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Abstract In this paper, we present a smart, standalone,

multi-platform stereo vision/IMU-based navigation system,

providing ego-motion estimation. The real-time visual

odometry algorithm is run on a nano ITX single-board

computer (SBC) of 1.9 GHz CPU and 16-core GPU. High-

resolution stereo images of 1.2 megapixel provide high-

quality data. Tracking of up to 750 features is made pos-

sible at 5 fps thanks to a minimal, but efficient, features

detection–stereo matching–feature tracking scheme runs on

the GPU. Furthermore, the feature tracking algorithm

benefits from assistance of a 100 Hz IMU whose

accelerometer and gyroscope data provide inertial features

prediction enhancing execution speed and tracking effi-

ciency. In a space mission context, we demonstrate

robustness and accuracy of the real-time generated 6-de-

grees-of-freedom trajectories from our visual odometry

algorithm. Performance evaluations are comparable to

ground truth measurements from an external motion cap-

ture system.

Keywords Real time � Smart multi-platform � Navigation
system � Stereo visual odometry � IMU-assisted feature

tracking

1 Introduction

This paper addresses development of precise vision-based

navigation technology for space autonomous robotics

missions. Space exploration and operational missions

employ a range variety of mobile robots and robotic

manipulators, instrumented with different kinds of sensors,

on remote planetary surfaces, in orbit, or as assistants to

astronauts. Current and future European Space Agency

(ESA) missions involving these types of systems are

numerous. To mention only a few missions that links

directly the aimed result of this study, Mars Sample Return

program with its ExoMars Rover Phase program, Lunar

rovers with their robot exploration operation, Eurobot

robot, and Tian aerobot. The utility of these robots in these

types of missions depends on their ability to perform work,

and to explore intelligently without frequent contact with

the command control station. This requires capabilities for

sensing and perception of surrounding unstructured and

sometimes occluded environments. It also requires intelli-

gent reasoning about perceptions to perform tasks in a

reliable manner in such environments.

The need for intelligent space robots also results from the

challenging environmental constraints and planetary sur-

faces where accurate localisation is critical for applications

requiring permanent and precise positioning information.

Therefore, the process of conceiving a dedicated standalone

navigation system needs to consider environmental and

technical constraints. This results not only in design

restrictions regarding size and weight, but also in the choice

of hardware components and sensors. Consequently, devices

with significant power consumption or technologies subject

to signal interruptions are thus discarded.

In recent years, many research projects looked at

enhancing navigation systems compactness and accuracy.
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Progress was made possible with the development of

advanced software techniques and algorithms, but also

thanks to a wider range of costly affordable off-the-shelve

hardware and sensors. In spite of this, building a navigation

system remains a challenging task because of the complex

trade-off that has to be found between many criteria. Power

consumption, autonomy, weight, and size represent the

most predominant ones. Consequently, the considerations

leading to the right choice of components has to follow a

well-defined strategy that needs to take into account the

performance compromises and system integration issues

raised. Indeed, computational burden can be critical and

real-time processing adds a further restriction in the choice

of techniques and algorithms. With these constraints in

mind, it appears wiser, in terms of autonomy and power

consumption, to use passive sensors.

In this context, for perception of robotic platforms,

visual sensors such as cameras present many advantages.

Cheap, lightweight, smart, and benefiting from a large

choice of types, cameras have been extensively utilised in

research within numerous domains of applications such as

navigation, medical imaging, and surveillance. Visual

odometry (which can be described as the process enabling,

through the analysis of images, the estimation of a platform

relative motion) has yielded great achievements in the

domain of navigation and localisation [1–4]; especially,

stereo visual odometry which enables recover of 3D feature

information via stereoscopy. Hence, less than one per cent

relative error, achieved in the estimated trajectories, has

been reported in the literature [5, 6]. This makes visual

sensors one of the greatest technologies to be equipped to a

navigation system, with the condition that the environment

provides enough illumination, textured and overlapping

static content, between subsequent acquired images.

Another type of sensor which has been often used for

navigation tasks is the inertial measurement unit (IMU).

This sensing platform measures linear and angular accel-

erations undergone, to continuously estimate the kinemat-

ics of a moving object. Integration of these values gives an

estimate of the object’s position, velocity, and orientation.

Its main backward is that initial measurements are inher-

ently drifty and need an external reference source of

information, such as Global Positioning System (GPS)

signal for instance, to correct the IMU’s absolute position.

Our case study involves a GPS-denied environment, and

the IMU sensor is not intended to be used as the main

source of information for navigation task. That being said,

the IMU sensor can be used as an excellent combination

sensor with cameras. Indeed, visual and inertial sensors

present different but very complementary information.

IMU sensors, with higher data acquisition frequencies than

visual sensors, can fill an eventual lack of visual data

resulting from environmental conditions, as stated above.

On the other hand, visual estimated motion brings the

required reference to update IMU’s absolute position and

consequently preventing it to drift over the time. IMU data

can be fused with visual data for pose estimation using

filters such as Kalman and its variations [7–9]. It can also

be used to assist the visual tracking process [10–12].

Choosing the sensors that suit the context is one side of

the problem when developing a standalone visual odome-

try-based navigation sensor. The other side consists in the

use and implementation of these sensors within the

framework including algorithms, hardware design, and

real-time performance. Therefore, this paper aims to

describe the strategy and details to reach the goal of this

study. Thus, after review of prior work in Sect. 2, the

software architecture and the developed stereo visual

odometry pipeline are explained in Sect. 3. Then, the

navigation system hardware is described in Sect. 4. Finally,

in Sect. 5, results in the experimental phase are demon-

strated and discussed.

2 Related work

In this section, we focus principally on real-time stereo

feature-based visual odometry approaches in the first

instance, emphasising embedded/online contributions and

then more specifically on the algorithms that are related to

our methodology.

A multitude of works has contributed to improving

visual odometry. Reviews and more recent tutorials give a

detailed picture of the different visual odometry overall

techniques [2, 3] and stereo visual approaches [13]. Despite

the fact that a majority of works were not primarily aiming

to tackle online performances, several contributions have

proposed concrete solutions in this sense. Among the early

contributions in visual odometry for instance, real-time

performance was achieved in [14] in avoiding use of

computationally expensive statistical methods to reject

features outlier, using a strong Euclidean constraint com-

bined with dense stereo to select inliers from a set of initial

3D correspondences. Nister’s contribution [1] is one of the

most influential works in this domain. It has introduced

many improvements in the visual odometry pipeline,

among which the use of RANSAC in the motion estimation

stage for outlier rejection. Nister has also changed the

processing of relative motion to 3D points projection into a

two-dimensional camera pose problem, while it used to be

seen as three-dimensional point registration problem only

[1]. In fact, minimising 2D image re-projection errors is

more accurate than minimising 3D feature correspondences

errors. Following the same methodology of Nister, a suc-

cessful implementation of visual odometry was made

possible for Mars Exploration Rovers [15]. Even if the
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entire visual odometry process latency was around 3 min

(from image acquisition until the camera pose generation).

This can be effectively qualified as real time, considering

the relatively slow motion of the rover, and also the limited

hardware specifications has to be taken into account. In

[16], as part of the DARPA LAGR program, a stereo-based

visual odometry approach was fused with IMU and GPS

information in a Kalman filter scheme to avoid long-term

drifts for outdoor long trajectories. In this work, real-time

performance was achieved mainly thanks to a closed-form

implementation of SVD computation matrix, which is the

most time consuming task of their process. Howard [5]

used the same methodology as [14] with an improved

inliers selection scheme, based on groups of consistent

matches enabling faster point-to-point comparison. Also,

this implementation gives impressive position errors which

are lower than one per cent on long-term trajectories. More

recently, an interesting real-time 3D reconstruction of a

trajectory from a stereo video was enabled using an effi-

cient dense stereo matching combined with multi-view

images from visual odometry algorithm in [6].

In the works cited above, real-time performance is

achieved running on a CPU processor based on desktop,

laptop or directly integrated to the robot [1, 14–16]. For

fully embedded solutions, a visual odometry implemen-

tation for small robots uses an OMAP3530 board, which

is composed of a DSP (C64) and an ARM (Cortex A8)

[17]. This work takes advantage of the two board com-

ponents in splitting different tasks between those two

components. Dense stereo is done by the DSP, while

feature detection, matching and ego-motion are computed

by the ARM. Thus, stereo vision and visual odometry are

parallelised which enables faster execution of the whole

process. The motion estimation algorithm used for this

contribution is the one developed in [5]. The whole visual

odometry algorithm processes 512 9 384 (0.2 MPixel) at

6 Hz.

A modern implementation [18] presented an indepen-

dent stereo vision and IMU perception unit equipped with

the same OMAP3530 board. It is also equipped with an

FPGA board and an Intel Core2Duo 1.86 GHz CPU board.

In the same philosophy as [17], each board has been

attributed a task. The ARM collects and integrates IMU

data, whilst the FPGA board computes the disparity image

using Semi-Global Matching. CPU tasks consist of stereo

image acquisition, feature detection and matching, and then

ego-motion. The visual odometry algorithm used in their

work follows the same methodology as in [14]. However, it

improves the process by fusing IMU data with visual

odometry through an extended Kalman filter (EKF) in

order to compensate for the delay of the vision pipeline and

to strengthen the state estimation. Processing 1024 9 508

(0.5 MPixel) stereo images, the total visual odometry runs

at 5 Hz.

In our work, we present an innovative smart and robust

navigation system solution equipped with high-resolution

stereo cameras (1.2 MPixel) and also an inertial measure-

ment unit (Fig. 1). The solution is controlled with a single-

board computer (SBC) with a 1.9 GHz Dual Core CPU and

a NVIDIA chipset-integrated GPU. Visual odometry stages

are split between CPU and GPU devices. In contrast to

[17, 18], we do not use dense stereo to generate disparity

maps as it remains an expensive operation in terms of

computation even when running in a dedicated device. In

fact, we preferred a sparse approach enabling us to track up

to 750 initial features on high-resolution images

(1.2 MPixel) in real time. Feature detection and features

tracking are well suited to parallelised operations according

to the sparse and independent nature of features. Addi-

tionally, we present a novel IMU-assisted feature tracking

method, based on the KLT (Kanade–Lucas–Tomasi) fea-

ture tracker [19], where inertial information is used in

combination with 3D geometry and stereoscopic properties

in order to predict feature location in subsequent stereo

Fig. 1 Standalone stereo ego-

motion navigation system
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image pairs. This increases feature tracking efficiency

while decreasing processing time.

In general, the majority of KLT-based variants modify

the warping function using an affine model to adapt the

template to the different conditions that might occur

between two successive images, such as change in illu-

mination, rotation, and scale [20–22]. Recent contributions

have introduced the use of orientation information to assist

the KLT feature tracker especially gyroscope data for

image stabilisation [12] or GPS/INS [23]. The work of

Hwangbo [11], which is one of the pre-eminent work in

this sense, presents a robust gyro-aided version of the

pyramidal KLT method [19]. It uses instantaneous gyro

angles to get inter-image orientation information to help in

the computation of the homography matrix between two

consecutive images.

The obtained homography matrix is used to update the

parameters of an affine photometric model for the warping

function. The affine photometric model has 8 parameters

allowing robust tracking despite camera rotation and out-

door illumination. However, this model leads to a signifi-

cant computational cost.

In these two contributions [11, 12], the benefit of

gyroscope information is significant allowing the KLT to

cope with sharp rotation where it usually fails. However,

this remains possible only at the condition of a quasi-pure

or a pure camera rotation. Hence, it is assumed a negligible

inter-frame translation regarding the scene depth (i.e. very

small-scale change). This condition can be fulfilled with a

high frame acquisition rate. To do so, the approach used by

Hwangbo [11] requires a parallel processing

implementation.

In our case, for computation complexity reasons, a

translational model is preferred to the affine one for the

KLT warping function. Thus, our innovative and compu-

tationally efficient IMU-assisted KLT tracker not only uses

the gyroscope but also accelerometer data, to get the full

IMU information. Consequently, it is robust against rota-

tion changes similarly as [11, 12], but especially, it extends

the use of the KLT by handling important scaling between

consecutive images. This allows the KLT to be partially

released of its spatial constraint, allowing low frame rate

processing, which is not the case for gyro-only solutions.

To enable a continuous and efficient use of accelerometer

measurements, the IMU information has to be updated over

time. This is why our IMU-assisted KLT tracker technique

is an integral part of a visual odometry algorithm, which is

the second contribution of this work. Indeed, at each new

image, the inter-frame pose resulting from our visual

odometry initialises the IMU.

In this work, instead of using the Levenberg–Mar-

quardt algorithm [24], we decided to adapt the double-

dogleg trust region method [25] which is a variant of the

dogleg algorithm [26], to solve the bundle adjustment for

motion estimation. Like the Levenberg–Marquardt algo-

rithm, this technique combines steepest descent and

Gauss–Newton direction. The main difference lies in

direct control between the two directions by the means of

a trust region which is likely to increase the convergence

speed. In [27], it was shown that the use of the dogleg

trust region technique presents advantages in terms of

computational cost compared to Levenberg–Marquardt

methods for full bundle adjustment applied to 3D struc-

ture reconstruction only. Regarding the visual odometry

algorithm, we demonstrate similarly to [5] and [17] that a

two frames approach is enough to achieve accurate ego-

motion. Finally, the overall solution is independent of any

external source (e.g. GPS).

3 Navigation system software development

The software part of our navigation system is the imple-

mentation of our visual odometry approach including

pipeline structure and algorithms. In order to achieve real-

time performance, the efforts were primarily focused on

refining the classical structure of the stereo visual odometry

pipeline. Additionally, in order to maximise the efficiency

of the stereo visual odometry pipeline, the different oper-

ations are shared between the CPU and the GPU memories

(Fig. 2). Also, the CPU memory is configured in a multi-

threading scheme with two threads. The main thread is in

charge of image acquisition from the stereo camera and

manages the stereo visual odometry algorithm in parallel

with the GPU memory. The second thread handles IMU

data acquisition.

3.1 Algorithm description

Although there are many approaches to implement stereo

visual odometry, the majority of them follow a feature-

based pipeline composed of distinct but interdependent

stages, summarised here as a reminder:

Image acquisition Previous and current stereo pairs

consisting of 4 images are acquired. It generally includes

a rectification process which facilitates the stereo

matching stage.

Feature detection Detects the remarkable keypoints on

the 4 images.

Keypoints description Calculates for each image the

descriptor of each keypoint which contains the related

surrounding information.

Stereo matching Matches unilaterally or bilaterally the

keypoints between the previous stereo pair images and

between the current stereo pair images.
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Temporal matching Matches unilaterally or bilaterally

keypoints between the previous and current left images

and between the previous and current right images.

Motion estimation Calculates the 6-degree-of-freedom

inter-frame pose using a least square-based motion

estimation algorithm.

We made the decision to use a photometric-based

matching approach in selecting the KLT technique, instead

of a descriptor-based matching approach. The first reason is

that even if using descriptors might be more robust, it is

computationally expensive especially when it is based on

SURF or SIFT. On the other hand, there are detector/de-

scriptor combinations such as FAST/BRIEF for instance

which have lower level of robustness but offer a better

computational cost. Nevertheless, descriptor-based

approaches are a structurally heavy process as it requires

the computation for each keypoint on each image.

The KLT technique considers local information derived

from small search windows surrounding each of the interest

points. It assumes a certain invariance which constrains

template image analysis in time, space, and brightness.

These conditions are fairly well guarantied, based on the

non-highly dynamic nature of general space mission sce-

narios. Thus, in our approach after the image acquisition

and rectification of the most recent stereo pair IcL and IcR,

we only need to run the feature detector technique only on

the previous left image IpL rather than on the 4 images of

the two stereo pairs ({IpL, IpR} and {IcL, IcR}). For this

operation, we use a GPU implementation of the keypoint

detector known as ‘‘good features to track’’ (GFTT) [28].

The set of detected features in IpL forms the inter-frame

reference keypoints for our stereo visual odometry.

Therefore, starting with this set of features as initial

conditions, the KLT will search locally on IpR using a GPU

implementation of pyramidal KLT [29]. This allows the

combination of feature detection and stereo matching

operations at the same time. A small filtering function

discards wrong matches which do not validate epipolar and

spatial constraints. This results in a consistent set of pre-

vious stereo matched feature pairs sp.
In parallel, each time, new images are captured, the

main thread gets from the second thread, inertial mea-

surements that were accumulated during the inter-frame.

Calibrated accelerometer and gyroscope measurements are

acquired at a frequency of 100 Hz and are given a times-

tamp before the gravity compensation stage. Individual

timestamps and known transfer time delays enable us to

synchronise inertial and visual data. By integrating inertial

data, we obtain an inertial motion estimation matrix com-

posed of R(qimu) and timu. Inertial data are then combined

with the stereo pair set of feature sp in a IMU-assisted KLT

scheme (detailed in the next section).

As a result, we obtain the set of inertial estimated fea-

tures sc
*. These serve as initial conditions in the GPU

Fig. 2 Software

implementation structure
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implementation of pyramidal KLT algorithm, to find the

right candidates in the current stereo pair IcL and IcR.

Epipolar and spatial constraints are checked, and the

remaining candidates form a final set spc which consists of

previous and inertial current 2D features. Once more, a

number of operations are avoided as feature detection and

temporal matching are associated. The final set of feature

spc linking the 4 images is transferred to CPU memory as

input to the motion estimation function. Visual motion

estimation is computed by minimising re-projection errors

between consecutive stereo pairs. Velocities are then cal-

culated from the resulting visual motion estimation Rv and

tv, and serve as initialisation for the integration step in the

next inertial motion estimation stage. Rv and tv are accu-

mulated in a global motion matrix Rtglobal memorising the

full trajectory done by the intelligent navigation sensor.

In the presented stereo visual odometry pipeline, we

take advantage of the photometric-based matching

approach characteristics in order to minimise at best the

number of operations. Compared to a classical descriptor-

based approach which takes around 15 operations, the

proposed structure enables us to significantly reduce the

number of operations in the visual odometry pipeline to

only 8 stages including the inertial data-related stages.

3.2 IMU-assisted KLT feature tracking

The singularity of our technique resides in the use of

stereoscopic properties in order to combine visual and

inertial data. Contrary to similar works [11, 12], which are

based on homography 2D transform image operation, we

use 3D geometry combined with the knowledge of inertial

inter-frame pose (R(qimu) and timu) to predict the localisa-

tion in the current stereo frames of the previous initially

detected and stereo matched features. Figure 3 summarises

our idea and highlights five key steps:

Stereo matching The detected features are matched

between right and left previous images giving a set

sp={ppL(j), ppR(j)} of n correct stereo correspondences

(j ¼ 1; . . .;m, m the number of points).

3D reconstruction Features from the set sp are recon-

structed in 3D using stereo calibration parameters by

triangulation [25], resulting into a set Sp={P(j)} of 3D

points representing the position of the stereo correspon-

dences in the space.

Inertial motion estimation matrix Acquired IMU infor-

mation (accelerometer and gyroscope) is calibrated data

to which we compensate the gravity. Then, the inertial

inter-frame relative motion composed of R(qimu) and timu
is obtained after integration of the processed IMU data

as follow:

dqimu

dt
¼ 1

2
qimu � x

dvimu

dt
¼ Rqimuaimu þ g

dtimu

dt
¼ vimu þ vv

8
>>>>>><

>>>>>>:

ð1Þ

Rqimu represents the rotation matrix corresponding to

qimu, � is the quaternion product, g is the gravity vector,

and vv is initial speed resulting previous visual motion

estimation.

Calculation of 3D inertial guesses This inertial motion

matrix is then combined with Sp in order to obtain the 3D

inertial guesses following equation of motion (2)

described below:

P�
cðimuÞðt0Þ ¼ RðqimuÞPpðtÞ þ timu ð2Þ

The set of 3D post-inertial motion features is called

Sc
* = {Pc(imu)

* } with Pp = [Xp, Yp, Zp]
T and Pc(imu)

* = [-

Xc(imu), Yc(imu), Zci(imu)]
T.

Projection into 2D image plane Components of Sc
* is

projected into the current stereo pair images using the

stereo camera parameters as described here:

p�cLðimuÞ ¼
u�cLðimuÞ
v�cLðimuÞ

" #

¼
f
XcðimuÞ
ZcðimuÞ

þ u0

f
YcðimuÞ
ZcðimuÞ

þ v0

2

6
6
6
4

3

7
7
7
5

p�cRðimuÞ ¼
u�cRðimuÞ
v�cRðimuÞ

" #

¼
f
XcðimuÞ � B

ZcðimuÞ
þ u0

f
YcðimuÞ
ZcðimuÞ

þ v0

2

6
6
6
4

3

7
7
7
5

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð3Þ

Pp

P*c(imu)= Rq(imu) Pp + timu

ppL

2

3

4

5

5

1

2

3

4

1

Rq(imu) , timu

Previous stereo 
pair 

Current stereo 
pair

5

ppR

Stereo matching

Reconstructed 3D point Pp  from  the 
previous stereo pair images

Generation of R(qimu) and timu from IMU data 
between the inter-frame

Inertial post motion 3D point P*c(imu)

2D projection of P*c(imu) in the current 
stereo pair images

p*cL(imu)

p*cR(imu)

 

Fig. 3 IMU-assisted feature tracking process
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where f is the focal length, u0 and v0 are the central

pixel’s coordinates, and B is the stereo baseline.

A set sc
* = {pcL(imu)

* , pcR(imu)
* } of 2D post-inertial motion

features is then formed. Thus, inertial guesses are passed to

the KLT a relatively fair location estimation of the features

to be tracked which results in two main advantages. First, it

reduces the probability of tracking wrong features. Second,

accurate guess locations indicate a search area which

results in a decrease in the dedicated search time to locate

the right candidate. Figure 4 illustrates final result of this

process.

3.3 Visual motion estimation

Given the group of feature correspondences between con-

secutive stereo image pairs spc, the camera motion is

computed following the nonlinear objective function f,

minimising the feature re-projection error in function of the

motion parameter vector j expressed as follows:

min
XN

i¼1

pcLðiÞ � f ðPpðiÞ; jÞ
�
�

�
�2þ pcRðiÞ � f ðPpðiÞ � B; jÞ

�
�

�
�2

ð4Þ

with

j ¼ q0 q1 q2 q3 tx ty tz
� �T ð5Þ

This motion parameter vector j to be optimised is a

1 9 7 vector which consists of the four quaternion ele-

ments for the orientation and the translational elements on

the three axes (x, y, z). The nonlinear re-projection function

f takes as input Pp a 3D triangulated feature from the

previous stereo pair and the motion parameter j (also the

baseline B for right pair features). The relation between

spatial and planar representations is obtained with the help

of the rectified camera matrix Krect as described in (3). The

objective is to reduce the pixel distance between the

tracked features and their relative re-projected features.

The Levenberg–Marquardt algorithm is widely used to

solve the bundle adjustment problem [30, 31]. In contrary

to line search optimisation methods, trust region approa-

ches set first a maximum distance before choosing a

direction. Hence, the model is trusted around a restricted

area D, which is adjusted along iterations. If the model

matches the objective function f, then D is increased,

whereas it decreases if the approximation is poor. In this

work, instead of using the Levenberg–Marquardt algo-

rithm, we decided to adopt the double-dogleg trust region

method [25] which is a variant of the dogleg algorithm [26]

to solve the bundle adjustment for motion estimation. The

dogleg algorithm is delineated by two lines composed of

the steepest descent direction and the Newton point

direction. The optimal trajectory follows the steepest des-

cent direction until reaching the Cauchy point (C.P) then

converges to the Newton point passing by the dogleg step.

This latter should be intersecting with the trust region

boundary D. By introducing an intermediate Newton step

N between the C.P and the actual Newton point, the

behaviour of the double-dogleg algorithm presents a fur-

ther improvement. Indeed, the optimal curve trajectory

crosses the trust region before the original dogleg. This

direct control between these two lines (steepest descent and

Newton) by the mean of trust region (characterised by D)
gives a faster optimisation to the algorithm and is also the

main difference with the Levenberg–Marquardt algorithm.

This optimisation algorithm is implemented in a RAN-

SAC scheme and aims to determine a set of inliers. At each

iteration, three feature correspondences are randomly

chosen. We apply rotation and translation transformation

obtained from motion parameters to the set of 3D features

in previous stereo image pairs using the equation of

motion. The resulting 3D positions are then projected on

the current stereo image pair.

Then, we iteratively minimise the sum of errors of

features re-projection using our introduced double-dogleg

trust region method. If it converges, we obtain the camera

motion estimation and update the motion parameters. Then,

an inliers selection process is carried out using last the

motion parameters. If the norm of the error projection sum

of a feature correspondence lies under a certain pixel

threshold, it is considered as an inlier. Motion parameters

giving the highest rate of inliers are kept and then used in a

motion refinement stage using only the inliers. From the

local camera motion obtained, we derive relative transla-

tions to get local velocities that serve in initialising sub-

sequent inertial motion estimation.

Fig. 4 Illustration of the IMU-assisted feature tracking. Blue lines—

inertial optical flow, red lines—outliers, and green lines with white

dotted end—inliers
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3.4 System framework

The developed and presented stereo visual odometry

algorithm is aimed to be embedded into the GPS-denied

visual navigation solution. One of the main issues to be

solved relates to the software and hardware communica-

tion. If hardware manufacturers provide linkers such as

drivers, SDK, and API to facilitate interconnection, then

each sensor has its own protocols and classes. Generally,

these linkers enable a deep control of the sensors helping

users to exploit all their functionalities. In addition to

sensors communication links, the programming language

of the main program and the different libraries to be used

are essentials. One of the objectives when designing a

software framework is to standardise intercommunication

between all the involved components. Having said that

there are robotic frameworks which aim to unify all robotic

components and to implement links between them, R.O.S

(Robot Operating System) is the most notable among

others such as Player, Urbi, or Orca for instance. These

robotic frameworks are also called robotics middleware as

they aim to offer an intermediate platform to connect

hardware and software parts of a complex robotic system.

The range of robots and hardware (cameras, lasers, audio,

etc.) managed by these middleware is continuously

increasing. Despite this remarkable standardisation effort

for the majority of sensors, only basic functionalities are

reachable through such middleware. For our application,

we wanted to have a full access to the cameras and IMU

functionalities in order to have better control and optimise

at best the utilisation of data streams. This is why we have

implemented our own linkers using the camera’s API and

the IMU’s SDK.

Our main program is coded in C??. We use computer

vision functions from the OpenCV C?? library [29].

POSIX Thread is used for thread management [32] and the

C?? Boost POSIX time library for timestamp generation

and time-related operations [33]. The solution was also

developed to be portable on Linux or Windows operating

systems. Our program was tested offline on Windows 7.

However, it is an Ubuntu 12.04 LTS version that is

installed in our navigation system to run our stereo visual

odometry algorithm online.

4 Navigation system hardware

In this section, we present the hardware components that

were selected to develop our standalone navigation system

and explain the reasons that motivated these choices. As it

has been mentioned in the introduction, several constraints

were to be considered in order to design an independent

and flexible visual navigation system. Using off-the-shelf

hardware, we aim to present a smart solution, with a

minimum footprint but also powerful enough to manage

inertial and vision sensors, while handling the whole visual

odometry pipeline in real time.

4.1 Cameras selection

Starting with the camera selection seems logical to us since

the nature of our task gives a central role to visual sensors.

We opted for two MvBlueFOX-IGC USB 2.0 cameras

embedding a 1280 9 690 pixels resolution CMOS Aptina

MT9M034 image sensor; this presented an advantageous

compact design. Finally, two Theia MY110 M 110� 9 94�
field of view ultra-wide lenses complete the visual sensor

package. Ultra-wide lenses provide very low distortion,

which is facilitated in the camera calibration and the stereo

rectification processes.

In a visual odometry context, having a wider field of

view is really advantageous. It increased the feature key-

points persistence as well as the probability to catch

remarkable points, within additional content of the scene,

enabled by a wider field of view. The larger shared field of

view, between the two cameras, also increases the proba-

bility of finding potential matches for stereo correspon-

dences. The provided C?? API enables tight control of the

different camera functionalities such as capture, frame rate,

exposure, gain, and time stamping.

4.2 IMU selection

The inertial measurement unit is used in our solution, to

assist the feature tracking operations. The selected inertial

device for this task is an Xsens Mti-G. It is an integrated

GPS and IMU with Navigation, Attitude and Heading

Reference System (AHRS) processor. It is based on MEMS

inertial sensors including also 3D magnetometer and a

static pressure sensor as well as a miniature GPS receiver.

In terms of dimension, its compact size (60 9 50 mm)

suits well with our navigation system design requirements.

Xsens Mti-G provides an USB hardware connection via an

RS232 to USB converter. Calibrated accelerometer and

gyroscope data (no GPS is enabled) are accessed through

the provided sensor SDK which is coded in C. It gives us a

relative flexibility for handling time stamping and data

transfer.

4.3 Board selection

The board is an important part of the visual navigation

sensor as it centralises all the input/output. Thus, for sev-

eral reasons, our preference was given to ITX board types

belonging to the single-board computer category (SBC).

ITX boards offer a large flexibility regarding size,
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processors, and peripheral connectors. For example, the

ITX SBC range size varies from 45 9 75 mm (mobile) to

170 9 170 mm (mini). The processor type mainly depends

on budget. Indeed, the latest ITX can support 4th genera-

tion of Intel i5 or i7 processors. Intel Atom or Celeron

along with other types of processors such as AMD, ARM,

Cortex, and Freescale IMX are also available.

In our case, we choose a nano ITX SBC (SECOnITX-

ION) of 170 9 170 mm size from the brand SECO. This

SBC has a 1.9 GHz CPU processor Intel Celeron Dual

Core T3100 and 16-core GPU-integrated controller

NVIDIA� GeForce 9400 M. The selected SBC provides a

powerful CPU processor compared to other available

commercial SBCs. Although the GPU processor is quite

basic compared to the latest graphic cards, it fitted rea-

sonably well to the purpose of our application. We added a

4 GB DDR3 memory which is the limit that can be handled

by the dedicated SO-DIMM socket. Ubuntu distribution

was installed in a 1 TB DELL PDA1000B portable exter-

nal hard drive, and we used 4 GB RAM, which is the

maximum memory that can be handled by the board.

The four USB connectors were holding, respectively, to

the two stereo cameras, IMU sensors, and Wi-Fi dongle.

The Wi-Fi dongle was used for SSH communication

Fig. 5 Detailed views of the

navigation system structure

designed with SolidWorks

software

Fig. 6 Top left two views of the final cameras position; bottom left final Vicon architecture; and right ESA’s laboratory pool reproducing a Mars

ground-like environment
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between SBC and an external laptop to launch and stop the

visual odometry program. The SBC is powered via a ?12

VDC AT/ATX connector. We used a DC-DC picopsu-80-

WI-32 (pico power supply unit (picopsu), 80 W, wide input

12–32 V), which has the great advantage of being small,

silent, fan-less and with a very small footprint. Two modes

of operations were designed:

Development mode The picopsu is connected to the

sector via an 80 W AC/DC adapter. It was used during

development and testing phases.

Experiment mode The picopsu is connected to a Li-ION

14.8 V 5200 mAH battery pack from the brand Tenergy

via a P4 connector linked a with power switch to supply

the SBC. It is for datasets acquisition and real-time

assessment of our sensor navigation system. This battery

pack enables the visual navigation sensor to run for

slightly longer than an hour.

4.4 Whole structure hardware

The structure carrying all the components has been

designed in a cubic form for convenience with a rectan-

gular stereo plate on its front top and two handles on its

sides, allowing handheld navigation as illustrated in

Fig. 5.

The two cameras are placed on each side of the rect-

angular stereo plate in a way that the stereo baseline is

16 cm. This chosen distance combined with the ultra-wide

angle provided with the Theia lenses gives a good com-

promise between design compactness and stereo vision

properties. The Xsens device reference frame was carefully

aligned as accurately as possible in the middle of the

baseline structure to facilitate reference frame transfor-

mations with the left stereo camera. The latter is taken as

the main reference frame. The SECOnITX-ION SBC is

mounted on the top of the structure in order for the SBC’s

fan to have good airflow, allowing the SBC to avoid

heating thanks to a good air circulation. However, this is

not the only reason. The SBC occupies a central role and

needs to be placed in such way that it is accessible to all the

other components. The portable external hard drive is

placed at the back of the structure, while the battery pack is

fixed inside the cubic structure (in between the two

Table 2 Run A: average feature-related operations results through

visual odometry pipeline on 247 frames

Detected features Correctly stereo tracked Inliers

Using DDL 569 235 208

Using LM 569 235 210

Fig. 7 Run A: runtime breakdown in percentage of visual odometry

pipeline using double-dogleg algorithm (left) and Levenberg–Mar-

quardt algorithm (right) for visual motion estimation stage

Table 1 Run A: runtime of

visual odometry pipeline at

1280 9 960 resolution and

starting with 750 initial features

Using double dogleg Using Levenberg–Marquardt

in (ms) in (%) in (ms) in (%)

Rectification 4.4 2 4.4 2

Inertial ME 0.3 0 0.4 0

Feature detection 33.5 17 38.8 19

Stereo KLT 24.1 12 24.6 12

Filtering 1 2.8 2 3.4 2

Inertial prediction 6.4 3 6.3 3

Temporal KLT 22.5 11 22.6 11

Filtering 2 5.6 3 6 3

Visual ME 55.9 28 63.7 31

Other 43.5 22 35.1 17

Total 199 100 205.3 100

Frame rate 5.02 fps 4.87 fps
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handles). In order to adapt different robotic platforms, four

holes have been added to the bottom of the structure.

Dimensions of the whole structure are 16 9 20 cm (ap-

prox.) excluding the handle ‘‘wings’’. The total weight is

about 2.5 kg.

5 Experiments

The assessment of the designed visual navigation sensor

performance is divided into two parts. The first part focuses

on runtime analysis of the full visual odometry pipeline.

The second part evaluates visual odometry accuracy in

trajectory generation. Also, the double-dogleg algorithm is

compared to the sparse bundle adjustment version of the

Levenberg–Marquardt algorithm in [24] regarding the

motion estimation performances.

5.1 Dataset and experimental conditions

Experiments took place in ESA’s laboratory equipped with

a 9-m square pool reproducing a Mars ground-like envi-

ronment (clay, rocks, etc., see Fig. 6). The visual naviga-

tion system was handheld, and runs were made walking

around the pool following specific paths.

Working in an environment that attempted to reproduce

some of the conditions in Mars led us to face some of those

challenging aspects. For instance, the non-homogenous

pool’s ground creates instability and the limited feature

environment or textureless zones were plenty. Hence, the

navigation system was subject to recurrent and sometimes

sudden variation in height due to clay bumps, holes, or

slipping surfaces when walking on it.

5.2 Experiment set up and Vicon system

In order to validate our solution in terms of accuracy, we need

to have a strong and reliable navigation reference. This is

provided by the Vicon motion capture system (Bonita) that

equips theESAlaboratory andwhich consists of 10networked

infrared (IR) cameras, 7 of them are 1.3 megapixel resolution

(MX13?) and the three remaining are 2 megapixel resolution

(MX20?). They also provide a high frame rate capture

capability up to 100 fps. The IR cameras track 50-mm

spherical retroflective markers that appear isolated from the

scene background because of their high reflectivity. The

Fig. 8 Run B: runtime breakdown in percentage of visual odometry

pipeline using the double-dogleg algorithm (left) and the Levenberg–

Marquardt algorithm (right) for visual motion estimation stage

Table 3 Run B: runtime of the

visual odometry pipeline at

1280 9 960 resolution and

starting with 750 initial features

Using double dogleg Using Levenberg–Marquardt

in (ms) in (%) in (ms) in (%)

Rectification 4.4 2 4.4 2

Inertial ME 0.4 0 0.6 0

Feature detection 36.4 19 35.3 17

Stereo KLT 17 9 18.6 9

Filtering 1 3.2 2 2.7 1

Inertial prediction 5.7 3 6.3 3

Temporal KLT 21 11 21.6 11

Filtering 2 6.1 3 5.5 3

Visual ME 63.2 32 69.9 34

Other 36.4 19 40 20

Total 193.8 100 204.9 100

Frame rate 5.16 fps 4.88 fps

Table 4 Run B: average feature-related operations results through

visual odometry pipeline on 242 frames

Detected features Correctly stereo tracked Inliers

Using DDL 457 221 193

Using LM 457 221 195
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markers’ 3D positions can be precisely recovered by trian-

gulation through the Vicon Nexus software. The host desktop

running the Vicon Nexus software is linked to the Ultranet,

and the Giganet networking devices. The final architecture

of the Vicon set up is illustrated in Fig. 6. In order to repre-

sent the navigation sensor in the Vicon Nexus software, four

markers were placed on the visual navigation system in such a

way that only the stereo plate is represented.

5.3 Visual odometry runtime performances

In this section, we give a detailed runtime analysis of each

step of the stereo visual odometry pipeline for two repre-

sentative runs (A and B). The runtime breakdown for run A

is given in Table 1 and illustrated in Fig. 7. Feature

detection, stereo KLT, and temporal KLT operations which

run on the GPU device, represent almost half of the stereo

visual odometry total runtime. This highlights the impor-

tance of using parallel programming to achieve real-time

results. Hence, the adopted features sparse approach suits

parallelisation very well. Indeed, the time saved in the

visual odometry runtime is proportional to the number of

features processed.

In Table 1, we can observe that except for the visual

motion estimation stage, runtimes of the visual odometry

pipeline using the two different techniques are almost

equivalent. Indeed, the double-dogleg algorithm is faster

than the Levenberg–Marquardt. Table 2 shows the high

rate of inliers from the correctly stereo tracked matches for

both techniques which provide a strong basis for the

motion estimation stage.

A similar conclusion can be drawn in run B (see Fig. 8).

Runtime of the complete visual odometry pipeline is given

in Table 3 for run B. Figure 8 shows that runtime opera-

tions are proportionally similar to run A.

As a result, the developed visual navigation sensor

solution achieves real-time performance for both runs, at a

satisfying 5 fps frame rate. This is realised, with 1.2

megapixel stereo images while processing up to 750 initial

detected features. Comparable recent works such as [17] or

[18] reported an equivalent frame rate with lower resolu-

tion images and less initial features. Indeed, in [17], their

algorithm which uses a more robust dense stereo algorithm

finishes with 140 inliers for 400 initial features, while we

obtain 200 inliers on average.

The rate of inliers from the correctly stereo tracked

matches is still high, with on average 88 % for the dogleg

and the Levenberg–Marquardt on both runs (Tables 2, 4).

This is quite a remarkable result regarding the 5 fps

acquisition constraint, resulting in a large inter-frame

Fig. 9 Run A: 2D plot and

zoom on final position of the

trajectory generated with the

navigation sensor using the

double-dogleg algorithm (blue)

and the Levenberg–Marquardt

algorithm (magenta), compared

to the Vicon reference (black)

and the LibViso2 library (red)

Table 5 Run A: final position relative error comparison in trajectory

generation

2D relative error 3D relative error

in (m) in (%) in (m) in (%)

DDL 0.147 0.87 0.207 1.21

LM 0.250 1.48 0.371 2.18

LibViso2 0.169 0.99 0.251 1.48

Bold value indicates the best results of the compared techniques

Fig. 10 Run A: 3D plot of the trajectory generated with the

navigation sensor using the double-dogleg algorithm (blue) compared

to the Vicon reference (black)

J Real-Time Image Proc

123



optical flow and especially the space-like environment

where remarkable features are not plenty.

5.4 Visual odometry trajectory generation

performances

For this assessment, we walked around the space pool

for the two runs (A and B) closing the loop. Figure 9,

shows the results of our stereo visual navigation sys-

tem running with the double-dogleg algorithm (in

blue) and with the Levenberg–Marquardt (in magenta),

as well as with the LibViso2 library, providing a ste-

reo visual odometry approach based on the Gauss–

Newton algorithm [6] (code is available at [34]) (in

red) compared to the reference motion capture tra-

jectory (in black).

Fig. 11 Run A: relative RMSE 2D (left) and 3D (right) in metre over the time regarding the Vicon reference trajectory

Fig. 12 Run A: relative RMSE 2D (left) and 3D (right) in per cent over the travelled distance regarding the Vicon reference trajectory
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All the compared trajectories give almost the same

shape as the Vicon reference trajectory. However, our

trajectory remains the closest to the ground truth for the

major part of the route and lies at the final position only at

14.7 cm from the Vicon trajectory closing point. The total

travelled distance for Runa A is 16.95 m (Table 5).

In Fig. 9, a zoom of the starting and final position in 2D

is also shown. In Fig. 10, the 3D trajectories of our solution

and the Vicon reference are plotted. We can see that height

is well estimated which shows the quality of the provided

6-degrees-of-freedom (DoF) solution.

Figure 11 shows that the 2D relative root-mean-square

error (RMSE) remains constant over the time with of

course some fluctuation similarly, to the relative 3D error

in Fig. 12, where the trend gives a monotonic decrease of

the error along the travelled distance. As a result, at the end

of the route, the proposed solution achieves a remarkable

error below 1 % of the travelled distance.

Figure 13 shows the results of our visual odometry

algorithm running in our visual navigation system in run B.

In this run, all the compared trajectories also give the same

shape as the Vicon reference trajectory until a certain point.

After this point, only the trajectory generated with our

navigation system using double dogleg remains close

enough from the ground truth, lying at the final position

only 7.6 cm from the Vicon trajectory closing point, for a

total travelled distance of 11.17 m (Table 6). Our visual

odometry-based navigation system using the Levenberg–

Marquardt is not closing the loop but remains not too far

from the 2D final position (23.2 cm, see Table 6). On the

other hand, the algorithm from LibViso2 library finishes

the farthest from the Vicon reference final point. This case

(run B) allows us to enlighten the utility of IMU infor-

mation, which enables our navigation sensor algorithm to

cope with this kind of uneven problem, whilst minimising

the effect on the final trajectory. This problem was caused

Fig. 13 Run B: 2D plot of the

trajectory generated with the

navigation sensor using the

double-dogleg algorithm (blue)

and the Levenberg–Marquardt

algorithm (magenta), compared

to the Vicon reference (black)

and the LibViso2 library (red)

Table 6 Run B: final position relative error comparison in trajectory

generation

2D relative error 3D relative error

in (m) in (%) in (m) in (%)

DDL 0.076 0.68 0.413 3.7

LM 0.232 2.07 0.518 4.64

LibViso2 0.548 4.91 0.626 5.61

Bold value indicates the best results of the compared techniques

Fig. 14 Run B: 3D plot of the trajectory generated with the

navigation sensor using the double-dogleg algorithm (blue) compared

to the Vicon reference (black)
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by an image acquisition lag which gave a 1-s delay

between two frames.

In Fig. 14, the 3D trajectories of our solution and the

Vicon reference are plotted. Here as well, that height is

well estimated, expect towards the end where the delay

caused by the image acquisition lag had a certain conse-

quence, which slightly shifted the generated trajectory up

the Z-axis.

Similarly to run A, Figs. 15 and 16 show that the rela-

tive RMSE remains bounded over the time despite the

small hump before the end which characterises the

encountered lag problem.

The results showed in this section demonstrate that our

visual navigation sensor is able to generate accurate visual

odometry trajectories in space-like environments, while

achieving real-time performances. Our stereo visual

Fig. 15 Run B: relative RMSE 2D (left) and 3D (right) in metre over the time regarding the Vicon reference trajectory

Fig. 16 Run B: relative RMSE 2D (left) and 3D (right) in per cent over the travelled distance regarding the Vicon reference trajectory
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navigation sensor solution performs better and slightly

faster with the double-dogleg method than with the

Levenberg–Marquardt. It also provides more accurate

6-DoF trajectories than the ones generated using the Lib-

Viso2 library.

6 Conclusion and future work

The visual/IMU navigation system presented in this paper

is a real-time smart and standalone stereo/IMU ego-motion

localisation sensor. We demonstrated through the different

sections of this work the great potential of the strategy

described and the choices of components and techniques

used in our visualisation pipeline.

We developed an efficient strategy for our visual

odometry algorithm that consists of optimising the usual

pipeline, but also running feature detection stereo

tracking and temporal tracking into the GPU device

present in the nano ITX single-board computer. The use

of IMU data to predict features for the next acquired

stereo images improves the quality of the selected fea-

tures. This also has a significant influence on the accu-

racy of the generated trajectories. We also showed that

the use of the double-dogleg algorithm is well suited to a

visual motion estimation application and has a faster

implementation than the Levenberg–Marquardt

algorithm.

As a result of a balanced combination of hardware and

software implementations, the proposed solution achieved

a 5 fps frame rate processing with up to 750 initial features

at a resolution of 1280 9 960. This is the highest reached

resolution in real time for visual odometry applications to

our knowledge. Additionally, the visual odometry accuracy

of our algorithm achieves less than 1 % relative error in the

estimated trajectories.

The work described has great potential. Possible

enhancements in the software and physical setup may yield

further performance enhancement. The physical design was

not optimised in terms of space utilisation. This may prove

to be the easiest improvement to make in future iterations

of this design.
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