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Abstract

Decision-makers who usually face model/parameter risk may prefer to act pru-

dently by identifying optimal contracts that are robust to such sources of un-

certainty. In this paper, we tackle this issue under a finite uncertainty set that

contains a number of probability models that are candidates for the “true”,

but unknown model. Various robust optimisation models are proposed, some of

which are already known in the literature, and we show that all of them can

be efficiently solved via Second Order Conic Programming (SOCP). Numerical

experiments are run for various risk preference choices and it is found that for

relatively large sample size, the modeler should focus on finding the best possible

fit for the unknown probability model in order to achieve the most robust deci-

sion. If only small samples are available, then the modeler should consider two

robust optimisation models, namely the Weighted Average Model or Weighted

Worst-case Model, rather than focusing on statistical tools aiming to estimate

the probability model. Amongst those two, the better choice of the robust opti-

misation model depends on how much interest the modeler puts on the tail risk

when defining its objective function. These findings suggest that one should be

very careful when robust optimal decisions are sought in the sense that the mod-

eler should first understand the features of its objective function and the size of
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the available data, and then to decide whether robust optimisation or statistical

inferences is the best practical approach.

Keywords and phrases: Optimal reinsurance, Risk measure, Robust optimisation,

Second order conic programming, Uncertainty modelling.

1. Introduction

The seminal works by Borch (1960) and Arrow (1963) mark the beginning of the theory of

optimal insurance/reinsurance in the field of actuarial science. The same problem is known

as the insurance demand problem in the field of insurance economics. In the last 50 years,

many research outputs have contributed into these fields of research by identifying the optimal

insurance/reinsurance contracts under various risk preferences. Examples outside the Expected

Utility Theory are numerous; for example, risk measure-based models have been studied by

Cai et al. (2008), Balbás et al. (2009 and 2011), Chi and Tan (2011), Asimit et al. (2013

and 2015), Cheung et al. (2014), Lu et al. (2014) and Cai and Weng (2016), where Value-at-

Risk (VaR) and Conditional-Value-at-Risk (CVaR) based decisions are the focal interest, since

these particular risk preferences are easy to interpret and are the most common in the insurance

sector.

The majority of the contributions from the existing literature assumes that the model speci-

fications are completely known, which purposely removes the model and parameter risks – the

risk of choosing a “wrong” model or the risk of choosing the “right” parametric model with

the “wrong” parameter values/estimates. Such risks are not of great concern when modelling is

based on high frequency data or simply, when large samples are available. Unfortunately, data

scarcity is a common feature of insurance data, which increases the uncertainty within the mod-

elling process and making any risk measurement to be highly sensitive. Therefore, the standard

statistical methods that aim to identify the “best” model fail to provide a reasonable answer.

Solutions to incorporate the model/parameter risks are available in the statistical literature, for

example parametric and non-parametric bootstrapping. Moreover, there exists a large number

of literatures in the field of actuarial science on finding robust worst-case risk measures, which is

reviewed and extended in Goovaerts et al. (2011). Any of these are possible whenever a simple

risk measurement is performed. This is no longer the case when the main aim is to find the best

strategy within an optimisation problem, where finding the “best” model does not guarantee a

robust decision, which is the main aim of the modelling process. A standard way to achieve this

is to use the method of robust optimisation; comprehensive surveys could be found, for example,

in Ben-Tal and Nemirovski (2002 and 2008), Ben-Tal et al. (2009), Bertsimas et al. (2011) and
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Gabrel et al. (2014), while applications to the optimal insurance literature could be found in

Balbás et al. (2015) and Asimit et al. (2017).

In this paper, we aim to identify the optimal insurance contract using a robust optimisation

model with a finite uncertainty set. That is, the modeler does not know which probability model

is appropriate and the optimal decision is produced by incorporating the risk measurements un-

der all (but in a finite number) of the possible probability models. That is, the uncertainty set is

constructed over a finite number of models as in Zhu and Fukushima (2009), Huang et al. (2010)

and Asimit et al. (2017), where the first two papers considered a convex hull of the candidate

models. This approach leads to a large uncertainty set that may be detrimental to the robust

optimal decision and therefore, it would be better to consider a non-convex uncertainty set that

is purely composed of the possible models as explained in Asimit et al. (2017). We extend this

idea by investigating various robust optimisation formulations and try to understand the effect

over the robustness of the optimal decision, which is in fact the main aim of robust optimisation.

In order to be more explicit, all formulations are explored within the context of optimal insur-

ance, but any application would lead to similar investigations. Our model assumes homogeneous

multiple beliefs with respect to the distribution of the buyer’s initial exposure. Distributional

uncertainty could be perceived in different ways by the insurance buyer and insurance seller,

but this would not change our mathematical formulations if the two parties have different be-

liefs about the distributional ambiguity set of X. Adverse selection is the classical example

of asymmetric information between the buyer and seller that would justify the distributional

ambiguity. The risk modelling power and experience are also related to the market size of an in-

surance company, which explains why some insurance players have competition advantage when

consuming the data from different other sources. For example, machine learning techniques are

good candidates to extract valuable information form data that are not obviously informative to

explain the risk in question via the classical actuarial techniques; this includes combining various

databases via dimension reduction methods and cluster analysis, which would help to enrich the

risk experience of the insurer player that has enhanced analytic capabilities. A recent paper of

Ghossoub (2019) also discusses the impact of heterogeneous beliefs over the Pareto set for a nice

and tractable model. In contrast, our approach relies on numerical optimisation to characterise

the Pareto set under any finite set of homogeneous multiple beliefs, but our aim is also to ex-

plain how these uncertainty sets could help to make the decision more robust in the presence of

(distributional) model error given that the uncertainty sets could have an unknownable impact

over actual decision.
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The performance of our robust optimisation models are empirically evaluated via solving

Second Order Conic Programming (SOCP) instances, which can be efficiently solved. SOCP

problems are convex optimisation problems in which a linear objective function is minimised

over the intersection of an affine set and the product of second-order (quadratic) cones. The well-

known Linear Programming (LP), Quadratically Constrained Linear Programming (QCLP) and

Quadratically Constrained Quadratic Programming (QCQP) are SOCP examples (for details, see

Alizadeh and Goldfarb, 2003). SOCP is a popular numerical method for engineering applications

(for example, see Lobo et al., 1998), robust portfolio optimisation (for example, see Satchell,

2010) or for actuarial/insurance applications (for example, see Tan and Weng, 2014, Asimit

and Boonen, 2018 and Asimit et al., 2018). The main reason behind the popularity of SOCP

formulations is given by its computational efficiency. A number of efficient primal-dual interior-

point methods for solving SOCP problems have been studied and developed in the literature.

For example, Lobo et al. (1998) gives a worst-case theoretical analysis showing that the required

number of iterations grow at most as the square root of the problem size. Therefore, by casting

our robust optimisation models as SOCP problems, we are able to efficiently obtain the optimal

solutions using SOCP solvers.

The paper is organised as follows: Section 2 explains the robust optimisation formulations,

whose empirical formulations are discussed in Sections 3; extensive numerical examples are

given in Section 4 that evaluates the quality of our robust solutions by comparing to some

classic non-robust optimisation solutions; conclusions and all proofs are provided in Section 5

and 6, respectively.

2. Problem Formulation

2.1. Standard Robust Optimisation Formulations. Robust optimisation is widely recog-

nised as an efficient method to incorporate the uncertainty with the model assumptions in an

optimisation problem. If random variables are included in the objective function, then the pa-

rameter/model risks represent the uncertainty that one should take into account in order to

create a robust optimal decision. Transforming information into knowledge, by means of finding

an optimal decision that is less sensitive to the model inputs, is possible if the actual optimisa-

tion is performed over an uncertainty set. This set comprises of reasonable information available

regarding the model parameters and/or competitive models that are considered realistic or com-

mon/good practice within the sector or profession. Specifically, the objective is to optimise

f(·;ω) : A → < with A being a convex, where both are sensitive to the choice of model inputs.



5

The standard worst-case (wc) robust optimisation formulation is given by:

min
t∈A

sup
ω∈U

f(t;ω), (2.1)

where U is the uncertainty set that best describes the entire spectrum of model specifications.

Given that the optimal decision is very sensitive to the model choice, any change in model inputs

would possibly massively influence the optimum. Therefore, effectiveness may not necessarily be

achieved by choosing the “best possible” model choice, which carries its own level of uncertainty,

and robust optimisation is precisely created to help with producing robust decision. Note that

our discrete and finite uncertainty set U is chosen to explain the model error faced by the

decision-maker. Continuous uncertainty sets are also possible and are mathematically appealing

and allows one to elaborate complex mathematical explorations. If the main objective is to deal

with parameter uncertainty, then the uncertainty set is set around one reference probability

model and the uncertainty could typically be described via hyper-boxes, polytopes or ellipsoids.

Recall that the hyper-box uncertainty sets are sometimes known as the interval uncertainty

set. More detailed analyses and evaluations on the performance of robust optimisation using

finite and infinite uncertainty sets can be found in Ben-Tal and Nemirovski (2002 and 2008),

Ben-Tal et al. (2009), Zymler et al. (2013) and Chassein and Goerigk (2016). The uncertainty

sets from Zhu and Fukushima (2009) and Huang et al. (2010) are continuous and in fact, are

the convex hull version of our discrete and finite uncertainty set choice. Note that this approach

produces a large uncertainty set that may affect the robustness of the optimal decision, which is

in fact the main purpose of the robust optimisation; for details, see Asimit et al. (2017) where

it is shown that robust optimisation models with a finite uncertainty set tend to produce robust

optimal solutions that are closer to the ‘true’ optimal solution. For these reasons, we have

decided to consider this discrete and finite uncertainty set. Specifically, if U = {ωk, k ∈ M},

where M := {1, 2, . . . ,m}, then (2.1) becomes

min
t∈A

max
k∈M

f(t;ωk). (2.2)

An alternative robust representation, namely the worst-regret (wr)-type, appears in the recent

literature and its formulation is given by:

min
t∈A

max
k∈M

f(t;ωk)− f∗k , where f∗k = min
t∈A

f(t;ωk) for all k ∈M. (2.3)

For further details, see Huang et al. (2010) and Asimit et al. (2017). A Bayesian-type repre-

sentation would be to average each possible model by allocating various weights to every single

model according to the prior knowledge that the modeler might have. That is, with some given
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scalars λk, we have the following weighted average (wa) type robust problem

min
t∈A

∑
k∈M

λkf(t;ωk), (2.4)

where λ ≥ 0 and 1Tλ = 1. When the weights are all equal, the robust problem is labelled as

additive-type (ad).

A robust risk measurement that has not been discussed in the literature is the following

weighted worst-case (wwc) scenario type

f
(
t;ω1, . . . ,ωm, l

)
:=

1

l

l∑
i=1

f (i)
(
t;ω1, . . . ,ωm, l

)
, l ∈M, (2.5)

where f (i)(·;ω1, . . . ,ωm, l) is the ith upper order statistics of
{
f(·;ωk), k ∈M

}
, i.e.

f (i)
(
t;ω1, . . . ,ωm, l

)
= f

(
t;ωσ(i)

)
such that f

(
t;ωσ(1)

)
≥ . . . ≥ f

(
t;ωσ(l)

)
with σ being a permutation of M. Essentially, the decision maker evaluates the model uncer-

tainty as a weighted average of some higher tier risk levels that are measured over all possible

assumptions assumed to be equally likely to occur. Note that any weighted worst-case sce-

nario (2.5) is less conservative than (2.2) for any given l. Now, for any t ∈ A, (2.5) could be

reformulated in the following fashion

f
(
t;ω1, . . . ,ωm, l

)
= min

s∈<

{
s+

1

l

∑
i∈M

(
f
(
t;ωi

)
− s
)
+

}
, where (t)+ = max(t, 0). (2.6)

It is not difficult to obtain the result from (2.6) and therefore, let {ak, k ∈ M} be a finite set.

Therefore, one needs to show that

1

l

l∑
i=1

a(i) = min
s∈<

{
s+

1

l

∑
i∈M

(
ai − s

)
+

}
,

where a(i) represents the ith upper order statistics of {ak, k ∈ M}. Without loss of generality,

we may assume that a1 ≥ a2 ≥ . . . ≥ am. Moreover, let a0 := ∞ and am+1 := −∞. The

objective function from (2.6) and its optimal solution, s∗, are finite due to the (·)+ component

and the fact that ak’s are finite. For any s such that s ∈
(
aj+1, aj

]
, where 0 ≤ j ≤ m, the

following are true:

i) If j = l, then it is straightforward to see that s+
1

l

∑
i∈M

(
ai − s

)
+

=
1

l

l∑
i=1

ai;

ii) If j < l, then we have that

s+
1

l

∑
i∈M

(
ai − s

)
+

=
1

l

(
j∑
i=1

ai + (l − j)s

)
≥ 1

l

(
j∑
i=1

ai + (l − j)aj+1

)
≥ 1

l

l∑
i=1

ai;
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iii) If j > l, then we have that

s+
1

l

∑
i∈M

(
ai − s

)
+

=
1

l

(
j∑
i=1

ai − (j − l)s

)
≥ 1

l

(
j∑
i=1

ai − (j − l)aj

)
≥ 1

l

l∑
i=1

ai.

As a result, s∗ ∈
(
al+1, al

]
, which in turn justifies our claim.

The next proposition shows how to solve a weighted worst-case scenario-type optimisation

problem in practice, i.e. to optimise (2.6) over t ∈ A, and it is given as Proposition 2.1.

Proposition 2.1. Optimising (2.6) over a convex set t ∈ A, i.e.

min
(t,s)∈A×<

{
s+

1

l

∑
i∈M

(
f
(
t;ωi

)
− s
)
+

}
,

is equivalent to solving

min
(t,s,u)∈A×<×<m

{
s+

1

l
1Tu

}
, s.t. 0 ≤ u, f

(
t;ωi

)
≤ s+ ui, ∀ i ∈M. (2.7)

The computational advantage of (2.7) is conspicuous, since most of the terms are linear.

Specifically, if f
(
·;ωi

)
are SOCP representable for all i ∈ M, then (2.7) becomes an SOCP

problem, which could be efficiently computed.

2.2. Optimal Robust Insurance Problem Definition. Consider an insurance buyer who

optimises its risk position by entering an insurance contract which reduces the buyer’s original

risk exposure X > 0 to I[X] at a cost P > 0, known as the premium. Let R[X] = X − I[X]

denote the part of risk X ceded to the insurance seller. In order to avoid potential moral hazard

issues, both I and R should be non-decreasing functions. Thus, I,R ∈ Cco where

Cco = {f is non-decreasing 0 ≤ f(x) ≤ x, |f(x)− f(y)| ≤ |x− y| for all x, y ∈ <}.

Assume that any feasible reinsurance contract satisfies Φ
(
R[X];P

)
≤ P ≤ P̄ , where Φ(·;P)

represents the premium principle, i.e. a certain rule of calculating the premium based on the

probability measure P. The constraint, Φ
(
R[X];P

)
≤ P , could be viewed as a rationality

constraint. The insurance seller makes no profit before selling the insurance contract and after

that, its net loss becomes R[X]−P . Therefore, the rationality constraint for the insurance seller

becomes Φ
(
R[X] − P ;P

)
≤ 0. The latter is equivalent to Φ

(
R[X];P

)
≤ P , if Φ(0;P) = 0 and

Φ is a translation invariant risk measure (for details see Definition 2.1).

Definition 2.1. Let (Ω,F ,P) be a probability space and X be a linear space for random variables

defined on Ω. Then, for any X ∈ X and a ∈ <, Φ : X → < is a translation invariant risk measure

if Φ(X + a) = Φ(X) + a.
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Now, when the probability measure P is unknown, one may be interested in finding a more

robust reinsurance contract which takes into account the parameter and/or model uncertainty.

Assume that there are m possible probability measures {P1,P2, . . . ,Pm}. Then, the feasibility

constraint becomes Φ
(
R[X];Pk

)
≤ P ≤ P̄ for all k ∈ M. Clearly, the insurer’s net random

loss is X − R[X] + P . Further, we assume that the insurer orders its preferences via a risk

measure ρ and thus, its objective under the kth model is ρ
(
X − R[X] + P ;Pk

)
, which reduces

to ρ
(
X −R[X];Pk

)
+ P if ρ is a translation invariant risk measure.

In order to find the ‘best’ robust decision for the insurer, we first present four robust opti-

misation formulations that are detailed in Section 2.1. Their results are compared in pairs and

further compared to some traditional non-robust optimal insurance arrangements. In summary,

the following four robust optimisation formulations are considered for now:

A) wc-type as defined in (2.2)

min
(R,P )∈Cco×<

{
max
k∈M

ρ
(
X −R[X];Pk

)
+ P

}
s.t. Φ

(
R[X];Pk

)
≤ P ≤ P̄ ∀ k ∈M. (2.8)

B) ad-type as given in (2.4)

min
(R,P )∈Cco×<

{
1

m

∑
k∈M

ρ
(
X −R[X];Pk

)
+ P

}
s.t. Φ

(
R[X];Pk

)
≤ P ≤ P̄ ∀ k ∈M. (2.9)

C) wa-type as defined in (2.4)

min
(R,P )∈Cco×<

{∑
k∈M

λkρ
(
X −R[X];Pk

)
+ P

}
s.t. Φ

(
R[X];Pk

)
≤ P ≤ P̄ ∀ k ∈M. (2.10)

D) wwc-type as given in (2.5)

min
(R,P )∈Cco×<

{
1

l

l∑
i=1

ρ
(
X−R[X];Pσ(i)

)
+P

}
s.t. Φ

(
R[X];Pk

)
≤ P ≤ P̄ ∀ k ∈M, (2.11)

where ρ
(
X−R[X];Pσ(i)

)
is such that ρ

(
X−R[X];Pσ(1)

)
≥ . . . ≥ ρ

(
X−R[X];Pσ(l)

)
with

σ being a permutation of M.

Recall that we implicitly assumed that the ρ and Φ are translation invariant risk measures, which

is a very mild restriction. When l = 1, the wwc − type Problem (2.11) becomes the wc − type

Problem (2.8). Moreover, when l = m, the wwc − type Problem (2.11) becomes the ad − type

Problem (2.9).

3. Empirical Formulations

3.1. Computable Formulations. The robust optimisation problems (2.8)–(2.11) may be nu-

merically solved by assuming a discrete distributed X with a finite sample space, i.e. the

possible outcomes are x := (x1, x2, . . . , xn)T . Without loss of generality, one may assume



9

that x1 ≤ x2 ≤ · · · ≤ xn. The risk ceding function R[X] is also discretised and becomes

y := (y1, y2, . . . , yn)T such that R[X] = yi if X = xi for all 1 ≤ i ≤ n. Under Pk, denote the

probability vector, pk := (p1k, p2k, . . . , pnk)
T , where pik = Pk(X = xi) for all 1 ≤ i ≤ n and

k ∈M.

Two standard risk measures used in practice that play an important role in our analysis is the

Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR). The VaR of a generic loss variable

Z > 0 with confidence level α ∈ (0, 1) is defined as

VaRα(Z;P) := inf
y∈<
{P(Z ≤ z) ≥ α} ,

while the CVaR is given as (see Rockafeller and Uryasev, 2000):

CVaRα(Z;P) := inf
t∈<

{
t+

1

1− α
EP(Z − t)+

}
. (3.1)

By definition, EP(·) represents the expectation with respect to P. Note that the wwc-type

robust risk measure given in (2.6) may be understood as a discretised version of the above

representation (3.1).

Recall that R ∈ Cco, which implies that x, y and x − y are all non-decreasingly ordered.

Therefore the empirical measure of VaRα

(
X −R[X];Pk

)
becomes xp(k) − yp(k), where

p(k) = min
j

{
j∑
i=1

pik ≥ α

}
.

On the other hand, the empirical measure of CVaRα

(
X−R[X];Pk

)
becomes φTk x−φTk y, where

φk := (φ1k, φ2k, . . . , φnk)
T with

φik = g

1−
i−1∑
j=1

pjk

− g
1−

i∑
j=1

pjk

 , 1 ≤ i ≤ n, k ∈M (3.2)

and g(t) = min
(

t
1−α , 1

)
. By convention, the summation is read as 0 when the bound of the

above summation is 0.

It has been mentioned in Section 2.2 that ρ and Φ are assumed to be translation invariant risk

measures in this paper. It is important to point out that we had carried out numerous numerical

experiments and found that the choice of premium principle does not have an impact on our

conclusions and for this reason, the numerical analysis in this paper will focus on examples with

the assumption that the expected value premium principle is in force, i.e. Φ(·;P) = (1+θ)EP(·)

with θ > 0. In turn, the premium constraints become:

(1 + θ)pTk y ≤ P ≤ P , ∀ k ∈M. (3.3)
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Recall that X > 0 and I,R ∈ Cco, which is equivalent to

0 ≤ y ≤ x,0 ≤ Ay ≤ Ax, (3.4)

where A is an n-by-n matrix given by

A :=


1 0 · · · 0 0

−1 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 1

 .

We now provide the LP formulations of the robust optimisation problems (2.8)–(2.11). It is

first assumed that the insurance buyer orders its preferences as via the VaR risk measure, i.e.

ρ(·;P) = VaRα(·;P). Since X −R[X] ∈ Cco, we have that VaRα(X −R[X];Pk) = xp(k) − yp(k)
for all k ∈M. Therefore,

A) The wc-type optimisation problem from (2.8) becomes

min
(y,P,r)∈<n×<×<

r s.t. xp(k) − yp(k) + P ≤ r, ∀ k ∈M, (3.3) and (3.4) hold. (3.5)

B) The ad-type optimisation problem from (2.9) becomes

min
(y,P )∈<n×<

{
1

m

∑
k∈M

(
xp(k) − yp(k)

)
+ P

}
s.t. (3.3) and (3.4) hold. (3.6)

C) The wa-type optimisation problem from (2.10) becomes

min
(y,P )∈<n×<

{∑
k∈M

λk
(
xp(k) − yp(k)

)
+ P

}
s.t. (3.3) and (3.4) hold. (3.7)

D) The wwc-type optimisation problem from (2.11) becomes

min
(y,P,r,s,u)∈<n×<×<×<×<m

{r + P} (3.8)

s.t. s+
1

l
1Tu ≤ r, 0 ≤ u, (3.3) and (3.4) hold,

xp(k) − yp(k) − s ≤ uk, ∀ k ∈M.

The epigraph form from (3.5) is a standard reformulation in optimisation, while (3.6) and

(3.7) are straightforward reformulations that do not require any additional work.

The second case is the one in which the insurance buyer orders its preferences via the CVaR

risk measure, i.e. ρ(·;P) = CVaRα(·;P). Since X −R[X] ∈ Cco, we have that

CVaRα(X −R[X];Pk) = φTk x− φTk y, ∀ k ∈M,

by keeping in mind (3.2). Therefore, (2.8)–(2.11) are equivalent to solving the following optimi-

sation problems:
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A) The wc-type optimisation problem from (2.8) becomes

min
(y,P,r)∈<n×<×<

r s.t. φTk x− φTk y + P ≤ r, ∀ k ∈M, (3.3) and (3.4) hold. (3.9)

B) The ad-type optimisation problem from (2.9) becomes

min
(y,P )∈<n×<

{
1

m

∑
k∈M

(
φTk x− φTk y

)
+ P

}
s.t. (3.3) and (3.4) hold. (3.10)

C) The wa-type optimisation problem from (2.10) becomes

min
(y,P )∈<n×<

{∑
k∈M

λk
(
φTk x− φTk y

)
+ P

}
s.t. (3.3) and (3.4) hold. (3.11)

D) The wwc-type optimisation problem from (2.11) becomes

min
(y,P,r,s,u)∈<n×<×<×<×<m

{r + P} (3.12)

s.t. s+
1

l
1Tu ≤ r, 0 ≤ u, (3.3) and (3.4) hold,

φTk x− φTk y− s ≤ uk, ∀ k ∈M.

The epigraph form from (3.9) is a standard reformulation in optimisation, while (3.10) and

(3.11) are straightforward reformulations that do not require any additional work.

Next, we assume that the insurance buyer orders its preferences as via the PHT risk measure,

i.e. ρ(·;P) =
∫∞
0 g

(
P(· > x)

)
dx with g(t) = tα, 0 < α ≤ 1 (for details, see Wang et al., 1997).

Since X −R[X] ∈ Cco, we have that

PHTα(X −R[X];Pk) = φTk x− φTk y, ∀ k ∈M,

where φk are defined as in (3.2) with g(t) = tα. Therefore, the robust optimisation problems

(2.8)–(2.11) are precisely as in (3.9)–(3.12), but with different parameters φk’s.

The final case is when the insurance buyer orders its risk preferences as via the standard

deviation SD risk measure, i.e. ρ(·;P) = EP(·) + bSd(·;P) with b > 0. For a generic discrete

random variable Z with a finite sample space (z1, z2, . . . , zn) that is equipped with a probability

measure P such that P(Z = zj) = pj , its standard deviation can be written as Sd(Z;P) = ‖Qz‖,

where Q is a n × n matrix with its (j1, j2)-th element to be qj1j2 =
√
pj1(1j1=j2 − pj2) for all

1 ≤ j1, j2 ≤ n. By definition, 1A represent the indicator operator and takes the value one if A

is true and to take the value zero otherwise. Therefore, the SD risk measure under Pk can be

written as

ρ
(
X −R[X];Pk

)
= pTk (x− y) + b‖Qk(x− y)‖,

where qj1j2k =
√
pj1k(1j1=j2−pj2k) for all 1 ≤ j1, j2 ≤ n and k ∈M. Note that the corresponding

formulations are in SOCP form as follows:
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A) The wc-type optimisation problem from (2.8) becomes

min
(y,P,r)∈<n×<×<

r s.t. pTk (x−y)+b‖Qk(x−y)‖+P ≤ r, ∀ k∈M, (3.3) and (3.4) hold.(3.13)

B) The ad-type optimisation problem from (2.9) becomes

min
(y,P,t)∈<n×<×<m

{
1

m

∑
k∈M

(
pTk (x− y) + btk

)
+ P

}
(3.14)

s.t. ‖Qk(x−y)‖ ≤ tk, ∀ k ∈M, (3.3) and (3.4) hold.

C) The wa-type optimisation problem from (2.10) becomes

min
(y,P,t)∈<n×<×<m

{∑
k∈M

λk
(
pTk (x− y) + btk

)
+ P

}
(3.15)

s.t. ‖Qk(x−y)‖ ≤ tk, ∀ k ∈M, (3.3) and (3.4) hold.

D) The wwc-type optimisation problem from (2.11) becomes

min
(y,P,r,s,u)∈<n×<×<×<×<m

{r + P} (3.16)

s.t. s+
1

l
1Tu ≤ r, 0 ≤ u, (3.3) and (3.4) hold,

pTk (x− y) + b‖Qk(x−y)‖ − s ≤ uk, ∀ k ∈M.

3.2. Pareto Optimality. One major concern regarding the robust optimisation models from

(2.8)–(2.11) is that optimal solutions could be inefficient insurance contracts. In other words,

the resulting robust optimal solutions are not necessarily Pareto optimal. The idea of Pareto

optimality ensures that the allocated risk is shared in the most efficient way, i.e. there is

no alternative allocation that may put the insurance players in a “better” risk position. The

mathematical formulation of this definition is now given in our context. That is, a robust

optimal solution (R∗, P ∗) is also Pareto optimal if and only if there exists no other feasible

solution (R̃, P̃ ) such that

ρ
(
X − R̃[X];Pk

)
+ P̃ ≤ ρ

(
X −R∗[X];Pk

)
+ P ∗ ∀ k ∈M,

with at least one inequality sign being strict. It is well-known that if all weighting coefficients

from (2.10) are strictly positive, then its robust optimal solutions (R∗, P ∗) are also Pareto

optimal. That is, the solutions of the Additive Model (2.9) and Weighted Average Model (2.10)

with strictly positive λk’s (for all k ∈ M) are Pareto optimal. Unfortunately, the solutions of

(2.8) may lead to solutions that are not Pareto optimal, but a remedy is possible (for details, see

Asimit et al., 2017). The same conclusion is drawn for the solutions of (2.11) when l < m and

we would like to check which solutions of (2.11) are Pareto optimal and if possible, to modify

those solutions of (2.11) that are not Pareto optimal into Pareto optimal solutions that solve
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(2.11). This would be a generalisation of Theorem 5.1 in Asimit et al. (2017), which in fact is

possible and we state this result as Theorem 3.1. Before giving the main result of the section,

let us explain the general setting of Theorem 3.1, which is given in Problem 3.1. Note that all

of the example from before have shown to be particular cases of Problem 3.1.

Problem 3.1. Let fk : A → <, gk : A → <nk be some functions over a convex set A, where nk

are some positive integers, for all k ∈ M. Moreover, l is an integer such that 0 < l ≤ m. Let

f (i)(·) be the ith upper order statistics of
{
fk(·), k ∈M

}
, i.e.

f (i)(·) = fσ(i)(·) such that fσ(1)(·) ≥ fσ(2)(·) ≥ . . . fσ(m)(·)

with σ being a permutation of M. The optimisation problem becomes:

min
x∈A

l∑
i=1

λif
(i)(x), s.t gk(x) ∈ Ak, ∀ k ∈M, (3.17)

where λk’s are positive scalars and Ak are convex cones2 for all k ∈M.

Recall that Problem 3.1 is convex as long as λ1 ≥ λ2 ≥ . . . ≥ λl and all functions fk, gk are

convex over A. Using the notation from Problem 3.1, a feasible solution x∗, i.e. gk(x
∗) ∈ Ak

for all k ∈ M, is Pareto optimal if there is no other feasible solution y, i.e. gk(y) ∈ Ak for all

k ∈ M, such that fk(y) ≤ fk(x
∗) for all k ∈ M with at least one inequality sign being strict.

We are now ready to state the main result of this section, which shows that one may identify

the group of solutions of (3.17) that are Pareto optimal as well without massively increasing the

computational effort.

Theorem 3.1. Let x∗ be an optimal solution of (3.17). Then, x∗ is also Pareto optimal if the

optimal objective function value of the following optimisation problem

min
y∈A

∑
k∈M

(
fk(y)− fk(x∗)

)
, s.t. gk(y) ∈ Ak, fk(y)− fk(x∗) ≤ 0, ∀ k ∈M (3.18)

is zero. On the other hand, if the optimal value of (3.18) is negative, then any optimal solution

y∗ of (3.18) solves (3.17) as well and is Pareto optimal.

4. Numerical results

The current section provides numerical illustrations to the robust optimisation problems 2.8–

2.11. Recall that our empirical method requires a sample of x = (x1, x2, . . . , xn)T to be drawn

from the underlying distribution of X. Note that the empirical formulations discussed in Sec-

tion 3.1 are not restricted to certain distributions of X. Thus, without loss of generality, we

2A set B is a convex cone if and only if for any scalars a, b > 0, ax+ by ∈ B given that x,y ∈ B.
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further assume that X is Log-Normal distributed with mean E(X) = 5, 000 and standard devi-

ation
√

3 × E(X). The Log-Normal assumption is one of the most natural parametric choices,

as it covers distributions with very different tail distributions, i.e. from moderately light tailed

to moderately heavy tailed distributions. The practitioners’ literature is often based on the

Log-Normal risk distribution assumption, e.g. Solvency II recommendations (see QIS 5) heavily

rely on this assumption. The premium principle Φ is assumed to be an expected value principle

with a risk loading factor θ = 0.25, i.e. Φ(·;P) = (1 + θ)EP(·). Also, the upper boundary of the

maximum acceptable insurance cost is P = (1+θ)E(X)
2 . Furthermore, the following five models

are considered as potential candidates for the unknown underlying distribution of X:

(i) Model 1: Exponential distribution with mean 1/ν;

(ii) Model 2: Log-Normal distribution with parameters
(
µ, σ2

)
;

(iii) Model 3: Pareto distribution with parameters (α, λ) and cdf F (z) = 1−
(

λ
λ+z

)α
, z > 0;

(iv) Model 4: Weibull distribution with parameters (c, γ) and cdf F (z) = 1− e−czγ , z > 0;

(v) Model 5: Inverse Gaussian distribution with parameters (µ, σ) and cdf

F (z) = Φ

(√
λ
x

(
x
µ − 1

))
+ Φ

(
−
√

λ
x

(
x
µ + 1

))
e2λ/µ, z > 0.

For implementation purposes, we should define the probability vector pk for all k ∈ M by

discritising the Maximum Likelihood estimated model with the sample observation x. That is,

pik = Fk

(
xi+1 + xi

2
; ν̂

)
− Fk

(
xi + xi−1

2
; ν̂

)
, for all i = 1, . . . , n, k ∈ {1, 2, 3, 4, 5}, (4.1)

where by convention x0 = −∞ and xn+1 = ∞. Moreover, ν̂ is the Maximum Likelihood

Estimate based on the sample x. Let us also denote the true underlying distribution of X

and its corresponding probability vector as Model 0 and p0, respectively. Then, p0 can be

found by applying the formula (4.1) with ν̂ replaced by the Model 0 parameters. It would

be interesting to see how the performance of our numerical results would be affected by the

decision-maker’s information set regarding the underlying distribution of X. That is, we repeat

the numerical experiments for different model collections. In particular, we choose the following

uncertainty sets: M5 := {1, 2, 3, 4, 5}, M4 := {1, 3, 4, 5}, M2 := {1, 5}, M∗4 := {2, 3, 4, 5} and

M∗2 := {2, 5}. Note that the underlying distribution of X is Log-Normal, and thus, we have

deliberately excluded Model 2 from M2 and M4 in order to investigate the impact of model

misidentification, when the “true” model is discarded.

We also need to specify the weights λk’s that appear in (2.10). This is done by using the

relative likelihood (RL) and RLk := e(AICmin−AICk)/2, where AICk = 2qk − 2Ln(L̂k) with qk

being the number of parameters estimated under the kth candidate distribution and L̂k being

the corresponding maximum likelihood function value. Moreover, AICmin := mink∈MAICk.
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Finally, the weights are defined as follows: λk := RLk∑m
k=1RLk

. Note that

0 < RLk ≤ 1, 0 < λk < 1 and
m∑
k=1

λk = 1 for all k ∈M.

Also, if we denote k∗ such that AICmin = AICk∗ , then RLk∗ = 1 and λk∗ ≥ λk for all k ∈ M.

In other words, the “best” model based on the AIC criterion receives the largest weight.

Let us denote the optimal solutions to the robust optimisation problems (2.8)–(2.11) as

(y∗wc, P
∗
wc), (y∗ad, P

∗
ad), (y∗wa, P

∗
wa) and (y∗wwc, P

∗
wwc), respectively. In particular, y∗r represent the

optimal insurance contract and is an n-dimensional column vector with r ∈ {wc, ad, wa,wwc},

while P ∗r represents the optimal insurance price and is a scalar. In order to assess the quality

of our robust solutions, it is necessary to set a benchmark; a natural and fair choice is the opti-

mal insurance contract if the underlying distribution of X would have been known, denoted by

(y∗T , P
∗
T ). In fact, (y∗T , P

∗
T ) could be obtained by solving (2.9) withM = {0}. The robustness of

a generic optimal solution y∗ is our main focus, and therefore, we could compare various optimal

solutions via the following absolute error:

∆∗ =
n∑
i=1

|y∗i − y∗iT | × pi0.

Specifically, given two optimal solutions y∗A and y∗B, model A is preferred if ∆∗A < ∆∗B and we

write S∗A � S∗B.

The “robust” optimal solutions are compared with two “non-robust” optimal solutions. The

first “non-robust” model chooses the “best” distribution for X via the Akaike Information

Criterion (AIC), and hence, the model is called the AIC Model and its optimal solution is

denoted as (y∗AIC , P
∗
AIC). The second “non-robust” model is called the Elicitable Model and its

solution is denoted as (y∗e, P
∗
e ). Before presenting our results, we first provide brief explanations

regarding the construction of the AIC and Elicitable Models. The AIC model chooses the ‘best’

distribution for X among all candidate distributions by finding the distribution k which gives the

smallest AIC value, i.e. k∗ := arg mink∈MAICk. Then, (y∗AIC , P
∗
AIC) is found by solving (2.9)

with M = k∗.

We now move to the construction of the Elicitable Model starting with explaining the elicitabil-

ity concept. By definition, a scoring function S : <×< → [0,∞) is a mapping (u, v) 7→ S(u, v),

where u is a point forecast and v is an observation.

Definition 4.1. Let f : Π→ 2< be a functional on a class of probability measures Π on < such

that P 7→ f(P) ⊂ <, where P ∈ Π. A scoring function S : < × < → [0,∞) is consistent for

the functional f relative to Π if and only if EPS(t, L) ≤ EPS(z, L) for all P ∈ Π, t ∈ f(P) and
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x ∈ <. Moreover, S is a strictly consistent scoring function if S is consistent and

EPS(t, L) = EPS(z, L) =⇒ z ∈ f(P).

The functional f is elicitable relative to a class of probability measure Π if and only if there

exists a scoring function S that is strictly consistent for f relative to Π. The concept of elicitable

risk measure is introduced by Lambert et. al. (2008), but a comprehensive background about

elicitability could be found in the seminal paper of Gneiting (2011). The latter paper tells us

that VaRα is elicitable and

EPSg
(
VaRα(X;P), x

)
≤ EPSg

(
y, x
)

(4.2)

for any real number y ∈ <, where Sg(t, x) =
(
I{t≥x} − α

)(
g(t) − g(x)

)
is the scoring function

and g is any non-decreasing function. The translation of (4.2) into our discretised empirical

formulation under any probability distribution Pk becomes

n∑
i=1

pikSg
(
xp(k), xi

)
≤

n∑
i=1

pikSg
(
y, xi

)
.

As a result, whenever the “true” probability distribution Pk is unknown, but m probability

candidate models are available, one may choose the “best” distribution k∗ that gives the lowest

expected score, i.e.

k∗ = arg min
k

n∑
i=1

pikS
(
xp(k), xi

)
,

and hence, the “best” estimate of VaRα is xp(k∗). Finally, the non-robust optimal elicitability

solution (y∗e, P
∗
e ) may be found by solving the following LP for all l ∈M:

min
(y,P )∈<n×<

{
xp(l) − yp(l) + P

}
(4.3)

s.t.

n∑
i=1

pilS
(
xp(l)− yp(l), xi−yi

)
≤

n∑
i=1

pilS
(
xp(l)− yp(l), xi−yi

)
, ∀ k ∈M,

(1 + θ)pTk y ≤ P ≤ P , ∀ k ∈M,

0 ≤ y ≤ x,0 ≤ Ay ≤ Ax.

Let (y∗el, P
∗
el) be the optimal solution found for the above LP under distribution l and let l∗ be

the probability model choice under the elicitability criterion, which is given by the one with the

lowest objective function (4.3) amongst all l ∈ M. Therefore, the Elicitability Model optimal

solution is (y∗e, P
∗
e ) := (y∗el∗ , P

∗
el∗). Recall that all other risk measures considered in this paper,

i.e. CVaR, PHT and SD are not elicitable, although CVaR and VaR are jointly elicitable, and

therefore, the Elicitable Model is only applied with the VaR-based case.
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Before discussing the results of our numerical experiments, we note that all optimisation

problems are implemented on a desktop with 6 core Intel i7-5820K at 3.30GHz, 16GB RAM,

running Linux x64, MATLAB R2014b, CVX 2.1.

4.1. Comparison of Robustness. We first investigate the results for the VaRα-based opti-

misation problems when α = 0.75, which are illustrated in Tables 4.1–4.3. Our numerical

n = 25 n = 50 n = 100 n = 250

M5 M4 M2 M5 M4 M2 M5 M4 M2 M5 M4 M2

S∗wc � S∗wa 215 224 226 184 187 213 126 125 159 77 76 131

S∗wa � S∗wc 285 276 273 316 313 287 374 375 341 423 424 369

S∗ad � S∗wa 234 204 207 225 218 237 171 140 186 126 107 141

S∗wa � S∗ad 219 243 237 275 279 260 329 354 314 374 393 358

S∗wa � S∗AIC 224 216 221 198 198 211 127 164 152 56 171 71

S∗AIC � S∗wa 275 284 278 302 302 289 373 336 347 444 329 429

S∗wa � S∗e 320 352 349 386 424 417 457 469 455 494 494 489

S∗e � S∗wa 180 148 149 114 76 83 43 31 45 6 6 11

Table 4.1. Results when (3.7) is compared to (3.5), (3.6) and the AIC model

for the VaR0.75-based solutions under various sample sizes n and collections of

candidate models {M2,M4,M5}.

experiments are set for 500 samples of various sizes n = {25, 50, 100, 250} and results are re-

ported as the number of experiments out of 500 in which a particular model is preferred when

compared to another. The top four rows in Tables 4.1 and 4.2 together with Table 4.3 show the

results when the Weighted Average Model (3.7) is compared to the other three robust models

(3.5), (3.6) and (3.8), respectively. Recall that when l = 1, the Weighted Worst-case Model (3.8)

becomes the classic Worst-case model (3.5), and thus, we only solve (3.8) under M =M5,M4

and M∗4 with 2 ≤ l ≤ m− 1. Note that the l = 4 case only exists when M =M5. We noticed

that the Weighted Average Model stands as the most robust model in all comparisons, espe-

cially when the true underlying distribution of X is not included in the candidate distribution

collection M, i.e. under M4 and M2. The last four rows from Tables 4.1 and 4.2 compare the

solutions found under the Weighted Average Model (3.7) to those found under the non-robust

models, i.e. the AIC and the Elicitable Models. It is surprisingly clear that the Weighted Av-

erage Model (3.7) does outperform the elicitability criterion. However, the performance of the
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n = 25 n = 50 n = 100 n = 250

M5 M∗4 M∗2 M5 M∗4 M∗2 M5 M∗4 M∗2 M5 M∗4 M∗2

S∗wc � S∗wa 215 211 246 184 162 259 126 108 236 77 40 264

S∗wa � S∗wc 285 289 254 316 338 240 374 392 264 423 460 234

S∗ad � S∗wa 234 227 130 225 240 160 171 203 196 126 150 219

S∗wa � S∗ad 219 211 131 275 255 166 329 297 223 374 350 245

S∗wa � S∗AIC 224 177 236 198 170 218 127 134 248 56 107 272

S∗AIC � S∗wa 275 323 263 302 330 281 373 366 252 444 393 224

S∗wa � S∗e 320 291 275 386 354 281 457 406 295 494 455 271

S∗e � S∗wa 180 209 223 114 146 218 43 93 204 6 45 224

Table 4.2. Results when (3.7) is compared to (3.5), (3.6) and the AIC model

for the VaR0.75-based solutions under various sample sizes n and collections of

candidate models {M∗2,M∗4,M5}.

n = 25 n = 50 n = 100 n = 250

M5 M4 M∗4 M5 M4 M∗4 M5 M4 M∗4 M5 M4 M∗4

S∗wwc �S∗wa (l=2) 202 201 204 171 182 160 123 116 106 77 78 40

S∗wa �S∗wwc (l=2) 298 299 296 329 317 340 377 384 394 423 422 460

S∗wwc �S∗wa (l=3) 238 227 259 182 202 219 128 136 163 84 81 109

S∗wa �S∗wwc (l=3) 262 273 241 318 298 281 372 364 337 416 419 391

S∗wwc �S∗wa (l=4) 241 203 153 105

S∗wa �S∗wwc (l=4) 259 297 347 395

Table 4.3. Comparison between the VaR0.75-based solutions of (3.7) and (3.8)

for various sample sizes n and collections of candidate models {M5,M4,M∗4}.

robust models are uniformly weaker than the non-robust AIC model across various combina-

tions of sample sizes and distribution collections. Similar outcomes may be found in Asimit et

al. (2017), where it is argued that such peculiar behaviour is due to the robustness of VaR itself

as a risk measure.

Recall that the comparison between the optimal contracts is done by looking into the ∆∗

values, but these may be misleading if these values are quite small. Thus, additional comparisons

would help in getting more confidence in our results and boxplots of ∆∗’s might be informative

as well. Figure 4.1 compares the boxplots between ∆∗wa and ∆∗AIC . In each of the boxplots,
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Figure 4.1. Boxplots comparing ∆∗wa and ∆∗AIC computed from the VaR0.75-

based optimisation cases. Each graph constitutes of four groups of boxplots that

correspond to various sample sizes of n. The boxplot on the left/right-hand side

represents ∆∗wa/∆∗AIC . The top row boxplots are corresponding to distribution

collections M5, M4 and M2, while the bottom row relates to M∗4 and M∗2,

respectively.

the median of ∆∗’s is marked by a short red line inside the notched box, while the box itself

represents the inter-quartile range. All outliers are marked by a red cross. It is not difficult to

see that the variation of both ∆∗wa and ∆∗AIC shrinks dramatically when the sample size n grows

for all distribution collectionsM∈ {M5,M4,M2,M∗4,M∗2}. It is also worth pointing out that

although Tables 4.1 and 4.2 tell us that the AIC Model is preferred to all robust optimisation

models (3.5)–(3.11) in the VaR-based case, Figure 4.1 shows that ∆∗wa and ∆∗AIC have quite

similar ranges, especially when the sample size n is small.

Next, we turn our attention to the set of results relating to the CVaR0.75-based decisions which

are given in Tables 4.4–4.6. Similar to the V aR-based case, we first compare among the robust

optimal solutions found in (3.9)–(3.12). Tables 4.4–4.6 have shown a similar pattern as seen

in the VaR case, where the optimal solutions found under the Weighted Average Model (3.11)

turn out to be the most robust among the four models (3.9)–(3.12), especially when n is large.

Further, there is strong numerical evidence showing that the Weighted Average Model performs

uniformly better than the non-robust AIC model throughout various combinations of sample
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n = 25 n = 50 n = 100 n = 250

M5 M4 M2 M5 M4 M2 M5 M4 M2 M5 M4 M2

S∗wc � S∗wa 189 231 203 198 194 191 180 172 225 155 210 281

S∗wa � S∗wc 311 269 297 300 306 307 320 328 275 345 290 219

S∗ad � S∗wa 259 263 278 252 272 285 244 254 279 128 207 221

S∗wa � S∗ad 240 237 221 248 227 213 256 246 221 372 293 279

S∗wa � S∗AIC 276 261 269 298 301 294 271 285 267 253 213 250

S∗AIC � S∗wa 224 239 231 202 199 206 229 215 233 247 287 250

Table 4.4. Results when (3.11) is compared to (3.9), (3.10) and the AIC model

for the CVaR0.75-based solutions under various sample sizes n and collections of

candidate models {M2,M4,M5}.

n = 25 n = 50 n = 100 n = 250

M5 M∗4 M∗2 M5 M∗4 M∗2 M5 M∗4 M∗2 M5 M∗4 M∗2

S∗wc � S∗wa 189 197 221 198 180 192 180 183 188 155 166 202

S∗wa � S∗wc 311 303 279 300 320 308 320 317 312 345 334 298

S∗ad � S∗wa 259 258 268 252 262 243 244 274 231 128 168 242

S∗wa � S∗ad 240 238 232 248 236 254 256 226 267 372 332 258

S∗wa � S∗AIC 276 281 286 298 301 282 271 269 272 253 255 248

S∗AIC � S∗wa 224 219 213 202 199 218 229 131 227 247 245 252

Table 4.5. Results when (3.11) is compared to (3.9), (3.10) and the AIC model

for the CVaR0.75-based solutions under various sample sizes n and collections of

candidate models {M∗2,M∗4,M5}.

sizes n and distribution collections M . Boxplots are also produced to better compare ∆∗wa and

∆AIC for CVaR-based optimisations, which could be found in Figure 4.2. Although the median

value of ∆∗wa and ∆∗AIC are very similar under various sample sizes and distribution collections,

the range of ∆∗AIC is in general larger than that of ∆∗wa, especially when the sample is small.

Therefore, the overall evidence tells us that our Weighted Average Model (3.11) leads to the

most robust optimal solution for CVaR-based decisions.

The third set of results are related to the PHT -based optimal solutions from (3.9)–(3.12)

and the AIC model. The results from Tables 4.7–4.9 tell us that the Weighted Average Model

performs better than all other “robust” models, which is even more evident when the sample size
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n = 25 n = 50 n = 100 n = 250

M5 M4 M∗4 M5 M4 M∗4 M5 M4 M∗4 M5 M4 M∗4

S∗wwc �S∗wa (l=2) 199 268 203 204 262 203 208 277 197 195 321 203

S∗wa �S∗wwc (l=2) 301 232 297 296 238 297 292 223 303 305 179 297

S∗wwc �S∗wa (l=3) 233 243 248 225 258 229 250 264 259 251 182 239

S∗wa �S∗wwc (l=3) 266 257 252 274 242 271 250 236 241 248 318 261

S∗wwc �S∗wa (l=4) 235 242 253 156

S∗wa �S∗wwc (l=4) 265 258 247 344

Table 4.6. Comparison between the CVaR0.75-based solutions of (3.11) and

(3.12) for various sample sizes n and collections of candidate models

{M5,M4,M∗4}.
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Figure 4.2. Boxplots comparing ∆∗wa and ∆∗AIC computed from the CVaR0.75-

based optimisation cases. Each graph constitutes of four groups of boxplots that

correspond to various sample sizes of n. The boxplot on the left/right-hand side

represents ∆∗wa/∆∗AIC . The top row boxplots are corresponding to distribution

collections M5, M4 and M2, while the bottom row relates to M∗4 and M∗2,

respectively.
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is small. The last four rows displayed in Tables 4.7 and 4.8 summarise comparisons amongst

n = 25 n = 50 n = 100 n = 250

M5 M4 M2 M5 M4 M2 M5 M4 M2 M5 M4 M2

S∗wc�S∗wa(α=0.9) 204 144 208 247 211 210 224 201 138 247 229 80

S∗wa�S∗wc(α=0.9) 296 356 292 253 289 290 276 299 362 253 271 420

S∗ad�S∗wa(α=0.9) 187 173 172 127 133 116 70 109 71 90 84 28

S∗wa�S∗ad(α=0.9) 310 325 327 372 365 384 425 389 427 410 415 471

S∗wa�S∗AIC(α=0.9) 114 142 153 71 108 156 24 88 165 3 92 200

S∗AIC�S∗wa(α=0.9) 386 358 347 429 392 344 476 412 335 497 408 300

S∗wa�S∗AIC(α=0.2) 235 235 243 267 286 284 229 254 254 210 223 251

S∗AIC�S∗wa(α=0.2) 264 265 254 233 214 216 271 246 246 290 277 249

Table 4.7. Results when the PHT -based (α = 0.9) Weighted Average Model

is compared to the Worst-case, the Additive and the AIC models under various

sample sizes n and collections of candidate models {M2,M4,M5}.

n = 25 n = 50 n = 100 n = 250

M5 M∗4 M∗2 M5 M∗4 M∗2 M5 M∗4 M∗2 M5 M∗4 M∗2

S∗wc�S∗wa(α=0.9) 204 263 218 247 284 250 224 288 298 247 309 337

S∗wa�S∗wc(α=0.9) 296 237 282 253 216 250 276 212 202 253 191 163

S∗ad�S∗wa(α=0.9) 187 145 219 127 114 270 70 70 346 90 130 470

S∗wa�S∗ad(α=0.9) 310 352 279 372 382 227 425 425 154 410 370 30

S∗wa�S∗AIC(α=0.9) 114 133 190 71 90 139 24 26 44 3 3 4

S∗AIC�S∗wa(α=0.9) 386 367 310 429 410 361 476 474 456 497 497 496

S∗wa�S∗AIC(α=0.2) 235 228 255 267 247 241 229 228 226 210 207 207

S∗AIC�S∗wa(α=0.2) 264 272 245 233 253 258 271 272 274 290 293 293

Table 4.8. Results when the PHT -based Weighted Average Model is compared

to the Worst-case, the Additive and the AIC models various sample sizes n and

collection of candidate models {M∗2,M∗4,M5}.

optimal contracts found under PHT -based criterion with α = 0.9 and 0.2. The performance

of the Weighted Average Model (3.11) is rather weak when compared to the AIC Model when

α = 0.9. This outcome does not look surprising since 1
α represents the risk aversion index, and
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n = 25 n = 50 n = 100 n = 250

M5 M4 M∗4 M5 M4 M∗4 M5 M4 M∗4 M5 M4 M∗4

S∗wwc �S∗wa (l=2) 172 179 196 202 212 192 149 203 149 191 221 203

S∗wa �S∗wwc (l=2) 328 321 304 298 288 308 351 297 351 309 279 297

S∗wwc �S∗wa (l=3) 182 191 148 182 219 139 128 197 101 150 186 168

S∗wa �S∗wwc (l=3) 318 309 352 318 281 361 372 303 399 350 314 332

S∗wwc �S∗wa (l=4) 161 174 95 132

S∗wa �S∗wwc (l=4) 339 326 405 368

Table 4.9. Comparison between the PHT -based (α = 0.9) solutions for various

sample sizes n and collection of candidate models {M5,M4,M∗4}.

the greater this value is, the more risk aversion the decision-maker is. When α is close to one,

the decision-maker acts less prudent, in which case robust optimal contracts are less of interest

to the decision-maker. This is even further supported by our results when replicating the same

experiment with a more risk-averse decision maker, i.e. α is reduced from 0.9 to 0.2, which could

be seen in the last two rows of Tables 4.7 and 4.8. It is straightforward to notice that there is a

significant improvement in the performance of our robust optimisation model, but unfortunately

it is not sufficient enough to conclude that it outperforms the AIC Model.

Figure 4.3 illustrates the distributions of ∆∗wa and ∆∗AIC for the PHT -based case with c = 0.2.

As before, the range of ∆∗wa and ∆∗AIC are very similar in most of the comparisons, especially

when n is small, telling us that there is not enough evidence to say that the AIC Model provides

a more robust solution than the Weighted Average Model (3.11).

The last set of results of the section considers the robustness of the SD-based optimal contracts

where b = 0.5. The first eight rows in Tables 4.10 and 4.11 compare the Weighted Average

Model (3.15) to the Weighted Worst-case Model (3.16) with 2 ≤ l ≤ m, and the results are

different than before. That is, the Weighted Worst-case Model is preferred for almost any

sample size, but it is more clear when the sample size is small. In addition, the evidence tends

to be more significant as l gets bigger, and hence, when our robust models are compared to the

non-robust AIC model, we show only the comparison results relating to the Weighted Worst-

case Model with l = m, which is displayed in the last two rows in Tables 4.10 and 4.11. Note

that when l = m, the Weighted Worst-case Model is indeed the Additive Model (3.14). One

may find that the AIC Model is only preferred over our robust Weighted Worst-case model

when sample size is rather large, e.g. n = 250, otherwise the Weighted Worst-case model is
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Figure 4.3. Boxplots comparing ∆∗wa and ∆∗AIC computed from the PHT0.2-

based optimisation cases. Each graph constitutes of four groups of boxplots that

correspond to various sample sizes of n. The boxplot on the left/right-hand side

represents ∆∗wa/∆∗AIC . The top row boxplots are corresponding to distribution

collections M5, M4 and M2, while the bottom row relates to M∗4 and M∗2,

respectively.

recommended. This is consistent with the boxplot results displayed in Figure 4.4. These results

could be explained by the risk measure choice, since standard deviation does not measure the tail

of the distribution and therefore, the Weighted Worst-case Model overcomes this shortcoming.

Once again, the sample size plays an important role and the AIC Model always leads to more

robust solutions when data scarcity is not present.

It is also worth mentioning as a final remark that if we compare all the boxplots in Figures 4.1–

4.4, the ∆∗ resulted from the VaR-based optimisations tend to be smaller than those found under

optimisations based on other risk measures, i.e. CVaR, PHT and SD, which could be explained

by the robustness of VaR itself as a risk measure.

4.2. Stability. This section provides analyses on the stability of our empirical robust optimal

insurance contracts. In order to avoid excessive repeats, we only report the stability of empirical

solutions found from the most robust model as shown in Section 4.1, i.e. the Weighted Average

Model for the VaR-, CVaR- and PHT -based cases and the Weighted Worst-case Model for

the SD-based case. The scatter plots of y∗wa and y∗wwc against x are shown in Figure 4.5 for
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n = 25 n = 50 n = 100 n = 250

M5 M4 M2 M5 M4 M2 M5 M4 M2 M5 M4 M2

S∗wwc �S∗wa (l=2) 296 260 319 326 276 332 294 256 296 246 250 255

S∗wa �S∗wwc (l=2) 204 240 181 174 224 168 206 244 204 254 250 245

S∗wwc �S∗wa (l=3) 309 319 347 313 303 281 244 257

S∗wa �S∗wwc (l=3) 191 181 153 187 197 219 256 243

S∗wwc �S∗wa (l=4) 326 331 350 308 308 284 247 251

S∗wa �S∗wwc (l=4) 174 169 150 192 192 216 253 249

S∗wwc �S∗wa (l=5) 325 336 324 259

S∗wa �S∗wwc (l=5) 175 164 176 241

S∗ad �S∗AIC 287 297 309 304 317 334 257 269 293 146 169 237

S∗AIC �S∗ad 213 203 191 196 183 166 243 231 207 354 331 263

Table 4.10. Comparison between the SD-based (b=0.5) solutions of (3.14),

(3.15), (3.16) and the non-robust AIC model for various sample sizes n and

collection of candidate models {M5,M4,M2}.

n = 25, 100, 250. It is observed that the VaR-based empirical solution mimics the functional

form of y∗wa,i = c
((
xi − d1

)
+
−
(
xi − d2

)
+

)
, while the empirical solutions of all other cases

mimic the functional form of y∗wa,i = c
(
xi − d1

)
+

and y∗wwc,i = c
(
xi − d1

)
+

, where c, d1 and

d2 are unknown parameters that can be estimated by Ordinary Least Square (OLS) regression

fitting the functional forms to the corresponding data (xi, y
∗
i ), i = 1, 2, . . . , n. Recall that our

numerical experiment contains 500 samples for each choice of sample size n. That is, there

are 500 estimated pairs of the unknown parameters,
(
ĉ, d̂1, d̂2

)
, for each of n = 25, 100, 250,

which is summarised in Table 4.12. Although variations exist in the mean values of
(
ĉ, d̂1

)
for

the CVaR-, PHT - and SD-based cases, it is noticed that the standard errors of
(
ĉ, d̂1

)
has

a decreasing trend as the sample size n grows. That is, we may conclude that the empirical

solution of our Weighted Average Model for CVaR- and PHT -based cases and our Weighted

Worst-case Model for SD-based case are stable and consistent. Unfortunately, such feature

is not observed in the empirical solutions for the VaR-based cases. However, this should not

become a major concern, as we have seen in Section 4.1 that our robust models are not the best

options for solving VaR-based cases and AIC Model is recommended instead.
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n = 25 n = 50 n = 100 n = 250

M5 M∗4 M∗2 M5 M∗4 M∗2 M5 M∗4 M∗2 M5 M∗4 M∗2

S∗wwc �S∗wa (l=2) 296 298 278 326 322 279 294 297 237 246 247 211

S∗wa �S∗wwc (l=2) 204 202 222 174 178 263 206 203 263 254 253 289

S∗wwc �S∗wa (l=3) 309 308 347 331 303 307 244 236

S∗wa �S∗wwc (l=3) 191 192 153 169 197 193 256 264

S∗wwc �S∗wa (l=4) 326 295 350 306 308 336 247 271

S∗wa �S∗wwc (l=4) 174 205 150 194 192 164 253 229

S∗wwc �S∗wa (l=5) 325 336 324 259

S∗wa �S∗wwc (l=5) 175 164 176 241

S∗ad �S∗AIC 287 293 298 304 301 301 257 267 236 146 170 186

S∗AIC �S∗ad 213 207 202 196 199 199 243 233 264 354 330 314

Table 4.11. Comparison between the SD-based (b=0.5) solutions of (3.14),

(3.15), (3.16) and the non-robust AIC model for various sample sizes n and

collection of candidate models {M5,M∗4,M2}.

CVaR Case PHT Case SD Case

ĉ d̂1 ĉ d̂1 ĉ d̂1

n = 25
Mean 0.916 2892.3 1.000 4460.0 0.9287 3343.0

(Standard Error) (0.1650) (1908.6) (0.7195) (5268.6) (0.1011) (2481.6)

n = 100
Mean 0.8940 3147.0 1.000 4531.9 0.9075 3433.8

(Standard Error) (0.1705) (1222.7) (0.0000) (2787.0) (0.0781) (1412.0)

n = 250
Mean 0.8888 3212.3 1.000 4520.2 0.8925 3359.1

(Standard Error) (0.1410) (795.44) (0.0000) (1806.9) (0.06210) (933.07)

Table 4.12. Summary of mean and standard errors of
(
ĉ, d̂1

)
for CVaR-, PHT-

and SD-based cases with various sample size n.

5. Conclusions

Robust optimal insurance contracts have been investigated by carrying out many numerical

experiments under various risk-based decisions. It is concluded that the sample size plays a major

role in the sense that, whenever data scarcity is not present, the AIC Model is preferred and

there is a need to focus on available statistical methods in order to find the most robust optimal
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Figure 4.4. Boxplots comparing ∆∗wa and ∆∗AIC computed from the SD-based

(b = 0.5) optimisation cases. Each graph constitutes of four groups of boxplots

that correspond to various sample sizes of n. The boxplot on the left/right-

hand side represents ∆∗wa/∆∗AIC . The top row boxplots are corresponding to

distribution collections M5, M4 and M2, while the bottom row relates to M∗4
and M∗2, respectively.

decision. If small samples are available, then either the Weighted Average Model or Weighted

Worst-case Model should be considered instead of trying to identify the “best” statistical tool

to estimate the unknown risk model. Our numerical experiments have shown that whenever

the decision-maker has a particular interest in the tail distribution, i.e. the decisions are based

on VaR, CVaR or PHT , the Weighted Average Model produces the most robust solutions

whenever the available sample is relatively small. On the other hand, the Weighted Worst-case

Model leads to the most robust optimal solution if the decision-maker has little interest in the

tail risk and thus, such risk preferences require a robust method that puts more weight on

the worst cases. These conclusions reiterate once again that one should be very careful when

robust optimal decisions are sought and one should first understand the features of the objective

function and the size of the available data, and then decide whether robust optimisation or

statistical inferences are the way forward.
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Figure 4.5. Scatter plots of empirical robust optimal insurance contracts found

from various robust optimisation models and sample sizes. The plots in each row

(from top to bottom) correspond to the VaR-, CVaR- and PHT -based Weighted

Average Models and the SD-based Additive Model, respectively. The plots in

each column (from left to right) correspond to the sample size of n = 25, 100 and

250, respectively.

6. Proofs

Proof of Proposition 2.1. The reformulation (2.6) tells us that minimising (2.5) over A can be

written as follows

min
(t,s)∈A×<

{
s+

1

l

m∑
i=1

(
f
(
t;ωi

)
− s
)
+

}
, (6.1)

and we show that solving the above problem is equivalent to solving the optimisation prob-

lem (2.7). Let us denote the optimal solution to (2.7) as (t∗, s∗,u∗). It is noticed that the objec-

tive function in (2.7) is increasing in ui for all i ∈M, and therefore, constraints f
(
t;ωi

)
≤ s+ui

and 0 ≤ u ensure that u∗i =
(
f
(
t∗;ωi

)
− s∗

)
+

for all i ∈ M. Consequently, (t∗, s∗) is also fea-

sible to the problem (6.1). Suppose that (t∗, s∗) is not the optimal solution to (6.1), then there
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must exist another feasible solution
(
t′, s′

)
such that

s′ +
1

l

m∑
i=1

(
f
(
t′;ωi

)
− s′

)
+
< s∗ +

1

l

m∑
i=1

(
f
(
t∗;ωi

)
− s∗

)
+

= s∗ +
1

l

m∑
i=1

u∗i . (6.2)

Note that (t′, s′,u′) with u′i =
(
f
(
t′;ωi

)
− s′

)
+

for all i ∈M is also feasible to (2.7). However,

s′ +
1

l

m∑
i=1

u′i < s∗ +
1

l

m∑
i=1

u∗i

is implied by (6.2), which contradicts the assumption that (t∗, s∗,u∗) is the optimal solution to

the optimisation problem (2.7). As a result, the optimal solution to (2.7) must also solve the

problem (6.1).

On the other hand, suppose that (t∗, s∗) is the optimal solution to (6.1). Then, (t∗, s∗,u∗)

with u∗i =
(
f
(
t∗;ωi

)
−s∗

)
+

for all i ∈M is also feasible to (2.7). If (t∗, s∗,u∗) is not an optimal

solution to (2.7), there must exist another feasible solution (t′, s′,u′) such that

s′ +
1

l

m∑
i=1

u′i < s∗ +
1

l

m∑
i=1

u∗i = s∗ +
1

l

m∑
i=1

(
f
(
t∗;ωi

)
− s∗

)
+
. (6.3)

Since the constraints f
(
t;ωi

)
≤ s + ui and 0 ≤ u in (2.7) will ensure u′i =

(
f
(
t′;ωi

)
− s′

)
+

,

(t′, s′) is also feasible to (6.1) with

s′ +
1

l

m∑
i=1

u′i < s∗ +
1

l

m∑
i=1

u∗i

implied by (6.3), which then contradicts the assumption of (t∗, s∗) being the optimal solution

to (6.1). That is, the optimal solution to (6.1) must also solve the optimisation problem (2.7).

The proof is completed by combining both arguments. �

Proof of Theorem 3.1. Let us first show that an optimal solution x∗ of (3.17) must be Pareto

optimal when the optimal objective function value in (3.18) is zero. If x∗ is not Pareto optimal,

then there must exist another feasible solution ŷ of (3.17) such that fk
(
ŷ
)
≤ fk

(
x∗
)

for all

k ∈M with at least one inequality sign being strict. Thus, ŷ is feasible in (3.18) and∑
k∈M

(
fk
(
ŷ
)
− fk

(
x∗
))

< 0,

which contradicts the statement that the optimal objective function value of (3.18) is zero.

Thus, x∗ must be Pareto optimal.

Next, we show that when the optimal objective function value of (3.18) is negative, any

optimal solution y∗ of (3.18) solves (3.17) as well and is Pareto optimal. Now, fk
(
y∗
)
≤ fk

(
x∗
)

for any k ∈ M, since y∗ is feasible in (3.18), which in turn gives that f (k)
(
y∗
)
≤ f (k)

(
x∗
)

for

any k ∈ M. The latter and the fact λk’s are positive imply that y∗ must solve (3.17), since x∗
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solves (3.17). Assume now that y∗ is not Pareto optimal. Therefore, there must exist another

feasible solution ŷ of (3.17) such that fk
(
ŷ
)
≤ fk

(
y∗
)

for all k ∈M with at least one inequality

sign being strict. Consequently, ŷ is feasible in (3.18) and

∑
k∈M

(
fk
(
ŷ
)
− fk

(
x∗
))

<
∑
k∈M

(
fk
(
y∗
)
− fk

(
x∗
))
,

which contradicts the fact that y∗ is an optimal solution of (3.18). Therefore, y∗ must be Pareto

optimal. The proof is now complete. �
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