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Abstract 

This paper introduces a coefficient clustering analysis method to detect and quantitatively 

measure damage occurring in composite materials using pulsed thermographic inspection. 

This method is based on fitting a low order polynomial model for temperature decay curves, 

which a) provides an enhanced visual confirmation and size measurement of the damage, b) 

provides the reference point for sound material for further damage depth measurement, c) and 

reduces the burden in computational time. The performance of the proposed method is 

evaluated through a practical case study with carbon fibre reinforced polymer (CFRP) 

laminates which were subjected to a drop impact test with varying energy levels. A novel 

method for reducing an entire thermogram sequence into a single image is introduced, which 

provides an enhanced visualisation of the damage area. 

Highlights 

 A coefficient clustering analysis method to assess damage in composite materials is 

proposed. 

 Distribution of estimated coefficients provides an alternative to characterise damage.  

 This technique not only provides an enhanced visual confirmation of the damage, but also 

reduces the burden on the operator in post-processing the data. 

 Improvement to suitability of pulsed thermography to assess impact damage in composites. 
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1. Introduction 

Composite materials are well known for their high strength-to-weight ratios, low density and 

corrosion resistant properties in comparison with traditional metallic components. As such, 

they are applied in a wide variety of contexts, increasingly in automotive and aerospace 

sectors; where there is a huge requirement to improve system performance through weight 

reduction. With the rising price of aviation fuel and attitude towards environmental issues, 

modern aircraft manufacturers are looking out for innovative solutions that can offer better 

performance without compromising the structural integrity and safety features of the aircraft. 

Thus the current generation of aircrafts are seeing large introduction of composite 

components that constitute to about 50% by weight of the aircraft in parts such as engine 

casings, wing sections, tail plane, control structures and fuselage [1]. However, composites 

are also well known for their vulnerability to impact damage and their difficulty to repair 

compared to metal based components. An impact or strike on the surface may cause 

structural damage that may be exhibited with only a small surface visual profile – this is 

known as barely visible impact damage (BVID) [2]. Even though the damage is ‘barely 

visible’ on the surface, the damage to the structure could severely affect its properties and 

performance, which may not be apparent from the surface profile of the impact. 

A variety of impact sources exist, such as stones, hail, bird strike and even accidental drop of 

workmen tools during maintenance that can cause impact damage. Literature suggests that 

bird strikes account for up to 80% of service damage to composites in the aerospace sector 

[3]. While the surface may appear sound, there may be significant damage hidden in the 

internal structure, and may not be appreciated on the surface because of a difficult 

relationship between appearance of surface features and structural integrity of the part [4, 5]. 

When the composite structure is subjected to a minor impact damage that is barely visible on 



the surface, the damage even at the micro scale can progress to significant structural damage 

that affects the strength, durability and stability of the composite laminates [6].  

In the aviation industry, multiple non-destructive testing or NDT methods are employed, 

ranging from direct visual inspection, dye-penetrant, magnetic particle, eddy current, 

radiography to advanced methods such as 3D computed tomography, ultrasound and 

thermography to capture the health and structural integrity of the component without creating 

or intensifying any further damage to the component that is being inspected. This diversity of 

inspection methods requires a range of skills and expertise, providing results with differing 

margins of error between them.  

Thermography has been attracting increasing attention over recent decades as the method 

involves a rapid, robust, non-contact, non-invasive inspection. Thermography can be divided 

into two modes: passive and active. The passive mode applies where deviations from normal 

operation exhibit a change in thermal contrast to be observed by an infrared imager, while 

active thermography involves the input of an external heat that generates a measurable 

thermal contrast. This particularly applies where an inspected part is not in use and is in 

thermal equilibrium with its surrounding environment, when detection of sub-surface damage 

and defects is sought, or for the measurement of material thermo-physical properties. In order 

to generate a thermal contrast, heat input is designed to highlight damages and defects either 

using them to generate the heat signal, as in the case of vibro-thermography, or as an 

obstruction or conduit to heat flow. Thermography in its varied forms has found applications 

in many contexts such as condition monitoring of electrical equipment [7], mechanical 

equipment [8], welds [9], structures [10], and aerospace composites [11, 12] and Through-

Life Engineering [13]. 

In infrared thermography, various image processing methods are in common use, from the 

basics of dealing with fixed pattern noise, vignetting, bad pixels and spatial noise smoothing 



[14], to thermal contrast algorithms [15] which have been further developed over the years 

[16]. The Thermographic Signal Reconstruction (TSR) [17] algorithm was a landmark 

development in pulsed thermography which dramatically increased spatial and temporal 

resolution of a thermogram sequence and opened up the opportunity for new ways of 

processing pulsed thermography data. Others have applied Principal Component Analysis 

(PCA) to thermography, also referred to as Principal Component Thermography (PCT), on 

TSR coefficients that improved the results from typical averaging filters, with comparable 

results to Pulse-Phase Thermography [18].  PCA analysis has also been applied to a TSR-

type treatment of per-pixel signal data [19] in order to differentiate different delamination 

sizes and lengths, with sensitivity to delamination opening. Additional study has involved use 

of skewness parameter [20], and high order statistics, with somewhat consistent performance 

in signal-to-noise ratio for defects of different size and depth [21]. TSR based analysis 

processes have previously been explored with exciting developments, involving the 

transformation of the thermography data into a series of RGB colour images synthesized 

from TSR polynomial coefficients [22]. The data thus obtained may be plotted for each 

colour shade to estimate contrast emergence times together with depth scaling, and has been 

applied to both artificial and real damage features [23]. This specific application has been 

proven to be quite powerful at extracting multiple features into single images.  

This paper is limited to focus on damage detection and corresponding sizing measurement 

with an application in assessing degradation caused by drop impact. Damage detection is 

important because a number of commonly used feature depth measurement methods, such as 

Peak Temperature-Contrast [15] and Peak Temperature-Contrast Slope [24], often require a 

reference point that is known on a sound material. Ringermacher [24] used the average 

temperature from the entire surface before flash as reference. This can work well only when 

the defective region is small and the surface is uniformly illuminated. Curve-fitting based 



methods, such as Shepard’s Peak Second-derivative method [25] and Sun’s Least-Squares 

Fitting method [26, 27] require fitting either a high order polynomial model or a complex 

heat diffusion model. A high order polynomial model can experience the over-fitting problem 

when the model has too many parameters relative to the number of observations, especially 

when the data is noisy. Although fitting based on a physical model (the model structure being 

known) reduces the sensitivity to noise, it requires multiple unknown parameters to be 

estimated simultaneously using optimisation techniques. However, this can be very time-

consuming and sometimes only locally optimal solutions are produced rather than globally 

optimal solutions. Developing a fast, automatic and reliable technique with high robustness 

against noise for damage detection is therefore a key goal of the community. 

2. Experimental data 

2.1 Specimen 

Specimens were produced with the dimension of 150mm x 100mm x 4mm, which were made 

of unidirectional Toray 800 carbon fibres pre-impregnated with Hexcel M21 epoxy resin. The 

laminates were subjected to a drop impact test with predefined energy levels using a semi-

    

                                     (a)                                                                      (b) 

Fig. 1: (a) The weight-drop machine used for impact generation and (b) specimen support 

fixture. 

 



spherical 16mm diameter weight drop machine which employed a drop weight of 2.281kg, as 

illustrated in Fig. 1(a). The support used to hold the sample in place was designed by 

following the instructions given by the standard BS ISO 18352, shown in Fig. 1(b).  

The weight impact energy is equivalent to 𝑚 × 𝑔 × ℎ, where 𝑚 refers to impact mass, here 

2.281kg was used, 𝑔 = 9.8𝑚/𝑠2  is gravitational acceleration, and ℎ  is the drop height. 

Impact energy is adjusted by changing the height of the drop-weight, details of which are 

shown in Table 1. The specimens were subjected to represent impact energies of 5, 10, 15, 20, 

25 and 30J respectively. As shown in Fig.2 (a), in all samples, each of the damages are 

clearly visible from the impacted side, but they are hidden or less obvious from the rear 

surface, as shown in Fig. 2 (b).  

2.2 Data collection  

The experiment was conducted with the Thermoscope® II, a proprietary pulsed-active 

        

(a)         (b) 

Fig. 2: Snapshot of 6 studied specimens. (a) Impact damage is visible from the impacted 

side of the specimens; (b) the rear surface of the samples present invisible or subtle 

evidence of damage. 
 

Table 1: Drop height and impact energy level. 

Specimen No. Drop Height (m) Energy Level (J) 

#1 0.22 5 

#2 0.45 10 

#3 0.67 15 

#4 0.89 20 

#5 1.12 25 

#6 1.34 30 

 



thermography system from Thermal Wave Imaging Inc. This system comprises of two Xenon 

flash lamps mounted in an internally reflective hood with a capacitor bank providing power, 

and a desktop PC to capture and store data [28, 13]. A FLIR SC7000 series infrared 

radiometer was used, which has an Indium Antimonide (InSb) sensor with a spectral range of 

3-5.1µm. The radiometer has a full spatial resolution of 640x512 pixels. The samples were 

placed with their surface perpendicular to the camera’s line of sight at a distance of 300mm 

from the lens. Considering the thickness of the specimens and their low thermal diffusivity, a 

sampling rate of 25Hz was used. 

2.3 Temperature decay curve 

In pulse thermography, a short and high energy light pulse is projected onto the sample 

surface. The surface absorbs the light energy and its temperature increases. This heat is 

conducted through the sample, propagating inside the material causing a decrease in surface 

temperature. The surface temperature for a plate with a defect at a depth 𝐿 is given by [29] 

𝑇(𝑡) =
𝑄

√𝜋𝜌𝑐𝑘𝑡
[1 + 2 ∑ 𝑅𝑛exp (−

𝑛2𝐿2

𝛼𝑡
)∞

𝑛=1 ]    (1) 

where 𝑇(𝑡) is the temperature of the surface at time 𝑡, 𝑄 is pulse energy, 𝜌 is density, 𝑐 is 

heat capacity, 𝑘 is the thermal conductivity of material, 𝛼 is thermal diffusivity and 𝑅 is the 

thermal reflection coefficient of the air gap interface. For a semi-infinite medium, the 

temperature difference has a linear relation with time in the logarithmic domain with a slope 

of -0.5 [30]. 

The temperature response of any change in thermal material property from structure, damage 

or defect will derivate from the linear response. Shepard [17] proposed a Thermal Signal 

Reconstruction (TSR) technique to reduce temporal noise using a high order polynomial 

model to fit the temperature cooling curve. The model can be written as 



ln(𝑇(𝑡)) = ∑ 𝑎𝑖(ln(𝑡))𝑖𝑁
𝑖=0      (2) 

where 𝑁 is the model order and 𝑎𝑖 are coefficients to be estimated. Normally, 𝑁 is larger than 

5. Once the unknown coefficients 𝑎𝑖 are estimated by the least square method, the 

temperature behaviour can be reconstructed to replace the raw data. Noise is significantly 

reduced in TSR data and damages can then be better visualised. The first and second 

derivative of the fitting curve can be easily calculated by using the coefficients directly, and 

they have been proposed to determine the damage depth [30]. 

Fig. 3(a) shows an infrared image of the laminate that was subjected to an impact of 30J, 

where ‘jet’ colour map was used. Three pixels from different areas were considered and 

corresponding temperature decay curves in the logarithmic scale are shown in Fig. 3(b). It is 

shown that when the heat diffuses through the sound area (represented by red curve and 

marked by red cross in Fig. 3 (a)) the temperature decay characteristics are uniform for a 

slope of -0.5 as established in [30]. However, it can be inferred from the thermogram that 

there is the area represented by the green marker that shows a different temperature decay 

profile in comparison with the area where the material is not supposed to have any damage. 

        

(a)        (b) 

Fig. 3: (a) Infrared image of the laminate as shown in Fig.2 for 30J impact, inspected 

from the non-impact side of the laminate. This snapshot was sampled at 1 second after 

the flash, where the ‘jet’ colour map was used. (b) The logarithmic time-temperature 

curve plotted for three selected pixels in (a) with the marker colours indicating the 

respective curves. 

 
 



This profile when plotted over time is represented by the green curve in Fig. 3(b), which 

confirms this deviation from the time-temperature profile of a sound area, confirming the 

presence of near and sub-surface damage as established in the literature [11, 12, 14, 31]. 

From Fig. 3(a), it can also be inferred that there is a secondary damage that has also been 

caused by the impact, but have a much lower contrast. It can be inferred that the deviation of 

the curve, now represented by the blue curve, from the base material (the red curve) confirms 

the presence of additional damage, which in this case may be referred to as secondary 

damage. The results obtained thus provide validation ensuring that the trend obtained is in 

line with what has been established in other researches. 

3. Coefficient Clustering Analysis (CCA) 

Fitting a high order polynomial model can be time consuming depending on the spatial 

resolution of images and the number of frames to be analysed. It also can cause over-fitting 

when the polynomial model describes noise instead of the underlying relationship [32]. 

Overfitting generally occurs when a model is excessively complex, such as having too many 

parameters relative to the number of observations. If a relatively low number of data are 

sampled, over-fitting can affect the performance of a high order model and this problem will 

be further amplified when using the first and second derivative. To address this issue, this 

paper proposes a new method to rapidly detect damaged areas using a second order 

polynomial model, which can be written as: 

ln(𝑇(𝑡) − 𝑇0) = 𝑎0 + 𝑎1 ln(𝑡) + 𝑎2ln (𝑡)2    (3) 

Although the model fitting is not as close as a high order model, the coefficients are much 

less sensitive to noise and more consistent for pixels from sound area. This fact is clearly 

evidenced by Fig. 4, where Fig. 4(a) shows the box chart for the polynomial coefficients 𝑎1 

with different model orders estimated from a damage-free specimen, and Fig. 4(b) shows the 



box chart for 𝑎1 with different model orders estimated from a damaged specimen (30J). It can 

be observed from Fig. 4(a) that the variance of 𝑎1 indicates the sensitivity to variation of 

pixels from the damage-free specimen, and its significant increase following the increment of 

the model order. As before, Fig. 4(b) represents the variation  𝑎1  for a damaged area, 

indicating the sensitivity to variation of pixels. No significant difference has been observed 

between different model orders.  

A novel coefficient clustering analysis (CCA) is introduced in this paper to explore the inner-

relationship between coefficients to characterise and classify the thermal behaviour of each 

pixel of captured thermal images. Considering a damage-free specimen, an area of 100 ×

 

(a)                                                             (b) 

Fig. 4: Box chart for  𝑎1  with different model orders estimated from a damage-free 

specimen (left) and a damged specimen of 30J (right). 
 

  

Fig. 5: The distribution of the coefficients for the damage-free specimen with 

correponding Gaussian fitting.  
 



Table 2: The parameters of the Gaussian fitting for the distribution of the first and second 

order coefficients for the 6 specimens, reflecting data extracted from ‘sound’ areas. 

Specimen 
𝑎1  𝑎2 

Mean Standard Deviation Mean Standard Deviation 

5J -0.57466 0.01241 0.01807 0.00146 

10J -0.56968 0.01422 0.01813 0.00196 

15J -0.56692 0.01546 0.01090 0.00103 

20J -0.56713 0.01566 0.01090 0.00102 

25J -0.55683 0.01573 0.01397 0.00180 

30J -0.54458 0.01163 0.01116 0.00177 

 

100  pixels was sampled and the model (4) was fitted for each pixel. Fig. 5 shows the 

distribution of the first order coefficient 𝑎1  and the second order coefficient 𝑎2  with 

corresponding Gaussian fitting respectively. It is clearly shown that both coefficients are 

located within a narrow range with an approximate Gaussian distribution. The standard 

deviation of the fitting, 𝜎, is 0.01328 and 0.00166 respectively, which is relatively very small 

comparing with the mean of distribution, 𝜇, which is -0.57482 and 0.01799 respectively. The 

value of R-Square, as the indicator of approximation level, is 0.99314 and 0.99422, 

respectively.  

To investigate the variance of coefficients across different samples, the above step was 

repeated for all specimens and the mean and standard deviation of Gaussian fitting for both 

coefficients of sound areas from each sample are shown in Table 2. The statistics results of 

the mean of 𝑎1  (−0.5633 ± 0.0107) and 𝑎2 (0.01385 ± 0.00349) clearly demonstrate the 

consistency of thermal behaviour for sound areas. On assessing sound area data, it has been 

observed that the first order coefficient increases following the increment of impact energy, 

which provides an indication that the impact event may have led to an overall change in the 

thermal behaviour of the sound area. All these observations reveal the potential to use both 

coefficients as the feature to classify sound and damaged pixels. This paper proposes to use 

the clustering between 𝑎1 and 𝑎2 as the base to perform classification.  



Fig. 6 shows the scatter plot, illustrated by blue dots, for pixels sampled from the damage-

free specimen. The plot exhibits a spindle shaped profile which indicates a strong linear 

relationship between these two coefficients. The linear relationship can be described as 

𝑎2 = 𝑏0 + 𝑏1𝑎1      (4) 

where 𝑏0 and 𝑏1 are intercept and slope to be estimated respectively. This model along with 

the boundary condition defines the constraint of 𝑎1  and 𝑎2  (𝑎1 ∈ [τ1, τ2]) of pixels from 

 

Fig. 6: The plot of the second order coefficient 𝑎2 as a function of the first order 

coefficient 𝑎1 for one damage-free specimen. 
 

 

Fig. 7: Illustration of the classification process, where the red line segment denotes the 

baseline. Any pixel whose scatter of 𝑎1 vs 𝑎2 locates inside the region surrounded by the 

blue curve is determined as a pixel from sound area, or it is determined as a pixel from 

damaged area. 
 



sound areas. The classification process is illustrated in Fig. 7, where the red line segment 

denotes the model (4). Considering a pixel p(x, y), the first step is to estimate the first and 

second order coefficient of the model (3), and then calculate the shortest distance from the 

coefficient coordinate (𝑎1
𝑥,𝑦

, 𝑎2
𝑥,𝑦

) to the line segment, denoted by dxy. If dxy is smaller than a 

preset tolerance τd , this pixel is determined as a pixel coming from a sound area of the 

component, or the pixel is determined as a damaged pixel. The value of dxy indicates the 

level of difference of thermal behavior with damage free area. The larger the value of dxy, the 

more complex the thermal behavior is, which could directly relate to the level of structure 

change. The value of  τd  is chosen based on the standard derivation of the coefficients 

calculated from the damage-free specimen. Through a large amount of testing and 

performance comparison, the paper proposes to select  τd by 

 τd = 2.5√𝜎1
2 + 𝜎2

2      (5) 

where 𝜎1 and 𝜎1 denotes the standard deviation of 𝑎1 and 𝑎2, respectively. 

Note the values of the parameters depend on the material and thickness of specimens. The 

identified model is applicable for components with the same material and thickness, any 

change of which requires re-calibrating the parameters using a reference sample or an area 

known as damage-free. 

The steps of the proposed CCA method can be summarised as: 

1) Select a region of a damage-free specimen, and estimate the baseline coefficients of 

model (3): 𝑎0, 𝑎1 and 𝑎2; 

2) Fit the model (4) to estimate 𝑏0, 𝑏1 based on the scatter plot of 𝑎1 and 𝑎2, as shown in 

Fig. 6; Determine the boundary condition τ1, τ2 , and tolerance  τd   by estimating the 

distribution of the coefficients, as shown in Fig. 5; 



3) Select a region of interest for a testing specimen, and estimate the coefficients of model 

(3): 𝑎0, 𝑎1 and 𝑎2; 

4) Calculate the shortest distance from the coefficient coordinate (𝑎1
𝑥,𝑦

, 𝑎2
𝑥,𝑦

) of each pixel 

to the baseline, as shown in Fig.7. If dxy is smaller than τd, this pixel is determined as a 

pixel coming from a sound area, or the pixel is determined as a damaged pixel. 

5) Visualise the damage by reversing pixels to space domain in a black-white form (Fig. 10) 

or color form (Fig. 12). 

4. Results and Discussion 

4.1 Damage detection 

A region with a size of 200 × 200 pixels around the center of the specimen was sampled for 

all specimens. The unknown parameters for the model (4) were estimated from the reference 

sample and the model is finally expressed as 

𝑎2 = −0.05 − 0.12𝑎1      (6) 

As shown in Fig. 6, the red plot illustrates the model (6) with 𝑅2 = 0.88. The boundary 

condition of  𝑎1 is determined by 99% quantile of distribution, which is [−0.62, −0.53]. The 

distance tolerance τd is chosen as 0.033 based on Eq. (5). 

By applying the developed CCA method with the estimated parameters into the thermal 

decay data, the scatter plots of 𝑎1  vs 𝑎2  are shown in Fig. 8. The green scatters were 

classified as the pixels from sound areas, and the red scatters were classified as the pixels 

from damaged areas based on the process shown in Fig. 7.   

There are almost no damaged pixels detected for the specimen at 5J. As expected, the number 

of damaged pixels detected increases following the increment of impact energy, which 

indicates a growing area of damage. The change in the contour of clustering indicates that a 



 

 

Fig. 8: The classification results based on the scatter of the first order coefficient and the 

second order coefficient for all specimens, where the green colour denotes the detected 

sound pixels and the red colour denotes the detected damaged pixel. 



higher energy impact causes more complex thermal behavior indicating potentially a more 

complex structural damage, which adds to deviation in the thermal behavior exhibited on the 

surface in comparison to sound areas. To explore more information, the left figure of Fig. 9 

illustrates the overlap of coefficient clustering for pixels from defective areas for the 

specimen 10J-30J (5J is not included due to no damage detected). It has been observed that 

the scatters grow towards to the bottom-right corner following the increase of impact energy.  

This indicates that the linearity of temperature decay curve reduces because 𝑎1 is closer to 

zero, and more complicated thermal behaviors have been observed because 𝑎2 is further away 

from zero. The set of figures on the right in Fig. 9 show the box charts of both coefficients for 

pixels from damaged areas. It has been observed that following the increase of impact energy, 

the range between the maximum and the minimum for both coefficients increases which 

indicates that a higher energy impact potentially causes more complex structural damage. The 

minimums of 𝑎1 are similar for all tests, but the maximum is closer to zero; the maximums of 

𝑎2 are similar for all tests, but the minimum is further away from zero. The variation of the 

box size for all tests is relatively small, which indicates that most damaged pixels have 

similar thermal behavior. 

 

Fig. 9: Properties for pixels from defective areas for the specimen 10J-30J. Left: 

coefficient clustering overlay; top-right: box chart of the first order coefficent; bottom-

right: box chart of the second order coeffcient, which shows the minimum, maximum, 

25% percentile and 75% percentile of all of the data. 

. 



4.2 Damage measurement 

Fig. 10 shows the visualisation of the detected damage area (black colour) in the binary form 

by converting the classification results into the spatial domain. To quantify the measurement, 

Table 3 presents the calculated properties of the detected damage area for each specimen, 

where the compactness measures the shape. Compactness was calculated by 

𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 =
4𝜋×𝑎𝑟𝑒𝑎

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2      (7) 

The value of the compactness is not greater than 1. If the shape of the area is a circle, the 

value of compactness arrives its maximum 1. Table 3 shows that the higher impact energy, 

the larger the area and perimeter of the detected damage is. It can be observed that the 

damaged area of the specimen 30J is smaller than 25J, but the perimeter is larger than 25J, 

which indicates a more irregular shape. This observation is confirmed by inspection of the 

compactness. The value of compactness for 10J, 15J, 20J and 25J is similar (mean: 0.634, 

 

                   10J                            15J                            20J                        25J                   30J 

Fig. 10: Visualisation of the detected defect area for all specimens in the binary form.  

 

Table 3: The property measures for the detected damage areas for all specimens. 

Specimen Area (mm2) Perimeter (mm) compactness 

10J 154.92 58.19 0.575 

15J 397.08 86.60 0.665 

20J 648.84 111.18 0.667 

25J 1347.36 163.85 0.630 

30J 1283.04 181.51 0.489 

 



standard derivation: 0.043). The compactness of 30J is significantly smaller with the value of 

0.489, which indicates a more irregular shape. A plot of perimeter as a function of impact 

energy, shown in Fig. 11, indicates a highly linear relationship. A line is fitted to the plot by 

the least square method with 𝑅2 (coefficient of determination) = 0.97. For the specimen 30J, 

the high impact energy causes a potentially more complex damage structure, rather than an 

increased damage area in comparison with that of the 15J specimen.   

Once the raw data sequence is converted into polynomial coefficients, and has undergone the 

coefficient clustering step transforming them into dxy, these values can then be plotted back in  

the spatial domain, providing a new and alternative visualisation of the detected damage areas, 

as can be seen in Fig. 12. It has been observed that there are consistently two areas (top right 

      

                 10J                         15J                             20J                        25J                    30J 

Fig. 12: Reconstructed data visualisation of damage across a range of samples: based on 

the dxy values from the CCA method.  

 

Fig. 11: Perimeter of the detected damaged area as a function of impact energy. 



and bottom left) that have high values of dxy for all specimens with impact damage. This 

phenomenon may be caused by the mechanism of the weight-drop machine itself.  

5. Conclusions 

Quantitative measurement of defective areas by pulse thermography has been an important 

research topic over the last decade. A high order polynomial model is normally used in 

existing methods to better fit the experimental data. However, over-fitting generally occurs 

when the number of observations are limited or the model is complex. To avoid this problem, 

this paper has developed a novel coefficient clustering analysis method based on a second 

order polynomial fitting for the temperature decay curve. It has been observed that the 

estimated coefficients of sound pixels exhibit an approximate Gaussian distribution, and the 

variance of both coefficients for different testing specimens is relatively small. The clustering 

of coefficients is therefore selected as a feature to represent the thermal behavior of each 

pixel. A simple linear function describing the relationship between two coefficients with a 

corresponding boundary condition has been developed to classify pixels from damaged and 

sound areas of the specimens.  

The evaluation of the performance and accuracy of the proposed CCA method are based on 

experimental data from carbon fibre laminates that suffered different impact energies. 

Clustering results reveal that the higher the impact energy, the wider the distribution of the 

scatter plot of damaged pixels; indicating a more complex thermal behaviour. Both binary 

and colour visualisations show that the higher the impact energy, the more complex the 

thermal behaviours it causes. It has been observed that the specimen with 30J impact has a 

more irregular shape than other 5 specimens. The perimeter of the detected area and the 

impact energy exhibits a highly linear relationship. Analysis of the results reveals clear 

potential of the new CCA method. 



It should be inferred from the reverted spatial images that they don't just represent a single 

frame from the dataset, as represented by other existing methods; but represent the 

reconstruction of the entire dataset compressed into a single image. This technique not only 

provides an enhanced visual confirmation of the damage, but also reduces the burden on the 

operator in post-processing the data. 

The present study can only detect and measure damage size. Future research will be focused 

on the development of an efficient coarse-to-fine damage assessment routine, which would 

perform a rapid inspection, initially identifying the damaged areas based on CCA to provide 

the reference point for sound material. From this, the region of interest can be deduced, 

allowing depth measurement techniques to then be applied to the identified areas.  
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