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A novel word-agnostic gesture-typing continuous authentication scheme for mobile
devices

Max Smith-Creasey, Muttukrishnan Rajarajan

School of Mathematics, Computer Science and Engineering, City, University of London, London, United Kingdom

Abstract

In this study we produce a new continuous authentication scheme for gesture-typing on mobile devices. Our scheme is
the first scheme that authenticates gesture-typing interactions in a word-agnostic format. The scheme relies on groupings
of features extracted from the word gesture after it has been reduced to parts common to all gestures. We show that
movement sensors are also important in differentiating between users. We describe the feature extraction processes and
analyse our proposed feature set. The unique process of our authentication scheme is presented and described. We collect
our own gesture typing dataset including data collected during sitting, standing and walking activities for realism. We
test our features against state-of-the-art touch-screen interaction features and compare feature extraction times on real
mobile devices. Our scheme authenticates users with an equal error rate of 3.58% for a single word-gesture. The equal
error rate is reduced to 0.81% when 3 word-gestures are used to authenticate.

Keywords: continuous authentication, gesture-typing, biometrics, mobile security

1. Introduction

Mobile devices are one of the most popular technolo-
gies in the world. Until recently, authentication techniques
used on mobile devices were based on a token of what the
user knows, such as a PIN, password or gesture pattern.
However, attacks to bypass the tokens (e.g.: via smudge
attacks [3]) have been developed and weakened such ap-
proaches.

Most devices now implement a physiological biometric
such as fingerprint scanning to authenticate the user. Nev-
ertheless, such biometrics can be captured and replayed to
gain device access [6]. Furthermore, a problem with all
of these techniques is that they provide one-time authen-
tication. Once a user has authenticated themselves the
device makes no more authentication attempts and leaves
the device open to impostor use.

To combat the weaknesses with the discussed authen-
tication methods, researchers have developed continuous
authentication (or active authentication) techniques. Such
techniques continuously collect biometric data to build a
profile of the user. Future samples of data from the device
can be compared to this profile to produce a confidence
score such that a decision may be made to permit access
to the device.

Many schemes have been proposed to continuously au-
thenticate users based on biometrics such as touch ges-
tures [11], facial features [9] and combinations of different
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biometrics [26]. However, one of the most popular meth-
ods is to continuously authenticate is to use keyboard in-
teractions [12]. Such studies use keystrokes because they
occur frequently and stem from an existing body of sim-
ilar PC-based schemes [4]. Whist there has been consid-
erable research into keystroke analysis, there has been no
extensive investigation into authenticating gesture typing
interactions.

Gesture typing provides users an alternative way to in-
put text via an on-screen keyboard by swiping their finger
across letters to form a word. We find that, despite gesture
typing existing on most mobile devices, there is no state-
of-the-art continuous authentication scheme to ensure the
user is genuine. The research in this area is currently mini-
mal and lacks real-world practicality, e.g.: by requiring the
scheme to be trained on a word before it can be authen-
ticated [5]. In [23] the authors investigate gesture-typing
but focus on word identification rather than providing an
authentication scheme.

The main focus of this paper is to address the need we
have identified for a scheme that robustly continuously au-
thenticates gesture typing behaviour. We hypothesize that
a novel set of features customised for gesture-typing can be
extracted from word-gestures to identify users in a word-
agnostic manner. We posit that this can yield better re-
sults than current state-of-the-art features. In addition to
touch-features we also investigate features extracted from
the movement sensor readings of the mobile device during
gesture typing. Our investigation also considers different
user activities during which gesture typing may be per-
formed. Therefore, our contributions are threefold:

Preprint submitted to Elsevier June 6, 2018



• A novel continuous authentication scheme that au-
thenticates gesture-typing interactions. Unlike other
schemes, we show that our scheme is word-agnostic
and authenticates based on features only.

• We present a new feature set for gesture-typing inter-
actions that incorporates unique aspects of gesture-
typing such as redirections and pauses. We show
our feature set better authenticates users compared
to state-of-the-art features. We also show computa-
tional time requirements on real mobile devices.

• We test the effect of using gesture-typing data col-
lected during three activities (sitting, standing and
walking). We show and discuss the impact of activity
on the different feature groups.

The remainder of this paper is organized as follows.
Section 2 explores the work related to our scheme and de-
scribes the limitations of the research thus far. Section 3
presents the general concept and unique architecture for
our scheme and describes the new dataset we have pro-
duced. Section 4 describes the novel feature groupings we
create and use within our scheme. Section 5 discusses the
experiments and results from our scheme to show its ef-
fectiveness. Section 6 concludes the research and discusses
the potential future work that may be derived from our
scheme.

2. Related Work

One of the most popular ways to continuously authen-
ticate users on mobile devices is via keyboard interac-
tions. Early research into the feasibility of using keyboard
interactions was realised in [7]. The authors harnessed
keystroke latency and hold-time characteristics to differ-
entiate users. Their approach achieved equal error rates
(EER) of 12.8%.

In [12] the authors present a sensor enhanced scheme
using accelerometer and gyroscope sensor collected during
keystrokes. The use of movement sensor data improved au-
thentication accuracy. However, the scheme is limited in
that it only authenticates known words (e.g.: passwords)
and is therefore not continuous. In [24] the authors present
a scheme for keystroke and tap based continuous authen-
tication. Their scheme identified a unique set of features
also based on accelerometer and gyroscope data. Their
scheme produces an EER of 7.16%. The researchers in [8]
collect touch-gesture features and accelerometer data dur-
ing different activities (e.g.: sitting). The authors found
accuracy increased when the training data and test data
were from the same activity scenario. Accelerometers and
gyroscope readings are used in [12] to aid fixed-text pass-
word authentication. Whilst based on keystroke dynamics,
none of these schemes address gesture typing.

Researchers in [11] provide one of the first sets of gen-
eralised touch-gesture features for continuous authentica-

tion. They achieve EERs of 0-4% depending on the sce-
nario but are tailored for swipe gestures, not the nuances
of gesture typing. Similarly, in [20] a touch-gesture con-
tinuous authentication scheme is produced but limited to
swipe-based gestures. In [2] and [1], touch-gestures are
used to authenticate but gestures are limited to swipes
in a non-continuous architecture. Authors of [10] bench-
mark their touch-gesture authentication scheme against
the state-of-the-art by using multiple touch-gesture datasets.
The focus of the study is on swipe gestures and uses fea-
tures derived from earlier studies that are not tailored to
gesture typing. Research into touch-gestures has focused
largely on taps, keystrokes and swipes [27], indicating that
gesture-typing has not be as comprehensively considered.

The first study to analyse gesture typing interactions
as a biometric for continuous authentication was [5]. The
study collected gesture typing data from 16 volunteers.
Features derived from the well-known touch features pro-
posed in [11] were extracted from sub-gestures within the
word gestures. The study achieves good results when con-
sidering multiple words but suffers from instability for sin-
gle words. The system trains Support Vector Machine
(SVM) classifiers for each word. The real-world practical-
ity of this is limited as it requires the system to know how
the user performs each word-gesture prior to authentica-
tion.

Researchers in [23] evaluate the use of screen interrupts
(context-switches) that occur within the Android OS dur-
ing gesture typing. They find that pauses in typing ges-
tures can be identified via the interrupt frequency. This
information is shown to enable words and sentences to be
recognised. The study also showed that authors of sen-
tences could be identified given the interrupt signal. The
work, however, was not intended to address continuous
authentication and therefore is limited in this context.

We analyse the characteristics of the related work in
Table 1. Primarily, the works are analysed in terms of
whether they continuously authenticate, are applicable to
gesture typing and whether they analyse the impact of
user activity on the scheme. Furthermore, the areas of
interest that features are derived and extracted from are
also noted. From the analysed related work we find few
feasible studies authenticating gesture-typing interactions
as part of a robust continuous authentication scheme.

3. Proposed Approach

In this section we describe the practical reasoning and
theoretical justification for our architecture, data collec-
tion process, feature extraction and verification processes.

3.1. General Idea

Our scheme builds on the observation that different
words will be associated with different word-gestures. An
example of this can be seen in Figure 1. The diverse differ-
ences in word-gestures for different words make them diffi-
cult to compare. Because we endeavour for our scheme to
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Table 1: This table shows the characteristics and considered feature groupings used in other studies employing touch-interaction dynamics.
Our work considers a wider variety of features applicable to gesture typing.

Gesture
Typing

Cont.
Auth.

Activity
Analysis

Feature Grouping
Whole-
gesture

Sub-
gesture

Redirect Pause Accel. Gyro.

S
tu

d
y

Frank, et al. [11] X X
Burgbacher and Hinrichs [5] X X X

Simon, et al. [23] X X
Antal and Szabo [2] X

Alpar and Krejcar [1] X
Mondal and Bours [20] X X

Fierrez, et al. [10] X X
Kumar, et al. [19] X X X

Jain and Kanhangad [15] X X X X
Sitova, et al. [24] X X X X X

Giuffrida, et al. [12] X X X
Crawford and Ahmadzadeh [8] X X X X

This work X X X X X X X X X

be word-agnostic (such that we do not require a classifier
for each word) we work on reducing each word-gesture to
generalised features that can be compared across words.

In our scheme, when touch data is obtained from a
word-gesture the gesture is processed to provide regions
of interest for feature extraction. Points of redirection or
pause are first identified in the gesture trajectory. The
whole-gesture is then split the word into sub-gestures (sim-
ilar to [5]) based on these points of redirection and pause
positions. The resulting sub-gestures are typically smooth
trajectories between letters.

The scheme also collects data from the accelerome-
ter and gyroscope sensors. Data is recorded from each
of the sensors during the gesture-typing interaction. We
also record a set period before and after the interaction
such that resistance and stability features identified in [24]
may also be employed. We note that for battery preser-
vation the movement sensors are only recorded when the
keyboard is active.

Our scheme extracts features from the different identi-
fied areas of interest as feature groupings. This results in
six feature groupings, namely (1) whole-gesture (2) sub-
gesture (3) redirection (4) pause (5) accelerometer (6) gy-
roscope. These feature groupings and the extraction pro-
cesses are discussed in more detail in Section 4.

A classifier is trained for each feature grouping based
on data collected from the users. When a new word-
gesture is entered into the device the features extracted
for each feature group are classified by the relevant clas-
sifier. Each classifier outputs a score for the confidence it
has that the user is genuine. Score fusion techniques are
applied to the scores to combine the scores into a single
score that can then be compared to a threshold.

If a feature grouping produces no score (e.g.: if a word-
gesture contains no redirection) we use a missing data im-
putation technique in which we average the neighbour-
ing scores to produce a simulated score. In cases where a
feature grouping produces multiple scores (e.g.: multiple
redirections) we average the scores.

Figure 1: The coordinates captured as a user uses gesture typing to
enter the words (a) ”hello”, (b) ”ask” and (c) ”is” onto the device.
We note the diverse nature of gestures for different words.

3.2. Dataset

In this section we describe the custom gesture typing
dataset we use in this study. We explain the data collection
process and the type of data that is collected.

3.2.1. Data Capture

Because there is no publicly available gesture-typing
dataset, we collect our own dataset. We design a custom
data collection application for Android mobile devices. We
build a mechanism that collects touch data as the user per-
forms gesture-typing on the Android keyboard. Our appli-
cation also records sensor readings from the accelerometer
and gyroscope sensors every 20ms. We use a collection pe-
riod of 20ms as it was shown in [24] that this sampling rate
yields accuracy and efficiency. Data collected is written to
local device storage.

We collected data from 20 volunteers. All volunteers
were familiar with the concept of gesture typing and no
constraints (other than to perform an activity) were placed
on volunteers. Volunteers were provided a Nexus 4 device
with our application on. Each volunteer participates in
three activities: sitting, standing and walking. During
each activity we ask the user to type words of their choice
until they reach 100 words (our application informs them
of this). To account for potential bias of data collected
from one session we require each volunteer perform three
sessions for each activity, resulting in 3 sessions for each
of the 3 usage activities. In total each user typed approx-
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imately 900 words. Our dataset contains approximately
18,000 words.

3.2.2. Data Description

Our application stores the data collected in a raw form
before pre-processing, feature extraction and scaling. Here,
we briefly describe the data from each modality collected.

The data collected for a gesture-typing pattern is a
collection of touch points containing the x and y coordi-
nates of a point in the gesture pattern, the pressure at that
point, the area the finger covers and the timestamp. Each
time the finger moves on the screen a new touch point is
recorded with this information.

Data samples from the accelerometer and gyroscope
comprise of a tri-axis vector {x, y, z} coupled with a times-
tamp. The accelerometer measures acceleration of the de-
vice in the x (lateral), y (longitudinal), and z (vertical)
axes. The gyroscope measures orientation as x (pitch), y
(roll) and (azimuth) z.

3.3. Classification

Our experiments test the proposed framework with
three different types of classifiers. We use Logistic Regres-
sion (LR), Naive Bayes (NB) and Random Forest (RF)
classifiers in our study. We use these classifiers because
they have been successfully tested on touch gesture fea-
tures before in [22] and [25]. Furthermore, they are easily
available in the Weka machine learning library [13].

3.4. Normalisation

Often in systems with multiple classifiers for different
types of biometrics or features, the scores produced are
not homogeneous. They therefore do not necessarily map
to the same score domain. We note that although our
classifiers provide outputs in the range [0, 1] it is possible
that scores occupy different ranges within this range. We
therefore evaluate the following normalisation techniques:

• tanh-estimator: Given by the following where µG

and σG are the mean and standard deviations of gen-
uine scores.

s
′

i =
1

2

{
tanh(0.01× (

scri − µG

σG
)) + 1

}
(1)

• min-max: Converting a score si to a normalised
score s

′

i using the maximum and minimum scores is
given by.

s
′

i =
si −min
max−min

(2)

• z-score: The z-score normalisation technique is equated
by the following equation.

s
′

i =
si − µ
σ

(3)

3.5. Biometric Fusion

Using data from each feature grouping to make a de-
cision requires fusion such that a score representative of
all feature groupings can be obtained. There are multiple
techniques for fusing biometric data [21]. The techniques
are at the (a) feature level at which features are fused (e.g.:
into a single vector) (b) score level at which scores of mul-
tiple classifiers are combined (c) decision level at which
decisions from each classifier is used to form a decision
(e.g.: majority voting).

This study experiments with score-level information
fusion. Score level fusion is the most common form of
biometric fusion [14]. We choose this technique because
of its proven successful application in previous biometric
studies [16]. There are several techniques for combining
classifier scores [18], in this study we explore the following
(where si is a score from a classifier i):

• Sum Rule: The sum rule is total of all scores from
all classifiers.

score =

n∑
i=1

si (4)

• Product Rule: In the product rule all scores are
multiplied together.

score =

n∏
i=1

si (5)

• Minimum Rule: The minimum rule is the mini-
mum score of all of the scores.

score = min(s1, s2, s3, ..., sn) (6)

• Maximum Rule: The maximum rule is the maxi-
mum score of all of the scores.

score = max(s1, s2, s3, ..., sn) (7)

3.6. Feature Evaluation Methods

We find the correlation between the features via Pear-
son’s correlation coefficient. This coefficient, r, is given
for features x and y when we have n samples of each by
the Equation in 8. We note x̄ and σx are the mean and
standard deviation of x, respectively.

r = rxy =
1

n− 1

n∑
i=1

(
xi − x̄
σx

)(
yi − ȳ
σy

)
(8)

The closer the score of r to -1 or 1, the higher the
correlation between features x and y.
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3.7. Accuracy Metrics

We assess our system by using the following metrics:

• False Acceptance Rate (FAR): This is the rate
that an impostor is wrongly classified as the genuine
user.

• False Rejection Rate (FRR): This is the rate
that the genuine user is wrongly classified as an im-
postor.

• Equal Error Rate (EER): This is the rate at
which FAR and FRR are equal to each other. FAR
and FRR sets are usually obtained as an acceptance
threshold is adjusted. FAR and FRR pairs are cor-
related such that if one increases the other decreases.
In our experiments EER=(FAR+FRR)/2 for the FAR
and FRR with the smallest difference.

• Receiver Operating Characteristic (ROC): This
plots a curve that is used to assess the performance
of a binary classifier system. ROC uses the axis of
true positive rate and false positive rate for different
acceptance thresholds.

4. Feature Description

In this section we describe the process and reasoning
we undertake to produce novel and distinguishing features
from raw data collected from mobile devices.

We consider our feature set based on their compati-
bility with the requirements outlined for effective biomet-
ric features in [17]. Most importantly, our features are
designed to be (a) universal : must obtainable from all
individuals (b) distinctive: must be able to separate indi-
viduals based on the feature (c) permanence: the feature
must be sufficiently invariant (d) collective: must be able
to measure the feature in a quantitative manner. Our fea-
tures are also designed for the practicality requirements so
therefore our features must also have the properties of (e)
performance: must be able to be collected efficiently whilst
maintaining accuracy (f) acceptability : the volunteers are
comfortable with the data being collected (g) circumven-
tion: must be difficult to forge.

4.1. Touch-based Features

In our dataset we observe that the word-gesture pat-
terns performed have little similarity between them (e.g.:
the words ”hello”, ”is” and ”ask” as can be seen as ges-
tures Figure 1). Furthermore, the tolerance of gesture typ-
ing keyboards is strong enough such that a word can be
accurately predicted despite many different ways in which
the pattern forming the word is performed. Extracting
features from gestures representing full words can there-
fore yield very few features due to the lack of consistency
between them. As discussed in Section 3.1, we propose
different feature groupings extracted after pre-processing.
We note that gestures of length ≤8 are frequently found
to be non-word interactions and are therefore omitted.

Table 2: Features extracted when a pause is detected in a gesture.
ID Description
1 Time Paused
2 Pressure At Pause
3 Area At Pause
4 Relative Paused Time
5 Time Difference 3 Points Before Pause
6 Time Difference 3 Points After Pause
7 Relative Pressure During Pause
8 Relative Area During Pause
9 Pressure 3 Points Before Pause
10 Pressure 3 Points After Pause
11 Area 3 Points Before Pause
12 Area 3 Points After Pause

4.1.1. Pause Features

Most words input via gesture-typing, especially longer
words, have pauses in. We attribute this to two reasons
(1) the user may pause when they have reached the letter
they desire (where there is not always also a redirection,
e.g.: at ”s” in ”ask” in Figure 1) and (2) the user may
pause at points where they are considering or identifying
the location of the next letter in the word.

For these features we iterate over touch-points in the
word gesture to compute the time difference between each
touch-point. From point p1 to pn in a gesture made up of
points {p0, p1, p2, ..., pn} we compute the time difference
between pm and pm−1 as pm−1time

− pmtime
. Time differ-

ences between the points are stored in a vector that will
have a length of n− 1.

We iterate over the time differences and identify pauses
as values greater than a heuristically defined limit. This
heuristic computation is based on whether the pause p ≥
(ω×σ)+µ, where σ is the standard deviation of the pause
times, µ is the mean of the pause times and ω is a mul-
tiplier of 0.5. The value of 0.5 for ω is chosen because it
results in pause features that yield the best accuracy when
sensitivity parameters of 0.5, 1.0, 1.5 and 2.0 are tested.

Points of pause in the whole gesture are used to divide
it into sub-gestures for feature extraction. Here, however,
we describe the pause-based features that we extract from
the points of pause occurrence. We propose 12 pause fea-
tures in Table 2. We note a relative feature is the feature
at the point of interest divided by the average of all other
features of that type. Such novel features capture nuances
of gesture typing.

4.1.2. Redirection Features

Most word-gestures involve a change in direction at
the point where a user reaches a letter and moves their
finger toward a new letter. Figure 1 shows this for the
word ”hello”; as the finger moves between some letters the
direction of the line changes. Occasionally, we find that
a redirect occurs within a seemingly straight line due to
finger instability.

We compute points of redirection by iterating over the
x and y points of the gesture. For a gesture of l touch
points we consider vectors of three sequential points given
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Table 3: The features extracted from an identified redirection point.
ID Description
1 Area At Point of Redirect
2 Pressure At Point of Redirect
3 Sharpness Of Redirect
4 Pressure 3 Points Before Redirect
5 Pressure 3 Points After Redirect
6 Area 3 Points Before Redirect
7 Area 3 Points After Redirect
8 Relative Pressure at Redirect
9 Relative Area at Redirect
10 Time Finger At Redirect
11 Relative Time Finger At Redirect

by (xn+0, yn+0), (xn+1, yn+1) and (xn+2, yn+2) where n ≥
0 and n ≤ (l − 2). This vector represents two lines within
the full gesture. We compute the arctangent angle for each
line. We compute the absolute difference between the two
angles to provide a value between 0 and 2π.

The computed angles form a vector of length l−2 that
can be used to heuristically detect significant direction de-
viation. A redirect is present when angle θ ≥ (ω× σ) + µ,
where σ is the standard deviation of the pause times, µ is
the mean of the pause times and ω is a multiplier of 0.5.
As with pauses features, the value of 0.5 for ω is chosen
because it results in redirection features that yield the best
accuracy when sensitivity parameters of 0.5, 1.0, 1.5 and
2.0 are tested.

The points of redirection are one of the metrics used to
produce sub-gestures. We also extract features specifically
from the redirection point because we hypothesise that
redirection behaviour is unique to individuals. Redirection
features are shown in Table 3.

4.1.3. Whole Word-gesture Features

These features are generic and extracted from the whole
word-gesture. The features require no pre-processing and
are not split into sub-gestures. Such features are partic-
ularly useful in classifying shorter words with no redirec-
tion or pause, e.g.: the word ”is” in Figure 1 is a simple
straight line. We display the gesture features we propose
in Table 4.

The features selected are generic enough to be agnostic
to the number of redirections and pauses. This allows us
to use features identified in some of the previous literature
that were constructed for simpler scrolling touch gestures.

4.1.4. Sub-gesture Features

Sub-gestures are computed by first dividing the whole
word gesture based on points of redirection. These sub-
gestures are then each further divided based on points of
pause. This provides us with all sub-gestures such that
we can then extract sub-gesture features. The features we
extract from each sub-gesture are shown in Table 5.

4.2. Sensor Features

In addition to our features obtained from the touch-
screen of a mobile device, we also collect features from

Table 4: Features extracted from whole-word gestures.
ID Description
1 Start Pressure
2 End Pressure
3 Max. Pressure First 3 Points
4 Min. Pressure First 3 Points
5 Mean. Pressure First 3 Points
6 Start Area
7 End Area
8 Max. Area First 3 Points
9 Min. Area First 3 Points
10 Mean Area First 3 Points
11 Mean Area
12 Mean Pressure
13 Mean Velocity
14 Standard Deviation Area
15 Standard Deviation Pressure
16 Standard Deviation Velocity
17 Time Between This and Prev. Word-gesture
18 Fluidity (Frequency of Pauses)
19 Acceleration At 5th From First Point
20 Acceleration At 5th From Last Point

Table 5: Features extracted from sub-gestures.
ID Description
1 Mean Velocity During
2 Min. Velocity During
3 Max. Velocity During
4 Standard Deviation of Velocity
5 Velocity at 50% of Gesture
6 Velocity at 25% of Gesture
7 Velocity at 75% of Gesture
8 Mean Pressure
9 Min. Pressure
10 Max. Pressure
11 Standard Deviation of Pressure
12 Pressure at 50% of Gesture
13 Pressure at 25% of Gesture
14 Pressure at 75% of Gesture
15 Mean Area
16 Min. Area
17 Max. Area
18 Standard Deviation of Area
19 Area at 50% of Gesture
20 Area at 25% of Gesture
21 Area at 75% of Gesture
22 Min. Acceleration
23 Max. Acceleration
24 Acceleration at 50% of Gesture
25 Acceleration at 25% of Gesture
26 Acceleration at 75% of Gesture
27 Max. Deviation from Start to End Line
28 Max. Angle in Gesture
29 Min. Angle in Gesture
30 Mean Angle in Gesture
31 Standard Deviation Angle in Gesture
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Table 6: Features obtained from each dimension of a sensor (shown
for X).

ID Description
1 Mean X During
2 Standard Deviation X During
3 Standard Deviation X 100ms Before
4 Standard Deviation X 100ms After
5 Difference Mean X Before & Mean X After
6 Max. X During
7 Min. X During
8 Max. X During Relative To Mean X Before
9 Min. X During Relative To Mean X Before
10 Max. X During Relative To Mean X After
11 Min. X During Relative To Mean X After
12 Mean X 100ms Before
13 Mean X 100ms After

sensor data. Sensor features have been shown to enhance
touch gesture features [15]. The authors in [24] explored
the use of sensor data for keystroke and tap authentication.
We apply their proven hypothesis to form our movement
sensor feature set for gesture typing.

For each sensor we produce a new feature grouping.
Each feature grouping here, however, contains the same
features. Furthermore each feature is contained within a
feature grouping 4 times representing the x, y, z and m
(computed magnitude, given by

√
x2 + y2 + z2) dimen-

sions. We extract features from sensor readings before,
during and after the gesture typing interaction. We use
100ms of readings before and after the gesture. We show
the sensor features in Table 6.

4.3. Feature Analysis

We find that each feature holds the distinctive prop-
erty when alone used in a Random Forest classifier. When
trained on one feature alone for each user, each feature
yields an EER< 50% indicating it yields information about
the user.

The results of Pearson’s correlation coefficient convey
little correlation between features. We find 79.46% of cor-
relation results are between -0.5 and 0.5 and 94.89% of cor-
relation results lie between -0.75 and 0.75. These results
indicate that most features are not strongly correlated.

5. Experimental Results and Discussion

In this section we perform experiments on our contin-
uous gesture-typing authentication scheme under different
conditions. Features that form our samples are extracted
following the techniques in Section 4.

5.1. General Accuracy

We first compute the EERs of each feature grouping
exclusively. We perform this experiment with each of the
three classifiers discussed in Section 3.3 such that we may
identify the most appropriate classifier. For each user, the
training set consists of 2 sessions from each activity and

Table 7: EERs for different features groupings and classifiers. LR,
NB and RF are Logistic Regression, Naive Bayes and Random Forest,
respectively.

Classifier
Feature

Grouping
LR

(EER%)
NB

(EER%)
RF

(ERR%)
Redirect 33.93 32.75 22.56

Pause 31.96 32.36 19.03
Sub-gesture 29.56 37.08 20.04

Whole-gesture 23.06 31.14 15.08
Accelerometer 19.03 42.92 12.46

Gyroscope 21.13 43.55 16.09

Table 8: The EERs when normalisation and fusion techniques are
tested.

Fusion Technique

Normalisation
Sum

(EER%)
Product
(EER%)

Max
(EER%)

Min
(EER%)

min-max 3.58 21.42 8.58 8.03
z-score 3.60 40.97 9.37 18.42

tanh-estimator 5.43 5.45 10.74 11.15
None 3.58 21.42 8.58 8.03

the remaining 1 session from each activity forms the test
set. This gives 600 training samples and 300 test samples
per user. For each user, classifiers are trained positively on
the genuine training set and negateively on the impostor
training sets. We use 3-fold cross-validation to verify our
results. We record all scores to compute the FAR and
FRR at any threshold. This is used to compute EERs for
each feature grouping. We show these EERs from different
classifiers in Table 7. We find the Random Forest classifier
performs best in all cases.

Next, we perform an experiment to identify the best
combination for score normalisation and fusion for ges-
ture typing features. We repeat the previous experiment
but add the additional step of normalising and then fus-
ing the scores produced from classifiers. We note that this
experiment uses the Random Forest classifier due to its
superior performance in the previous experiment. We use
the normalisation techniques discussed in Section 3.4 and
the fusion techniques discussed in Section 3.5. We show
the EERs for this experiment in Table 8. Sum score yields
the lowest EERs of all fusion methods. The lowest EERs
for normalisation are obtained via the min-max method,
though is comparable to no when normalisation is used.
This appears to be due to the scores occupying almost the
full range of [0-1], resulting in normalisation having little
effect. We continue to use min-max normalisation in case
a range does differ.

5.2. Activity Comparison

In this experiment we test our scheme when evaluated
on data from different activities. We recall the activities in
our dataset are sitting, standing and walking. We train our
scheme as we did in the previous experiment. This time,
however, for each user, the scheme uses only 2 sessions
from a specific single activity for training and 1 session
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Table 9: The EERs are show for tests with different feature groupings
whilst the activity the system is trained and tested on is varied.

Activity
Feature

Grouping
Sitting

(EER%)
Standing
(EER%)

Walking
(EER%)

All
(EER%)

Redirect 23.76 22.33 22.13 24.56
Pause 22.06 20.61 19.96 22.16

Sub-gesture 21.27 20.37 18.36 21.71
Whole-gesture 15.88 15.24 14.58 16.85
Accelerometer 12.67 8.47 11.86 14.77

Gyroscope 13.58 13.44 17.67 18.18

Table 10: Cross comparison results when samples from different ac-
tivities are used for training and testing. We note that a → b implies
that the scheme was trained on session a and tested on session b.

Activity Session EER (%)
All → All 4.76

Sitting → Sitting 3.32
Standing → Standing 3.91
Walking → Walking 4.08
Sitting → Standing 12.15
Sitting → Walking 17.24
Standing → Sitting 12.18

Standing → Walking 33.15
Walking → Sitting 18.29

Walking → Standing 12.65

from a specific activity for testing. For each experiment,
this gives 200 training samples and 100 testing samples
per user. Such that we can compare activity specific re-
sults with mixed activity results, we create mixed activity
training and testing sets for users with an equal amount
of samples evenly selected across all activities. In these
experiments we use 3-fold cross-validation to verify our
results. We use Random Forest classifiers and min-max
normalisation with sum score fusion for combining scores.

We show the effects of features from different activi-
ties on different feature groupings in Table 9. We see that
lower EERs are obtained when the training and testing sets
are of the same activity rather than when trained on the
mixed activity set. In Table 10 we show cross-comparison
results of different activities tested on all feature group-
ings. Again, we see the best EERs occur when the train-
ing and testing sets are of the same activity. The worst
results occur when training and testing sets are taken from
different activities. The EERs are especially high for com-
parisons involving the walking activity, indicating gesture-
typing behaviours during walking are significantly different
to sitting and standing.

5.3. Comparison with State-of-the-Art Features

In this experiment we compare our proposed features
with features from other state-of-the-art studies. We first
compare our features with [11], in which the authors pro-
pose 30 features for touch-screen gestures. The features
have since been used in many other touch-gesture authenti-
cation studies. We also compare our features to those used
in [5], where a total of 10 features were derived from [11]

Figure 2: The ROC curve and resulting EERs for our proposed fea-
tures compared to studies that produce their own touch-gesture fea-
ture sets.

for sub-gesture releavent features. The proposed feature
descriptions can be found in their respective studies.

In this experiment we use the features presented in
both studies and compare them to our proposed features.
We use our scheme in Section 5.1 (such that all activities
are used in training and testing) with Random Forest clas-
sifiers and min-max normalisation with sum-score fusion
for combining scores. We extract the two sets of com-
parison touch-gesture features from identified word sub-
gestures (as is done in [5]) such that the features can
operate on straight sections of the gesture (as the features
were designed for). We train and test the system on these
features. Subgesture scores from each word are averaged
to produce a final score. We then extract our own feature
groupings and perform the same experiment. On our fea-
tures, we perform tests with and without movement sensor
features because the comparison studies did not include
such features.

We show the results of this experiment as an ROC
curve in Figure 2. We find our proposed features yield
better results (both with and without movement sensor
inclusion) when compared to the comparison features. We
conclude that this is due to our features being custom de-
signed for the nuances of gesture-typing. Furthermore,
whilst we use more features than the comparison studies,
our feature extraction process is not time intensive. We
install the comparison experiment on a Nexus 4 device.
We show average times taken to extract feature sets in
Table 11. These results indicate that the extraction of our
features is practical for continuous and efficient authenti-
cation.
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Table 11: Average times (in milliseconds) to extract features from
our scheme (with and without sensor data) and comparison schemes.

Our Feats.
(with sensors)

Time (ms)

Our Feats.
(no sensors)
Time (ms)

Burgbacher &
Hinrichs, 2014

Time (ms)

Frank, et al.
2013

Time (ms)
3.13 1.90 1.40 1.41

Figure 3: The graph represents the EERs when multiple word-
gestures are combined with averaging and majority voting ap-
proaches.

5.4. Using Multiple Word-Gestures

In many continuous authentication systems the results
of multiple authentication results are used to form a final
decision because it is less volatile than a single result. We
experiment with authenticating multiple word gestures be-
cause it is likely a user would input multiple words at a
time (e.g.: when writing messages or emails).

We use the scheme in Section 5.1 with Random For-
est classifiers and min-max normalisation with sum-score
fusion for combining scores. We test multiple techniques
for authenticating multiple word gestures. We first exper-
iments with a simple average over multiple word-gesture
scores which is compared to the threshold. Secondly, we
experiment with using majority voting where the user is
accepted if the majority of the scores surpass the thresh-
old.

Figure 3 shows the EERs for both techniques using
multiple words. We find that averaging the scores per-
forms better than majority voting. Both techniques gen-
erally decrease the EER as the number of words increase.
The lowest EERs from averaging and majority voting were
0.21% and 0.35%, respectively. We conclude that increas-
ing the number of words in the authentication decision in-
creases robustness at little additional cost; attackers would
only be able to input several words before detected.

6. Conclusion

We presented a word-agnostic gesture-typing feature
set and continuous authentication scheme. We describe

our dataset and the creation process for our features and
scheme. We showed our features yield results better than
state-of-the-art features and the effect of training the scheme
on data we collected during three different activities. We
describe and discuss the superiority of our scheme over
state-of-the-art approaches to touch-gesture and keyboard-
based continuous authentication schemes.

In future work will improve our fusion techniques by
weighting the contributions of different feature groupings.
Secondly, we will build an activity recognition system such
that gesture-typing samples can be classified by a classifier
trained on the same activity, since we found this to be
the most effective approach. Lastly, we will implement
an anomaly detection scheme such that we may use fewer
data samples in training by using only genuine user data.
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