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ABSTRACT 

 

Bridge components are subjected to deterioration factors such as aggressive environment, 

corrosion, chemical attack etc. that can result in a loss of load capacity and life span. In order 

to keep the safety of the bridge at an appropriate level inspection regimes are followed.  

 This thesis concern is to establish an adaptive inspection regime for reinforced short to 

medium span concrete bridges. Our emphasis is mainly on using the information about the 

deterioration progress to determine efficient inspection regime.  

An updatable structural deterioration model that follows the inspection outcomes is 

developed. A stationary continuous Gamma process is used to develop the structural 

deterioration model. In order to predict the deterioration profile of bridge slab, deterioration 

process of a reinforced concrete slab subject to corrosion is modeled using Gamma process 

through the thesis. Inspection outcomes at specific ages are used to update the deterioration 

model. The updated deterioration model reflects the latest condition of component at 

inspection time. Different deterioration condition such as initiation time and deterioration 

rate are considered in thesis and influence of deterioration condition on deterioration process 

is represented.  

Initially it is assumed that the observed inspection outcomes are perfect. It is identified 

that the inspection outcomes are associated with uncertainties. In order to characterize the 

probability of detection and measurement error as inspection outcomes uncertainties, the 

probabilistic model is implemented. A new probabilistic framework is developed to take 

into account uncertainties associated with inspection outcomes. The deterioration model is 

applied following the actual inspection outcomes to reflect the influence of the inspection 

outcomes uncertainties. Finally a new adaptive inspection regime is established based on the 

actual deterioration profile. An efficient inspection regime is established as result. The novel 

probabilistic method is highly flexible and can be implemented in different countries with 

different environments.  
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1. Modeling of Ageing Highway Infrastructure 

1.1 Introduction 

 

It is widely recognized that a well-managed transport infrastructure is vital to the 

economic stability, growth and social wellbeing of a country. Bridges and other highway 

structures are fundamental to the transport infrastructure because they form essential links 

in the highway network. The management of highway structures in the UK is undertaken by 

a variety of highway authorities and other owners e.g. local authorities, trunk agencies, 

Network Rail, etc. (UK Roads Liaison Group, 2005). 

Highway bridges are one of the most vital components of transport networks and as it has 

been indicated in the reports of UK Department of Transport, 80% of the bridges are 

concrete bridges. (Mahut and Woodward, 2005) 

Mallet (1986) classified the data of bridge types and their population in UK. The Table 

1.1 presents this classification. 

 

                Table 1.1 Classification of UK Bridge (Mallet, 1986) 

 TYPE NUMBER 

Motorway 5000 

Trunk Roads 8000 

Local Authorities 129000 

Railway 12000 

British Waterways 1000 

Total 155000 

 

 The Department of Transport (1987) conducted a survey which indicated that 25% of 

masonry bridges, 30% of concrete which is equal to 1200 of motorway bridges or 37200 of 

the total and 46% of steel bridges in the UK have capacity below standard to carry design 

traffic load. 
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Highway structures are often subject to destructive effects of material ageing, harsh 

weather condition, extensive corrosion of reinforcement bars in concrete structures, 

corrosion of steel structures and components, increasing traffic volume and overloading, or 

simply overall deterioration and ageing. These factors, accompanied with imperfections of 

design and construction and accidental damage, initiate the deterioration of highway 

structures and result in the loss of serviceability and load carrying capacity (Dong et al., 

2010). 

The deterioration of infrastructure facilities such as highway bridges built in 50s and 60s 

has raised concerns over objective methodology to quantify the change in their safety level 

during the service life (Dong et al., 2010) 

In order to maintain the safety and serviceability of structure at adequate level, it is 

important to represent the structural deterioration process as comprehensively as possible in 

respect to the influence of deterioration factors. 

In recent years, modern technology has enabled greater variety of monitoring techniques 

and therefore availability of data from sensors, video imaging, etc. is increasing. It is 

established infrastructure inspection processes can be reviewed to reconcile quality and 

diversity of site-specific data, physical behavior models and technology. However, the non-

destructive inspection techniques can bring in additional uncertainty in deterioration model 

due to the uncertainty of inspection techniques (Ohadi and Micic, 2011). 

Even in circumstances when an NDT inspection program has been performed on the 

entire a component and all defects detected are repaired, the engineer cannot guarantee that 

there will be absolutely no defects or that defects would be defiantly smaller than a particular 

size (Tang, 1973). 

If the current status of deterioration is to be established on the basis of inspection, it has 

become evident that quality and consistency of the data needs to be taken into account 

(Ohadi and Micic, 2011). 

  The safety of existing bridges is an important research topic owing to ageing process 

affecting their strength and stiffness as well as need to revise prediction of the maximum 

loads associated with operation and environmental factors. Many studies have been 

conducted since 1987 and in 2005 UK Roads Liaison Group published a code of practice to 
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assist bridge managers and practitioners to maintain bridges safe and functional (UK Roads 

Liaison Group, 2005). 

 Bridge owner and managers are required to ensure that the structures for which they are 

responsible serves the purpose for which they were built in safe and maintainable manner. 

As a result, the requirement to be able to identify the presence of deterioration and to 

quantify it in terms of its effects on serviceability and carrying capacity is increasing. (Dong 

et al., 2010) 

 The deterioration of structures can be presented using deterministic or probabilistic 

approach. However, considering that the current and future status of structures are associated 

with many sources of uncertainty the deterministic approach cannot provide an appropriate 

mathematical model. Instead, probabilistic approach should be considered as more 

appropriate alternative. (Frangopol et al., 2004). 

The probabilistic approach to characterize the capacity of a structural component is a 

function of available statistics for contributing variables, but also taking into account the 

errors induced by modeling and scaling effects. The random variable and stochastic 

processes are two alternative probabilistic models to represent the deterioration process. In 

the last decades, researchers have focused on the random variable approach (Frangopol et 

al., 2004). 

Among many factors that could lead to poor condition of highway bridges, one factor 

that has been sometimes neglected is the inadequate inspection and monitoring of existing 

structures. It is essential to inspect bridges periodically, assess their condition and evaluate 

their functionality (Ellingwood and Mori, 1993).  

In order to provide reliable outcomes for structural assessment, the current inspection 

regime that is explained in this chapter needs to improve. As majority of bridges around the 

UK are reinforced concrete, we focus on the inspection regime of reinforced concrete 

highway bridges here.  
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1.1.1 Aim 

 

The aim of this research is to develop an adaptive inspection regime based on stochastic 

deterioration process for active assessment of reinforced concrete bridges. The new regime 

should enables decision on most suitable inspection type for specific bridge component and 

deterioration profile during the lifecycle and provide information for efficient bridge 

management system.  

 

1.1.2 Objectives 

 

In order to establish such inspection regime,  

 Develop a new time-dependent stochastic representation of structural 

deterioration that can be updated over the lifecycle (Det profile). Here, the 

reduction of flexural moment capacity due to corrosion can be considered as 

deterioration model. 

 Develop a probabilistic model to characterize the imperfect nature of inspection 

outcomes and take into account in deterioration process(𝑋𝑎) 

 Establish the relative criteria to ensure the structural performance level (Tℎ𝑓). So 

that inspection type can be recognized inappropriate when defect size is out of 

inspection thresholds. 

 Develop a framework which includes the structural performance criteria and 

deterioration model to establish a simple and fully site specific adaptive 

inspection regime (AI) 

 Demonstrate a cost function to compare and provide a clear perspective of total 

inspection cost over the lifetime (𝐶𝑇) that take site-specific.  

1.2 Structural Deterioration 

 

The ageing infrastructure is gradually becoming a global concern. This is especially true 

in the case of advanced countries, where a large fraction of critical civil infrastructure 

systems were built decades ago (Karbhari and Lee, 2011). 
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A breakdown of most common types of defects is tabulated in Table 1.2.  

 

          Table 1.2 Ageing defects and factors (Braverman et al., 2000) 

 

                                   Reinforce Concrete Bridge                                         Steel Bridge 

Defects Factors Defects Factors 

Cracking Freeze-Thaw, Corrosion Cracking Moisture 

Spalling Leaching 

Chemical Attack 

Loss of Material Temperature-Elevated 

or Subfreezing 

Pop outs Corrosion of Embedded steel Reduced Strength Chemical Attack 

Loss of Material Elevated Temperature 

Corrosion 

Loss of Fracture 

Toughness 

Mechanical Wear 

Excessive Deformation Erosion Excessive Deformation Erosion 

  Loss of Preload Mechanical Loads 

  Loosening Organisms 

  Rupture Improper Design 

  Plugging Fatigue 

    

 

The aging factors that are listed above can directly affect mechanical properties and lead 

to a loss in component resistance capacity. In order to evaluate the current condition of an 

existing bridge, the current practice in many countries is to take account of deterioration in 

some way.  

The ageing civil infrastructure systems are often considered structurally deficient, due to 

aforementioned deterioration and ageing factors. The structural effects of ageing factors on 

structural degradation integrity are reviewed in the following. 

Firstly corrosion, as one of the most destructive factors, can seriously weaken a structure 

or impair its operation (Bertonili et al., 2013). 

 The major degrading effects of corrosion on structural member are a loss of sections; 

buildup of corrosion products at connections and a notching effect that creates stress 

concentration (Zayed et al., 2002). Figure 1.1 demonstrated loss of reinforcement sections 

of a reinforced concrete pile due to corrosion. 
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Figure 1.1 The corroded reinforcement sections of a three span bridge pile in south of 

Kerman (Constructed in1998)  

 

Brittle fracture is a catastrophic failure that occurs suddenly without prior plastic 

deformation and, can occur at nominal stress levels below the yield stress. Fracture of a 

structure occurs when a relatively high stress level is applied to material with relatively low 

fracture stiffness. (Melchers et al., 2008) 

Chemical attack occurs when aggressive liquids are in contact with concrete. Etching or 

softening of surface may result. Alternatively, the concrete may crack and spall (Tang et al., 

2015). 

 Figure 1.2 illustrates a carked surface of reinforced concrete section. 
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Figure 1.2 The cracked surface of reinforced concrete in a three span bridge slab in south of 

Kerman (Constructed in 1998) 

 

Other faults, which can influence the structural strength and stiffness, are insufficient 

cover to steel, honeycombing or voids in concrete (Tang et al., 2015). 

In order to maintain the structural performance at an adequate level in terms of 

serviceability and safety, the actual structural condition needs to be characterized. It is with 

the aim of not just knowing that the performance level may have changed, but rather to be 

able to locate the area of degradation and more importantly to assess remaining performance 

levels and the remaining life that current work is developed. 

 

1.2.1 Processes Associated with Bridge Structural Deterioration 

 

Deficient bridges are in need to major construction work, since, they restrict commercial 

trucks and emergency service vehicles. Thus, any public and economic decision of action 

for maintenance, repair, rehabilitation, upgrading, posting, or decommissioning requires 

through evaluation on the remaining strength, serviceability and durability (Farhey, 2007). 

Unfortunately, bridge deterioration is not often the result of just one of the factors and 

severe deterioration regularly involves a number of factors.  
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Due to the different degradation factors, many types of defects can occur on the structure 

on the basis of the constituent material and the position of a component (Phares et al., 2004).  

The origins of deterioration can be sub-divided into three different groups as: 

 Deterioration or defects arising from faults in design e.g. low cover, 

reinforcement congestion, badly located joints, poor drainage system and etc. 

 Defects due to construction method errors like poor quality concrete, bad 

compaction, inadequate curing and etc. 

 Defects from external factors like bridge overloading, vehicle impact, 

carbonation, poor maintenance, freeze-thaw action and fatigue (Woodward et al., 

1996). 

Bridge evaluation consists of structural condition assessment and structural performance 

evaluation. When an existing bridge evaluated based on analytical data, the bridge 

evaluation result is most likely to be different from the actual evaluation result. Therefore, 

inspection outcomes are required to validate and calibrate the analytical evaluation result 

(Farhey, 2007). 

Effectively section dimensions   measured on site or assumed, the material properties are 

based on material tests or NDT methods. In order to take into account bridge deterioration 

in bridge evaluation, an inspection regime can be carried out on bridge components while 

inspection outcomes is used to assess the bridge condition. It is evident that outcomes of 

such evaluations would depend on the knowledge and experience of the assessment 

engineer. It is concluded that all structural condition is collected with significant variability 

via current inspection regime. It was found that there is significant variability in the 

condition state assignments of bridges and in some cases the condition states cannot applied 

correctly (Phares et al., 2004)  
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Figure 1.3 Illustration of current UK inspection regime for 3 common inspection types 

In Figure 1.3 for illustration the current UK inspection regime for an assumed bridge 

component with two different deterioration scenarios (𝐷𝐸𝑇1, 𝐷𝐸𝑇2) is demonstrated. The 

current UK inspection regime is superimposed. It is evident that 

  
1. Deterioration profile for the component could be significantly time dependent as 

demonstrated by the two deterioration profiles 

2.  Inspection techniques cannot be equally efficient over lifetime, i.e. it would be 

extremely difficult to detect cracks by visual inspection in early years but once 

cracking is established it will be feasible to estimate the scale of cracking.   

3. As a result of specific scale of deterioration the inspection quantitative outcomes will 

have varied accuracy.   

4. All inspection types in Figure 1.3 are classified (INS1, INS2, INS3…) but their 

uncertainty content will depend on the inspection technique and the defect properties 

i.e. time of implementation. 

General inspection (interval time=2 Years) 

Principal inspection (interval time=6Years) 

 Special inspection (interval time=Variable) 

 

(Year) 

(𝑿𝒕 )

) 
  

(𝑿𝒕
𝟐) 
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5. The inspection outcomes are thus associated with uncertainties and these inspection 

outcomes uncertainties have to be taken in to account in order to establish the actual 

deterioration at some given time.                                    

Time dependent changes in bridge condition are to a large extent random in nature; 

therefore, condition assessment of existing bridge can be conducted rationally within a 

probabilistic framework. The mathematical formulation of a probabilistic model can provide 

data to identify ageing bridge components performance level that may have a key role in 

improvement of structural condition management (Frangopol et al., 2004). 

Due to uncertainties associated with inspection outcomes and deterioration status, some 

authors identified that random variable is an appropriate form of representation for the 

deterioration profile (Frangopol et al., 2004).  

Ellingwood and Mori (1993) used experimental data to describe the strength of structural 

member statistically and improve the base for structural assessment. Several research studies 

have been conducted to identify certain factors that must be included in aging assessment 

and deterioration mechanisms that may affect concrete structures. They concluded that 

corrosion of reinforcement is one of the most damaging mechanisms affecting the strength 

of reinforced concrete structures over time. They represented change of structural capacity 

in the form of a time-dependent degradation function. Ellingwood and Mori (1993) proposed 

that time dependent degradation status at time 𝑡 , 𝑥(𝑡), is determined by: 

 

                        𝑥(𝑡) = 𝑐𝑝
𝛼 = 𝑐(𝑡 − 𝑡𝐼)  (1.1) 

 

In which 𝑐 and 𝛼 are experimental deterministic corrosion constants and 𝑡𝐼 is the initiation 

time. One aspect of performance is the assessment of failure time. In general, the failure rate 

of a structure or a component will be time variant as the structure ages. The probability that 

the structure will fail in the next time interval is the conditional probability. Furthermore, 

the hazard function is seen to be the rate of change of the conditional probability of failure, 

given that the structure has survived to time t. In order to control the structural safety, time 

–dependent reliability analysis method (Hazard function) has been implemented 

(Ellingwood and Mori, 1993). 
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 Several simple parametric time dependent functions have been used to represent 

degradation of flexural moment capacity and shear capacity over the time. The linear, 

parabolic and square root functions were utilized to model degradation of strength due to 

corrosion, sulfate attack and diffusion-controlled degradation respectively and the 

deterioration model has been used to evaluate the time-dependent reliability  of a single 

component and a series system. 

VanNoortwijk and Frangopol (2004a) characterized the structural deterioration of a dike 

section and a highway bridge due to ageing by two models: 

 Lifetime model on the basis of the probability distribution of lifetime or time to 

failure. 

 Deterioration model on the basis of the random variable model. 

For the former different standard distribution function such as normal distribution 

function can be used to take into account uncertainty associated with parameters of 

deterioration model such as time to damage initiation, deterioration rate and initial condition. 

(VanNoortwijk and Fangopol, 2004 a) 

As mentioned before, the structural deterioration of reinforced concrete structures is not 

just result of one factor, however it is identified that the corrosion is one of the major 

destructive factors (Bertonili et al., 2013). Since the corrosion is a long term mechanism for 

well-designed structures, there is only limited documentation and consistent experience 

available on which to draw to generate empirical rules.  

In order to characterize the structural deterioration of reinforced concrete beams subject 

to corrosion, Melchers et al. (2008) estimated the ultimate moment capacity and stiffness of 

reinforced concrete beams under reinforcement corrosion by developing a reliability model 

that relies on the estimation point in time at which significant corrosion is initiated while it 

has been assumed that the corrosion rate is constant in time. Linear models used to model 

degradation of ultimate bending capacity and stiffness of a reinforced concrete single beam 

have been implemented. It is concluded that the ultimate bending moment capacity and 

stiffness of a reinforced concrete beam can be obtained as a function of time of exposure. 

Theoretical results have been compared with experimental data.  
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It is concluded that the model was able to provide reasonable estimates of deterioration 

process of ultimate bending moment capacity and deflection stiffness (Melchers et al., 

2008). This model cannot take into account the uncertainties associated with degradation 

process in time as the bending moment capacity and stiffness have been modeled by a linear 

function.      

An alternative method to evaluate the safety of structures can be by using damage 

processes. When materials, which are used to construct structural components, are subjected 

to harsh condition such as cold and hot working processes, temperature variations, chemical 

actions, radiation, mechanical loading, microscopic defects and cracks may develop inside 

the materials. Such damage causes reduction in strength and stiffness that may lead to failure 

and shorten the lifetime of structures. Such deterioration process in mechanical properties 

of the material is known as a damage process (Valliappan and Chee, 2008). 

Owing to the major influence of damage on material properties, a number of studies have 

been conducted on modeling of crack growth in a structure under various loading conditions. 

Valliappan and his assistants have been one of the leaders in developing numerical methods 

for the structural analysis using damage processes. For instance, form the view point of 

variety of damage processes concept, Valliappan and Zhang (1996) addressed the problem 

of the effect of microscopic defects and cracks within materials in order to study the behavior 

of structural components under different loading conditions. A formulation for elasto-plastic 

model of damage process was developed based on the principles of thermodynamics and 

associated finite element method. (Valliapan and Zhang, 1996).  The issue of the proposed 

model is that the model cannot take into account the current condition of structure in order 

to represent the deterioration model. However, it is identified that the proposed elasto-plastic 

model of damage can be implemented to define the realistic structural failure mode.  

Due to ageing, degradation of materials accumulates over the time by various damage 

processes that depend on the specific operating environmental and service conditions. A 

dynamic two-dimensional finite element method joined with damage process has been 

developed to assess damage initiation and propagation of an aged mechanical structure 

(Valliappan & Chee, 2008).  
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The quantified age-related degradation factor is then included in the damage process and 

finite element model. The ageing degradation of the component capacity has been 

formulated as: 

 

                                  𝑅(𝑡) = 𝑅0𝐺(𝑡)  (1.2) 

 

  Where 𝑅0is the component capacity in the original state and 𝐺(𝑡)is a time dependent 

degradation function defining the fraction of initial strength remaining at time 𝑡 (Valliappan 

& Chee, 2008). 

 

1.2.2 Management of Highway Infrastructure 

 

Due to evolution of deterioration process, the structural behavior of highway structures 

is not static over the time and as a result there could be loss of structural capacity and 

serviceability of various components. It is the infrastructure authority’s responsibility to be 

assured of structural safety and serviceability. In addition, the highway network is a dynamic 

system with changing user demands, some of which may be reflected in changes to relevant 

code and standards (Das, 1999). Hence, it is necessary to have an adoptable assessment 

method which can be updated over the structural lifetime and take into account evolving 

structural condition.  

In order to ensure that the serviceability and safety of structures at an acceptable level, 

actions to slow or stop the deterioration process must be taken in the form of cost effective 

and sustainable plan that supports the safe operation of the structure while delivering the 

required levels of service. Two major actions that can deliver improvements are maintenance 

and repair (Grall et al, 2002). 

In order to have an efficient maintenance and repair plan, a bridge or a group of bridges 

needs to have a lifecycle plan which would describe the long term strategy for managing a 

group of similar structures with a point to minimizing whole life cost, while providing the 

required levels of performance and is used to identify maintenance cycles and intervention 

thresholds. (UK Roads Liaison Group, 2005) 
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Life cycle plans differ depending on the management strategy. Typical types of strategies 

can be identified 

 Enhancement strategy to enhance the condition and includes upgrading 

 Steady strategy to maintain the current condition 

 Manage deterioration strategy to manage and control the deterioration so that 

condition may deteriorate but not fall below a predefined condition level.  

Manage deterioration strategy is generally considered if decommissioning or replacement 

is planned in the near future. (UK Roads Liaison Group, 2005) 

1.2.3 Management Processes 

 

Highway structures management system includes four main contexts. 

I. Maintenance 

II. Repair 

III. Inspection 

IV. Assessment 

 The maintenance and repair are explained in this section while the assessment and 

inspection categories, that have a key role in present research, are described in details in 

sections 1.2.4.2 and 1.2.4.3, respectively. 

 

I. Maintenance 

Maintenance includes actions whose purpose is to slow down or prevent the deterioration 

process.  The maintenance plan is undertaken to identify needs, prioritize maintenance and 

provide cost effective and sustainable work plan (UK Roads Liaison Group, 2005). 

Since the structural condition can change over the lifetime in respect to various ageing 

factors, a set of different actions as maintenance plan can be taken. The maintenance plans 

are generally classified into three types in terms of actions efficiency and action interval. 

1. Routine maintenance reflects to minor works carried out on a regular or cyclic 

basis that help to maintain the condition and functionality of the structure and 

reduce the need for other action. In general, it includes tasks e.g. cleaning of 

drainage and expansion joints system, greasing of metal bearings or removing 

vegetation. The experts identified that, whilst many of routine maintenance tasks 
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are fairly minor in themselves, failure to carry them out may lead to deterioration 

of the structure and need more costly repairs. 

2.  Preventive maintenance is work carried out to maintain the condition of structure 

by protecting it from deterioration or slowing down the rate of deterioration. By 

timely intervention preventive maintenance reduces the need for essential one. In 

general, it includes tasks e.g. repainting, minor defect repairs, cathodic protection 

and re-waterproofing. 

3. Reactive maintenance which can be sub-divided as emergency and essential 

maintenance. The emergency maintenance is a reaction to some emergency 

accident that happened on the structure and requires an immediate work, while 

essential maintenance is a major structural repair work and especially work that 

undertaken when part or all of the structure is considered to be, or about to 

become, structurally inadequate or unsafe .e.g. major concrete or steelwork 

repairs and scour repairs (UK Roads Liaison Group, 2005).  

However, it is possible to make a maintenance plan for a structure with combination of 

maintenance types at different time interval.  

For instance, the maintenance plan for a structure can be prepared in terms of planed 

interval in three different stages as 

 Complete maintenance plan to covers lifetime 

 Forward maintenance plan to covers next 1 to 3 years period 

 Annual maintenance plan  

The last two sets of actions should be updated every year to take account of the updated 

information on structural condition and describe the work to be carried out and when. It is 

evident that the long established inspection process outcomes can be used to reconcile the 

quality and diversity of structural behavior models. Once prediction of structural 

deterioration process is available it is possible to revise maintenance plan effectively (Stratt, 

2010).   

 

 

 



30 

 

II. Repair 

As different bridge components have different life time, alternative plans can be 

considered to deliver the safety objectives. Some components of bridge have finite service 

life so they have to be renewed at the relatively short intervals e.g. bearings and expansion 

joints, while for other components of existing bridges the work needs to bring components 

up to appropriate current standard e.g. strengthening or waterproofing.  Various policies may 

have resulted in change to standards or change in requirements. When usable life of a 

component ends, it has to be replaced with a new component (Stratt, 2010). 

As dedicated budget for maintenance and repair of a network is often limited, design 

appropriate maintenance plan to keep the structural safety at an acceptable level is a critical 

issue.  An important concept in maintenance and repair plan modeling is that of life-cycle 

cost, where the effects and costs of a particular maintenance and repair policy are considered 

over the total expected lifetime of structures (Yang et al., 2006) 

 Every maintenance and repair plan tries to reflect the future condition of the structure. 

Repair solutions can differ depending upon the extent and the type of damage, when repairs 

of a structure which is intact and useable should be carefully detailed so that they are 

effective and can be executed safely and with the minimum of disturbance of users of the 

structure. A wide range of repair techniques –detailed in British standard BD27 and BA35- 

such as repainting, replacement of concrete for decks, bonding steel plated to concrete 

bridges deck overlays and deck patching can be implemented on highway bridges in regard 

to many factors such as accessibility, cost, and efficiency.  

 

III. Maintenance and Repair Plan 

 

In order to design an appropriated maintenance and repair plan, it is necessary to 

characterize the future performance level of the structure which is associated with various 

degree of uncertainty.  It is often proposed to use a probabilistic approach, in order to take 

into account structural condition uncertainties (Frangopol et al., 2004). During the last 

decades, a large number of papers on maintenance optimization models, mainly focusing on 

the mathematical aspects, have been published as Kwon and Frangopol (2012), Kim et.al. 

(2013), Kallen and Van Noortwijk (2004). 
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Farngopol et al. (2004) presented a number of probabilistic models of maintenance and 

optimization of the life-cycle performance. The maintenance models use the structural 

deterioration profile to determine the optimal times for maintenance actions and repair. It is 

identified that maintenance and repair actions can be periodic or aperiodic. The proposed 

approach in Farngopol et al. (2004) to determine optimal maintenance policy, using the 

reliability index to estimate structural deterioration profile, has a life-cycle cost function 

associated with risk ranking. Risk ranking model can be used to identify the most critical 

bridges in the network while the life-cycle cost function is the preferred model when 

decision makers are not only concerned with safety, but also with costs. It has been identified 

that the risk ranking model should be limited to inspection prioritization at the time of 

evaluation. It does not account for the full life-cycle of the structure (Frangopol et al., 2004).   

  

1.2.4 Current Practice for Ageing Highway Structures 

 

Many practical codes are proposed around the world, in order to provide a guidance on 

highway structures supervision duties and the development of recognized good management 

practice. The UK Management of Highway Structures and AASHTO (standard 

specifications for highway bridges-1983) are the most comprehensive highway structures 

codes. According to the UK code, the management of highway structures is categorized to 

three major themes.  

 Asset management & resource accounting 

 Maintenance and repair planning and management 

 Engineering processes 

These processes are meant to be supported by appropriate data and information. As 

mentioned before, we will focus on the engineering processes, particularly on the inspection 

and monitoring context and assessment. 
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 The engineering process includes five important contexts as: 

 

I. Design 

II. Construction 

III. Inspection and Monitoring 

IV. Structure Assessment 

V. Maintenance & repair (UK Roads Liaison, 2005) 

All these engineering processes are associated with different types of uncertainty which 

will be explained in Chapter 2; however it should be noted that types of uncertainty are 

associated with design and construction processes are different with uncertainty associated 

with other three stages. It can be assumed that uncertainty associated with design and 

construction processes are partly due to uncertainty in the primary information about 

geometry and material properties and partly due to uncertainty of the physical or mechanical 

model. The value of this type of uncertainty can be reduced by improvement in methodology 

and standardization (Birolini, 2013). More information on uncertainty modeling and 

classification will be provided in Chapter 2. In order to identify the structural condition of 

existing structures in the future, we will just focus on the modeling of uncertainty associated 

with inspection processes and the methodology to take into account the inspection data 

uncertainty in deterioration mechanism modeling.  

 

1.2.4.1 Data Available From Inspections  
 
To demonstrate the type of data that is available for an existing structure from inspection, 

we have considered a reinforced concrete bridge as an example and categorized the 

inspection outcomes in Tables 1.4. Inspection types and defect types are demonstrated. The 

Table 1.4 shows information for four components with different inspection types 

(Frischmann and Partners 1973; DMRB 3, 2009). 
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Table 1.4 Sample outcome of inspection of a deck and pavement (Frischmann and Partners, 

1973; DMRB 3, 2009) 
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Safety Weekly V V  V V        

General Two 

years 

V V V V V V  V     

Principal Six 

years 

V/M V/

M 

V V V V V/M V V V

/

M 

  

Special Var M M J M M J M J M M M J 

Routine Var V/M V V V    V V V   

 

V=visible defects      M=measurable     J=expert judgment      Var=variable 

 

 
 

Annotation in Table 1.4 is used to define the defect features. The visible defects (V) can 

be detected without using any specific equipment at time of inspection. However, it can be 

identified that some types of defects can be measured (M). While other types of defects such 

as discoloration cannot be measured and their extent can be assessed just on the basis of the 

expert judgment (J). 

 According to the inspection data classification in the Table 1.4, it can be identified that 

the many issues regarding the available data are 

 The available data is in most cases not quantified; hence they cannot used for 

probabilistic methods to provide a plausible structural condition model.  
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 The measured outcomes can be used to establish a certain probabilistic 

deterioration model.  

 The visual inspection outcomes could seldom be used to establish appropriate 

deterioration model.  

 Visible defects whether they are measurable or not are associated with uncertainty  

 The visual inspection technique with standard interval for some components, such 

as the deck that are visible, is an appropriate technique. 

  The efficiency of visual inspection results is not usually equally effective for 

other components such as bearings. 

 There is limited valuable structural condition information for specific components 

for many inspection types if the inspection regime is just considered with the 

restricted schedule.  

 

1.2.4.2 Structural assessment 

 

The purpose of assessment of highway structure is to determine its ability or capacity to 

carry the loads which are imposed upon it and which may reasonably be expected to be 

imposed upon it in the future. The structural assessment is needed when there are significant 

changes to the usage, loading and/or structural condition. The assessment should consider 

all available current information, taking account of the known condition of similar 

structures, their inherent strengths and weakness. The information needed for structural 

assessment can be derived from inspection outcomes. It can provide valuable information 

for managing the safety and serviceability of infrastructure (UK Roads Liaison Group, 

2005). 

 

1.2.4.3 Inspection and Monitoring 

 

In practice, the primary purpose of inspection and monitoring is to confirm that a structure 

is safe for use and fit for purpose. The aim of inspection regime is to: 

1. Provide data on the current condition, performance and environment of the 

structure e.g. severity and extent of defects, material properties and loading. 
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2. Inform analysis, assessments and processes e.g. change in condition, cause of 

deterioration, rate of deterioration etc. 

3. Compile, verify and maintain inventory data e.g. structural type, dimensions 

and location. 

It is identified that data provided by inspection has vital role to develop an efficient 

management strategy. For this purpose, an inspection regime that could be supplemented by 

testing and monitoring where appropriate is needed (UK Roads Liaison Group, 2005). 

In an ideal inspection regime, the combination of inspection techniques with various 

frequencies at which they are applied, should be determined by considering adequate criteria 

in an objective manner. Any defect, that may cause an unacceptable safety or serviceability 

risk, should be detected by an appropriate inspection technique. However, the current 

inspection regimes rely on expert judgment and rarely take account on the quality of 

inspection techniques. (Attoh-Okine and Chajes, 2003; Brodski and Ponomarev, 2006) 

Furthermore, different types of inspection might be focused on known or suspected areas of 

deterioration or inadequacy (UK Roads Liaison, 2005).  

There are several inspection codes that provide guideline for the infrastructure managers 

around the world. In this study, the two most comprehensive codes for management of 

highway structures around the world, UK-DMRB (3) and AASHTO 2011 are considered as 

representative for industry standard. We particularly focus on the inspection types that are 

commonly used for highway bridge inspection to demonstrate areas for improvement and 

uncertainty embedded within processes. 

 

 

1.2.4.3.1 Frequency of inspection 

 

The frequency of inspections in the UK code is recommended in accordance with the 

type of inspection. Information about inspection types, used in UK code, is summarized in 

Table 1.5. 
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                    Table 1.5 UK inspection regime (DMRB 3, 2007) 

Inspection 

Type 

Interval 

Time 
Description 

Safety   Weekly 

Identify obvious deficiencies and cursory check of 

the visible part. It is undertaken at frequencies, which 

ensure timely identification of safety related defects 

and reflect the importance of a particular route. 

General Two years 

Provide information on physical condition of visible 

elements without any special equipment. It is 

recommended to carry out not more than 2 years after 

the previous General or Principal inspection. 

Principal Six years 

Provide information on physical condition of all 

inspect able parts with close examination. It is 

undertaken not more than 6 years after previous 

Principal inspection. 

Special   Variable Provide detailed information on a particular part 

Routine   Variable 

Provide information required to undertake bridge 

assessment. The schedule of this type of inspection 

should be set by the manager. 

 

 

The recommended inspection interval by UK code is applied for most highway structures 

but in some circumstances, changes are allowed specifically for General and Principal 

Inspections, which are undertaken frequently and only for specific components or features 

and with strict upper limit interval time.  

Interval time increments are restricted by UK code i.e. for General inspection interval 

inspection cannot exceed 3 years and for Principal inspection this increment would be 

restricted to12 years (DMRB 3, 2007). 
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1.2.4.3.2 U.S inspection regime 

 

The inspection types in AASHTO 1983 are categorized in five types like UK code but 

there are some differences such as inspection interval, inspection intensity and type of data 

in comparison to the UK code. Each type is carried out for specific position with varied 

outcomes (AASHTO, 1983). Information of AASHTO inspection regime are indicated in 

Table 1.6. (For more information see Appendix-E) 

 

      Table 1.6 AASHTO inspection regime (AASHTO, 1983) 

Inspection 

Type 

Interval 

Time 
Description 

Initial 
Once in 

lifetime 

Identify initial deficiencies which might not have 

been present at time of construction. It provides a basis 

for all future inspections and modifications to the 

bridge. 

Routine Two years 
Identify unusual conditions or changes without any 

special equipment.   

In-Depth Five years 

Provide information on physical condition of all 

inspect able parts with close examination. It can be 

follow-up routine inspection. 

Special   Variable 
Monitor new types of structures to develop 

information database. 

Damage   Variable 
Provide the information of damage extent after 

collision, fire, flood, and etc.  

 

 

In order to establish an improved model of structural deterioration process in this 

research, the initial inspection outcomes can be considered to estimate the initiation time of 

a structural deterioration process while the in-depth inspection outcomes can be taken to 

improve characterization of the deterioration process over the lifetime which depends on the 
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accuracy and interval of inspections. Special inspection outcomes usually can be employed 

to model the deterioration process of a particular damage at a specific location on the 

structure. 

 

1.3 Issues of current inspection regime 

 

Having considered information provided by inspections in previous sections it is possible 

to identify issues of current inspection regimes. 

1) Quality of current inspection outcomes is highly variable over the lifetime 

due to the technique specific characteristics.   

2) Current inspection outcomes are difficult to use as quantitative, i.e. once 

cracking is advanced, the estimate of the scale of cracking will be highly 

variable if visual inspection is the selected technique, just as demonstrated in 

AASHTO (2001). 

3) There are no current guidelines for effectiveness of alternative inspection 

techniques. 

4) The inspections are prescribed with very strict interval times regardless to the 

deterioration progress. 

 

1.4 Summary and Conclusions 

 

In order to have an efficient bridge management system, an optimal plan of repair and 

rehabilitation of bridge system have to be established over the bridge lifetime with respect 

to the limited dedicated budget. Since the inspection outcomes have key role in the bridge 

management, in this chapter the current inspection regimes are investigated. The issues of 

current inspection regimes are summarized. It is identified that the inspection outcomes are 

associated with uncertainty. Thereby, the probabilistic models should be used to estimate 

the deterioration process on the basis of the inspection outcomes. Moreover, it is concluded 

that an adaptive inspection regime has to be used, in order to accommodate diverse sources 

of uncertainty in an adequate manner. However, it is also identified that various performance 

criteria can be used due to environmental conditions and prevailing policies.  
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The benefit of using an adaptive regime would be that the manager would have a choice 

to use appropriate inspection techniques to provide quantified and usable inspection 

outcomes and update the estimate of the component condition or structure as a whole over 

the life cycle.  
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2. Uncertainty Modeling for Structures 

2.1. Introduction 

 

The concern is modeling of deterioration in existing structures. Since available data is 

limited and diverse, it is required to establish a method to take into account the uncertainty 

associated with physical system and inspection process. As large majority of bridges in 

transport network are reinforced concrete short to medium span bridges, the first step is to 

identify the types of uncertainty associated with inspection outcomes from reinforced 

concrete structures and their parameters (Stratt, 2010). 

There exists a large number of propositions for the characterization of different types of 

uncertainty (Haldar and Mahadevan, 1999). It is necessary to differentiate between types of 

uncertainty due to different sources of uncertainty e.g. aleatoric natural variability and 

epistemic that reflects modeling and data availability. Another reason to make a distinction 

between different types of uncertainty is that some types of uncertainty such as epistemic 

uncertainty might be reduced by collecting more data as this type of uncertainty is caused 

by a lack of knowledge (JCSS, 2008; Haldar and Mahadevan, 1999).  

In order to model the structural deterioration process of a bridge, the deterioration factors 

have to be considered. If the current status of deterioration is to be established on the basis 

of inspection outcomes it has become evident that quality and consistency of the data 

acquired needs to be taken into account (Mahut and Woodward, 2005). 

The deterioration of structures can be represented using deterministic or probabilistic 

approach. 

 However, when uncertainty is present, the deterministic approach cannot provide an 

appropriate model and probabilistic modeling should be considered (Frangopol et al. 2004). 

In this chapter options for probabilistic modeling are reviewed and their suitability 

evaluated.  
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2.2 Uncertainty modeling 

 

Uncertainty is defined as a measure of imperfect knowledge or probable error that can 

occur during data collection process, modeling and analysis of engineering systems. A 

significant body of research on uncertainty associated with engineering systems is focused 

on types of uncertainty and proposed models to take into account uncertainty. Uncertainty 

associated with engineering systems is inherent characteristic that cannot be avoided in 

defining the construction parameters and main prediction models for the systems. What does 

it take to take into account uncertainty associated with parameters and system so that it is 

evaluated on the basis of knowledge of the system and the experience (Lemaire et al., 2009). 

Both, aleotoric and epistemic uncertainties, can be subdivided to secondary types. 

According to Kikuchi and Pursula (1998), fuzzy set theory can be used to represent aleotoric 

uncertainty while evidence theory can be used to deal with epistemic uncertainty among the 

classical probabilistic approaches. These theories are complementary to classical 

probabilistic approaches when dealing with human perception and decision processes.  It is 

important to identify the most suitable mathematical model with respect to the nature of 

uncertainty (Kikuchi and Pursula, 1998).  

Usually it is impossible to find exact approach to characterize types of uncertainty, and 

concepts like ‘intuition’, ‘expert opinion’ and ‘engineering judgment’ are often used.  

The important question still remains if different types of uncertainty can be treated in the 

same way or different procedures should be implemented. The answer can be attained with 

respect to the concept of interpretation of probability. The Joint committee of Structural 

Safety probabilistic model code (JCSS, 2008) recommends three possible approaches: 

 The frequentist’s interpretation 

 The formal interpretation 

 The Bayesian interpretaion 

According to JCSS probabilistic code, the frequentist’s interpretation is straightforward 

and lets only observable data to record the domain of probability theory. It is evident that 

this interpretation can be used in statistical events (JCSS, 2008).  
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Owing to insufficient amount of statistical or theoretical evidences in the field of 

infrastructure management, it should be clear that such an interpretation is not feasible in 

this application.  

The formal interpretation gives full credit to the fact that numbers used in reliability and 

risk analysis approaches to characterize uncertainty associated with response function are 

based on ideas and judgment rather than statistical data. Such approach is believed to be 

more appropriate approach compared to deterministic approach in terms of uncertainty 

modeling (JCSS, 2008). 

 It is essential that the values of the probabilistic model have meaning in deterministic 

model. In the third approach, which is named Bayesian interpretation, probabilities are 

considered as best possible expression of the degree of belief in the occurrence of a certain 

event. The results of Bayesian interpretation describes the probability of an event based on 

prior knowledge of conditions that might be related to the event. With Bayesian 

interpretation the theorem express how a subjective degree of belief should rationally change 

to account for availability of related evidence. It should be noted that in this approach, two 

types of uncertainty (epistemic and aleatoric) are treated in the same way. The benefits of 

using this approach are, firstly it enables calculation of probability of an event with 

combination of several sources of evidence, and secondly it provides a fully developed 

theory of probability at ones disposition for both types of uncertainty (JCSS, 2008, Haldar 

and Mahadevan, 1999). 

In order to calculate a response variable which is generally based or empirical relation 

between uncertain basic variables, a model can be described as a functional  

 

  𝑌 = 𝑔(𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛)  (2.1)                              

                                                                                      

Where 𝑌 is the response variable, 𝑔 () is the model function and 𝑋𝑖 are the basic variables. 

The response variable 𝑌 can be predicted without error, if the model function is perfect 

function with no uncertainty. However, this is not normally the situation. The model function 

is usually associated with uncertainty. This may be result of lack of knowledge, or reflect 
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simplification of the model. There is difference between the predicted response variable 𝑌 

and actual value 𝑌′, even if it is assumed that the value of basic variables are given. 

The actual response variable Y′ can be denoted as: 

 

𝑌′ = 𝑔(𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛, 𝜀1, 𝜀2, 𝜀3, … , 𝜀𝑛)  (2.2) 

                                                                   

The variables 𝜀𝑖 are random variables which reflect the uncertainty associated with the 

basic variables. Their statistical properties can in some cases be derived from a set of 

laboratory experiments or measurements in situ (JCSS, 2008, Haldar and Mahadevan, 1999). 

 

2.2.1 Classification of uncertainty 

 

There are various classifications of types of uncertainty. One is to distinguish between 

‘aleatoric’ and ‘epistemic’ uncertainty. Any type of uncertainties can be referred to in respect 

to its source. For instance, if the aleatoric uncertainty dominates, redesign or reconstruction 

may be recommended, while in case that epistemic uncertainty dominates, we can start 

investigation of the system, process or mechanism to increase the knowledge. It is identified 

that randomness is an inherent part of nature, it is not possible to reduce the aleatoric 

uncertainty. However, it is demonstrated that the aleotoric uncertainty can be gradually 

transformed into an epistemic uncertainty, which may be reduced by measurement and 

updating procedures (Ayyub, 1997).  

Another alternative for uncertainty classification, for the purpose of structural 

engineering, is 

 

 Physical uncertainty 

 Statistical uncertainty 

 Model uncertainty 

These types of uncertainty are explained in the next sections  
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2.2.2 Physical uncertainty 

 

The physical uncertainty can be associated with experiments or random temporal or 

spatial fluctuations inherent to natural phenomena such as loads, material properties, 

dimensions, etc. However, physical uncertainties in structural analysis can be quantified 

only by examining sample data. (Haldar and Mahadevan, 1999).  

It is identified that physical uncertainties associated with variables can have two different 

sources. The physical uncertainty can arise from errors in data , measurement inaccuracy 

e.g. physical uncertainty associated with crack length or inadequacy of data handling and 

transcription as first sources of this type of uncertainty while uncertainty associated with 

physical functions can be consider as second sources of physical uncertainty  e.g. uncertainty 

associated with wind speed. It is recognized that physical uncertainty arise from second 

sources can be reduced by more precise methods (JCSS, 2008).  

 

2.2.3 Statistical uncertainty  

 

To apply probability theory to an engineering process, we study the observed data of that 

process. The collection of all possible observations of a process is called a statistical 

population. The population itself often cannot be totally observed, because the process is 

time dependent. Most often, only a portion of the population is observed which is called a 

sample. 

An observation can be characterized by one or more variables that are, to a certain degree, 

unpredictable, random variables. 

In order to establish a probabilistic model, it is necessary to firstly select an appropriate 

distribution function, and then calculate the value of distribution parameter. For instance, 

the identification of a correct distribution function depends very much on the accuracy with 

which its parameters can be estimated. Parameter uncertainty is caused by lack of data, poor-

quality data, or an inadequate method of parameter estimation. However, the data 

themselves may have associated with physical uncertainty.  

The distribution parameters such as mean value can be obtained with consideration to the 

sample data. There are two approaches to estimate parameters. An estimate of population 
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parameter given by a single number is called point estimate of the parameter. The other 

approach is an estimate of a population parameter given by two numbers between which the 

parameter may be considered lie is called an interval estimate of parameter. 

The statistical uncertainty reflects the amount of sample data or in general, the amount of 

data and any prior knowledge. This uncertainty arises solely as a result of lack of information 

(Haldar and Mahadevan, 1999). 

Three sources of statistical uncertainty are defined as:   

1. A limited number of observations or test results which cause uncertainties in the 

estimation of statistical parameters 

2. Neglecting systematic variations of observed variables 

3. Neglecting possible correlations  

The statistical uncertainties can normally decrease by increasing test and observational 

efforts. (Ayyub, 1997) 

 For instance, the yield strength of steel can be consider as parameter, which is a random 

variable and it is associated with statistical uncertainty. It is recognized that the statistical 

uncertainty arises from parameter estimation from sample that is too small due to the limited 

observations.  

In respect to the focus of current work on reinforced concrete bridge decks, due to the 

variety of concrete material properties, the compression strength of concrete as a random 

variable is associated with statistical uncertainty.  

 

2.2.4 Model uncertainty  

 

The performance of a structural system can usually be modeled by physical or mechanical 

model in conjunction with empirical relations. Engineers use mathematical model with 

regard to outcome quantities and basic variables. The structural models such as ultimate 

flexural moment capacity of a reinforced concrete beam, in general, are result of many 

assumptions. Model uncertainty reflects the inability of the simulation model or design 

technique to represent precisely the structure’s true behavior. Thus, model parameter 

uncertainties reflect the variability in determining the parameters to be used in a model. 

(Haldar and Mahadevan, 1999).  
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In other words, it is frequently not possible to obtain accurate response model for typical 

structures even if the parameters can be estimated precisely. It is acknowledged that the 

simplifying assumptions, unknown boundary conditions, unknown effect of other variables 

and their interaction, which are not considered in the model, are reasons of occurring model 

uncertainty (Haldar and Mahadevan, 1999). 

As focus in this research is on the prediction of ultimate flexural moment capacity of 

reinforced concrete section, it is necessary to identify the uncertainty types associated with 

the prediction model. The prediction of the phenomena in the future involves model subject 

to natural variability, model uncertainty and statistical uncertainty.  

The models available for prediction of deterioration of reinforced concrete flexural 

moment capacity often tend to lose their precision rather fast so can be predicted only with 

significant uncertainty (Mori and Ellingwood, 1992). Due to discrete and qualitative nature 

of present measurements such as inspection outcomes physical uncertainty within predictive 

model is accompanied with model and/or statistical uncertainties. The main future is that 

uncertainty about the future can generally not be decreased through research, thus certainly 

not by using inspection outcomes. (JCSS, 2008; CIB report, 1986) 

 In many cases, it is sufficient to model the uncertain quantities by random variable model 

with given distribution functions, while distribution parameters estimated on the basis of 

observed data (JCSS, 2008).  

However for structural deterioration modeling, it is identified that random variable model 

is not the most appropriate model and needs to consider other alternatives e.g. stochastic 

processes (Frangopol et al., 2004). 

 

2.3 Inspection Data Uncertainty 

 

In recent years, modern technology has enabled greater variety of monitoring and 

inspection techniques and more precise data. The NDT techniques such as visual inspection, 

ground penetrating radar, ultrasonic inspection and electrical methods are an essential tool 

for assessment of a structure, they also can bring in additional uncertainty to the prediction 

models. During the last decade, a lot of research has been conducted to identify and 

characterize the uncertainty associated with inspection data.  
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Zhang et al. (2001), Melchers et al. (2008), and Straub and Der Kiureghian (2010) used 

the probabilistic method to characterize inspection uncertainty e.g. probability of detection 

(POD), probability of false alarm (PFA) and measurement error. In 2001 AASHTO carried 

out an extensive research (AASHTO, 2001) to characterize the uncertainty associated with 

visual inspection data. This is useful to illustrate the variety of uncertainties associated with 

specific inspection outcomes.  

  

2.3.1 Variability of Visual Inspection Outcomes (AASHTO, 2001)  

 

As mentioned in Chapter 1, the most common and available inspection type to detect 

defects on most bridge members is visual inspection with 2 years interval. It was observed 

that consistency of visual inspection between bridge inspectors does not come naturally and 

it is a result of training, quality control and shared experiences (AASHTO, 2001). 

According to the AASHTO investigation, the factors, which can influence the visual 

inspection outcomes, are categorized as follows: 

1) Subjective factors (visual quality, color vision…) 

2) Physical and environmental factors (lighting, background noise…) 

3) Task factors (inspection time, viewing area…) 

4) Organization factors (number of inspectors, training…) 

The In-Depth and Routine inspection outcomes have been collected from different states 

in US to define reliability of visual inspection technique. It is identified that the accuracy of 

both inspection types could be further increased by considering the known factors. However, 

bridge design practices should put more consideration on the comfort with which the bridge 

could be inspected. The method to evaluate the influence of each factor in such a way that 

quantitative data can be collected is presented in AASHTO, 2001. It has clearly emerged 

that the inspection outcomes can be more sensitive to some factors such as rushed level, 

light intensity, and structure complexity than the others (AASHTO, 2001).  

It is recognized, with respect to the survey results, that In-Depth inspection is not likely 

to detect and identify the specific types of defects for which this inspection is sometimes 

prescribed. It has been indicated that there is a relationship between In-Depth inspection 

outcomes accuracy and factors such as, time to complete inspection, inspector comfort with 
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access equipment and heights, structure complexity and accessibility and number of annual 

bridge inspections. However, further factors still remain, which can influence the inspection 

outcomes, to be investigated. For instance, it is reported that inspectors who find fewer than 

the average number of defects found on one bridge are likely to do so, on other bridges 

(AASHTO, 2001).  

In addition, more evidently defined inspection procedure that outlines systematic search 

criteria and techniques may increase inspection accuracy. 

Study has proposed that revising the condition rating system may significantly increase 

the accuracy and reliability of the Routine inspection outcomes; while the accuracy and 

reliability of In-Depth inspection could be increased through increasing training of 

inspectors in types of defects that should be identified and methods that would frequently 

allow this identification to be possible. More information about the condition rating system 

is in Appendix-D.  

 A quick review of the analysis methods of significant information, which are used in the 

AASHTO report, is presented here to define the variety of uncertainties associated with 

visual inspection outcomes.  

The questionnaire forms have been used to collect quantitative and qualitative inspectors 

and inspection condition information, and the inspectors have been asked to complete 

specific tasks. The common statistical methods are used to analyse the collected information. 

As condition rate is a discrete random variable, the statistical analysis results can represent 

in form of probability histogram. However, it is identified that direct extrapolation of the 

data to population is not statistically justifiable.  

One means of extrapolating a sample to a population is by using theoretical probability 

distribution based on data from the sample, normal distribution was proposed (AASHTO, 

2001). 

 It has been identified that there are many factors that can influence the accuracy of visual 

inspection outcomes. The information on inspection factors influence on the inspection 

outcomes accuracy might be useful for infrastructure managers. It can established how often 

and to what extent condition ratings vary from the reference rating. It is indicated that 
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AASHTO survey data can be used to derive the level of inspector consistency between 

different elements of a bridge (AASHTO, 2001) 

 Two inspection factors are considered here to illustrate the variety of uncertainty 

associated with visual inspection outcomes. Figures 2.1a and 2.1b illustrated the discrepancy 

between condition inspection ratings and reference condition for two bridge components at 

three locations. The reference condition is defined as condition that is estimated in laboratory 

environment. We can observe the influence of the maintenance level of deck and 

superstructure on condition inspection outcomes.  The features of each task in the graphs are 

tabulated in Table 2.1.  

 

          Table 2.1 AASHTO Tasks Information (AASHTO, 2001) 

 

Task Applied inspection 

technique 

Bridge type Superstructure 

type 

Width(m) Span(m) location 

B Routine Single-span 

concrete 

T-beam 22.35 6.81 Pennsylvania 

C Routine Single-span 

concrete 

T-beam 21.34 6.65 Pennsylvania 

D Routine Single-span 

concrete 

Rigid-frame 33.22 12.88 Pennsylvania 

 

In Figures 𝑰𝒊 expresses the inspection influence factor. It is identified that 𝑰𝒊 > 𝟎 in both 

cases means that the inspection outcomes are overestimated. 𝑰𝒊 = 𝟎 means the condition 

rating is equal to reference condition rate. The regression analysis of condition ratings is 

presented as inspection influence factor 𝑰𝒊. The regression analysis results for predicting 

bridge condition rating can be considered to determine in three sections. The first, second 

and third section present the developed regression equation solely in terms of the inspector 

factors, and combination of inspection and inspector factors, respectively (AASHTO, 2001).  

Some interesting trends can be observed in the results. First, when a certain factor was 

found to only correlate with specific task, the relationship of that factor to the deck, 

superstructure and substructure condition ratings generally was consistent between the 

superstructure, deck, and substructure. However, when a factor was found to correlate with 
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two tasks, the influence of that factor was not, in general, consistent for the two tasks. 

Finally, when a factor was found to correlate with more than two tasks, there was greater 

consistency in the influence of that factor across the tasks. More information on influence 

of other factors can be found in the AASHTO report itself (AASHTO, 2001).    

 

 

Figure 02.1a   Inspection influence (Ii) on condition rating with reported maintenance levels 

on the bridge deck (Maintenance level: 1=very poorly, 9=very well) (AASHTO, 2001) 

 

 

Figure 2.1b Inspection influence for condition rating on bridge superstructure with reported 

maintenance levels (Maintenance level: 1=very poorly, 9=very well) (AASHTO, 2001) 
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It is evident that if we consider outcomes in Figure 2.1a and 2.1b and use random variable 

to represent the condition rating, the mean values and standard deviation of condition rating 

model will be different between bridge superstructure and bridge deck. 

 In this particular case variability in outcomes is much greater for the condition ratings 

on the basis of the deck inspection. Full consideration of modeling inspection outcomes 

variability for a reinforced concrete bridge will be considered in Chapter 4.  

 

2.4 Probabilistic Structural Analysis 

 

In general, a structure should be designed so that its strength or resistance is greater than 

the effects of applied load. However, it is identified that all basic variables of load function 

and resistance function are in reality associated with some uncertainty as it was explained in 

section 2.2. Here, flexural moment capacity of a reinforced concrete beam is consider as 

resistance and basic variables such as material properties and geometry are associated with 

uncertainty.  

Initial structural response models, for sake of simplicity, can be assumed deterministic. 

It means that value of parameters in the formula are considered with certainty and the model 

is perfect. However, the fact that the structural response model such as flexural moment 

capacity is characterized deterministic does not mean that the model is assumed to be 

constant. It only means that characteristics of the model vary according to given rules and 

not in a random way (JCSS, 2008; Ayyub, 1997). 

 As it is mentioned before in Section 2.2, most of basic variables are associated with 

uncertainties. However, in several cases it may be convenient to consider the basic variable 

as a deterministic variable due to low level of uncertainty such as the yield strength of steel.  

It is identified that resistance of a structure (R) and load on structure (S) are random in 

nature and their randomness can be characterized by using standard probabilistic models. 

Normally, the standard probabilistic structural analysis such as First-Order methods can be 

applied to determine probability of failure of a structure or its components.  

As mentioned before, any structural response model contains a set of variables such as 

resistance of the structure (R) and the applied load (S) that have to be evaluated.  
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Many studies have been conducted to establish methodologies, which take into account 

the uncertainties associated with the variables (Haldar and Mahadevan, 1999). 

Several physical phenomena can cause failure such as yielding, fatigue or large 

deformations. Each or combination of these phenomena can lead to a failure. The 

probabilistic model of a failure mode is achieved by defining a function known as limited 

state function. Note that the limited state function is itself a random, as such: 

 Limit state function > 0 defines the structure’s safe domain 

 Limit state function < 0 define the structure’s failure domain 

 Limit state function = 0 defines the limit state surface 

The structure therefore has two possible states, a fully functional state and a state of 

failure, separated by a boundary called limited state (Hami and Radi, 2013).  

Two major methods to represent the uncertainties associated with the variables of limited 

state function are. (Frangopol et al., 2004) 

 Deterministic and semi probabilistic  method 

 Probabilistic method 

 

2.4.1 Deterministic and semi probabilistic methods 

 

It is convenient to use the term deterministic for a variable with certain value with no 

uncertainty. It means in the deterministic method, a function of variables with exact value 

represents the certain response variable. The characteristic values model is a deterministic 

model in which the value assigned to a variable usually has a prescribed probability of not 

being unfavorably exceeded during the applicable reference period. It is identified that the 

characteristic values could represent a statistical lower/upper bound of an uncertain 

parameter after consideration in broad range of observed data through inspections. (CIB 

report, 1985; Bulliet, 2008) 

Engineers have always recognized the presence of uncertainty in the analysis and design 

of structural system. In the case, they need to take into account combination types of 

uncertainty, it is proposed to apply semi probabilistic method, and for instance classical tools 

like partial safety factors that are accounting for uncertainties through the use of empirical 

factors. Safety factors are derived based on past experience but do not absolutely guarantee 

safety or satisfactory performance. (JCSS, 2008; Bulliet, 2008) 



54 

 

Models for load and structural resistance that are presented in codes can be considered as 

a semi probabilistic method that is using safety factors to account uncertainty arises from 

material properties, e.g. nominal capacities and resistance factors and uncertainty that arises 

from variable loads, e.g. load factors. However, it has been identified that some uncertainties 

such ageing factors cannot be dealt with using code criteria.  

 

2.4.2 Probabilistic Method in Design and Assessment 

 

The design of structural system utilize the basic concept that the capacity, resistance, or 

strength of a member or a collection of members should at least satisfy applied loads, load 

combinations, and their effects. The primary task of design is to ensure satisfactory 

performance, that is, so ensure that the capacity is greater than demand during structure’s 

useful life. Engineering design is usually a trade-off between maximizing safety levels and 

minimizing cost. Deterministic method does not provide adequate information to achieve 

that purpose. In view of the uncertainties in the problem, satisfactory performance cannot 

be absolutely ensured. Instead, assurance can only be given in terms of probability of success 

in satisfying some performance criterion. The probabilistic method is an alternative to 

represent uncertainties associated with parameters in structural assessment model. (Bulliet, 

2008) 

On the other hand, probabilistic method can supply the required information to optimum 

assessment process. For this reason, it is recommended to use the probabilistic method to 

take account for uncertainty in the assessment system (Haldar & Mahadevan, 1999). 

Since early in 1960’s, different probabilistic method such as structural reliability method, 

which is based on probabilistic point of view, have been developed to characterize the 

uncertainty associated with the structural assessment (Thoft-Christensen and Baker, 1982).  

 

 The probabilistic approach is based on  

 The identification of all variables influencing the expression of safety criterion in 

respect to the safety policy 
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 Studying statistically the variability of each of relevant variables sometimes 

considered to be independent 

 Deriving the most appropriate probability distribution for each of variables 

 Comparing the probability of occurrence of the event to a acceptable probability 

of occurrence of  that event  

In order to provide likelihood of existence of an event, reliability analysis, classical 

statistics approach, Bayesian approach, etc can be used. They are extremely attractive and 

have produced a lot of studies and results regarding safety of structures. (Cremona and Gao, 

1997; Melchers, 2003) 

However, they cannot guarantee that all uncertainties will be taken into account in 

predicting the structure’s ability to withstand the actual loads that will be applied to it, due 

to the model uncertainty of basic variables .Using the probabilistic method is expected to 

provide notional information about system behavior, the influence of different uncertain 

parameters on system performance and the interaction between different system 

components. Two models are commonly implemented to represent uncertainty.  

1. Random variable models 

2. Stochastic process 

 

2.4.2.1 Random variable model 

 

As it has been explained, using a random variable is one of the ways to characterize 

uncertainties. A random variable, which can take on any value, is called a continuous 

random variable. The probability that a continuous random variable, 𝑋 is less than or equal 

a value 𝑥 , is given by the cumulative distribution function 

                              𝐹𝑥(𝑋) = 𝑃(𝑋 ≤ 𝑥)  (2.3)                               

The general illustration of probability density function and cumulative distribution 

function of a continuous random variable is presented in Figure 2.2.   
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    Figure 2.1 General illustration of a random variable (a) cumulative distribution function 

(b) probability density function (Miller et al., 1990) 

 

For continuous random variable the probability density function is given by 

 

𝑓𝑥(𝑋) =
𝑑𝐹𝑥(𝑋)

𝑑𝑥
  (2.4) 
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If assigned values for the random variable constitute a finite set or a count ably infinite 

set which can only be measured as integers we have a discrete random variable. The 

cumulative distribution function of a discrete random variable is 

 

𝐹(𝑋) = 𝑃(𝑋 ≤ 𝑥) = ∑ 𝑝(𝑥𝑖)𝑥𝑖≤𝑥
  (2.5) 

                          

where 𝑝(𝑥𝑖) is the probability mass function given as  

 

𝑝(𝑥𝑖) = 𝑃(𝑋 = 𝑥𝑖)  (2.6) 

 

There are such events whose outcomes are a vector of random variables. These events 

have in common that there is a relation between the random variables that we measure, and 

by describing them only one by one, we do not get all the possible information. 

In order to define the correlation of random variables, a two dimensional vector is 

considered. The correlation coefficient is given by 

 

𝜌(𝑋, 𝑌) =
𝐶𝑂𝑉(𝑋,𝑌)

𝜎(𝑋)𝜎(𝑌)
  (2.7) 

                                      

Where 𝜌(𝑋, 𝑌) is correlation coefficient, 𝐶𝑂𝑉(𝑋, 𝑌) is covariance of two random 

variables  𝑋, 𝑌  which indicates the degree of linear relationship between two random 

variables and 𝜎(𝑋)𝜎(𝑌) are standard deviations of random variables. The correlation 

coefficient can only takes values in the[−1,1]. If 𝜌 = 0 it is implied that there is no linear 

relationship between two random variables and two random variables can be considered to 

be uncorrelated, otherwise it should be determine the joint density function in order to 

represent the uncertainty of vector of random variables. (Olofssn and Andersson, 1963) 

If two dimensional vector of discrete random variables (𝑋, 𝑌) is considered then the joint 

distribution function is given by 

 

                   𝐹(𝑋, 𝑌) = 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦)                    (2.8) 
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and the joint probability mass function is 

 

             𝑝(𝑥𝑖, 𝑦𝑘) = 𝑃(𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑘)                     (2.9) 

 

The conditional probability density function and the probability density function of a 

random variable that belongs to a given area are concepts which are explained later.  

 

2.4.2.2 Stochastic process  

 

In order to model a number of various phenomena where the quantity of interest varies 

through time, such as deterioration profile, the stochastic process is often recommended. It 

can be said that the outcome is denoted by function of time and possible outcomes which 

for any time 𝑡(𝑡 ≥ 0), 𝑋(𝑡) is a random variable in the sense of a random variable 

description and can be considered as the collection of all possible records of variation of the 

observed quantity in time. (Helstrom, 1984; Olofssn and Andersson, 1963; Ross, 1996). 

 The general illustration of a stochastic process is presented in figure 2.3.      

 

t
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0 Ti
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        Figure 2.2   General illustration of a stochastic process (Ross, 1996) 
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A particular outcome of the event which is called a sample function is considered here. 

In order to imagine the sample function, the process 𝑋(𝑡) at any finite number of times is 

presented in the form 𝑋1 = 𝑋(𝑡1), 𝑋2 = 𝑋(𝑡2), … , 𝑋𝑛 = 𝑋(𝑡𝑛) that a single possible value 

of each random variable of stochastic process included in sample function(−∞ ≤ 𝑋𝑖 ≤

∞, 𝑖 = 1, 𝑛). Their nature of randomness is specified, through a joint probability density 

function 𝑓𝑋𝑖(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑚) (Helstrom, 1984; Olofssn and Andersson, 1963,; Ross, 1996). 

The stochastic process{𝑋(𝑡), 𝑡 ≥ 0} is defined a collection of all such joint probability 

density functions for all values of m and for all possible sampling times. Although here 𝑡 is 

considered as the time, in important applications the parameter in the denoting function may 

represent a spatial coordinate or a number of spatial coordinates, together, perhaps, with a 

temporal coordinate.. (Helstrom, 1984; Olofssn and Andersson, 1963; Ross, 1996).   

 

2.5 Representation of Uncertainty Associated with Structural Deterioration  

 

Many engineering problems, such as structural deterioration, are associated with 

uncertainties due to the lack of data and knowledge. As mention in Section 2.3, inspection 

outcomes can be considered as a data resource for structural assessment, which are 

associated with significant uncertainty. Moreover, physical models are used to estimate the 

structural behavior associated with model uncertainty. In general, the structural deterioration 

process can be associated with uncertainties from different resources. The probability 

concepts can be used in such cases by taking advantage of experience, judgment, and 

observational data. In the probabilistic approach, the parameters are considered to be random 

nature themselves, enabling an engineer to systematically combine subjective judgment 

based on intuition, experience, or indirect information with observed data to obtain a 

balanced estimate, and to update the estimate as more information becomes available.  

Before the probability of an event can be estimated, the uncertainty in the problem needs 

to be identified (JCSS, 2008). 
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2.5.1 Deterministic Representation of Deterioration 

 

The structural deficiencies that occur over the structural lifetime can be divided, in terms 

of measurement, into two groups as: 

 Defects can be measured 

 Defects cannot be measured by existing equipment 

According to the classification of uncertainty in section 2.1, it can be concluded that the 

defects can be associated with all type of uncertainties, and the type uncertainty associated 

with defect can be change over time. 

 In order to represent the uncertainty associated with deterioration process, the simplest 

way is to take into account uncertainties by using characteristic values model or partial safety 

factors. However, it is identified that using these methods may provide overestimate in 

comparison with the actual condition of the structure, which could increase maintenance and 

repair costs.  

 

 

 

 

2.5.2 Random Variable Representation Models for Deterioration 

 

In the last two decades, many studies have been carried out using the probabilistic method 

to represent the structural deterioration process. Owing to the intensive use of the reliability 

index (see Appendix-C) in code calibration and in reliability-based analysis and design, 

time-dependent reliability index approach to maintaining safety and optimizing the life-

cycle performance of deteriorating structures is often considered. The reliability is not 

always independent of time; rather it is highly time dependent and reliability of many 

structural systems reduces with time owing to structural deterioration. Variation of reliability 

index with time is represented as 𝛽(𝑡).Variation of reliability index is influenced by various 

factors and can be characterized by using random variables models. Thoft-Christensen and 

Sorensen (1987) proposed a reliability-based methodology to optimize inspection, 

maintenance and repair cost of structural system. Inspection interval and inspection quality 
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have been considered as optimization variables. Failure function is formulated in a form of 

function with load parameters, mechanical properties of materials, geometrical quantities 

considered as basic random variables. Probability of failure of one mode in a specific 

inspection interval is represented in form of a standard normal distribution. To estimate 

deterioration of the reinforcement of cross-section subject to corrosion, the diameter of 

reinforcement bar was considered as a function of the chloride concentration on the concrete 

surface which is a time dependent variable, and its initial diameter. (Thoft-Christensen and 

Sorensen, 1987).  They proposed an optimal strategy to minimize the total cost of inspection 

and repair in the expected lifetime of the structure when maintain the reliability at acceptable 

level. 

Mori and Ellingwood (1992) developed a probability-based methodology to estimate the 

reliability of reinforced concrete structures. The method includes models of structural 

deterioration and mathematical techniques to analyze time-dependent reliability of concrete 

structures. The sensitivity of structural reliability index to three degradation functions was 

evaluated, namely deterministic linear, square-root and parabolic functions were used to 

represent corrosion, sulphate attack and diffusion-controlled deterioration mechanisms, 

respectively. Time-dependent effects of deterioration factors in situ strength are considered 

in estimation of the effects of ageing. The effect of the type of degradation function on the 

limit state probability function are represented, when type of degradation function is 

assumed deterministic and  initial strength of a concrete component is represented as 

lognormal distribution function. It is concluded that the failure probability associated with 

square root model for critical components of reinforced concrete structures in nuclear power 

plants (NPP) is the highest, followed by linear and parabolic models (Mori and Ellingwood, 

1992). 

 Cheung and Kyle (1996) represented a reliability-based system for the service life 

prediction of reinforced concrete structures by using statistical databases and probability 

theory, to estimate reliability of a system composed of several components. They have 

assumed that the performance state of a system has a key role to estimate the reliability level, 

therefore identification and quantification of the limit state are taken to govern the 

performance of the structure. Their emphasis is on the flexural strength and punching shear 
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capacity of concrete slab. Every physical limit state function is considered as a function of 

some basic random variables. Each of limit state function variables is assigned a probability 

distribution function that reflects the background statistical information. It is assumed that 

the majority of deterioration of reinforced concrete structures results from corrosion of 

reinforcing steel. Due to the loss of cross section area bars, the section capacity is predicted 

to decrease. The loss of reinforcement cross section area subject to corrosion is determined 

as a deterministic variable. The Monte Carlo simulation method or Second Order reliability 

method can be used to calculate the reliability. It is concluded that various levels of 

complexity of deterioration mechanisms and limit state functions can be readily incorporated 

into reliability-based framework. Specific levels of accuracy of life-cycle models can be 

achieved by using different limit state functions (Cheung and Kyle, 1996).    

So et al. (2009) used a performance-based life-cycle cost management model for a 

reinforced concrete bridge subject to chloride-induced reinforcement corrosion. The 

cumulative probabilities of different limit states functions at the time of corrosion initiation 

and time of severe cracking were simulated by the Monte Carlo simulation method. The 

service life can be defined as the time at which any of limit states reach or accumulated 

damage reaching some specified amount, therefore the model proposed in this paper in order 

to predict the service life is considered as  the probability of damage occurring at a particular 

periods of time. The service life model is based on fixed pre-defined limit states function, 

either as serviceability control or as ultimate limits control (So et al., 2009).  

Marsh and Frangopol (2008) considered the multiple corrosion sensor networks 

throughout a structural component to improve the quantification of the steel corrosion rate. 

Two types of sensors were used to measure the chloride diffusion rate and corrosion rate. 

The corrosion rate sensors used method of linear polarization resistance (LPR) to determine 

rebar corrosion rate. In this method, the value of corrosion current density (CCD) was 

directly used to determine corrosion rate. The uncertainty associated with temporal and 

spatial variability of the corrosion rate can be reduced, if corrosion rate sensors are installed 

properly. Several of the variables associated with reliability model are affected by 

uncertainties. The spatial and temporal variability are treated as random variables and 

described in probabilistic terms. These descriptors include the expected value and the 
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standard deviation have been estimated to generate probabilistic distribution of corrosion 

rates for each critical section. In order to characterize the uncertainty associated with 

variables of reliability model, the random variable model is employed. It is assumed that the 

resistance of a reinforced concrete bridge deck slab is reduced due to the loss of 

reinforcement steel cross section area over the time. The resistance is calculated using Monte 

Carlo simulation based on the properties and dimensions of the deck and assumed to be 

lognormal distributed (Marsh and Frangopol, 2008). 

Enright and Frangopol (1998) considered the flexural strength loss in concrete bridge 

beams due to the corrosion of steel reinforcement as a time-dependent random variable. A 

model is developed to take into account the uncertainty associated with the loss of steel 

reinforcement area over the time by a normal distribution function. Different corrosion rate 

and initiation time were considered to represent the influence of these variables on the 

deterioration process. It is indicated that the rate of loss of normalized area of bending steel 

reinforcement in a concrete component is influenced by diameter of reinforcement, the 

corrosion rate, and the corrosion initiation time.  The loss of mean value of normalized 

reinforcement area generally decreases as the mean value of reinforcement diameter 

increases, the mean value of corrosion rate increases, and the mean value of corrosion 

initiation time decreases. It is identified that the mean corrosion rate has a significant 

influence on the descriptor of normalized area. Also it appears the influence of the 

coefficient of variation of corrosion initiation time on the descriptor of normalized area is 

time-dependent (Enright and Frangopol, 1998). 

Li (2003) proposed a degradation model of flexural stiffness and flexural strength of a 

RC component subject to corrosion based on experimental data. This approach can be 

justified when the development of theories for RC structural design is examined, in which 

design formulas are based on large quantity of experimental research. It has been identified 

that reinforced concrete flexural members deteriorate at different rates with stiffness 

deteriorating faster than strength. A methodology is established based on the deterministic 

parameter and is compared with the experimental results. It is identified that the differences 

between theoretical and experimental result are due to uncertainties associated with 

corrosion process and other factors such as environmental condition, material discrepancy, 
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and workmanship. A general model of structural deterioration like equation (1.2) has been 

employed. It has been indicated that the theoretical results of strength deterioration of RC 

members in comparison with the destructive tests are grossly underestimated. The time-

dependent deterioration function of flexural strength of the RC member has been represented 

as a function of random variables. The mean value of time-dependent deterioration function 

which is determined as multiplies of a deterministic coefficient and deterioration 

experimental function is represented in the following form 

 

𝜇𝐺(𝑡) = 𝐺0exp (−𝛾𝑡)  (2.10) 

 

where 𝜇𝐺(𝑡) is mean value of the deterioration function, 𝐺0 is initial deterioration 

function at time zero, which is one according to the definition of deterioration function and 

𝛾 coefficient represents the rate of structural deterioration (Li, 2003). 

Brodski and Ponomarev (2006) used deterministic and probabilistic methods to compare 

the deterioration prediction of bridge condition. The study considered different models to 

determine the deterioration process. First, it is considered a model on the basis of the mean 

values of structural element condition without taking into consideration specific design 

features or condition of a specific component and deterioration process. The deterioration of 

a bridge is represented in form of an exponential function as following 

 

𝐼 = 𝑒𝜆𝑡 − 1  (2.11) 

 

where 𝑡 is time and 𝜆 is the rating coefficient determined for each bridge on the basis of 

the boundary condition 

 

𝜆 =
𝐿𝑛2

𝑇𝑐
  (2.12) 

 

where 𝑇𝑐is the average life of a known bridge. In the second model, the inspection 

outcomes have been studied to determine the rating coefficient in agreement with a 

procedure for adaption of baseline data in terms of statistics. The mean value and standard 
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deviation of a specific inspection finding is taken into account in the deterioration process 

and it is represented as lognormal distribution. It is identified that the result of expert 

judgment provides underestimate for the prediction of a bridge condition corresponding to 

the lower limit of the average statistical scatter of the service lifespan (Brodski and 

Ponomarev, 2006). 

Frangopol et. al. (2004) reviewed three random variable models as a part of an 

investigation of the bridge maintenance management to represent deterioration process. First 

model is the failure rate model in which the only random variable is the lifetime itself. 

Second model is the classical reliability index model, where the life time distribution 

function follows from a limit state which is a function of one or more random variables. The 

last is the condition index model where the lifetime distribution function follows results of 

visual inspections. Unfortunately, these models are described just as functions. No 

numerical examples were provided to illustrate the application of the models (Frangopol et 

al., 2004). The significant disadvantages of using these models are that they consider the 

deterioration process as a time independent process without taking into account uncertainty 

associated with deterioration process which is propagated forward in time   

A condition –based model is implemented to determine the time to failure of a component 

or structure as a random variable. In order to estimate the structural condition, a Markov 

chain process is employed based on the assumption that the condition of a component is 

explained in terms of a limited number of condition states. A transition probability is defined 

as the probability that a component will move from one state to another, depending on the 

action taken. It is quite flexible in adapting it to visual inspection data. (Van Noortwijk and 

Frangopol, 2004a)  

However, there are some issues on this model as: 

1. Deterioration of a component is described in qualitative terms only 

2. Transfer process  of condition is considered as a single step function 

3. Future condition is only dependent on the current condition not the 

deterioration history 

4. Bridge system condition is not explicitly considered  
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2.5.2.1 Issues of Random Variable Deterioration Models 

 

Owing to usual lack of failure data, a reliability approach solely based on lifetime 

distribution and their unobservable failure rates as proposed by Farngopol et al. (2004) is 

unsatisfactory. According to results of comparison of the random variable and stochastic 

process models of deterioration process representation, it is concluded that use of random 

variable model to represent deterioration process is not most appropriate model ((Pandey et 

al., 2009; Frangopol et al., 2004). 

In structural engineering, time-dependent functions are advocated for which the 

coefficients (such as an average rate of deterioration per unit time) are random quantities. 

However, as mentioned before, temporal variability is not taken into account in this random-

variable model. It is recommended to represent deterioration process in terms of a stochastic 

process (Frangopol et al., 2004). 

 It is demonstrated in Figure 1.3 that the variability of deterioration state can be out of 

step with the inspection intervals. Therefore, it is concluded that the deterioration state 

estimation has to be as actual as possible. It means that the deterioration process has to be 

presented in form of a time-dependent variable due to uncertainties associated with 

deterioration process.  

Pandey et al. (2009) compared the random variable model and stochastic process to 

represent the deterioration process of a structure. It is identified that random variable model 

cannot reflect temporal variability associated with deterioration process. As a consequence, 

the deterioration throughout a specific sample deterioration path is effectively deterministic 

over time in the random variable model, while it varies probabilistically in stochastic 

process. It is identified that the random variable model tends to underestimate the life-cycle 

cost (Pandey et al., 2009). 

In order to compare the random variable model (RV) and stochastic process, deterioration 

of structure resistance is considered. Assuming that the linear model used to represent the 

cumulative deterioration. 

 

𝑋(𝑡) = 𝐴𝑡  (2.13) 
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Where 𝑋(𝑡) is the cumulative deterioration, where A is deterioration rate. The 

deterioration rate is considered as a random variable. The following notation is used to 

define the random variable properties at given time. 

 

𝜇𝑋(𝑡) = 𝜇𝐴𝑡,   𝜎𝑋(𝑡)
2 = 𝜎𝐴

2𝑡2,   𝐶𝑂𝑉(𝑋(𝑡)) = 𝑣𝑋(𝑡) =
𝜎𝑋(𝑡)

𝜇𝑋(𝑡)
= 𝑣𝐴  (2.14) 

 

It is concluded from equation 2.14 that the COV of deterioration is constant over the time 

as it is demonstrated in Figure 2.4. Since the RV model is inadequate model to represent the 

structural deterioration, stochastic process will be applied here.  

For the stationary gamma process model, the cumulative deterioration  𝑋(𝑡) follows a 

gamma distribution,𝐺𝑎(𝑥; 𝛼𝑡, 𝛽), with a shape parameter 𝛼𝑡 and a scale parameter 𝛽. The 

mean, variance and COV of 𝑋(𝑡) are determined as (Pandey et al., 2009) 

 

𝜇𝑋(𝑡) = 𝛼𝛽𝑡, 𝜎𝑋(𝑡)
2 = 𝛼𝛽2𝑡,    𝑣𝑋(𝑡) =

1

√𝛼𝑡
  (2.15) 

 

The mean value of deterioration rate and COV of lifetime of two models are compared 

in Figure 2.4. It is demonstrated that the mean value of deterioration rate is not identical in 

two models. When the COV of lifetime is small value, the mean rates in both models are 

quite close. However, as COV of lifetime increase, the GP deterioration rate accelerates 

much faster than that in RV model (Pandey et al., 2009).  

The comparison of COV of cumulative deterioration in two models is illustrated in Figure 

2.5. It is time-invariant and nonlinear function in the RV model. In contrast, COV of 

cumulative deterioration in GP model is a time-dependent parameter, which decreasing over 

time. Nevertheless, COV of cumulative deterioration in GP model is greater than that of 

equivalent RV model. Therefore, it is identified that a stochastic process is more appropriate 

to represent deterioration process (Pandey et al., 2009). 
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Figure 02.3 Comparison of mean deterioration rate in equivalent RV and GP (Pandey 

et al., 2009) 
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Figure 2.4 Coefficient of variation of deterioration states in equivalent RV and GP 

(Pandey et al., 2009) 
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According to the studies which are developed on the basis of random variable models to 

represent deterioration process, main issues are: 

 A sample path for component deterioration  is set at the start and does 

not change over the lifetime 

 COV of deterioration model is constant over  the time 

 After the first inspection, the deterioration modelling is effectively 

deterministic 

An example of a probabilistic time-dependent approach is presented in the following. 

Integrated approach for deterioration modeling, probabilistic state-based/time-based model 

and reliability-based mechanistic, is proposed by Morcous et al. (2010). The probabilistic 

state-based/time-based model is used to represent the deterioration process of network 

analysis and reliability-based model for prediction of components of project level analysis. 

A reinforced concrete slab of a girder bridge, which is the most dominant type of structure 

in Quebec with the inspection outcomes of Transportation Department of Quebec have been 

used, is selected to model development of deterioration. In this model, elements of the 

network are categorized to three groups (primary, secondary and auxiliary) dependent on 

the element’s influence on the network safety level (Morcous et al., 2010). 

The mechanistic models are used to estimate the analysis of safety-critical structures, 

while the deterioration is represented by quantitative performance indicators i.e. resistance, 

deflection, stress. The mechanistic models result can include beginning of deterioration, 

deterioration propagation, and deterioration impact on the safety and serviceability of 

structure. Deterioration mechanisms of a bridge result in a complex process with parameters 

such as structural system behavior, material, etc. Most of these parameters are time-

dependent and random in nature, with considerable level of uncertainty. Flexural capacity 

of corroded reinforced concrete members is used as performance indicator. The ratio of time-

variant cross sectional area to initial cross-sectional area is considered as a basic random 

variable. Monte Carlo simulation is used to estimate the distribution of percentage remaining 

steel area at different points in time. This quantitative information is valuable for estimating 

of deterioration propagation (Morcous et al., 2010). 
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2.6 Summary and Conclusions 

 

Types of uncertainties associated with structural deterioration mechanisms are reviewed 

in this chapter. Moreover, different methods that can be used to characterize the uncertainty 

are investigated. It is identified that the deterministic and semi-probabilistic methods cannot 

provide adequate information to represent uncertainties. Therefore, the probabilistic method 

is the most appropriate method to characterize the uncertainty. Random variable models and 

stochastic processes are models that can be used to represent uncertainties through the 

probabilistic method. It is identified that most common models to represent uncertainties 

associated with structural deterioration process are random variable models. However, 

Pandey et al. (2009) identified with consideration to comparison of the random variable and 

stochastic process that random variable models cannot reflect the temporal variability with 

deterioration process. 

 It is concluded that the stochastic process is the most appropriate model to characterize 

the structural deterioration process. More information about different stochastic processes 

and their application is described in the next chapter.  
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3. Stochastic Process Model for Structural Deterioration 

 

3.1 Introduction 

 

In order to maintain the safety and serviceability of a structure at adequate level, it is 

important to represent the structural deterioration process as comprehensively as possible in 

respect to the influence of deterioration factors. The deterioration of structures can be 

represented using deterministic or probabilistic approach. However, considering that the 

current and future status of the structure are associated with many sources of uncertainty 

probabilistic approach should be considered as more appropriate model. In chapter 2, it is 

identified that a stochastic damage accumulation process model has to be considered to 

characterize the structural deterioration. More information about different stochastic 

processes can be find in Appendix-F. 

 During the last decade many studies have been conducted to represent the structural 

deterioration as stochastic processes. Campoli and Ellingwood (2002) proposed a time-

dependent reliability method to evaluate safety level of concrete structures of a nuclear 

power plant. The effects of deterioration mechanisms such as corrosion and freezing and 

thawing on the reinforced concrete structures in the nuclear power plants (NPP) are modeled 

mathematically, in order to evaluate their impact on time-dependent reliability and structural 

performance. It has been proposed that the stochastic damage accumulation process can be 

considered as an alternative to model structural deterioration. It is identified that the 

stochastic deterioration processes for material properties deterioration can be characterized 

from 

 Mathematical models that describe the effects of ageing on steel and concrete. 

 Accelerated life testing. 

 Combination of the two approaches. 

Since the accelerated life tests often do not scale properly from laboratory to the prototype 

or the actual in-service condition, this model is not appropriate. From structural engineering 

point of view, it is important that the models of material deterioration be consistent with the 
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needs of structural engineering calculations. Thus, a mathematical model is needed. The 

structural damage can be evaluated by an indicator 𝐷(𝑡) (represented by a non-negative non-

decreasing function) adopted to represent the state of structural component. Therefore, the 

Markov process has been applied to determine the damage indicator𝐷(𝑡). This requires that 

cumulative damage at time𝑡, which defines the state of the component, is dependent only on 

the damage state at time (𝑡 − 𝑑𝑡) and the damage that occurs during 𝑑𝑡 (Campoli and 

Elingwood, 2002).  

Grall et al. (2002) considered a structure that is subjected to deterioration factors, and is 

monitored through perfect inspections. In order to establish a condition base deterioration 

model, a structure subject to a continuous accumulation of deterioration in time is 

considered. Its condition at time 𝑡 is assumed to be completely described as a single scalar 

random variable𝑋(𝑡). The stochastic process {𝑋(𝑡); 𝑡𝜖𝑇} corresponds to the deterioration of 

the structure and satisfies following assumptions.  

1. 𝑋(0) = 0 at time 𝑡 = 0 

2. The increments in a time interval are non-negative, stationary and statistically 

independent.  

It is proposed that the deterioration process can be observed only at discrete equidistant 

times 𝑡𝑘 = 𝑘∆𝑡 , where interval time ∆𝑡 is either arbitrarily chosen or imposed by the 

considered condition state. Natural assumption in a stationary context can be made to 

consider the average amount of deterioration at time 𝑡, in order to characterize the 

deterioration process better. 

It is identified that applying a stochastic process to represent structural deterioration can 

take into account inspection outcomes in a reasonable manner (Grall et al., 2002).  
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3.2 Stochastic Processes Model for Deterioration 

 

Owing to the usual lack of failure data, it is recommended to represent structural 

deterioration in terms of a time-dependent process. Random deterioration rate, Markov 

processes, Brownian motion with drift and monotonically increasing jump processes   are 

forms of stochastic process and have been reviewed by Van Noortwijk (2009).  

They can be used to represent the structural deterioration. The characteristics of stochastic 

processes are explained in next sections. 

 

3.2.1 Random deterioration rate model 

 

The simplest stochastic process is a time dependent function for which the average rate 

of deterioration per unit time is a random variable. Reliability methods have been developed 

on the basis of random deterioration rate. However, the sample path of such model is linear 

and a single inspection thus directs the future deterioration prediction in advance. This model 

is recommended to use as an approximation (VanNoortwijk, 2009). Figure 3.1 demonstrates 

general principles of this method. The deterioration process is represented as a linear 

function of interval 𝑡𝑖. The interval deterioration rate 𝐶𝑖(𝑡) is assumed as a normal random 

variable where the mean value is constant over the interval time and standard deviation value 

is constant over the lifetime as shown in Figure 3.1.  
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    Figure 3.1 General illustration of random deterioration rate (Pandey et al., 2007)  

 

3.2.2 Markov process for deterioration 

 

For the purpose of inspection and maintenance optimization, it is better to consider the 

deterioration process model that properly characterizes the temporal variability. A Markov 

process is based on the assumption that the condition of a structural component can be 

described in terms of a condition state. It is a stochastic process where the condition state at 

a particular time is just depending on the prior condition state and it is independent of the 

condition at other times. Classes of Markov processes are discrete-time Markov processes 

which have finite state spaces (called Markov chain) and continuous-time Markov processes 

with independent increments (Van Noortwijk, 2009). 
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3.2.2.1 Discrete Markov (Markov Chain) 

 

Assume that there is a finite countable state space, the condition of a structure or 

component can be in any one of 𝑁 ≥ 0 discrete states. A Markov chain is a discrete time 

stochastic process {𝑋𝑛, 𝑛 = 0,1, … } for which the Markovian property holds. This property 

states that the future condition only depends on the current condition. The conditional 

probability of moving into state 𝑗 at time 𝑛 + 1 given that at the current time 𝑛 the object is 

in the state 𝑖 is given by: 

 

𝑃𝑖𝑗 = Pr{𝑋𝑛+1 = 𝑗|𝑋0 = 0,… , 𝑋𝑛−1 = 𝑖𝑛−1, 𝑋𝑛 = 𝑖} = Pr {𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖}  (3.1) 

 

If this transition probability does not depend on 𝑛 then the process is called stationary in 

time (Van Noortwijk, 2009).  

A stationary first-order Markov-chain has been developed as an application example of 

state-based probabilistic deterioration model. Transition probabilities are estimated by 

solving the non-linear optimization problem which minimizes differences between the deck 

condition predicted using regression model and the deck condition predicted using the 

Markov-chain model (Morcous et al., 2010). On the other hand, in time-based model, the 

transition time is defined as the time needed for an element to change initial state to the next 

lower state. The information required for development of this model includes the condition 

state transition events and the corresponding time data. Due to periodic inspection schedule 

and lack of condition data, it can be obtained only for most common condition states. It is 

concluded that frequent inspections over a long observation period are required for 

developing time-based models, while infrequent inspections over a relatively short 

observation period can be used for developing state-based models (Morcous et al., 2010). 

Kallen (2010) reviewed different methods which have been applied for the estimation of 

Markov chain models in civil engineering problems. Due to variation of information type 

which is available for engineer, it is concluded that a direct comparison of these models is 

not possible. He proposed to subdivide data to three major groups as: 
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 Type I: observation of the state itself and represented by realization value of 

condition state of the process 

 Type II: aggregated data in the form of relative fractions of proportions of a 

specific condition state 

 Type III: count data in the form of the number of condition transitions 

It is concluded that there are some important issues concerning the use of Markov chain 

models (Kallen, 2010) 

 The condition state is not continuous, but discrete and finite. This feature of 

deterioration process works for visual inspection but not for other types. 

 Transition probabilities in the transition matrix are difficult to assess and quite 

subjective. 

 The Markov modeling of no memory has often been criticized. 

 

3.2.2.2 Brownian motion with drift process 

 

The Brownian motion with drift is a continuous-time stochastic process with drift 

parameter 𝜇 and variance parameter 𝜎2 having the following properties 

 𝑋(𝑡) is normally distributed with mean µt and variance 𝜎2 𝑡 for all times(𝑡 ≥

0) 

 𝑋(𝑡) has an independent increments 

 𝑋(0) = 0 with probability one 

A characteristic of this process, in the structural reliability manner, is a live load model 

which alternately increases and decreases (Van Noortwijk, 2009). 

Park and Padgett (2005) used some accelerated life test models to define the failure model 

and degradation process. The results are used to compare the actual data with the theoretical 

representation. It is concluded that the model for failure can be approximated closely with 

the available data from accelerated test and estimation by Brownian motion with drift (Park 

and Padgett, 2005).  
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As the structural deterioration process is monotone incremental process, it is identified 

that the Brownian motion with drift is inadequate stochastic process. However, other studies 

have been conducted to establish stochastic structural deterioration using different stochastic 

processes such as Poisson process. 

In general, the service life of deteriorating structures is a progression of reliability states. 

Therefore, time-dependent reliability index models were developed and applied to extend 

the service life of deteriorating structures under various maintenance scenarios 

(VanNoortwijk and Frangopol, 2004b). 

In reliability-based model, the time-dependent reliability of a deteriorating structure or a 

group of structures is considered as function that is influenced by some factors i.e. initial 

reliability index and the time of deterioration initiation. The advantage of this model is that 

the reliability is explicitly taken into account. It is concluded that the ideal way is to base a 

deterioration model on the stochastic processes of mechanical properties, and using this 

deterioration results to compute the time-dependent reliability function. In order to represent 

the deterioration model without maintenance, the bi-linear reliability index profile has been 

applied extensively (VanNoortwijk and Frangopol, 2004b). 

 

𝛽(𝑡) = {
𝛽0                                     𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 𝑡𝐼
𝛽0 − 𝛼1(𝑡 − 𝑡𝐼)                     𝑓𝑜𝑟 𝑡 > 𝑡𝐼

  (3.2) 

 

However, a nonlinear model of reliability index deterioration profile was recently 

proposed as (VanNoortwijk and Frangopol, 2004b)  

 

𝛽(𝑡) = {
𝛽0                                                     𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 𝑡𝐼
𝛽0 − 𝛼2(𝑡 − 𝑡𝐼) − 𝛼3(𝑡 − 𝑡𝐼)

𝑝          𝑓𝑜𝑟 𝑡 > 𝑡𝐼
  (3.3) 

 

Where 𝛼1, 𝛼2, 𝛼3 are deterioration rates, 𝑡𝐼 is the deterioration at initial time and 𝑝 is a 

parameter related nonlinearity effect in terms of a power low in time. It should be noted that 

reliability profile in equation (3.2) and (3.3) are not calculated from state functions, but 

simulated by the Monte Carlo method (VanNoortwijk and Frangopol, 2004b).  
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Kuniewski et al. (2009) proposed a sampling-inspection strategy for the evaluation of 

time-dependent reliability of deteriorating steel bridge system. They assumed that the 

deterioration could initiate at random time and at random location. The bridge safety 

becomes unacceptable when a defect reaches the critical size, at least. The gamma process 

is used to represent the defect size growth procedure. Here again, it is the same issues with 

reliability index evaluation that it can be that every component has a relevant reliability 

index which cannot be used to evaluate safety of other components. 

In general deterioration process of a bridge component is a non-negative, independent 

and monotonic incremental process over the time in sequence of small increments. The 

continuous gamma process is considered the most appropriate process to represent the 

associated degradation.  

 

3.3 Continuous Gamma Process 

 

A gamma process is a continuous-time stochastic process with independent, non-negative 

increments having gamma distribution with an identical scale parameter. This process is 

appropriate to model development of phenomena that has a monotone increasing trend over 

time, such as wear, fatigue, creep, crack, corrosion and, etc. An advantage of modeling 

deterioration processes through gamma processes is that the required mathematical 

calculations are relatively straightforward (Van Noortwijk, 2009). 

Firstly, it is considered that a random variable 𝑋 has a gamma distribution with shape 

parameter 𝛼 > 0 and scale parameter 𝛽 > 0 if its probability density function is given by: 

 

𝐺𝑎(𝑥|𝛼, 𝛽) =
𝛽𝛼

Γ(𝛼)
𝑥𝛼−1 exp(−𝛽𝑥) , 𝑥 ≥ 0  (3.4)  

                                                       

and  Γ(𝑎) = ∫ 𝑧𝑎−1𝑒−𝑧𝑑𝑧
∞

𝑧=0
  is the gamma function for 𝛼 > 0. Furthermore, let 𝛼(𝑡) be 

a non-decreasing, right-continuous, real valued function for 𝑡 ≥ 0,with 𝛼(0) = 0.  

The gamma process with shape function 𝛼(𝑡) > 0 and scale parameter 𝛽 > 0 is a 

continuous-time stochastic process {𝑋(𝑡); 𝑡 ≥ 0} with the following properties: 
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{

𝑋(0) = 0                                               𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑛𝑒

𝑋(𝜂) − 𝑋(𝑡) ≈ 𝐺𝑎(𝛼(𝜂) − 𝛼(𝑡), 𝛽) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜂 > 𝑡 ≥ 0

𝑋(𝑡)                                                        ℎ𝑎𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑠

}  (3.5) 

 

Let 𝑋(𝑡) denote the deterioration at time 𝑡, 𝑡 ≥ 0, and let the probability density function 

of {𝑋(𝑡); 𝑡 ≥ 0}, in accordance with definition of the gamma process, be given by: 

 

𝑓𝑋(𝑡)(𝑥) = 𝐺𝑎(𝑥|𝛼(𝑡), 𝛽)    𝛼(𝑡) > 0, 𝛽 > 0, 𝑡 ≥ 0  (3.6) 

                                                

With expectation and variance: 

 

𝐸(𝑋(𝑡)) =
𝛼(𝑡)

𝛽
 , 𝑉𝑎𝑟(𝑋(𝑡)) =

𝛼(𝑡)

𝛽2
  (3.7)                                   

                              

The coefficient of variation is defined by the ratio of the standard deviation and the mean: 

𝐶𝑂𝑉(𝑋(𝑡)) =
√𝑉𝑎𝑟(𝑋(𝑡)

𝐸(𝑋(𝑡))
=

1

√𝛼(𝑡)
  (3.8)        

                                

COV decreases as time increases. On the other hand, the ratio of the variance and the 

mean equals 
1

𝛽
 and therefore does not depend on time (Van Noortwijk, 2009). 
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  Figure 3.2 General illustration of different Gamma probability density functions 

 

Figure 3.2 illustrates several sample gamma distributions for selected distribution 

parameters that are function of the time horizon. It is evident that shape and scale parameters 

need to be established for specific deterioration process. Furthermore, it is identified that 

they are independent so effectively the distribution for deterioration associated with the   

site-specific bridge condition only on the basis of current observation can be obtained.  

 

3.3.1 Gamma Process Parameters 

 

In order to represent the reinforced concrete structures deterioration, some researchers 

have conducted work to establish empirical and mathematical models. 

 Zdenek and Bazant (1979) developed a theoretical physical model to determine the 

corrosion initiation time and the time to cracking as function of reinforcement depth and 

spacing, corrosion rate and certain mechanical properties of the concrete including tensile 

strength, modulus of elasticity and Poisson’s ratio.   

0

0.1

0.2

0.3

0 10 20 30 40

f X
(t

) 
(x

)
p
ro

b
ab

il
it

y
 d

en
si

ty
 f

u
n
ct

io
n

X

α=9.225 β=14.3

α=5.2 β=8.45

α=0.95 β=1.72



82 

 

This considers a gamma process with shape function {𝛼(𝑡) = 𝑐𝑡𝑏 𝛼(𝑡) > 0, 𝑡 ≥ 0} and 

scale parameter𝛽 > 0.  When there is engineering knowledge about the shape of the 

degradation process, 𝑏 might be constant. Some studies recommend 𝑏 for different factors 

i.e. corrosion of reinforcement (linear, 𝑏 = 1), sulphate attack (parabolic, 𝑏 = 2) and 

diffusion-controlled ageing (square root, 𝑏 = 0.5) (Campoli and Ellingwood, 2002).  

Here it is assumed that the value of the power 𝑏 is known, but 𝑐 and 𝛽 are unknown. The 

question which remains to be answered is how expected deterioration increases over time. 

In order to apply the Gamma process model to practical examples, statistical methods for 

the parameter estimation of Gamma process are required. In the event of expected 

deterioration in terms of the parameters 𝑐 and 𝛽 they have to be obtained by using 

observational data. Once the randomness is uniquely defined in terms of the parameters of 

the distribution, it is used in subsequent probabilistic analysis, assuming the basic 

characteristics of the random variable remain unchanged. This is generally known as the 

point estimation of parameters. Two most common methods of point estimation of 

parameters are (Van Noortwijk, 2009)  

 

 Method of Maximum Likelihood 

 Method of Moments  

 

To account for statistical uncertainties, it is proposed to use Bayesian analysis in which the 

scale parameter of the Gamma process is assumed to have an inverted gamma distribution 

as prior. This estimation method is called  

 Method of Bayesian Statistics 
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3.3.2 Estimation of Gamma Process Parameters  

  Once the Gamma process is selected to represent the deterioration model, it is necessary to 

define it uniquely by evaluating its parameters. The accuracy in estimating these parameters 

based on the test or observational data determines the success in modeling the uncertainty 

in the deterioration model. 

3.3.2.1 Method of Moments 

 

In statistics, method of moments estimates population parameters, by equating sample 

moments with unobservable population moments and then solving the equations for the 

quantities to be estimated. 

According to the expected value and variance of the accumulated deterioration at time 𝑡, 

when the power parameter is known, the non-stationary gamma process can be easily 

transformed to a stationary gamma process by performing a monotonic transformation from 

the time to transformed or operational time 𝑧(𝑡) = 𝑡𝑏 , 𝑧(𝑡) ≥ 0 (Van Noortwijk, 2009). 

Substituting the inverse time transformation 𝑡(𝑧) = 𝑧
1

𝑏, 𝑡 ≥ 0 it’s expected value and 

variance will be: 

 

𝐸 (𝑋(𝑡(𝑧))) =
𝑐𝑧

𝛽
, 𝑉𝑎𝑟 (𝑋(𝑡(𝑧))) =

𝑐𝑧

𝛽2
  (3.9)            

                                                    

Similarly, the transformed inspection times are {𝑧𝑖 = 𝑡𝑖
𝑏 , 𝑖 = 1,2, … , 𝑛, 𝑧𝑖 ≥ 0 }. 

Transformed times between inspections are defined as {∀ 𝑖, 𝜔𝑖 = 𝑡𝑖
𝑏 − 𝑡𝑖−1

𝑏 , 𝑎𝑛𝑑 𝜔𝑖 >

0} and {∀ 𝑖, γ𝑖 = 𝑋𝑖 − 𝑋𝑖−1, and  γ𝑖 > 0}. 

The deterioration increments γ𝑖 > 0 have a gamma distribution with shape factor 𝑐𝜔𝑖 >

0 and scale parameter 𝛽 > 0 for all, 𝑖 = 1,2, … , 𝑛. According to Cinlar et al. (1979), the 

method -of-moments estimates �̂�, �̂� can be solved from:  

 

𝑐̂

�̂�
=
∑ 𝛾𝑖
𝑛
𝑖=1

∑ 𝜔𝑖
𝑛
𝑖=1

=
𝑥𝑛

𝑡𝑛
𝑏 = �̅�  (3.10)  
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𝑥𝑛

�̂�
(1 −

∑ 𝜔𝑖
2𝑛

𝑖=1

[∑ 𝜔𝑖]
2𝑛

𝑖=1

) = ∑ (𝑛
𝑖=1 𝛾𝑖 − �̅�𝜔𝑖)

2  (3.11)  

                                                    

Clearly, the method of moments leads to simple formula for parameter estimation which 

can be easily computed. However, it is identified that estimated parameters can be biased. 

When estimating parameters of known family of probability distributions, this method can 

be replaced by Maximum likelihood method, because Maximum likelihood estimators have 

higher probability of being close to the quantities to be estimated more often unbiased. 

Furthermore, in some cases, infrequent with large samples but not so infrequent with small 

samples, the estimates given by the method of moments are outside of the parameter space 

and they are not necessarily sufficient statistics (Loeve, 1977). Estimates by method of 

moments can be used as the first approximation for gamma process parameters. 

 

3.3.2.2 Method of Maximum Likelihood 

 

In general, for a fixed set of data and underlying probability model, the method of 

maximum likelihood can be used to select the value of parameters that produce the 

distribution most likely to have resulted in the observed data. The maximum-likelihood 

estimators of 𝑐 and 𝛽 can be obtained by maximizing the logarithm of the likelihood function 

of the deterioration increments. The likelihood function of the observed deterioration 

increments {𝛾𝑖 = 𝑥𝑖 − 𝑥𝑖−1, 𝛾𝑖 > 0} is a product of independent gamma densities (Van 

Noortwijk, 2009). 

 

  {ℒ(𝑐𝜔𝑖, 𝛽|𝛾𝑖) = ∏ 𝑓(𝛾𝑖|𝑐𝜔𝑖, 𝛽)
𝑛
𝑖=1 = ∏

𝛽
𝑐[𝑡𝑖
𝑏−𝑡𝑖−1

𝑏 ]

Γ(𝑐[𝑡𝑖
𝑏−𝑡𝑖−1

𝑏 ]

𝑛
𝑖=1 𝛾

𝑖

𝑐[𝑡𝑖
𝑏−𝑡𝑖−1

𝑏 ]−1
exp(−𝛽𝛾𝑖)

𝛾𝑖 > 0, 𝑡𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑛; 𝛽 > 0, 𝑐 > 0                                                                

  (3.12) 

 

Cinlar et al (1979) show that the maximum likelihood estimates �̂� and �̂� are as follows: 
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�̂� =
𝑐̂𝑡𝑛
𝑏

𝑥𝑛
, ∑ [𝑡𝑖

𝑏 − 𝑡𝑖−1
𝑏 ]𝑛

𝑖=1 {𝜓(�̂�[𝑡𝑖
𝑏 − 𝑡𝑖−1

𝑏 ] − log 𝛾𝑖} = 𝑡𝑛
𝑏 log(

𝑐̂𝑡𝑛
𝑏

𝑥𝑛
)      (3.13)   

          

where 𝜓 is the first derivative of gamma function (
𝑑Γ(𝑥)

𝑑𝑥
). As the cumulative amounts of 

deterioration are measured, the last inspection contains the most information. It is therefore 

assumed that the expected deterioration at the last inspection represents the real 

deterioration.  

It is identified that the maximum likelihood method provides a consistent approach to 

parameter estimation. This means that using this method estimates can be obtained for a 

large variety of situations. However, the estimators can be heavily biased for small samples. 

Nevertheless, the maximum likelihood method has desirable mathematical and optimality 

properties. They become minimum variance unbiased estimators as the sample size is 

increased. It is indicated that the numerical estimation is usually non-trivial except for a few 

cases where the maximum likelihood formulas are in fact simple. In addition, the equations 

of this method need to be specifically worked out for a given distribution and estimation 

problem (Ash, 1970) 

 

3.3.2.3 Method of Bayesian Statistic 

 

In the framework of estimating the unknown parameters c>0 and 𝛽 > 0, the Bayesian 

approach assumes these parameters to have a known probability distribution. Bayes theorem 

can be then be written as: 

 

𝜋(𝑐, 𝛽|𝛾𝑖) =
ℒ(𝛾𝑖|𝑐, 𝛽)𝜋(𝑐,𝛽)

∫ ∫ ℒ(𝛾𝑖|𝑐, 𝛽)𝜋(𝑐,𝛽)𝑑𝑐𝑑𝛽
∞
0

∞
0

     𝛾𝑖 > 0, 𝑖 = 1,2, … , 𝑛  (3.14)       

            

Where ℒ(𝛾𝑖|𝑐, 𝛽) is the likelihood function of the deterioration increment’s inspection 

outcomes 𝛾1, … , 𝛾𝑛 when the parametric vector (𝑐, 𝛽) is given, 𝜋(𝑐, 𝛽) is the prior density 

of (𝑐, 𝛽) before observing the inspection outcomes, 𝜋(𝑐, 𝛽|𝛾𝑖) is the posterior density of 
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(𝑐, 𝛽) after observing the inspection outcomes,  and 𝜋(𝛾𝑖) is the marginal density of the 

inspection data (Van Noortwijk, 2009).  

Using Bayes theorem, we can update the prior distribution to the posterior distribution as 

soon as the new inspection outcomes become available. First, we focus on the prior 

distribution of the scale parameter when the parameter 𝑐 is given. If the prior distribution of 

the scale parameter is given by a gamma distribution with shape factor 𝑣 > 0 and scale 

parameter 𝑢 > 0when the value of 𝑐 > 0is given, then the posterior distribution is also a 

gamma distribution with  

shape parameter 𝑣 + ∑ 𝑐[𝑡𝑖
𝑏 − 𝑡𝑖−1

𝑏 ] = 𝑣 + 𝑐𝑡𝑛
𝑏𝑛

𝑖=1   and  

scale parameter  𝑢 + ∑ 𝛾𝑖
𝑛
𝑖=1 = 𝑢 + 𝑥𝑛. 

Bayesian estimation of the scale parameter of the gamma process can be extended to 

Bayesian estimation of both the scale parameter and shape function. In combination with 

the prior density of 𝜋(𝑐), Bayes theorem can be written as  

 

 

 

 

𝜋(𝑐, 𝛽|𝛾𝑖) = 𝜋(𝛽|𝑐, 𝛾𝑖)𝜋(𝑐|𝛾𝑖)     

= ∏
𝛽𝑐𝜔𝑖

Γ(𝑐𝜔𝑖)
𝛾𝑖
𝑐𝜔𝑖−1exp (−𝛽𝛾𝑖) ×

𝑢𝑣

Γ(𝑣)
𝛽𝑣−1exp (−𝛽𝑢)𝜋(𝑐)𝑛

𝑖=1   

= 𝐺𝑎(𝛽|𝑣 + 𝑐𝑡𝑛
𝑏 , 𝑢 + 𝑥𝑛) × [

1

𝑢 + 𝑥𝑛
]
𝑣+𝑐𝑡𝑛

𝑏

𝑢𝑣

Γ(𝑣)

Γ(𝑣 + 𝑐𝑡𝑛
𝑏)

∏ Γ(𝑐𝜔𝑖)
𝑛
𝑖=1

×∏𝛾𝑖
𝑐𝜔𝑖−1

𝑛

𝑖=1

𝜋(𝑐) 

  𝛾𝑖 > 0,  𝑤𝑖 > 0   𝑖 = 1,2, … , 𝑛    𝑐 > 0, 𝛽 > 0, 𝑢 > 0, 𝑣 > 0  (3.15)      

                                     

When the parameter 𝑐 is unknown, the parameter of the prior density of 𝛽 can be 

depended on 𝑐, that is the prior density of 𝛽 given 𝑐 is gamma distribution with shape 

parameter 𝑣(𝑐) and scale parameter 𝑢(𝑐). One assumption for shape and scale parameters 

is 𝑐𝜏𝑏 and 𝑢 respectively (Van Noortwijk, 2009).  

Under this assumption, the posterior mean of scale parameter of the gamma process 𝛽 

when the value of 𝑐 is given can be written as 
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𝐸(𝑈|𝑐, 𝛾𝑖) =
𝑣(𝑐)+𝑐𝑡𝑛

𝑏

𝑢(𝑐)+𝑥𝑛
  (3.16)  

 

The predictive mean of the cumulative amount of deterioration at time 𝑡 has the form 

 

𝐸 (
𝑐𝑡𝑏

𝑈
|𝛾1, … , 𝛾𝑛) = 𝐸(

𝐶[𝑢(𝑐)+𝑥𝑛]𝑡𝑏

𝑣(𝑐)+𝐶𝑡𝑛
𝑏−1
|𝛾1, … , 𝛾𝑛)  (3.17)  

                                              

Dufresne et al. (1991) applied this method to determine the posterior distribution of the 

scale parameter of a stationary gamma process. Kallen and van Noortwijk (2004) extended 

the Bayesian estimation from perfect to imperfect inspection. However, it is identified that 

a big sample data is needed in order to rely on the estimation results (Dufresne et al., 1991; 

Kallen and VanNoortwijk, 2004).  

Unfortunately, it is evident that in our model the inspection outcomes which might be 

available to estimate the deterioration process parameters are scarce and therefore such 

approach would not be appropriate. 

 

3.4 Reinforced Concrete Deterioration Model by Stationary Continuous Gamma 

Process 

 

It is identified that for a component subjected to an increasing deterioration with a certain 

scale of deterioration, at time 𝑡, there is a function of at least one parameter that could be 

inspected representing the cumulative deterioration, random variable 𝑋(𝑡). In order to 

establish such function for a concrete bridge component, it is needed to identify the 

deterioration mechanism. Variety of defects and mechanisms, which can result in structural 

deterioration, have been defined and demonstrated in Table 1.2. 

In preceding sections, it has been become evident that the Gamma process is the most 

appropriate stochastic model to characterize the structural deterioration of reinforced 

concrete bridges. It is necessary to define it uniquely by estimating distribution parameters. 

The accuracy of estimates for the Gamma parameters is dependent on the available data and 

determines the success in modeling the uncertainty in deterioration. Firstly in order to 
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estimate the gamma process parameters by method of moments, it is assumed that the 

inspection outcomes based on expert judgment might provide the defects features on the 

bridge component. The inspection outcomes can be collected at different times over the 

bridge lifetime regarding the inspection interval. As more inspection outcomes become 

available, the outcomes can be used in parameters estimation process to update the Gamma 

process parameters, which can result in updating of the deterioration profile for concrete 

bridge component. The application of this methodology is explained in the following 

section. 

 

3.4.1 Deterioration Model for RC Bridge Deck 

 

As mentioned Chapter 1, predominant deterioration mechanism for reinforced concrete 

structures is corrosion of the reinforcement. Here it is assumed that embedded bars in 

concrete are uniformly corroded due to the chloride attack. This could result from exposure 

of bridge component to de-icing salts. Here, we consider a reinforced concrete bridge deck 

that is subjected to corrosion to present the structural deterioration process as a continuous 

gamma process. We implement the new methodology using the inspection outcomes to 

characterize the deterioration progress. Thus we introduce and enable an updatable 

deterioration model. The properties and characteristics of the slab are illustrated in Figure 

3.3. 

 

 

 

 

 

 

 

 

 

                          Figure 3.3 Reinforced Concrete Slab Section 
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3.4.1.1 Corrosion Mechanism Models 

 

The corrosion process consists of two consecutive phases. Robert et al. (2000) suggested 

an initiation and propagation phase. The initiation phase describes the permeation of 

aggressive agents through the concrete cover until they reach the reinforcement. The 

propagation phase describes the development of rust products that induce cracking and 

spalling of the concrete cover (Robert et al, 2000). 

An important part of the corrosion model is the pattern of corrosion. Generally two 

patterns are considered to model the corrosion propagation as 

 Uniform corrosion is commonly assumed when calculating levels of 

corrosion in reinforced concrete section. In this pattern, a uniform loss of 

reinforcement bar is assumed (Robert et al, 2000). 

 Pitting corrosion is a corrosion pattern of severe but local loss of section that 

is typically 4-8 times the equivalent uniform corrosion loss. It is likely to 

affect a more localized area of a bridge deck compared with uniform 

corrosion (Robert et al, 2000). 

It is concluded that the overall effect of localized pitting corrosion on the capacity of a 

bridge deck may be no more severe than the effects of more widespread uniform corrosion 

(Robert et al, 2000). In this study only the uniform corrosion model is considered. 

 

3.4.1.2 Deterioration of a Steel Bar Subject to Uniform Corrosion 

 

It should be noted that in this study the initiation time and corrosion rate are considered 

as deterministic parameters. These parameters are derived from Enright & Frangopol (1998) 

research which considered an existing reinforced concrete bridge located in Colorado. 

The deterioration process of a specific steel bar as part of bridge slab deck subject to 

uniform corrosion pattern and constant corrosion rate is considered. It is assumed that a 

periodic inspection scheme is conducted on the bridge to gain corrosion information on site. 
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In this chapter the inspection outcomes are assumed deterministic, however it is identified 

that inspection outcomes are associated with uncertainties. 

 

 

3.4.1.3 Gamma Processes Presentation of Deterioration 

 

Following principles set out earlier in this Chapter continuous gamma process model is 

implemented. Initial flexural moment capacity of the section is determined on the basis of 

EC2 (2006) formulations (see Appendix-B). It should be noted that the partial safety factors 

in this equation are neglected, as the moment capacity is considered as a stochastic process. 

However, the rectangular block model is assumed to represent flexural capacity. 

 

𝑀0 = 𝐴𝑆0𝑓𝑦(𝑑 − 0.4𝑥)  (3.18) 

                                                                                           

Where 𝑀0 is the initial moment capacity of the section, 𝐴𝑆0 is the initial reinforcement 

cross section area, 𝑓𝑦 is the yield strength of the steel bar, 𝑓𝑐𝑢 is the compressive strength of 

concrete,  𝑑 is the distance between steel bar’s center and concrete compression area and x 

is the location of neutral axis as it has been shown in Figure 3.3. The flexural moment 

capacity of section at inspection time can be computed on the basis of rectangular stress 

block model.  

 

𝑀𝑡 = 𝐴𝑆𝑡𝑖𝑓𝑦(𝑑 − 0.4𝑥) ,       𝑡𝑖 ≥ 0   (3.19) 

 

On the other hand the reinforcement cross-section area can be represented as 

 

 𝐴𝑠𝑡𝑖 =
𝜋𝐷𝑡𝑖

2

4
  , 𝐷𝑡𝑖 = 𝐷0 − 𝑟(𝑡𝑖 − 𝑇𝐼),     𝑡𝑖 ≥ 0   (3.20) 
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Where 𝐷𝑡𝑖  is the steel bar diameter at inspection time, 𝐷0 is the initial steel bar diameter, 

𝑟 is the corrosion rate and 𝑇𝐼 is the initiation time. Thus the section deterioration can be 

represented 

     𝑋(𝑡𝑖) = 𝑀0 −𝑀𝑡𝑖  ,            𝑡𝑖 ≥ 0   (3.21) 

It is evident that this function is non-negative and continuous. 

 

3.4.1.4 Parameter estimation of gamma process 

 

The method of moments is used to estimate the Gamma process parameters, here. 

According to proposed model of shape and scale parameters of Gamma process in section 

3.3.2.1, the shape factor is a time function. Hence it can be represented as 

 

𝛼(𝑡) = 𝑐𝑡𝑏 𝛼(𝑡) > 0, 𝑐 > 0 , 𝑡 ≥ 0  (3.22) 

 

As the corrosion of reinforcement bar is target defect in our model, it is assumed that 𝑏 

is known and equal to one according to the power law model adopted by many authors 

Campoli and Ellingwood (2002), while parameters 𝛽 and 𝑐 are unknown. 𝑋(𝑡𝑖) as 

deterioration variable as defined by Equation (3.21) and is substituted in Equations (3.10) 

and (3.11) to estimate the shape and scale factors.  

For simplicity, at present all parameters in Equation (3.19) except 𝐴𝑠𝑡𝑖 are assumed 

deterministic. Inspection outcomes of three corrosion environments are shown in Tables 3.1-

3.3. Subsequently, gamma process parameters for three corrosion environments are 

calculated using the Equations (3.10) and (3.11) where 𝑋𝑡𝑖
𝑚 is the observed cumulative 

deterioration at inspection time, 𝜔𝑖 = 𝑡𝑖 − 𝑡𝑖−1 is the interval time, and  𝛾𝑖 = 𝑋𝑡𝑖 − 𝑋𝑡𝑖−1 =

𝑀𝑡𝑖 −𝑀𝑡𝑖−1 is the deterioration increment over the interval and shown in Table 3.4.  

In order to provide inspection outcomes for the bridge slab, it is assumed that the principal 

inspection with respect to the UK highway bridge management code is carried out every six 

years. The corrosion initiation time is assumed at 9 years, while the corrosion rate for each 

corrosion environmental condition for simplicity is assumed to be constant over the bridge 
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lifetime. As the inspection outcomes become available, the loss of reinforcement section 

area and the corresponding loss of flexural moment capacity at inspection time can be 

obtained by Equations (3.20) and (3.19), respectively. The probability density function 

associated with specific corrosion rate is determined by equation (3.4). The probability 

density function of gamma processes for low, medium, and high corrosion rate are shown in 

Figures 3.4, 3.5, and 3.6, respectively.  

 

Table 3.1 Inspection outcomes for the low corrosion rate environment for RC slab, 

perfect inspection is assumed (Assumed initiation time=9 years) 

Time 

(year) 

Corrosion 

rate 

(mm/year) 

A 

before 

inspection 

mm2 

𝐴′ 

after 

inspection 

mm2 

M 

before 

inspection 

kNm 

𝑀′ 

after 

inspection 

kNm 

𝑋𝑡
𝑖𝑚 

(%) 

γi(%) ωi 

(year) 

0 0 201 201 62.21 62.21 0 - - 

18 0.013 201 200.3 62.21 62.04 0.27 0.27 18 

24 0.013 200.3 198.5 62.04 61.54 1.08 0.81 6 

30 0.013 198.5 196.6 61.54 61.02 1.91 0.83 6 

36 0.013 196.6 194.6 61.02 60.50 2.75 0.84 6 

 

Table 3.2 Inspection outcomes for the medium corrosion rate environment for RC slab, 

perfect inspection is assumed 

Time 

(year) 

Corrosion 

rate 

(mm/year) 

A 

before 

inspection 

mm2 

𝐴′ 

after 

inspection 

mm2 

M 

before 

inspection 

kN.m 

𝑀′ 

after 

Inspection 

kN.m 

𝑋𝑡
𝑖𝑚 

(%) 

γi(%) ωi 

(year) 

0 0 201 201 62.21 62.21 0 - - 

18 0.076 201 197.3 62.21 61.22 1.59 1.59 18 

24 0.076 197.3 186.1 61.22 58.16 6.51 4.92 6 

30 0.076 186.1 175.3 58.16 55.15 11.35 4.84 6 

36 0.076 175.3 164.7 55.15 52.18 16.12 4.77 6 
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Table 3.3 Inspection outcomes for the high corrosion rate environment for RC slab, 

perfect inspection is assumed 

Time 

(year) 

Corrosion 

rate 

(mm/year) 

A 

before 

Inspection 

mm2 

𝐴′ 

after 

Inspection 

mm2 

M 

before 

Inspection 

kN.m 

𝑀′ 

after 

inspection 

kN.m 

𝑋𝑡
𝑖𝑚(%) γi(%) ωi 

(year) 

0 0 201 201 62.21 62.21 0 - - 

18 0.254 201 188.5 62.21 58.83 5.43 5.43 18 

24 0.254 188.5 153.2 58.83 49.9 19.80 14.37 6 

30 0.254 153.2 121.6 49.9 39.6 36.34 16.54 6 

36 0.254 121.6 9.37 39.6 31.03 50.12 13.78 6 

 

 

 

 

   Table 3.4 Gamma process parameters for different corrosion rate environment 

 

 Corrosion rate 

 
0.013 

mm/year 
0.076 

mm/year 
0.254 

mm/year 

Time 
(year) 

β c β c β c 

24 0.694 0.031 0.11 0.0314 0.042 0.042 

30 0.93 0.059 0.16 0.06 0.050 0.065 

36 1.13 0.086 0.19 0.086 0.065 0.089 
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It is evident that continuous gamma process provides a refined model for deterioration 

estimates that can provide a valuable and site specific information about the progress of 

deterioration. 

 

 

 

 

 

 

Figure 3.4 Probability density function for the percentage loss of moment capacity for low 

corrosion rate environment based on the inspection at age 24 
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Figure 3.5 Probability density function for percentage loss of moment capacity for medium 

corrosion rate   environment based on the inspection at age24, and 30 
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Figure 3.6 Probability density function for percentage loss of moment capacity for high 

corrosion rate   environment based on the inspection at age 24, 30, and 36  

 

 

𝑋𝑡𝑖  Characterized as a gamma distribution then the cumulative density function of this 

variable is computed by 

 

𝐹(𝑥𝑡𝑖|𝛼(𝑡𝑖), 𝛽) = ∫ 𝑓(𝑢𝑡𝑖|𝛼(𝑡𝑖), 𝛽)𝑑𝑢
𝑥

0
=
𝛾(𝛼(𝑡𝑖),𝛽𝑥𝑡𝑖)

Γ(𝛼(𝑡𝑖))
      (3.23) 

 

where 𝛾(𝛼(𝑡𝑖), 𝛽𝑥𝑡𝑖) is lower incomplete gamma function and 

𝑓(𝑥𝑡𝑖|𝛼(𝑡𝑖), 𝛽) =  𝐺𝑎(𝑥|𝛼(𝑡𝑖), 𝛽) 

 

The figures 3.7, 3.8, 3.9 represent the cumulative distribution function for the percentage 

loss of moment capacity. 
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Figure 3.7 Cumulative distribution function for percentage loss of moment capacity for low 

corrosion rate environment based on the inspection at age 24 
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Figure 3.8 Cumulative distribution function for percentage loss of moment capacity for 

medium corrosion rate environment based on the inspection at age 24, 30 
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Figure 3.9 Cumulative distribution function for percentage loss of moment capacity for high 

corrosion rate environment based on the inspection at age 24, 30, and 36 

 

It can be observed that the gamma process parameters decreases as the corrosion rate 

increases. However, it is indicated that the shape parameter reduction is not remarkable. It 

is concluded that COV decreases as more inspection outcomes are available which indicates 

that gamma process is a dynamic process. 

 

3.4.1.5 Demonstration of Degradation Prediction for Selected Time Interval 

 

In this section, the gamma process representation for deterioration of moment capacity 

for different corrosion rates for selected interval time is considered. Figures 3.10 and 3.11 

are showing probability density functions and cumulative density functions for such 

scenario. 
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Figure 3.10 Probability density functions of loss of flexural moment for 3 corrosion rate 

environments for selected interval time (L=Low, M=Medium, H=High)  
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Figure 3.11 Cumulative distribution function of loss of flexural moment for 3 different 

corrosion rate environments for selected interval time (L=Low, M=Medium, H=High) 

It can be concluded from Figure 3.10 that the gamma process parameters increases as 

corrosion rate increase for selected time while it is indicated in Figure 3.11 that the COV 

decreases as corrosion rate increase. 

3.4.1.6 Demonstration of Degradation Prediction with Variable Initiation Time 

 

Initiation time is assumed to be deterministic in this study. However, due to different 

environmental and structural conditions it is likely to be variable. In this section, we consider 

three different initiation times. The functions that reflect the projection for reduction in 

flexural moment capacity of the reinforced concrete slab for different time horizons in the 

form of gamma process with different initiation time are illustrated in Figures 3.12-3.14. 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

cu
m

u
la

ti
v
e 

d
is

tr
ib

u
ti

o
n
 d

en
si

ty
 f

u
n
ct

io
n

percentage loss of moment capacity(%)

AGE=54(L)

AGE=54(M)

AGE=54(H)



102 

 

 

 

 

 

 

 

 

 

Figure 3.12 Probability density function of loss of flexural moment capacity for medium 

corrosion rate environment with initiation time 9 years 
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Figure 3.13 Probability density function of loss of flexural moment capacity for the medium 

corrosion rate environment with initiation time 24 years 
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Figure 3.14 Probability density function of flexural loss of moment capacity for the medium 

corrosion rate environment with initiation time 36 years 

 

As expected the predicted percentage loss of moment capacity for a particular frequency 

of percentage loss of moment capacity decreases as initiation time increases. However, it is 

identified that the uncertainty associated with a projected deterioration model in a specific 

horizon time will increase in respect to COV value. It is concluded that the initiation time 

and corrosion rate are the parameters that reflect the effect of site-specific environmental 

and maintenance conditions on the deterioration model. 
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3.4.2 Summary and Conclusions 

 

In this Chapter, continuous gamma process is used to represent the new updatable 

deterioration model for flexural capacity of reinforced concrete slab to the level of detail 

that enables practical implementation.  

For a sample of deterioration process taking the advantage of the power law formulation 

to represent the expected degradation due to corrosion, the simplified approach in the form 

of the method of moments was applied to obtain the gamma process parameters. It is 

identified that the shape and scale parameters can be improved as further outcomes are 

provided. In effect, our projection for deterioration, from the moment of observation should 

take into account current status but not be concerned by the past events that have preceded 

the current state. Once the parameters have been defined the deterioration progress for the 

reinforced concrete slab is predicted for different horizon times.  

The new adaptive deterioration model has been implemented to demonstrate how 

structure specific features influence future structural performance level. 

As the degradation of flexural moment capacity measure 𝑋(𝑡𝑖) is associated with 

uncertainty, the value of the cumulative measure, deterioration state 𝐷𝑒𝑡𝑡𝑖 of the component 

at certain time can be evaluated with selected target probability 𝑃𝑇ℎ(this probability could 

be related to current policy). Thus, we have  

 

𝐷𝑒𝑡𝑡𝑖 = 𝑥𝑡𝑖  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑃(0 < 𝑋𝑡𝑖 ≤ 𝑥𝑡𝑖) = 𝑃𝑇ℎ        (3.24)    

 

For example, it is assumed that if the target probability is 50% (𝑃𝑇ℎ=0.5), which means 

the deterioration state (𝐷𝑒𝑡𝑡𝑖) can be determined as the expected value equation (3.25) 

 

𝐷𝑒𝑡𝑡𝑖 = 𝐸(𝑋𝑡𝑖) =
𝛼(𝑡)

𝛽
                                     (3.25)     

 

Figures 3.15 and 3.16 demonstrate the influence of variation of the initiation time and 

corrosion rate on deterioration states.  
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Figure 3.15 Effect of variation of mean corrosion (L=Low, M=Medium, and H=High) rate 

on expected value of percentage loss of moment capacity based on the same inspection time 
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Figure 3.16 Effect of variation of initiation time (𝑡𝑖= 9, 24, 36 years) on expected value of 

percentage loss of moment capacity based on different inspection time (18, 36, and 48) 

The indicated safety threshold in Figures 3.15 and 3.16 is related to the denoted safety 

level and could be specific. It is concluded that the new adaptive deterioration profile has a 

great flexibility and sensitivity to the environmental conditions as it has been demonstrated 

on the deterioration model graphs due to different corrosion rates. Furthermore, it is 

demonstrated that the deterioration model can be affected by the effect of structural 

maintenance in form of initiation time. The information about the deterioration status can be 

employed with the failure threshold to identify the remaining lifetime of the bridge deck. 

Once more realistic models for inspection outcomes are included simple deterioration profile 

graphs will no longer be linear. It is evident that with realistic inspection outcomes, the new 

updatable deterioration model will be able to capture changes in the deterioration rate after 

inspection. As the next step, in the next Chapter modeling of inspection outcomes is going 

to be addressed and subsequently deterioration status graphs that include information about 

uncertainties associated with inspections will be used to establish an adaptive inspection 

regime in Chapter 5. 
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Chapter Four 
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4 Imperfect Inspection Model for Gamma Process Deterioration 

Representation 

 

4.1 Introduction 

 

Assessment of existing structures often relies on update on physical properties following 

an inspection. It is identified that a complete inspection which can detect all types of defects 

and size of defects is rarely feasible or necessary and may be too costly (Kuniewski et al, 

2009). Basically, the operation characteristic of each of the present nondestructive testing 

(NDT) techniques is governed by a detect ability parameter. Hence, even though an NDT 

inspection program has been performed on the entire a component and all the defects 

detected are repaired, the engineer cannot guarantee that there will be absolutely no defects 

or that defects would be definitely smaller than a particular size. Even most sophisticated 

NDT techniques are imperfect inspection techniques in practice (Tang, 1973). 

Due to natural variability, and the inherent uncertainties associated with NDT techniques, 

any study on the effect of NDT in determining defect sizes and densities would have to be 

pursued in the context of the probability theory (Tang, 1973).  

During the last decade, the concepts of probability of detection, probability of false alarm, 

probability of indication have been proved to be suitable parameters to characterize the 

uncertainties associated with inspection technique (Schoefs et al. 2009). 

  In order to be able to characterize the deterioration process based on the inspection 

outcomes, the uncertainty associated with inspection outcomes needs to be characterized 

and taken into account. 

 

4.2 Characterization of Imperfect Inspection 

 

 Uncertainties associated with inspection outcomes reflect the inspection technique features 

and several parameters can be used to quantify these uncertainties, namely: 
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 The probability of detection (POD) evaluates the capability of inspection technique to 

detect a given defect size. Practically, an inspection technique can’t detect all sizes of a 

defect with certainty (Sheils, 2010).  

 The probability of false alarm (PFA) is a measure that determines the probability of 

reporting a defect that does not exists. This measure actually is the value of POD when 

defect size is equal to zero. 

  The report ability threshold is another measure that represents the lowest defect size, 

which can be detected by a particular inspection technique. This measure characterizes 

the inspection equipment accuracy and divides the defect’s population into two groups as 

detected and undetected.  Report ability factor can be denoted via a detection indicator 

(𝐷). 

 The measurement error represents the factor that is associated with the observed defect 

size (Tang, 1973; Schoefs et al., 2009; Farngopol et al., 1997; Sheils, 2010). The 

measurement error has been considered as imperfect inspection parameter, which has 

been represented as a normal distribution by Kallen and Van Noortwijk (2004).  

However, there are different parameters that may be used to assess the uncertainties 

associated with inspection outcomes, for instance, Schoefs et al (2009) proposed a new 

parameter as ROC for a set of defects and given NDT tool and operator that couples (POD, 

PFA) called receiver-operating characteristic (ROC). It is proposed that using the ROC 

indicator in the case of very harsh conditions of inspection can be very useful. In order to 

determine the ROC of an inspection technique, the inspection outcomes are assumed as 

signal-noise model. Two approaches are suggested to define and assess the noise on 

measurement. 

 The first one consist in considering one independent random variable by level of 

inspection 

 The second one consists in gathering data by area which leads to get one 

independent random variable by zone (Schoefs et al.,2009) 

All parameters that are described above can be taken into account for the deterioration 

model characterization.  
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For clarity, the probability of detection (POD) and the measurement error will be taken 

into account to characterize the uncertainties associated inspection technique in this study. 

However, in order to establish the complete deterioration model, it is required to characterize 

all parameters listed above individually. 

 

4.3 Imperfect Inspection Outcomes 

 

   In order to take into account uncertainties associated with inspection outcomes, a new 

random variable call actual defect size (𝑋𝑡𝑖𝑛𝑠𝑝
𝑎 ) is presented in this thesis. As mentioned in 

Chapter 3, the Gamma process is used to represent structural deterioration model while 

actual defect size need to be considered to estimate the Gamma process parameters. A new 

model will be developed in the following section to represent the actual defect size respect 

to the inspection features.  

4.3.1 Measurement Error 

 

The measurement error is a well-known inspection uncertainty, which is often presented 

as a normal random variable with known variance and zero mean value (Zhang & 

Mahadevan, 2001). 

 In order to take into account the measurement error with deterioration model in this 

study, the actual defect size 𝑋𝑡𝑖𝑛𝑠𝑝
𝑎 is presented in form of: 

 

                              𝑋𝑡𝑖𝑛𝑠𝑝
𝑎 = 𝑋𝑡𝑖𝑛𝑠𝑝

𝑚 + 𝑋𝜀                      (4.1) 

 

Where 𝑋𝑡𝑖𝑛𝑠𝑝
𝑎  is the actual defect size at inspection time, 𝑋𝑡𝑖𝑛𝑠𝑝

𝑚  is the measured defect size 

at inspection time, which is presented as a normal random variable here, and 𝑋𝜀 is 

measurement error considered also as normal random variable.  In general the measurement 

error distribution definitions reflects the inspection technique features.  
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4.3.2 Probability of Detection 

 

During the last two decades many studies have been conducted to develop a deterioration 

model where the inspection outcomes uncertainty is taking into account. As mentioned 

before, the probability of detection (POD) is a parameter that is often addressed. 

Zhang and Mahadevan (2001) developed a comprehensive approach to integrate 

computational reliability methods and used nondestructive inspection outcomes to evaluate 

reliability due to fatigue. They considered two measures, POD and measurement error to 

quantify the inspection outcomes uncertainty. The POD has been modeled in form of an 

exponential function of actual fatigue crack depth while the relationship between the actual 

and measured crack depth size is expressed with a linear function (Zhang & Mahadevan, 

2001). 

 Pandey (1998) presented a probabilistic framework to estimate the pipeline reliability 

incorporating the impact of inspection and repair activities planned over the service life. 

Two parameters, POD and measurement error, have been taken into account to evaluate the 

uncertainty of in-line inspection outcomes. The POD has been determined by a parametric 

exponential function. Using the Bayes theorem, the probability density function of 

detectable defect size has been calculated from the overall defect size distribution (Pandey, 

1998). 

Maes and Dann (2011) used a Bayesian approach to represent deterioration model of 

pipelines in respect to the in-line inspection data. In order to evaluate the inspection 

uncertainties, they used POD, PFA, measurement error, and report ability. These parameters 

are evaluated using similar model of Zhang & Mahadevan (2001) models, however the 

hierarchical Bayes model was employed to upgrade the deterioration model (Maes and 

Dann, 2011). 

Orcesi and Frangopol (2011) developed a probabilistic model using the lifetime function 

to evaluate the probability of failure of bridge components. The possible outcomes with 

nondestructive inspections are incorporated in an event-tree model. The probability function 

of failure has been assumed to be Weibull distribution (see Appendix-A). It has shown that 
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for poor-quality inspection outcomes, there is a significant risk to overestimate the 

probability of safe performance (Orcesi and Frangopol, 2011). 

Frangopol et al. (1997) developed a probabilistic framework to optimize planning of 

inspection and repair of structures that deteriorated over the time. The model incorporates 

the quality of inspection techniques with different detection capabilities. The cumulative 

normal distribution function is used to calculate the probability of detection (Frangopol et 

al., 1997).  

The probability of detection (POD) of a particular inspection technique with a given 

threshold can be expressed as: 

 

𝑃𝑂𝐷 = 𝑃 (𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝐷 = 1) = 𝑃(𝑥𝑡𝑖

𝑚 > 𝑇ℎ𝑗
𝑙)     (4.2) 

 

where 𝑥𝑡𝑖
𝑚, 𝑇ℎ𝑗

𝑙 are the observed defect size (physical parameter) at inspection time and  

the inspection lower threshold, respectively. Here, it is assumed that the POD becomes 

equal to 1 when the defect size is greater than a specific upper threshold. It is denoted as 

𝑇ℎ𝑗
𝑢 . Frangopol et al. (1997) proposed that the inspection lower threshold (𝑇ℎ𝑗

𝑙) and upper 

threshold (𝑇ℎ𝑗
𝑢) could be calculated for components 

 

 

𝑇ℎ𝑗
𝑙 = 𝑥0.5 − 3𝜎                                                 (4.3)  

 

𝑇ℎ𝑗
𝑢 = 𝑥0.5 + 3𝜎                                                (4.4) 

 

where 𝑥0.5 is the defect size at which the inspection technique has a 50% probability of 

detection and 𝜎 is the standard deviation value of detectability. Since the coefficient of 

variation of report ability is an arbitrary value in our model, which is assumed 0.1, then 𝜎 

is determined as: 

 

𝜎 = 𝐶𝑂𝑉 × 𝑥0.5 = 0.1 × 𝑥0.5                               (4.5) 
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The probability of detection is thus 

 

{

𝑃𝑂𝐷 = 0                                    0 < 𝑥𝑡𝑖
𝑚 ≤ 𝑇ℎ𝑗

𝑙

𝑃𝑂𝐷 = Φ(
𝑥𝑡𝑖−𝑥0.5

𝜎
)   𝑇ℎ𝑗

𝑙 < 𝑥𝑡𝑖
𝑚 < 𝑇ℎ𝑗

𝑢

𝑃𝑂𝐷 = 1                                          𝑥𝑡𝑖
𝑚 ≥ 𝑇ℎ𝑗

𝑢

    (4.6) 

 

where Φ(. ) is the cumulative normal distribution function. A general illustration of 

probability of detection for variety of observed defect sizes with arbitrary thresholds is 

demonstrated in Figure 4.1. 

 

 

 

Figure 4.1 General illustration of cumulative distribution function of probability of 

detection (POD) of a particular inspection technique (𝒊𝒏𝒔𝒑𝒋) 
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In order to indicate whether a defect is detected by a particular inspection technique at 

inspection time or not, a detection indicator is introduced here (𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝐷 ). It is a binary 

random variable taking the value one (1) with the probability of detection (𝑃𝑂𝐷), when the 

defect is detected. Detection indicator (𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝐷 ) takes the value zero (0), when the defect is 

not detected. In other words, the indicator acts like a filter that divides the defect population 

into two groups of detected and undetected defects. A new variable (      𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝑆𝐷 ) is 

introduced here to represent the successfully detected defects. 

 

      𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝑆𝐷 = 𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗

𝑚 × 𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝐷 = 𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗

𝑚        𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝐷 = 1        ∀ 𝑥𝑡𝑖,𝑖𝑛𝑠𝑝𝑗 > 𝑇ℎ 𝑗

𝑙

    𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝑆𝐷 = 𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗

𝑚 × 𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝐷 = 0                𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗

𝐷 = 0         ∀𝑥𝑡𝑖,𝑖𝑛𝑠𝑝𝑗 ≤ 𝑇ℎ𝑗
𝑙

 (4.7) 

 

where 𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝐷  is expressed as a discrete binary random variable; Bernoulli distribution 

function is appropriate probability function to characterize its uncertainty. 

 The Bernoulli distribution is a distribution function that takes value one (1) with 

success probability 𝑝 and value zero (0) with failure probability 𝑞 = 1 − 𝑝 (Ugrate et al., 

2008). 

 

The probability mass function of 𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝐷  (Bernoulli distribution) is presented 

 

𝑓 (𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝐷 , 𝑝) = 𝑝

𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝐷

(1 − 𝑝)
1−𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗

𝐷

 𝑓𝑜𝑟 𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝐷 ∈ {0,1}   (4.8) 

 

Here, the value of 𝑝 is considered a variable, which is represented in form of a 

cumulative standard normal distribution. Figure 4.2 illustrates the PMF of a Bernoulli 

distribution. 
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           Figure 4.2 General illustration of PMF of detection indicator  

It is assumed that the value of 𝑝 in the former equation is identical to POD.  

 

4.4 Updating of Deterioration Projection Subject to Imperfect Inspection 

 

In order to take into account the probability of detection and measurement error as 

inspection outcomes uncertainties, the mathematical function that can present the 

relationship of observed defect size (𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝑚 )  and actual defect size (𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗

𝑎 ) at inspection 

time is 

 

𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝑎 = ℎ (𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗

𝑚 , 𝑋𝑖𝑛𝑠𝑝𝑗
𝜀 , 𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗

𝐷 ) = 𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝑚 𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗

𝐷 + 𝑋𝑖𝑛𝑠𝑝𝑗
𝜀   ∀𝑥𝑡𝑖𝑛𝑠𝑝 ≥ 0    (4.9)  

 

In order to take into account the detect ability of inspection technique; the total 

probability law can be applied (Newby and Dagg, 2004).  
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The joint density function of successfully detected defect size (𝑋𝑆𝐷) that is a function of 

observed defect size and detection indicator, when a specific inspection technique is 

carried out, could be represented as 

 

 

𝑃 (𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝑆𝐷 ≤ 𝑥𝑡𝑖) = ∑ 𝑃 (𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗

𝑚 ≤ 𝑥𝑡𝑖 , 𝑋
𝐷𝑛)1

𝑛=0   

 = 𝑃(𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝑚 ≤ 𝑥𝑡𝑖 , 𝑋

𝐷0) + 𝑃(𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝑚 ≤ 𝑥𝑡𝑖 , 𝑋

𝐷1)                                           (4.10) 

 

Given 𝑋𝐷1 = 1   then 𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝑆𝐷 = 𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗

𝑚  

 

𝑃 (𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝑚 ≤ 𝑥𝑡𝑖 , 𝑋

𝐷1) = 𝑃(𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝑚 ≤ 𝑥𝑡𝑖|𝑋

𝐷1 = 1) × 𝑃(𝑋𝐷1 = 1)     (4.11) 

 

 

𝑃 (𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝑚 ≤ 𝑥𝑡𝑖|𝑋

𝐷1 = 1) =
𝑃(𝑋𝐷1=1|𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗

𝑚 ≤𝑥𝑡𝑖)×𝑃(𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝑚 ≤𝑥𝑡𝑖)

𝑃(𝑋𝐷1=1)
            (4.12) 

 

Since              𝑃(𝑋𝐷1 = 1|𝑋𝑡𝑖
𝑚 ≤ 𝑥𝑡𝑖) = 𝑃(𝑋

𝐷1 = 1) = 𝑃𝑂𝐷 

                                                            

 The previous equation to obtain the conditional density function can be written as:  

 

𝑃 (𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝑚 ≤ 𝑥𝑡𝑖|𝑋

𝐷1 = 1) =
𝑃𝑂𝐷×𝑃(𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗

𝑚 ≤𝑥𝑡𝑖)

𝑃𝑂𝐷
= 𝑃(𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗

𝑚 ≤ 𝑥𝑡𝑖)  (4.13) 

 

Thus, the joint density function of successfully detected defect size at inspection time can 

be determined as: 

 

 

{
𝑃(𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗

𝑚 , 𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝐷0 ) = 𝑃 (𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗

𝑚 ≤ 𝑥𝑡𝑖) × (1 − 𝑃𝑂𝐷)     ∀𝑥𝑡𝑖 ≤ 𝑇ℎ𝑗
𝑙

𝑃(𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝑚 , 𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗

𝐷1 ) = 𝑃 (𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝑚 ≤ 𝑥𝑡𝑖) × 𝑃𝑂𝐷             ∀𝑥𝑡𝑖 > 𝑇ℎ𝑗

𝑙 
    (4.14) 
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Furthermore, it is defined that this feature of inspection technique can be used to 

indicate whether an inspection technique is adequate, with regard to the prediction model 

of deterioration process, or not. 

The measurement error is another known uncertainty that is identified as a normal 

random variable while its mean value is zero. In order to take into account the 

measurement error with deterioration model, the actual defect size 𝑋𝑡𝑖𝑛𝑠𝑝
𝑎 is presented in 

form of Equation (4.1). 

 It should be noted that the measured defect size 𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝑚   is replaced by 𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗

𝑆𝐷 the 

successfully detected defect size. 

Since the successfully detected defect and measurement error are independent variables, 

then the joint density function of actual and successful defect size is determined as: 

 

𝑃 (𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝑎 ) = 𝑃 (𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗

𝑆𝐷 , 𝑋𝑖𝑛𝑠𝑝𝑗
𝜀 ) = 𝑃 (𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗

𝑆𝐷 ) 𝑃(𝑋𝑖𝑛𝑠𝑝𝑗
𝜀 )                    (4.15) 

 

𝑃(𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝑆𝐷 ) = 𝑃(𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗

𝑚 , 𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝐷1 ) = 𝑃 (𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗

𝑚 ≤ 𝑥𝑡𝑖) × 𝑃𝑂𝐷       ∀𝑥𝑡𝑖 > 𝑇ℎ𝑗
𝑙 

(4.16) 

 

Since 𝑋𝜀 is presented in form of a normal variable 𝑋𝑖𝑛𝑠𝑝𝑗
𝜀 ~𝑁(0, 𝜈2)  then: 

  

𝑃 (𝑋𝑖𝑛𝑠𝑝𝑗
𝜀 ≤ 𝑥𝑡𝑖 − 𝑦) = Φ(

𝑥𝑡𝑖−𝑦

𝜈
)   , 𝑦 = 𝑇ℎ𝑗

𝑙                                                                          (4.17) 

 

𝑃 (𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗
𝑎 ) = 𝑃 (𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗

𝑆𝐷 , 𝑋𝑖𝑛𝑠𝑝𝑗
𝜀 ) = 𝑃 (𝑋𝑡𝑖,𝑖𝑛𝑠𝑝𝑗

𝑚 ≤ 𝑥𝑡𝑖)  𝑃(𝑋𝑖𝑛𝑠𝑝𝑗
𝜀 )𝑃𝑂𝐷   (4.18) 

 

Once the inspection technique and its features are identified, the inspection thresholds 

can be determined by Equations (4.3) and (4.4). In order to calculate the probability of 

detection (POD), the defect size needs to be available. The inspection technique is 

implemented to collect the defect size. As mentioned in Chapter 2, it is evident that the 
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inspection outcomes are not deterministic. Therefore, an appropriate distribution function, 

which is assumed normal distribution here, is assigned to the inspection outcomes. The 

probability distribution function for successfully detected defect size is formulated by 

Equation (4.14). Since the defect size and measurement error are assumed independent 

variables, and then cumulative distribution function of successfully detected defect size 

and measurement error can be determined by Equation (4.18). The actual defect size with 

certain confidence level can be derived from the cumulative distribution function of actual 

defect size. The actual defect size with 50 percent confidence level over the lifetime will 

be demonstrated in Figure 4.17.  

 

 

4.5 Application of Different Inspection Types 

 

In order to illustrate the influence of uncertainties associated with inspection outcomes, 

the reinforced concrete bridge slab subject to corrosion used in Chapter 3 is considered. 

The corrosion of reinforcement bars results in degradation of flexural moment capacity. 

In the previous Chapter, the deterioration model of the RC slab has been determined by 

a Gamma process while the perfect inspection outcomes were used to estimate Gamma 

process parameters. However, it is not the case here. 

It is assumed that two inspection techniques (inspection type 1 and 2) are carried out to 

provide observed inspection outcomes. However, it has to be noticed that each inspection 

technique can be chosen at inspection time with respect to the inspection thresholds and 

defect size. Thus resulting in different inspection scenarios, where every scenario could be 

a combination of inspection types or a single inspection type over the lifetime. The 

features, mean value and standard deviation of two inspection outcomes are listed in 

Tables 4.1 and 4.2, respectively. Inspections are assumed to have been carried out every 6 

years. The inspection feature can be determined based on in-situ outcomes. 

Two scenarios are considered here to provide observed inspection outcomes.  

 Since the inspection type 2 can cover a wide range of defect size, the inspection 

2, solely, will be carried out form 18 to 36 years. 
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 It is demonstrated that the defect size at 18 years is less than the lower threshold 

of inspection type 1 therefore; inspection type 1 can be carried out from 24 years 

to 36 years. It is assumed that there is no data before 24 years in this scenario. 

 

                           Table 4.1 Inspections features   

Inspection  

type 

𝑥0.5  (%) 𝜎𝑖𝑛𝑠𝑝𝑗 𝑇ℎ𝑗
𝑙  (%) 𝑇ℎ𝑗

𝑢(%) y(%) 𝜎𝜀 

INS1 7.41 1.14 3.99 10.83 Variable 0.95 

INS2 9 2.5 1.5 16.5 Variable 1.19 

 

 

 

 

 

   Table 4.2 Observed percentage loss of moment capacity (Xm) INS2 

 

 

 

 

 

 

The standard deviation of inspection outcomes is derived from inspection results in 

AASHTO (2001). As inspection outcomes are associated with uncertainties, a random 

variable can be considered to present their properties. For the sake of simplicity, normal 

distribution is used to represent the uncertainty associated with observed inspection 

outcomes. 

The probability density function and cumulative distribution function of observed 

defect size as a random normal variable is demonstrated in Figure 4.3 and 4.4, 

respectively. 

Time Mean value Standard deviation 

18 1.59 0.8 

24 6.51 0.8 

30 11.35 0.8 

36 16.21 0.8 
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Figure 4.3 Probability density function of the observed inspection outcomes using 

INS2 
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Figure 4.4 Cumulative distribution function for observed inspection outcomes using 

INS2 

 

In order to obtain the cumulative distribution function of actual percentage loss of 

moment capacity, the POD has to be established, Equation (4.8).  

The cumulative distribution function of successfully detected defect size (XSD) is 

determined by Equation (4.14). The cumulative distribution functions of successfully 

detected defects at inspection times are demonstrated in Figure 4.5-4.8.    
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Figure 4.5 Cumulative distribution function for successfully detected percentage 

loss of moment capacity at age18 
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Figure 4.6 Cumulative distribution function of successfully detected percentage loss 

of moment capacity at age 24 
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Figure 4.7 Cumulative distribution function of successfully detected percentage loss 

of moment capacity at age 30 
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Figure 4.8 Cumulative distribution function of successfully detected percentage loss 

of moment capacity at age 36 

 

It is demonstrated in Figure 4.9 that the difference between cumulative distributions of 

observed defect and successfully detected defect will decrease as mean value of the 

observed defect size increases over the time.  
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Figure 4.9 Comparison of cumulative distribution function of observed and 

successfully detected percentage loss of moment capacity at age 18 

It is observed in Figure 4.10 that at 36 years the cumulative distributions of observed 

and successfully detected percentage loss of moment capacity are much closer.  

 

 

Figure 4.10 Comparison of cumulative distribution function of observed and 

successfully detected percentage loss of moment capacity at age 36 
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It can be concluded that applying an inspection technique with lower probability of 

detection at later age, which may cost lower , can be sophisticated decision due to the 

growth of the percentage loss of moment capacity. The mean values of successfully 

detected defect size are obtained from Figure 4.5-4.8 and demonstrated in Table 4.3. 

 

  

   Table 4.3 Mean value of successfully detected percentage loss of moment capacity 

Time X0.5
SD 

18 9.00 

24 9.00 

30 11.50 

36 16.20 

 

 

Measurement error is defined as another inspection uncertainty associated with 

inspection outcome. Since the successfully detected defect size and measurement error are 

independent random variables, then cumulative distribution function of actual percentage 

loss of moment capacity is determined by Equation (4.15) and (4.16), where 𝑦 is the 

successfully detected defect size with 90% confidence level. 

 The measurement error is assumed as a normal random variable with zero mean value 

and known standard deviation, which is demonstrated for two inspection types in Table 

4.1. The cumulative distribution function of actual defect size is identified by equation 

(4.18). 

The cumulative distribution function of actual defect size at inspection time, which can 

be used to estimate the Gamma parameters, is demonstrated in Figure 4.11-4.14.  
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Figure 4.11 Comparison of cumulative distribution function of observed, 

successfully detected and actual percentage loss of moment capacity at age 18 
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Figure 4.12 Comparison of cumulative density function of observed, successfully 

detected and actual percentage loss of moment capacity at age 24 

 

Figure 4.13 Comparison of cumulative density function of observed, successfully detected 

and actual percentage loss of moment capacity at age 30 
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Figure 4.14 Comparison of cumulative density function of observed, successfully 

detected and actual percentage loss of moment capacity at age 36 

 

 In order to estimate the Gamma process parameters, inspection outcomes are used. 

Rather than using expert opinion (assumption of perfect inspection) the actual information 

with 50% confidence level is considered in this study. The method of moments is applied 

to estimate the scale and shape function of gamma process at different inspection time. The 

results of actual defect size and gamma process parameters are presented in Table4.4 and 

4.5, respectively. Where γa is the actual deterioration increment over the interval and ω  

Is the interval time as it has been explained in Chapter 3. 

       Table 4.4 Actual percentage loss of moment capacity at inspection time with 

50% confidence level 

Time Xa γa ω 

18 9.937 9.937 18 

24 9.937 0 6 

30 12.06 2.12 6 

36 16.75 4.69 6 
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Table 4.5 Gamma process parameters for perfect and imperfect inspection technique 2 

Time βa  ca  βm cm 

24 0.301 0.125 0.11 0.0314 

30 0.511 0.205 0.16 0.06 

36 0.780 0.362 0.19 0.086 

 

In the following, the estimated gamma process parameters are used to determine the 

deterioration profile of the bridge slab for age 46 and 54. The cumulative distribution of 

gamma processes at 46 and 54, which are estimated with regard to the actual defect size at 

inspection times, are indicated in Figure 4.15 and 4.16, respectively. 
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Figure 4.15 Cumulative distribution of Gamma process for percentage loss of moment 

capacity at age 46 using actual defect measurement form INS2 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

cu
m

u
la

ti
v
e 

d
is

tr
ib

u
ti

o
n
 f

u
n
ct

io
n

percentage loss of moment capacity(%)

Xa46(24)

Xa46(30)

Xa46(36)



134 

 

 

 

Figure 4.16 Cumulative distribution of Gamma process for percentage loss of moment 

capacity at age 54 using actual defect measurement form INS2 

 

Once the definitions of inspection uncertainties are provided through the empirical and 

mathematical models, the continuous gamma process is used to predict the deterioration 

model. In the same way as for the perfect inspection outcomes the deterioration status of the 

reinforced concrete slab is obtained. It is possible to establish loss of moment capacity of 

the slab for the selected time horizons. In Figure 4.17 comparison of the deterioration profile 

of the slab based on the perfect and imperfect inspection outcomes are demonstrated.  
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 Figure 4.17 Comparison of predication of deterioration status based on the perfect 

and imperfect inspection type 2 at age 24(M=observed, A=actual) 

It can be observed in Figure 4.16 that the uncertainty associated with deterioration 

process decreases as more inspection outcomes are provided.  

It is evident that with inclusion of further inspection technique characteristics a realistic 

model would emerge and enable a well-informed model of deterioration projections. This 

model is reflecting the current status of the structure and the current technique quality 

therefore accounting for multiple sources of temporal variability. Moreover, it has been 

demonstrated that there is pronounced effect of the inspection technique features. Once 

further inspection imperfections are consider the gamma process model would represent a 

rather versatile tool for planning of maintenance and repair. 
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4.6 Summary and Conclusions 

 

The inspection outcomes can be used to characterize the structural deterioration process. 

It is identified in Section 4.2 that the inspection outcomes are associated with uncertainties 

that might affect the deterioration process. The uncertainties associated with inspection 

outcomes are investigated in this chapter. Parameters such as probability of detection (POD), 

measurement error, probability of false alarm (PFA) are proposed to characterize the 

inspection outcomes uncertainties. Selective methods for characterization of inspection 

uncertainties have been reviewed. In this Chapter, a new probabilistic method is developed 

to characterize the probability of detection (POD) and measurement error as inspection 

outcomes uncertainties. The uncertainties are taken into account to determine the actual 

defect size which it can be used to represent the deterioration progress. In order to reflect 

the influence of the uncertainties associated with inspection outcomes, the new method is 

applied on the same sample as in Chapter 3. It is identified that at an early age the influence 

of inspection uncertainties is pronounced. As the deterioration progresses over the time the 

risk to underestimate the deterioration status based on the observed inspection outcomes is 

increased in comparison to deterioration status based on the actual outcomes. The 

methodology developed here addresses these issues by offering comprehensive adaptive 

modelling for deterioration progression.  
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                                      Chapter Five 
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5 Adaptive Inspection Regime 

5.1 Introduction 

 

Due to often limited resources for the performance management of existing bridges at an 

acceptable level, the infrastructure manager and owner have to use models that optimize the 

strategies to keep them safe and serviceable. Generally, maintenance actions follow 

inspections outcomes and current structural condition. The inspection outcomes can be used 

to determine whether the defect exists, what is the extent of defects, and the type of 

maintenance action required (UK Roads Liaison Group, 2005). 

It is identified by Jandu (2008) that the current UK inspection regime is prescriptive and 

not most cost-effective inspection regime, and bridge repairs are not always performed with 

life-cycle cost effectiveness in mind. As a result, over the last decade a lot of research has 

been conducted into optimization of maintenance management that consider dual constraint 

of optimal maintenance budget while maximizing efficiency for the required remaining 

service life. Many of methods assume the quantitative inspection data, rather than qualitative 

and subjective data (VanNoortwijk and Frangopol, 2004b). However, the inspection 

outcomes of current inspection regime are mostly qualitative. 

For corrosion deterioration mechanism of bridges, lifetime methodologies for planning 

repair strategies of corroded RC structures were developed by Enright and Frangopol (1999), 

Estes and Frangopol (1999), Orcesi and Cremona (2009), Faber and Sorensen (2002),So et 

al. (2009) among others.  Furthermore, several probabilistic approaches for optimum 

maintenance strategies have been developed and applied to steel structures subject to fatigue 

and corrosion (Kim et al., 2013; Kwon and Frangopl, 2012; Zayed et al., 2002). Inspection 

and monitoring planning for RC structure under corrosion was investigated by Kim and 

Frangopol (2011), where the effect of updating the deterioration model parameters after 

inspection or monitoring actions using Bayesian technique was revealed. The inspection 

planning is formulated as an optimization problem with objective of minimizing the 

expected damage delay. This approach was extended to find the optimum combined 

inspection and monitoring planning. 
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5.2 Issues of Current Optimization Models 

 

Reviewing the current optimization models that are proposed by Kim et al. (2013), and 

Morcous and Lounis (2010) it is identified that current optimization models typically have 

a higher degree of complexity than the current inspection regime. Thus, they usually cannot 

be readily implemented and can be seen as prototypes for future inspection regime. As was 

the case for the current inspection regime the objective of these models is to optimize 

maintenance and inspection decisions. However, it is often the case that current models use 

the total life-cycle cost as objective function for optimization process. Total life-cycle cost 

generally includes inspection cost, maintenance cost and failure cost. The failure cost is 

defined as subjective model and it should be used only to provide an indication of relative 

benefits of different strategies. This total cost model does not take into account indirect cost 

such as traffic delay cost. While the general form of the optimization models is similar, these 

models differs from each other in many aspects such as scope of optimization, decision 

variations, layout optimization, deterioration model and assumptions about the knowledge 

of current inspection regimes.  

According to issues of current inspection optimization models, a simple and practical 

model is needed that can take into account the deterioration status at inspection time when 

minimizing the number of future inspections and their cost. It is identified in Chapter 1 that 

the current inspection regime with fixed inspection interval is not most efficient strategy. 

Thus, an adaptive inspection regime is proposed here. 
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5.3 Adaptive Inspection Features 

 

Schematic illustration of current rather prescriptive inspection strategy has been 

demonstrated in Figure 1.3. Here, an adaptive inspection program is proposed so that, the 

inspection time is determined with respect to the deterioration status as it is shown in Figure 

5.1. 
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            Figure 5.1 General illustration of an adaptive inspection regime 

As it is shown in Figure 5.1, in order to obtain an adaptive inspection regime, the 

prediction for deterioration status of the bridge and present inspection technique’s thresholds 

can be used. Once the prediction of structural deterioration status is achieved, the inspection 

thresholds and failure threshold – the failure threshold is considered as the defect size that 

the present inspection techniques cannot detect- has to be identified. The inspection 

thresholds (𝑇ℎ𝑖) greatly depend on the inspection type characteristic while failure threshold 

(𝑇ℎ𝑓) is related to many factors such as safety policy at location of structure, environmental 

condition and traffic load. It is identified that the inspection interval can be variable 

considering the deterioration status and inspection technique. For example, it is shown in 

Figure 5.1 that the inspection type 1 can be carried out early on the bridge in case of the 

Failure threshold 
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deterioration status being DET1 while the same inspection type can be carried out later on 

the bridge with deterioration status DET2. 

5.4 Adaptive Inspection for RC Deck 

 

The continuous Gamma process is employed to characterize the deterioration of a 

reinforced concrete bridge slab subject to corrosion with medium corrosion rate. Different 

inspection intervals are considered and the inspection outcomes processed to obtain 

deterioration status as described in previous Chapters. The deterioration status of the 

reinforced concrete bridge slab subjected to corrosion is used to illustrate the adaptive 

inspection schedule. 

A sample set of cumulative distribution functions of the percentage loss of moment 

capacity of a reinforced concrete bridge slab for different time horizons from the inspection 

outcomes are indicated in the Figure 5.2. 

 

 

Figure 5.2 Cumulative distribution function of flexural capacity loss based on prior 

inspection outcomes at age 18 and 24 

The deterioration is predicted for 6 years (from 24-30) with the interval 2 years and then 
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an adaptive inspection schedule, two different inspection types are considered in this study 

and their thresholds have to be identified.  Thresholds are a matter of expert judgment and 

safety policy but here it is taken as  

 

                       {
𝑇ℎ1 = 𝑋(𝑡) = 10%    

𝑇ℎ2 = 𝑋(𝑡) = 16% 
                       (5.1) 

 

These thresholds reflect that INS1 and INS2 are acceptable as long as the deterioration is 

less than 10% and 16%, respectively. 

 

   Figure 5.3 Deterioration status with 90%, 50% and 10% confidence level based on 

prior inspection outcomes at age 18 and 24 

Using information illustrated in Figure 5.2 the deterioration status graphs are overlapped 

to demonstrate the deterioration prediction obtained based on the inspection outcomes at 18 

and 24 years for the remaining lifetime with three different confidence levels as 90%, 50% 

and 10%. These outcomes can now be used to identify appropriate intervals for particular 

inspection type. 

As the deterioration status with 50% confidence level will reach the inspection type 1 

threshold (𝑇ℎ1) 10% at 44 years, it can be concluded that it is appropriate to carry out the 

inspection type 1 until 44 years on this bridge and from then the inspection type 2 should be 
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used. Furthermore, the inspection type 2 can be used until 66 years when the deterioration 

status exceeds𝑇ℎ2. It is assumed that inspection type 1 interval is 2 years while the interval 

of inspection type 2 might be matter of expert judgment. Nevertheless, the criteria of 

inspection interval also can be the time interval before the threshold is reached. 

It is evident in Chapter 3 that as more inspection outcomes become available, the 

deterioration prediction can be updated, therefore the inspection strategy also can be 

updated. Updated deterioration status and the inspection program are shown in the next 

graph. In order to identify the influence of prior inspection outcomes, the deterioration status 

with 50% confidence level based on three and four sets of inspection outcomes are compared 

in the Figure 5.5, 5.6. 

 

 

 Figure 5.4 Deterioration status prediction graph based on prior inspection outcomes at age 

18, 24 and 30 
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Figure 5.5 Comparison of deterioration status based on prior inspection outcomes at years 

24 and year 30 

 

 

Figure 5.6 Comparison of deterioration status based on inspection outcomes at year 

24, year 30 and year 36 
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Where tA- tE are the appropriate interval time when carrying out of a specific inspection type 

has to be stopped. For instance, inspection type 1 at time 𝑡𝐴 (33 years) has to be switch to 

inspection type 2 in case of inspection data has been provided at age 30. 

In the second scenario, it assumed that the inspection type 2- more expensive and accurate 

than the inspection 1- is carried out at 18 and 24. In order to develop an adaptive inspection 

program and define the appropriate inspection interval, the deterioration is predicted for next 

32 years until 56. The inspection type 2 threshold (𝑇ℎ2) and failure threshold (𝑇ℎ𝑓) are 

indicated in the next graph. It is assumed that the inspection interval should be changed to 

∆𝑡2 , (∆𝑡2 < ∆𝑡1)  as soon as deterioration status with selected confidence level exceeds𝑇ℎ2. 

It means that the inspection type 2 is used at every ∆𝑡2 year afterwards. Moreover, as the 

deterioration status with 90% confidence level exceeds 𝑇ℎ𝑓   , the other actions such as 

maintenance, repair, and etc, need to be considered. The possible decisions for inspection 

program can be formulated as  

 If  Pr[𝑋(24 + 𝑘∆𝑡1) ≤ 𝑇ℎ2] > 0.5 , 𝑇ℎ2 = 16%, 𝑘 = 1,… , 𝑛  then INS1 is carried 

out with interval ∆𝑡1where 𝑘 is the inspection frequency  

 If  Pr[𝑋(24 + 𝑘∆𝑡1) ≤ 𝑇ℎ2] = 0.5 , 𝑇ℎ2 = 16%, 𝑘 = 1,… , 𝑛 then 𝐾∆𝑡1 is the time 

to change the inspection interval to ∆𝑡2 

 If {
Pr[𝑋(24 + 𝐾∆𝑡1) ≤ 𝑇ℎ2] < 0.5           

Pr[𝑋(24 + 𝐾∆𝑡1 + 𝑗∆𝑡2) ≤ 𝑇ℎ𝑓] > 09
   𝑇ℎ2 = 16%, 𝑇ℎ𝑓 = 30%, 𝑡 𝑘 = 𝐾,  

      then     𝑗 = 1,… ,𝑚  where 𝑗 is the inspection frequency with interval ∆𝑡2 

 If Pr[𝑋(24 + 𝐾∆𝑡1 + 𝑗∆𝑡2) ≤ 𝑇ℎ𝑓] = 0.9 , 𝑇ℎ2 = 16%, 𝑇ℎ𝑓 = 30%, 𝑘 = 1,… , 𝑛,

𝑗 = 1,… ,𝑚 then 𝐾∆𝑡1 + 𝐽∆𝑡2 is the time to take other actions  

 If  Pr[𝑋(24 + 𝐾∆𝑡1 + 𝐽∆𝑡2) ≤ 𝑇ℎ𝑓] < 0.9 , 𝑇ℎ2 = 16%, 𝑇ℎ𝑓 = 30%, 𝑘 = 𝐾, 𝑗 =

𝐽 then structure is no longer functional  
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Figure 5.7 Cumulative distribution function of deterioration based on INS2 outcomes 

at age 18 and 24 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60

C
u
m

u
la

ti
v
e 

d
is

tr
ib

u
ti

o
n
 f

u
n
ct

io
n

Deterioration status(%)

age=26(2)

age=30(2)

age=34(2)

age=38(2)

age=44(2)

age=50(2)

age=56(2)

INS2  ∆𝑡2  

 

INS2 

∆𝑡2  

INS2 

∆𝑡1 

Th2 
Thf 

INS2 ∆𝑡1  



147 

 

 

 Figure 5.8 Comparison of cumulative distribution function of deterioration based on 

INS1 and INS2 outcomes at age 18 and 24 

Different adaptive inspection scenarios can be considered to reflect the effect of 

inspection features, inspection interval and outcomes on the inspection program. 
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         Figure 5.9 Comparison of adaptive and current inspection programs 
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               Figure 5.10 Illustration of adaptive inspection scenarios 
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In Figure 5.10 different inspection scenarios that are named 𝑆1 to 𝑆6 are identified. 

Scenarios 1-3 have been established using measured data and scenarios 4-6 are developed 

using the ‘actual’ data i.e. the uncertainties associated with the inspection techniques have 

been taken into account. According to 𝑆1the inspection type 1 is carried out until age 24 and 

from that point is onward the predicted deterioration status exceeds the relevant threshold; 

the inspection type 2 can be carried out every ∆𝑡21 years until age 52. The inspection 

outcome at age 30 features in 𝑆2 and on the basis of the updated deterioration profile, the 

inspection interval is changed and it is identified that inspection type 2 can be carried out 

until the age 44. It means that structural performance level exceeds the failure threshold 8 

years earlier than the previous scenario 𝑆1. However, the outcomes could also be reversed 

so that inspection type 2 can be carried out for longer than age 52 as in𝑆1. It should be noted 

that the measured inspection outcomes are used for deterioration status prediction in 𝑆1 to 

𝑆3. In order to demonstrate how the imperfect nature of inspection outcomes can be 

accounted for, 𝑆4 to 𝑆6 can be considered. Moreover, the actual inspection outcomes, which 

can be determined by the method that has been explained in Chapter 4, are employed to 

predict the deterioration status. It is identified that the inspection type 2 with ∆𝑡21 interval 

can be carried out until the age 42 when inspection type 2 with ∆𝑡22 interval can be used 

until the age 61 in 𝑆4. As inspection type 1 is continued until the age 30, inspection type 2 

with ∆𝑡21 interval can be used until age 42 like 𝑆4 but inspection type 2 with ∆𝑡22 (∆𝑡21 

greater or smaller than∆𝑡22) interval can be carried out until age 54. It is demonstrated that 

in 𝑆6 the inspection type 1 is carried out until the age 36 and then inspection type 2 with 

∆𝑡21 interval used until age 50 when the deterioration status is predicted to exceed the 

threshold. 

The total inspection cost of these inspection scenarios can be determined in simple terms. 
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5.5 Total Inspection Cost Function 

 

Many research has been conducted over the last two decades to optimize the life cycle 

cost and maintenance cost of highway bridges. Bakker et al. (1999) presented a formula to 

calculate the cost of maintenance. The cost of maintenance roughly has been divided in this 

paper into four types as: 

 Cost of initial investment 

 Cost of preventive replacement 

 Cost of corrective replacement 

 Cost of lifetime-extending maintenance 

It is evident that they did not consider the cost of inspection in the study at all. 

Enright and Frangopol (1999), Frangopol (2004), Kim et al. (2013) established life cycle 

cost models to optimize the total maintenance cost. All models are included initial cost, cost 

of all inspections, cost of all repairs and cost of failure. It is identified however, the cost of 

inspection has been take into account in the models but cost of inspection assumed as fixed 

cost regardless to different inspection scenarios which could be applied. 

In order to take into account of different inspection scenarios, total inspection cost 

function of different inspection scenarios with change over the lifetime, as illustrated in 

Figure 5.1 can be determined by: 

 

𝐶𝑇 =
𝑡𝐼

∆𝑡11
𝐶1 +

𝑡𝑇ℎ2−𝑡𝐼

∆𝑡21
𝐶2 +

𝑡𝑇ℎ𝑓−𝑡𝑇ℎ2

∆𝑡22
𝐶2 + 𝐶𝑚                     (5.2) 

 

Where 𝐶𝑇 is the total inspection cost, 𝐶1 the inspection type 1 cost, 𝐶2 the inspection type 

2 cost, 𝐶𝑚 the other action cost, 𝑡𝐼 is the last inspection time that the deterioration status 

prediction is based on, 𝑇ℎ2 the inspection type 2 threshold, 𝑇ℎ𝑓 the failure threshold,  ∆𝑡11 

the inspection interval type 1, ∆𝑡21 the inspection interval type 2 until the deterioration status 

exceeds the upper limit of inspection type 2, and ∆𝑡22 the inspection interval until the 

deterioration status exceeds the failure limit. The total inspection cost of the inspection 

scenarios are demonstrated in table 5.1 
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                    Table 5.1 Total inspection cost of different scenarios 

Inspection 

scenario(𝑆𝑖) 

Adapted total inspection 

cost(𝐶𝑇) 

Current total 

inspection cost 

𝑆1 24

∆𝑡11
𝐶1 +

28

∆𝑡21
𝐶2 + 𝐶𝑚 

24

∆𝑡11
𝐶1 +

46

∆𝑡21
𝐶2 

𝑆2 30

∆𝑡11
𝐶1 +

14

∆𝑡21
𝐶2 + 𝐶𝑚 

30

∆𝑡11
𝐶1 +

40

∆𝑡21
𝐶2 

𝑆3 36

∆𝑡11
𝐶1 +

3

∆𝑡21
𝐶2 + 𝐶𝑚 

36

∆𝑡11
𝐶1 +

34

∆𝑡21
𝐶2 

𝑆4 24

∆𝑡11
𝐶1 +

18

∆𝑡21
𝐶2 +

19

∆𝑡22
𝐶2 + 𝐶𝑚 

24

∆𝑡11
𝐶1 +

46

∆𝑡21
𝐶2 

𝑆5 30

∆𝑡11
𝐶1 +

12

∆𝑡21
𝐶2 +

12

∆𝑡22
𝐶2 + 𝐶𝑚 

30

∆𝑡11
𝐶1 +

40

∆𝑡21
𝐶2 

𝑆6 36

∆𝑡11
𝐶1 +

14

∆𝑡21
𝐶2 + 𝐶𝑚 

36

∆𝑡11
𝐶1 +

34

∆𝑡21
𝐶2 

 

5.6 Summary and Conclusions 

 

In this Chapter we have addressed the implementation adaptive of, site specific, 

inspection regime that is beyond current practical inspection regime. The new regime has 

been applied to a reinforced concrete slab which is subject to corrosion. As before, the 

deterioration process of the reinforced concrete slab is modeled using gamma process. Once 

the deterioration status exceeds the agreed failure inspection threshold a new inspection type 

has to be considered. Using the deterioration status prediction, inspection type thresholds 

and the agreed structural failure threshold it is possible to identify the most appropriate 

inspection type and inspection interval and ensure that the structure remains functional.  

Since the current optimization model employing the simulation techniques to find the 

optimum inspection planning then the new adaptive inspection program can takes less time 

in comparison with them to establish an appropriate inspection schedule. Furthermore, this 

program can be used simply by owners to give them a clear perspective of the inspection 

scheme and make their management strategy more efficient. The new adaptive inspection 
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program can be site specific as the failure inspection threshold also is site specific. The 

choice of inspection type and inspection interval for any structure depends largely on the 

structural deterioration process and inspection features such as lower and upper thresholds 

in new adaptive inspection program. Moreover, it is possible to combine different inspection 

types or change the inspection type and inspection interval to develop new inspection 

scenarios over the structural lifetime. Form the application of adaptive inspection approach, 

it is concluded that 

 It is possible to have an adaptive inspection program that reflects deterioration 

status at the time of the last inspection and the program can be updated over the 

time as more inspection outcomes become available. It means that if there is a 

change in the rate of deterioration process, then relevant actions can be taken.  

  Relevant criteria are established to ensure structural performance level. The 

criteria are represented in the form of failure thresholds which greatly depend on 

the standard safety of structure’s location and the environment.  

 This approach has a great deal of flexibility to owner and stakeholder. Different 

inspection types can be used in this program when the owner makes decisions 

about the functionality thresholds and type of actions that need to be taken. 

Furthermore, as mentioned before the deterioration mechanism can impact the 

inspection program. Hence, it is possible to consider variety of deterioration 

mechanisms in order to find the most efficient inspection program that will 

maintain the required safety level.  

 The adaptive inspection program could be fully site specific enabling 

consideration of inspection quality but also environmental conditions 

 A simple cost function has demonstrated the benefits of the approach for 

management decisions. It is evident that the cost has a key role in management 

strategy due to the often limited budget.  

 The adaptive inspection regime also provides analytical format to compare total 

inspection costs for different scenarios that could include various inspection 

techniques and inspection intervals. 
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  It is evident that beyond inspection process adaptive approach provides condition 

for site specific maintenance and repair planning. 
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6 Conclusions and Future Work 

 

It has been identified that using a flexible bridge inspection regime enables the owner and 

stakeholders to have a more efficient management plan and keep the road network functional 

within a limited budget. However, the safety and serviceability level of the reinforced 

concrete bridges are highly variable in regard to environment and safety standard. The 

benefit of using the new adaptive inspection regime is that the manager is able to use the 

inspection outcomes to update the prediction about the component condition over the 

lifetime. Since the inspection outcomes have key role in the bridge management, in this 

thesis the current inspection regimes are investigated and reviewed. It is identified in Chapter 

2 that the inspection outcomes and deterioration model are associated with uncertainties 

from different sources. Thereby, an updatable Gamma process was developed in Chapter 3 

to predict the structural deterioration process over the life time. It is concluded that the 

Gamma process is the most appropriate model to characterize the structural deterioration.  

The results of the application of the updatable deterioration model was demonstrated in 

that the method reflects the influence of ageing factors such as corrosion initiation time and 

corrosion rate. The results of the prediction of structural deterioration with certain 

confidence level is presented in form of the deterioration profile which could be more 

realistic as more inspection outcomes become available. However, in Chapter 3 inspection 

outcomes assume perfect inspections which is not the always case. 

The uncertainties associated with inspection outcomes in Chapter 4 are identified and 

characterized. A new probabilistic model is presented in this chapter to take into account 

inspection outcomes uncertainties. The new parameter that is called the actual defect size si 

intoduced. The actual defect size from inspection outcomes can be used to estimate Gamma 

parameters and represent the deterioration process. It can be concluded that the structural 

deterioration status based on the actual defect size has lower uncertainty in comparison with 

the deterioration status following the measured defect size. This is important benefit as for 

ageing structures ever greater uncertainties are accounted for in a rigorous manner. 

The issue of establishing an easy approach to implement an adaptive site specific 

inspection regime, which is beyond current practical inspection regime, has been addressed. 
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The new adaptive inspection regime is developed in Chapter 5 and is applied to a reinforced 

concrete slab which is subject to reinforcement corrosion. Using the deterioration status 

prediction, inspection type thresholds and the agreed structural failure inspection threshold 

it is possible to identify the most appropriate inspection type and interval to ensure that the 

structure remains functional.  

The new adaptive inspection program takes less time in comparison with the current 

optimum inspection program to establish an inspection schedule. Furthermore, this program 

can be used simply by owners to give a clear and relatively long term perspective of the 

inspection scheme and make their management strategy more efficient. The new inspection 

program can be adapted to be used in different areas as the failure threshold, which is used 

to reflect the safety level, depends on the specific acceptable levels based on the safety 

policy.  

The choice of inspection type and inspection interval for any structure depends largely 

on the structural deterioration process and inspection features (such as lower and upper 

thresholds) in the new adaptive inspection program. According to the adaptive inspection 

approach it is concluded that: 

  If there is a change in the rate of deterioration, it can be accounted for at the next 

inspection time. 

  Relevant criteria such as functionality threshold can be established to ensure 

structural performance level.  

 Different inspection types can be used in this program and the owner can decide 

on the functionality threshold and type of actions that need to be undertaken when 

the deterioration status exceeds failure threshold.  

 It is possible to consider a variety of deterioration mechanisms in order to find the 

most efficient inspection program.  

 The adaptive inspection program could be fully site specific enabling 

consideration of inspection quality but also site-specific environmental 

conditions. 
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 The subjective factors that can influence the inspection outcomes such as light 

intensity, the inspector character, the inspection instrument features can be taken 

into account.  

 A simple cost function has demonstrated the benefits of the approach for 

management decisions.  

 The adaptive inspection regime also provides analytical format to compare total 

inspection costs for different scenarios that could include various inspection 

techniques and inspection intervals. 

 The new adaptive inspection regime opens an opportunity for optimization of 

inspection costs firstly but also general infrastructure management that includes 

maintenance and repair. 

However, the adaptive inspection regime has some limitations and there are possibilities 

for future work as follows: 

 In the deterioration process some of the variables are assumed deterministic. 

These variables can be represented in form of a random variable model or 

stochastic process to represent the deterioration process. 

 The inspection uncertainties can be characterized by experimental data which 

could be more realistic and compared with current random variable models. 

 The adaptive inspection criteria can be categorized for different inspection types. 

 The optimum inspection interval of the adaptive inspection can be determined by 

an optimization model.  

 Other inspection uncertainties such as PFA can be taken into account or new terms 

such as detection delayed can be used to model the inspection uncertainties.  

 Parameters such as inspection lower and upper thresholds are considered 

deterministic. These parameters can be modeled as random variable to take into 

account uncertainties associated with inspection techniques.  

 An analytical method can be used to establish a structural safety threshold. 
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APPENDIX A 

 

Suppose X is a random variable and n observations of X are available. The mean or 

expected value of X can be calculated for the n observations as: 

 

𝑀𝑒𝑎𝑛 = 𝐸(𝑋) = 𝜇𝑋 =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1                      (A.1) 

 

In the mean value equation, no distinction is made between the population and sample 

mean. In this equation, in fact, it is implicitly assumed that sample size is relatively large. 

The mean value of small sample size can be used to estimate mean value of population by 

interval estimation method. Since it is impractical to collect information from all available 

sources, the information on the sample mean is useful. In this context, if another sample of 

size n is collected, the sample mean obtained can be somewhat different. In fact, mean value 

of one of each observation is itself a random variable; therefore it can be denoted as �̅� and 

can be estimated as: 

 

�̅� =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1                           (A.2) 

 

The mean or expected value of the sample mean can be calculated as: 

 

𝐸(�̅�) = 𝐸 (
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1 ) =

1

𝑛
∑ 𝐸(𝑋𝑖) =
𝑛
𝑖=1

1

𝑛
𝑛𝜇 = 𝜇    (A.3) 

 

The variation of X is denoted as Var(X) and can be computed as: 

 

𝑉𝑎𝑟(𝑋) =
1

𝑛−1
∑ (𝑥𝑖 − 𝜇𝑋)

2𝑛
𝑖=1                       (A.4) 
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The dimensional problem can be avoided by taking the square root of the variance. This 

is standard deviation, denoted as 𝜎𝑋 and can be calculated as: 

 

𝜎𝑋 = √𝑉𝑎𝑟(𝑥)                      (A.5) 

 

As mentioned previously, it is impractical to estimate Var(X) for all information; 

therefore the interval estimation method is appropriate method to estimate Var(X) for small 

sample size.  

Since the mean and the standard deviation values are expressed in the same units, a non-

dimensional term can be introduced by taking the ratio of the standard deviation and the 

mean. This is called the coefficient of variation (COV) and will be denoted as COV(X) or 

𝛿𝑋. 

 

𝐶𝑂𝑉(𝑋) = 𝛿𝑋 =
𝜎𝑋

𝜇𝑋
                        (A.6) 

 

A smaller value of the COV indicates a smaller amount of uncertainty or randomness in 

the variable. 

The Skewness, also known as the third moment, can be calculated as: 

 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
1

𝑛
∑ (𝑥𝑖 − 𝜇𝑋)

3𝑛
𝑖=1                       (A.7) 

 

A non-dimensional Skewness is known as the Skewwness coefficient and denoted as 𝜃𝑋. 

It is calculated as: 

 

                                             𝜃𝑋 =
𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠

𝜎𝑋
3     (A.8)    

 

This parameter defines dispersion of the variable about the mean value. 
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Normal or Gaussian distribution 

 

One of the most commonly used distributions in engineering problems is the normal 

distribution. The PDF of the distribution can be expressed as: 

 

𝑓𝑋(𝑥) =
1

𝜎𝑋√2𝜋
𝑒𝑥𝑝 [−

1

2
(
𝑥−𝜇𝑋

𝜎𝑋
)2] , −∞ < 𝑥 < +∞    (A.9) 

 

Where the mean 𝜇𝑋 and standard deviation 𝜎𝑋 are the two parameters of the distribution 

which are estimated from the available data. The corresponding CDF can be expressed as: 

 

𝐹𝑋(𝑥) = ∫
1

𝜎𝑋√2𝜋
𝑒𝑥𝑝 [−

1

2
(
𝑥−𝜇𝑋

𝜎𝑋
)2] 𝑑𝑥

𝑥

−∞
           (A.10) 

 

This distribution has many desirable features. It is applicable for any value of a random 

variable and is symmetric about mean. Since estimation of probability by integrating 

equations is not simple, the original random variable can be transformed into standard 

normal variable as: 

                                             𝑌 =
𝑋−𝜇𝑋

𝜎𝑋
   (A.11) 

 

Using the PDF equation of normal distribution and variable transformation technique, the 

PDF of standard normal can be expressed as: 

 

𝑓𝑌(𝑦) =
1

√2𝜋
exp (−

1

2
𝑦2) 𝑎𝑛𝑑 𝐹𝑌(𝑦) = ∫

1

√2𝜋
exp (−

1

2
𝑦2) 𝑑𝑦

𝑦

−∞
= Φ(𝑦)  (A.12) 

 

The mean value and standard deviation of transformed variable are 0 and 1, respectively. 
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f(X
)

- Infinity + Infinity

 

Figure A.0.1 General illustration of probability density function of a standard normal 

distribution 

 

Lognormal distribution 

 

In many engineering problems, a random variable cannot have negative values due to the 

physical aspects of the problem. The representation of random variable as a lognormal 

distribution, the possibility of negative values will be eliminated. If a random variable has a 

lognormal distribution, then its natural logarithm has a normal distribution. The PDF of 

lognormal variable is determined as: 

 

𝑓𝑋(𝑥) =
1

√2𝜋𝜉𝑋𝑥
𝑒𝑥𝑝 [−

1

2
(
𝑙𝑛𝑥−𝜆𝑋

𝜉𝑋
)2] , 0 ≤ 𝑥 < +∞       (A.13) 

 

Where 𝜆𝑋 and 𝜉𝑋 are the two parameters of the lognormal distribution. Its PDF is 

unsymmetrical. Some similarities can be observed between the normal and lognormal 

distribution. The two parameters of the lognormal distribution can be calculated from the 

information on the two parameters of the normal distribution. It is denoted as: 
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𝜆𝑋 = 𝐸(𝑙𝑛𝑥) = 𝑙𝑛𝜇𝑋 −
1

2
𝜉𝑋
2                    (A.14) 

𝜉𝑋
2 = 𝑉𝑎𝑟(𝑙𝑛𝑋) = 𝑙𝑛 [1 + (

𝜎𝑋

𝜇𝑋
)2] = ln (1 + 𝛿𝑋

2)      (A.15) 

 

If the 𝛿𝑋  is small then𝜉𝑋 ≈ 𝛿𝑋. To calculate the probability an event, the method used 

for the normal variables are still applicable, except that for the lognormal variables, the 

standard variable Y will be denoted as: 

 

𝑌 =
𝑙𝑛𝑋−𝜆𝑋

𝜉𝑋
                   (A.16) 

 

The probability of a lognormal random variable can be represented as: 

 

𝑃(𝑎 < 𝑋 ≤ 𝑏) = Φ(
𝑙𝑛𝑏−𝜆𝑋

𝜉𝑋
) − Φ(

𝑙𝑛𝑎−𝜆𝑋

𝜉𝑋
)         (A.17) 

X

f(
X

)

0 + Infinity

 

Figure A.0.2 General illustration of probability density function of a log normal 

distribution 
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Beta distribution 

 

When a random variable is known to be bounded by two limits, the beta distribution is a 

very flexible and useful distribution. The PDF of a beta distribution is denoted as: 

 

𝑓𝑋(𝑥) =
1

𝐵(𝑞,𝑟)

(𝑥−𝑎)𝑞−1(𝑏−𝑥)𝑟−1

(𝑏−𝑎)𝑞+𝑟−1
 , 𝑎 ≤ 𝑥 ≤ 𝑏        (A.18) 

 

Where q and r are the parameters of the distribution and B(q,r) is the beta function. The 

parameters can be estimated from the mean and standard deviation of the available data 

using the following equations. 

 

𝐸(𝑋) = 𝑎 +
𝑞

𝑞+𝑟
(𝑏 − 𝑎)                    (A.19) 

𝑉𝑎𝑟(𝑋) =
𝑞𝑟

(𝑞+𝑟)2(𝑞+𝑟+1)
(𝑏 − 𝑎)2       (A.20) 

 

If the upper and lower limits and the mean and variance of a random variable are known, 

the corresponding parameters of the beta distribution can be estimated. The beta function 

can be denoted as: 

 

𝐵(𝑞, 𝑟) = ∫ 𝑥𝑞−1(1 − 𝑥)𝑟−1𝑑𝑥   𝑜𝑟 𝐵(𝑞, 𝑟) =
Γ(𝑞)Γ(𝑟)

Γ(q+r)

1

0
       (A.21) 

 

Where Γ( ) is the gamma function. When parameters are both equal one, the beta 

distribution becomes a uniform distribution. Once the PDF of a beta distribution is defined, 

the probability of any event can be estimated by numerically integrating the area under PDF 

corresponding to the upper and lower limits. 
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Figure A.0.3 General illustration of probability density function of  Beta distribution 

Binomial distribution 

 

In many engineering applications, events can be formulated in terms of occurrence or 

non-occurrence. Only two outcomes are possible which represent the behavior of a discrete 

random variable. If the probability of occurrence of an event in each trial is p and the 

probability of non-occurrence is (1-p), then the probability of x occurrences out of a total of 

n trials can be described by the PMF of binomial distribution as: 

 

𝑃(𝑋 = 𝑥, 𝑛|𝑝) = (
𝑛
𝑥
) 𝑝𝑥(1 − 𝑝)𝑛−𝑥   𝑥 = 0,1,2, … , 𝑛    (A.22) 

 

Poisson distribution 

 

Another important distribution which is frequently used in engineering to evaluate the 

risk of damage is the Poisson distribution. Some events can be occurred at any point in time 
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or space. If they need to be modeled in a Bernoulli sequence at a given time or space, the 

total space or time needs to be subdivided into very small intervals so that only one 

occurrence is possible in an interval. Modeling x occurrences in time t in a Bernoulli 

sequence as n approaches infinity will lead to the Poisson distribution which can be 

expressed as: 

 

𝑃(𝑥 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑡) = lim
𝑛→∞

(
𝑛
𝑥
) (
𝜐𝑡

𝑛
)𝑥(1 −

𝜐𝑡

𝑛
)𝑛−𝑥 = lim

𝑛→∞
[
(𝜐𝑡)𝑥

𝑥!
(1 −

𝜐𝑡

𝑛
)𝑛] =

(𝜐𝑡)𝑥

𝑥!
𝑒−𝜐𝑡        (A.23) 

 

Exponential distribution 

 

If events occur according to a Poisson process, then the time T before the first occurrence 

of the event can be represented by the exponential distribution. 

 

𝑃(𝑇 > 𝑡) =
𝑒−𝜈𝑡(𝜈𝑡)0

0!
= 𝑒−𝜈𝑡                (A.24) 

 

Then, the CDF of T can be obtained of  

 

𝐹𝑇(𝑡) = 𝑃(𝑇 ≤ 𝑡) = 1 − 𝑒
−𝜈𝑡         (A.25) 

 

And the corresponding PDF of the exponential distribution is 

 

𝑓𝑇(𝑡) =
𝑑𝐹𝑇(𝑡)

𝑑𝑡
= 𝜐𝑒−𝜐𝑡, 𝑡 ≥ 0         (A.26) 
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APPENDIX B 

 

The design of a reinforced concrete member is generally based on the ultimate limit state 

which is usually performed for loading corresponding to that state. To design a structure, it 

is necessary to know the bending moments, torsion moments, shearing forces and axial 

forces in each member. An elastic analysis is generally used to determine the distribution of 

these forces within the structure; but because it is identified - to some extent- that reinforced 

concrete is a plastic material, a limited redistribution of the elastic moments is something 

allowed. However, a plastic yield-line theory may be used to calculate the moments in 

concrete slabs. We focus on the bending moment capacity at ultimate limit state to determine 

the bending moment capacity of bridge slab. Some method of elastic analysis is generally 

used to calculate forces in a concrete structure, despite the fact that the structure does not 

behave elastically near its ultimate load. 

The assumption of elastic behavior is reasonably true for low stress levels, but as a section 

approaches its ultimate moment of resistance, plastic deformation will occur. This is 

recognized in EC2, by allowing redistribution of elastic moments subject to certain 

limitations. It is assumed that the reinforced concrete section is considered elastic until the 

steel yields, and then plastic until concrete failure, or more specifically, the concrete failure 

limits the rotation that may take place at a section in bending. Thus, in an indeterminate 

structure, once a beam section develops its ultimate moment of resistance,𝑀𝑢 ,it then 

behaves as plastic hinge resisting a constant moment of that value.  

The three most important principles in the reinforced concrete section analysis are 

 The stresses and strains are related by the material properties, including the stress-

strain curves of concrete and steel. 

 The distribution of strains must be compatible with distorted shape of the cross 

section. 

 The resultant forces developed by the section must balance the applied loads for 

static equilibrium. 
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Distribution of strains and stresses across a section in bending 

 

The theory of bending for reinforced concrete assumes that the concrete will crack in the 

regions of tensile strains and that, after cracking, all the tension is carried by the 

reinforcement. It is also assumed that plane sections of a structural member remain plane 

after straining, so that across the section there must be a linear distribution of strains. Figure 

shows the cross-section of a member subjected to bending, and the resultant strain diagram, 

together with three different types of stress distribution in the concrete: 

1. The triangular stress distribution applies when the stresses are very nearly 

proportional to the strains, which generally occurs at the loading levels encounter 

under working conditions and is, therefore, used at the serviceability limit state. 

2. The rectangular-parabolic stress block represents the distribution of failure when 

the compressive strains are within the plastic range, and it is associated with 

design for the ultimate limit state. 

3. The equivalent rectangular stress block is simplified alternative to the rectangular-

parabolic distribution. 

 

x S
=

0
.8

x

cc

st

neutral axis

d

As

strains triangle rectangular equivalent

parabolic rectangular

section

 

Figure B.0.1 Illustration of stress and strain diagrams for a reinforced concert beam 

section 
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The relationships between the depth of neutral axis and the maximum concrete 

strain(𝜀𝑐𝑢2) and steel strain(𝜀𝑠𝑡) are given by 

 

𝜀𝑠𝑡 = 𝜀𝑐𝑢2(
𝑑−𝑥

𝑥
)                         (B.1) 

 

Where 𝑑 is the effective depth of section. 

 

At the ultimate limit state the maximum compressive strain in the concrete is taken as 

𝜀𝑐𝑢2 = 0.0035 for concrete class≤ 𝐶50/60 

 

For higher classes of concrete reference should be made to EC2. 

To ensure rotation of the plastic hinges with sufficient yielding of tension steel and also 

to allow for other factors such as the strain hardening of steel, EC2 limits the depth of neutral 

axis to 𝑥 ≤ 0.45𝑑 for concrete class≤ 50/60. 

 

Bending and equivalent rectangular stress block 

 

For most reinforced concrete structures it is usual to commence the design for the 

conditions at the ultimate limit state, followed by checks to ensure that structure is adequate 

for the serviceability limit state without excessive deflection or cracking of the concrete. For 

this reason, the analysis is considered the simplified rectangular stress block which can be 

used for the design at ultimate limit state. The rectangular stress block as shown in figure 

may be used in preference to the more rigorous rectangular-parabolic stress block. It can be 

seen from figure that stress block does not extend to the neutral axis of the section but has a 

depth𝑠 = 0.8𝑥. Thus the moment of resistance of the section will be similar using 

calculation based on either of the two stress block. Bending of the section will induce a 

resultant tensile force 𝐹𝑠𝑡 in the reinforcing steel and a resultant compressive force in the 

concrete 𝐹𝑐𝑐 which acts through the centre of the effective area of concrete in compression. 

For equilibrium, the ultimate design moment,𝑀, must be balanced by the moment of 

resistance of the section so that. 
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𝑀 = 𝐹𝑐𝑐𝑧 = 𝐹𝑠𝑡𝑧                     (B.2) 

 

Where 𝑧 is the lever arm between the resultant forces 𝐹𝑐𝑐, 𝐹𝑠𝑡. 

 

𝐹𝑐𝑐 = 0.567𝑓𝑐𝑘𝑏𝑠  ,        𝑧 = 𝑑 − 𝑠/2           (B.3) 

 

Then 𝑀 is calculated as 

 

𝑀 = 0.567𝑓𝑐𝑘𝑏𝑠𝑧 = 1.134𝑓𝑐𝑘𝑏(𝑑 − 𝑧)𝑧          (B.4) 

 

Rearranging and substituting 𝑘 =
𝑀

𝑏𝑑2𝑓𝑐𝑘
 

 

(
𝑧

𝑑
)2 − (

𝑧

𝑑
) +

𝑘

1.134
= 0                          (B.5) 

 

Solving the quadratic equation: 

 

𝑧 = 𝑑[0.5 + √(0.25 −
𝑘

1.134
)]              (B.6) 

 

In order to calculate 𝐴𝑠 

 

𝐹𝑠𝑡 = (
𝑓𝑦

𝛾𝑠
) 𝐴𝑠   ,       𝛾𝑠 = 1.15    𝑎𝑛𝑑         𝐹𝑠𝑡 = 0.87𝑓𝑦𝑘𝐴𝑠        (B.7) 

 

Hence 

 

𝐴𝑠 =
𝑀

0.87𝑓𝑦𝑘𝑧
                         (B.8) 
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Figure B.0.2 Illustration of strain and rectangular stress diagrams of reinforced 

concrete beam under ultimate bending moment 

 

Shear in slabs 

 

The shear resistance of a solid slab may be calculated by the procedure like a beam. 

Experimental work has indicated that, compared with beams, shallow slabs fail at slightly 

higher shear stresses and this is incorporated into the values of the ultimate concrete shear 

resistance 𝑉𝑅𝑑as given by 

 

𝑉𝑅𝑑,𝑐 = [0.12𝑘(100𝜌1𝑓𝑐𝑘)
1

3]𝑏𝑤𝑑                   (B.9) 

 

Where 𝑉𝑅𝑑,𝑐is the design shear resistance, 𝑏𝑤 the smallest width of the section in tensile 

area and  

𝑘 = (1 + √
200

𝑑
) ≤ 2.0 𝑤𝑖𝑡ℎ 𝑑 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑖𝑛 𝑚𝑚       (B.10) 

𝜌1 =
𝐴𝑠1

𝑏𝑤𝑑
≤ 0.02         𝐴𝑠1 = 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 (B.11) 
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Calculations are usually based on a strip of slab 1m wide. Since shear stresses in slabs 

subject to uniformly distributed loads are generally small, shear reinforcement will seldom 

be required and it would be usual to design the slab such that the design ultimate shear 

force,𝑉𝐸𝑑, is less than the shear strength of the unreinforced section,𝑉𝑅𝑑,𝑐. 

As for beams, the section should also be checked to ensure that 𝑉𝐸𝑑 does not exceed the 

maximum permissible shear force𝑉𝑅𝑑,𝑚𝑎𝑥. Localised ‘punching’ actions due to heavy 

concentrated loads may, however, cause more critical conditions. 
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APPENDIX C 

 

Structural reliability theory 

 

The manner in which an engineer structure will respond to loading depends on the type 

and magnitude of the applied loads and structural strength and stiffness. Whether the 

response is considered satisfactory depends on the requirements which must be satisfied. 

These include safety of the structure against collapse, limitation on damage, or on 

deflections or other criteria. Each such requirement may be termed a limit state. 

The study of structural reliability is concerned with calculation and prediction of the 

probability of limit state contravention for a structural system at any stage during it life. The 

probability of occurrence of an event such as limit state contravention is a numerical measure 

of the chance of its occurrence. This measure either may be obtained from measurements of 

the log-term frequency of occurrence of the event for generally similar structures, or may be 

simply a subjective estimate of the numerical value. However, in practical it is seldom 

possible to observe for a sufficiently long period of time, and a combination of subjective 

estimates and frequency observations for structural components and properties may be used 

to predict the probability of limit state contravention for the structure. 

 

The structural safety of a structure can be estimated by three methods as 

 Deterministic assessment such as safety factor  

 Semi-probabilistic assessment such as return period  

 Probabilistic assessment 

The probabilistic assessment method is explained in the subsequent. In general, the loads 

which are applied to a structure vary with time and are of uncertain value at any one point 

in time. This is carried over directly to the load effect𝑆. Somewhat, similarly the structural 

resistance 𝑅 will be function of time (but not variation one) owing to deterioration and 

similar action. Loads have a tendency to increase, and resistance to decrease with time. It is 

usual also for the uncertainty in both these quantities to increase with time. This means that 
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the probability density functions 𝑓𝑠() and 𝑓𝑅() become wider and flatter with time and that 

the mean values of 𝑆 and 𝑅 also change with time. 

The safety limit state will be contravened whenever, at any time 𝑡  

 

𝑅(𝑡) − 𝑆(𝑡) < 0     OR     
𝑅(𝑡)

𝑆(𝑡)
< 1                    (C.1) 

  

The probability that this occurs for any one load application is the probability of limit 

state violated, or simply the probability of failure 𝑝𝑓. Roughly, it may represented by the 

amount of overlap of the probability density function 𝑓𝑆 and 𝑓𝑅. Since overlap may vary with 

time, 𝑝𝑓 also may be a function of time. However, in some situations, it is convenient to 

assume that neither 𝑄 or 𝑅 is a function of time. This will be the case if the load 𝑄 is applied 

once only to the structure and the probability of failure is sought for that load application 

only. 

If this done, the effect of time may now be ignored in the reliability calculations. This 

approach is not satisfactory when more than one load is involved or when the resistance 

changes with time. 

 

The basic reliability problem 

 

The basic structural reliability problem considers only one load effect 𝑆 resisted by one 

resistance 𝑅. Each is described by a known probability density function, 𝑓𝑆() and 𝑓𝑅(), 

respectively. As noted, 𝑆 may be obtained from the applied loading 𝑄 through a structural 

analysis. It is important that 𝑅 and 𝑆 are expressed in the same units. 

For convenience, but without loss of generality, only the safety of a structural member 

will be considered here and as usual, that structural member will be considered to have failed 

if its resistance 𝑅 is less than the stress resultant 𝑆 acting on it. The probability of failure 𝑝𝑓 

of the structural member can be stated in any of the following ways: 

 

𝑝𝑓 = 𝑃(𝑅 ≤ 𝑆) = 𝑃(𝑅 − 𝑆 ≤ 0) = 𝑃 (
𝑅

𝑆
≤ 1) = 𝑃(𝐿𝑛𝑅 − 𝐿𝑛𝑆 ≤ 0)  (C.2) 
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or in general form 

 

𝑝𝑓 = 𝑃[𝐺(𝑅, 𝑆) ≤ 0]                         (C.3) 

 

Where 𝐺() is termed the ‘limit safe function ‘and the probability of failure is identical 

with the probability of limit state violation. If the 𝑅 and 𝑆 assume the continuous variables 

then the probability of failure can be calculated by 

 

𝑝𝑓 = 𝑃(𝑅 − 𝑆 ≤ 0) = ∬ 𝑓𝑅𝑆(𝑟, 𝑠)𝑑𝑟𝑑𝑠𝐷
          (C.4) 

 

When 𝑅 and 𝑆 are independent 𝑓𝑅𝑆(𝑟, 𝑠) = 𝑓𝑅(𝑟)𝑓𝑆(𝑠) 

 

𝑝𝑓 = 𝑃(𝑅 − 𝑆 ≤ 0) = ∫ ∫ 𝑓𝑅(𝑟)𝑓𝑆(𝑠)𝑑𝑟𝑑𝑠 = ∫ 𝐹𝑅(𝑥)𝑓𝑠(𝑥)𝑑𝑥
+∞

−∞

𝑠≥𝑟

−∞

+∞

−∞
    (C.5) 

 

This is also known as a ‘convolution integral’. Its meaning easily is explained in next 

figure. 
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Figure C.1 Basic R-S problems: FR() fS() representation 

 

 

𝐹𝑅(𝑥) is the probability that 𝑅 ≤ 𝑥 or the probability that the actual resistance 𝑅 of the 

member is less than some value 𝑥. Let this represents failure. The term 𝑓𝑆(𝑥) represents the 

probability that the load effects 𝑆 acting in the member has a value between 𝑥 and 𝑥 + ∆𝑥 

in the limit as ∆𝑥
𝑦𝑖𝑒𝑙𝑑𝑠
→    0. By considering all possible values of 𝑥, i.e. by taking the integral 

over all 𝑥, the total failure probability is obtained.  

This also seen in next figure where the density functions 𝑓𝑅 and 𝑓𝑆 have been drawn along 

the same axis. 
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Figure C.2 Basic R-S problem: fR() fS() representation 

 

The lower limit of integration may not be totally satisfactory, since a negative resistance 

usually is not possible. The lower limit of integration should be strictly zero. 

 

Generalized reliability problem 

 

For many problems the simple formulation as indicated above are not adequate, since it 

may not possible to reduce the structural reliability problem to a simple 𝑅 versus 𝑆 

formulation with 𝑅 and 𝑆 independent random variables. In general, 𝑅 is a function of 

material properties and member or structure dimensions while 𝑆 is a function of applied 

loads 𝑄, material densities and perhaps dimensions of structure, each of which may be a 

random variable. Also, 𝑅 and 𝑆 may not be independent, such as some loads act to oppose 

failure (e.g. overturning) or when the same dimensions affect both 𝑅 and 𝑆. 

In this case, it is not valid to use the convolution integral. It is also not valid when there 

is more than one applied stress resultant acting at a section. A more general formulation is 

required. The simple 𝑅 − 𝑆 form of the limit state needs to replace with a generalized version 

expressed directly in terms of basic variables. Let the vector 𝑋 represent all the basic 
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variables involved in the problem. Then the resistance 𝑅 can be expressed as 𝑅 = 𝐺𝑅(𝑋) 

and loading or load effect as 𝑆 = 𝐺𝑆(𝑋). Since the functions 𝐺𝑅 and 𝐺𝑆 may be non-linear, 

the cumulative distribution function 𝐹𝑅( ), for example, must be obtained by multiple 

integration over the relevant basic variable. 

 

𝐹𝑅(𝑟) = ∫ …
𝑟

∫𝑓𝑋(𝑥)𝑑𝑥                      (C.6) 

 

A similar expression would apply for 𝑆 and 𝐹𝑆(). 

It is seldom necessary to follow this approach. The limit state function 𝐺(𝑅, 𝑆) can also 

be generalized. When the functions 𝐺𝑅(𝑋) and 𝐺𝑆(𝑋) are used in 𝐺(𝑅, 𝑆), the resulting limit 

state function can be written simply as 𝐺(𝑋), where 𝑋 is the vector of all relevant variables 

and 𝐺() is some function expressing the relationship between the limit state and basic 

variables. The limit state equation 𝐺(𝑋) = 0 now defines the boundary between satisfactory 

or safe domain 𝐺 > 0 and unsatisfactory or unsafe domain 𝐺 ≤ 0 in n-dimensional basic 

variables space. Usually the limit state equation is derived from the physic of the problem. 

With limit state function expressed as 𝐺(𝑋), the generalization of probability of failure 

function becomes: 

 

𝑝𝑓 = 𝑃[𝐺(𝑋) ≤ 0] = ∫…∫ 𝑓𝑋(𝑥)𝑑𝑥𝐺(𝑋)≤0
           (C.7) 

 

Here 𝑓𝑋(𝑥) is the joint probability density function for the n-dimensional vector 𝑋 of 

basic variables. Note that the resistance 𝑅 and load effect 𝑆 are no longer involved in the 

formulation and may even not be explicit-generally they are implicit in 𝑋. If the basic 

variables themselves are independent, the formulation is simplified as 

 

𝑓𝑋(𝑥) = ∏ 𝑓𝑋𝑖(𝑥𝑖) = 𝑓𝑋1(
𝑛
𝑖=1 𝑥1)𝑓𝑋2(𝑥2)…𝑓𝑋𝑛(𝑥𝑛)         (C.7) 

 

With 𝑓𝑋𝑖(𝑥𝑖) the marginal probability density function for the basic variable 𝑋𝑖. 
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Time-dependent reliability 

 

In general, the basic variables 𝑋 will be function of time. This comes about, for example, 

because loading changes with time and because material strength properties change with 

time, either as a direct result of previously applied loading or because of some deterioration 

mechanism. Fatigue and corrosion are typical examples of strength deterioration. The 

elementary reliability problem in time-variant terms with a resistance 𝑅(𝑡) and load effect 

𝑆(𝑡), at time 𝑡 becomes 

 

𝑝𝑓(𝑡) = 𝑃[𝑅(𝑡) ≤ 𝑆(𝑡)]               (C.8) 

                                                            OR 

𝑝𝑓(𝑡) = ∫ 𝑓𝑋(𝑡)𝐺[𝑋(𝑡)]
[𝑋(𝑡)]𝑑𝑋(𝑡)    (C.9) 

 

There are several methods to calculate the probability of failure such as numerical 

solutions which provide the approximate results, simulation methods and the method of the 

First-order Second-moment theory. 
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APPENDIX D 

 

Bridge condition rating 

 

A condition state categorizes the nature and extent of damage or deterioration of abridge 

element. It has been established to measure the state of bridge components over time in a 

consistent and uniform manner. The AASHTO Guide Manual for Bridge Element 

Inspection, first edition 2011, provides detailed information on bridge components and their 

corresponding condition states. General condition ratings are used to describe the existing 

in-place bridge or culvert as compared to as-built condition. The materials used in the bridge 

are considered as well as physical condition of the deck, superstructure and substructure 

components. The information used to determine GCRs on a numerical scale that ranges from 

0(failed condition), to 9(excellent condition) as described in the FHWA coding guide. These 

ratings provide an overall characterization of the general condition of the entire component 

being rated; the condition of specific individual bridge components may be higher or lower. 

The bridge condition rating in more detail is described in the next table. 
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Table D.1 National Bridge Inventory general condition rating 

Code Description Commonly 

Employed 

Feasible Actions 

9 Excellent condition Preventive 

maintenance 

8 Very good condition 

No problems noted 

Preventive 

maintenance 

7 Good condition 

Some minor problems 

Preventive 

maintenance 

6 Satisfactory condition 

Structural components show 

Some minor deterioration 

Preventive 

maintenance 

And/or repair 

5 Fair condition 

All primary structural 

Components are sound but 

May have some minor section loss, cracking, spalling or scour 

Rehabilitation or 

replacement 

4 Poor condition 

Advanced sections loss, deterioration, spalling or scour 

Rehabilitation or 

replacement 

3 Serious condition 

Loss of section, deterioration, spalling or scour has seriously affected primary 

structural components. Local failures are possible. Fatigue cracks in steel or 

shear cracks in concrete may be present 

Rehabilitation or 

replacement 

2 Critical condition 

Advanced deterioration primary structural components. Fatigue cracks in 

steel or shear cracks in concrete may be present or scour may have removed 

substructure support. Unless closely monitored the bridge may have to be 

closed until corrective action is taken 

Rehabilitation or 

replacement 

1 Imminent failure condition 

Major deterioration or section loss present in critical structural components 

or obvious vertical or horizontal movement affecting structure stability. 

Bridge is closed to traffic but corrective action may put back in light service 

Rehabilitation or 

replacement 

0 Failed condition 

Out of service-beyond corrective action 

Rehabilitation or 

replacement 
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From information collected through the inspection process, assessment are performed to 

determine the adequacy of a structure to service the current structural and functional 

demands; factors considered include load-carrying capacity, deck geometry, clearance, 

waterway adequacy, and approach road alignment. Structural assessment together with 

ratings of physical condition of key bridge’s components determines whether a bridge 

should be classified as ‘structurally deficient’. Functional adequacy is assessed by 

comparing the existing geometric configurations and design load carting capacities to 

current standards and demands. Disparities between the actual and preferred configurations 

are used to determine whether a bridge should be classified as ‘functionally obsolete’.    
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APPENDIX E 

 

AASHTO Inspection Regime 

 

A. Initial inspection 

Initial inspection can be carried out on new bridges or when existing bridges are first 

entered into the database. This inspection provides a basis for all future inspections or 

modifications to the bridge. Initial deficiencies are noted which might not have been present 

at the time of construction. Changes in condition of the site might be noted such as erosion, 

scour and slopes. 

The final bridge completion checklist includes the notification to the District Bridge 

inspection coordinator when the bridge is opened to traffic and available for use by permit 

vehicle. 

 
B. Routine inspection 

The Routine inspection usually is undertaken every two years for most bridges. Routine 

inspection is regularly scheduled and recorded in accordance with all the procedures based 

on bridge record rule and the instruction-coding guide. 

A specific Routine inspection which is performed approximately every six months on 

most structures to identify unusual conditions or changes is named Brief inspection. It 

doesn’t need to review all points and members done in a normal Routine inspection. Unusual 

conditions or changes will often result in a follow-up in other types. 

 

 

C. Damage inspection 

In result of collision, fire, flood, significant environmental changes, loss of support and 

etc, Damage inspection will be undertaken. It is sometimes called Emergency inspection and 

is performed on as-needed basis. 
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D. In-Depth inspection 

In order to identify better any deficiencies, In-Depth inspection can be carried out as a 

follow-up inspection to an Initial, Routine or Damage inspection. Sometimes Load testing 

may be performed as part of an in depth inspection. This is regularly performed every five 

years. 

 

E. Special inspection 

The purpose of this type of inspection is to monitor new types of structures, structural 

details, or materials. A special inspection may also be used to develop an information 

database. (The manual for condition evaluation of bridges; AASHTO, 2011) 

 

 


