X t { i } | Y t { j} ) = Q(X t | Y t ) for all pairs ( i, j ). This leads to 

d Q(A 

t 
{ i } ) 

dt 
≈

N ∑ 

j=1 

∑ 

X N j \{ i } 

G i j Q (A 

t 
{ j} ) Q (B 

t | A 

t ) k j −n X Q(A 

t | A 

t ) n X 

× χ̄ (�t 
j→ i | B 

t 
{ i } A 

t 
{ j} X 

t 
N j \{ i } ) 

−
N ∑ 

j=1 

∑ 

X N j \{ i } 

G i j Q (B 

t 
{ j} ) Q (A 

t | B 

t ) n X +1 Q(B 

t | B 

t ) k j −n X −1 

× χ̄ (�t 
j→ i | A 

t 
{ i } B 

t 
{ j} X 

t 
N j \{ i } ) , 

here k j is the degree of node j and n X is the number of type A in-

ividuals in state X N j \{ i } . Since the transition rate only depends on

he number of type A and type B individuals in the neighbourhood

f node j and not on their positions, the summand on the right

and side is equal for all states X N j \{ i } which have the same con-

guration of A and B individuals. The frequency of a certain neigh-

ourhood state across all possible configurations is given by the

inomial coefficient, so that 

dQ 

(
A 

t 
{ i } 

)
dt 

≈
N ∑ 

j=1 

k j −1 ∑ 

n =0 

G ij 

(
k j − 1 

n 

)
Q 

(
A 

t 
{ j } 

)
Q 

(
B 

t | A 

t 
)k j −n 

Q 

(
A 

t | A 

t 
)n 

×χ
(
�t 

j→ i 

∣∣n 

)
−

N ∑ 

j=1 

k j −1 ∑ 

n =0 

G ij 

(
k j − 1 

n 

)
Q 

(
B 

t 
{ j } 

)
Q 

(
A 

t | B 

t 
)n +1 

Q 

(
B 

t | B 

t 
)k j −n −1

×χ
(
�t 

j→ i 

∣∣n + 1 

)
, 

here χ̄ (�t 
A → B 

| n ) is the rate at which we select one of the type

 individuals to reproduce and replace a type B , given that there
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e  
are n type A individuals and k j − n type B individuals in the neigh-

bourhood of the selected node. 

Since we have assumed that any pair is equally likely, this as-

sumption only holds when every node in the graph forms k con-

nections, which are chosen at random. Therefore we require that

node i is equally likely to be connected to any other node and all

nodes are topologically equivalent, so that the probability that a

given node of type B is connected to x type A neighbours is given

by a binomial distribution with n = k and p = Q(A 

t | B t ) . Therefore

the probability of an individual being type A changes with rate 

dQ 

(
A 

t 
)

dt 
≈ kQ 

(
A 

t | B 

t 
)
Q 

(
B 

t 
)

×
k −1 ∑ 

n =0 

(
k − 1 

n 

)
Q 

(
B 

t | A 

t 
)k −n 

Q 

(
A 

t | A 

t 
)n 

χ
(
�t 

A → B 

∣∣n 

)
− kQ ( B t | A t ) Q 

(
A 

t 
)

×
k −1 ∑ 

n =0 

(
k − 1 

n 

)
Q 

(
A 

t | B 

t 
)n +1 

Q 

(
B 

t | B 

t 
)k −n −1 

χ
(
�t 

B → A 

∣∣n + 1 

)
.

We can also apply these assumptions to the pair-level equations

to obtain a closed system of equations which are efficient to

solve numerically. The resulting model is equivalent to the model

in Morita (2008) , which was justified by using the assumption that

the population occupies a regular graph, such that all individuals

have degree k , and that all nodes are topologically equivalent, such

that every pair of individuals is equally likely to be connected. We

have shown that by applying these assumptions to the exact node-

level equations equation (4) we can derive these models. 

Similarly we can obtain a pair approximation model for the

dynamics where we select on death by conditioning against

the state of the neighbours of node i . Applying analogous as-

sumptions to the previous example then leads to the model

in Hadjichrysanthou et al. (2012) . These models have been shown

to yield interesting qualitative results about the relative strengths

of different strategies in evolutionary games on graphs. However,

the homogeneity assumptions made result in losing important as-

pects of the structure, such as how individual nodes in the system

can behave differently. In the next sections we will attempt to de-

velop approximation methods which can capture this node-specific

information. 

As we alluded to earlier, a natural method would be to use

equation (7) as a basis for this. However, difficulties in imple-

menting this method on general networks as well as the number

of equations that result leads us to a different direction for the

present work. 

3.2. An unconditioned fitness approximation model 

Here we develop a method which removes the need to include

the probability of whole neighbourhoods by removing the condi-

tioning in the replacement rate. This causes the replacement rate

to only depend on the marginal probabilities of the state of each

node rather than the full system state. This assumption also mo-

tivated a model in Szabó and Fath (2007) in which the authors

construct a population-level approximation describing how the ex-

pected number of individuals of each type change with time. Un-

der this assumption, equation (4) becomes 

d P (A 

t 
{ i } ) 

dt 
≈

N ∑ 

j=1 

∑ 

X V\{ i, j} 

G i j P (B 

t 
{ i } A 

t 
{ j} X 

t 
V \{ i, j} ) χ(�t 

j→ i ) 

−
N ∑ 

j=1 

∑ 

X V\{ i, j} 

G i j P (A 

t 
{ i } B 

t 
{ j} X 

t 
V \{ i, j} ) χ(�t 

j→ i ) . 
ince χ(�t 
j→ i 

) is now the same for all system states, 

d P (A 

t 
{ i } ) 

dt 
≈

N ∑ 

j=1 

G i j P (B 

t 
{ i } A 

t 
{ j} ) χ(�t 

j→ i ) −
N ∑ 

j=1 

G i j P (A 

t 
{ i } B 

t 
{ j} ) χ(�t 

j→ i ) . 

dding and subtracting 
∑ N 

j=1 G i j P (A 

t { i } A 

t { j} ) χ(�t 
j→ i 

) we obtain 

d P (A 

t 
{ i } ) 

dt 
≈

N ∑ 

j=1 

[
G i j ̄P (B 

t 
{ i } A 

t 
{ j} ) χ(�t 

j→ i ) + G i j P (A 

t 
{ i } A 

t 
{ j} ) χ(�t 

j→ i ) 
]

−
N ∑ 

j=1 

[
G i j P (A 

t 
{ i } B 

t 
{ j} ) χ(�t 

j→ i ) + G i j ̄P (A 

t 
{ i } A 

t 
{ j} ) χ(�t 

j→ i ) 
]

≈
N ∑ 

j=1 

G i j P (A 

t 
{ j} ) χ(�t 

j→ i ) −
N ∑ 

j=1 

G i j P (A 

t 
{ i } ) χ(�t 

j→ i ) , 

hich is a closed set of N equations with at most N summands on

he right hand side. Therefore by defining P̄ as an approximation

o the probability distribution P we obtain the closed system 

d ̄P (A 

t 
{ i } ) 

dt 
= 

N ∑ 

j=1 

G i j ̄P (A 

t 
{ j} ) χ(�t 

j→ i ) −
N ∑ 

j=1 

G i j ̄P (A 

t 
{ i } ) χ(�t 

j→ i ) , (11)

hich is easy to solve numerically for an arbitrary graph. 

xample 3.1 (Neutral drift) . In the special case of neutral drift, i.e.

hen all individuals have identical fitness, the unconditioned fit-

ess model gives the exact fixation probability. With the dynamics

f the invasion process under neutral drift we obtain χ(�t 
j→ i 

) =
1 

Nk j 
, and therefore equation (11) can be written as 

d ̄P (A 

t 
{ i } ) 

dt 
= 

N ∑ 

j=1 

G i j ̄P (A 

t 
{ j} ) 

1 

Nk j 
−

N ∑ 

j=1 

G i j ̄P (A 

t 
{ i } ) 

1 

Nk j 
, 

hich is equivalent to the exact node equation (4) for the inva-

ion process under neutral drift ( Shakarian et al., 2013 ). The un-

onditioned fitness model is also exact for all update mechanisms

nder neutral drift, but we do not write the equations explicitly

ere. 

As the population size N increases, the solution to equation

11) moves further away from the exact fixation probability ob-

ained either by solving the master equation (3) or from the output

f stochastic simulations. To obtain a reasonable approximation to

he fixation probability from a given initial condition we construct

 scaling factor for the constant fitness case by comparing the ra-

io between the solution of equation (11) on a complete graph to

he exact fixation probability on a complete graph. We choose the

omplete graph because the exact fixation probability can be cal-

ulated analytically in this case. Whilst we consider the constant

tness case, it may also be possible to find a suitable scaling factor

n the frequency dependent fitness case, however using a complete

raph may no longer be appropriate because the relative strength

f different strategies in some games is strongly affected by the

verage degree of the graph ( Ohtsuki et al., 2006 ). 

xample 3.2 (Invasion process) . For constant fitness under the dy-

amics of the invasion process, the exact fixation probability for m

nitial mutant A individuals on a complete graph is equivalent to

he Moran probability ( Lieberman et al., 2005 ): 

= 

1 − 1 
r m 

1 − 1 
r N 

. 

Since the fixation probability is known, we now need to solve

quation (11) on the complete graph to derive the ratio between
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P  
he two. In the constant fitness case this can be done analytically,

ith the scaling factor for m initial mutants given by 

ρ

lim 

t→∞ 

A c (t) 
= 

1 − 1 
r m 

1 − 1 

r N 

1 
r−1 

(
−1 + 

√ 

1 + 

m (r 2 −1) 
N 

) , (12) 

here A c (t) = 

1 
N 

N ∑ 

j=1 

P̄ (A 

t { j} ) . The derivation of this can be found in

ppendix B . 

We can now define two methods for predicting the fixation

robability under any Markovian update mechanism. 

• Method 1 (Unconditioned fitness model) Solve equation (11) to

provide an approximation to the dynamics of the evolutionary

process. (MATLAB code for solving the unconditioned fitness

model is provided as supplementary material.) 
• Method 2 (Scaled unconditioned fitness model) Solve equation

(11) and then use a scaling factor, the ratio of the exact fixation

probability and the solution to equation (11) for the complete

graph, to provide an approximation to the fixation probability

from a given initial condition. 

In Section 4 we investigate the numerical performance of these

wo methods. Note that for the purpose of this paper we have

ound the scaling factor equation (12) for Method 2 under the in-

asion process. However, the method can be applied to other up-

ate mechanisms, such as death–birth with selection on birth, by

nding an appropriate scaling factor, which can be done by solving

quation (11) (either analytically or numerically) and comparing to

he exact fixation probability on the complete graph. For example,

ee Hindersin and Traulsen (2015) for the exact fixation probability

n a complete graph under the DB-B dynamics. 

.3. A contact conditioning approximation model 

In Section 3.2 we restricted the conditioning so that we only

equire the marginal probabilities of the individual nodes. How-

ver, this removes a significant amount of information from the

ynamics. In the evolutionary process, when considering a re-

lacement event the two nodes of most interest are the node se-

ected for birth and the node selected for death. Therefore, here

e follow a similar method but retain conditioning on the states

f these two key nodes. Since we restrict the conditioning to

nly the states of the relevant contact, when looking at the term

(�t 
j→ i 

| B t { i } A 

t { j} X t V \{ i, j} ) in equation (4) we condition only on the

tates of the nodes i and j and obtain 

(�t 
j→ i | B 

t 
{ i } A 

t 
{ j} X 

t 
V \{ i, j} ) ≈ χ(�t 

j→ i | B 

t 
{ i } A 

t 
{ j} ) . 

nder the above condition, equation (4) becomes 

d P (A 

t 
{ i } ) 

dt 
≈

N ∑ 

j=1 

∑ 

X V\{ i, j} 

G i j P (B 

t 
{ i } A 

t 
{ j} X 

t 
V \{ i, j} ) χ(�t 

j→ i | B 

t 
{ i } A 

t 
{ j} ) 

−
N ∑ 

j=1 

∑ 

X V\{ i, j} 

G i j P (A 

t 
{ i } B 

t 
{ j} X 

t 
V \{ i, j} ) χ(�t 

j→ i | A 

t 
{ i } B 

t 
{ j} ) . (13) 

o see the effect of this assumption on the rates, consider

(�t 
j→ i 

| B t { i } A 

t { j} ) . Here we condition only against node i being in

tate B and node j being in state A rather than against the en-

ire system state. Consequently in the fitness equation (6) we have
 (B t { i } ) = 1 and P (A 

t { j} ) = 1 giving 

f t j | B 

t 
{ i } A 

t 
{ j} = f back + w 

bT i j + a 
∑ 

l � = i 
G jl P (A 

t 
{ l} ) + b 

∑ 

l � = i 
G jl P (B 

t 
{ l} ) 

N ∑ 

l=1 

G jl 

. 

n equation (13) , the chance of selecting node j is now indepen-

ent of the state X t 
V \{ i, j} of the remaining nodes which enables the

quation to be reduced to 

d P (A 

t 
{ i } ) 

dt 
≈

N ∑ 

j=1 

G i j P (B 

t 
{ i } A 

t 
{ j} ) χ(�t 

j→ i | B 

t 
{ i } A 

t 
{ j} ) 

−
N ∑ 

j=1 

G i j P (A 

t 
{ i } B 

t 
{ j} ) χ(�t 

j→ i | A 

t 
{ i } B 

t 
{ j} ) . (14) 

his gives an approximate equation for individuals in terms of

airs. We then need to build equations to describe pair-level prob-

bilities. Similar methodologies have been followed to describe

pidemics propagated on networks ( Sharkey, 2008; Sharkey et al.,

015 ). 

Applying the same conditioning to the exact pair level equation

9) we obtain 

d P (B 

t 
{ i } A 

t 
{ j} ) 

dt 
≈

N ∑ 

k =1 

G jk P (B 

t 
{ i } B 

t 
{ j} A 

t 
{ k } ) χ(�t 

k → j | B 

t 
{ j} A 

t 
{ k } ) 

−
N ∑ 

k =1 

G jk P (B 

t 
{ i } A 

t 
{ j} B 

t 
{ k } ) χ(�t 

k → j | A 

t 
{ j} B 

t 
{ k } ) 

+ 

N ∑ 

k =1 

G ik P (B 

t 
{ k } A 

t 
{ i } A 

t 
{ j} ) χ(�t 

k → i | B 

t 
{ k } A 

t 
{ i } ) 

−
N ∑ 

k =1 

G ik P (A 

t 
{ k } B 

t 
{ i } A 

t 
{ j} ) χ(�t 

k → i | A 

t 
{ k } B 

t 
{ i } ) . (15) 

imilar formulae can be constructed for all possible pairs, writing

airs in terms of triples. In a similar way, triples can be written

n terms of quads and so on, up to the full system size N which

s then closed. Therefore, when using this method we obtain a hi-

rarchy similar to the BBGKY (Bogoliubov–Born–Green–Kirkwood–

von) hierarchy ( Born and Green, 1946; Kirkwood, 1947 ) in statis-

ical physics. However, here the hierarchy only represents an ap-

roximation to the original dynamics. Solving this system exactly

s no simpler than evaluating equation (3) since evaluating the hi-

rarchy in full is comparable in numerical complexity, so we wish

o find approximation methods to reduce this. 

With this hierarchy, we can apply techniques developed in sta-

istical physics to approximate higher-order terms as functions of

ower-order terms. In particular we can close the system of equa-

ions (14) and (15) at the level of pairs by approximating all triples

n equation (15) in terms of pair-level and individual-level prob-

bilities. Similar techniques have been applied for many stochas-

ic processes including in epidemiology ( Keeling and Eames, 2005;

iss et al., 2017; Sharkey, 2008; Sharkey et al., 2015 ) and evolu-

ionary dynamics ( Hauert and Szabó, 2005; Ohtsuki et al., 2006;

zabó and Fath, 2007 ) leading to models which can be numerically

valuated. 

To close the system, we require a functional form that can ap-

roximate triple probabilities in terms of individual and pair prob-

bilities. One method is to approximate a triple P (A 

t { i } B t { j} C t { k } ) as

he product of all possible pairs among these nodes divided by the

roduct of all individuals, i.e. 

 (A 

t 
{ i } B 

t 
{ j} C 

t 
{ k } ) ≈

P (A 

t 
{ i } B 

t 
{ j} ) P (B 

t 
{ j} C 

t 
{ k } ) P (A 

t 
{ i } C 

t 
{ k } ) 

P (A 

t 
{ i } ) P (B 

t 
{ j} ) P (C 

t 
{ k } ) 

. (16)
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This closure is commonly attributed to Kirkwood ( Singer, 2004 )

because it is derived from the Kirkwood superposition which ap-

proximates triples in terms of pairs in thermodynamics ( Kirkwood,

1935; Kirkwood and Boggs, 1942 ). This is often applied to nodes

i, j, k that form a 3-cycle in the graph, which we call a ‘closed

triple’, although it can be applied to any triplet of nodes. It

has been shown that this closure maximises the entropy of

these thermodynamic systems ( Singer, 2004 ), and it also ensures

that symmetry is preserved across the triplet. This closure has

commonly been adapted to probabilistic systems, such as the

BBGKY hierarchy ( Born and Green, 1946; Kirkwood, 1947 ) and

epidemic modelling ( Keeling, 1999; Sharkey, 2008; Sharkey and

Wilkinson, 2015 ). However, the Kirkwood closure for probabili-

ties does not define a probability distribution since we can obtain

P (B t { i } A 

t { j} ) + P (B t { i } B t { j} ) � = P (B t { i } ) , which has been observed numer-

ically ( Rogers, 2011 ). In spite of this it has been shown to yield ac-

curate approximations in these probabilistic systems ( Rogers, 2011;

Sharkey, 2008; Singer, 2004 ). 

Another closure can be obtained by applying Bayes’ Theorem

and assuming statistical independence across the triple given the

state of the central node, in this case node j . By applying Bayes’

Theorem we have 

P (A 

t 
{ i } B 

t 
{ j} C 

t 
{ k } ) = P (A 

t 
{ i } | B 

t 
{ j} C 

t 
{ k } ) P (B 

t 
{ j} C 

t 
{ k } ) , 

which, when we assume statistical independence of nodes i and k

given j , simplifies to 

P (A 

t 
{ i } B 

t 
{ j} C 

t 
{ k } ) ≈ P (A 

t 
{ i } | B 

t 
{ j} ) P (B 

t 
{ j} C 

t 
{ k } ) = 

P (A 

t 
{ i } B 

t 
{ j} ) P (B 

t 
{ j} C 

t 
{ k } ) 

P (B 

t 
{ j} ) 

. 

(17)

Typically this closure is applied to nodes on a graph where nodes i

and j are connected and nodes j and k are connected but where

there is no connection between nodes i and k , which we call

an ‘open triple’. However, it could be applied to any triplet of

nodes. This closure method is thought to be most accurate on

trees ( Kiss et al., 2017; Rogers, 2011; Sharkey et al., 2015 ), and has

been shown to be exact for such graphs under the SIR epidemic

model ( Kiss et al., 2015; Sharkey et al., 2015; Sharkey and Wilkin-

son, 2015 ). 

We can adopt either closure to remove triples and close the sys-

tem. For example, if we are using the Kirkwood closure to approxi-

mate all triples in equation (15) we obtain the system of equations

d ̄P (A 

t 
{ i } ) 

dt 
= 

N ∑ 

j=1 

G i j ̄P (B 

t 
{ i } A 

t 
{ j} ) χ(�t 

j→ i | B 

t 
{ i } A 

t 
{ j} ) 

−
N ∑ 

j=1 

G i j ̄P (A 

t 
{ i } B 

t 
{ j} ) χ(�t 

j→ i | A 

t 
{ i } B 

t 
{ j} ) , 

d ̄P (B 

t 
{ i } A 

t 
{ j} ) 

dt 
= 

N ∑ 

k =1 

G jk 

P̄ (B 

t 
{ i } B 

t 
{ j} ) ̄P (B 

t 
{ j} A 

t 
{ k } ) ̄P (B 

t 
{ i } A 

t 
{ k } ) 

P̄ (B 

t 
{ i } ) ̄P (B 

t 
{ j} ) ̄P (A 

t 
{ k } ) 

×χ(�t 
k → j | B 

t 
{ j} A 

t 
{ k } ) 

−
N ∑ 

k =1 

G jk 

P̄ (B 

t 
{ i } A 

t 
{ j} ) ̄P (A 

t 
{ j} B 

t 
{ k } ) ̄P (B 

t 
{ i } B 

t 
{ k } ) 

P̄ (B 

t 
{ i } ) ̄P (A 

t 
{ j} ) ̄P (B 

t 
{ k } ) 

×χ(�t 
k → j | A 

t 
{ j} B 

t 
{ k } ) 

+ 

N ∑ 

k =1 

G ik 

P̄ (B 

t 
{ k } A 

t 
{ i } ) ̄P (A 

t 
{ i } A 

t 
{ j} ) ̄P (B 

t 
{ k } A 

t 
{ j} ) 

P̄ (B 

t 
{ k } ) ̄P (A 

t 
{ i } ) ̄P (A 

t 
{ j} ) 

×χ(�t 
k → i | B 

t 
{ k } A 

t 
{ i } ) 
p  
−
N ∑ 

k =1 

G ik 

P̄ (A 

t 
{ k } B 

t 
{ i } ) ̄P (B 

t 
{ i } A 

t 
{ j} ) ̄P (A 

t 
{ k } A 

t 
{ j} ) 

P̄ (A 

t 
{ k } ) ̄P (B 

t 
{ i } ) ̄P (A 

t 
{ j} ) 

×χ(�t 
k → i | A 

t 
{ k } B 

t 
{ i } ) , 

here P̄ represents the approximation to the probability distribu-

ion P . However, note that using this closure for all triples will

ventually require equations for every pair of nodes in the system,

hether they are connected or not. 

It is also useful to use a combination of the two methods

hereby the Kirkwood closure (16) is used for closed triples,

nd (17) is used for open triples ( Keeling, 1999; Sharkey, 2008 ). In

his work we shall use this combined approach to obtain a closed

ystem. However, we find that unlike in epidemiology, this stan-

ard approach does not produce good results. We therefore also

ry using just the Kirkwood closure because this permits explicit

orrelations between nodes which are not linked, although as indi-

ated above, this substantially increases computational complexity

ecause the system of equations will scale with N 

2 rather than the

umber of connected individuals in the graph. 

With the contact conditioning model we define two different

ethods to approximate the evolutionary dynamics. 

• Method 3 (Open and closed triples) Solve equation (14) to-

gether with equations for pairs by using two different clo-

sures for different types of triples. First consider a triple

P (A 

t { i } B t { j} Z t { k } ) , Z ∈ { A, B }, where there is no link between nodes

i and k . We call this an open triple, and can approximate it as 

P (A 

t 
{ i } B 

t 
{ j} Z 

t 
{ k } ) ≈

P (A 

t 
{ i } B 

t 
{ j} ) P (B 

t 
{ j} Z 

t 
{ k } ) 

P (B 

t 
{ j} ) 

. 

If there exists a link between nodes i and k we call this a closed

triple, and approximate this using the Kirkwood closure, 

P (A 

t 
{ i } B 

t 
{ j} Z 

t 
{ k } ) ≈

P (A 

t 
{ i } B 

t 
{ j} ) P (B 

t 
{ j} Z 

t 
{ k } ) P (A 

t 
{ i } Z 

t 
{ k } ) 

P (A 

t 
{ i } ) P (B 

t 
{ j} ) P (Z t { k } ) 

. 

Using this method it is only necessary to use pairs which have

a link between them in the graph, and so it scales with Nd ,

where d is the average degree of the graph. 
• Method 4 (Kirkwood closure only) Solve equation (14) together

with equations for pairs by using the Kirkwood closure for all

triples. That is, we approximate any triple P (A 

t { i } B t { j} Z t { k } ) , Z ∈ { A,

B } as 

P (A 

t 
{ i } B 

t 
{ j} Z 

t 
{ k } ) ≈

P (A 

t 
{ i } B 

t 
{ j} ) P (B 

t 
{ j} Z 

t 
{ k } ) P (A 

t 
{ i } Z 

t 
{ k } ) 

P (A 

t 
{ i } ) P (B 

t 
{ j} ) P (Z t { k } ) 

. 

This method requires the use of every pair of nodes in the sys-

tem, not just those which are directly connected, and so scales

with N 

2 . (MATLAB code for solving the contact conditioning

model is provided as supplementary material.) 

. Results 

.1. A comparison of the different methods: fixation probabilities for 

onstant fitness 

Here we investigate the fixation probability of a single initial A

ndividual placed in a given node on the graph under the dynamics

f the invasion process. Fig. 1 compares Method 1 (unconditioned

tness model) under the invasion process against stochastic simu-

ation on a four-node star graph. On such small graphs, Method 1

ppears to provide a reasonable approximation to the expected dy-

amics and to the fixation probability. However, for such small

opulations exact solutions are easy to obtain, and hence we want
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Fig. 1. Comparison of the marginal probabilities for each node on the graph being a mutant A plotted against time as given by Method 1 (solid lines) versus stochastic 

simulation of the discrete-time system (circles), when applied to the invasion process on a 4-node star graph. We consider (a) dynamics initiated with a single A individual 

on a leaf node and (b) dynamics initiated with a single A individual on the central node. Each line represents the marginal probability of a certain node in the graph being 

occupied by an A individual, the corresponding colours between solid lines and circles represent the same node on the graph. The stochastic process is simulated 10,0 0 0 

times from the same initial condition until fixation of either the mutant or resident strategy. The probabilities represent, for a given node at a given time, the proportion of 

simulations for which that node is a mutant. Method 1 is numerically integrated to approximate the probability of each node being a mutant at a given time. This is the 

constant fitness case where A individuals have fitness 1.2 and B individuals have fitness 1. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Table 1 

The fixation probability starting from a single mutant A individual placed on a specific node on single realisa- 

tions of random graphs. To evaluate the fixation probability using the approximate methods, we solved them 

until a steady state was reached and calculated the average probability of a node being a mutant (the methods 

do not always give exactly the same value for each node). We compare this to the fixation probability as calcu- 

lated by the proportion of 10,0 0 0 stochastic simulations in which the type A individuals fixated. Constant fitness 

is assumed, where A individuals have fitness 1.2 and B individuals have fitness 1. All graphs were generated to 

have an average degree of 5. 

Graph Fixation probability 

Method 1 Method 2 Method 3 Method 4 Simulation 

20 node Erd ̋os–Réyni–initial degree 10 0.0193 0.0604 1.0 0 0 0 0.0654 0.0784 

20 node Erd ̋os–Réyni–initial degree 2 0.1055 0.3301 1.0 0 0 0 0.2874 0.3098 

20 node Erd ̋os–Réyni–initial degree 5 0.0424 0.1326 1.0 0 0 0 0.1343 0.1575 

20 node scale-free–initial degree 10 0.0190 0.0594 1.0 0 0 0 0.0681 0.0783 

20 node scale-free–initial degree 2 0.0945 0.2956 1.0 0 0 0 0.3004 0.3153 

20 node scale-free–initial degree 5 0.0475 0.1486 1.0 0 0 0 0.1490 0.1606 

20 node k -regular 0.0547 0.1711 1.0 0 0 0 0.1516 0.1722 

35 node Erd ̋os–Réyni–initial degree 10 0.0126 0.0671 1.0 0 0 0 0.0782 0.0940 

35 node Erd ̋os–Réyni–initial degree 2 0.0628 0.3346 1.0 0 0 0 0.3255 0.3191 

35 node Erd ̋os–Réyni–initial degree 5 0.0315 0.1679 1.0 0 0 0 0.1572 0.1730 

35 node scale-free–initial degree 10 0.0089 0.0474 1.0 0 0 0 0.0844 0.0724 

35 node scale-free–initial degree 2 0.04 4 4 0.2366 1.0 0 0 0 0.4743 0.2929 

35 node scale-free–initial degree 5 0.0223 0.1188 1.0 0 0 0 0.1950 0.1546 

35 node k -regular 0.0313 0.1668 1.0 0 0 0 0.1631 0.1750 

50 node Erd ̋os–Réyni–initial degree 10 0.0083 0.0630 1.0 0 0 0 0.0787 0.0820 

50 node Erd ̋os–Réyni–initial degree 2 0.0332 0.2521 1.0 0 0 0 0.4175 0.3060 

50 node Erd ̋os–Réyni–initial degree 5 0.0272 0.2065 1.0 0 0 0 0.2275 0.2120 

50 node scale-free–initial degree 10 0.0056 0.0425 1.0 0 0 0 0.0872 0.0660 

50 node scale-free–initial degree 2 0.0307 0.2331 1.0 0 0 0 0.3912 0.2840 

50 node scale-free–initial degree 5 0.0154 0.1169 1.0 0 0 0 0.1868 0.1530 

50 node k -regular 0.0219 0.1667 1.0 0 0 0 0.1533 0.1640 
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o test larger population sizes. When the population size is in-

reased, this method fails to accurately predict the fixation prob-

bility, appearing to tend towards zero with increasing population

ize (for example, see Table 1 , where it can be seen that increas-

ng the size from 20 to 35 to 50 moves the solution closer to zero

n random graphs). To account for this, we use Method 2 (scaled

nconditioned fitness model). 

Method 2 represents a scaling of the approximation from

ethod 1 where the scaling is derived analytically from the fix-

tion probability for a complete graph. Consequently, it makes

ense to only consider the approximation of the fixation proba-

ility rather than the whole time series. Predictions of the fixa-

ion probability of a single A individual when placed on various

raphs using the different approximation methods are shown in
ables 1 and 2 . We first observe that the accuracy of the method

oes not significantly differ for different population sizes, so this

vercomes the issue with Method 1. For both the Erd ̋os-Rényi

 Erd ̋os and Rényi, 1960 ) and scale-free random graphs, we start the

rocess in three different initial conditions; a high-degree initial

ode, a low-degree initial node and an average degree initial node.

his is because under the dynamics of the invasion process, a low

egree node is known to act as an amplifier of selection and a high

egree node is known to act as a suppressor ( Antal et al., 2006;

hakarian et al., 2013 ), and so we potentially expect different per-

ormance of the methods when initiated from nodes of different

egree. In the k -regular random graph, since all nodes have equal

egree, we only consider results for one initial node. In addition

o the random graphs ( Table 2 ), we also investigate a star graph,
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Table 2 

The fixation probability starting from a single mutant A individual placed on a specific node on the example graphs. 

To evaluate the fixation probability using the approximate methods, we solved them until a steady state was reached 

and calculated the average probability of a node being a mutant (the methods do not always give exactly the same 

value for each node). We compare this to the fixation probability as calculated by the proportion of 10,0 0 0 stochastic 

simulations in which the type A individuals fixated. Constant fitness is assumed, where A individuals have fitness 1.2 

and B individuals have fitness 1. 

Graph Fixation probability 

Method 1 Method 2 Method 3 Method 4 Simulation 

20 node star–initial degree 1 0.0574 0.1796 1.0 0 0 0 0.3801 0.2895 

20 node star–initial degree 19 0.0030 0.0094 1.0 0 0 0 0.0217 0.0184 

25 node square lattice–initial degree 2 0.0662 0.2546 1.0 0 0 0 0.1532 0.2388 

25 node square lattice–initial degree 4 0.0332 0.1277 1.0 0 0 0 0.0780 0.14 4 4 

34 node Zachary’s karate club–initial degree 2 0.0482 0.2498 1.0 0 0 0 0.4285 0.3160 

34 node Zachary’s karate club–initial degree 16 0.0061 0.0314 1.0 0 0 0 0.0461 0.0450 

36 node star–initial degree 1 0.0322 0.1717 1.0 0 0 0 1.0 0 0 0 0.2971 

36 node star–initial degree 35 0.0 0 09 0.0051 1.0 0 0 0 0.0209 0.0090 

36 node square lattice–initial degree 2 0.0483 0.2646 1.0 0 0 0 0.1363 0.2462 

36 node square lattice–initial degree 4 0.0242 0.1326 1.0 0 0 0 0.0689 0.1385 

49 node star–initial degree 1 0.0224 0.1697 1.0 0 0 0 1.0 0 0 0 0.3070 

49 node star–initial degree 48 0.0 0 05 0.0035 1.0 0 0 0 0.0260 0.0059 

49 node square lattice–initial degree 2 0.0367 0.2734 1.0 0 0 0 0.1241 0.2494 

49 node square lattice–initial degree 4 0.0184 0.1369 1.0 0 0 0 0.0609 0.1477 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

T  

a  

l  

d  

i  

i  

a  

a  

s  

a  

4  

l  

c  

c  

w  

t  

t  

i  

w  

a

 

p  

t  

i  

w  

p  

f  

r  

n

4

 

b  

t  

M  

1  

t  

i

 

a  
a square lattice and Zacharys karate club ( Zachary, 1977 ), which

is an example of a real-world network consisting of 34 individu-

als and average degree of 4.6. On these graphs we initiate the dy-

namics from a high degree and low degree node. We observe that

Method 2 performs best on the k -regular random graph and that

generally it performs very well on any graph that does not strongly

amplify or suppress the average fixation probability compared to

the Moran probability, such as the Erd ̋os–Réyni random graph and

the square lattice. However on graphs which amplify (or suppress)

average fixation probability, such as the scale-free random graph,

the approximation becomes less accurate. On the star graph, which

significantly amplifies the fixation probability, the approximation is

very far from the true value. This is unsurprising because Method

2 is constructed to give the exact fixation probability on complete

graphs. For Zachary’s karate club, Method 2 provides a reasonable

approximation, but does not capture the strong amplifying effect

of the low degree node. 

In order to improve upon the accuracy of Method 2 we devel-

oped the contact conditioning model to retain more information

from the system. The contact conditioning model yields a hierar-

chy which offers no useful reduction in computational complex-

ity, compared to the master equation (4) . Therefore we developed

Method 3 (open and closed triples approximation), analogous to

closures used in epidemiology. However, through numerical evalu-

ation we found that this only yields good approximations for sim-

ple graphs, such as line graphs and complete graphs for which we

have exact analytic results in any case. On other graphs, the fixa-

tion probability approximation is equal to 1 ( Tables 1 and 2 ) for an

advantageous mutant of type A , and so this method is not particu-

larly informative. 

While the specific reason for this convergence to 1 (or 0 if

the mutant is disadvantageous) is unclear, it seems likely that it

is associated with graph-wide correlations caused by having two

absorbing states. To address this we developed Method 4 (Kirk-

wood closure only). Through testing multiple graphs we observe

( Tables 1 and 2 ) that the best results are obtained on Erd ̋os–Réyni

and regular random graphs, with some accuracy lost on scale-free

random graphs. We observe that on the 20 node star graph, in-

accuracies result in a significantly amplified approximation when

initiated on the low degree leaf nodes, and for the 35 and 50 node

star graphs the approximations initiated on the leaf node are close

to 1. This is potentially due to the time to convergence on large

stars being very long, which allows these inaccuracies to com-
 p  
ound so that the system converges to this uninformative solution.

his failure does not occur on these stars if we reduce the fitness

dvantage, suggesting that as the size of the star becomes very

arge the method will only work under weak selection. On ran-

om graphs, which do not significantly amplify fixation, this issue

s also observed, but only when the fitness advantage of one type

s sufficiently high. This issue starts when the fitness advantage is

t about 50%, below which the solution converges to intermedi-

te values on all random graphs tested. In addition to testing the

tar graph as an example of an extreme structure, we also tested

 square lattice of various sizes, on which we find that Method

 significantly underestimates the fixation probability. The square

attice is considered as an extreme scenario for this method be-

ause it contains many short cycles of order four, for which the

orrelations are not explicitly captured by the Kirkwood closure,

hich describes triples. Presenting the star graph and square lat-

ice therefore illustrate the cases where this method is expected

o perform least well. Testing Zachary’s karate club ( Zachary, 1977 )

llustrates how this method might perform on a real world net-

ork. On this graph we find that Method 4 provides a reasonable

pproximation to the fixation probabilities ( Table 2 ). 

We also observed, as shown in Tables 1 and 2 , that Method 4

erforms most accurately when initiated on a node with average

o high degree. In addition to approximating the fixation probabil-

ty, Method 4 can be used to approximate the dynamics across the

hole time series, and in particular provides a very accurate ap-

roximation to the initial dynamics for all graphs tested (see Fig. 2

or results on two 20 node graphs as an illustration). This accu-

acy holds even for the large star graphs when initiated on the leaf

ode, for which the final approximation was close to 1. 

.2. The Hawk–Dove game with the contact conditioning model 

So far, we have considered the constant fitness case. Here we

riefly consider the effectiveness of Method 4 when applied to

he Hawk–Dove game under the dynamics of the invasion process.

ethod 2 relies on finding a suitable scaling factor, whilst Methods

 and 3 were both observed in Section 4.1 to yield non informa-

ive results on the type of graphs we test here and so we do not

nvestigate these methods in this context. 

The Hawk–Dove game ( Maynard Smith, 1982; Maynard Smith

nd Price, 1973 ) represents a simple model of how animals com-

ete over food, territory and other resources. Animals interact over
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Fig. 2. Comparison of the early dynamics of the marginal probabilities for each node on the graph being a mutant A plotted against time as given by Method 4 (solid 

lines) versus stochastic simulation (dashed lines), when applied to the invasion process on (a) an Erd ̋os–Réyni random graph with 20 nodes and average degree of 4 and 

(b) a scale-free graph with 20 nodes and average degree 4, both initiated with a single A individual in a chosen node. Each line represents the marginal probability of a 

certain node in the graph being occupied by an A individual, the corresponding colours between the solid lines and dashed lines represent the same node on the graphs. 

The discrete-time stochastic process was simulated 10,0 0 0 times from the same initial condition, from which we obtained the probability for each node being a mutant at 

a given time as the proportion of simulations for which that node is a mutant. Method 4 was numerically integrated to approximate the probability of each node being a 

mutant at a given time. We use a dashed line with interpolation between integer time points for the discrete-time system to enable easier comparison of the dynamics. The 

game considered is the constant fitness case where the A individuals have fitness 1.2 and the B individuals have fitness 1. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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 resource with either an aggressive or non-aggressive strategy,

hich we call the Hawk and Dove strategies, respectively. We let

he resource yield a payoff V which both players try to obtain.

hen two Hawks interact, they fight over the resource with one

aking the payoff V , and the other accruing a cost C from the fight,

nd therefore the average payoff received by a Hawk interacting

ith a Hawk is (V − C) / 2 . When a Hawk meets a Dove, the Dove

etreats without a fight receiving a payoff 0, allowing the Hawk

o take the whole resource, receiving payoff V . If two Doves meet,

hey either share the resource, or each takes the whole reward

ithout a fight with probability 1/2, so that the average payoff

eceived by a Dove from this interaction is V /2. Therefore, in this

ame the payoff matrix is given by 

H D 

H 

D 

(
(V − C) / 2 V 

0 V/ 2 

)
. 

Fig. 3 illustrates results from this game on a scale-free graph,

n Erd ̋os–Réyni random graph, a k -regular random graph and a

quare lattice. We consider two cases; firstly where the fight cost

s low using parameters f back = 2 , w = 1 , V = 1 and C = 1 . 5 , and

econdly where the fight cost is high using parameters f back = 2 ,

 = 1 , V = 1 and C = 4 . In each case we compare the results of

ethod 4 to stochastic simulation, initiated with a population con-

isting of half Hawks and half Doves to minimise the chance of

arly extinction events. We observe that when the cost is low the

pproximation is reasonable, with all 3 random graphs providing a

ood approximation, and some accuracy lost on the square lattice.

owever, as we increase the cost, C , we observe that the approx-

mation does not perform well. This is because the contact con-

itioning assumption seems to amplify the strength of the Hawk

trategy, with the rate at which an individual becomes a Hawk un-

er this assumption being greater than it will be in the exact case.

. Discussion 

Evolutionary graph theory ( Lieberman et al., 2005 ) was intro-

uced as a way of adding spatial structure to the stochastic evo-

utionary dynamics considered by Moran (1958) . Analytic results

n these stochastic dynamics focused on idealised cases of simple

raphs ( Antal et al., 2006; Broom et al., 2010 ). In order to study

rbitrary graphs, methods usually follow certain restrictions, such
s focusing on the evolutionary process under weak selection or

nfinitely large populations ( Allen et al., 2017; Ohtsuki et al., 2006;

hong et al., 2013 ). Alternatively, individual-based stochastic simu-

ations give very accurate results but are limited by computational

ime ( Barbosa et al., 2010; Maciejewski et al., 2014 ). 

The focus of this work has been the attempt to develop a

eneral method that can approximate the stochastic dynamics

n a wide range of graphs by adapting methods from statisti-

al physics and epidemiology. In doing this, we have provided a

erivation of existing (homogenised) pair-approximation models 

rom the master equation ( Hadjichrysanthou et al., 2012; Hauert

nd Szabó, 2005; Morita, 2008; Pena et al., 2009; Szabó and Fath,

007 ) ( Section 3.1 ). Additionally, we also derived an individual-

evel model which has the neutral drift model ( Shakarian et al.,

013 ) as a special case ( Section 3.2 ). 

We start with a representation of the stochastic evolutionary

rocess using a master equation ( Hindersin et al., 2016 ), from

hich we develop exact equations describing individual node

robabilities. We then apply ideas for approximating the master

quation based around developing hierarchies of moment equa-

ions. Such methods were originally developed in physics ( Born

nd Green, 1946; Kirkwood, 1947 ) and later used in epidemiology

nd ecology ( Hauert and Szabó, 2005; Keeling, 1999; Pellis et al.,

015; Sharkey et al., 2015; Sharkey and Wilkinson, 2015 ). The key

dea behind these techniques is to write deterministic differential

quations to describe how the probabilities of the states of indi-

iduals and pairs change over time. 

We find that a major difference between evolutionary graph

heory and other areas in which these methods have been applied

s that here, event probabilities depend on the states of all indi-

iduals in the population. As a result, we do not obtain a pre-

ise BBGKY-like hierarchy, which relies on neighbouring particle–

article interactions. Another difference is that in evolutionary dy-

amics, we have two absorbing states, which potentially leads to

ystem-wide correlations that cannot be captured on a local level.

t is worth noting that some alternative nearest-neighbour inter-

ction evolutionary models, which may yield such a hierarchy di-

ectly, have also been considered ( Traulsen et al., 2005 ); however,

n this paper we have restricted our attention to the classic evolu-

ionary graph theory dynamics. 

In spite of these differences, some progress could be made to-

ards approximating evolutionary dynamics. The first step was to
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Fig. 3. Comparison of the expected number of individuals playing the Hawk strategy in a Hawk–Dove game plotted against time as given by Method 4 versus stochastic 

simulation, when played on (a) a scale-free graph (b) an Erd ̋os–Réyni graph (c) a k -regular random graph and (d) a 7 by 7 square lattice. Except for the square lattice, each 

graph has 50 nodes and an average degree of approximately 4. The solid lines represent the solution of Method 4 and the circles represent stochastic simulations of the 

discrete-time system, evaluated every 10 0 0 time steps, in the case where C = 1 . 5 . The dashed lines represent the solution of Method 4 and the crosses represent stochastic 

simulations of the discrete-time system, evaluated every 10 0 0 time steps, in the case where C = 4 . To generate the stochastic simulation results the discrete-time stochastic 

process was simulated 10,0 0 0 times from the same well mixed initial condition until fixation was reached. By taking the average number of Hawks at each time step we 

determined the expected number of Hawks at a given time. Method 4 is numerically integrated to give the probability of each node being a Hawk at a given time, from 

which we obtained the expected number of Hawks by summing over all nodes. 
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write down equations for the rate of change of the state proba-

bilities for individual nodes ( Theorem 2.1 ). This led to equations

which required conditioning against the probability of the state

of the entire system, and therefore required the development of

methods to simplify this. Motivated by an objective of deriving ho-

mogenised pair-approximation models used in the literature, our

first approach was to modify the replacement rate by removing

the normalisation by the total fitness ( Section 3.1 ). This has the

effect of altering the speed at which events occur but does not al-

ter the final fixation probability. The resulting system of equations

describes individual and pair probabilities in terms of the prob-

ability of their entire neighbourhoods. This could provide a basis

to accurately approximate the fixation probability by finding ap-

propriate moment closures to express the neighbourhoods as func-

tions of individual and pair probabilities. However, this is difficult

to implement and the number of equations increases exponentially

with the maximum degree of the graph, making it infeasible in

general without further approximation. By making further assump-

tions about the graph such that all individuals and pairs of a given

type are identical and interchangeable, we were able to derive the

homogenised pair approximation models ( Hadjichrysanthou et al.,

2012; Morita, 2008 ), which have been shown to give interesting

results for various evolutionary games. 

To obtain an approximation which is numerically feasible in

general, we first ignored any conditioning, similar to a model

in Szabó and Fath (2007) which uses this assumption to con-

struct a population level approximation. The resulting model equa-

tion (11) was found to work well for small graphs and contains the

exact neutral drift model ( Shakarian et al., 2013 ) as a special case.

However, as population size increases, the predictions for the fix-
tion probability of a single mutant individual were observed to

end to zero. By solving this system for the fixation probability

n a complete graph, we obtained a scaling factor which enabled

his model to give a reasonable prediction of fixation probability

rom a given initial condition with a single mutant individual on

ny graph. Due to the construction of this method, it will perform

est on graphs which yield average fixation probability close to the

oran probability. 

To generate a more accurate model and one which does not

equire an artificial scaling factor, we investigated models with

ome level of conditioning ( Section 3.3 ). Conditioning against a sin-

le node results in the same level of complexity as conditioning

gainst pairs of nodes and so we elected to produce results for the

atter. In this case, we conditioned against the pair of nodes di-

ectly involved in the replacement event. However, in order to use

his model on large graphs, we require the use of moment closure

pproximations. We found that the standard method used in other

reas with different closures for open and closed triples ( Keeling,

999; Sharkey, 2008 ) was not effective here because while it pro-

ides very good results on simple structures, on most graphs it

redicts fixation probabilities of either zero or one. It seems likely

hat this is caused by neglecting important graph-wide correlations

cross open triples associated with the two absorbing states of the

ystem. 

By using the Kirkwood closure method for all triples, including

pen ones, we obtained a method which provides informative pre-

ictions on the majority of graphs tested. We investigated square

attices and star-type graphs, as these are two extreme population

tructures which we use as worst case scenarios. The lattice is ex-

reme as moment closure methods do not perform well on such
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raphs. The star is extreme because this type of graph significantly

mplifies fixation probability, which seems to amplify the accumu-

ated error in the approximation methods. For all three types of

andom graph considered, and Zachary’s karate club, this method

rovides a reasonable approximation to the fixation probability.

hen the degree of the initial mutant node is not low the approx-

mation can be very accurate. However, if we initiate on a low de-

ree node, the method performs less well, potentially due to such

odes amplifying the fixation probability in the invasion process,

gain leading to inaccuracies in the solution being amplified. De-

pite potential inaccuracies in the fixation probability approxima-

ion, we observe that this method is particularly accurate for the

arly-time behaviour of these systems for any graph, and there-

ore can give interesting insights into this behaviour. The method is

omputationally feasible for reasonably large N , however, the com-

utational complexity scales with N 

2 rather than with N which is

ore typical for epidemic models. Nevertheless, this still repre-

ents a significant reduction over the master equation which scales

ith 2 N . 

The novelty of this work is the adaption of well-established

echniques from other fields to the study of evolutionary dynam-

cs at the level of individual nodes. The contribution is two-fold.

irstly we have obtained insight into existing models by deriving

hem from the master equation. Secondly, the advantage of look-

ng at node-level quantities rather than a homogenised model is

hat we gain the ability to compare dynamics from different ini-

ial conditions on the same graph, which is not present in many

ther approximation methods. Furthermore, the initial dynamics of

ethod 4 are very accurate ( Fig. 2 ), allowing us to see how the

robability of each node being a mutant flows through the pop-

lation. Although we chose to work in continuous time here and

xamples study the invasion process, similar methods could be fol-

owed directly in discrete-time and the methods are applicable to

ny Markovian update rule. 
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ppendix A. Proof of Theorem 2.1 

roof. By total probability rules we have that 

d P (A 

t 
{ i } ) 

dt 
= 

d 

[ ∑ 

X V\{ i } 
P (A 

t 
{ i } X 

t 
V \{ i } ) 

]
dt 

= 

∑ 

X V\{ i } 

d P (A 

t 
{ i } X 

t 
V \{ i } ) 

dt 
, (A.1) 

here X V \ { i } is the state of the nodes in the system not including i .

Consider a set state X V \ { i } of the remaining nodes. The rate of

hange in the full system state probability P (A 

t { i } X t V \{ i } ) is given by

d P (A 

t 
{ i } X 

t 
V \{ i } ) 

dt 
= 

∑ 

Y V\{ i } 

P (A 

t 
{ i } Y 

t 
V \{ i } ) χ(A 

t 
{ i } Y 

t 
V \{ i } → A 

t 
{ i } X 

t 
V \{ i } ) 

+ P (B 

t 
{ i } X 

t 
V \{ i } ) χ(B 

t 
{ i } X 

t 
V \{ i } → A 

t 
{ i } X 

t 
V \{ i } ) 

−
∑ 

Y V\{ i } 

P (A 

t 
{ i } X 

t 
V \{ i } ) χ(A 

t 
{ i } X 

t 
V \{ i } → A 

t 
{ i } Y 

t 
V \{ i } ) 
− P (A 

t 
{ i } X 

t 
V \{ i } ) χ(A 

t 
{ i } X 

t 
V \{ i } → B 

t 
{ i } X 

t 
V \{ i } ) , (A.2) 

here χ(A 

t { i } X t V \{ i } → B t { i } X t V \{ i } ) is the rate at which the system

oves from state A 

t { i } X t V \{ i } to state B t { i } X t V \{ i } . 
Consider the terms which involve changing the state of the in-

ividual in node i in equation (A.2) , by expanding the rate into the

um of separate event rates we obtain 

 (B 

t 
{ i } X 

t 
V \{ i } ) χ(B 

t 
{ i } X 

t 
V \{ i } → A 

t 
{ i } X 

t 
V \{ i } ) 

= P (B 

t 
{ i } X 

t 
V \{ i } ) 

N ∑ 

j=1 

G i j χ(�t 
j→ i | B 

t 
{ i } X 

t 
V \{ i } ) 1 (A t { j} ∈ X t V\{ i } ) , 

nd 

 (A 

t 
{ i } X 

t 
V \{ i } ) χ(A 

t 
{ i } X 

t 
V \{ i } → B 

t 
{ i } X 

t 
V \{ i } ) 

= P (A 

t 
{ i } X 

t 
V \{ i } ) 

N ∑ 

j=1 

G i j χ(�t 
j→ i | A 

t 
{ i } X 

t 
V \{ i } ) 1 (B t { j} ∈ X t V\{ i } ) , 

here 1 (B t { j} ∈ X t V\{ i } ) 
is an indicator function on the event B t { j} being

art the event X t 
V \{ i } . That is, the state of node j in the state X is

ype B . The χ(�t 
j→ i 

| A 

t { i } X t V \{ i } ) term is the rate at which the indi-

idual in node j replaces the individual in node i , given that the

ystem is in state A 

t { i } X t V \{ i } , as defined in Definition 2.1 . Rearrang-

ng these and substituting into equation (A.2) gives 

d P (A 

t 
{ i } X 

t 
V \{ i } ) 

dt 
= 

N ∑ 

j=1 

G i j P (B 

t 
{ i } X 

t 
V \{ i } ) χ(�t 

j→ i | B 

t 
{ i } X 

t 
V \{ i } ) 1 (A t { j} ∈ X t V\{ i } ) 

−
N ∑ 

j=1 

G i j P (A 

t 
{ i } X 

t 
V \{ i } ) χ(�t 

j→ i | A 

t 
{ i } X 

t 
V \{ i } ) 1 (B t { j} ∈ X t V\{ i } ) 

+ 

∑ 

Y V\{ i } 

P (A 

t 
{ i } Y 

t 
V \{ i } ) χ(A 

t 
{ i } Y 

t 
V \{ i } → A 

t 
{ i } X 

t 
V \{ i } ) 

−
∑ 

Y V\{ i } 

P (A 

t 
{ i } X 

t 
V \{ i } ) χ(A 

t 
{ i } X 

t 
V \{ i } → A 

t 
{ i } Y 

t 
V \{ i } ) . 

y substituting this into equation (A.1) we obtain 

d P (A 

t 
{ i } ) 

dt 
= 

∑ 

X V\{ i } 

N ∑ 

j=1 

G i j P (B 

t 
{ i } X 

t 
V \{ i } ) χ(�t 

j→ i | B 

t 
{ i } X 

t 
V \{ i } ) 1 (A t { j} ∈ X t V\{ i } ) 

−
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X V\{ i } 

N ∑ 

j=1 

G i j P (A 

t 
{ i } X 

t 
V \{ i } ) χ(�t 

j→ i | A 

t 
{ i } X 

t 
V \{ i } ) 1 (B t { j} ∈ X t V\{ i } ) 
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X V\{ i } 
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Y V\{ i } 

P (A 
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{ i } Y 
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V \{ i } ) χ(A 
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{ i } Y 
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V \{ i } → A 
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V \{ i } ) 

−
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P (A 
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{ i } X 
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V \{ i } ) χ(A 
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{ i } X 

t 
V \{ i } → A 

t 
{ i } Y 

t 
V \{ i } ) . 

learly the last two sums cancel, so we can simplify this to 

d P (A 

t 
{ i } ) 

dt 
= 

N ∑ 

j=1 

∑ 

X V\{ i, j} 

G i j P (B 

t 
{ i } A 

t 
{ j} X 

t 
V \{ i, j} ) χ(�t 

j→ i | B 

t 
{ i } A 

t 
{ j} X 

t 
V \{ i, j} ) 

−
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X V\{ i, j} 

G i j P (A 
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{ i } B 
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{ j} X 
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V \{ i, j} ) χ(�t 

j→ i | A 

t 
{ i } B 

t 
{ j} X 

t 
V \{ i, j} ) , 

s required. �

ppendix B. Derivation of the scaling factor equation (12) 

roof. Consider a system with rate of change given by 

d ̄P (A 

t 
{ i } ) 

dt 
= 

N ∑ 

j=1 

G i j ̄P (A 

t 
{ j} ) χ(�t 

j→ i ) −
N ∑ 

j=1 

G i j ̄P (A 

t 
{ i } ) χ(�t 

j→ i ) . 
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Since we are interested in the complete graph, we have that G i j =
1 for j � = i , and G i,i = 0 . Let A c denote the average probability that a

node is of type A on the complete graph at time t . That is 

A c (t) = 

1 

N 

N ∑ 

j=1 

P̄ (A 

t 
{ j} ) = 

S 

N 

. 

Since we are considering constant fitness we have 

χ(�t 
j→ i ) = 

P̄ (A 

t 
{ j} )(r − 1) + 1 

N ∑ 

k =1 

P̄ (A 

t 
{ k } )(r − 1) + 1 

= 

P̄ (A 

t 
{ j} )(r − 1) + 1 

N + (r − 1) S 
, 

which gives us 

dS 

dt 
= 

N ∑ 

i =1 

d ̄P (A 

t 
{ i } ) 

dt 
= 

∑ N 
i, j=1 ( ̄P (A 

t 
{ j} ) − P̄ (A 

t 
{ i } ))( ̄P (A 

t 
{ j} )(r − 1) + 1)

N + (r − 1) S 

Writing G = 

∑ N 
i, j=1 ( ̄P (A 

t { j} ) − P̄ (A 

t { i } )) ̄P (A 

t { j} ) , and H =∑ N 
i, j=1 ( ̄P (A 

t { j} ) − P̄ (A 

t { i } )) we have 

dS 

dt 
= 

(r − 1) G + H 

N + (r − 1) S 
. 

Clearly H = 0 , so we obtain 

dS 

dt 
= 

(r − 1) G 

N + (r − 1) S 
. 

Note that 
∑ N 

i, j=1 ( ̄P (A 

t { j} ) − P̄ (A 

t { i } )) 2 = 

∑ N 
i, j=1 P̄ (A 

t { j} ) 2 + P̄ (A 

t { i } ) 2 −
2 ̄P (A 

t { j} ) ̄P (A 

t { i } ) = 2 G, so that 

dG 

dt 
= 

1 

2 

d 

dt 

( 

N ∑ 

i, j=1 

( ̄P (A 

t 
{ j} ) − P̄ (A 

t 
{ i } )) 

2 

) 

= 

N ∑ 

i, j=1 

( ̄P (A 

t 
{ j} ) − P̄ (A 

t 
{ i } )) 

d( ̄P (A 

t 
{ j} ) − P̄ (A 

t 
{ i } )) 

dt 
. 

Considering the last term on the right hand side we have 

d( ̄P (A 

t 
{ i } ) − P̄ (A 

t 
{ j} )) 

dt 
= 

1 

N + (r − 1) S 

N ∑ 

k =1 

(
P̄ (A 

t 
{ k } )( ̄P (A k ) 

t − P̄ (A 

t 
{ i } ))

+ P̄ (A 

t 
{ k } )( ̄P (A 

t 
{ j} ) − P̄ (A 

t 
{ k } )) 

)
(r − 1) 

+ ( ̄P (A 

t 
{ k } ) − P̄ (A 

t 
{ i } )) + ( ̄P (A 

t 
{ j} ) − P̄ (A 

t 
{ k } )) 

= 

1 

N + (r − 1) S 

∑ 

k =1 

P̄ (A 

t 
{ k } )( ̄P (A 

t 
{ j} ) − P̄ (A 

t 
{ i } )) 

× (r − 1) + ( ̄P (A 

t 
{ j} ) − P̄ (A 

t 
{ i } )) 

= 

( ̄P (A 

t 
{ j} ) − P̄ (A 

t 
{ i } )) 

(
(r − 1) S + N 

)
N + (r − 1) S 

= −( ̄P (A 

t 
{ i } ) − P̄ (A 

t 
{ j} )) . 

Thus, 

dG 

dt 
= 

N ∑ 

i, j=1 

( ̄P (A t { j} ) − P̄ (A t { i } )) 
2 = −2 G ⇒ G = Ae −2 t = (N − m ) me −2 t , 

since G (0) = (N − m ) m . Therefore we have 

dS 

dt 
= 

(r − 1)(N − m ) me −2 t 

N + (r − 1) S 

⇒ NS + 

r − 1 

2 

S 2 = −1 

2 

(r − 1)(N − m ) me −2 t + C. 

At t = 0 we have S = 

∑ 

P̄ (A 

t { j} ) = m, which gives 

 = Nm + 

( r − 1 

)
Nm = Nm 

( r + 1 

)
, 
2 2 
nd so we can solve to obtain 

 = 

(
− N ±

√ 

N 

2 + 4 

r−1 
2 

(
Nm 

r+1 
2 

− (N − m ) m 

r−1 
2 

e −2 t 
))

r − 1 

. 

nly the positive root makes sense, so we obtain 

 c = 

1 

r − 1 

(
− 1 + 

√ 

1 + 

m (r 2 − 1) 

N 

− (r − 1) 2 
(N − m ) m 

N 

2 
e −2 t 

)
. 

hus, we have lim 

t→∞ 

A c (t) = 

1 
r−1 

(
− 1 + 

√ 

1 + 

m (r 2 −1) 
N 

)
. �

upplementary material 

Supplementary MATLAB code associated with this article can be

ound, in the online version, at doi: 10.1016/j.jtbi.2019.02.009 . 
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