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ABSTRACT 
 

The present work deals with the production of graphene oxide (GO) reinforced 

aluminium (Al) matrix composites via liquid infiltration and powder metallurgical 

routes. The experiments were carried out on the optimisation of the process 

parameters of the composites and these outcomes were considered as input 

parameters for the prediction of properties using finite element (FE) modelling. 

The experimental design includes three wt% of GO reinforcement, three 

compaction pressures and two sintering temperatures. The other parameters 

investigated were selection of solvent and stirring time. The solvent and stirring 

time were selected based on visual inspections. Liquid infiltrated composite 

powders were vaccum filtered, dried and then cold compacted at 500MPa, 

540MPa and 580MPa of compaction pressures. The GO/Al samples were 

sintered in horizontal tube furnace assisted by Ar gas atmosphere. The 

metallographic study and chemical analysis were performed using a scanning 

electron microscopy (SEM) integrated with energy dispersive X-ray 

spectroscopy (EDXS) revealing the existence of GO particles/sheets on Al 

particles. The percentage of elements at various regions of the GO/Al 

composites both at powder level and after sintering were investigated. The 

crystallinity and phase detection of the GO/Al samples were conducted using 

X-ray diffraction (XRD) system with Cu-Kα radiation and 1.54Å wavelength. 

The presence of GO and number of layers of GO residing on the Al particles 

were analysed using micro Raman spectroscopy, this also revealed that there 

was no existence of aluminium carbide (Al4C3) phase as the carbide formation 

will deteriorate the properties of the end composites. The hardness properties 

of the as received Al and produced GO/Al composites were measured by 

micro-Vickers diamond indentation. The hardness of the GO/Al composite 

increases by 36% compared to pristine Al when reinforced with 0.2wt% of GO 

which is better than the hardness of rGO/Al composites reported in literature. 

Indentation test was used to investigate the effect of addition of GO to the Al 

on strength, in which it was noted that the addition of GO led to the brittleness 

in GO/Al composites. The effect of existence of GO on Al particles, variation 

in volume fraction of GO and existence of GO layers on Al particles on 

mechanical properties of GO/Al composites were predicted using FE 

modelling. The findings from the simulation were compared with analytical 

modelling and experimental results obtained from the current research work. 

A good agreement between results of FE model, analytical model and 

experimental investigations were noted.     
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Metal matrix composites (MMCs) are the range of advanced materials with the 

combination of a metallic matrix and a non-metallic reinforcement such as 

ceramic or organic compounds. MMCs demonstrate better mechanical 

properties and moduli when compared to monolithic metals or alloys [1,2]. The 

benefits offered by MMCs include high Young’s modulus, high strength, 

retaining at high temperatures, improved wear and fatigue, better impact 

properties and improved electrical, thermal conductivities. MMCs stand as the 

ideal materials for engine blocks, pistons, cylinder liners, frames etc., for use 

in automotive industries and mid-fuselage structures, antenna wave guides 

etc., in aerospace industries [3,4].  

The challenging tasks for composites production includes finding a compatible 

reinforcement for the available matrices and attaining the uniform distribution 

of reinforcement. Out of the available metallic matrices aluminium (Al) has 

been chosen as matrix material for current study as it is inexpensive in 

comparison to widely used low density metals such as Ti and Mg [3,4]. High 

corrosion resistance and better formability makes Al a material of choice for 

automobile applications over other alternatives, including ferrous metals. The 

general types of reinforcement materials used for Al matrix include silicon 

carbide (SiC), aluminium oxide (Al2O3) and graphite. Carbonous nano 

reinforcements such as CNTs and graphene have been used for aluminium 

matrix composites (AMCs) and attracted many researchers due to graphene’s 

exceptional mechanical, thermal, electrical and tribological properties and 

additional advantage of being nano i.e., availability of maximum area for 

chemical reactions. Out of derivatives of graphene, graphene oxide (GO) has 

been chosen as reinforcement material for Al matrix in the present study due 

to its hydrophilic nature and better dispersion in aqueous solutions. The nano 

particle reinforcement benefits the metallic matrices in improving the tensile 

strength and elongation. However, the uniform distribution and agglomeration 

reduces the chances of attaining superior ductility [5,6]. The distribution of 



` 

2 
 

nano particles along the matrix material shows the significant effect on the end 

properties of composite [7–9], which contributes to the agglomeration of the 

nano particles around the grain boundaries rather than mixing with grains and 

will promote crack growth. To address this, many manufacturing techniques 

such as powder metallurgy [10,11], stir casting [12,13], semi-solid casting 

[14,15] and semi-solid processing [16,17] are used for the production of AMCs. 

These techniques have shown to achieve some extent of uniform distribution, 

but the complete homogeneity is not achieved. This lack in homogeneity has 

led to the reduction in mechanical properties of the composites. This implies 

to the necessity of in-depth analysis on material processing stages i.e., mixing 

parameters of matrix and reinforcement, thermo-physical properties, 

compatibility of reinforcement with matrix and wettability of particles to improve 

properties of the end composites.  

This study therefore combines the use of novel liquid infiltration synthesis and 

conventional fabrication routes to obtain composites with better mechanical 

properties. Powder processing parameters such as solvent selection, wt% of 

GO reinforcement and stirring time were investigated to understand the 

interaction of GO reinforcement with the Al matrix. The microscopic and 

quantitative analysis will be used to investigate and analyse the effect of 

graphene oxide (GO) addition on microstructural manipulation of base 

material, aluminium (Al). Although, there are some studies reported on using 

graphene nanosheets (GNS) [18–21] graphene nano platelets (GNP) [22–26] 

and reduced graphene oxide (rGO) [18,27–29] as reinforcement materials, the 

complete potential of graphene addition on Al matrix has not been achieved 

due to one of the following reasons: inefficient reduction of GO to rGO without 

effecting the graphene structure, non-homogeneous dispersion of 

reinforcement on to the matrix and bonding between graphene and Al 

particles. Some researchers even reported the formation of carbides and 

contamination of composites as the reasons behind the degradation of 

properties of end composite. To address this, the present study aims at 

exploring the potential of GO on manipulating microstructure of Al particles to 

improve properties of end composite. To avoid the contamination of the 

produced composites the use of additives or surfactants was avoided during 

powder preparation for the fabrication of composites. The current study has 
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made use of wet mixing/liquid infiltration techniques to avoid damage to the 

graphene structure which is ineviTable with mechanical milling processes.  

1.2 Motivation Aim and objectives of the study 

The excellent properties of graphene caught attention of many researchers 

globally, using the full benefit of graphene and its derivatives is a matter of 

concern, especially in composites. There are many challenges in exploring the 

potential of graphene as a reinforcement for AMCs and their applicability in 

practical applications. One of the key issues regarding the use of graphene 

lies in its production on bulk scale as it is very expensive and involves 

sophisticated characterisations. The use of mechanical milling i.e., ball milling 

to produce graphene reinforced Al matrix is investigated by many researchers 

but the increase in properties were not promising as the high energies and 

long-milling times damages the graphene structure. The damage to the 

graphene structure will lead to the disorderness and reduction of properties. 

Moving to the wet mixing techniques from ball milling will enable to achieve 

better dispersion and hence better properties. The use of liquid exfoliation 

techniques of graphite in compatible solvent media is a relatively new 

technique at the commencement of present work but now is becoming a 

popular technique for graphene production. 

Many studies have demonstrated the use of rGO that is obtained by removing 

the oxide functionalities. This can be achieved either by thermally heating to 

certain temperatures or by adding appropriate chemicals. The reduction 

process will disrupt the band structures and will highly effect its properties, for 

instance, rGO is not as electrically conductive as pure graphene and rGO is 

more hydrophobic. The thermal reduction of GO reinforced Al powder will lead 

to the formation of carbides which deteriorates the properties of overall 

composite. Hence, there is a lack of quick and straightforward techniques to 

reduce GO and restore properties. None of the studies at the time of writing 

this thesis have reported the use of GO without reducing it. Regarding the 

application of graphene, one application of interest is using composites made 

from GO and Al matrix to be used as pistons, connecting rods and shafts in 

automobile industries. Most studies carried out used either SiC or Al2O3 as 

reinforcement on Al matrix. On the other hand, the residual stresses and strain 
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induced during fabrication must be avoided to make better use of the full 

potential of reinforcement addition. Hence X-ray diffraction (XRD) and Raman 

spectroscopy are used to investigate the effect of parameters used in 

fabrication techniques on the end composites.  

After recognizing the potential of graphene oxide itself compared to reduced 

graphene oxide which was extensively used by researchers, I have made an 

attempt to use graphene oxide on its own without any reduction steps which 

was not been explored before. Thus the aim of my research work is to produce 

graphene oxide reinforced aluminium matrix composites at optimized process 

parameters.  

Objectives:  

1. Production of GO/Al powders using liquid infiltration technique in 

different solvents at different stirring times.  

2. Investigation of the effect of powder metallurgical parameters such as 

compaction pressure, sintering temperature on properties of GO/Al 

composites.  

3. Characterisation of GO/Al powders and GO/Al composites for 

microstructural, mechanical analysis and comparison with monolithic Al 

samples. 

4. Finite element (FE) modelling and simulation of GO/Al composites to 

predict the effect of existence of number of layers and volume fraction 

of GO on Al particles on the stress distribution of the composites.   

1.2.1 Research questions 

Graphene oxide is one of the economical alternate derivatives of graphene 

which consists of hydroxyl and carboxylic groups that provides better 

dispersion in aqueous solutions and many other solvents. The use of GO 

without any reduction steps as reinforcement for AMCs has not been explored 

till to date which is one of the major contributions of present research work. 

Figure 1.1 shows the research questions and strategies developed/adopted in 

current research work.  
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1.3 Thesis outline 

Chapter 1 Introduction 

In this chapter a brief overview of MMCs as well as the motivation to pursue 

research in current area and the objectives of current research work are 

presented.  

Chapter 2 Literature review 

This chapter reviews the literature concerning MMCs, graphene in general and 

graphene reinforced Al matrix composites in particular.  A brief introduction to 

MMC, production techniques of MMCs and a brief introduction of graphene 

and its derivatives, synthesis techniques, properties are presented targeting 

mainly the processing techniques related to the production of nano reinforced 

AMCs.  

Chapter 3 Critical summary of literature review 

The summary of AMCs reinforced with various derivatives of graphene 

together with the processing conditions used and the properties investigated 

were given in this chapter.    

 

GO/Al composite 
production 

Problem – 1 

Dispersion 
of GO 

Problem – 2 

Structural 
integrity 

Problem – 3 

Wettability 

Problem – 4 

High vol% of 
GO 

• Ultrasonication of GO 
for 15mins before 
mixing with GO. 

• Wet mixing of 
powders at optimum 
stirring speed of 
~200rpm. 

• Surface 
modification of 
GO via wet 
mixing process. 

• Slow addition of 
GO to Al/IPA slurry 
at optimum stirring 
speed of ~200rpm. 

• Use of Liquid 
infiltration. 

• Use of solvent with 
better dispersion 
efficiency. 

Figure 1.1: Research questions with the strategies developed in present work. 
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Chapter 4 Materials and methods 

The materials and characterisation methods used in present research work are 

presented in this chapter. It comprises of powder preparation, composite 

fabrication followed by the characterisation of powders and samples. The finite 

element modelling of composite with parameters used in model setup and 

boundary conditions are also given in this chapter.  

Chapter 5 Results and discussion 

The Characterisation results of as received Al samples, GO/Al powders, GO/Al 

composite samples are presented in this chapter. A summary on scanning 

electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDXS) 

analysis, X-ray diffraction (XRD), micro Raman spectroscopy, micro Vickers 

hardness and indentation experimental results and results obtained from 

composite structural modelling conclude this chapter. The results obtained 

were discussed with theoretical and literature backup and compared with as 

received Al samples. The discussion on results obtained from the simulation 

of composite model are also included in this chapter. 

Chapter 6 Conclusion and future recommendations  

This chapter summarises the results obtained from the current work, 

concludes thesis with highlights on major findings from this work. Additionally, 

suggestions for the future work to expand the investigation in critical issues in 

fabrication of nano reinforced metal matrix composites are mentioned in this 

chapter.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Metal matrix composites (MMCs) 

MMCs combination tailor the best properties out of their constituents such as 

improved ductility, toughness, strength. MMCs reinforced with ceramic fibers 

exhibit increase in strength and stiffness compared to the monolithic alloys 

[30–32]. The matrix material usually transfers and distributes load to 

reinforcements depending on the bonding interface between matrix and 

reinforcement [33]. There are several factors that should be considered while 

selecting the matrix and reinforcement materials for composite systems. These 

factors include compatibility between matrix and reinforcement, ease of 

fabrication methods, applicability of the end composite [34]. The selection of 

matrix material usually depends on ease of manufacturing of the end product 

with selected fabrication method and most of the matrices are metals and 

alloys [35]. For an instance, powder is used as matrix material in powder 

metallurgy [36] and liquid matrix material is used for liquid metal infiltration [37]. 

Appropriate care should be taken while considering the chemical compatibility 

and wettability of reinforcement in matrix material while working with liquid 

infiltration methods. In general, metals such as Al, Ti, Mg, Ni, Cu, Fe and Sn 

are used as matrix materials out of which light metals such as Al, Mg and Ti 

has attracted attention recently due to the combination of light weight and high 

specific strength which makes them promising materials in aeronautical and 

automobile applications [38]. Out of these light metals, Al is the material of 

interest to many researchers globally due to its unique combination of high 

strength, good corrosion resistance and noTable electrical conductivity [39]. 

The factors that should be considered while selecting the reinforcement are 

reinforcement type, shape, geometry and chemical compatibility with matrix 

materials [40].  

Nanoparticle reinforcement have proven to be better than the micro sized 

reinforcements on MMCs even though attaining uniform distribution is a 

challenging task [41]. The non-homogeneous distribution is due to high 

chances of agglomeration of nanoparticles and electro-repulsion at high 
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volume percentages [42,43], which in turn will reduce the mechanical 

properties. However, the nano reinforcement use will benefit the changes in 

fracture mode from inter-granular to trans-granular mode. The change in 

fracture mode leads to increase in tensile properties, enhanced fracture 

toughness, increased stability at high temperatures and better creep and wear 

resistance. The most commonly used nanoparticle reinforcements for MMCs 

are SiC, TiC, Al2O3, AlN, TiB2 and WC [44]. Miracle et al. [45] have reported 

the effect of addition of nano and micro sized SiC reinforcements on Al matrix. 

It can be noted that the addition of nano reinforcement resulted in enhanced 

dimensional stability and reduced temperature sensitivity over monolithic Al 

samples. It was reported that the nano sized reinforcement incorporation in 

metallic matrices can improve mechanical properties significantly [42,46]. For 

instance, nano reinforcement improved elastic modulus and yield strength 

compared to micro reinforcement for the AMCs [47]. This is possible due to 

increase in barriers to restrict the dislocations but will eventually lead to the 

reduction in ductility, creep resistance and nano reinforcement will also 

promote the formation of micro voids [48,49]. The increase in demand for high 

strength and low weight materials with better electrical and thermal properties 

have inspired researchers to work with AMCs. Particulate reinforced AMCs are 

more popular in automotive industries due to their capability to work under high 

temperatures and pressures [50]. The nano particle reinforcements of SiC and 

Al2O3 were used with AMCs to improve mechanical properties of base metal 

[51,52]. Various manufacturing techniques such as stir mixing [53], ball milling 

[15,54], stir casting and compocasting [55] were used to produce Al2O3 particle 

reinforced AMCs. It can be noted from reported results in literature that the 

usage of stir casting methods resulted in severe agglomeration of Al2O3 

nanoparticles with contact angles of nearly 100° between Al and Al2O3 

particles, whereas poor wetting between Al and nano reinforcement was noted 

which led to floating of particles on liquid metal surfaces [56]. The ball milling 

techniques used for fabrication of AMCs reinforced with Al2O3 particles 

resulted in better dispersion and reduced agglomeration, but the high energies 

used in ball milling resulted in structural damage of nano reinforcement and 

induced defects [54]. Even though compocasting methods provided better 

distribution of reinforcement into the matrix, controlling process parameters 
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and chemical reactions between matrix and reinforcement proved to be difficult 

[55]. Hence, there is a need to develop a fabrication technique that provide 

both homogenous distribution of reinforcement into the matrix and enhance 

the bonding between reinforcement and matrix. 

2.2 Manufacturing techniques of aluminium matrix composites 

(AMCs) 

MMCs can be fabricated through different fabrication routes i.e., solid state 

processing, liquid state processing and semi-solid processing and the 

classification is shown in Figure 2.1. The selection of fabrication techniques 

depends on the phase of matrix and reinforcement materials and applicability 

of the end composite.  For instance, solid-phase processes are used to 

improve mechanical properties and to reduce the segregation effects. Liquid-

phase processes are used to produce parts with difficult shapes with low 

manufacturing costs, however this process suffers with lack of control on 

process parameters and chemical reactions between matrix and 

reinforcement. The semi-solid process offers the advantage of reduced 

segregation but includes high processing costs of end products. There are 

different processing techniques reported in literature to produce AMCs that 

includes powder metallurgy, high energy ball milling, friction stir processing 

and ultrasonic casting. These processes used to produce AMCs can effect the 

microstructure of composite, grain growth and porosity levels and hence 

variation in properties of end product can be observed. This establishes the 

necessity to control microstructure under various processing conditions.  

Powder metallurgical techniques offer control over the homogeneity of 

mixtures and will aid to produce near net shapes and can avoid segregation 

and agglomeration of the nano reinforcement particles to the maximum extent 

if provided with better mixing parameters. Tang et al. [57] have demonstrated 

the use of ball milling to mix Al matrix and silicon carbide particle (SiCp) 

reinforcement and it can be noted that the tensile strength of SiCp/Al material 

improved than the monolithic Al samples and better dispersion of SiCp 

reinforcement in Al matrix was noted.  Kang et al. [58] have used mechanical 

alloying process to produce SiCp reinforced Al composites using different 

volume percentage of SiCp. It was observed that the tensile yield strength of 
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composite was increased until the application of critical load and then 

decreased, which was due to the agglomeration of SiCp at grain boundaries.  

 

Figure 2.1: Classification of production techniques of metal matrix 

composites (MMCs). 

Liquid-phase fabrication techniques involve stirring of particles into melts, 

which provides perfect bonding between the matrix and reinforcement. 

However, the liquid-based processing of SiCp/Al composites study conducted 

by researchers have reported that high percentage of brittleness in composites 

due to difference in thermal expansion coefficients between SiCp and Al and 

poor wettability [59]. Mandal et al. [60] have reported the formation of 

undesired reactions between the SiCp and Al in SiCp/Al composites and heat 

treatment process resulted in formation of aluminium carbide (Al4C3). The 

production of SiCp reinforced A356 Al alloy using ultrasonication assisted 

casting process was reported by Yang et al. [61], noted an effective distribution 

of SiCp into the matrix through cavitation in the liquid metals and hence 
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improving yield strength by 50%. However, this process is not suiTable for 

nanoparticle reinforcements due to high chances of clustering of particles at 

high volume percentage of nano reinforcement.  

Semi-solid processing techniques have caught the attention of many 

researchers as it provides better dispersions for nano reinforcements in 

MMCs, especially in AMCs [62]. Curle et al. [63] have reported the production 

of SiCp micro sized reinforced Al composites through semi-solid processing, it 

was reported that the wear resistance of composite was increased by the order 

of 72%. Jiang et al. [64] have reported the effect of nano sized SiCp 

reinforcement on Al matrix in SiCp/Al composites produced by using 

rheocasting process. The tensile properties of the produced composites were 

enhanced with increase in stirring times. However, the tensile properties 

started diminishing above 1vol% of SiCp reinforcement, this was attributed to 

the agglomeration.  

The manufacturing of MMCs especially AMCs face critical challenges of 

achieving uniform distribution of nanoparticles into the matrix and 

agglomeration of nanoparticles which is attributed to high surface to volume 

ratios. These two hurdles deteriorate mechanical properties especially ductility 

and fracture toughness of end composite. The main parameters that effects 

the agglomeration are: stirring time, temperature of stirring, type of 

reinforcement and amount of reinforcement. Liquid phase fabrication offers 

advantage of better matrix and reinforcement bonding in comparison to 

powder metallurgy. However, this process suffers from lack of wettability and 

uniform distribution unlike powder metallurgy. It is therefore essential to obtain 

more insight on microstructural changes due to nano reinforcement addition to 

produce high performance AMCs for different applications. Hence, the interest 

of current research is to combine liquid-based powder preparation and powder 

metallurgical fabrication of composites.  

2.3 Graphene 

Professor Andre Giem and Professor Kostya Novoselov at the University of 

Manchester successfully isolated the 2D graphene sheets [65], which 

disapproved the assumptions that 2D materials couldn’t exists without 3D base 
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which is an integral part of large 3D structures. It can also be noted that the 

invented 2D materials did not violate the Peierls rule [66], which states that the 

thermal fluctuations in 2D crystals would destroy the crystalline order in a long 

range [67]. 

2.3.1 Morphology of graphene    

Graphene is a monolayer of carbon atoms arranged in 2D honey comb 

structure [68]. It can be considered as a basic allotrope of carbon to 

extract/form other allotropes, shown in Figure 2.2 [65]. For instance, graphene 

sheet can be wrapped around to form 0D fullerene (it doesn’t have any 

particular dimensions in which it displays translational symmetry unlike a sheet 

or tube) or rolled to form 1D carbon nanotubes (CNTs) or can be stacked with 

number of layers to form 3D graphite. The SP2 hybridised C-C bond length of 

graphene is in the order of 0.412nm, when the graphene layers are stalked 

together, the interplanar spacing will be 0.335nm [68]. The unit cell of single 

layer graphene sheets (SLGs) consists of two atoms in it and consequently 

there will be four atoms in bilayer cell. In graphene, a carbon atom have 3σ 

bonds and 1π bond, the in-plane σ bonds are extremely strong and partially 

filled Pz orbital, π bond are responsible for electrical conductivity and the 

graphene layers interactions. The schematic representation of the σ and π 

bonds in graphene is shown in Figure 2.3 [69]. However, the transmission 

electron microscopy (TEM) analysis of SLG suspensions done by Meyer et al. 

[68] have revealed that the SLG sheets are not completely flat and exhibit 

intrinsic static microscopic roughening which is called ripple. The ripples on 

suspended SLGs significantly effect electrical properties [70], it can be noted 

that the larger the ripples (73nm) are, the lower electrical conductivity will be 

[71]. Apart from these ripples, graphene can have defects like vacancies, 

adsorbed impurities, cracks, adatoms (atoms lying on the crystal surface) etc 

[72]. 
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Figure 2.2: Graphene wrapped into fullerenes, nano tubes and graphite [65]. 

 

Figure 2.3: Schematic representation of in-plane (σ) bonds and out-of-plane 

(π) bonds [69]. 

2.3.2 Properties of graphene     

Mechanical properties  

In any practical applications, an external application of stress and unwanted 

strain will effect the performance and durability of the product. It was 

anticipated that the graphene can outperform the CNTs with high strength and 

2D graphene 

c 

0D Fullerenes  1D Nanotubes  3D Graphite  
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stiffness. Lee et al. [73] have used atomic force microscopy (AFM) to measure 

elastic properties of monolayer graphene and reported Young’s modulus of 

1±0.1TPa and intrinsic strength of 130±10GPa.  Tsoukleri et al. [74] have used 

Raman spectroscopy to measure the strain by applying compression and 

tension loads on SLG and reported a strain of 1.3% and 0.7% in tension and 

compression respectively. Lee et al. [75] have reported the use of AFM to 

measure Young’s modulus and strength of graphene, reported Young's 

modulus of 1.02TPa,1.04TPa and 0.98TPa and fracture strength of 130GPa, 

126GPa and 101GPa respectively for mono layer, bi-layer and tri-layer 

graphene respectively. Raman spectroscopy can be used to measure the 

compressive and tensile strains in graphene sheets by measuring the change 

in G and 2D peaks with applied stress. Ni et al. [76] have mentioned that it is 

possible to tune the band gap by introducing a controlled strain, as the strain 

may change electric band structure. Cristina et al. [77] have reported that the 

successful production of chemically modified graphene by reducing graphene 

oxide with hydrogen plasma, Young's modulus of 0.25TPa was noted from the 

results. Table 2.1 gives the overview of mechanical properties of graphene and 

its derivatives, it can be noted from the Table that increase in number of 

graphene nano sheet layers leads to the reduction in properties.  

Table 2.1: Mechanical properties of graphene and its derivatives in 

comparison with conventional metals. 

Material 
Young’s 
modulus 
(MPa) 

Tensile 
strength 
(MPa) 

Fracture 
toughness 

(MPa√𝑚) 

Reference 

Graphene (mono layer) 106 1.3×105 4-5 [75,78] 

Reduced graphene 
oxide (rGO) 

2.5×105 0.9×103 2.8-3 [77] 

Graphene nano sheets 
(GNS-bi-layer/tri-
layer/multi layers) 

0.98×106-
0.76×106 

1.26×105-
1.01×105 

3.8-3.2 [75] 

Aluminum 
6.83×104-
7.0×104 

130-195 27.5-30 [79] 

Stainless steel (Grade 
304) 

19×104-
20.3×104 

510-620 119-228 [80] 

Copper 
110×104-
128×104 

210-390 40-100 [81] 

Titanium 116×104 220 84-107 [82] 
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Electrical properties  

Pristine graphene or monolayer graphene is an efficient zero-gap 

semiconductor known to mankind. The charge carriers in graphene behave as 

Dirac fermions (massless relativistic particles) and these behave abnormally 

compared to electrons when subjected to magnetic field [83], this was even 

observed at room temperatures. The low defect density of graphene’s crystal 

lattice leads to high quality of single layer graphene sheets which is the main 

reason behind the high electrical conductivity of monolayer graphene sheets. 

The electrons in graphene behave as particles of light that do not scatter, which 

makes graphene a good conductor of electricity. Interfacial phonons [84], 

substrate ripples [68] and surface charge traps [85] are the factors that affect 

the conductivity of graphene sheets. Bolotin et al. [86] have demonstrated the 

minimum scattering using monolayer graphene layer in a suspended condition 

and demonstrated the effect of impurities on the surface of graphene sheets. A 

bipolar electrical field effect is another important characteristic of monolayer 

graphene sheets, this means by applying a gate voltage the charge carriers 

can be tuned between electrons and holes [65]. The major hurdle for graphene 

in practical applications is its zero-energy gap, for eg: field effect transistor, 

which needs on/off switch. Recent research in graphene have reported the 

modification of graphene band structure by constraining graphene in 

nanoribbons [87–89] and graphene in quantum dots [90] and by biasing bi-layer 

graphene [91,92]. Evaldsson et al. [93] have reported the variation of the width 

of ribbons and disorders in the edges of both zigzag and armchair nanoribbons, 

this observation was supported by both experimental results and theoretical 

explanations.  

Due to the advantage of scalability to electronics, epitaxial graphene has 

gained a lot of interest in recent years. There was a mixed opinion among 

researchers about the bandgap opening in epitaxial graphene, zero band gap 

on graphene layers was reported by Pen et al. [94] whereas 0.26eV was 

reported by Kim et al. [89]. An innovative method of growing epitaxial graphene 

on SiC substrate was developed by Deheer et al. [95]. It was reported that the 

mobility of graphene grown on Si-terminated face is less than that of the 

graphene grown on carbon-terminated face. This is due to the difference in 

structures and this can also be gated. They have also reported the reduction in 
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energy gap with an increase in thickness and it can be zero if the number of 

layers exceeds 4-5. This matches well with observations reported by Peng et 

al. [78], in which energy gap was 0.26eV for mono layer graphene 0.14eV for 

the triple layer.  

Reina et al. [91] have used CVD to synthesise graphene layers on Ni substrate 

and reported a huge variation in filed effect mobility of 100-2000cm2/Vs due to 

ineffective modulated resulted from the non-homogenous thickness of 

graphene films. Kim et al. [96] have synthesised graphene layers through CVD 

technique on Ni and transferred it to SiO2 substrate and the charge mobility 

was measured as 3700cm2/Vs which confirm the existence of mono layer 

graphene. Even though Ni is the most used metallic substrate to grow graphene 

[74,92,97,98] of high quality, this suffers a drawback of solubility of carbon-

nickel and deposition of multi layers at grain boundaries. Copper was used as 

an alternative to Ni to overcome the difficulty of high solubility. It was reported 

that the graphene layer is grown on copper foil through CVD shown a mobility 

of 4050cm2/Vs [92] and a mobility of ~3000cm2/Vs [97] by depositing graphene 

film on a large wafer of the copper substrate. The existence of difficulties in the 

synthesis of mono layer graphene sheets leads to the research related to the 

production of bi-layer and FLG. Novoselov et al. [99] reported that bi-layer 

graphene is almost gapless and remains metallic at neutrality points and charge 

particles are similar to that of the massless Dirac fermions but possess a finite 

mass and are called as massive Dirac fermions. Castro et al. [100] have 

reported a possibility of using bi-layer graphene as a tunable energy band gap 

semiconductor for energy applications through tuning the band gap by applying 

a magnetic field and it can be tuned up to 0.2eV. 

Numerous efforts have been made so far to reduce GO effectively in order 

remove oxygenated functional groups which incorporate the high electrical 

resistance 4MΩ/square. It can also be noted that the thermal and chemical 

reduction can partially restore the electrical conductivity but introduces the 

structural defects that degrade the electrical properties when compared to 

pristine graphene. Gomez et al. [101] have measured the mobility and 

conductivity of rGO as 2-200cm2/Vs and 0.05-2S/cm respectively. Li et al. [102] 

have reported the production of GNS and 72S/m of electrical conductivity at 

room temperature was noted from the observations, however the conductivity 
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of the GNS obtained was not promising compared to monolayer graphene. The 

recent results published by researchers from Graphenea Spain, have reported 

that the electrical conductivity of rGO reached to a value of 666.7S/m for a film 

of 20nm thickness [98]. Table 2.2 gives the overview of electrical properties of 

graphene and its derivatives from the most recent studies. It can be noted from 

the Table that the electrical conductivity of the rGO can be partially restored 

after the reduction process, which is only to 1% of the conductivity of pristine 

graphene, this was due to the disruption to the band structure of graphene. 

Table 2.2: Electrical properties of graphene and its derivatives in comparison 

with conventional metals. 

Material 
Electrical 

conductivity 
(S/m) 

Electron 
charge 
mobility 
(cm2/Vs) 

Energy gap 
(eV) 

Reference 

Graphene (mono 
layer) 

108 
15,000-
200,000 

0.26 [100] 

Reduced graphene 
oxide (rGO) 

666.7 17-2000 
Tunable gap 
of 0.35-0.78 

[98,101]  

Graphene nano 
sheets (GNS-bi-

layer/tri-layer/multi 
layers) 

72 5-290 0.42 [102,103] 

Aluminum 3.74x107 5600-7000 0.31-0.32 [79] 

Stainless steel 
(Grade 304) 

1.30×106-
1.52×106 

4000-6000 0.32 [80] 

Copper 6.0x107 5900-7400 0.30 [81] 

Titanium 6.2-6.8x105 2000-2700 0.33-0.35 [82] 

 

Thermal properties  

Graphene finds most of its applications in the field of electronics as it is the best 

conductor of electricity known so far, thermal management is one of the major 

issues that needs to be addressed while working with the electrical devices. 

During the operation of the electronic devices considerable amount of heat can 

be generated and dissipated. It is well known that the allotropes of carbon, i.e. 

graphite, diamond and CNTs possess high thermal conductivity due to the 

strong C-C covalent bonding. Until the arrival of graphene, single walled CNTs 

(SWCNT) and multi-walled CNTs (MWCNT) were well known for having the 
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highest conductivities of 3500W/mK and 3000W/mK respectively [104–107]. 

Blandin et al. [108] have reported that the thermal conductivity of monolayer 

graphene sheet as 5000W/mK using confocal micro-Raman spectroscopy. 

Ghosh et al. [109] have reported the use of confocal Raman spectroscopy to 

measure the conductivity of suspended graphene flakes for thermal 

management applications and thermal conductivity of 4100-4800W/mK at room 

temperature was noted. Seol et al. [110] have measured the thermal 

conductivity of single layer graphene sheet grown on SiO2 support and reported 

conductivity of 600W/mK. There was a speculation among the researchers that 

the thermal conductivity of graphene was over estimated and lee et al. [111] 

have reported the conductivity as 1200-2700W/mK and bi layer graphene as 

600-500W/mK [112].  It can be noted that the electrical conductivity of graphene 

is affected by defect edge scattering and isotropic doping. The thermal 

properties of graphene and its derivatives are summarised in Table 2.3. It can 

be noted from the Table that the thermal properties of the graphene decreases 

with increase in graphene layers and thermal conductivity of the rGO is less 

than the multilayer graphene.  

Table 2.3: Thermal properties of graphene and its derivatives in comparison 

with conventional metals. 

Material 
Thermal conductivity 

(W/mK) 
References 

Graphene 1200-2700 [111] 

Reduced graphene oxide (rGO) 30-250 [111] 

Graphene nano sheets (GNS-
bi-layer/tri-layer/multi layers) 

600-500 [112] 

Aluminium 237 [79] 

Stainless steel (Grade 304) 14-17 [80] 

Copper  147-370 [81] 

Titanium 17-21.9 [82] 

 

Other properties  

Nair et al. [113] have reported that the SLG sheets absorbs nearly 2.3% of the 

incident light with <0.1% of reflectance. The combination of optical, mechanical 
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and electrical properties makes graphene ideal material for flexible electronics 

[114]. Graphene also possess theoretical surface area of 2600m2/g and 

experimentally measured surface area of 270-1550m2/g [115], which benefits 

in improving matrix-graphene interactions in graphene based composites 

production.   

2.3.3 Synthesis of graphene 

There are two different approaches to produce graphene. One approach is 

top-down in which graphite will break down to graphene with application of 

external forces and another approach is bottom-up which includes building 

graphene from molecular level.  

Mechanical exfoliation (ME) of graphene  

Mechanical exfoliation was the initial technique used to synthesise graphene, 

this method was first developed in lab by Professor Giem and Professor 

Novoselov [116]. The piece of bulk graphite is repeatedly peeled using 

scotchTM tape by overcoming the vanderwalls forces between the layers and 

hence reduction of thickness of graphene layers, schematic is shown in Figure 

2.4. Even though this process facilitates the production of bulk amount of GO 

monolayer, Raman spectroscopy have shown that the existence of structural 

defects [117]. These effects can negatively affect the electrical conductivity 

due to the disruption of electronic structure. Jayasena et al. [118] have 

reported cleaving of graphite using oscillator-aided ultra-sharp single crystal 

edge to produce FLG, and the flakes obtained are of >100m lateral dimension 

and few tens of nm thickness. Chen et al. [119] have reported the use of three 

roll mills to produce SLG and FLG by exfoliating graphene using poly vinyl 

chloride (PVC), in which PVC acted as an adhesive during the peeling process. 

However, the temperatures upto 500°C were required to remove the residual 

PVC and dioctyl phthalate that were used during the synthesis, this 

complicates the whole process. 
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Figure 2.4: Schematic representation of sequential steps followed to exfoliate 

graphene layers using the scotch tape method. 

Liquid phase exfoliation (LPE) graphene 

The exfoliation process in LPE technique can be done either by using solvents 

or surfactant/stabilizer in aqueous media. The process involves following 

steps, dispersion, exfoliation and purification. The efficiency of degree of 

exfoliation can be estimated by analysing the number of graphene flake, i.e., 

analysing the results from FTIR, Raman spectroscopy and AFM, out of them 

Raman spectroscopy is the most commonly used technique. LPE methods are 

performed at room temperatures and does not involve any strong oxidants; 

pristine graphene with edge defects can be obtained [120–122].  

Liquid immersion will result in successful exfoliation, as this will aid to 

overcome the Van der waal attraction by reducing interfacial tension between 

graphene and solvent, hence better graphene’s dispersion [123,124]. 

Generally used solvents for graphene are 1-methyl 2-pyrrolidinome (NMP), 

ortho-dicholoro benzene and N-dimethyllformamide (DMF) [125], the selection 

is done mainly based on surface tensions and contact angle measurements. 

Blake et al. [126] have reported the production of SLG and FLG in DMF at 

around 3hrs of sonication followed by centrifugation at around 1300rpm to 

obtain sTable dispersions. The sonication time highly effects the dispersion 
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and quantity of graphene, for instance 0.01mg/ml of graphene was obtained at 

around 30mins sonication followed by centrifugation at 500rpm for 90mins 

[127], whereas 1.2mg/ml of graphene was obtained at 460hrs of sonication 

[128] in NMP. Khan et al. [129] have used the vacuum filtered graphene films 

and dispersed them in fresh NMP and sonicated for 460hrs, obtained 

graphene concentrations of ~63mg/ml with average flake length of 1µm and 

are of 3-4layers thick. It can also be noted from this research work that the 

decrease in centrifugation speed will result in increase in thickness [130].  It 

can also be noted from Khan’s group work that the sonication is a non-

destructive process and doesn’t introduce any defects in graphene sheets 

[128–130]. However, Skaltsas et al. [131] and Bracamonte et al. [132] have 

reported the existence of basal plane (surface) defects as a result of sonication 

that will effect the graphene’s applicability. This calls for the importance of 

investigating induced defects in graphene and graphene-based composites 

during sonication. Bourlinos et al. [133]  reported the use of per fluorinated 

aromatic solvents like penrafluorobenzonitrile, pentaflouropyridine and 

hexaflurobenzene to LPE graphene from graphite, out of which 

pentaflurobenzonitrile proved to be effective, i.e. producing graphene of 

0.1mg/ml at sonication time of 1hr. 

Use of surfactants like polymers can be effective in exfoliating graphite in 

aqueous solvents. The use of surfactant will minimise the aggregation of 

graphene sheets through electrostatic repulsion. Lotya et al. [134] reported the 

exfoliation of graphite in sodium decyl benzenesulfonate (SDBS), ~0.05mg/ml 

of dispersion was obtained at sonication time of 30mins and centrifugation at 

500rpm for 90mins. The use of sodium collate surfactant in aqueous media for 

graphite exfoliation was demonstrated by Hersam et al. [135], graphene 

concentrations of nearly 0.09mg/ml were obtained and the obtained 

suspensions have thickness of <5 layers. The polymer surfactants like IGEPAL 

CO-890, Tween 20, Tween 80 and Brij 700 etc., are also used for exfoliation 

[136]. The use of polyvinylpyrrolidone (PVP) as surfactant to exfoliate graphite 

into graphene in organic solvents such as NMP have yielded graphene 

concentrations of 0.4-0.74mg/ml at sonication time of 1hr followed by 

centrifugation at 5000rpm for 4hrs [137]. Adamson et al. [138] have reported 
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the production of high graphene concentrations of 50mg/ml using co-solvent 

system of 1:1 mixture of hexafluoro benzene and benzene. The graphene 

obtained from these methods can be easily transformed into powders by using 

cooling by evaporation. 

Electro chemical exfoliation 

The electrochemical methods include utilizing electric current to facilitate the 

structural expansion of graphite in liquid electrolytes [139]. This method 

involves production of graphite intercalation compounds (GIC) through 

intercalation of anion or cations from electrolyte by applying potential to 

electrodes and then exfoliation of GIC’s into graphene. In comparison, GIC 

exfoliation through cation intercalate shows lower degree of chemical 

focalisation which facilitates to preserve pristine nature of graphene [140]. 

Parvez et al. [141] have reported anodic exfoliation of graphite to form 

graphene in organic solvents i.e., in sodium sulphate, graphene sheets of low 

density (C/O of 17.2) and approximately 1-3 layers thickness were obtained. 

The anodic exfoliation mostly results in partially oxidised or chemically 

functionalised graphene, which is not suiTable for some practical applications. 

Cooper et al. [142] have reported the cathodic exfoliation of highly oriented 

pyrolytic graphite (HOPE) in tetra alkylammonium salts to form FLG of 

approximately 2-5 layers, no functionalization and negligible oxide groups 

were noted. 

Chemical vapour deposition (CVD) 

This is one of the most investigated bottom-up technique to produce SLGs and 

FLGs on large scale. This method involves decomposition of carbon feed stock 

by applying heat and then rearrangement of atoms to form sp2 carbons, this 

process will take place in presence of catalyst [143]. Chemical vapour 

deposition (CVD) is one of the most promising techniques to produce 

monolayers of graphene sheets on a large scale. Somani et al. [144] have 

successfully produced FLGs through CVD, by using camphor as the precursor 

on Ni. This has opened a new path to researchers to address controlling the 

number of layers, and to control the thickness on various metal substrates 

[92,97,145–148]. Bae et al. [114] have reported the synthesis of 0.76m wide 

graphene films through CVD. The process includes adhesion and etching 
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followed by transfer of layers to the substrate. The schematic representation 

of the sequential steps followed during the process is shown in Figure 2.5 

[114]. It is also noted that the produced graphene films have shown half-integer 

Quantum Hall effect which indicates the high-quality graphene monolayers. It 

can be noted that the graphene layers synthesised by this method possess a 

potential to replace commercially available transparent electrodes. The 

possibility of substitutional doping by the introduction of other gases, e.g. NH3 

during growth, is one interesting feature of the CVD approach [146]. Qu et al. 

[149] have demonstrated the application of nitrogen doped graphene for the 

reduction of oxygen in fuel cells and it can be noted from the results that 

graphene electrodes displayed catalytic current of ~3 times higher than that of 

the Pt/C electrode. It can also be noted that N-graphene electrode facilitates 

long-term stability and Poisson's effect over the Pt/C electrode during oxygen 

reduction in alkaline electrolytic solutions. The potential application of 

graphene in lithium-ion batteries has also been reported, as this has a noTable 

reverse discharge potential (~2 times of pristine graphene) due to surface 

defects induced by nitrogen doping [150]. Graphene can also be synthesized 

at low temperatures than the thermal CVD process of 1000°C, by a technique 

known as plasma enhanced chemical vapor deposition (PECVD). This 

technique was first developed in 2004 using a gas mixture of 5-100% CH4 in 

H2 at a power of 900W, at substrate temperature of 680°C to produce mono 

and few-layer graphene sheets [151,152]. The major advantage of the PECVD 

technique is a lower deposition time of ~5mins and a lower growth temperature 

compared to the conventional CVD process. Researchers have reported a 

method of producing graphene using ultra high vacuum (UHV) annealing of 

SiC which proved to be beneficial in the semiconductor industry due to the 

advantage of obtaining the products on the surface of SiC [69,95,153]. The 

mechanism of UHV annealing of SiC involves heating the SiC substrate under 

UHV, to sublimate the silicon atoms from the substrate, this leads to the re-

arrangement of graphene layers with surface carbon atoms. The annealing 

time strongly influences the thickness of the obtained graphene layers. 

Tedesco et al. [154] and Emstev et al. [155] have reported the production of 

few-layer graphene (FLG) sheets with improved thickness and homogeneity at 

higher temperatures, ~400°C above the UHV temperature.  
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Figure 2.5: Sequential steps followed during film transfer of graphene films 

produced via CVD approach [114]. 

Even though the results obtained have in terms of homogeneity are promising, 

the challenging aspects of using this method for industrial applications is the 

control over the thickness of graphene layers and the epitaxial growth patterns 

of different SiC polar face. This method also lacks in addressing the existence 

of interface layer in between graphene, substrate and its effect on properties 

of the product. A similar technique can be applied to grow graphene layers on 

metallic substrates. Porga et al. [156] and Sutler et al. [157] have reported the 

synthesis of epitaxial graphene sheets on ruthenium (Ru) crystals under UHV. 

A strong bonding of the first layer of graphene sheets with Ru substrate was 

reported. Whereas the second layer did not interact with the substrate and 

demonstrated a similar electronic structure as that of the freestanding 

graphene (monolayer graphene).     

2.4 Graphene oxide (GO) 

2.4.1 Morphology of GO 

Graphene oxide is one of the most popular derivatives of graphene which is 

easy to synthesise and is hydrophilic nature unlike pristine graphene which is 

hydrophobic. The determination of GO structure is difficult as it is a non-

stoichiometric compound. The GO structure proposed by Dreyer et al. [158] 

consists of epoxy and hydroxyl groups on sp3 hybridized carbon in the basal 
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plane and carboxyl groups on sp2 hybridized carbon. This leads to the 

hydrophilic nature of GO and can be easily exfoliated in aqueous solutions. 

GO is a monolayer material produced from exfoliation of graphite and have 

similar chemical properties as that of graphite oxide. It can also be noted that 

the existence of hydroxyl and epoxy functional groups disrupts the electronic 

structure and GO behaves as an insulating material with irreversible defects. 

2.4.2 Production of GO 

The chemical conversion of graphene into GO is a promising economical 

alternative [101,159,160]. One of the popular methods of producing GO is 

using Hummers method [161], this method involved oxidizing graphite using 

oxidants like H2SO4, HNO3 and HMnO4. The GO films produced are thicker 

than the pristine graphene sheets of 0.34nm thickness due to the displacement 

of sp3 hybridized atoms. The produced GO is negatively charged, which 

facilitates the stability of GO in water and certain organic solvents without use 

of surfactants [162]. 

2.4.3 Reduction of GO to reduced graphene oxide (rGO) 

The chemical reduction of GO sheets can be performed in the presence of 

different reducing agents, including hydrazine [101,117,163–165], sodium 

borohydride [166–168], hydroquinone [169] and ascorbic acid [170]. Out of all 

the reducing agents hydrazine hydride was referred as the best reducing agent 

to produce very thin graphene sheets and it does not react with water. During 

the reduction process, the oxygen atoms can be removed, which results in less 

hydrophilic nature of GO sheets [117,171]. The molecular structures of GO 

during oxidation and reduction of GO using hydrazine are shown in Figure 2.6 

[160]. It can also be noted that the rGO can tend to agglomerate due to the 

hydrophobic nature until and unless stabilized by the selected surfactants. 

NaB4 is another reducing agent that effectively reduces the GO [166] and it is 

also reported that NaB4 is more effective than hydrazine but the problem with 

NaB4 lies in its slow hydrolization by water. McAllister et al. [172] have reported 

the production of rGO using NaB4 and the comparison of rGO obtained by two 

different reducing agents hydrazine and NaB4 was also reported. It can be 

noted from their results that rGO obtained by using NaB4 has low sheet 

resistance of 59kΩ/square compared to that of the rGO produced using 
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hydrazine of 780kΩ/square. High C:O ratio of 13.4:1 was recorded for rGO 

produced using NaB4, which was high compared to that of the rGO produced 

using hydrazine which was in the order of 6.2:1. Out of all the chemical 

reduction processes, reduction by hydrogen proved to be effective with C:O 

ratio of 10.8-14.9:1. 

 

Figure 2.6: Oxidation of graphite to GO and reduction to rGO [160]. 

Thermal reduction is another way of reducing GO that involves the removal of 

oxide functional groups by heat treatment. Allister et al. [173] have reported the 

removal of oxide functional groups with CO and CO2 as by-products by heating 

GO to 1050°C in the presence of inert atmosphere. During thermal reduction 

process, the rapid heating results in decomposition of oxide functional groups 

attached to the carbon planes and decompose into gases creating a huge 

pressure between the stacked layers (~40MPa of pressure will be generated at 

300°C and only 2.5MPa of pressure is required to separate two stacked 

platelets). It was reported from the AFM study that the thermal reduction can 

result in ~80% of single layer rGO, whereas 30% of mass can be lost due to 

Graphite  

GO  
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the removal of oxide functionalities which leaves vacancies and structural 

defects that may affect the mechanical and electrical properties of the produced 

rGO and the production of rGO at low temperatures is proposed by Dubin et al. 

[174]. This involves production of rGO dispersion at 200°C in organic solvents 

like N-methyl-2-pyrrolidinone (NMP). 

It is important to control the exfoliation behaviour of GO and rGO which helps 

in widening their potential applications and this can be achieved using surface 

functionalization of GO. There are two mechanisms in surface functionalization 

they are: covalent functionalization and non-covalent functionalization. If the 

oxygen functional groups on GO surfaces that includes carboxylic acid groups 

at the edge of the epoxy/hydroxyl groups on the basal plane are used to 

change the surface functionality of GO then it is called covalent 

functionalization. The carboxylic acid groups should be activated to use them 

on GO to stabilize other molecules and the activation can be done either by 

using thionyl chloride [175], 1-ethyl-3-carbodimide [176] and N- dicyclohexyl 

carbodiimide [176]. The weak π-π interactions between the GO and target 

molecules can be used to functionalize GO in non-covalent functionalization. 

The conjugated polymers and aromatic compounds can be used to stabilise 

the rGO resulted from reduction reaction, can be used in the production of 

composite materials. The conjugated and aromatic polymers used are 

sulfonated polyaniline [177], conjugated poly electrolyte [178], porphyrin [179] 

and cellulose derivatives [180]. The summary of advantages and 

disadvantages of various synthesis techniques used to produce mono and 

multi-layer graphene is given in Table 2.4. 

 

 

 

 

 

 

 

 

 



` 

28 
 

Table 2.4: Summary of advantages and disadvantages of graphene synthesis techniques. 

Technique Advantages Disadvantages 

Exfoliation • This is a relatively simple and low budget technique of 
producing graphene sheets. 

• This process can produce pristine graphene. 

• Graphene sheets produced by this process will be of 
several sizes, irregular shapes and orientations, this will 
limit the applicability. 

• This process has less relevance to the commercial high-
end applications. 

Chemical 
vapour 
deposition 
(CVD) 

• This process facilitates the large-scale production of 
graphene to the size of substrate. 

•  Mono layer and bi-layer graphene sheets can be 
obtained.  

• Less costly process as the cost per unit area of 
graphene produced will be limited to the size of the 
substrate.  

• The transfer process often effects the integrity and 
performance of produced graphene.  

• Transfer process enhances the formation of wrinkles, 
impurities and structural defects.  

• Selection of substrate effects the process cost. 

Organic 
synthesis 

•  Product obtained by this method can be substituted 
with aliphatic chains to modify the solubility. 

• Size of the sheets produced from this process is limited 
due to the reduction of solubility. 

• Increase in unwanted side reactions will lead to difficulties 
in dispersion preservation. 

• The cost incurred in characterising the products of 
chemical reactions is high. 

Chemical 
derivation 
of graphene 

• Nearly 80% of single layer rGO sheets can be obtained 
by this process. 

• This is the most affordable technique to produce 
graphene. 

• The formation of functional groups during the oxidation 
process leads to the irreversible effects to the band 
structures and reduces the electrical conductivity.  
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2.5 AMCs reinforced with graphene nano sheets (GNS/AI) 

Utilizing GNS as reinforcement for AI matrix is the effective alternative to 

improve the properties of base material, Al. J Liu et al. [29] have reported the 

production of GNS/AI composites using powder metallurgical technique at 

various weight percentage (wt%) of GNS addition. It can be noted from their 

results that the stirring time during the powder preparation of GNS in AI matrix 

highly effected the properties of the composite. The hardness increased with 

increase in wt% of GNS reinforcement, for instance the highest increase of 

43% in hardness over monolithic AI was noted at 0.15wt% GNS/AI compared 

to 0.07wt% and 1wt%. Gang li et al. [181] have successfully fabricated GNS/AI 

composites using high energy ball milling followed by hot pressing. The effect 

of wt% of GNS addition on microstructural and tensile propertied of AI matrix 

were investigated, the ultimate tensile strength (UTS) of GNS/Al composites 

reduced with increase in wt% of GNS addition, shown in Figure 2.7(a) due to 

the formation of aluminium carbide (Al4C3) at interfaces and dislocations are 

also found near interfaces, shown in Figure 2.7(b). Shin et al. [20] have also 

reported the formation of Al4C3 at the interfaces which restricted the stress 

transfer in GNS/AI composites. It can also be noted from the results that with 

increase in testing temperature, the dislocation moment was reduced and led 

to the severe softening of matrix, and hence reduced the yield strength of the 

composite. 
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Figure 2.7: (a) Effect of GNS content on UTS and Yield strength of GNS/Al 

composites and (b) TEM image of 0.25wt% GNS/Al composite showing 

dislocations and carbide formation [181]. 

Bratolucci et al. [182] noted that the hardness and UTS of the 0.1%GNS/AI 

composites that were extruded at 50T, 12.5mm/sec were reduced compared 

to pristine AI samples which was due to the formation of Al4C3 at the working 

temperature of 550°C, carbide formation was evident in XRD analysis of 

samples, shown in Figure 2.8.   

(b) 

(a) 
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Figure 2.8: XRD pattern of pure Al, 1wt% multi-walled nanotubes (MWNT)/Al 

composites and 0.1wt% of GNS/Al composites [182].  

To provide better bonding in between GNS reinforcement, AI matrix and to 

obtain better density 1.5wt% of Sn was added to GNS/AI mixture [18], both 

hardness and compressive strength (CS) of the composite were increased by 

17.5% and 5.16% respectively, and no Al4C3 was observed. The particle 

morphology was shown in Figure 2.9. This paper also reported the effect of 

gas atomization and mechanical milling processes on the GNS/Al composite. 

For instance, gas atomization proved to be effective for strength enhancement 

and mechanical milling proved to effective to increase hardness of GNS/AI 

composite. GNS have the unique benefit of reducing the agglomeration of 

metal oxide, more investigation is needed to explore the effect of GNS addition 

to the metal matrices and efficient ways to avoid the formation of Al4C3. In this 

aspect, the use of powder metallurgical routes proved to be effective for the 

uniform distribution [183]. 
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Figure 2.9: SEM images showing particle morphologies of 1wt% FLG/Al 

composites (a) gas atomized and (b) mechanically milled [18]. 

2.6 AMCs reinforced with graphene nano particles (GNP/AI) 

The density difference between the nano particle and the matrix is the main 

reason behind the agglomeration during liquid holding or casting. Nanoparticle 

reinforcement is employed on the AI matrices to enhance the capacity to 

withstand high temperatures and pressures [50]. However, non-homogeneous 

dispersion and poor interface bonding are the major concerns while using the 

conventional methods to produce GNP/AI composites [2,184]. Perez et al. [22] 

have fabricated 1wt% of GNP/AI composites, cold compacted at 950MPa 

followed by sintering at 500°C for 5hrs of ball milled powders, in which 138% 

of increase in hardness compared to monolithic AI is observed. The effect of 

process parameters such as milling time and sintering time on the properties 

(a) 

(b) 
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of GNP/AI were also recorded, the increase in milling time increases the 

hardness of the composites. Whereas, reduction in hardness values by 13% 

were noted for the 1wt% of GNP/AI composites produced by cold compaction 

at 200MPa followed by hot compaction at 525°C and 500MPa [185], reduction 

in properties was mainly due to the non-homogenous dispersion of GNPs in 

AI matrix that led to the agglomeration. Lathief et al. [23] have fabricated 2wt% 

GNP/Al composites using wet mixed powder in acetone, followed by cold 

compaction and sintering. The Vickers hardness and compressive strength 

were increased by 67% and 21% respectively. Another work published by the 

same research group reported an increase in 34% in hardness and 22% in CS 

of GNP/Al composites [24] by reducing wt% of GNP from 5wt% to 3wt%, which 

implies to that under the similar working conditions, tendency of agglomeration 

varies with variation in wt% of GNPs content and plays a key role in altering 

the mechanical properties of the GNP/Al composites. Rashad et al. [186] have 

reported the production of 0.3wt% of GNP/AI composites through powder 

metallurgy in which the GNP/AI was mixed in acetone for 1hr. The powders 

were then cold compacted at 170MPa and hot extruded at 470°C followed by 

sintering at 600°C for 6hrs. The produced composite samples shown an 

increase of 11.8% in hardness, 11.1% in UTS and decrease of 7.8% in CS. 

The increase in properties was due to the efficient load transfer between the 

soft matrix and reinforcement, Orowan looping. The reduction in CS was due 

to the buckling nature of reinforcement (when the load was applied, the 

graphene flakes buckles, bent at angle of 45° as the GNPs were parallel to the 

extension direction). Whereas Guvbuz et al. [187] have reported that the 

hardness of the GNP/AI composite reduced with increase in wt% of GNP 

reinforcement from 0.1wt% (↑9.67%) to 0.5wt% (↓ 21.41% HV). This was due 

to the restriction of settlement of particles and non-uniform distribution of GNPs 

in AI matrix that weakens the contact area between the particles and hence 

increases the porosity and reduces hardness, the SEM images of GNP/AI 

composites were shown in Figure 2.10. It can be noted from the Figure that 

the increase in sintering time has increased the grain size and hence altered 

the properties of the GNP/Al composite.  



` 

34 
 

  

Figure 2.10: SEM images of 0.1wt% GNP/Al composites sintered at 630°C at 

various sintering times, (a) 120mins and (b) 300mins [183]. 

Khan et al. [188] have fabricated 5wt% GNP/AI composited through semi-

powder metallurgy in which ball milled GNP/AI powders were cold compacted 

at 125MPa followed by sintering at 600°C for 6hrs. A huge increase in CS of 

433% and only 35% increase in hardness were recorded, increase in CS is 

due to alignment of GNPs perpendicular to the direction of applied load, hence 

reduction in buckling and increase in hardness was due to the uniform 

dispersion of GNPs, shown in Figure 2.11. Li et al. [26] have made an attempt 

to improve the distribution of GNP in AI matrix and hence improve mechanical 

properties of the GNP/AI composites by using ball milling and cold drawing. 

The reported results for 0.4wt% GNP/AI composites have shown an increase 

of 9.5% in Young’s modulus and 51.1% in UTS whereas 2wt% GNP/AI 

composites have shown 22.6% increase in Young’s modulus and 1.45% 

decrease in UTS, the increase in properties of 0.4wt% is attributed to the 

strong interfacial bonding whereas, the UTS of 2wt% of GNP was reduced due 

to the increased agglomeration tendency.  Yang et al. [189] have reported the 

fabrication of GNP/AI composites by using pressure infiltration technique in 

which extrusion enhanced grain refinement, the yield strength of 0.54wt% of 

GNP/AI composite was increased from 116% to 228% after extrusion whereas 

tensile strength was increased from 45% to 93% after extrusion, this was due 

to the strengthening effect of GNPs after extrusion. 

(a) (b) 
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Figure 2.11: Particle morphologies of ball milled composite powder samples 

(a)-(b) 1wt% GNP/Al, (c)-(d) 3wt% GNP/Al and (e)-(f) 5 wt% GNP/Al; red 

arrows represents the existence of GNPs [188]. 
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2.7 AMCs reinforced with reduced graphene oxide (rGO/AI) 

Reduction of GO to rGO has caught the attention of many researchers in 

scientific community due to the provision of using easily producible GO and 

reducing it to retain the properties as pristine graphene. Z Li et al. [27] have 

successfully fabricated 0.3wt% rGO/AI composites through hot pressing at 

600MPa and 530°C, noted an increase of 18% and 17% in Young’s modulus 

and hardness respectively. The increase in properties was noted due to the 

preliminary reduction of GO to restore graphene properties and the ionic bonds 

formed due to the electrostatic absorption of GO on AI surface which led to the 

interfacial bonding of rGO and AI. For the same wt% of GNP/AI composites 

(0.3wt%) and with same solvent (ethanol) as Li et al. [27], Wang et al. [28] 

have recorded nearly 62% of increase in UTS, this was due to the use of 

advanced fabrication technique i.e., hot extrusion of composite at 440°C 

followed by sintering at 580°C for 2hrs. However, the increase noted was only 

20% of graphene’s potential this was due to the incomplete reduction of GO to 

rGO that led to the weak interfacial bonding between rGO nano sheets and AI 

and lack of optimisation of process parameters. Similar effect was observed 

by Jing et al. [190] while fabricating rGO/AI composites by using powder 

metallurgical route, only 32% of increase in hardness was recorded. 

Asgharzadeh et al. [18] have made an attempt to investigate the effect of 

stirring mechanisms i.e., gas atomisation (GA) and mechanical milling (MM) to 

obtain well dispersed FLrGO/AI and FLG/Al powders for the production of 

composites. The comparison of hardness and compressive strength of the 

FLrGO/Al and FLG/Al composites with respect to the mixing processes was 

shown in Figure 2.12. It can be noted that the MM process of mixing powders 

proved to be effective for FLG/Al composites for improved properties whereas, 

GA process of mixing powders was effective for rGO/Al composites. 
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Figure 2.12: Compressive strength and micro hardness of gas atomized, 

mechanically milled Al, FLrGO and FLG samples after sintering [18]. 

2.8 Summary 

The review of morphology, mechanical, electrical and thermal properties of 

graphene and its derivatives is presented in this chapter. The processing 

techniques and properties of AMCs reinforced with graphene and its 

derivatives are also given, which shows the potential of graphene as a 

reinforcement filler to increase strength, hardness, electrical and thermal 

conductivities of AMCs.  
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CHAPTER 3 

CRITICAL REVIEW AND GAP IN LITERATURE 

The summary of processing parameters and techniques used to produce 

graphene derivatives reinforced AMCs and their properties with respect to the 

variation in process parameters is shown in Table 3.1. Having discussed the 

available research work in this chapter, the summary of critical reviews is 

provided below together with the gaps and questions that are to be filled and 

answered.  

3.1 Critical reviews  

• A variety of techniques used to produce graphene and its derivatives 

are reported, out of which CVD is the most preferable technique for the 

mass production of large and high-quality monolayer graphene, while 

for the fabrication of GO/rGO in large quantities, the chemical 

conversion of graphene from graphite is more suitable.  

• Conventional techniques such as powder metallurgy assisted by ball 

milling, hot rolling and friction stir processing are used to produce 

graphene reinforced AMCs showing promising improvement in 

properties. However, at some processing parameters (those are 

detailed in Table 2.5), the compressive strength, hardness, UTS and 

yield strength of the AMCs reinforced by graphene and its derivatives 

are reduced. This is mainly attributed to the formation of aluminium 

carbide (Al4C3) and inefficient reduction of GO.   

• The use of surfactants, binders and purity of the raw materials has 

contributed to the detoriation in properties of the graphene reinforced 

AMCs. 

• Two major characterisation techniques namely XRD and micro Raman 

are used to characterise the graphene reinforced AMCs. XRD is used 

to analyse the phase crystallinity, identification of phases and existence 

of Al4C3. Micro Raman is used to analyse the occurrence of defects, 

investigate the existence of graphene and number of layers of 

graphene. 
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• Negligible amount of research work is reported on the modelling and 

simulation of graphene reinforced AMCs and predicting the effect of 

existence of number of graphene layers and percentage of 

reinforcement distribution on Al particles on mechanical properties of 

the AMCs.  

• The model developed and presented in current study is relatively new 

and not yet has been analysed by other researchers and the effect of 

orientation of the graphene layers on Al particles and their cumulative 

effect on mechanical properties of the AMCs is still unknown. 

3.2 Gaps and questions that are to be filled and answered:  

• Why GO without either chemical/thermal reduction steps isn’t used as 

reinforcement for AMCs? 

• How good is liquid infiltration assisted powder metallurgical technique 

to produce graphene reinforced AMCs compared to ball milling assisted 

powder metallurgical technique?  

• How important is the optimisation of process parameters such as 

selection of solvent, stirring time and stirring speed on the distribution 

of graphene in Al matrix? 

• How to control/avoid the formation of aluminium carbide at the sintering 

temperatures of 550°C-600°C? 

• How does the performance of composite i.e., strength and hardness 

vary with the variation in wt% of graphene reinforcement? (The 

importance of examination/investigation of agglomeration with variation 

in wt% of graphene addition). 

• How does the existence of number of graphene layers and orientation 

of graphene layers effects the performance of graphene reinforced 

AMCs? 

• How to incorporate the layers of graphene on to the Al particles and 

percentage of distribution graphene reinforced Al particles in the 

composite in modelling and simulation of graphene reinforced AMCs.
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Table 3.1: Summary of processing parameters and mechanical properties of graphene reinforced AMCs. 

Base 
material 

Derivative 
of 

graphene 

Wt% of 
reinforcement 

(%) 

Mixing type/ Solvent Cold compaction/ 
Extrusion/ Hot 

pressing 

Sintering 
 

Mechanical 
properties 

Al [27] 

rGO 
(Reduced 
graphene 

oxide) 

0.3 

Wet/Ethanol for 1hr 
Hot pressing at 530°C and 
600MPa 

↑18% (90.1GPa) E 
↑17% (1.59GPa) 

Hardness 

Al [28] Wet/Ethanol  
Hot extrusion at 

440°C 

580°C for 
2hrs in N 

atmosphere 

↑62% (249MPa) 
UTS 

Al [29] 
Wet/Acetone for 

3hrs 
Cold compaction 

560MPa 

600°C for 
4hrs in Ar 

atmosphere 
↑32% (34.5) HV 

Al-
1.5wt% 
Sn [18] 

FLrGO 
(Few-layer 
reduced 

graphene 
oxide) 

1 

Wet/Ethanol, 
Ethanol water for 

1hr Cold compaction 
500MPa 

600°C for 1hr 
in N 

atmosphere 

↑65% (46) HV 
↑53.84% 

(100MPa) CS 
 

Ball milling at 
350rpm for 4hrs in 

Ar atmosphere 

↑43% (57) HV 
↑26% (120MPa) 

CS 

GNS/FLG 
(Graphene 
nanosheet

s/ few-
layer 

graphene) 

Wet/Ethanol, 
Ethanol water for 

1hr Cold compaction 
500MPa 

600°C for 1hr 
in N 

atmosphere 

↑7.14% (30) HV 
↑21.54% (79MPa) 

CS 
 

Ball milling at 
350rpm for 4hrs in 

Ar atmosphere 

↑17.5% (47) HV 
↑5.16% (100MPa) 

CS 
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Base 
material 

Wt% of 
reinforcement 

(%) 

Mixing type/ Solvent Cold compaction/ 
Extrusion/ Hot 

pressing 

Sintering 
 

Mechanical 
properties 

Al203 
[19] 

2 Wet/Water SPS 1300°C, 50MPa for 3mins 
↑53% (5.21MPa) 

FT 

Al [29] 0.15 
Wet/Acetone for 

3hrs 
Cold compaction 

560MPa 

600°C for 
4hrs in Ar 

atmosphere 
↑43% (37.6) HV 

Al [181] 0.25 
Ball milling at 

250rpm for 24hrs in 
Ar atmosphere 

Hot pressing at 610°C for 4hrs 
and 30MPa 

↑56.19% 
(164MPa) UTS 

↑38.27% 
(112MPa) YS  

Al [20] 0.7 
Ball milling at 

200rpm for 1hr 
Hot rolled at 500°C 

↑71.8% (440MPa) 
UTS 

Al [182] 0.1 

Blending using an 
acoustic mixer for 
5min, milled under 
an Ar atmosphere 

for 1hr 

Hot pressing at 375°C for 20mins, 
Extrusion 50Tons, 4:1 ratio and 

12.5mm/s 

↓18% (265MPa) 
UTS 

↓12.5% (84) HV 
↓34% (198MPa) 

YS 
 
 

Al-Si 
alloy 
[191] 

1 

Pre-mixed alloy 
powders for 30mins 
at 180rpm followed 

by ball milling of 
GNS/alloy powders 
for 20hrs at 250rpm 

in Ar atmosphere 

Cold pressing at 350MPa, 
degasifying at 400°C for 2hrs 

followed by vacuum hot pressing 
under 50MPa at 500°C 

↑115% (80.2) HV 
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Base 
material 

Derivative 
of 

graphene 

Wt% of 
reinforcement 

(%) 

Mixing type/ Solvent Cold compaction/ 
Extrusion/ Hot 

pressing 

Sintering 
 

Mechanical 
properties 

   Al [22] 

GNP 
(Graphene 

nano 
particles) 

1 

Ball milling for 5hrs 
in Ar atmosphere 

Cold compaction 
950MPa 

500°C for 
5hrs 

↑138% (93) HV 

Al [185] 
Ball milling at 

500rpm for 6hrs 

Cold compaction 200MPa 
followed by hot compaction 

525°C and 500MPa 
↓13% (97) HV 

Al [23] 3 Wet/Acetone 
Cold compaction 

520MPa for 
5mins 

600°C for 
6hrs 

↑67% (75) HV 
↑21% (170MPa) 

CS 

Al [24] 5 

Wet/Acetone in 
dispenser at speed 

of 2000rpm for 
30min 

Cold compaction 
500MPa for 

5mins 

600°C for 
6hrs 

↑34% (67) HV 
↑22% (180MPa) 

CS 

Al [186] 0.3 
Wet/Acetone for 1hr 

in mechanical 
agitator 

Cold compaction 
170MPa and hot 
extrusion 470°C 

600°C for 
6hrs 

↑11.8% (85) HV 
↑11.1% (280MPa) 

UTS 
↓7.8% (457MPa) 

CS 

Al [187] 
0.1- 
0.5 

Wet/Ethanol for 1hr 
and left ground for 

12hrs 

Cold compaction 
600MPa 

630°C for 
5hrs 

↑9.67% (56.95) 
HV- 

↓21.41% (40.81) 
HV 

Al [188] 5 
Ball milling at 

350rpm for 2hrs 
Cold compaction 

125MPa 
600°C for 

6hrs 

↑35% (28) HV 
↑433% (82MPa) 

CS 
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Base 
material 

Wt% of 
reinforcement 

(%) 

Mixing type/ Solvent Cold compaction/ 
Extrusion/ Hot 

pressing 

Sintering 
 

Mechanical 
properties 

Al [26] 0.4 
Ball milling at 

200rpm for 5hrs and 
0.5% stearic acid as 

control agent 

Cold compaction at 200MPa, 
ingots preheated at 450°C at 

10°C/min for 1hr then extruded at 
1mm/min, extrusion ratio of 25:1. 

The specimens are then heat 
treated at 300°C for 10min and 

cold drawing at 100mm/min 

↑9.5% 
(76.7±4.7GPa) E 

↑51.1% 
(219±10.4MPa) 

UTS 

 2 

↑22.6% 
(85.5±5.6GPa) E 

↓1.45% 
(137±12.6MPa) 

UTS 

Al [189] 0.54 
Ball milling at 

100rpm for 1hr  

Preheated pressure infiltrated 
dies at 730°C, 15MPa of pressure 

is applied during infiltration for 
5mins. Hot extruded at 450°C 

followed by annealing at 400°C 
for 2hrs 

↑228% (200MPa) 
YS  

↑93% (270MPa) 
UTS 

 

Al [192] 0.5 

Ethanol for 60mins 
and GNP/Al/Ethanol 

for 60mins at 
100rpm in agitator 

Cold compacted in a uniaxial 
steel die at 500 MPa followed by 
furnace sintering at 620°C in N2 

atmosphere for 2hrs. 

↑31% (47) HV 
↓98.25% (0.14×10-

5 mm3/N-m) Wear 
rate 

AlMg5 
[193] 

GO 
(Graphene 

oxide) 
1 

Ball milling at 
360rpm for 20hrs in 

Ar atmosphere 

Heating mold at 500°C for 1.5hrs 
and compacted at 570MPa 

↑114% (556MPa) 
UTS 

E- Young’s modulus, UTS- Ultimate tensile strength, HV- Vickers hardness, CS- Compressive strength, FT- Fracture toughness and 

YS- Yield strength  
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3.3 Summary  

Various derivatives of graphene such as rGO, FLrGO, GNS, GPL, FLG and 

GNP are used as reinforcement for AMCs, out of these GNS, rGO and GNP 

are the most widely used reinforcements and no research work is reported on 

GO without reduction as reinforcement for pure Al matrix composites the best 

of author’s knowledge. The gaps and questions mentioned in this chapter have 

been addressed and partially answered in results obtained from the 

experimental work (in chapter 4) and in the results and discussion (in chapter 

5). 
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CHAPTER 4 

MATERIALS AND METHODS 

This chapter describes the materials used in current research work together 

with their corresponding properties. Powder treatment for the synthesis of 

composites is given in detail. The experimental conditions used for the 

characterisations are described briefly in this chapter. Model setup of 

composite model done in ANSYS is mentioned together with the boundary 

conditions used.   

4.1 Materials and properties 

The materials used to produce GO reinforced AI matrix composites include AI 

powder, IPA, acetone and GO aqueous dispersion. Al powder with typical 

particle size of 35µm, 99% pure bought from Good Fellow was used as matrix 

and the properties are given in Table 4.1. The solvents Isopropyl alcohol (2-

proponal (IPA)) and acetone of 99.8% and 99.6% purity respectively bought 

from fisher scientific were used as solvents to disperse matrix and 

reinforcement, properties are shown in Table 4.2. The reinforcement material 

i.e., GO aqueous dispersion of 4mg/ml concentration is purchased from 

Graphenea, Spain and the corresponding properties were given in Table 4.3. 

Whatman filter papers of 11µm pore size were used to filter the GO/AI powders 

through vacuum filtration. 

Table 4.1: Properties of AI at room temperature, source: MSDS, Goodfellow. 

Density (g/cm3) 2.70 

Melting point (°C) 660 

Thermal conductivity (W/mK) 237 

Electrical conductivity (S/m) 3.74x107 

Hardness (HV) 35-48 

Tensile strength (MPa) 130-195 

Young’s modulus (MPa) 70 x104 

Poisson’s ratio 0.345 
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Table 4.2: Properties of acetone and IPA used in current research, source: 

MSDS, Fisher scientific. 

Property Acetone IPA 

Chemical formula C3H6O C3H8O 

Purity (%) 99.6 99.8 

Viscosity (mPa.s) 0.32 2.27 

Boiling point (°C) 56.0 82.6 

 

Table 4.3: Properties of GO aqueous dispersion used in current research, 

source: MSDS, Graphenea. 

Density (g/cm3) 1.8 

Young’s modulus (GPa) 380 - 470 

Tensile strength (GPa) 3 - 33 

 

4.2 Powder treatment by liquid infiltration 

As received AI powders were dispersed in solvents acetone and IPA 

separately using hot plater magnetic stirrer at room temperature for 15mins. 

Three wt% of GO reinforcements i.e., 0.05%, 0.1% and 0.2% were used in 

current research work, the mixture calculations are given in Table 4.4 by 

assuming that the powder weight of each sample would be 0.5g. The 

measured GO dispersion based on calculations is ultra-sonicated for 15mins 

to disperse GO particles (as they have high tendency to agglomerate and settle 

down). The ultra-sonicated GO is then added slowly drop by drop to the AI/IPA 

and AI/acetone slurries separately and stirred until the uniform dispersions are 

obtained. The stirring times vary depending on the wt% of GO used. Once the 

desired dispersion is obtained, the dispersion is then vacuum filtered to obtain 

GO/AI composite powder. The design of experiment at various processing 

conditions that were used in the current research work is given in Table 4.5.  



` 

47 
 

  

Table 4.4: Amount of raw materials required to produce GO/AI powder at 

different wt% of GO using acetone and IPA as solvents measured using 

5digit balance. 

wt% of GO AI(g) IPA/acetone (L) GO (ml) 

0.05 20.23988 5.4 2.53125 

0.1 20.22975 5.4 5.0625 

0.2 20.2095 5.4 10.125 

  

Table 4.5: Design of experiment with varying wt% of GO, compaction 

pressure and sintering temperature: total number of specimens: 54(18×3). 

Sample No 

Parameters 

wt% of GO Compaction pressure 
(MPa) 

Sintering 
temperature (°C) 

1 0.05 

500 

580 

2 0.1 

3 0.2 

4 0.05 

540 5 0.1 

6 0.2 

7 0.05 

580 8 0.1 

9 0.2 

10 0.05 

500 

600 

11 0.1 

12 0.2 

13 0.05 

540 14 0.1 

15 0.2 

16 0.05 

580 17 0.1 

18 0.2 
 

4.3 Fabrication of composites  

As received AI powders and GO/AI powders were cold compacted at three 

different pressures of 500MPa, 540MPa and 580MPa by using Specac 40T 

press. The die surfaces were coated with rhombic boron nitride powder to 
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facilitate easy removal of green samples. The powder required for each 

compact sample (pellet) has scaled to 0.5g and poured in evacuable pellet 

dies of 20mm diameter. The schematic representation of the process is shown 

in Figure 4.1.  The thickness of the green sample obtained was 0.5mm.  

 

Figure 4.1: Schematic representation of GO/Al powder and composite 

preparation. 

To obtain the green samples with maximum strength, the load is increased 

gradually to the desired value using the customised settings in the press. Once 

the desired load value is reached, load is maintained for 15mins followed by 

releasing the load at slow release rate. The loading cycle is shown in Figure 

4.2.  
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Figure 4.2: Loading cycle used in production of GO/Al composites. 

To obtain metallurgical bonding, the green samples were then sintered to 

temperatures of 580°C and 600°C in horizontal tube furnace in argon gas 

atmosphere, the heating cycle is shown in Figure 4.3. 

 

Figure 4.3: Sintering profile used in production of GO/Al composites. 

4.4 Characterisation of composites 

GO/AI composites fabricated by powder metallurgy associated with liquid 

infiltration process were used for different types of testing and analysis. Table 

4.6 shows the techniques used for characterisation and their expected 
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outcomes. The characterisation techniques comprise of morphological study 

(SEM and EDXS analysis), XRD analysis, micro Raman analysis, density 

measurement, micro hardness and indentation tests. The cross section of the 

fracture surfaces after Indentation tests were studied using SEM. 

Table 4.6: Characterisation techniques used in current research. 

 

4.4.1 Density measurement  

Archimedes’ principle was used to calculate the green and sintered densities 

of the AI pellets and GO/AI composite pellets. The theoretical mixture densities 

were calculated using rule of mixtures given in equation (4.1), using theoretical 

densities of aluminium and GO as 2.699 g/cm3 and 2.0 g/cm3 respectively. 

 𝛿𝑚= 
100

𝑤𝐴𝑙
𝜌𝐴𝑙

+
𝑤𝐺𝑂
𝜌𝐺𝑂

 ------ (4.1) 

where 𝛿𝑚 is the mixture density, 𝑤𝐴𝑙 is the weight percentage of AI powder, 𝜌𝐴𝑙 

is the density of AI powder, 𝑤𝐺𝑂 is the weight percentage of GO and 𝜌𝐺𝑂 is the 

density of GO sheets. 

The green and sintered densities of the samples were calculated by using 

Archimedes’ principle, based on ASTM B962 standards and the equation is 

given by  

𝜌𝐴

𝜌𝑤
=  

𝑤𝐴

𝑤𝐴 − 𝑤𝑤
× 100% ------ (4.2) 

where 𝜌𝐴 is the actual density of the sample, 𝜌𝑤 is the density of distilled water, 

𝑤𝐴 is the weight of sample measured in air and 𝑤𝑤 is the weight of sample 

measures in distilled water. 
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The percentage densification of the GO/AI samples during sintering was 

calculated by using the following equation. 

𝜑 =  
𝜌𝑠 −  𝜌𝑔

𝜌𝑡ℎ −  𝜌𝑔
 ×  100 

------ (4.3) 

where 𝜑 is the densification parameter of samples, 𝜌𝑠 is the density of sintered 

samples, 𝜌𝑔 is the green density of samples and 𝜌𝑡ℎ is the theoretical density 

of the samples. 

4.4.2 Microstructural analysis 

Scanning electron microscope (SEM) is one of the advanced equipment to 

investigate microstructure and elemental composition of material. SEM is used 

when the wavelength becomes limiting factor while using the optical 

microscope. SEM uses electron beam instead of photons or light particles, as 

electrons have much shorter wavelengths and will give better resolution 

(optical microscope has resolution of ~2000Å whereas SEM has >100,000x) 

when the electron beam is incident on the sample, the interactions will result 

in emission of secondary electrons, Auger electrons, backscattered electrons, 

x-rays, schematic is shown in Figure 4.4, for a typical analysis the operating 

voltage is in between 5-25kV.  

 

Figure 4.4: Schematic representation of interactions of electron beam with 

surface of the sample. 

The Interactions between the electron beam and sample surface can be either 

elastic or inelastic. The elastically scattered electrons are known as 

backscattering electrons which are used to study the compositions of material 

under investigation. The amount of backscattering depends on the mass and 
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atomic number of the element being examined whereas in the inelastic 

scattering, the electron beam will knock out the electron from the outer shell of 

the atoms of the material under investigation, the ejected electrons from atoms 

are known as secondary electrons. The secondary electrons usually have low 

energies (<50eV) and play a key role in visualization of sample topology. A 

high quality image of the sample will be generated with increase in number of 

emitted secondary electrons. However, when the electron is removed from the 

outer shell, a vacancy will be generated (hole), the next exited electron will try 

to fill in the vacancy by losing some energy which will be transferred to the next 

available election, which is ejected from atom; this second electron ejected is 

Auger electron spectroscopy.  

The microstructural observations were performed on monolithic Al powders, 

GO/Al powders, monolithic Al and GO/Al sintered pellets using carl-Zeiss 

EVO-L515 SEM. The particle morphologies of the GO/AI powders were 

studies by observing the colour changes on the particle, for an instance grey 

colour represent AI powder and black colour represents carbon content [29]. 

The GO/AI composite pellets were characterised using SEM, to identify the 

porosity levels, the resolution and voltage level were adjusted to obtain better 

contrast. Together with this the existence of interfaces at grain boundaries was 

investigated by observing SEM image. Grain sizes were measured using the 

image analyser interface available i.e., Image J software that works based on 

ferrites diameter (distance between two parallel lines that touches the edges 

of the grain). This was done by setting the scale on micrograph, thresholding 

and subtraction. 

4.4.3 EDXS analysis 

The excess energy of electron integrated to fill the vacancy created in the inner 

shell can exit X-ray instead of Auger electron in some materials. These X-rays 

are collected by the EDX spectrometer and will generate elemental analysis, 

using the X-ray peak intensities and positions. The schematic representation 

of the SEM system with EDX setup is shown in Figure 4.5(a). The samples are 

mounted on stage provided at the bottom the top column consists of a 

Tungsten filament from which electron beam will be emitted, the electrons 

emitted are accelerated further with the help of anodes. Series of magnetic 
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lens are used to focus the electron beam; condenser lens will adjust the spot 

size and objective lens adjusts the focus. In current work, Carl-Zesis EVO LS-

15 with two column vacum chambers and EDX setup is used for morphology 

and elemental composition investigation of the samples, photograph of the 

SEM system is shown in Figure 4.5(b).  

 

 

Figure 4.5: (a) Schematic representation of main components of SEM and (b) 

photograph of SEM with EDX setup. 

The chemical compositions of the GO/AI powders and GO/AI sintered pellets 

were measured as the detector attached to the SEM collects the composition 

(a) 

 

(a) 

(b) 

 

(b) 
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data while the microstructure is being investigated. To ensure the efficient data 

collection, the EDXS detector was set at ~14mm of focusing distance. A 

sophisticated software associated with the machine identifies the elements on 

the sample with respect to intensities. 

4.4.4 XRD analysis 

X-ray diffractometry is one of the non-destructive tests to investigate the 

crystalline structures, phase analysis and grain size measurement. When a 

beam of x-rays incident on the sample, the elections will be scattered in 

different directions. The wavelength of X-rays and diffraction patterns are 

obtained through the periodic arrangement of distance of separation of 

scattering centres analogous to the wavelengths. The scattering of waves can 

be either elastic or inelastic. The inelastic waves formed from electrons doesn’t 

interfere with each other as there is no phase relationship and hence no 

crystallographic information. Thus, the 3D lattice of crystalline material 

consists of atomic planes (repeated atomic planes) arranged in regular 

manner. The condition for the interferences of rays reflected by the atomic 

planes is given by Bragg’s law, it is given below 

𝑛𝜆 = 2𝑑ℎ𝑘𝑙𝑠𝑖𝑛𝜃 ------ (4.4) 

Where, n is the order of reflection, λ is the wavelength of x-ray used for 

investigation, θ is the Bragg’s angle, dhkl is the inter planar distance of 

consecutive atomic planes. 

The schematic representation of Bragg’s diffraction is shown in Figure 4.6(a). 

The XRD methods can also be used to investigate the crystallite sizes, this can 

be done for the crystallites in the range of 3-100nm as the peak will be too 

broad for sizes below 3nm and for the sizes >100nm peak brooding will be too 

small. The crystallite sizes are determined using Scherr’s equation, it is given 

by, 

𝑑 =  
𝐾𝜆

𝛽𝑐𝑜𝑠𝜃
 

------ (4.5) 

Where, d is the crystallite size, λ is the x-ray wavelength used for investigation, 

θ is the Braggs angle β is the peak width and K is the Scherr constant. 
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K value varies depending on crystal shape, it is 0.8-1.39 for the spherical 

particles it is 1. In the current work, Brucker AXS D8 advance diffractometer is 

used to investigate the presence of lattice planes using copper Kα radiation of 

wavelength 1.542Å, photograph of the XRD system used in current work is 

shown in Figure 4.6(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

The XRD patterns of the sample were recorded using Bruker D8 XRD system, 

XRD commander software was used to identify the phases using Bragg’s law. 
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Figure 4.6: (a) Schematic of Bragg’s law, black lines represent plane of 

atoms and (b) photograph of XRD used in current research. 
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The stage position was adjusted to ensure the signal captivity in between the 

source and detector. A Z-scan was used to position the sample for optimal 

output. A Z-scan was performed from 0.99 to 1.99, chi-scan from -3 to 3 and 

phi-scan from -180° to 180° were performed to fix the position of sample for 

further investigations. Once the position is fixed at 20°, scan from 20° to 90° at 

scan rate of 5secs/step and increment of 0.1 at each step was performed. The 

2θ data was plotted against intensity to investigate the presence of phases. 

4.4.5 Micro Raman analysis 

Raman spectroscopy is one of the advanced characterisation techniques used 

for graphene-based materials. It is a vibrational microscopy in which the 

molecular vibrations give rise to the energy differences and the intensity of the 

peaks depend on presence of number of molecules at vibrational states. 

Wherever light incidents on the material surface, some of the light maybe 

absorbed, transmitted, reflected or scattered, most of the scattered waves 

have the same energy (same frequency) as that if the incident beam, are called 

Rayleigh scatter waves (elastic scattering). Minority of the scattered waves 

have energies different than the incident beam, this process is called as 

Raman scattering (inelastic scattering). The Raman scatterings generates the 

information existence of chemical bonds in the molecules, the schematic 

representation of energy levels is shown in Figure 4.7(a) [194] and the 

photograph of Raman spectroscopic setup is shown in Figure 4.7(b). The 

interaction of photons (incident beam) with molecules exists it to a virtual state 

and upon relaxation the photon emitted to certain vibration state, having either 

Rayleigh scattering, stokes Raman scattering or anti-stokes Raman scattering. 

The vibrational information obtained from Raman analysis is specific to the 

chemical bonds and symmetry of molecules; hence, this is a powerful tool for 

investigation of molecular bonds of a material. The data is typically plotted as 

the intensity of scattered light against wavenumber difference between 

scattered light and incident light in cm-1 (i.e., difference in between incident 

photon energy and scattered photon energy (1 meV = 8.065547cm-1) [195] the 

peak spectra positions of spectra were fitted using Lorentzian curve, given as  
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𝐼 =  
𝐼𝑜

1 + 4(
𝑤 − 𝑤𝑐

∆𝑤 )
 

------ (4.6) 

Where, w is Raman wavenumber (cm-1), wc at the centre, Io is maximum 

intensity, ∆𝑤 full width at half maximum of peak.  

 

 

Figure 4.7: (a) Schematic representation of energy levels [202] and (b) 

photograph of micro Raman spectroscopy setup. 

The Raman bands associated with graphene are D-band at ~1350 cm-1, G-

band at ~1580 cm-1 and 2D band at ~2700 cm-1, in general 2D bands and G-

bands are prominent. The sample was placed on stage in Job in yvon horiba 

lab RAM 800 spectrometer equipped with 488 nm argon laser. The laser beam 

was focused on surface of sample at 50X working distance objective lens, the 

spot size of laser fixed at around 2m. The scattered light was filtered with 

notch filters to filter out ray light scattering, and Raman lines were separated. 

(a) 

 

(a) 

(b) 

 

(b) 
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The intensity of the collected light was given as a function of its wavelength 

(cm-1) and the peak positions obtained were fitted with Lorentzian curve. 

4.4.6 Micro Vickers hardness 

Vickers hardness (VH) test is one of the characterisation techniques used to 

investigate the micro hardness of the material, i.e., the resistance to the 

indentation while working with micro particles. The hardness value is obtained 

by measuring the indentation depth or the indentation area. Then schematic 

representation of Vickers hardness setup and photograph of Vickers hardness 

equipment are shown in the Figure 4.8(a) and (b) respectively. The hardness 

of the material is given by, 

𝑉𝐻𝑁 =  
2𝐹𝑠𝑖𝑛(

136°
2 )

𝑑2
 

------ (4.7) 

Where F is the load acting on the materiel under investigation and d is the 

average of the two diagonals d1, d2 (shown in Figure 4.8(a)). 

 

 

 

 

Figure 4.8: (a) Principle of Vickers hardness, (b) photograph of micro Vickers 

hardness tester. 

The micro hardness properties of GO/AI composite were measured using Leitz 

mini load tester at 981mN force using a diamond indenter. The measurements 

were recorded at four random locations within the cross section of the sample 

being investigated. The tests were performed according to ASTM E384-99 

standards, based on which there should be at least three indents gap between 

Impression 

 

Impression 

(b) 

 

(b) 

(a) 

 

(a) 
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each indent. The load was applied on to the sample for 20secs and slowly 

removed. 

4.4.7 Indentation test 

The tangential and axial stress developed within a material under application 

of load, are measured using indentation to pin testing. The specimen will be 

placed on base, load is applied at a fixed loading velocity and the deflection at 

the centre is noted. Then schematic representation of indentation tester is 

shown in Figure 4.9.  

 

Figure 4.9: Photograph of indentation (puncture) test setup. 

The compression test i.e., indentation tests were performed on GO/AI 

composite samples using Zwick Roell testing machine, Z005, TI-

FR005TNA50. The samples were placed on stage and the load was applied 

on the samples using a pin indenter at a loading velocity of 1mm/min and load 

of 5kN. Depending on the recorded force during testing the deflection at the 

centre of sample, radial and tangential stress were calculated by using the 

equations (4.8)-(4.10) [196,197]. The fracture surfaces were characterised 

using SEM to observe the mixing quantity and porosity levels. 

𝑦 =  
3𝑃𝑅2

4𝜋𝐸𝑡3
(3 + 𝜗)(1 − 𝜗) 

------ (4.8) 

𝜎𝑟 =  
3𝑃

2𝜋𝑡2
(1 + 𝜗)𝑙𝑜𝑔

𝑅
𝑥 

------ (4.9) 
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𝜎𝑡 =  
3𝑃

2𝜋𝑡2
((1 + 𝜗)𝑙𝑜𝑔

𝑅
𝑥 + (1 − 𝜗) 

------ (4.10) 

Where, y is the deflection in centre, P is the load, R is the radius of circular 

disk, t is thickness of disk, E is Young’s modulus, 𝜗 is Poisson’s ratio, 𝜎𝑟 is 

radial stress, 𝜎𝑡 is tangential stress, x is the diameter of indenter.  

4.5 Modelling of GO/Al composites 

4.5.1 Finite element modelling of GO/Al composites 

Finite element modelling and analysis was performed to investigate the effect 

of GO reinforcement on the Al particles in GO/Al composites. The main 

objectives of the FE simulation is to predict the effect of three parameters i.e., 

GO existence in Al matrix, GO layers and percentage of Al particles coated 

with GO on the stress distribution of GO/Al composites. Static structural 

analysis was used in current modelling work to predict the stress distribution 

in GO/Al composites. The number of GO layers were obtained from the micro 

Raman investigation done experimentally on GO/Al composites and used to 

develop model in-line with the experimental observations. Due to the 

complexity of GO/Al composite modelling, at first the Al particles, GO 

reinforcement layers and joints connecting particles were designed in Hyper 

MeshTM. The model was then imported to ANSYS 16.0 for the addition of 

material properties, meshing, boundary conditions and parametric analysis 

was carried out. Al particles of 35µm size and each GO layer of 0.134nm were 

modelled in a cube of 140×140×140 dimensions. For the analysis SOLID 185 

element was considered and the corresponding translational (U) and rotational 

(ROT) boundary conditions, constraint equations (CE) and force (F) were 

applied on the model. The contacts/connections between particles were 

simulated using rigid elements, these contact elements were highlighted in 

pink colour in Figure 4.10. The contact elements provide bonding strength to 

the particles and the load tolerance limit for the contact elements is given as 

100%. All degrees of freedom i.e., for both translational and rotational in X, Y 

and Z-directions are constrained at 0 at the bottom of the GO/Al composite 

and a compressive static load of 2.5N is applied in Y-direction at the top of the 

GO/Al composite. The properties of the materials used in simulation were 
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given in Table 4.7 and the FE model of GO/Al composite with the application 

of boundary conditions is shown in Figure 4.10.  

Assumptions 

In current study, the following assumptions were considered to model GO/Al 

composites. 

• The GO reinforcement was uniformly distributed on to the AI particles. 

• The matrix and reinforcement are isotropic materials.  

• No interfacial compounds formed in between GO and Al particles. 

• The load applied to the GO/Al composite is within the elastic limit. 

Table 4. 7: Material properties used in simulation of GO/Al composites. 

Material Young's modulus (MPa) Poisson's ratio (N/A) 

Al 7×104 0.34 

GO 33×104 0.14 

 

Figure 4.10: FE model of GO/Al composite with application of boundary 

conditions. 

1

X

Y

Z

                                                                                

ELEMENTS

U

ROT

F

CE

U- Displacement 

ROT- Rotational 

F-Force 

CE-Constrained 
equations 



` 

62 
 

4.5.2 Mesh convergence of FE model 

The FE model used in current research work was tested for convergence at 

different element sizes starting from 0.8µm to 0.1µm (increasing number of 

elements). The complexity of the model vs response was recorded, in current 

research complexity is the element size (number of elements) and response 

of interest was the corresponding stress. Varying the element size in the FE 

model varies the stress generated in the composite shown in Figure 4.11. Four 

convergence runs were performed on FE models with and without GO layers 

reinforced on Al particles. Figure 4.11(a) shows the convergence plot of FE 

model without GO layers on Al particles, it can be noted from the plot that at 

0.2µm of element size the model was converged i.e., the difference in stress 

values obtained at 0.2µm element size and 0.1µm element size is around 1% 

which is within the acceptability limit of 5%. The convergence plot of FE model 

with Al particles reinforced with 5GO layers is shown in Figure 4.11(b), in which 

the difference in stress values obtained at 0.2µm element size and 0.1µm 

element size is around 0.7% which is within the acceptability limit of 5%. It can 

be noted that the FE model with and without GO layers is converged at 0.2µm 

of element size.  
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Figure 4.11: Mesh convergence plots of (a) FE model with no layer and (b) 

FE model with 5GO layers. 

4.5.3 Analytical modelling of GO/Al composites 

Rule of mixtures (ROM) is one of the effective, simple and intuitive method of 

determining the effective properties of the composites in terms of its 

constituents i.e., matrix and reinforcement. Mainly two theories are available 

in literature to predict the effective mechanical properties of the composite, one 

is Voigt model that uses equal strain assumption and other is Reuss model 

that uses equal stress assumption [47]. ROM not only used for finding the 

effective properties of composites with uniformly distributed second phase 

particles but also for the nanocrystalline materials. The effective stress and 

Young’s modulus of the composites can be obtained from the equations (4.11)-

(a)  

(b)  
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(4.13) [198]. In current research work Young’s modulus was considered for the 

analytical modelling due to the lack of literature available for the flow stress 

measurements of GO.  

𝜎𝑒𝑓𝑓 =  𝑓𝑝𝜎𝑝 + 𝑓𝑚𝜎𝑚 ------ (4.11) 

𝜎𝑒𝑓𝑓 = (
𝑓𝑝

𝜎𝑝
+

𝑓𝑚

𝜎𝑚
)−1 

------ (4.12) 

𝐸𝑐 =  𝑓𝐸𝑝 + (1 − 𝑓)𝐸𝑚 ------ (4.13) 

where, 𝜎𝑒𝑓𝑓 is the effective stress of composite, 𝑓𝑝 is the volume fraction of 

particle, 𝜎𝑝 is the flow stress of particle reinforcement, 𝑓𝑚 is the volume fraction 

of matrix, 𝜎𝑚 is the flow stress of matrix, 𝐸𝑐 is the Young’s modulus of 

composite, 𝐸𝑝 is the Young’s modulus of particle reinforcement, 𝐸𝑚 is the 

Young’s modulus of the matrix and 𝑓 is the volume fraction and is calculated 

by the equation (4.14). 

  𝑓  = 
𝑓𝑝

(𝑓𝑝 + 𝑓𝑚)⁄    
------ (4.14) 

Analytical modelling of the GO/Al composites is done at various volume 

fractions of GO reinforcement of 0.05, 0.15, 0.2 and 0.5. The properties used 

to calculate the Young’s modulus of the composite are given in Table 4.8. the 

values obtained from the analytical model will be compared with results 

obtained from FE modelling of GO/Al composites.  

Table 4.8: Properties of materials used in analytical modelling of GO/Al 

composites. 

Young’s modulus of GO reinforcement (MPa) 33×104  

Young’s modulus of Al matrix (MPa) 7×104 

Volume fraction of GO reinforcement (%) 0.05, 0.15, 0.25, 0.50 

Volume fraction of Al matrix (%) 0.95, 0.85, 0.75, 0.50  

  

4.6 Summary 

The current chapter presented the materials used to produce GO/AI 

composites together with their properties. This chapter also mentioned the 

elaborated experimental procedure used to fabricate composites and the 
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experimental conditions used for testing. The FE model generation and 

boundary conditions employed with a goal of comparing the model against 

experimental observations obtained in present research work were given in 

detail. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

5.1 Introduction 

In this chapter an overview of results obtained in the current research initiated 

from the selection of solvent, vacuum filtration of powders is reported. The 

results concerned with density of samples, particle morphologies, crystalline 

phase analysis using diffraction patterns, micro Raman analysis, micro 

hardness and indentation analysis on monolithic Al samples and GO/Al 

composites are also reported. The order of results presented in this chapter is 

outlined in Figure 5.1. The results of GO/Al composites obtained were 

discussed in comparison with monolithic Al.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Outline of order of results discussed in this chapter. 
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5.2 Powder treatment 

For an efficient fabrication of the GO/Al composite the powder was treated with 

different solvents at various stirring times to obtain an optimum powder. 

5.2.1 Selection of solvent 

The selection of appropriate solvent to disperse GO efficiently is one of the key 

aspects in GO/Al composite production.  since the mechanical properties of 

the final resulting composites depends highly on the dispersion of the GO, as 

the dispersion determines the thickness of GO and distribution of GO in AI 

matrix. In the current research, two solvents namely, IPA and acetone have 

been used to produce GO/Al composites. Figure 5.2 shows the photographs 

of beakers with 1.3wt% GO/Al dispersed in acetone and in IPA respectively 

after 8hrs of stirring. It can be observed that once the stirring was stopped the 

AI particles were still dispersed in IPA whereas in acetone the particles were 

accumulated as a black slurry at the bottom in acetone. Figure 5.3 (a), (b) 

shows the leftover solution after filtering out the GO/AI/IPA and GO/AI/acetone 

solutions, in which filtered out solution in which IPA was used as solvent was 

clear where as solution in which acetone was used as solvent is in dark brown 

colour. This implies to that the GO wasn’t dispersed effectively in acetone 

compared to IPA, IPA was choosed as the solvent for the GO/AI composite 

produced in current research work. The wet mixing/liquid infiltration process 

resulted in better dispersion of GO around the Al particles in GO/Al powders. 

This was possible by the selection of appropriate solvent for the dispersion of 

GO in Al matrix. As mentioned by Parket al. [199] that the dispersibility of 

carbon fillers in organic solvents depend on solubility parameters such as 

dispersion cohesion parameter (δd), polarity cohesion parameter (δp) and 

hydrogen bonding cohesion parameter (δh). Hence, the higher the δd+ δh 

value is the better the graphene dispersion will be. The higher values of δd+ 

δh of IPA (11.97) than acetone (9.77) led to the better dispersion of GO in Al 

which was evident from Figure 5.2(a)-(b). It was noted that the GO particles in 

IPA were stable after 30mins of standby while GO in acetone agglomerate and 

settle down at the bottom of the beaker. This was also reflected on 

morphologies of the particles. The stirring parameters used for powder 

treatment of GO/Al composites were optimised in such a way that the stirring 
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speed won’t exceed the threshold, induce defects in GO particles/sheets that 

might effect end properties of the composite [200,201]. At the lower stirring 

speeds and times, the particles will cluster in localised region and particles will 

be non-homogeneously distributed at lower stirring speeds. Even though, the 

inter-particle distances increased by increase in stirring speed, the clustering 

will be prominent at less stirring time [202]. In current research no clustering of 

particles were observed at the optimised stirring times, speeds at each wt% of 

GO reinforcement, this was inturn reflected on the microstructure of the 

composites.  

 

Figure 5.2: Comparison of 1.3wt% of GO dispersion in solvent (a) IPA and (b) 

acetone. 

 

(a)  (b)  
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Figure 5.3: Filtered out solution of 1.3 wt% GO/Al (a)IPA as solvent and (b) 

acetone as solvent. 

5.2.2 Vacuum filtration 

The GO/AI/IPA dispersions were vacuum filtered in fume hood and the 

efficiency of stirring parameters was investigated by using visual inspection of 

the filter papers, shown in Figure 5.4. There was no evidence of dark brown 

colour on the filter papers which implies to that GO particles were residing on 

the AI particles and were not filtered out. Similar results were observed even 

with the increase in wt% of GO reinforcement i.e., from 0.05wt% to 0.1wt% 

and 0.2wt%. 

 

Figure 5.4: Visual inspection of filter papers after vaccum filtration. 

The initial results of visual inspection were consolidated in Table 4.1, in which 

wt% of GO reinforcement, solvent, stirring time, powder drying conditions and 

sintering temperature of the samples, were given as process parameters. At 

0.05% GO/Al  0.1% GO/Al  0.2% GO/Al  

(a) (b) 
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the initial stages of experiments, GO of wt% of 0.7% and 1.3% were under 

investigation to produce GO/Al composites but it was hard to attain the uniform 

dispersions due to the high percentage of agglomerations. To avoid 

agglomeration of GO particles, less wt% of GO i.e., 0.05%, 0.1% and 0.2% 

were used for further investigation of GO/Al samples. The GO/Al powders 

production at the fixed processing conditions using visual inspections were 

highlighted in bold and the corresponding reasons for the failure and 

consideration of processing conditions were also given in Table 4.1. All the 

samples were sintered in horizontal tube furnace in Ar atmosphere for 4hrs of 

holding time and each processing condition of the samples was analysed 

through visual inspection. The comments about whether the sample passed or 

failed were noted via observing the sample condition after sintering i.e., while 

taking out the samples from sintering dishes some samples fall apart as 

powders and some samples were so delicate that they broke while handling.
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Table 5.1: Summary of results of visual inspection at processing conditions for different wt% of GO reinforcement, solvent, stirring 

time, powder drying and sintering temperature. 

wt% of 
GO 

Solvent 
Stirring 

time 
(hr) 

Powder 
drying 

Sintering 
temperature 

(0C) 

Pass/
Fail 

Comments 

0 

IPA 

1 

N 

500 

F 
Moisture was observed in powder, need to improve 

filtration method and drying powders 

Y 
F 

Sintering temperature was not enough as the samples 
were so delicate 

580 P Samples became hard and stirring time was enough 

0.7 

2 

N 500 F 
Moisture was observed in powder, need to improve 

filtration method and drying powders 

Y 

500 F 
Sintering temperature was not enough as the samples 

were so delicate 

580 

F 
Stirring time was not enough, dark coloured filtered out 

solutions were recorded 

4 F 
Stirring time was not enough, dark coloured filtered out 

solutions were recorded 

6 F 
Stirring time was not enough, dark coloured filtered out 

solutions were recorded 

8 P Samples became hard and stirring time was enough 

1.3 4 
N 

500 
F 

Moisture was observed in powder, need to improve 
filtration method and drying powders 

Y F 
Sintering temperature was not enough as the samples 

were so delicate 
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580 

F 
Stirring time was not enough, dark coloured filtered out 

solutions were recorded 

F 
Stirring time was not enough, dark coloured filtered out 

solutions were recorded 

10 P Samples became hard and stirring time was enough 

0.05 1 
500 F 

Sintering temperature was not enough as the samples 
were so delicate 

580 P Samples became hard and stirring time was enough 

0.1 
2 

500 F 
Sintering temperature was not enough as the samples 

were so delicate 

580 
F 

Stirring time was not enough, dark coloured filtered out 
solutions were recorded 

3 

P Samples became hard and stirring time was enough 

0.2 

500 F 
Sintering temperature was not enough as the samples 

were so delicate 

580 

F 
Stirring time was not enough, dark coloured filtered out 

solutions were recorded 

5 P Samples became hard and stirring time was enough 

0 

Acetone 

2 P Samples became hard and stirring time was enough 

0.7 
2 

N 
500 

F 
Moisture was observed in powder, need to improve 

filtration method and drying powders 

Y 

F 
Sintering temperature was not enough as the samples 

were so delicate 

580 

F 
Stirring time was not enough, dark coloured filtered out 

solutions were recorded 

4 F 
Stirring time was not enough, dark coloured filtered out 

solutions were recorded 
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6 F 
Stirring time was not enough, dark coloured filtered out 

solutions were recorded 

8 
P Samples became hard and stirring time was enough 

P Samples became hard and stirring time was enough 

1.3 

4 F 
Stirring time was not enough, dark coloured filtered out 

solutions were recorded 

6 F 
Stirring time was not enough, dark coloured filtered out 

solutions were recorded 

10 P Samples became hard and stirring time was enough 

0.05 1 
500 F 

Sintering temperature was not enough as the samples 
were so delicate 

580 F 
Stirring time was not enough, dark coloured filtered out 

solutions were recorded 

0.1 
2 

500 F 
Sintering temperature was not enough as the samples 

were so delicate 

580 
F 

Stirring time was not enough, dark coloured filtered out 
solutions were recorded 

5 P Samples became hard and stirring time was enough 

0.2 
3 

500 F 
Sintering temperature was not enough as the samples 

were so delicate 

580 
F 

Stirring time was not enough, dark coloured filtered out 
solutions were recorded 

6 P Samples became hard and stirring time was enough 
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5.3 Characterisation of composites 

5.3.1 Density of GO/Al composites 

The densities of the bulk composites before and after sintering were measured 

using Archimedes principle. Figure 5.5(a) shows the summary of green and 

sintered densities of pure AI samples with respect to compaction pressures. It 

can be noted that the green density of the samples increases with increase in 

compaction pressure. Figure 5.5(b) shows the percentage of density and 

porosity as the functions of compaction pressures, the porosity of the GO/AI 

composites reduced with increase in compaction pressure. The percentage of 

densification of GO/AI samples and relative density of the samples with 

respect to the percentage of GO reinforcement are in shown in Figure 5.6. It 

can be noted that all the samples were densified during sintering. The addition 

of GO shows minor effect on densification of the GO/AI samples for instance 

the density of the samples increases with increase in wt% of reinforcement up 

to 0.2wt% of GO, the density of 0.2wt% GO/AI samples was less compared to 

0.05wt% GO/AI but more than monolithic AI. This implies that the wet mixing 

of 0.2wt% and GO dispersion in AI is not efficient enough and leads to 

agglomeration and resulting in porosity.  
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Figure 5.5: (a) Green density and sintered density against compaction 

pressure of pure Al samples and (b) percentage of sintered density and 

porosity vs compaction pressure of pure Al samples; n=3. 
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Figure 5.6: Relative sintered density and densification factor of the sintered 

GO/Al composites. 

The theoretical and measured densities of the sintered samples with respect 

to the compaction pressures, wt% reinforcements are shown in the Figure 

5.7(a)-(c). Three samples were tested for each process parameters to obtain 

repeatable and reliable results and the results were plotted at 95% confidence 

intervals. 
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Figure 5.7: Theoretical and measured densities of GO/Al composites sintered 

at 600°C: (a) compacted at 500MPa, (b) compacted at 540MPa and (c) 

compacted at 580MPa. 

The nano particles are more prone to form agglomeration (hence non-

homogeneous distribution) in matrix due to their high surface to volume ratio 

which provides high surface energy and hence leading to more agglomeration. 

The uncontrolled agglomeration of nano particle reinforcement might occur in 

between particles due to existence of Van der waal forces. It was mentioned 

by Sudarshan et al. [203] that the mechanical stirring can only provide small 

shear force high enough to break large clusters, but it is not effective for 

breaking up the small clusters especially at nano level. Saboori et al. [204] 

have reported an increase in agglomeration with increase in wt% of graphene 

reinforcement in Al matrix. In current research similar results were recorded 

where porosity was observed because of agglomeration, the microstructure of 

composites in current research work were compared with the composites in 

literature and shown in Figure 5.8(a)-(b). In current research, with the increase 

in wt% of GO reinforcement the spacing in between the grain boundaries of 

composites effected the sinterability of the composites. The agglomerated 

regions observed on the composites acted as barriers for the diffusion of grain 
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boundaries during sintering process and hence effected the sintered density 

of the composite.  

  

Figure 5.8: SEM images of composites showing agglomeration (a) 1wt% of 

GNP/Al [195] and (b) 0.2wt% of GO/Al in current research. 

5.3.2 Morphologies of powders and GO/Al samples 

Figure 5.9(a)-(d) shows the morphology of AI, 0.05wt% GO/AI, 0.01wt% GO/Al 

and 0.2wt% GO/AI powders after wet mixing process, GO sheets were 

observed on AI particles in GO/AI composite. However, the absorption of GO 

sheets on AI particles was rarely detected (shown in expanded view of 

highlighted boxes of Figure 5.9(b)-(d)) and were mostly placed with AI 

particles, an appropriate interface between GO and AI particles was not 

created. This was noted in accordance with Figure 5.1 in which GO was well 

dispersed in solution during wet mixing process. The effect of sintering 

temperatures on the grain growth and microstructures of GO/AI composites 

were demonstrated in Figure 5.10(a)-(f). The grain size of the 0.05wt% GO/AI 

composites sintered at 580°C and 600°C are shown in Figure 5.10(a) and (b), 

it was observed that the grain size increased with increase in temperature and 

grain sizes were estimated approximately as 33.8 and 34.6µm respectively. 

Although the grain size was less at 580°C, it has porous microstructure due to 

either insufficient sintering temperature or excess holding time. The monolithic 

AI samples have shown good metallurgical bonding in between particles. 

There was a good chemical bonding in between the GO and AI particles, 

further investigation on absorption of GO on to the AI matrix was done using 

EDXS analysis, given in section 5.3.3.  
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Figure 5.9: Particle morphology of (a) 35µm Al powder (b) 0.05wt% of GO/Al 

powder (c) 0.1wt% of GO/Al powder and (d) 0.2wt% of GO/Al powder.  
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Figure 5.10: SEM images of surface of GO/Al composites: (a)-(b) 0.05wt%: 

(a) sintered at 580°C, (b) sintered at 600°C, (c)-(d) 0.1wt% : (c) sintered at 

580°C, (d) sintered at 600°C, (e)-(f) 0.2wt%: (e) sintered at 580°C and (f) 

sintered at 600°C. 

The microstructure of the GO/Al composites were effected by the sintering 

temperatures, i.e., at 580°C and 600°C. Higher sintering temperatures 

provides ease of diffusion of atoms and hence increasing the sinterability of 

the end composite [205]. However, the increase in wt% of GO reinforcement 

resulted in reduction of density of the Al composite as melting point of GO 

(c) 

(a) (b) 

(d) 

(e) (f) 
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particles is~3600°C [206], has a very low tendency to melt at the temperatures 

used in current research and led to the weak network of GO and Al. The 

sintering process have also induced dimensional changes of particles due to 

shrinkage process. The resultant grain sizes GO/Al composites with increase 

in sintering temperature were shown in Figure 5.11(a)-(b) which fits well with 

the theory [205]. The increase in sinterability will inturn effect the mechanical 

properties of end composite. 

  

Figure 5.11: SEM images of 0.2wt% GO/Al composites showing grain size 

measurements (a) sintered at 580°C and (b) sintered at 600°C. 

5.3.3 EDXS analysis of GO/Al powders and sintered samples 

The EDXS analysis of GO/AI composite powders were shown in Figure 

5.12(a)-(d) in which traces of oxygen were found in AI powder and some 

amount of oxygen together with carbon was noted in all GO/Al powders 

irrespective of the wt% of GO. The analysis was performed at three random 

locations and almost similar concentrations of elements were observed which 

implies to the better dispersion of GO on the AI particles. However, no other 

elements than the elements in the used materials i.e., carbon, AI and oxygen 

were found which implies to the contamination free powders. The EDXS 

images of GO/AI sintered composites were shown in Figure 5.13(a)-(d), it was 

noted that the elements that were observed at powder state still exists even 

after the sintering which implies to the efficient sintering process that proved 

to be successful as there was not contamination recorded. Further analysis of 

the crystalline phases of the GO/AI composites was done by using XRD, given 

in detail in section 5.3.4.  

(b) (a) 
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Figure 5.12: EDXS images of dried powders (a) pure Al, (b) 0.05wt% GO/Al, 

(c) 0.1wt% of GO/Al and (d) 0.2wt% of GO/Al. 

(b) 

(c) (d) 

(a) 
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Figure 5.13: EDXS images of samples sintered at 600°C (a) pure Al, (b) 

0.05wt% GO/Al, (c) 0.1wt% of GO/Al and (d) 0.2wt% of GO/Al. 

The EDXS analysis have shown the carbon content for GO/Al composites 

compared to the monolithic Al samples both at powder state and after sintering. 

However, EDXS shows the high carbon content as the equipment is sensitive 

to lower mass elements. The EDXS analysis were performed by scanning the 

sample at random points for each sample. From the EDXS results (Figure 

5.13(a)-(d)) it can be observed that the carbon content increases with increase 

in wt% of GO where as the oxygen content varied from composite to composite 

due to the level of oxidation occurred at each processing stage. The 

(c) (d) 

(b) (a) 
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parameters used in mixing of powders such as stirring speed, stirring time has 

effect on distribution of the elements which was reflected in EDXS spectra. By 

heating the samples to 600°C which is nearly 88% of the melting temperature 

of Al at which it has more propensity to react with carbon and contamination 

but the samples in current work have yielded the same elements as the 

elements recorded at powder state. From the conducted analysis the existence 

of elements like C, O and Al, the range of their compositions at both powder 

state and sintered state were discussed. It is worthwhile to note that the 

presence of elements highly depends on the purity of base materials, mixing 

conditions and provision of sintering atmospheres. The adverse effect of this 

contamination, formation of alien compounds and their effect on end products 

were reported in previous works [182].  

5.3.4 XRD analysis of GO/Al composites 

The structural changes and crystalline phases of GO/AI composites were 

evaluated and shown in Figure 5.14. The phases were evaluated based on 

Bragg’s law and 2θ values. GO/AI composites sintered at 580°C and 600°C 

resulted in same phases, i.e., AI (111) at 38.6°, AI (222) at 82.7°, and have 

displayed the presence of Al2O3. The calculation of crystallite sizes from XRD 

data on this occasion was not possible due to the limitation of peak broadening. 

The process of diffusing carbon into AI grains haven’t resulted in significant 

amount of residual stresses in GO/AI composites as there was no evidence of 

angular shift of GO/AI composites compared to monolithic AI samples. In 

comparison, the peaks of both monolithic AI and GO/AI samples sintered at 

580°C were at Bragg angle of ~ 0.1° more than the peaks observed for 

monolithic AI and GO/AI samples sintered at 600°C, this implies to that the 

residual stress of the samples were revealed with increase in sintering 

temperature. However, the information regarding graphene was not obtained 

from the XRD analysis as it was reported in literature that both graphite and 

rGO display peaks at 24° [207] and thus micro Raman analysis of GO/AI 

samples was performed and reported in section 5.3.5. 



` 

86 
 

 

Figure 5.14: XRD spectra of monolithic and 0.05wt%, 0.1wt% and 0.2wt% 

GO/Al composites sintered at 580°C and 600°C. 

The peak deflection analysis of the GO/Al samples were conducted between 

20° and 90° Bragg’s angle and was enough to investigate the crystalline 

phases and peak broadening of composites. The addition of graphene content 

Al matrix resulted in a peak shift to a higher angle [19]. The sharp and strong 

peaks obtained in current research reflects to the well-crystalline nature of Al, 

the peak intensities reduction was a result of reduction in phase crystallinity. 

The process parameters such as sintering temperature and content of GO 

which has attributed the formation of intense Al2O3 peaks. The typical peaks 

of Al, Al2O3 were seen in all the samples including monolithic Al and GO/Al  

samples, while any peak corresponding to the graphene particles were not 

detected expect minor intense peak in 0.2wt% GO/Al  composite [208]. The 

similar peaks were reported in GNP reinforced Al composites processed by 

powder metallurgical route associated with ball milled powder [188] and these 

peaks were also reported with ceramic matrix composites [209,210]. One 

possible reason for lack of detection might be sensitivity of equipment 

(detection limit) which couldn’t detect the presence of graphene particles in 
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composites containing 0.05wt% and 0.1wt% GO and this was also observed 

by Bastwros et al. [211] and Rashad et al. [205]. It was also noted that peaks 

corresponding to the Al4C3 were not observed in GO/Al composites produced 

in current research [212]. The reason might be either lack of reaction between 

Al and GO or the quantity of Al4C3. The formation of micro sized grains have 

attributed to the intensities of peaks observed in GO/Al composites. Minor 

broadening effect was observed on some composites due to increase in grain 

boundaries and sub-grain formations. The increase would reduce mechanical 

and corrosion resistance of Al matrix material reinforced with nano 

reinforcements [189].     

Sintering temperature from 580°C to 600°C have resulted in reduction of 

diffraction angle (diffraction shift) which was due to the removal of linear 

defects and related internal stresses and resulted in removal of porous 

regions. The high temperatures of annealing i.e., at 600°C can cause formation 

of oxide layers on metal surface, i.e., formation of Al2O3, inert gas atmosphere 

was used to avoid this. However, Al2O3 was observed in all GO/Al composite 

samples which was due to the oxidation of Al particles at powder state, this 

was evident from Figure 5.12(a). The findings from XRD analysis were in well 

agreement with the evaluation of phases reported in literature [20,182,188]. In 

this way, the novel composites with better properties can be developed by 

liquid infiltration methods and powder metallurgy without the formation of Al4C3 

[22].  

5.3.5 Micro Raman analysis of GO/Al composites 

Raman spectroscopy was employed in current research to investigate the 

evolution of structure of graphene i.e., defects, layer formation during 

processing of composites. The Raman spectroscopy of the bulk GO/Al 

composites sintered at 600°C are shown in Figure 5.15(a)-(c) and the 

corresponding Raman data is given in Table 5.2(a)-(c). Three major peaks of 

D-band, G-band and 2D-band were recorded after sintering. The ratio of 

intensities ID/IG that were obtained from spectroscopic data were used to 

investigate the disorderness and defect densities of graphene. Figure 5.15(a) 

shows the Raman spectra of 0.05wt% GO/AI composite at three random 

locations it can be noted from the spectra that the G-band was recorded at 
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approximately 1604cm-1. The ratio of intensities varies from location to location 

which implies to the need for improvement in dispersion of GO in composite 

and similar trends were observed from 0.1wt% GO/AI shown in Figure 5.15(b) 

and 0.2wt% GO/AI shown in Figure 5.15(c). From the spectral data, the ratio 

of ID/IG decreases from 0.05wt% to 0.1wt% but increased from 0.1wt% to 

0.2wt% due to increase in physical force applied on particles with increase in 

stirring time, this has contributed to the increase in defects and disorderness 

in graphene. It was proposed in the literature that the number of graphene 

layers increase with increase in intensities ratio of IG/I2D. In present research 

work, the IG/I2D ratio increases from 0.69(GO) to 0.89(0.2wt% GO/AI) due to 

the increased agglomeration. The G-band peak positions were evaluated to 

investigate stresses experienced by GO/AI composites.  

In the present research, the wavenumber of GO/AI is more than the as 

received GO due to increase in residual compressive stress with reduction in 

interatomic distances in graphene. The Raman spectra of GO/AI composites 

with various wt% of GO reinforcement, sintered at 580°C and 600°C is shown 

in Figure 5.16, the peaks were altered with variation in sintering temperature. 

It can be noted that the defects and disorderness of the GO/AI composites 

reduced with increase in sintering temperature.  

The Raman spectra are highly related to quality of samples, all the sp2 

hybridised samples investigated under Raman will exhibit strong peaks in the 

range of 2500-2800cm-1. The G-band combined with this strong peak is the 

signature of sp2 graphitic materials and was recognised as 2D (G) band. D-

peak in the spectra was usually caused by disordered structure of graphene 

and led to the resonance in Raman spectra. The first order G-band and D-

band were araised due to vibrations from sp2 carbons [213]. Since, the G-band 

peaks of higher frequencies were recorded in all the GO/Al composites in 

current research, GO was not reduced to rGO during sintering process [214]. 

As mentioned earlier, the D-band intensity was an indication of degree of 

disorderness, this can be theoretically reduced by successful reduction of GO. 

In current research work, the D-band intensity increased due to increase in 

structural defects and lack of reduction. The higher intensities of D-band and 

G-band (ID/IG) indicates the increase in number of defects and disorderness in 

GO sheets caused by processing techniques used in current study i.e., wet 
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mixing. These defects were raised due to the disruptions of functional groups 

of GO surfaces and the binding sites after processing of composites which led 

to disordering in carbon lattice [215]. It is well known that the 2D-band position 

was highly dependent on graphene layers, tensile and compressive strains 

[216]. From the IG/I2D ratios and the wavelengths recorded in current research 

that the GO reinforcement in Al matrix resulted in formation of many number 

of layers because of agglomeration of GO particles. However, the peak 

recorded at 1899cm-1 in the Raman spectra referred to the stretching vibration 

of C=C bond  [217]. The increase in number of GO layers attributed to 

reduction in mechanical strength due to dislocation of layers upon application 

of load.  
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Figure 5.15: Recorded micro Raman for GO/Al composites (a) 0.05wt%, (b) 0.1wt% and (c) 0.2wt%. 

Table 5.2: Raman data of the GO/Al composite at random locations (a) 0.05wt%, (b) 0.1wt% and (c) 0.2wt%. 

 

Material ID/IG IG/I2D ωG (cm-1) 

Pristine GO 1.07 0.69 1507.7 

Location 1 1.147 0.72 1606.07 

Location 2 1.311 0.7 1598.92 

Location 3 1.137 0.69 1600.23 

 

Material ID/IG IG/I2D ωG (cm-1) 

Pristine GO 1.07 0.69 1507.7 

Location 1 1.105 0.78 1604.23 

Location 2 1.004 0.74 1604.49 

Location 3 1.184 0.76 1608.72 

 

Material ID/IG IG/I2D ωG (cm-1) 

Pristine GO 1.07 0.69 1507.7 

Location 1 1.006 0.82 1606.87 

Location 2 1.087 0.89 1606.08 

Location 3 1.211 0.869 1605.02 

(a) (b) (c) 

(c) (a) (b) 
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Figure 5.16: Raman spectra of composites (a)-(c) sintered at 580°C, (d)-(f) sintered at 600°C: (a) 0.05wt% GO/Al, (b) 0.1wt% GO/Al, 

(c) 0.2wt% GO/Al, (d) 0.05wt% GO/Al, (e) 0.1wt% GO/Al and (f) 0.2wt% GO/Al. 
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5.3.6 Micro Vickers hardness of GO/Al composites 

The micro Vickers hardness (VHN) of GO/AI composites at various wt% of 

reinforcement, sintered at 580°C and 600°C was shown in Figure 5.17(a)-(b). 

It was observed that the hardness of GO/AI composites increases with 

increase in sintering temperature. This was observed due to the existence of 

more refined grain structures and better chemical bonding between GO and 

AI particles which facilitated the enhancement in hardness. The hardness of 

the composites increases with increase in wt% of the reinforcement which is 

in line with the results from literature and in-conjunction with rule of mixtures 

(ROM) for composite. It can be noted that the hardness of composites 

increases with increase in processing conditions of sintering temperature and 

wt% of GO. Approximately 35% of increment over the pure AI was noted for 

0.2wt% of GO/Al composite sintered at 600°C.  

The SEM images showing microstructure of the GO reinforced Al composite 

samples suggested that the wetting in between GO, and Al particles was not 

perfect enough. Hence, the solid-state sintering mechanism was less effective 

and did not display 100% densification. It was worthwhile to note that in spite 

of less densification, GO/Al composites displayed superior hardness 

properties. This can be attributed to the development of effective interface and 

better bonding between GO and Al particles. The improvement in hardness of 

GO/Al composites provide high restraining force to deform during the 

indentation process [181] and furthermore densification of material during 

sintering contributed to the better properties. It was also noted from the results 

that the densification of GO/Al composites reduced with increase in wt% of GO 

where as the Vickers hardness was increasing, which was due to the dominant 

effect of reinforcement on resistance to indentation which proved to be better 

than results obtained by Gürüz et al. [187] where hardness reduced with 

increase in graphene addition.  
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Figure 5.17: Vickers hardness of pure Al and GO/Al composite samples (a) 

sintered at 580°C and (b) sintered at 600°C; n=3, 95% confidence. 
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5.3.7 Indentation tests of GO/Al composites 

The indentation compression load of 5kN was applied centrally on the 

specimens of pure AI, 0.05wt%, 0.1wt% and 0.2wt% of GO reinforced 

composites compacted at various pressures and sintered at various 

temperatures. The fracture surfaces of GO/AI composites sintered at 580°C 

were shown in Figure 5.18. It can be noted from visual inspection that the pure 

AI samples at all compaction pressures used in current research resulted in 

ductile failure. The GO reinforcement on AI lead to the brittle failure of 

composite materials. The fracture surfaces of the composites compacted at 

500MPa, 540MPa and 580MPa and sintered at 600°C at various wt% of GO 

reinforcement were shown in Figure 5.19.  

Material Pc - 500MPa Pc - 540MPa Pc - 580MPa 
Type of 

failure 

Pure Al 

   

Ductile 

0.05wt% 

GO/Al  

   

Ductile-

shear 

0.1wt% 

GO/Al  

   

Brittle 

0.2wt% 

GO/Al  

   

Brittle 

Figure 5.18: Fracture surfaces of pure Al, 0.05wt%, 0.1wt% and 0.2wt% of 

GO/Al composites compacted at various pressures and sintered at 580°C. 
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Material 
Pc - 500MPa Pc - 540MPa Pc - 580MPa 

Type of 

failure 

Pure Al 

   

Ductile 

0.05wt% 

GO/Al  

   

Ductile-

shear 

0.1wt% 

GO/Al  

   

Brittle 

0.2wt% 

GO/Al  

   

Brittle 

Figure 5.19: Fracture surfaces of pure Al, 0.05wt%, 0.1wt% and 0.2wt% of 

composites compacted at various pressures and sintered at 600°C. 

It was observed that the increase in sintering temperature doesn’t effect the 

failure pattern whereas the increase in wt% of GO reinforcement led to more 

brittleness. From Figures 5.18 and 5.19, it can be observed that the fracture 

surfaces of pure AI specimen were in semi-spherical shape that indicates 

necking. This fracture can be identified as ductile-shear fracture. The 

specimens have experienced breaking without any plastic deformation or 

necking, due to porosity. The stress developed in the material in both radial 

and tangential directions was calculated using equations 4.8-4.10, shown in 

Figure 5.20(a)-(b). From the graphs, it can be noted that the tangential stresses 

were higher than radial stress.  
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Figure 5.20: Variation of stress developed in the specimens under loading 

with wt% of GO reinforcement, compaction pressures and sintering 

temperatures (a) radial stress and (b) tangential stress; n=3, 95% 

confidence. 

The increase in sintering temperature have shown a significant effect on stress 

in AI specimens and doesn’t show much variation of stress for GO/AI 

composites. It was noted that at 580°C of sintering temperature with increase 

in compaction pressure, the tangential stress and radial stress increased upto 

0.05wt% GO/AI and started decreasing whereas at 600°C sintering 

(a) 

(b) 
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temperature with increase in compaction pressure, the tangential and radial 

stress decrease with increase in wt% of GO reinforcement. The 0.2wt% GO/AI 

composites showed lowest strength due to agglomeration and formation of 

graphene layers.  

The fracture morphology of composite pellets was studied using SEM, shown 

in Figure 5.21(a)-(d). Semi-spherical areas were observed for AI specimens, 

shown in Figure 5.21(a), it can be noted that the sample have undergone 

ductile failure with necking and no strain hardening. Whereas the un-melted 

particles in 0.05wt% GO/AI composites prompted nucleation of porosity and 

led to propagation of crack, shown in Figure 5.21(b), similar pattern was 

observed in all GO/AI composites irrespective of processing conditions. More 

porous sites were observed with increase in wt% of GO reinforcement and led 

to the cracks as these structures have more stress concentration and hence 

brittle behaviour, shown in Figure 5.21(c) and 5.21(d).The strength of the 

Figure 5.21: SEM images of fracture morphology on cross sections of crack 

zones of composites compacted at 580 MPa and sintered at 600°C (a) pure 

Al, (b) 0.05wt% GO/Al, (c) 0.1wt% GO/Al and (d) 0.2wt% GO/Al. 
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composite can be attributed to the three aspects: grain refinement, stress 

transfer and dislocation strengthening. As the solid-state sintering was 

employed in current research the effect of grain refinement on current 

composites was negligible. Hence dislocation strengthening and stress 

transfer plays key role in strength of composites produced in current research. 

The stress transfer between the Al and GO particles depends on quality of 

interfacial bonding and there was no evidence of Al4C3 phase. The interfacial 

bonding between the GO and Al particles have provided an efficient stress 

transfer in between them whereas the mismatch of thermal expansion 

coefficients between Al and GO led to the dislocations and the hard GO 

obstruct the movement of dislocations, led to increase in dislocation density 

and hence facilitating dislocation strengthening. However, the strengthening 

mechanisms observed in current study were dominated by the formation of 

number of GO layers which led to the delamination of layers due to weak 

network in between layers and hence reducing the strength of the GO/AI 

composites. 

5.4 Modelling of GO/Al composites 

5.4.1 Effect of GO addition on stress distribution of GO/Al composites  

The stress profiles of GO reinforced Al composites were simulated with the 

model as described in section 4.5 with input parameters as mentioned in Table 

4.7. From Figure 5.22 it can be noted that the stress is distributed along the Al 

particles without obstruction, this is due existence of rigid elements between 

the Al particles that acted as perfect bond in between the particles. Figure 

5.23(a) shows the stress profile of GO/Al composites with 5GO layers 

covering/reinforcing each Al particle from which it can be noted that the 

maximum stress developed in Al particles reinforced with GO layers is more 

compared to the maximum stress developed in the model with only Al particles. 

Since the GO reinforcement on Al particles has a load bearing capacity of 

100% which means it can bear the maximum load protecting the Al particles 

from loading which follows Rule of mixtures (ROM) which states that the 

strength of the material increases with addition of reinforcement phase to the 

matrix phase (base material).  Figure 5.23(b) shows the stress developed in Al 

particles in GO/Al particles which is less than the overall stress developed in 
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GO/Al composite. This is due to the load bearing capacity of the GO 

reinforcement covering the Al particles. The maximum stress values with and 

without GO reinforcement are consolidated in Table 5.3. 

 

Figure 5.22: Stress profile of FE model containing only Al particles. 

 

(a) 
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Figure 5.23: Stress profile of GO/Al composite with 5GO layers (a) stress 

profile of overall composite and (b) stress profile in respective Al particles. 

Table 5.3: Comparison of maximum stress in FE models with and without GO 

layers on Al particles. 

FE model details Stress (MPa) 

Al sphere No layer 1281.14 

Al sphere 
5 Layers 

1222.88 

GO coating 12042.40 

 

The effect of distribution of GO on to the Al particles was also investigated by 

varying % of Al particles coated with GO, in current simulations four scenarios 

of percentage of GO distribution were presented i.e., 5%, 15%, 25% and 50% 

of the Al particles in the GO/Al composite were coated with GO. The 

corresponding stress profiles were shown in Figure 5.24 and the comparison 

of maximum stress values was shown in Figure 5.25. It can be noted that the 

strength of the composite varied with distribution of GO, negligible variation in 

stress values noted in between 5% and 15% of GO distribution whereas the 

stress values varied notably from 15% to 25% (3% variation).  

(b) 
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50% 

  

Figure 5.24: Stress profiles of GO/Al composites and their corresponding Al particles with respect to the % of Al particles coated with 5 

GO layers. 
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Figure 5.25: Comparison of maximum stress in models with 5GO layers on Al 

particles with respect to the % of Al particles coated by GO. 

5.4.2 Effect of GO layers on stress distribution  

The effect of addition of GO reinforcement to the Al particles is indirectly 

analysed experimentally through micro Raman analysis that provides the 

information regarding the existence of number of layers of GO on the Al 

particles. This information was used as one of the processing condition for the 

simulation of GO/Al composites. Figure 5.26 shows the stress profiles of GO/Al 

composites with respect to the existence of number of GO layers and stress 

profiles in corresponding Al particles. It can be noted from the profiles that the 

GO addition to the Al particles improved the strength of the composite 

compared to pristine Al. It can also be noted that, the increase in number of 

layers haven’t effected the stress distribution pattern however changes in the 

stress values were noted. The maximum stress values obtained for each 

processing condition with respect to the stress in GO coating and Al particle 

were consolidated in Figure 5.27. It can be noted that with increase in number 

of GO layers the stress experience by the Al particles reduced whereas the 

stress experience by the GO coating increased. When the GO layers 

increased more than 2 layers the stress experienced by GO layers started to 

decrease which might be due to the delamination effect.  
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Figure 5.26: Stress profiles of GO/Al composites with respect to the number of GO layers. 
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Figure 5.27: Comparison of maximum stress in models with respect to the 

addition of GO layers to Al particles. 

The stress profiles of GO/Al composites with respect to the distribution of GO 

coating on to the Al particles and existence of number of GO layers is shown 

in Figure 5.28. The comparison of maximum stress values with respect to the 

GO distribution and GO layers is tabulated in Table 5.4. It can be noted that 

the stress profile of the GO/Al composite varied with variation in GO distribution 

whereas the profiles weren’t effected by the increase in GO layers.  
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Figure 5.28: Stress profiles of GO/Al composites with respect to the number of GO layers and % of Al particles coated with GO. 
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Table 5.4: Comparison of maximum stress in models with respect to the 

addition of GO layers to Al particles and % of Al particles coated with GO. 

Coating Condition 
Stress (MPa) 

5% 15% 25% 50% 

No layer 1281.14 1281.14 1281.14 1281.14 

Al sphere 

Single Layer 1201.33 1201.25 1225.93 1225.68 

Three Layers 1200.28 1200.03 1224.96 1224.33 

Five Layers 1199.55 1198.91 1223.92 1222.88 

GO 
coating 

Single Layer 11770.60 11769.80 12072.20 12070.70 

Three Layers 11760.00 11757.60 12062.40 12057.00 

Five Layers 11748.80 11746.40 12051.70 12042.40 

 

The simulations of stress distribution in the GO/Al composite can allow for the 

prediction of stress experienced by the composite at desired locations. The 

existing rule of mixtures (ROM) that is used to calculate the overall strength of 

the composite with respect to the volume percentage of graphene 

reinforcement doesn’t account for the contribution/effect of variation of number 

of layers of graphene or the orientation of the graphene sheets on the overall 

strength of the composite. The elastic modulus and the tensile strength of the 

graphene nanocomposites increases with increase in volume percentage of 

reinforcement [218]. The mechanical properties also increases with increase 

in number of layers if better bonding between the layers is provided [219]. It 

was also proved that the disorientation of graphene sheets effects the overall 

properties of graphene reinforced Al matrix composites [219]. The number of 

GO layers in GO/Al composites in current research work were correlated to 

the strength of the composites. The maximum stress of 12070MPa is 

experienced by the single GO layer reinforced Al matrix composite which is 9 

times higher than the stress experienced by pristine Al i.e., 1281MPa. Hence, 

there exists a strong relationship between variation of strength and GO layers. 

The simulation findings can therefore be used to predict the strength of 

composites measured experimentally. The proposed model was found to be 
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useful and important for the provision of maps for the mechanical property 

profiles for the production and application of GO/Al composites.      

5.4.3 Verification of FE model of GO/Al composites with the analytical 

model of GO/Al composites 

The Young’s modulus obtained from FE model of GO/Al composite with single 

layer of GO coated on Al particles at different volume fractions (percentage of 

Al particles coated with GO particles) was compared with the Young’s modulus 

of GO/Al composites obtained from analytical modelling. The comparison was 

shown in Figure 5.29, it can be noted from the graph that the results obtained 

from FE model developed in the current work has shown a good agreement 

with results obtained from the analytical model of GO/Al composites. However, 

a difference of ~1-1.8% in Young’s modulus was noted in between the FE 

model and analytical model which was due to the distribution of particles i.e., 

in FE modelling the distribution/location of GO/Al particles in the composite 

plays a key role in the stress distribution.  

 

Figure 5.29: Comparison of Young's modulus obtained from FE modelling 

and analytical modelling of GO/Al composites. 
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5.4.4 Validation of FE model of GO/Al composites 

The FE model of GO/Al composite developed in the current research work is 

validated against the experimental results obtained from the GO/Al composites 

produced in current study and experimental results from literature, shown in 

Figure 5.30. It can be noted that from the results that, the Young’s modulus 

obtained from simulations of GO/Al composites are ~3 times higher than the 

Young’s modulus obtained from experimental characterisation. This was due 

to the agglomeration of GO and variation in grain sizes that were resulted 

during the production of GO/Al composites that has reduced the strength of 

the bonds and hence reduction in properties. It can also be noted that the 

produced GO/Al composites in current research work has many layers of GO 

which has resulted in reduced strength of composites due to the delamination 

of GO layers.  

 

Figure 5.30: Comparison of Young's modulus of GO/Al composites obtained 

from experiments obtained from current work and literature with simulation 

results. 
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5.5 Summary 

The current chapter presented the results obtained from the characterisation 

of GO/Al powders and GO/Al sintered samples at various processing 

conditions. The stress profiles of GO/Al composites modelled in FE at various 

input parameters were also reported. The results obtained from FE model are 

compared with the results obtained from analytical model of GO/Al composite 

and validated against the experimental results.  
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CHAPTER 6 

CONCLUSION  

The production of GO/AI metal matrix composites was explored in this thesis. 

The liquid infiltration and powder metallurgical route have been examined with 

various process parameters, including solvent type, wt% of GO reinforcement, 

stirring time, compaction pressure and sintering temperature. The findings 

presented in this thesis from the current research work can be concluded as 

following: 

6.1 Production of GO/Al composite powders at optimal process 

parameters by liquid infiltration 

• GO particles were uniformly dispersed amongst the surfaces of AI 

powder particles during wet mixing process in IPA solution. 

• A minimum stirring time of 1hr for 0.05wt% GO/Al, 3hrs for 0.1wt% 

GO/Al and 5hrs for 0.2wt% GO/Al is required to obtain the better 

dispersions of GO aqueous solution in Al slurry. 

6.2 Production of GO/Al pellets at optimal process parameters by 

powder metallurgy  

• Increase in compaction pressure increased the degree of green density 

of the GO/Al composites irrespective of the wt% of GO. 

• Solid state sintering mechanism gave rise to the notable degree of 

densification of GO/AI composites from 0.05wt% to 0.1wt% of GO, but 

the densification reduced with increase in wt% of GO to 0.2wt% due to 

agglomeration of GO segregated at grain boundaries. 

• Increase in gran size was noted with increase in sintering temperatures 

irrespective of the wt% of the GO addition.  

6.3 Characterisation of GO/Al powders and pellets  

• From the metallographic study, a significant effect of GO addition, 

stirring time and sintering temperature on particle distribution and grain 

sizes was determined. 
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• Change in elemental composition of GO/Al composites with the addition 

of GO was detected. The effect of level of oxidation on elemental 

compositions were also discussed. The high composition of carbon and 

various amounts of oxygen were observed with variation in wt% of GO. 

• A significant reduction of phase crystallinity was observed with variation 

in process parameters. Typical peaks of Al2O3, Al were recorded and 

GO peak was recorded only for 0.2wt% GO/Al composite due to high 

wt% of GO compared to other composites. Previous works have 

reported the formation of Al4C3 at the process parameters used in 

current study. However, there was no evidence of Al4C3 in all GO/Al 

composites produced in current study. 

• From the Raman spectra, with the increase in wt% of GO reinforcement 

the number of graphene layers increased and the non-homogeneity of 

GO/Al composites also increased with increase in wt% of GO. This has 

attributed to the change in end properties of the composites. 

• The hardness of the GO/Al composites were superior to the monolithic 

Al due to the appropriate interface formation in between GO and Al 

composites. 

• The strength of GO/Al composites were dominated by the effect of 

formation of layers in which delamination played key role in 

deterioration of properties. 

6.4 FE modelling and simulation of GO/Al composites  

• In this work, an FE model was developed to predict the stress 

distribution among the GO/Al composite particles. The stress 

distribution achieved was attributed to the microstructure obtained in 

current experimental work.  

• The simulations of GO/Al composites can predict the effect of GO layers 

on the strength of GO/Al composite.  

• By evaluating the effect of layers, the stress distribution can be 

visualised, these findings are important for scaling the modelling of 

particulate reinforced composites. 
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• A good agreement of simulation results with the analytical modelling 

results were noted and the model was successfully validated against 

the experimental results. 

Future work 

• The work reported in this thesis can be further extended to produced 

graphene reinforced Al matrix composites through spark plasma 

sintering (SPS) to improve the densification parameters and hence 

improving the strength.   

• Strengthening mechanisms such as Hall-Petch strengthening and 

Orowan looping must be studied in more detail to facilitate 

strengthening of the GO/Al composites for potential applications. 

• Many studies focused on Al matrix composites especially reinforced 

with reduced graphene oxide (rGO) and graphene nanosheets (GNS) 

have not been properly characterised to understand the effect of 

graphene layer formation and orientation of layers on properties of the 

composite. Hence, the current work can be extended to investigate the 

effect of orientation of GO layers on the end properties of GO/Al 

composites. 

• The present computational model developed could be applied to the 

graphene reinforced metal matrix composites by changing model 

parameters such as material properties, layers of graphene and vol% 

of graphene reinforcement and to validate the obtained results 

experimentally.  
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APPENDICES 

A1 Modelling of graphene reinforced Al composites 

A1.1 Introduction 

The model proposed in this chapter was the initial model developed while 

working with the graphene reinforced Al composites. This model was based 

on considering a representative volumetric element (RVE) representing the 

composite. Chang et al.  [1] developed theoretical predictive models of the 

electrical resistivity of metal matrix composites with different reinforcements 

(continuous fibers, whiskers and particulate) and they verified their results with 

the experimental data. Both model and experimental values followed the same 

trend of enhancing mechanical properties with increasing reinforcement levels. 

The composite cells considered for their study are shown in Figure A1.1. 

Figure A1.1 (a) and (b) show the particulate reinforced composite and 

continuous fiber reinforced cells respectively. Fibers were aligned in the 

longitudinal direction. There is no evidence of similar types of models having 

been applied for conductivity analysis for graphene nanosheets. Georgios et 

al. [2] have reported the application of RVE to predict the effective properties 

of graphene-based composite in which epoxy was used as a base material 

and various vol% of graphene i.e., from 0.02 to 0.1 was used as a 

reinforcement, a linear enhancement of stiffness was observed even at the 

lower vol% of graphene reinforcement. 
  

Figure A1.1: Schematic representation of composite cells of (a) particulate 

reinforced composite, and (b) Continuous fiber reinforced composite [3]. 

(a) 
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The possible effects of reinforcing a material can be understood by conducting 

difficult and time consuming experimental work which involves a lot of cost. 

Simulation validated by previous experimental work provides an alternate 

route to understand the selection and optimisation of reinforcement in a 

particle reinforced metal matrix composite. Therefore, an attempt was made to 

predict the effectiveness of graphene reinforcement on the properties of 

Young’s modulus, Poisson’s ratio and conductivity of the composite materials 

using the finite element method. Modelling work was performed with aluminium 

as the matrix metal for this study. 

The modelling of a composite material can be accomplished using two different 

techniques. One is continuum modelling which assumes continuous material 

structure and the second is molecular which considers the molecular 

behaviour to obtain the overall global response. To achieve the present 

modelling objective, a micromechanical analogy associated with FE method 

was applied for graphene reinforced metal matrix composite. The properties 

such as Young’s modulus, Poisson’s ratio and tensile strength of composites 

with different volume fraction of graphene reinforcement (0.1, 0.2, 0.5, 1, and 

2%) were examined. The FE model was constructed with different element 

sizes during meshing in order to test for an ensure mesh convergence. The 

tensile strength of graphene reinforced aluminium composite at different 

volume fractions of reinforcement was predicted using the FE based ANSYS 

mechanical APDL and the results were compared with experimental results 

done in the current work and also from the literature. Simulation results were 

also verified with other theoretical methods like ROM and Bettie’s reciprocal 

theorem. After verification, the analysis was extended to examine different 

metal matrix materials using graphene as the reinforcement to predict the 

longitudinal and transverse properties of the composite. The analysis is 

focussed to predict the electrical properties of the composite i.e., effective 

electrical conductivity of the composite with different cross-sectional areas. 

Conductance was predicted taking account of the various levels of volume 

fractions of reinforcement. To achieve this, the same model that considered 

for the mechanical property analysis is used to predict the effective properties 

of composite such as resistivity, conductivity.  
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A1.1.1 Model set-up 

The present problem is solved in 2 steps, the first step includes the modelling 

of Representative Volumetric Element (RVE) to predict effective properties of 

composite material, and second step includes modelling of tensile testing 

specimen to predict tensile strength of the materials. The model was 

developed based on a micromechanical approach used a rectangular shaped 

RVE was considered. The mechanical response of graphene for small sizes is 

strongly size dependent [4]. Graphene was idealised as a plate geometry with 

a thickness of 0.34nm. Figure A1.2 (a) shows the schematic representation of 

RVE considered for the analysis, where Lm, Wm, tm represents the length, width 

and thickness of matrix respectively and Lr, Wr, tr represents the gauge length, 

width and thickness of reinforcement respectively. The dimensions of the RVE 

is the same as the dimensions of the matrix and are fixed at 10mm ×10mm × 

1mm. The length and width of the graphene sheet are calculated based on 

volume percentage of reinforcement and dimensions of matrix using equation 

A1.1.  

 

𝑉𝑟 = 
(𝑤𝑟 × 𝐿𝑟 × 𝑡𝑟)

((𝑤𝑟 × 𝐿𝑟 × 𝑡𝑟) + (𝑤𝑚 × 𝐿𝑚 × 𝑡𝑚))⁄  

 

 

------ (A1.1) 

Figure A1.2 (b) represents the schematic representation of extruded rod with 

gauge length of Lg (25mm) and diameter of d (5mm), the model is based on 

control displacement loading with strain rate of 1e-3/sec. the model is then 

divided into finite number of nodes for accurate results, with 100 steps and 

10000 sub steps.  

Due to the symmetry in the geometry, the boundary conditions and loading 

was applied on a one quarter portion of the RVE to increase computation 

speed. The element used for the present analysis was SOLID 185 of ANSYS, 

based on 3D elasticity theory. This was divided into various numbers of nodes, 

depending on resolution, with three degrees of freedom at each node. A screen 

shot of the meshed RVE modelled is shown in Figure A1.3 (a), shows a typical 

finite element mesh of the model for a composite with 2% volume fraction of 
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graphene as reinforcement within aluminium as matrix. Figure A1.3 (b) shows 

the converged FE model of extruded rod. 
  

Figure A1.2: Schematic representation of models used in present study (a) 

RVE, (b) extruded rod to predict tensile strength. 

 

 

Figure A1.3: (a) Converged FE model of graphene reinforced aluminium 

composite, and (b) FE model of extruded rod. 

A1.1.2 Materials 

The properties of graphene used for the present analysis were a Young’s 

modulus of 1TPa, a Poisson’s ratio of 0.186, and a conductivity of 1×108S/m 

at 20C. All models developed in this study has a constant thickness of 0.34nm 

for graphene. The list of materials and their properties that were examined as 

matrix materials is given based on decreasing conductivity in Table A1.1. The 

(a) 

 

(a) 

(a) 

 

(a) 

(b) 

 

(b) 

(b) 

 

(b) 
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properties of GO and rGO were set as Young’s moduli and thicknesses of 

444.8GPa, 0.7nm [6] and 0.25 ± 0.15TPa, 1nm [7].  

 

Table A1.1: Matrix materials and properties as applied in the study. 

Matrix 

(Metal) 

Young’s 

modulus (GPa) 
Poisson’s ratio 

Conductivity (S/m) at 

20C (×e6) 

Cu 110 0.34 59.5 

Al 70 0.35 35.5 

Ti 116 0.32 2.38 

Mg 45 0.29 2.07 

Ni 200 0.31 14.7 

Fe 211 0.29 10.0 

 

A.1.1.3 Boundary conditions 

The following assumptions were made for the model set-up. 

• The composite considered for the analysis is free of voids 

• Matrix is homogeneously reinforced with the reinforcement 

• The load applied on the composite is within the elastic limit 

• The composite cell represents the whole composite 

• The reinforcement and the matrix are perfectly bonded 

• There is no interfacial layer in between the matrix and reinforcement 

• The flow of current is by free electron migration 

Due to the symmetry of the problem, the following symmetric boundary 

conditions were also applied, at X=0 Ux=0; at Y=0, Uy=0; at Z=0 Uz=0 and on 

the positive faces (X, Y & Z) of RVE, multipoint constraints were imposed. A 

uniform tensile load of 1MPa was applied on the positive Z-plane and for the 

electrical analysis a current of 100A was applied while resistivity and 

conductivity were calculated. 

A1.2 Analytical solution 

The mechanical properties of the graphene reinforced metal matrix composites 

were predicted and then verified using the following two theoretical methods. 
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A1.2.1 Rule of mixture (ROM) 

Rule of mixtures was used to calculate the effective properties of the fiber 

reinforced composite. In general the value obtained from ROM gives the 

overall property values in direction parallel to the fibers. The formulae used to 

calculate longitudinal Young’s modulus was, 

 

𝐸𝑐 =  𝑓𝐸𝑓 + (1 − 𝑓)𝐸𝑚 ------ (A1.2) 

where,  

  𝑓  = 
𝑉𝑓

(𝑉𝑓 + 𝑉𝑚)⁄   is the volume fraction 

The general equations to solve Young’s modulus are given as 

 

Young’s modulus in fibre direction,  

 

E1 = 
𝜎1

𝜀1
⁄  ------ (A1.3) 

Young’s modulus in transverse direction,  

E2 = 
𝜎2

𝜀2
⁄  ------ (A1.4) 

where, 

Vf   is Volume fraction of fibre; 

Vm is Volume fraction of matrix; 

Ef   is Young’s modulus in fibre direction; and 

Em is Young’s modulus in matrix direction. 

Equations to calculate the electrical conductivity of the composite (neglecting 

voids) are given below as [8], longitudinal electrical conductivity, 

Kel11= Kf Kef11 + Km Kem ------ (A1.5) 

and transverse electrical conductivity, 

Kel22 = (1 - √Kv ) + (
√KfKem

1 − √Kf (1 −
Kem

Kef22
)

⁄ ) 
------ (A1.6) 

where, 

Kem is Electrical conductivity of matrix;  

km   is Matrix volume fraction of composite;  
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kf     is Fibre volume fraction of composite;  

Kel11 is Lamina longitudinal electrical conductivity;  

Kel22 is Lamina transverse electrical conductivity 

A1.2.2 Bettie’s Reciprocal Theorem 

Bettie’s reciprocal theorem states that whenever an object is subjected to 

tensile loading, the ratio of longitudinal Young’s modulus to major Poisson’s 

ratio will be equal to the ratio of transverse Young’s modulus to minor 

Poisson’s ratio [9] i.e.,  

 

𝐸1
12

⁄ =  
𝐸2

21
⁄  ------ (A1.7) 

 

where, 

12 is Major Poisson’s ratio; the ratio of normal strain in transverse direction to 

the normal strain in longitudinal direction when load is applied in longitudinal 

direction; and 

21 is Minor Poisson’s ratio; the ratio of normal strain in longitudinal direction 

to the normal strain in transverse direction when load is applied in transverse 

direction. 

A1.3 Results 

The models were developed and tested to ensure solution convergence. The 

models were then verified with theoretical method and validated using 

experimental data reported in previous work [10]. Figure A1.4 shows the 

stress/strain comparison between the experimental and prediction results for 

pure aluminium. From the stress-strain graph, it is clear that there is a very 

good agreement between the experimental and simulated results which shows 

that the boundary conditions and the modelling approach were accurate and 

provides confidence in predicted results presented in this report. Figure A1.5 

shows the comparison of electrical conductivity of GO/Al at different volume 

percentage of GO reinforcement. There is nearly 6% of variation in between 

the experimental and ANSYS results and the variation increased with increase 

in volume percentage of GO. This is due to the formation of Al2O3 which 

increases the resistivity of the composite on the other hand there is no 

evidence of Al4C3.  
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Figure A1.4: Comparison of experimental and simulated values for pure Al. 

The Verification of ANSYS results with theoretical methods ROM and Bettie’s 

reciprocal theorems are presented in Figure A1.5. For the verification of the 

results Al matrix at different volume fractions of reinforcement of graphene is 

considered. The longitudinal Young’s modulus of the graphene reinforced Al 

matrix composites is predicted at various volume fraction of reinforcement and 

are shown in Figure A1.5 (a) and the plots drawn using simulated values and 

values calculated from ROM overlap with each other with very good 

agreement; this could be due to the assumptions made for this analysis that 

are like the theoretical cases. Whereas, for the verification of the transverse 

properties of graphene reinforced Al composites, the Bettie’s reciprocal 

theorem was used, and the results are shown in Figure A1.5 (b).  
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Figure A1.5: Verification of simulation results with theoretical methods (a) 

ROM, and (b) Bettie’s reciprocal theorem. 

The transverse Young’s modulus, major and minor Poisson’s ratio of the 

composite are obtained from the simulation. The ratios of longitudinal Young’s 

modulus to the major Poisson’s ratio and transverse Young’s modulus to the 

major Poisson’s ratio are calculated from the values obtained from simulation 

and the values shows a very good agreement with the Bettie’s reciprocal 

theorem. From Figure A1.5, it can be concluded that the model was well 

verified against the theoretical model results. 
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Once the model is validated and verified, the analysis is extended to different 

matrix materials that include Mg, Ti, Ni, Cu and Fe. The longitudinal Young’s 

modulus of the mentioned matrix materials at different volume fraction of 

reinforcement is obtained by simulation and a linear increment in values is 

observed, as shown in Figure A1.6 (a).  

 

 

 

Figure A1.7: Comparison of Young’s modulus of different matrix materials 

with different vol % of graphene reinforcement (0.1%, 0.2%, 0.5%, 1%, 2%, 

and 5%) (a) longitudinal Young’s modulus and (b) transverse Young’s 

modulus. 
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To observe the effect of reinforcement in transverse direction, transverse 

Young’s modulus of different matrix materials reinforced with at different 

volume fractions of graphene is simulated. Figure A1.6 (b) shows the increase 

in transverse Young’s modulus of different matrix materials with increase in 

volume fractions of graphene. It is noted that unlike the longitudinal Young’s 

modulus which increased linearly with volume fractions of graphene, the 

Young’s modulus of the composites in transverse directions are not effected 

after certain percentage (from 2% onwards) of reinforcement, suggesting that 

the Young’s modulus became almost independent within the range of volume 

fractions of graphene for all different matrix materials.  

Figure A1.7 shows the comparison of tensile strength of two conductor wire 

materials Al and Cu with graphene as reinforcement. The most striking point 

to be noted is the improvement in the composite tensile strength for both 

graphene reinforced Al and Cu. An increase by up to 300% in tensile strength 

is possible with just 0.3% of graphene reinforcement in Al matrix composites. 

 

 

 

Figure A1.8: Comparison of tensile strength of graphene reinforced Al and 
Cu matrix composites at different vol % of graphene reinforcement. 
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Figure A1.9: Comparison of conductance of Al and Cu as matrix material 

graphene reinforced composites with different vol % of graphene 

reinforcement (a) 0.1%vol, (b) 0.2%vol, (c) 0.5%vol, (d) 1%vol, (e) 2%vol and 

(f) 5%vol. 
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The effective electrical properties, i.e. conductivity and resistivity of Al and Cu 

matrix composites reinforced with different volume percentage of graphene, 

were also predicted. These effective electric properties are used to predict the 

conductance of different cross-sectional wire areas i.e., 0.4, 0.5, 1.5 and 

2.5mm2 with 1m length at different volume fractions of graphene reinforcement. 

The results obtained from the analysis are shown in Figure 10. It is noted that 

there is no improvement on the conductance of the graphene reinforcement of 

Al and Cu cables for the 0.1, 0.2 and 0.5% of reinforcement with conductance 

the same as those of pure Al and Cu. This might be due to the smaller cross 

section area of cables used here. At 1% of graphene the conductance of the Al 

cable started to increase, and it continues to increase with increase in 

reinforcement so that at 5% of reinforcement a noTable increase in 

conductance is observed, as shown in Figure A1.8(d)-10(f). On the other hand, 

the conductance of Cu cable reinforced with 2vol% of graphene showed minor 

increase in conductance, as shown in Figure A1.8(e). From Figure A1.8(f) it 

can be noted that with 5vol% of graphene reinforcement Al and Cu cables 

exhibit nearly 9% and 3% increase in conductance at different cross sections. 

It was well known that Al cables can show conductance as high as copper with 

increase in cross section, however, increase in cross section increases the 

volume that requires higher maintenance. From the results shown and 

considering the percentage of increase in conductance it might be possible to 

obtain the conductance of Al cable same as that of Cu cable with same cross-

sectional area by increasing the volume fractions of graphene reinforcement. 

Due to high cost and unavailable manufacturing techniques pure graphene 

reinforced metal matrix composite has not been reported yet. Most of the 

literatures reported reduce in graphene oxide and also graphene nano sheets 

reinforced composites. The factors such as highly remained porosities and 

introduction of longitudinal alignment after manufacturing procedures limits the 

applications of CNTs in MMCs [11]. This modelling work brings some clear 

insight of the effect of graphene reinforcement of on metallic matrix with both 

in terms of mechanical and electrical properties. Theoretically all metallic 

matrix shows a steady state increase in properties in addition of graphene 

reinforcement. From the results determined here and the potential applicability 

to real world applications, aluminium is shown to be a good matrix material of 
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choice to examine further with graphene reinforcement. From the results 

presented in this paper, it is shown that graphene reinforcement enhances the 

properties of composites above those achievable from other conventional 

aluminium MMCs such as Al/SiC [12]. The dispersion of graphene in the MMC 

with the existing metallurgical methods is quite challenging due to the huge 

size differences between graphene nanosheets and metal matrix. Aluminium 

matrix composites have been used in flywheel enables smaller flywheels 

compared to polymer composites [13]. The maximum tensile strength of 

annealed Cu is 200-250MPa. The experimental study of Al matrix composite 

reinforced with graphene nano sheets have shown that a tensile strength of 

249MPa can be achieved with 0.5% of graphene [14]. The full exfoliation of 

graphene into single or few layer material and good dispersion leads to the 

production of nanocomposites with low mass density, high strength and 

stiffness. Unlike the CNTs, which are strong in longitudinal direction, graphene 

seems to be a processing material that is strong enough across all it’s in plane 

directions. GNPs outperform CNTs in terms of enhancing mechanical 

properties [15]. The development of accurate theoretical model is a basic issue 

in designing, to embed and to predict the behaviour of graphene-based 

composites in some applications. Theoretical predictions of the properties 

neglect the presence of dislocations, residual stresses and overlapping of the 

deformed regions, which are quite important parameters to account for in 

practical cases. Numerous experimental efforts have been made to evaluate 

the mechanical performance of graphene and composites reinforced by 

graphene. Trying not only to predict the mechanical properties of graphene 

reinforced composite but also to account for the basic design of the reinforced 

composite for the use of practical applications is the motive to develop the 

present model which is achieved well as the simulated model in this paper 

predicts the properties that are near to theoretical values calculated. As 

expected, in all cases higher the reinforcement stronger the composite and 

highly conductive. The model considered in this study was based on discrete 

modelling and matrix was assumed as an isotropic continuum element as of 

Spanos et al. [16]. Their modelling results revealed a dependence of the elastic 

mechanical properties of a graphene-based composite on the size of the 

graphene sheets in use, the volume fraction as well as on the stiffness of the 
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interfacial regions. Interfacial reaction has not been taken into consideration 

for this study.  

A1.4 Conclusions 

The model proposed in this section gave a basic insight on the overall 

properties of the graphene reinforced Al matrix composite. For the metal matrix 

compositions examined, significant increases in both properties were 

observed. The modelling results have shown that both, mechanical and 

electrical conductivity of MMCs increase with the percentage increase of 

graphene reinforcement. The main properties that can help reduce the power 

losses in transmission line electrical power cables are increased in tensile 

strength, conductivity, thickness and purity. The results presented in this paper 

examined the effect of graphene reinforced aluminium matrix composite 

composition on two essential properties of tensile modulus and conductivity. 

However, this model doesn’t account for number of graphene layers and % of 

graphene reinforced Al particles in the composite. Hence, there is a need to 

develop a model to incorporate the above mentioned and the model reported 

in methodology of this thesis was developed.  
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A2 Powder metallurgy 

A2.1 Introduction 

The powder metallurgical (PM) techniques were in practise from nearly 5000 

years. This technique has the capability of producing complex metal shapes to 

exact dimensions at economical price and even provides better quality 

product. In brief PM is the process of blending fine metal powders with 

additives and pressing them into a die of desired shape and then heating the 

compressed material in a controlled atmosphere to bond the material by 

sintering. Figure A2.1 shows the flow chart to produce powder metallurgical 

component.  

A2.2 Advantages of PM 

The component obtained from PM route possess high accuracy and smooth 

surfaces. Voids and porosity with in the component can be reduced to the 

maximum possible extent and hence highly durable component can be 

obtained. PM possess the extraordinary advantage of producing uniform 

structures with excellent reproducibility and enhanced physical properties. This 

method facilitates the possibility of producing a new material with a 

combination of metals and non-metals that are impossible to produce using 

conventional techniques. This also facilitates the freedom to design and 

consumption of less materials.  

A2.3 Limitations of PM 

It will be difficult to secure the high-quality powders while working and there is 

liability of porous materials to form more oxides. The initial setup required for 

this process requires high investment as it needs heavy press to make large 

parts hence this process is not feasible for small scale industries or start-ups. 

The product obtained from PM route possess poor plastic properties.  

A2.4 Applications of PM 

PM components made from tungsten, molybdenum and titanium finds their 

applications in electric bulbs, florescent lamps etc. Refractory carbides that 

were made by PM route finds applications in machine construction devices, 

wire drawing mills, precision tools and mining. Automotive industries use PM 

components in bearings, screen wipers, clutches, breaks, electrical contacts, 



` 

xviii 
 

piston rings, connecting rods and brake linings. Metal powders are playing a 

key role in aerospace and atomic energy industries.  

A2.5 Powder preparation and blending 

The efficiency of PM product depends mainly on the chemical and physical 

characteristics of raw materials. It is a regular practice to test and characterise 

the metal powders before blending them. The major purpose of performing 

these tests is to make sure whether the powder is suiTable for further 

processing. Chemical composition and purity (to reveal the percentage of 

impurities), size of particles and porosity are the basic characteristics of the 

metal powders that effects the quality of the product. Production of powders 

can be done by either mechanical processes including machining, milling, 

crushing, graining, atomization and by physio-chemical processes including 

condensation, thermal decomposition, reduction, electrodeposition, 

intergranular corrosion etc. Out of these techniques atomization, electrolysis 

and reduction of compounds are most frequently used to produce powders.  

Atomization is the process of forcing the molten metal stream through an orifice 

at moderate pressures. To reduce the oxide and carbon content most of the 

atomized powders will be annealed. In most of the cases the particles 

produced by this process carry a layer of oxide over them and are of spherical 

or pear shape. Electrolysis and reduction of compounds are other widely used 

techniques for production of powders. Electrolysis is used in the preparation of 

copper, iron, beryllium and nickel powders. By this method the powder with 

excellent properties and of high purity will be obtained. In some cases, 

electrolysis is costlier compared to other processes. Reduction of compounds 

is used in the production of iron, copper, molybdenum and tungsten. The 

process involves the chemical compounds mostly an oxide or other salt of the 

metal. The process may be carried out in either from the solid state, from the 

gaseous state or from the aqueous solution. Powders will be mixed thoroughly 

with additives using mixers. To facilitate easy ejection and to minimize wear of 

the compaction tool, lubricants will be added prior to mixing [1].  

The powder produced may not possess the desirable physical or chemical 

properties for further processing to obtain product [2]. The preliminary 
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treatment of powders before blending usually will be carried out in a reducing 

environment or vacuum this helps in eliminating work hardening, reducing 

impurities and effects the apparent density which in turn helps in improving 

pressing quality of powders. Powder blending or mixing is an important and 

complex process that needs to be focused while working with PM. It is an 

operation of intermingling of two different powders of various or same 

compositions thoroughly. The movement of powder components depends on 

powder material, particle shape and size and environmental conditions. The 

major aim of mixing is to achieve uniform distribution; it is indeed difficult to 

achieve optimum mixing time in advance. Poor blending results in non-

homogeneous mixture and week bonding between two materials which is not 

suiTable for production of product and excessive blending results in partial 

segregation of powders and produces plastic deformation of particles that 

leads to work hardening of particles and reduces the compressibility. The 

mixing of powders should be carried out in a protective environment to avoid 

oxidation and contamination of powders. 

A2.5.1 Powder compaction 

The powders obtained from blending will be compacted to make desired 

shapes with enough strength to handling tools till the completion of sintering. 

There are different techniques available to compact powders, i.e., pressure-

less shaping technique, cold pressure shaping technique and pressure 

shaping techniques.  Pressure-less shaping techniques involves the imparting 

desired shape to powder mass without applying external pressure before 

sintering. Slip casting, loose sintering, slurry casting, clay type moulding 

techniques fall into the category of pressure-less shaping methods, loose 

sintering has the scope in PM processing. Cold pressure shaping techniques 

involves cold die compaction, powder rolling, powder extrusion, explosive 

forming, high energy rate forming, isostatic pressing, out of these cold die 

compactions is the most feasible technique in industrial production as it is 

simple and improves the appearance of surface by eliminating oxidation at 

room temperature. Pressure shaping techniques such as hot forging, hot 

isostatic pressing, and hot extrusion are used for large-scale production.  
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Cold die compaction includes the uniform filling of metal powder into the die 

cavity, the packing density will be raised and certain bridges will be formed. 

When the powder is slightly pressed in between the anvils, the packing density 

will be improved due to the densification by particle movement and the bridges 

that were formed in previous stages will be distorted. Neither deformation nor 

adhesion between the particles not occur at this stage. Further increase in 

compaction pressure leads to deformation of particles, mechanical interlocking 

of grains and reduction of voids by pressing powder particles. Lubricants are 

frequently used either on the die surfaces or mixing with powder blend, in either 

cases lubricant should be removed before sintering. Figure A2.2 and A2.3 

shows the schematic representations of the piston – die arrangements and the 

compaction cycle to press powders. 

 

Figure A2.2: Schematic representation of piston-die assembly in press. 
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Figure A2.3: Schematic representation of compaction cycle. 

A2.5.2 Sintering 

The green compact obtained from the die compaction will be fragile due to 

week bonding in between the particles. Sintering is used to attain strength, 

densification by creating strong bonding in between the particles. Sintering is 

usually carried out at a temperature range of 70% to 90% of the absolute 

melting point of the material. Sintering can be defined as the heating of 

compacted metal powders slightly below the melting point of the base metal 

without the application of external load. Sintered material will be free from 

porosity, possess desired mechanical properties. Sintering of material results 

in dimensional changes, chemical changes, phase changes, reduction of 

internal stresses.  Figure A2.4 shows the schematic representation of sintering 

process.  

 

Figure A2.4: Schematic representation of mechanism of sintering. 



` 

xxiii 
 

AR2 References 

1. Angelo P. C., Subramanian R., Powder metallurgy: science, technology and 
applications, 2008.  

2. Sinha A. K., Powder metallurgy, 1982. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


