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traces show the corresponding steady-state pupil sizes and the absolute pupil 

constriction amplitude and latencies can be compared easily for each stimulus 

condition. The pupil constrictions in the bottom diagrams (b, c, d, f, g and h) have 
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response amplitudes to the luminance and colour stimuli, especially at the lowest 

light level. However, in the normal subject (b, c and d), the pupil response amplitude 
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ABSTRACT 

The research work described in this thesis embodies a number of studies designed to 
investigate human vision with emphasis on aspects of the pupil response and chromatic 
mechanisms in relation to the perceived chromatic afterimages. 

The aim of the first study was to establish the relationship between the perception of 
chromatic afterimages and the corresponding involuntary pupil responses. We started by 
designing and developing a new, computer-based, psychophysics program and employed it 
to measure the strength and duration of perceived chromatic afterimages in normal 
trichromats and in colour deficient observers. The dynamic luminance noise technique was 
used to isolate colour signals and to elicit pupil responses to coloured stimuli of known 
photoreceptor contrast.  A model was developed to explain the afterimage results obtained 
in the normal trichromats and in colour deficient subjects.  The model and the pupil colour 
responses provided an understanding of luminance and colour processing in dichromats 
that also helped to explain previously reported pupil colour responses. The model also 
predicts the colour confusion lines and the characteristics of pupil colour responses in 
dichromats at any given background chromaticity.  

In the second study, we investigated and compared pupil responses to visual stimuli that 
isolate photopic luminance and colour in both the sighted and blind region of the visual fields 
on subjects with either acquired or congenital homonymous hemianopia. The measured 
pupil responses in the blind hemifield of patients with acquired cortical damage are either 
absent or of reduced amplitude when compared to those measured in the corresponding 
regions of the sighted field, whereas the patients with congenital loss of visual field show 
similar and even enhanced pupil responses when compared to their sighted hemifield. 
These results suggest that in the absence of normal functioning of the direct geniculostriate 
projection, other projections to midbrain nuclei or to extrastriate regions can be enhanced 
and these include the pupillary pathways. These findings suggest that early damage to the 
brain might be partly compensated for by reorganising the strength of neural projections to 
the remaining, non-compromised visual areas.  

The purpose of the last study was to examine whether melanopsin contributes to the 
dynamic pupil light reflex responses in humans. A light source containing of four primary 
components was employed to generate pupillary stimuli that isolate luminance, colour or 
combined rod and melanopsin. Normal trichormats, rod deficient subjects, one subject with 
retinitis pigmentosa, one rod monochromat, three subjects with Leber’s Hereditary Optic 
Neuropathy (LHON) and one subject with Optic Neuritis were investigated using this 
approach. The results from the LHON subjects suggest not all classes of ganglion cells are 
affected uniformly in LHON, and that the pupil light reflex responses mediated through rod 
photoreceptors were affected the least. The characteristics of the pupil responses to the 
rod/melanopsin stimulus from the rod monochromat and the retinis pigmentosa subjects 
suggest that melanopsin does not contribute to dynamic pupil light reflex response in 
humans. 
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ABBREVIATIONS AND SYMBOLS 

L cones Long wavelength sensitive cones 

M cones Medium wavelength sensitive cones 

S cones Short wavelength sensitive cones 

ipRGCs Intrinsically Photosensitive Retinal Ganglion Cells 

IPL Inner Plexiform Layer 

OPL Outer Plexiform Layer 

M cells/pathway Magnocellular cells/pathway 

P cells/pathway Parvocellular cells/pathway 
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GUI Graphics User Interface 

SQL Structure Query Language 
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QAA Quantitative Afterimage Assessment 
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1 INTRODUCTION 

This chapter describes the basic mechanisms of human vision with emphasis on 

the processing of colour signals and the control of the pupil response. It begins by 

describing the anatomy and physiology of the eye and the structures of the retina. 

This is followed by an examination of image formation in the eye and the neural 

processing of signals in the retina. The role of the pupil, the function of melanopsin 

and the processing of colour signals are discussed. A new afterimage measurement 

technique is then described in relation to some related studies on pupil response 

components. A brief summary of the contents of the experimental work is then 

given for each of the remaining chapters.  

1.1 Anatomy and physiology of the eye 

Vision is arguably the most important of all sensory inputs. A large amount of 

information about the surrounding environment is provided through sight. However, 

the visible spectrum is only a small portion of the electromagnetic spectrum (Figure 

1-1). A typical human eye will respond to wavelength from about ~390nm to 

~750nm and the rest will appear black. The process of visual perception starts with 

light entering the eye and forming a 2D representation of the object space on the 

retina. The information carried in the spatial modulation of intensity and spectral 

content is then processed and coded in the retina and then transferred to the Dorsal 

Lateral Geniculate Nucleus (dLGN) and from these to the primary visual cortex and 

to a number of midbrain nuclei.  
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Figure 1-1. Visible spectrum. A typical human eye will respond to 
wavelength from about ~380nm to ~750nm. 

1.1.1 The structure of the eye 

A simple examination of the eye reveals dark pupil (as a disc aperture in the middle 

of the eye), the iris (a very colourful structure) and the sclera (the white of the eye) 

that extends into the orbit. The human eyeball is a slightly asymmetrical sphere of 

approximately one inch in diameter and a volume of about 6.5cc (I Arbus, 1967). 

When light enters the eye, it passes though the cornea, the anterior chamber, the 

pupil, the lens and then the vitreous humour before finally reaching the retina.  
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Figure 1-2. A Horizontal cross section of the human eye, 
reproduced from (Boynton 1979) 

Figure 1-2 shows a horizontal cross section of the human eye (Boynton, 1979). 

From the outermost part of the eye to the inside, the eye can be considered to have 

3 different layers: the external layer, which contains the cornea and sclera; the 

intermediate layer, which contains the iris, ciliary body and the choroid; and the 

internal layer, which is the retina of the eye. 

There are 2 chambers in the eye that are filled with fluid. The Anterior chamber is 

located between the cornea and the lens. It is filled with aqueous humor. The 

posterior chamber or the Vitreous chamber is the area from the back of the lens to 

the retina and it contains vitreous humor.  
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1.1.1.1 The cornea and sclera 

The cornea and sclera together form the tough, rigid, fibrous coating of the eye. The 

cornea is transparent and covers the iris and the pupil. It is the first refractive 

element of the eye and accounts approximately two thirds (~43 dioptres) of the 

human eye’s total refractive power (Wald and Griffin, 1947). The human cornea has 

a radius of curvature of ~7.8mm and a thickness of ~0.5mm at the centre and 

~1mm at the edge (Ehlers et al., 1975). The optical properties of the cornea do not 

change significantly with aging. The cornea transmits the light from 300nm to 

2500nm, with the maximum transmittance between 500nm to 1300nm (Boettner 

and Wolter, 1962, Hart and Farrell, 1969). 

The sclera is continuous with the cornea. In fact, the cornea and the sclera are 

made of the same tissue substance, but in the cornea, these fibers are arranged as 

parallel arrays and are oriented perpendicular to the surface normal of the eye, so 

that the light can pass through the cornea with minimum scatter (Laibson, 1971). 

However, the arrangement of fibres in the sclera is completely different. The net 

result is that the light passes through the cornea very easily but not through the 

sclera (Komai and Ushiki, 1991).  

1.1.1.2  Pupil 

When light passes though the cornea, it reaches the iris on its way to the retina. 

The pupil is the hole in the centre of the iris and it controls the light as it passes 

through the eye in a way that is similar to the aperture stop in a camera system. 

Usually depending on the properties of the light, the size of the pupil changes. As a 

result, the amount of light that lands on the retina will change accordingly. The size 
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of the pupil can also be affected by psychological effects or drugs. Pupil signals in 

response to specially designed stimuli can also reflect the processing of stimulus 

attributes in the visual cortex (Lucas et al., 2003, Barbur, 2003, Barbur et al., 1993, 

Barbur et al., 1980).  

1.1.1.3 Lens 

Behind the iris, the crystalline lens is suspended in place by the zonule fibers. It is a 

transparent, biconvex structure and surrounded by the lens capsule. Both the 

cornea and the lens refract light to the retina. When compared with the cornea, the 

refractive power of the lens only accounts for 1/3 of the total power (approximately 

18 dioptres), but, it is able to change its shape / curvature. Depending on the 

distance of the object, the lens changes its focal length dynamically to form a clear 

image of the object on the retina. The process of the power change in the optics of 

the eye is known as accommodation (Schaeffel et al., 1988, Wolffsohn et al., 2011). 

The lens transmits light from short wavelength ultra-violet (360 to 380nm) to long 

wavelength infra-red (~2000nm). The transmittance of the lens is affected by aging, 

especially in the short wavelength range, which causes the lens to appear yellow 

(Boettner and Wolter, 1962, Pokorny et al., 1987).  

1.1.2 The structure of the retina 

The human retina is the innermost layer and lies at the back of the eye. After light 

passes through the pupil and the vitreous chamber, it ends up on the retina where 

the image is formed. The retina is the neural structure where the initial image 

processing occurs. The neuron signals from the retina are then transferred to the 



35 

 

brain via the optic nerve. The following figure shows the surface of the retina as 

seen through an ophthalmoscope.  

 

Figure 1-3. A human retina seen through an ophthalmoscope 

Figure 1-3 shows an example fundus photograph from a healthy right eye. The optic 

disk is located towards the nose and macular is in the centre of the image.  

The optic disc is an approximately 1.5mm diameter oval to circular shaped area of 

high reflectance and lies about 16o into the nasal hemiretina. The central retinal 

artery penetrates the globe through the optic disc and provides the blood supply to 

the retina. The blood vessels radiate across the retina, however they do not cover 

the macular area.  

The macular lutea is approximately 5.5mm in diameter; its centre is about 3.5mm 

lateral to the edge of the optic disc and nearly 1mm inferior to the centre of the optic 

disc (Hubel, 1995). Due to the pigments in the macular area, the macular has a 

yellowish colour and hence it strongly absorbs short wavelengths (maximally blue 

light ~454nm) (Snodderly et al., 1984). In the centre of the macular area, it is the 

fovea - the centre of the visual field. Sharp images are formed in the fovea, a region 
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which provides high contrast acuity and colour sensitivity. From the fovea, a circular 

area of about 6mm diameter is considered the central retina and beyond 6mm, is 

considered to be the periphery (Kolb, 1991). 

The cone photoreceptors have peak densities in the fovea region. The absorbance 

of the cornea, the lens and the macular pigment reduce preferentially short 

wavelength light. As a result, long wavelength light is more likely to reach the retina 

than light from the short wavelength region (Packer and Williams, 2003).  

 

Figure 1-4. Prereceptoral filtering in an adult eye (adapted from 
Packer & Williams 2003). 

In adult humans, the whole retina is approximately 72% of a sphere about 22mm in 

diameter (Polyak, 1941, Van Buren, 1963, Kolb, 1991). The retina is a complex 

neural structure containing more than 200 million nerve cells, but their positions are 

highly organised. Polyak (1941) showed that the retina comprises 10 distinct layers 

(Polyak, 1941). From the outer retina to inner retina, these layers are the Retina 

Pigment Epithelium layer (RPE), the outer segments layer (or photoreceptor layer), 

the outer limiting membrane layer (layer that separates the inner segment portions 

of the photoreceptors from their cell nucleus), the outer nuclear layer (cell bodies of 
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rod and cones), the outer plexiform layer (layer that rods and cones make synapses 

with dendrites of bipolar), the inner nuclear layer (bipolar cells, horizontal cells and 

amacrine cells), the inner plexiform layer, the ganglion cell layer, the nerve fibre 

layer (axons of the ganglion cell nuclei) and the inner limiting membrane layer 

(Muller cell footplates) (Figure 1-5).  

 

Figure 1-5. Schematic representation of the main layers of retina. 
(Adapted from http://thebrain.mcgill.ca) 

When the light reaches the retina, it passes through all the other retinal layers until 

it gets to the outer segment layer and the Retina Pigment Epithelium layer. The 

RPE’s dark pigmentation absorbs light strongly and, as a result, it reduces the light 

scatter in the eye. The photosensitive photoreceptors in the outer segment layer 

absorb light and generate visual signals. These signals are then transferred to the 
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inner nuclei layer and are preliminarily processed by the horizontal cells, amacrine 

cells and bipolar cells. Then, they are sent to the ganglion layer where these visual 

signals are processed further and then transferred to the brain through the optic 

nerve via the Lateral Geniculate Nucleus (LGN). 

1.1.2.1 Classical Photoreceptors - Rods and cones 

In the outer segment layer in human retina, there are two types of photoreceptors, 

rods and cones. These photoreceptors absorb some of the light that ends up in the 

retinal image and convert it into electrical visual signals, after which the signals are 

transmitted to the post-receptoral neurons. Figure 1-6 shows the different 

representations of the structure of rods and cones in the retina.  

 

Figure 1-6. (A) The structures of the rods and cones and (B) their 
outer segments (Hubel et al., 1995). 
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Rods and cones have four distinct structures: the outer segment, the inner segment, 

the cell body and the synapse. The photopigment is located in the outer segment. 

The inner segment contains cellular metabolic machinery and the energy is used for 

phototransduction. The segments connect to the post-receptoral neurons through 

their base synapses. The shapes of the rods and cones are different: the rods are 

cylindrically shaped, whereas the cones have a pyramidal shape (Figure 1-6 (B)). In 

the outer segment of the rods, the membrane discs are free-floating, but are 

attached in the outer segment in cones.  

The rods are not only significantly larger than cones, but are also much more 

sensitive to light. As a result, rod signals contribute more to visual perception than 

cone signals under low light conditions. The human visual system operates over an 

enormous range on the order of 10 log units light levels (Boynton, 1979). Rods 

operate under dim lighting conditions. The Rod-mediated vision, which is referred to 

as scotopic vision, manifests poor visual acuity (~6/60 vision) and is colour blind. 

Similarly, the cone-mediated vision shows excellent visual acuity (6/6) and colour 

vision and is often referred to as photopic vision. Figure 1-7 shows the illumination 

levels and the scotopic, mesopic and photopic regions. Some studies show that at 

high light level conditions, the rods become less sensitive and their contribution to 

visual response eventually diminishes (Aguilar and Stiles, 1954). The extent to 

which rod signals contribute to visual perception and drive the pupil response at 

high light level conditions is still under debate.  
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Figure 1-7. Illumination levels, mean pupil size and visual function, 
adapted from (Barbur and Stockman, 2010). The change in pupil 
size as indicated in the diagram is taken directly from the above 
paper. No reference to the original study is given, but similar 
results have been reported in other studies (Farrell and Booth, 
1975).  
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Figure 1-8. (A) Dark adaptation or recovery from light adaptation. 
The curve shows the increasing sensitivity for light detection with 
time in the dark and the initial phase reflects the recovery of cones 
and the second phase that of rods, redrawn from (Bouman and 
Ten Doesschate, 1962). (B) Spectral sensitivity of cones (green 
curve) and rods (cyan curve), redrawn from (Kaufman, 1974). 

When the light level is high, rods start to saturate and the less sensitive cones 

become more dominant in mediating vision. Based on the different spectral 

absorbance, cones are classified into three classes: short-, middle- and long-

wavelength sensitive cones or S, M and L cones. The peak absorptance for the L-, 

M-, S- cones and rods are 560nm, 530nm and 420nm and 495nm, respectively 

(Dartnall et al., 1983). 

 

Figure 1-9. The photopigment absorption curves for rods and 
cones in the human eye. The red, green, blue and the dashed 
curves are the relative absorptance curves for the L-, M-, S-cones 
and the rods. The peak absorptances are 560nm, 530nm, 420nm 
and 495nm, respectively. The visible spectrum is labelled below 
the diagram as an indication of the perceived colours generated by 
the corresponding wavelength. Source data from (Dartnall and 
Bowmake, 1983). 
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The total number of rods in the eye is significantly larger than the total number of 

cones. There are approximately 90 to 120 million rods and 4.5 to 7 million cones in 

each retina (Stiles, 1939, Osterberg, 1935). The spatial distributions of the rods and 

cones are, however, different. The following figure shows the photoreceptor density 

for rods and cones as a function of location on the retina.  

 

Figure 1-10. Rods and cones density as a function of eccentricity 
(Osterberg, 1935). The diagram on the right shows a cross section 
of the human fovea (1cm = 5µm). 

In the periphery, the rods are dominant in number and the cones are fewer and are 

of larger diameter. The density of the rods increases as away from the fovea with a 

peak of 190,000 rods/mm2 at 20o eccentricities and drops gradually further in the 

periphery (Osterberg, 1935). Within the central 20o, the number of rods reduces 

significantly as the visual axis is approached. The cones are densely packed in the 

macular region, where spatial resolution is highest. In the foveal region (±2.5o), 

where contrast acuity and chromatic sensitivity reaches the peak, the rods are 

largely absent, but the cones, on the other hand, become thinner and form the 

distinct cone mosaic. Figure 1-11 (a) shows that the L and M cones are densely 

packed and are dominant in the fovea, whereas the S-cones increase in number 
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away from the centre, peaking in density at approximately 2000 per mm2 at around 

0.1mm to 0.3mm eccentricity (Curcio et al., 1990). The L to M cone ratio can vary 

significantly amongst individuals with normal vision. Figure 1-11 (b) shows that the 

L to M cone ratios in 4 subjects can range from 1.1:1 to 16.5:1 (Robertson et al., 

1991, Vimal et al., 1989). 

 

Figure 1-11: (a) Cone mosaic of the rod-free fovea region in a 
normal trichromatic subject. The S cones are absent in the central 
foveola (reproduced from Sharpe et al., 1999). (b) An adaptive 
optics view of the mosaic of L, M and S cones in four normal 
trichromats, adapted from (Williams and Coletta, 1987). 

1.1.3 Post-receptoral and post-retinal processing 

1.1.3.1 Horizontal & bipolar cells 

In the outer plexiform layer, the photoreceptors synapse with the bipolar cells and 

horizontal cells. The horizontal cells are laterally interconnected with the 

photoreceptors. When the horizontal cells receive the visual signal, they become 
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hyperpolarized and provide a feedback signal back to the photoreceptors, which 

has an inhibitory effect and cause the photoreceptors depolarization.  

The bipolar cells receive visual signals either from rods or cones, but not both. 

Hence, they are named rod bipolar or cone bipolar cells. The rod bipolar cells 

synapse with the amacrine cells, and not directly with ganglion cells (Figure 1-12). 

The cone bipolar cells however make direct synapses on to ganglion cells. These 

cells also accept synapses from the horizontal cells. After they receive the signals, 

they pass them vertically to the amacrine cells or to ganglion cells in the inner 

plexiform layer. Like the horizontal cells, the amacrine cells also introduce lateral 

inhibition, however, their roles are still not very well understood (Kaneko, 1970, Mills 

and Massey, 1995).  

 

Figure 1-12. Five signaling pathways from rods to ganglion cells 
(adapted from (Demb and Pugh Jr, 2002)).  
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1.1.3.2 Ganglion cells (Parasol, Midget ganglion cells and ipRGCs) and receptive 

field 

The primate retinal ganglion cells are categorized based on the cell body size and 

the shape of their dendrites. There are more than 20 different types of  ganglion 

cells in the retina (Rodieck, 1998), but the majority of cells can be classed into two 

major groups – the Midget and Parasol ganglion cells. The Midget and Parasol 

ganglion cells form the largest distinct groups and project to the Parvocellular and 

Magnocellular layers of the dLGN, respectively. Unlike other retinal ganglion cells, a 

small subgroup of retinal ganglion cells are intrinsically photosensitive. These cells 

contain the photopigment melanopsin and are referred to as ipRGCs. IpRGCs have 

projections to the dLGN (Pickard, 1985), the Olivary Pretectal Nucleus (OPN) and 

the Suprachiasmatic Nucleus (SC) (Hendrickson et al., 1972, Pickard, 1985, Berson, 

2007). Amongst these three ganglion types, the midget ganglion cells have the 

smallest cell bodies and least extensive dendrites whereas the ipRGCs exhibit the 

largest dendrites. The Midget and Parasol ganglion cells account for approximately 

80% and 10% respectively of the total ganglion cell population, whereas the 

ipRGCs only comprise 0.2% (roughly 3000~4000 in number). The Midget cells have 

smaller sizes of dendritic trees and exhibit slow sustained response. They respond 

to stimuli that have colour changes but respond only weakly to contrast changes 

(Dacey and Petersen, 1992). The Parasol cells have larger dendritic sizes and they 

respond to the low contrast stimuli but not very sensitive to colour stimuli (Kaplan et 

al., 1990, Croner and Kaplan, 1995). The primary type of remaining 10% of 

ganglion cells are called Bistratified retinal ganglion cells and they have projections 

to the koniocellular layers in the dLGN. Compared to the midget and parasol 

ganglion cells, they are much smaller in size; they receive inputs from intermediate 
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number of rods and cones; they have moderate spatial resolution and respond to 

moderate contrast stimuli (Croner and Kaplan, 1995).  

The ipRGCs contain a photosensitive pigment called melanopsin. These cells 

exhibit very slow temporal responses, integrate the ambient light irradiance over a 

long time course and their sustained depolarisation can be maintained for several 

seconds after the light offset (Dacey et al., 2005). The major function of the ipRGCs 

is to photoentrain the circadian rhythm. Some studies in both vivo and vitro have 

suggested that the ipRGCs play a role in the control of the pupil response, however 

the contribution melanopsin makes to the dynamic pupil response in human 

subjects remains controversial. In Chapter 6, we show that the melanopsin driven 

ganglions do not contribute to the human dynamic pupil light reflex response. 

 

Figure 1-13. (a) Midget and (b) parasol retina ganglion cells from a 
series of positions within the retina. At the comparable positions, 
the dendrites of midget ganglion cells are smaller and denser than 
that of the parasol cells. However, the absolute size of the 
dendritic field are larger with eccentricity for both types of cells, 
source from (Watanabe and Rodieck, 1989). 

There are about 1.2 to 1.5 million ganglion cells in the human retina, a total that is 

significantly outnumbered by that of the photoreceptors. So, rather than having a 
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one to one input from each photoreceptor, they receive visual signals that are 

integrated in specific areas in the retina, known as receptive fields.  

In the periphery, a large receptive field with as many as 120 rods feeds signals to 

one ganglion cell. The number of the rods is reduced as the fovea is approached. In 

the fovea region, the cones have a one to one connection, i.e. only one cone is 

connected with one ganglion cell via one bipolar cell (Rodieck, 1998). As a result, 

this arrangement ensures that the fovea has the highest spatial resolution and best 

contrast acuity. The receptive field is roughly circular shaped and has a centre-

surround organisation. The ON-centre ganglion cells are named so, because they 

are excited in the centre and inhibited in the surround, conversely, the OFF-centre 

ganglion cells exhibit the opposite, with the inhibition in the centre and excitation in 

the surround.  

The centre-surround organisation of ganglion cells ensures that signals from a 

number of photoreceptors are processed and the output channelled into one 

ganglion cell and signals are processed (added or subtracted) to form the 

luminance and colour opponent channels (Hurvich and Jameson, 1957, Hering, 

1964). The midget retinal ganglion cells have small sizes of dendritic trees and 

receive inputs from relatively small number of rods and cones. Most of these cells 

are connected to the midget bipolar cells and in turn are linked to one cone cell 

each. These single connections form simple center-surround receptive fields and 

hence they respond to the changes in high spatial frequencies and colour stimuli. 

The parasol cells have larger dendrite trees and cell bodies and therefore larger 

receptive fields which are also center-surround. Due to the large receptive fields, 

they receive inputs from many rods and cones, hence these cells exhibit large 
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spatial summation and respond to low contrast changes. More details of how 

luminance and colour signals are processed are described in section 1.2.  

1.1.3.3 dLGN 

The ganglion cell axons form the optic nerve fibre layer and exit the retina via the 

optic disc. The nasal retinal nerve fibres leave the eye, cross over the optic chiasm 

to the other side, whereas the temporal nerve fibres remain uncrossed (Figure 1-14 

(A)). The majority of visual information captured by the eye is transferred to the 

primary visual cortex in the brain through the dorsal Lateral Geniculate Nucleus 

(dLGN) via the optic radiations (Hubel, 1995).  

 

Figure 1-14. (A) The human visual pathway shown from below and 
(B) side view (adapted from Hubel 1995). 

The dLGN acts like a relay and signal processing centre for the visual information 

before it reaches the visual cortex. The dLGN nuclei receive afferent signals directly 

from the retinal ganglion cells via the optic tract. The dLGN also receives feedback 

projections from the primary visual cortex. In mammals, there are two principle 

pathways linking the eye to the brain: the pathway containing projections to the 
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dLGN and a separate pathway which carries signals from the retina to Superior 

Colliculus and other midbrain nuclei (Goodale and Milner, 2005).  

In humans, the dLGN is described as having 6 distinctive layers and several 

interlaminar regions (Kaas et al., 1978). The layers are labelled 1 to 6 from the 

bottom to top (Figure 1-15). The Magnocellular layers are located in the inner 2 

layers and contain cells of large size. The outmost 4 layers are called Parvocellular 

layers. They have smaller cell bodies when compared with cells in the 

Magnocellular layers. There is also one additional interlaminar layer located in the 

ventral area to each of the magnocellular and parvocellular layers and these are 

often referred to as the koniocellular layers (Carlson, 2007). The koniocellular layers 

have the smallest cell size. Previous studies suggest that neurons in the 

koniocellular layers form a third pathway from the retina to the visual cortex 

(Casagrande, 1994, Casagrande, 1999). Projections to the interlaminar regions 

from a small number of bistratified ganglion cells that mainly carry the signals from 

the S-cones have been found in previous studies and these findings suggest that 

the koniocellular pathway may be linked to the yellow/blue colour processing 

channel  (Dacey and Lee, 1994).  
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Figure 1-15. (A) The six layers in a cross section of a dLGN in the 
human thalamus: the Magnocellular layers are layer 1 and 2 (inner 
most layers and labelled in green on the figure); the Parvocellular 
layers are layer 3, 4, 5 and 6 and are labelled in yellow. Each layer 
receives monocular input. (B) Pathway of nerve signals from the 
retina to the striate cortex in the brain, (source from 
www.psych.ndsu.nodak.edu). 

The parvo layers receive projections from the midget ganglion cells. Like the m-type 

ganglion cells, the parvo nucleus have small receptive fields and respond to fine 

spatial detail, colour and slow motion information. On the other hand, the p-type 

ganglion cells project to the magno layers (1 and 2). The receptive fields of cells in 

these layers are larger and are very sensitive to motion and dynamic luminance 

contrast changes.  



51 

 

Each layer of the dLGN receives segregate visual information from each eye. 

Neurone signals from the contralateral eye, mapping the nasal side visual field, 

project to layers 1, 4 and 6, whereas the temporal field fibres from the ipsilateral eye 

terminate in layer Layers 2, 3 and 5 after decussation at the optic chiasm (Kupfer et 

al., 1967). The visual information gathered from layers in dLGN is then transferred 

to the visual cortex. This segregation arrangement might be processed and 

integrated in a certain way in higher order brain areas, where the appropriate 

combination of the visual signals from different eyes allows for extraction of depth 

information.  

1.1.3.4 From dLGN to the brain 

After the dLGN, visual signals are transferred to the primary visual cortex (V1) in the 

occipital lobe via the optic radiations (Figure 1-14 (a)). There is a visual cortex in 

each hemisphere of the brain. The visual cortex in the left hemisphere receives 

visual information from the right visual field whereas the right visual cortex obtains 

inputs from the left visual field.  

Figure 1-16 shows an unfolded striate cortex and its corresponding visual field 

mapping. The whole visual field is mapped very nonlinearly on the primary visual 

cortex, with the small central fovea region occurring a large region of V1, and this is 

known as cortical magnification. Conversely, the large periphery visual field is only 

mapped in a very small portion of V1. 
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Figure 1-16. The unfolded striate cortex  showing the projections 
from corresponding visual fields of the retina (Erwin et al., 1999). 

In a typical adult human, there are approximately 140 million neurons in the primary 

visual cortex in each side (Leuba and Kraftsik, 1994). When the neurones in V1 are 

responsive to the same type of stimulus properties, e.g. luminance, orientation or 

colour, they are arranged together in parallel columns perpendicular to the surface 

of the brain and they are referred as columns (Figure 1-17). Smaller structures in 

the columns are known as blobs and the areas between them are called interblobs. 

Parallel to the surface of the brain, the primary visual cortex can be divided into six 

principal distinct layers, labelled from 1 to 6. The dLGN projects most visual signals 

to layer 4, which can be further divided into 4 functional layers, labelled as 4A, 4B, 

4Cα and 4Cβ. The magnocellular and parvocellular layers of the dLGN project to 

the layer 4Cα and 4Cβ respectively (Schwartz, 2004). 
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Figure 1-17: The structure of the striate cortex, showing blobs and 
orientation columns. R and L indicate the corresponding right and 
left eye (adapted from Schwartz 2004). 

V1 processes the visual signals from dLGN and then distributes them to the extra 

striate cortical areas in the brain for further processing (Lennie, 1998). Based on the 

functions of extra striate cortical area, they are labelled as V2, V3, V4 and V5 (also 

known as MT– middle temporal cortex). Area V2 is also called prestriate cortex and 

it is located adjacent to V1. Results from electrophysiological recordings have 

shown that the cells in V2 exhibit direction and orientation selective properties 

(Shipp and Zeki, 1985). In addition, some cells in V2 do not show any responses in 

relation to monocular simulations, but are active to binocular simulations (Ts'o et al., 

1986, Hubel and Livingstone, 1987). The clear role of V3 is still not very well 

understood, because cells in V3 lack distinctive visual characteristics and respond 

to a wide range of stimuli. Recordings from area V3 suggested that the majority 

cells were responsive to lines of specific orientation and they are also colour 

selective (Zeki, 1978, Felleman and Van Essen, 1987, Gattass et al., 1988). Area 

V4 receives some direct input from the pale and thin stripes in area V2 via the 

parvocellular and V1 pathway and cells in area V4 are primarily colour selective 



54 

 

(McAdams and Maunsell, 1999, Desimone and Schein, 1987). Other studies also 

suggested that patients with damage of lesions in V4 would show a loss of form and 

shape discrimination (Heywood and Cowey, 1987). Area V5 receives input from V1, 

V2, V3 and V4 and it is thought to play an important role in the perception of motion 

(Albright, 1984, Dubner and Zeki, 1971). Lesion studies have also supported the 

role of V5 in motion perception. Neuropsychological studies of patients with damage 

in the V5/MT area reported seeing no motion, but a series of static pictures (Hess et 

al., 1989, Baker Jr et al., 1991). However, other studies suggested that patients with 

primary visual fields loss could have motion discrimination spared in their blind 

visual fields.    
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Figure 1-18. Laminar organisation in V1 and projections to other 
cortical visual areas, adapted from (Maunsell and Newsome, 
1987). 

Figure 1-18 shows a possible model of the functions for the different areas in the 

visual cortex. After the dLGN, visual signals are passed to the primary visual cortex 

(V1). Next, V2 receives a major input from V1 and then the signals are transferred 

further to higher areas, like V3, V4 and V5. Studies suggest that V2 might be 

related to the integration of signals from the two eyes that leads to binocular vision 

(Lennie, 1998, Leopold and Logothetis, 1996), V3 might be responsible for 

processing form and texture information (Zeki, 1978, Knierim and van Essen, 1992), 

V4 has been associated mostly with the processing of colour signals (Shipp and 

Zeki, 1995, Shipp and Zeki, 1985, Lueck et al., 1989) and V5 (MT) neurones 

respond preferentially to moving stimuli (Maunsell and Newsome, 1987, Allison et 

al., 1994, Barbur et al., 1993). 

1.2 Colour vision 

Colour vision codes change in the spectral reflectance of illuminated objects.  The 

colours we perceive reflect largely the characteristics of light, i.e., wavelength or 

frequency. The perception of colour differences is however more complex, largely 

because of colour constancy which enables us to perceive largely invariant colours 

under changes of illuminant. The visible light wavelength for a human subject with 

normal colour vision ranges from 380 nm to 750 nm.  

 



56 

 

1.2.1 Normal trichromatic colour vision 

In humans, normal colour vision is referred as trichromatic, because the colour 

signal processing starts with the three photoreceptors in the eye that respond 

optimally to different wavelengths.  

As mentioned in the photoreceptor section (1.1.2.1), the 3 types of cones have 

different spectral responsivities. The spectral responsivities of cone photoreceptors 

are often based on measurements of spectral absorption of single cones. This is 

done using retinal densitometry, microspectroscopy and suction electrode 

recordings. Psychophysicists use psychophysical experiments, such as colour 

matching experiments, to measure spectral sensitivities. Figure 1-19 shows the 

normalized photoreceptor spectral sensitivity functions measured by Stockman and 

Sharpe (2000).  

 

Figure 1-19. The normalized spectral sensitivity for L-, M- and S- 
cones and Rods (Stockman and Sharpe, 2000). In their data, the 
peak sensitivities for the L-, M-, S-cones and the rods are 565 nm, 
540 nm, 445 nm and 507 nm. (The source data obtained from 
http://www.cvrl.org). 
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There are 2 colour processing channels and they are always referred to as the Red- 

Green and Yellow-Blue channels (or RG and YB). This approach is often linked to 

the colour opponent theory which is firstly proposed by Hering in 1892. The theory 

suggests that the colour signal is obtained by comparing the different signal 

strength from the different cone types. The subtraction of the L and M cone signals 

gives the Red-Green chromatic channel whereas the sum of the L and M cone 

signals and subtraction of the S cone signal strength gives the Yellow-Blue 

chromatic channel. Figure 1-20 shows a schematic diagram for the colour opponent 

theory. It also postulates a luminance signal which is derived by summing the L and 

M cone signals. 

 

Figure 1-20. A schematic diagram shows the colour opponent 
model for a normal trichromat. 

1.2.2 Anomalous trichromacies, dichromacies and monochromacies 

There are about 0.4% of females and 8% of males that have colour deficiency in the 

population (Birch, 2001, Cassin et al., 1990). Compared to the normal trichromats, 

there are people who also have 3 different classes of cones in the eye, but they 
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perceive colours differently. Such subjects are usually referred to as anomalous 

trichromats. Amongst all the colour deficiencies, tritan deficiencies are the rarest.  

Type of deficiency Males (%) Females (%) 
Protanopia (P) ~1.01 ~0.02 

Protanomalous trichromatism (PA) ~1.08 ~0.03 

Deuteranopia (D) ~1.27 ~0.01 

Deuteranomalous trichromatism (DA) ~4.63 ~0.36 

Tritan deficiencies 0.2% to 0.01% 

Total ~7.99% ~0.42% 

Table 1-1. Congenital colour deficiencies in the population. The 
males are dominating the colour deficient group, with a total 
percentage as high as 8% in the population. On the other hand, 
there are only 1 in 200 females subjects that are colour deficient. 
(adapted from Wright, 1952, Went and Pronk, 1985, Sharpe et al., 
1999, Birch, 2001). The results obtained for the Tritan deficiencies 
vary among studies. 

The anomalous trichromacies are divided into three subgroups: protanomaly (PA), 

deuteranomaly (DA) and tritanomaly. Anomalous trichromats usually have one type 

of cone that carries abnormal (hybrid) pigment, which replaces the original cones. 

Protanomaly, deuteranomaly and tritanomaly refers to presence of abnormal L-, M- 

and S- cones. Because the abnormal cones have a different spectral sensitivity, the 

colour signals generated differ in strength when compared to a normal trichromat. 

This will eventually cause differences in chromatic sensitivity.  

Protanomaly is also always referred as “red-weakness” (Taylor and Clemente, 

2005). Any redness seen by a normal trichromat appears less so to a 

protanomalous subject, both in terms of its chromatic saturation and brightness. 

Similarly, deuteranomaly can be referred as “green-weakness” and 

deuteranomalous subjects are poor at discriminating chromatic difference in the 

green, yellow, orange and red region of the spectrum. However, deuteranomalous 

subjects do not exhibit the loss of brightness for long wavelength light. This is 
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because their luminosity curve is very similar as that of normal trichromats (Figure 

1-22).  Figure 1-21 shows a schematic diagram of a deuteranomalous subject’s L-, 

M- and S- cone spectral sensitivity curve.  

 

Figure 1-21. A schematic diagram shows the different spectral 
sensitivity function from a normal trichromat (A) and from a typical 
deuteranomolous subject (B). The deuteranomolous subject has 
abnormal M cones (L’) which are shifted towards the L cones. The 
abnormal spectral sensitivity is drawn in dashed green line. The 
level of deuteranomaly depends on how far the spectral sensitivity 
of abnormal cones shifts. 

1.2.3 Dichromacies & Monochromacies 

People who lack one type of cone class completely are referred as dichromats. 

Protanopes have absent L cones, Deuteranopes lack M cones and Tritanopes have 

absent or non-functional S cones. People who only have one type of cone class are 

known as cone monochromats. There are also people who only have rods with 

cones being completely absent from the eye. These people are referred as rod 

monochromats.  

Colour deficiency not only affects colour vision, but also causes changes in 

perceived brightness. Brightness is a very subjective attribute and cannot easily be 
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measured. Luminance, on the other hand, is the nearest measurable quantity to 

perceived brightness. Luminance depends on the signal strengths from the L and M 

cones, which is determined by the photopic luminosity function or V(λ). Because 

most colour deficient subjects have abnormal or absent L or M cones, the summed 

signals from L and M cones are different. Hence, their luminous functions are also 

different. Figure 1-22 shows the photopic luminosity function measured on a few 

normal and dichromatic subjects (Brown and Wald, 1964). 

 

Figure 1-22. Luminosity curves of colour-blind and normal 
subjects. Downward in the graph represents loss of sensitivity, the 
log of the reciprocal of threshold energy (adapted from Brown and 
Wald 1964). 

1.3 The function of pupil 

The pupil of the eye acts like an aperture in a camera system. Its primary function is 

to adjust the amount of light entering the eye. The size of the pupil also affects the 

depth of field and the amount of spherical aberrations and coma in the eye. A 

relative larger pupil size allows more light to go into the eye, but provides less 
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image quality due to a shorter depth of field and more aberrations, whereas a 

smaller pupil size has a better image quality by having a larger depth of field and 

less aberrations (Oyster, 1999, Campbell and Gregory, 1960).  

The mean pupil size in humans is affected by many factors and can range from 

2mm to 8mm. The most significant factors are listed in Table 1-2. A single dilated 

pupil could indicate a brain injury, stroke or tumour. Pupil response disorders can 

reflect brain damage or diseases and have been labelled clinically as Anisocoria, 

Horner’s syndrome, Parinaud’s syndrome, etc.  
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Factors affect pupil size Note 

Age The mean pupil size reduces when one grows older 
(Birren et al., 1950).  

Ambient light level 
The ambient light level determines largely the steady-
state pupil size which follows a non-linear function 
(Atchison and Smith, 2000). 

Light flux 

A rapid illumination change causes a transient pupil 
constriction which is referred as dynamic pupil light 
reflex response. The PLR is mediated primarily by 
dorsal areas in the mid-brain (Lowenstein et al., 1964) 
and may also involve the primary visual cortex 
(Barbur, 2004b).  

Near reflex The pupil size decreases when the fixation is shifted 
from far to near objects to increase depth of field,  

Sleepiness and fatigue Sleepiness and fatigue reduce the size of pupil and 
also cause oscillations of the pupil (Yoss et al., 1970).  

Circadian rhythms Loving (1996) and Wilhelm (2001) showed that the 
pupil size always peaks in a regular 24 hour cycle.  

Drugs 

Some drugs can cause the pupil to either dilate or 
constrict, such as Epinephrine, Tropicamide, 
Pilocarpine, Guanethidine, etc. More extensive studies 
on the drug effects to the pupil are given elsewhere 
(Alexandridis et al., 1985, Thompson, 1992, Oyster, 
1999). 

Psychological factors 

Many psychological factors affect the size of the pupil, 
such as attention, alertness, mental workload, 
pleasantness and other emotions (Van Orden et al., 
2001, Wilhelm et al., 1996) 

Table 1-2. Some significant factors that affect the pupil size. 

1.3.1 Anatomy of the iris – sphincter and dilator muscles 

The size of the pupil is constantly regulated by two types of antagonistic muscles – 

the sphincter muscle and the dilator muscle.  

The sphincter muscle is innervated by the parasympathetic system and it encircles 

the border of the pupil. Its contraction causes the pupil to constrict. On the other 
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hand, the dilator lies radially from the sphincter and is innervated by the 

sympathetic fibres. The action of the dilator muscle causes the pupil to dilate 

(Loewenfeld and Lowenstein, 1993).  

1.3.2 Pupillary pathways 

By differentiating the directions of the signals, the pupil pathways can be 

categorized as the ‘Afferent pupillary pathway’ and the ‘Efferent pupillary pathway’. 

The afferent pathway carries the visual information flowing from the eye to the brain, 

whereas in the efferent pathway the brain receives and processes the afferent 

signal and then sends a response signal back to the pupil.  

 

Figure 1-23. The parasympathetic pupil response pathway. The 
afferent pathway is drawn in blue and red lines and efferent 
pathway is shown by the green line, redrawn from (Loewenfeld 
and Lowenstein, 1993) 

The classical pupillary pathway to the midbrain is shown in Figure 1-23. When the 

light is captured by photoreceptors in the eye, the visual signals are processed and 

transported through ganglion cells along the optic nerve and, after crossing over at 
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the optic chiasm and before reaching the LGN, part of the visual signal diverts via 

pupillary fibres to innervate the Olivary Pretectal Nuclei (OPN) in the midbrain via 

the brachium of the superior colliculus. The OPN then sends these signals to the 

Edinger-Westphal (EW) nuclei, from where the efferent signals are sent to iris 

sphincter muscle after synapsing with the ciliary ganglion (CG) (Alexandridis et al., 

1985). 

Evidence shows that only the light flux signals that project to the midbrain contribute 

to the pupil responses. Wilhelm (2002) reported that patients with Parinaud’s 

syndrome (dorsal midbrain damage) had absent pupil light reflex responses, 

however pupil responses to colour, motion and gratings were preserved (Wilhelm et 

al., 2002).  

Barbur (2004) proposed a more extensive pupil response mechanism based on 

various experiments and observations and he concluded that, besides the classical 

pupil pathway to the midbrain, the cerebral cortex, V1, V2, V3, V4 and MT all 

contributed to pupil responses (Barbur, 2004b). Based on his model (redrawn in 

Figure 1-24), many results can be explained. Those with Parinaud’s syndrome have 

a damaged OPN in the midbrain, and therefore the pupil responses to light flux 

responses are absent whereas signals from the extra-striate regions (V2, V3, V4 

and V5/MT) project to the EW and bypass the OPN. Therefore, pupil responses to 

stimuli that isolate colour and spatial structures (such as gratings) are preserved. 

Hemianopia patients with half side of primary visual cortex damage have absent 

PLR responses in the blind hemifield when the stimuli are of low contrast (< 20%) 

and small sizes. The dynamic light reflex response to briefly presented stimuli 

requires normal afferent signals to the OPN and the striate cortex. The absence or 
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abnormal functioning of either one or the other of these pathways causes a loss of 

the dynamic light reflex response. On the other hand, when visual stimuli cause 

large changes in light flux, the signals go to the midbrain are large and the pupil 

yields similar response amplitudes when compared to that of the sighted hemifield.  

 

Figure 1-24. Schematic diagram of known pupil pathways. In 
addition to the main geniculostriate projection, signals from the 
retina can reach extra striate areas of the cortex, such as V2, V3, 
V4 and V5, either through small direct projections that bypass V1 
(Stoerig and Cowey, 1997) or through indirect projections from 
midbrain nuclei (such as the superior colliculus (Gross, 1991)), 
that receive either direct retinal inputs or inputs from the LGN. In 
addition to the retinal input, the OPN may also receive inputs from 
the cortex (possibly V1, (Barbur, 2003)). The EW nucleus receives 
inputs from the OPN and also from extrastriate areas of the visual 
cortex. The latter may be responsible for the generation of 
stimulus specific, transient pupil constrictions such as those 
measured in response to colour, gratings and movement, even 
when such stimuli cause a net reduction in light flux level on the 
retina (Barbur, 2004b).  
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2 EQUIPMENT AND METHODS 

2.1 Introduction 

The studies described in this thesis use a number of different experimental 

techniques that have been implemented on bespoke equipment designed for vision 

research studies. This chapter describes briefly the various experimental 

techniques, measurement methods and apparatus developed for such studies. In 

the following chapters, only the stimuli of interest are described.  

2.2 Pupillometry 

The pupil measurements were performed using the P-SCAN system, which allows 

the simultaneous, binocular measurement of pupil size and the corresponding 2-D 

movements of the eye. The statistical methods employed in extracting the 

parameters of interest are equivalent to fitting the best circle to the pupil, and then 

the pupil diameter was extracted by calculating the diameter of the circle. The 

results yield a resolution for the measurement of pupil diameter and eye-

movements better than 0.01 mm and 4 min arc brespectively (Barbur et al., 1987, 

Alexandridis et al., 1991, Barbur et al., 1992).  

The P-SCAN system employs bespoke hardware for the processing of the video 

image and the extraction of pupil size is a computer based system (Figure 2-1). It 

uses a number of infra-red LEDs to illuminate the eye and captures the pupil image 
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using an infra-red sensitive CCD camera. The latter has a temporal resolution at 

50Hz. The algorithm that is employed to extract the pupil diameter is based on 

calculating the spatial coordinates of its centre, from intersection points between the 

circumference of the pupil and a specified pattern of lines. 

 

Figure 2-1. A schematic diagram illustrates the structure of the 
P_SCAN system which is employed to generate various stimulus 
conditions and measure pupil responses (Adapted from Barbur 
1987). 

Varies types of visual stimuli can be generated using the P_SCAN system. For 

example, stimuli with different spatial structures, like sinusoidal/square gratings; 

achromatic stimuli with different luminance contrasts and isoluminant chromatic 

stimuli with different chromatic displacement and angles (example stimuli are shown 

in Figure 2-2). All the stimuli can be modulated with sin/square envelopes with 

different durations. A spatial and temporal luminance contrast modulation can also 

be added to any stimulus. Figure 2-3 shows a typical pupil response trace to a 



68 

 

480ms light flash stimulus. The duration of the tests depend on the stimuli 

employed and the number of tests needed. For the example tests shown in Figure 

2-3 with one stimulus and 32 pupil measurements, the test takes about 5 minutes to 

finish. 

                 

Figure 2-2. Two double-isoluminant stimuli that are employed in 
various studies are shown on the left and in the middle. Both of 
them are photopically and scotopically isoluminant when 
presented against the display background. An achromatic 
sinusoidal grating is shown on the right. 

 

Figure 2-3. A typical pupil response trace to a 480ms light flux 
increment. 

2.3 Assessment of Visual Acuity 

Figure 2-4 shows the typical Landolt ring stimulus employed in the contrast acuity 

assessment (CAA) test. The CAA test measures and quantifies the subject’s visual 
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acuity with or without crowding. The test can measure both contrast sensitivity, 

where the stimulus has a fixed size, but varies in contrast, and visual acuity when 

the stimulus has high contrast and vary in sizes. The contrast sensitivity is then 

obtained by calculating the inverse of the contrast threshold for gap orientation 

discrimination as measured with the CAA test.  

The stimulus is presented at the centre of the screen and the stimulus size for 

correct gap orientation discrimination (i.e., top-left, top-right, bottom-left, bottom-

right) is measured using a four-alternative, forced-choice staircase procedure. The 

subject’s task is to press one of the four buttons to indicate the position of the gap in 

the ring after each presentation (Barbur et al., 2001). Two correct successive 

presentation responses for the same stimulus eccentricity are needed before the 

measurement variable (i.e., target size / contrast) is changed. This approach results 

in a chance probability of 1 in 16.  

The properties of the background and the stimulus can be adjusted according to the 

study. The stimulus shown in Figure 2-4 is generated on a 19” CRT display (LaCie 

Ltd, London, UK) which subtends 20o x 16o and is presented on a uniform 

background of a luminance of 26 cd/m2 and chromaticity of 0.2868, 0.3309, as 

measured in the CIE1931 chromaticity diagram. For a typical visual acuity 

measurement with one stimulus presented, the test usually takes around 3 to 4 

minutes. 
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Figure 2-4. An example of the contrast acuity stimulus. The 
stimulus has a fixed contrast of close to -100% for background 
luminance of 26cd/m2. 

 

2.4 Colour Sensitivity Assessment 

A broad range of colour vision tests has been developed by vision scientists to 

examine different properties of colour vision in the past decades. Clinical colour 

vision assessment tends to rely on the use of a battery of tests, but unfortunately 

the results are difficult to interpret and are often inconclusive (Squire et al., 2005).  

The Colour Assessment and Diagnosis (CAD) test is a novel computer based test 

which is optimised to detect minimum colour deficiencies and to quantify the 

severity of colour vision loss by evaluating both red-green (RG) and yellow-blue 

(YB) thresholds in an internationally recognised colour system. It has been 

validated and compared with the most commonly used colour vision tests. The 

results from CAD test are expressed in standard normal units based on mean data 

obtained in 330 normal trichromats (Rodriguez-Carmona et al., 2005).  

Because the luminous efficiency function of the eye varies amongst individuals, the 

subjects can often detect luminance content signals in coloured stimuli that are 

isoluminant for the standard CIE observer. To isolate the use of only colour signals, 
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the CAD test employs dynamic spatiotemporal luminance contrast masking 

techniques to mask any residual luminance contrast signals that may contribute to 

the detection of test stimuli (Barbur, 2004a, Barbur et al., 1994b, Birch et al., 1992). 

The design of the spatial random luminance contrast masking technique (RLMs) is 

similar to the original pseudoisochromatic plates, where the stimulus is buried into 

an array of achromatic checks. Although these achromatic checks vary in 

luminance, the overall luminance generated in the whole stimulus patch is constant 

and equal to the background luminance. The stimulus condition is often called 

‘static luminance contrast (LC) noise’. When the temporal random luminance 

contrast masking technique (RLMt) is used together with the RLMs, the condition is 

referred to as ‘dynamic LC contrast noise’. In the presence of the dynamic noise, 

the threshold of the first order motion is proportional to amplitude of the dynamic 

noise employed (Barbur, 2003). If the target has features (such as colour) which are 

significant from the background noise, the detection of coherent motion becomes 

independent of the background noise. Therefore, in the CAD test, the CIE 

isoluminant colour defined stimulus was buried in the dynamic LC noise to mask the 

detection of any luminance contrast component and to ensure the measured 

threshold is only from the colour component.  

The most commonly used recipe in the CAD test measures chromatic detection 

thresholds along sixteen hue directions in the CIE1931 chromaticity chart, using 

randomly interleaved staircases with variable step sizes and a four-alternative 

forced-choice procedure. Subjects are instructed to view the display from a distance 

of 2.5 meters and the tests are carried out binocularly at 26 cd/m2. The chromaticity 

of the background is (0.305, 0.298). The stimulus is generated in the centre of a 

uniform background field which subtends 28o x 23o and consists of a 15 x 15 square 
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array of achromatic checks which subtends a horizontal visual angle approximately 

3.3o. These achromatic checks vary randomly in luminance above and below the 

background every 40 to 80ms, but the overall mean luminance provided is the same 

as the background. The colour-defined, moving target consists the outline of a 

square made up of 5x5 checks and subtending approximately 0.8o at the eye and 

moves diagonally through a visual angle of approximately 2.9o at a speed of 

approximately 4o s-1. Spatiotemporal luminance noise is employed in the CAD test 

to mask the detection of any residual luminance signals so as to ensure that the 

subject can only make use of colour signals to detect the moving stimulus. The 

subject’s task is to report the direction of motion of the colour-defined stimulus by 

pressing one of the four buttons located at the corners of a square. When unable to 

see the stimulus, the subject’s instruction was to press any of the four buttons. The 

colour thresholds were measured using a number of interleaved staircases and the 

direction of the motion had to be reported correctly twice in a row for the same 

stimulus before the colour signal was decreased. The probability of randomly 

guessing a correct response is therefore one in sixteen. The measured thresholds 

along the RG and YB axes are then averaged to produce mean RG and YB 

thresholds. The visual stimuli are generated on a LaCie electronblue 19” CRT 

display (LaCie Ltd, London, UK) with a central fixation point (Barbur et al., 2010). 

An example stimulus and results for a normal trichromat, deuteranope and 

protanope from the CAD test are shown in Figure 2-5 & Figure 2-6. The test usually 

takes about 12 minutes to finish with the most commonly used recipe.  
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Figure 2-5. An example stimulus from the CAD test.  

 

Figure 2-6. CAD test results for a normal trichromat (A), a 
deuteranope (B) and a protanope (C). The dotted red, green and 
blue lines indicate the protan-, deutan- and tritan- colour confusion 
lines. The gray region indicates the normal threshold range and is 
based on the statistical distribution of RG and YB thresholds 
measured in 330 normal trichromat (Rodriguez-Carmona et al., 
2005). The dotted ellipse shows the medium threshold. 

2.5 Coherent Motion test 

The coherent motion test stimuli are generated using the same program that 

measures colour sensitivity. Instead of generating the isoluminant stimulus and 

measuring the CD needed to detect the direction of the stimulus motion, the moving 
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stimulus can be defined by luminance contrast and so the measured thresholds are 

the luminance contrasts needed to detect first order motion.  

The stimuli can be buried in either static or dynamic luminance contrast noise. 

Motion detection is primarily mediated by the magnocelluar pathway, which exhibit 

band-pass temporal properties unlike the P-pathways which exhibit low pass 

temporal properties. As a result, first order motion thresholds are not affected by 

static spatial noise. When dynamic noise is used, motion threshold increases 

monotonically with noise amplitude (Barbur 2008). This is simply because the 

spatial noise affects the sensitivity of the M-pathway and the subject needs to rely 

more on the P-pathway to detect the moving stimulus. A typical motion test with one 

stimulus usually takes 2 to 3 minutes to finish. 

2.6 Melanopsin apparatus – isolation of melanopsin 

response 

A four-primary illumination system designed by Tsujimura (Figure 2-7) (Tsujimura et 

al., 2010) was employed to generate visual stimulus that stimulate selectively either 

cones or rods and melanopsin. The system uses the silent-substitution technique 

(Pokorny et al., 2004) to selectively stimulate the cones or rods and melanopsin.  

The illumination system consists of an optical diffuser illuminated by light from an 

integrating sphere and subtending a visual angle of 17o. Four different kinds of light-

emitting diodes (LEDs, OptoSupply Ltd, Hong Kong) were employed as internal 

light sources in the integrating sphere and their light output was controlled by a 

microcomputer using pulse width modulation (PWM) techniques. The peak output 
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wavelengths of the four LEDs were 615 nm, 525 nm, 500 nm and 470 nm 

respectively, with half-height bandwidths of 20-36 nm. An integrated microprocessor 

was used to control the PWM. The PWM unit is connected with the P_SCAN 

system. This arrangement allowed simultaneous measurements of the pupil 

response to the various photoreceptor specific stimuli.  

In CIE1931 cone-excitation space, three fundamentals correspond to the excitation 

of three types of cones and they are specially designed, so that the sum of 

excitation from the L and M cones is equivalent to the photopic luminous efficiency 

function V(λ) (Shapiro et al., 1996). In the illumination system, Tsujimura assumes 

that the S cones, rods and melanopsin do not contribute significantly to the photopic 

luminosity function. The system uses Stockman & Sharp’s 10 degree cone 

fundamentals (Stockman and Sharpe, 2000) to calculate the excitations of cones 

and the melanopsin spectral sensitivity from a pigment template nomogram 

(Dartnall, 1953) with a peak wavelength of 482nm (Govardovskii et al., 2000). The 

lens and macular pigment density spectra employed are the average function 

reported by Stockman (Stockman et al., 1999). 
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Figure 2-7. A four primary illumination system from Tsujimura 
(Tsujimura et al., 2010) is employed to isolate photoreceptor 
responses. The stimulus consists of an optical diffuser, illuminated 
by an integrating sphere, microcomputer and a PC. The 
illumination system connects to the P_SCAN system (Barbur et 
al., 1987) which is used to measure the pupil responses 
simultaneously (adapted and reproduced with permission from S. 
Tsujimura). 

2.7 Quantitative Afterimage Assessment 

Patients with palinopsia experience longer persistence of visual images when 

compared with normal subjects (Bender et al., 1968, Meadows and Munro, 1977). 

Palinopsia often appears with other visual disturbances such as visual snow and 

can be attributed to a number of conditions affecting the brain including tumors, 

visual pathway lesions, medications, etc. However, many patients with palinopsia 
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and/or visual snow syndrome (VS) have completely normal vision and show no 

clinical abnormalities. Existing clinical tests fail to detect any signs that could be 

considered abnormal on these patients. It is of great interest to discover the extent 

to which the perceived afterimage contributes to visual perception and affects 

image quality. The first step was to develop a new technique to quantify the 

strength and duration of perceived afterimages.  

The Quantitative Afterimage Assessment test (QAA) is a new computer based 

vision test that measures the strength and duration of perceived chromatic 

afterimages. It employs novel psychophysical techniques and was designed to 

obtain results in a relatively short time.  

 

Figure 2-8 A schematic diagram that illustrates the four-alternative 
forced choice QAA test. The upper show shows the stimulus 
presentation sequence that is presented on the screen. In a typical 
QAA test, the reference (adaptation) stimulus is presented for 5s, 
followed by a blank screen for certain durations according to the 
gap time. Then the test stimulus is presented. At last, a square 
patch with random luminance and coloured noise is presented. 
The bottom row shows an example of perceived images from a 
trichromat. The trichromat sees the reference stimulus when it is 
presented on the screen. However, when the reference stimulus is 
turned off and the blank screen is presented, the subject perceives 
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a coloured afterimage of the reference stimulus which has an 
opposite colour of the reference stimulus. At the time when the 
test stimulus is displayed, the subject perceives the coloured 
afterimage as well as the test stimulus and the subject’s task is to 
choose which quadrant of the test stimulus matches the most 
closely to the coloured afterimage. Finally, the random noise is 
used to minimize or eliminate any perceived afterimages before 
the next trial. 

Figure 2-8 illustrates an example of the displayed real images and the 

corresponding perceived scene for a normal trichromat. The top row shows the time 

sequence of the stimuli (reference stimulus, blank screen and the test stimulus) that 

are displayed on the screen while the bottom row shows the perceived stimuli 

sequence (bottom row) for a normal trichromat subject. The normal subject firstly 

perceives the reference stimulus (top left picture), but when the reference stimulus 

is gone, the subject perceives the negative afterimage of the reference stimulus 

(middle picture in the bottom row). As soon as the test stimulus (top right picture) is 

displayed, the subject presses one of the four buttons that corresponds to the 

quadrant that matches closely the strength of the afterimage the most.  

A typical QAA experiment involves two tests: a four-alternative-forced-choice test 

and a staircase test. Figure 2-8 shows a schematic diagram for the four-alternative-

forced-choice afterimage test.  

In the four-alternative forced choice test, an approximate threshold is obtained 

usually within 1 minute. The subject is instructed to look at the fixation located in the 

centre of the background at all times. When the subject hears the first beep, the 

reference stimulus is displayed (see top left picture of Figure 2-8). After a period of 

time, such as 5 seconds, the reference stimulus disappears and the subject 

perceives the afterimage of the stimulus. Next, the test stimulus will be display 

followed by a second beep. When the test stimulus is displayed, the smaller test 
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stimulus and the bigger afterimage form a whole disc. Because the strength 

(chromatic displacement) of four quadrants in the test stimulus is always different, 

subjects are asked to select one quadrant in the test stimulus that matches most 

closely the appearance of the surrounding afterimage.  

The algorithm allocates the Chromatic displacement (CD) for the four quadrants 

that differ significantly from each other and cause as large as ten times the normal 

colour detection threshold. The four quadrants change their CD values according to 

subjects’ response until the subject select the same answers twice in succession, 

when the test terminates.  

In the typical staircase algorithm, when the approximate threshold is unknown, a 

large number of reversals are needed (usually > 11). In the QAA staircase test, the 

start increment value was based on an approximate threshold obtained using the 

rapid four-alternative-forced-choice test. This procedure reduced the number of 

reversals needed in the main staircase. 7 reversals were used and the threshold 

was estimated by averaging the last four reversals. The standard error associated 

with the last four reversals rarely exceeded 11% of the mean.   

The QAA program was developed to investigate the strength of afterimages in 

subjects with congenital red/green deficiency and also for the use in another related 

study that involved patients with visual snow and palinopsia syndrome. 
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3 THE DESIGN OF THE QAA TEST 

3.1 Introduction 

The psychophysics part of the QAA application has been described in section 2.7. 

In this chapter, the implementation of the Quantitative Afterimage test is described. 

Details of the application are discussed together with the procedure for monitor 

calibration and the use of the program. Appendix A provides a practical guide to the 

QAA application project.  

In terms of software engineering, the QAA project follows a typical waterfall 

software engineering development life cycle – requirement analysis, design, 

implementation, maintenance and testing. The QAA is designed to be highly 

extendable and reusable. As a standalone psychophysics application, not only does 

the QAA contain a psychophysics module that measures the duration and the 

strength of chromatic afterimages, but it provides a fully functional graphical user 

interface module (GUI) in the front side which allows users to adjust various 

common stimulus parameters. In addition, it comprises a database module which 

stores the experiment data and results in the server side and a website portal 

module which displays selected results based on the user groups. If a new 

psychophysics program (module) is implemented, such as visual acuity test, it can 

be integrated into the whole application smoothly with very little changes of the 

other modules.  
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3.2 Requirements 

“The hardest single part of building a software system is deciding precisely what to 

build. No other part of the conceptual work is as difficult as establishing the detailed 

technical requirements...No other part of the work so cripples the resulting system if 

done wrong. No other part is as difficult to rectify later.” (Brooks, 1987) 

In software engineering, a typical software development includes a few stages. 

Laplante once said “Software engineering is a profession dedicated to designing, 

implementing, and modifying software so that is of high quality, affordable, 

maintainable, and fast to build. It is a “systematic approach to the analysis, design, 

assessment, implementation, test, maintenance and reengineering of software, that 

is, the application of engineering to software (Laplante, 2007).” To be concise, 

software development usually contains 5 stages: “requirement analysis”, “design”, 

“implementation”, “testing” and “maintenance”. The first stage of building a 

computer program is to do the requirement analysis and estimate feasibility. Figure 

3-1 shows a typical software development life cycle.  
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Figure 3-1. Software development cycle. The darker arrows 
specify the main software development process, adapted from 
(Faulk, 1995). 

The task was to develop a new computer application to measure the duration and 

the strength of chromatic afterimages. The functional and non-functional 

requirements are shown below:  

3.2.1 Functional requirements 

The desired application should fulfil the following functions: 

1. The application should be able to measure the duration and strength of the 

afterimages using appropriate psychophysics algorithms. (This section can 

divided into subsections) 

a. The application should be a computer program which is able to 

display the stimuli of interest. To the computer, these stimuli are 

basically shapes and colours drawn on a calibrated screen. 
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b. The application should be able to respond to users input, i.e., mouse, 

keyboard or joystick events. 

c. Based on the user responses, the application should be able to 

adjust the presented stimulus at runtime using psychophysics 

procedures and algorithms. 

2. The application should provide an interface for experimenters to set up the 

desired experiment parameters. E.g., background luminance, stimulus 

chromaticity, location, duration, shapes, etc. 

3. The application must be able to present the desired stimulus in a way that is 

suitable for psychophysical measurement. 

4. The application should provide appropriate views for experimenters, 

subjects and researchers to read the details of the test results. 

5. Different users from different groups should be able to search for a specific 

subject’s results with different views. i.e., the experimenters should be able 

to view all parts of the result whereas the subjects’ views of results are 

limited. E.g. they might be only able to see if they pass or fail the test or if 

they have prolonged afterimages.  

3.2.2 Non-functional requirements 

1. When a desired stimulus is specified by an experimenter, any hardware 

limitations, such as a monitor phosphor’s limits, must be taken into account. 

Monitor calibration has to be done before creating the application. 

2. The application should be divided into modules to achieve maximum 

software reusability.  
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3. Other modules should be independent of the psychophysics module, so that 

once a new psychophysics module (such a new contrast acuity test) is 

implemented, the new module can be integrated into the system with no or 

very little changes made in other modules.  

4. The application should be well designed, so that it can be extended easily.  

5. As a vision research experiment that is used to test people and perhaps 

have the potential to be used clinically, the application should be reliable.  

6. The application should have high performance. The adopted algorithm in the 

application should be optimised to ensure that it is efficient and fast enough 

to render the desired stimulus on the screen without jitters and lags.  

7. The application should be easy to use. E.g., it should have an easy to use 

GUI, a help menu or a guide. 

8. This research project is time constrained and should be finished and 

preliminary tests carried out in 4 months. Further development should be 

done according to the preliminary results. 

Based on these requirements, the application is feasible within the given time scale. 

A use case diagram containing the essential requirements is derived and illustrated 

in Figure 3-2.  
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Figure 3-2. The QAA system use case diagram. The diagram 
describes the essential interactions of the application. 
Experimenters setup parameters in the application, run it and 
instruct participants how to do the tests. When tests are finished, 
experimenters save results. The application also needs to provide 
different privileges for different subjects. 

3.3 System design 

The design stage in the software development life cycle is usually considered as the 

most important stage, which always takes longest amount of time. A good design in 

software development takes advantage of the requirement analysis, makes the 
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implementation stage easy and ensures the overall quality of the software (Shaw 

and Garlan, 1996).  

3.3.1 The modules of the QAA test 

From the essential interactions in the use case diagram, 4 modules can be 

separated and derived based on the functions: a Front End Graphics User Interface 

(GUI) module, a psychophysics vision test module, a Backend server module and a 

Results Website module.  

 

Figure 3-3. The QAA application module structure. The application 
contains 4 main modules: (1) Front-end GUI module, where the 
application parameters can be set; (2) Experiment module 
(psychophysics vision test module), the core psychophysics 
program is in this module; (3) Backend server module, which 
stores all the results and corresponding tests’ information; and (4) 
the website module, which queries the results from the server 
database and presents the partial results according to groups that 
users belong to. The application is designed to be very flexible to 
extend. When a new Experiment module is designed, it can be 
easily inserted in the application with an added interface. The front 
GUI just needs to add a button to run the new corresponding 
application. 

Front end GUI
(application parameters)

Afterimage program
(Psychophysics module)

Backend server

Afterimage interface Other interfaces

Other programs ……..

Save results

Server side: front end
(Result Website)

PC1 PC2 PCn
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Figure 3-3 shows the modules of the QAA application. The red dotted box shows a 

new pseudo psychophysics module (e.g. a colour vision test or an acuity test), 

which can be easily inserted in the application without changing other modules. 

These psychophysics modules only have communication with the front end GUI. 

The front GUI validates the input parameters, runs the psychophysics application, 

and connects to the server. In the server side, the website module is designed to 

display the information in the database of the server. 

This separation of the modules makes the application easy to be extended. Each 

module is designed to be a standalone program and can be integrated with other 

sections seamlessly. Each module talks (sends or receives data) to the other 

modules through interfaces. Interfaces are highly abstracted and save the most 

fundamental parameters. When a new psychophysics program is designed, it can 

be simply inserted in the whole application with one more added interface and 

perhaps an added ‘Launch’ button on the GUI that corresponds to the new 

psychophysics program. The GUI, server and website can remain unchanged.  

The Front end GUI is where experimenters set up the experimental parameters and 

read results, i.e., background luminance, stimulus chromaticity, etc. Once a test is 

done, the results are displayed on the GUI and can be sent to the database. It 

should contain a few sections, which are organized into taps. Each tap includes 

several parameters that come from the same group. Once the parameters are set, 

experimenters can start the Psychophysics tests by pressing the corresponding 

button on the GUI. It also provides validation of the parameters. E.g. if a luminance 

of the screen background is set higher than the screen phosphor’s limits, the GUI 
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pops up an error window with the error information and requires experimenters to 

reset the luminance value.  

The Psychophysics vision test module is the core module. It reads the parameters 

from the front end GUI through its interface and renders the desired stimulus on a 

background based on psychophysics algorithm (a staircase procedure). It can only 

be started through the GUI after the parameters are set. Once the staircase 

procedure is finished, the results are written back to the front end GUI though its 

interface, this module terminates itself and the current “focus” returns to the GUI. 

The server module contains a secured database which can be written only by the 

Front end GUI when it has a validated result. Otherwise, it is only readable to the 

website module. A database is a structured collection of raw data and, in the QAA 

test, it stores the experiment details such as the stimulus conditions, subjects’ 

details and results etc..  

The website module is designed to display the results that are saved in the 

database of the server. The website works as a content management system, 

which is also extremely robust and extendable. It makes the QAA results to be 

‘accessible’ from anywhere in the world. The website portal not only provides a 

display of the results, but it also classifies the results into different groups according 

to the user privileges or user groups. For example, a patient can only see his/her 

own results, but an experimenter can see all the results. 

The integration of these modules in the QAA test makes it possible for a future 

clinical application. For instance, with very few modifications, the GUI module can 

be designed for people who have specific clinical skills; the database can store 

thousands of experiment data and test results and this information can be retrieved 
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and analysed for other studies at any time; the website portal can be used to 

generate special views for the results, such as formal clinical reports for patients. 

3.3.2 The psychophysics module 

The psychophysics module is the main program of the application. It is invoked and 

started by the GUI after all testing parameters are set. According to the parameter, 

it runs the psychophysics algorithm (four alternative forced choice and staircase 

procedure) until the program is terminated.  

The psychophysics module is a standalone program itself. It runs on top of the 

operating system and its architecture is shown in Figure 3-4. 

 

Figure 3-4. The architecture of the psychophysics module. The 
QAA experiment module has a hierarchy structure. The QAA 
objects and functions invoke the C++ language Application 
Programming Interfaces (APIs), OS APIs and OpenGL APIs, and 
then appropriate algorithms are used to process data before the 
rendering on the screen. The results are then transferred back to 
the front end GUI for further actions. 

The psychophysics vision test module is constructed by classes using the Object 

Oriented Design technique. All the algorithms and functions are contained in the 

QAA classes. It only communicates with the front end GUI through the Afterimage 

Operating system  +  OpenGL  +  C++ & C#
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interface. In the module, it uses the message-driven programming paradigm (or 

event-driven). Figure 3-5 shows the message flow of the psychophysics vision test 

module. 

 

Figure 3-5. The message flow chart of psychophysics vision test 
module. The module uses the message driven programming 
paradigm. 

3.4 Implementation 

Software implementation is the part of the process where the actual coding work is 

done following the software design. Based on the QAA module diagram in section 

3.3, the application should be implemented as separate independent modules with 

connections only through public interfaces. This design provides a lot of flexibility 

and maximizes effectiveness and robustness in the implementation, because 

details of individual module’s implementation can be totally different as long as they 

provide the right functionalities and talk to other modules correctly through the 

interfaces. A list of implementation details such as programming languages and 
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development tools is shown in Table 3-1. The implementation of the psychophysics 

module is discussed in the next section, but the implementation of the remaining 

modules is skipped since these are less relevant to the work described in this thesis.  

QAA modules Implementation languages or tools 

Afterimage program 
(Psychophysics module) C++ and OpenGL with Visual Studio 

User interface C# with Visual Studio 

Database SQL with MySQL database 

Result website portal PHP  

Server Apache 

Table 3-1. The programming languages and tools used in the QAA 
development. 

3.4.1 Implementation of the psychophysics module 

C++ and OpenGL are used together to create the psychophysics module. The C++ 

programming language is undoubtedly one of the most efficient and popular 

programming languages with many available libraries. OpenGL is the most widely 

adopted graphics standard and provides high performance and control of image 

performance. The model (actual psychophysics algorithm, logic and data) and 

graphics parts are also maximally abstractly and separately to achieve high data 

abstraction based on the commonly used Model-view-controller (MVC) design 

pattern (Krasner and Pope, 1988). For instance, the staircase algorithm employed 

only modifies the data and the graphics objects are loaded separately in the main 



92 

 

program. Only when a presentation is needed, the graphics objects read data from 

the model and present or update themselves on the screen.  

An Object Oriented Design and Programming approach is employed in the 

programming stage (Rumbaugh et al., 1991, Booch et al., 2007). For instance, the 

background, reference stimulus and the test stimulus are designed to be subject 

classes of an abstract Stimulus class, in which only the most abstract members and 

methods are defined as shown in Figure 3-6. 

 

Figure 3-6. The class hierarchy of the Psychophysics module. The 
update() method is defined as a pure virtual method in the base 
class. 

The class hierarchy design makes use of polymorphism. e.g., a simple loop of the 

base class’ update() method in an OOP program updates the subclass objects. In 

the real afterimage program, the updates are always started from background 

Stimulus

Position;
Shape;
Chromaticity;
Luminance;
Duration

update();

ReferenceStim

…….

update();
……..

TestStim

…….

update();
……..

Background

…….

update();
……..
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object. This is because both the reference and the test stimulus draw on top of the 

background. 

 

The psychophysics module main program is implemented based on the message 

flow that is shown in Figure 3-5. The message boxes in the figure are implemented 

as procedures (or functions) following the same sequence in the flow chart. After a 

user response (a key press message), a staircase message is sent out to invoke 

the staircase procedure followed by an ‘Abort’ check to see if the program is 

finished based on the result from the staircase. If not, a rendering message is sent 

to render the next presentation on the screen.  

The staircase algorithm is implemented as a template function in the psychophysics 

module, so that it can be invoked in any other psychophysics programs with any 

data types. It has 3 parameters – the start increment (start), the end increment (end) 

and the number of reversals (r). The most commonly used staircase follows either a 

linear or a log algorithm to change its increments and in the afterimage 

psychophysics module, we use the log algorithm to calculate the current increment: 

𝑠𝑡𝑎𝑟𝑡
𝑒𝑛𝑑

=  𝑒𝑘(𝑟−1) 

The parameter k can be solved in the above equation, and then the current 

increment can be computed with the following equation: 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 =  𝑠𝑡𝑎𝑟𝑡 ∙  𝑒−𝑘 ∙ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜.𝑜𝑓 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙 

for (eachStimulus needs to be update() )
{

Stimulus[i].update();
}
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Figure 3-7 shows an example calculation of the ‘Current Increment’ values in the 

staircase algorithm with a ‘start increment’ of 0.012, ‘end increment’ of 0.001 and a 

‘number of reversals’ of 7 (A). An example staircase obtained in the test using 

example staircase values. 

 

Figure 3-7. Examples of calculation of the ‘Current Increment’ 
values and thresholds values obtained in a test using example 
staircase values. 

The refresh rate of the psychophysics module is fixed at 85Hz at a resolution of 

1280x1024 under fullscreen mode on a calibrated 20” CRT monitor (Sony Trinitron, 

model GDM-400PST). The program runs on a Toshiba laptop (Toshiba Tecra M10) 

under Windows XP SP3 with an integrated Mobile Intel GMA 4500MHD graphics 

card. This ensures that each frame of the stimulus presentation of the 

psychophysics module takes approximately ~12ms on a visual field of 29o x 22o.  

3.4.2 The implementation of interfaces between modules 

Figure 3-3 shows the modules of the QAA application. Each module communicates 

with the other necessary modules through interfaces. The afterimage 
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psychophysics module only communicates with Front end GUI module in which a 

‘save result’ communication to the database is also found.  

The QAA application starts from the GUI interface. When the GUI is initialized, it 

checks if the computer has a valid internet connection and tries to connect to the 

server. Once a connection is established, users can setup all the desired 

parameters. After the experiment finishes, the results are saved on both the 

experiment computer and server side. Otherwise, the program runs in a non-server 

mode and results are saved only on the experiment computer.  

When the desired parameters are set, the GUI creates a new file and stores these 

parameters in a local drive, after experimenters click buttons to the run 

Psychophysics module. The stored file will be read only by the psychophysics 

program, after which the psychophysics test starts. When the psychophysics 

program finishes, it creates another file and stores all the details of the experiment 

including the results in it. In the detailed implementation, both of these files are 

called ‘machine-readable-files’ which have an optimized format for these programs. 

Then, if there is a valid connection with the server, the Front end GUI creates 

relevant SQL scripts, opens the database and saves these results. Otherwise, the 

GUI saves a ‘human-readable-result-file’ which is an Excel file that contains all 

necessary information for the last test on the experiment computer.  

3.5 Monitor calibration for the QAA 

A proper and reliable display calibration is required and is very important for a vision 

experiment. Based on the calibration results, the application is able to generate 
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stimuli accurately, given that it is within the phosphor’ limits of the monitor. This 

section describes the procedure of monitor calibration that was employed in the 

QAA application.  

3.5.1 The QAA calibration procedure 

The display used in the system is a 20” CRT monitor (Sony Trinitron, model GDM-

400PST). The control program runs on a Toshiba laptop (Toshiba Tecra M10) 

under Windows XP SP3. Instruments that are used in the Monitor calibration 

process mainly include a telespectralradiometer (Minolta, CS2000 

telespectralradiometer), an LMT photometer (LMT L1003, made in West Germany) 

and a ruler. The telespectralradiometer is used to measure the spectral radiance, 

the LMT photometer is used to measure the luminance (in cd/m2) and the ruler is 

used to measure the pixel distance on the screen.  

The first steps in the procedure for screen calibration are to mount the screen in 

place, adjust the screen menu options to set the screen properties to the desired 

values, like the shape, colour and viewing size. Normally, the shape of the viewing 

area needs to be adjusted to be a rectangle and get rid of any distortion, and also 

try to make the viewing size to be as large as possible. One of the purposes of the 

preliminary screen adjustments is to make the screen reproduce the desired 

luminance levels with stable operation. This can be achieved by repeatedly 

adjusting the values of the “contrast” and “brightness” on the screen and using the 

luminance meter to measure values at each end until the proper value is achieved.  
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Next, the spectral radiance scan and luminance calibration is measured. The 

spectral radiance scan and luminance calibrations are done on each gun 

independently. For the luminance calibration, the luminance of the test patch for 

each gun is measured in steps. In the QAA program, the drive signal is considered 

as an 8 bits integer. Therefore, the luminance needs to be measured at 256 steps 

for each gun, i.e., from 0 to 255. So, for the red-gun luminance calibration, for 

example, the drive signal of the red-gun is increased but the other guns are kept to 

be 0. I.e., from (0,0,0), (1,0,0) to (255,0,0). At each step, several readings from the 

luminance meter were taken and the averages were computed. In the spectral 

radiance scan, the purpose is to obtain the spectral radiance curve of each gun. 

The absolute amplitude of the curve (the shape at each gun signal step) is 

proportional to the calibrated luminance values in the luminance calibration. So, in 

the spectral radiance scan, the scan is only needed to be measured for 3 times - 

(255,0,0) for the red gun, (0,255,0) for the green gun and (0,0,255) for the blue gun. 

3.5.2 The QAA calibration results 

Figure 3-8 shows the spectral radiance scans for the red, green and blue guns. 

Each gun is measured separately at the maximum drive signal. E.g. for the red gun, 

it is measured when the drive signal is set at (255, 0, 0) in the calibration program. 
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Figure 3-8. The QAA spectral radiance scan results. 

Figure 3-9 shows the luminance calibration results for the red, green, blue guns and 

the “white” channel. Apart from the white, each gun is measured individually as the 

drive signal increases. The white channel is measured when the 3 guns increase 

with the same intervals and this measured result is used to compare the total 

luminance of the three individual guns. The luminance values are measured with 

luminance meter (LMT L1003, made in West Germany). 
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Figure 3-9. luminance calibration for each phorsphor gun. Driven 
signal from 0 to 255. The real calibration process employed a 
interval step of 4 to save time, and the values in between were 
then interpolated. 

3.5.3 The usage of calibration in the QAA application 

1. Generate correct tristimulus values in colour space 

Generally speaking, one of the most important requirements in a psychophysics 

program is the production of stimulus colours and luminance correctly in an 

acceptable and reproducible way. In the case of the CIE1931 XYZ colour space, the 

stimulus is specified using tristimulus values and chromaticity coordinates. The 

tristimulus value also represents the luminance of the stimulus.  

In the QAA program, the conversion is specified in the following formula. Note that, 

in the following formula, the (R, G, B) are not tristimulus values from the CIE RGB 

space; they are the real drive signals that are needed for the program to produce 

the (X, Y, Z) tristimulus values. 

                                       (𝑋,𝑌,𝑍)
𝑚𝑎𝑝
�⎯�(R, G, B)                             (▲) 
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If the given stimulus is specified using (x, y, L), they can always be easily 

transferred to XYZ using the following formula (these formula are the properties of 

CIE 1931 XYZ chromaticity diagram): 

x
y
YX =  

LY =  

)1( yx
y
YZ −−=  

In the QAA application, all the tristimulus values are specified in the CIE 1931 xy 

colour space which was created by the International Commission on Illumination in 

1931 (Judd et al., 1964). It is a mathematical transformation from CIE RGB colour 

space which was studied by W. Wright and John Guild in the 1920s using their 

colour matching experiment (Guild, 1932, Wright, 1929). The results from the colour 

matching experiments are refered as colour matching functions. The CIE 1931 XYZ 

colour space has a few advantages over the CIE RGB and other colour spaces in 

terms of colour matching functions. The most significant advantages of the CIE 

1931 colour space are: 

1. The colour matching functions are always positive. 

2. The  colour matching function is equal to V(λ) – photopic luminous 

efficiency function.  

For given tristimulus values (X, Y, Z) in CIE 1931 colour space, the tristimulus 

values are converted to the gun driven signals (R, G, B) in the following steps: 
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1. For Y, it is luminance of the desired stimulus. Its value is the sum of Yr, Yg 

and Yb. In other words, the total luminance of the stimulus is contributed 

from the sum of all the three guns’ luminance. This is also true for the X and 

Z. Therefore, for X, Y and Z, 3 equations are derived. 

X = Xr + Xg + Xb; (1) 

Y = Yr + Yg + Yb; (2) 

Z = Zr + Zg + Zb; (3) 

2. The Xr, Yr, Zr, Xg, …….., Zb, can be computed using the following formulas.  

Xr = ∫ 𝐼′𝑟𝑒𝑑(𝜆) ∙ x (𝜆)800
300  𝑑𝜆 

Yr = ∫ 𝐼′𝑟𝑒𝑑(𝜆) ∙ y (𝜆)800
300  𝑑𝜆 

Zr = ∫ 𝐼′𝑟𝑒𝑑(𝜆) ∙ z (𝜆)800
300  𝑑𝜆 

…… 

(Where I’red(λ) is the spectral power distribution when the drive signal is (R, 

0, 0) and )(λx  is the CIE 1931 colour matching function.) 

Therefore, the following equation is drived: 

X =∫ 𝐼′𝑟𝑒𝑑(𝜆) ∙ )(λx800
300  𝑑𝜆 + ∫ 𝐼′𝑔𝑟𝑒𝑒𝑛(𝜆) ∙ )(λx800

300  𝑑𝜆 + ∫ 𝐼′𝑏𝑙𝑢𝑒(𝜆) ∙ )(λx800
300  𝑑𝜆 

i.e., hence, (1) becomes  

X = ∫ (𝐼′𝑟𝑒𝑑(𝜆) + 𝐼′𝑔𝑟𝑒𝑒𝑛(𝜆) + 𝐼′𝑏𝑙𝑢𝑒(𝜆))800
300 ∙ )(λx  𝑑𝜆 (A1) 

And same thing also applies for (2) and (3). Therefore, (A2) and (A3) can be 

derived: 

Y = ∫ (𝐼′𝑟𝑒𝑑(𝜆) + 𝐼′𝑔𝑟𝑒𝑒𝑛(𝜆) + 𝐼′𝑏𝑙𝑢𝑒(𝜆)) ∙ )(λy800
300  𝑑𝜆 (A2) 
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Z = ∫ (𝐼′𝑟𝑒𝑑(𝜆) + 𝐼′𝑔𝑟𝑒𝑒𝑛(𝜆) + 𝐼′𝑏𝑙𝑢𝑒(𝜆))800
300 ∙ )(λz  𝑑𝜆 (A3) 

3. The ‘maximum’ spectral distribution curve shape of Ired(λ) is measured at 

(255,0,0) and the shape of I’red(λ) corresponds to the corresonding 

luminance signal Lr. In other words, for one given spectral radiance scan, 

there is one and only one corresponding luminance. It is a one to one 

correspondence. Therefore, the ratio of Lr to the maximum luminance 

(where drive signal is maximum) is the same as I’red(λ) to Ired(λ). Therefore, 

I’red(λ) can be replaced with Ired(λ), Lr and Lr_max in A1, where according 

to our spectral radiance calibraion, Ired(λ) is already known. If Lr_max and 

Lr can be calculated, the corresponding Rmax and R that produce the given 

luminance in the calibration results can be derived. So formula ▲ becomes: 

 

(𝑋,𝑌,𝑍)
𝑚𝑎𝑝
�⎯�(𝐿𝑟, 𝐿𝑔, 𝐿𝑏)

𝑚𝑎𝑝
�⎯�(R, G, B) 

Where (X, Y, Z) is the desired tristimulus value and (Lr, Lg, Lb) are 

luminance values which corresponds the desired gun levels (R, G, B). 

 

4. The same rule can also be applied to A2 and A3. Now, these formula 

become: 

 

X = ∫ (
max_rL

Lr
𝐼𝑟𝑒𝑑(𝜆) +

max_gL
Lg

𝐼𝑔𝑟𝑒𝑒𝑛(𝜆) +
max_bL

Lb
𝐼𝑏𝑙𝑢𝑒(𝜆))800

300 ∙ )(λx  𝑑𝜆 (B1) 

Y = ∫ (
max_rL

Lr
𝐼𝑟𝑒𝑑(𝜆) +

max_gL
Lg

𝐼𝑔𝑟𝑒𝑒𝑛(𝜆) +
max_bL

Lb
𝐼𝑏𝑙𝑢𝑒(𝜆))800

300 ∙ )(λy  𝑑𝜆 (B2) 
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Z = ∫ (
max_rL

Lr
𝐼𝑟𝑒𝑑(𝜆) +

max_gL
Lg

𝐼𝑔𝑟𝑒𝑒𝑛(𝜆) +
max_bL

Lb
𝐼𝑏𝑙𝑢𝑒(𝜆))800

300 ∙ )(λz  𝑑𝜆 (B3) 

And, the 
maxR
R is just a contrast, it can be put outside the integration. And 

because the following is also known: 

 

Xr_max = ∫ 𝐼𝑟𝑒𝑑(𝜆) ∙ x (𝜆)800
300  𝑑𝜆 

Yr_max = ∫ 𝐼𝑟𝑒𝑑(𝜆) ∙ y (𝜆)800
300  𝑑𝜆 

Zr_max = ∫ 𝐼𝑟𝑒𝑑(𝜆) ∙ z (𝜆)800
300  𝑑𝜆 

 

Hence, the B1, B2 and B3 become: 

 

X = Lr
L
X

r

r

max_

max_ + Lg
L
X

g

g

max_

max_ + Lb
L
X

b

b

max_

max_

 
(C1) 

Y = Lr
L
Y

r

r

max_

max_ + Lg
L
Y

g

g

max_

max_ + Lb
L
Y

b

b

max_

max_

 
(C2) 

Z = Lr
L
Z

r

r

max_

max_ + Lg
L
Z

g

g

max_

max_ + Lb
L
Z

b

b

max_

max_

 
(C3) 

 

Because Yr_max, Yg_max and Yb_max are luminance values, therefore: 

Yr_max= Lr_max ; Yg_max= Lg_maxand Yb_max= Lb_max. In the (C) formulas, there are 

3 formulas with 3 unknown varibles Lr, Lg and Lb. According to Kramer’s 

rule (Cramer, 1750), the solution is: 

Lr = 
D

Dred  
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Lg = 
D

Dgreen  

Lb = 
D

Dblue  

 

Where D is the determinate of the matrix. 

D ≡
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5. Once (Lr, Lg, Lb) are solved. the closest real luminance values (Lr’, Lg’, Lb’) 

from luminance calibration results like shown in (Figure 3-9) can be derived 

and then the corresponding drive signals (R, G, B) can be calculated. 

 

2. Calculate phosphor limits 

Because each phosphor’s maximum spectral radiance is fixed, when the luminance 

of a stimulus is increased, the maximum stimulus’ CD is reduced. Based on the 

calibration results, a function of the afterimage program is in charge of calculating 

the maximum CDs at different background levels. The phosphors’ limits for the most 
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commonly used background luminance levels are calculated in advance for the 

afterimage program to increase efficiency. However, if a luminance level is not 

listed, the afterimage system will perform a check when the program starts and do 

the relative calculation. 

 

Figure 3-10. The phosphors’ limits as a function of the luminance 
levels. 

3.6 Summary 

In this chapter, the software design and implementation of QAA application is 

described. A waterfall software design model was employed in the design stage. 

The first step was to do the requirement analysis, where the functional and non-

functional requirements were extracted. Based on the requirement analysis, a 

detailed software design was produced. The implementation of psychophysics 

module was discussed and lastly the monitor calibration and its usages were 
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introduced. In the next chapter, the QAA system is employed to measure the 

strength and duration of the chromatic afterimages and the measured results are 

discussed.   



107 

 

4 QUANTITATIVE AFTERIMAGE ASSESSMENT 

4.1 Introduction 

Vision starts with light entering the eyes and involves complex mechanisms in the 

retina and the brain. By exploring and studying visual perception, vision scientists 

have discovered and studied many visual illusions over centuries. The perception of 

afterimage is one of the most fascinating effects, and refers to the continued 

perception of some form of image after the original stimulus disappears. Hence, it is 

often referred to ‘visual afterimage’. Other factors can also cause visual 

afterimages, such as adaptation to motion, colour, orientation, size change, 

luminance etc. The current study that is described in this chapter focuses on only 

colour afterimages (or chromatic afterimages). 

Chromatic afterimages fall into two categories, positive afterimages and negative 

afterimages. Perceptually, positive afterimages have the same colour as the original 

colour whereas negative afterimages have the complementary colour. The process 

behind the formation of positive afterimages is less well understood, though some 

studies suggest that the principle mechanism is mostly related to neural adaptation 

(Barlow and Sparrock, 1964, Miller, 1966). On the other hand, negative afterimages 

have been associated mostly with the retina and are likely to be caused when the 

cone cells are over stimulated and become less sensitive (Shimojo et al., 2001). For 

example, when looking at a reddish colour stimulus for several seconds, the L 

cones in the eye become most active and send out a strong signal. Then, if 
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immediately the gaze is diverted to a uniform spectrally neutral background, the 

same L-cones generate reduced signals as a result of bleached pigment. But the 

remaining cone classes were unaffected by bleaching and hence generate normal 

signals. Since the generated colour will be composed of proportionally ‘less’ red 

signal, it will therefore appear to be more greenish.  

In primates, the eyes compensate for the effect of afterimages by changing the 

fixation positions in small amounts (amplitudes vary from ~2 to ~120 arc minutes), 

but at a fast speed. This process is referred to microsaccades (Darwin and Darwin, 

1786). The role of microsaccades in visual perception has been debated and is still 

largely unresolved. It has been proposed that the main functions of macrosaccades 

are to prevent the retinal image from fading and weaken the afterimage effect by 

moving the stimulus in and out of a neuron’s receptive field. But, if the stimulus is 

spatially large and is viewed for a sufficient long time, afterimages will still be 

produced. Attention also affects the strength of afterimages (Suzuki and 

Grabowecky, 2003, Tsuchiya, 2005, Wede and Francis, 2007). Suzuki and 

Graboweeky (2003) reported that an attended inducer stimulus would cause shorter 

and weaker afterimages than an unattended inducer (Suzuki and Grabowecky, 

2003).  

Several studies have reported pupillary responses at the stimulus offset in 

additional to the onset and these secondary responses are referred to as the pupil 

afterimage responses. The pupil Barbur (1999) used two isoluminant stimuli with 

opponent colours (reddish and greenish) and he reported that the pupil colour 

responses were normal in the sighted hemifields of two hemianopia subjects, 

whereas in their blind hemifields there was only an onset pupil response to the 
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reddish stimulus and an offset response to the greenish stimulus (Barbur et al., 

1999). The pupillary afterimage responses have been observed in many other pupil 

studies (Kimura and Young, 1995, Kohn and Clynes, 1969, Tsujimura et al., 2001). 

Although the pupil afterimage responses have been observed in many occasions, 

the mechanism is still not very well understood.  

In this study, the QAA program was employed to investigate the duration and 

strength of the chromatic afterimages in normal trichromats as well as in subjects 

with congenital red-green colour deficiency. The pupil colour response has also 

been measured and compared in these subjects. We show that the afterimage 

results measured from the normal subjects display consistent results with previous 

studies; however the results obtained from the colour deficient subjects reveal the 

importance of cone contrast increments in driving the pupil response.  

4.2 Methods 

The QAA program (described in section 2.7 and 3) was employed to measure the 

afterimages and P_SCAN system (described in section 2.2) was used to assess 

pupil responses. 10 normal trichromatic subjects (aged between 23 and 59), six 

patients with VS syndrome and palinopsia (aged between 24 and 42), 2 

deuteranope subjects (23 and 45 years old) and 2 protanope subjects (33 and 35 

years old) participated in the study. All subjects were given written informed 

consent, and the study was approved by the research and Ethics Committee of City 

University London. 

Pupil measurements 
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A uniform background (30o x 24o) with CIE coordinates (0.298, 0.335) and a 

luminance of 12cd/m2 was used throughout the pupil afterimage studies. The 

stimulus was a disc of 9.5o in diameter and was presented in the centre of the 

background for 2.4 seconds. The subjects were instructed to view the screen 

binocularly and the pupil traces obtained represent the averages of 32 

measurements per stimulus. Two chromatic angles were selected, i.e., 118o and 

249o. Both stimuli had the same photopic luminance as the background, but the 

individual photoreceptor contrasts generated were different. Figure 4-1 shows the 

photoreceptors’ contrasts calculated along an ellipse contour with the centre 

chromaticity (0.298, 0.335). The greenish stimulus has an absent rod contrast 

whereas the bluish stimulus contains a very large rod contrasts.  

 

Figure 4-1. Relative photoreceptor contrasts calculated along an 
ellipse contour with the centre (0.298, 0.335) on the CIE1931 
chromatic diagram. A indicates the rod free (0% rod contrast) 
direction and B indicates the chromatic direction that contains the 
maximum rods and S-cone contrasts.  
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Afterimage measurements 

To investigate the afterimage thresholds in a variety of conditions, we varied one 

stimulus parameter each time while keeping others fixed. For instance, in one 

measurement, we keep the properties of both reference stimulus and test stimulus 

the same and vary only the time between the offset of the reference and the onset 

of the test. Then we can plot the afterimage threshold as a function of this duration. 

The five different types of measurements employed are listed below: 

1. Afterimage thresholds measured as a function of the time delay between the 

offset of the reference stimulus and the onset of test stimulus. 

2. Afterimage thresholds measured as a function of the duration of reference 

stimulus. 

3. Afterimage thresholds measured as a function of the chromatic signal 

strength of the reference stimulus (i.e., the CD amplitude). 

4. Afterimage thresholds measured for different hue directions in (x, y) 

chromaticity space. 

5. Afterimage thresholds measured for different background luminance levels. 

In all conditions, the reference and the test stimulus luminances were kept the 

same and equal to that of the uniform background.  

Apart from experiment 5, the background employed had a fixed luminance of 

26cd/m2 and chromaticity (0.305, 0.323). The luminance and the chromaticity of the 

background were chosen to be the same as the CAD test. Therefore, the measured 

strength of the chromatic afterimages can be compared with the colour sensitivity. 

This background chromaticity corresponds to the white point used by MacAdam, 

which is the centre of the MacAdam ellipse (MacAdam, 1942). Colour sensitivity 
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measured with respect to this background chromaticity at 26cd/m2 allows the 

program to generate an optimum number of coloured stimuli for any chromatic 

directions in the CIE 1931 x,y colour space.  

4.3 Results from normal subjects 

4.3.1 The effect of the gap duration 

Figure 4-2 shows the afterimage thresholds plotted against the gap time between 

the offset of the reference stimulus and the onset test stimulus. The mean results 

from 10 normal subjects illustrate that the strength of the afterimage decays very 

fast when the gap time is increased and follows an exponential trend (R2> 0.99). In 

one subject, the thresholds were measured continuously for up to 14 seconds 

delay. Even after 14 seconds, the thresholds tend to asymptote to a straight line 

after the first 8 to 10s. To establish the day to day variability, the tests had been 

repeated on the same subject measured in Figure 4-2 (A) in six consecutive days 

and the mean average and the corresponding ±σ values were shown in Figure 4-2 

(B). 
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Figure 4-2. Chromatic afterimage strength measured as a function 
of ‘gap time’ between the reference and the test stimuli in one 
normal trichromat with a gap time up to 14s (A) and the average 
and the corresponding ±σ values for 10 normal subjects (C). (B) 
showed the mean and the corresponding ±σ values of repeated 
tests on the same subject measured in A in six consecutive days. 
The reference stimulus had a chromatic angle of 125 degrees and 
is presented for 5 seconds. The afterimage was measured after 0, 
1, 2, 4, 6, 8 and 10 seconds after the reference stimulus was 
gone. The error bars in the first diagram plotted 2 standard errors 
obtained from the last six reversals in the staircase measurement 
algorithm and in the second diagram showed the standard errors 
for the group of normal subjects. 

4.3.2 The effect of reference stimulus duration 

Afterimage thresholds were also measured when different reference stimulus 

durations were employed. According to Figure 4-3, when the gap time is fixed, 

increasing the duration of the reference stimulus induces stronger afterimages. 

However, this effect becomes increasingly small as the presentation duration of the 

reference stimulus becomes large. The thresholds exhibit a maximum for a 

reference duration of eight seconds and a gap time is one second. As expected, 

when the reference stimulus duration is fixed, increasing the gap time reduces the 

strength of corresponding chromatic afterimages. 
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Figure 4-3. Chromatic afterimage thresholds measured for 
different reference stimulus durations in a trichromat. The gap 
times employed are shown as different coloured symbols. The 
data shown are for one subject with normal colour vision. 

4.3.3 The effect of the chromatic saturation of the reference stimulus 

The strengths of the generated afterimages were measured for four reference 

stimuli that differed in chromatic saturation (i.e. the CD value). The results are 

shown in Figure 4-4 for 3 normal trichromats. The first subject shows a low initial 

threshold and then the thresholds increase sharply with increasing CD values. In 

the second and the third subjects, they exhibit similar increasing trends as the first 

subject. However, when compared with the first subject, the last thresholds show 

reduced increment and appear to reach a maximum. The third subject also exhibits 

a higher initial threshold when compared with the first 2 subjects. The maximum 

reference stimulus’ CD employed (0.12) is limited by the screen phosphors of the 

display. A maximum chromatic displacement of 0.12 units can be generated for the 

background chromaticity and the display luminance employed.  
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Figure 4-4. Afterimage thresholds measured as a function of 
chromatic saturation in 3 normal subjects – a 30 year old male 
subject, a 47 year old male subject and a 60 year old male 
subject. The reference stimulus has a fixed chromatic 
displacement orientation of 125o, but varies in chromatic 
displacement. The gap time is fixed at one second. 

4.3.4 The effect of chromatic direction 

In the previous measurements, the reference stimuli employed had a fixed 

displacement orientation angle of 125o. The “greenish” stimulus generated along 

this direction has 0% rod contrast (as shown in Figure 4-1) and generates relatively 

large afterimage responses as demonstrated in other studies (Barbur et al., 1999, 

Tsujimura et al., 2001). If the reference stimulus angle is changed, the rod contrast 

in the stimulus is no longer 0%. Aguilar and Stiles reported the sensitivity of rod 

mechanism to stimulus differences begins to fall off rapidly and that at above 2000 

to 5000 scotopic trolands (corresponding approximately 120 to 300 cd/m2 daylight 

luminances) the rods mechanism becomes saturated (Aguilar and Stiles, 1954). 

Although, the measured afterimage thresholds were carried out in central vision 

when rod activity is minimal, one cannot guarantee that rod signals do not 

contribute to the strength of the measured afterimage for other directions of the 

chromatic displacement. 
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Figure 4-5 shows the afterimage thresholds measured for a number of chromatic 

displacement directions for reference stimuli of fixed CD (0.09). 

 

Figure 4-5. The strength of chromatic afterimages measured as a 
function the chromatic displacement angle of the reference 
stimulus. The reference stimulus has a fixed chromatic distance 
(CD = 0.09) and a fixed duration (5s).The pole corresponds to the 
background chromaticity (0.305, 0.323) (MacAdam white) in the 
CIE1931 chromaticity diagram. The luminances of the 
background, the reference and the test stimuli were 26cd/m2. The 
test stimulus was presented two seconds after the reference 
stimulus disappeared from the screen. 

The threshold contour of the measured afterimages is complex and differs 

significantly to the threshold detection ellipse reported by MacAdam (Silberstein and 

MacAdam, 1945). Reddish and greenish displacement directions appear to produce 

the largest and the smallest afterimage strengths, respectively. The fixed chromatic 

displacement employed and the nonlinearity of the CIE (x, y) diagram for large 

chromatic displacement may contribute significantly to the measured afterimage 

thresholds. In this afterimage test, the reference stimuli had fixed CDs (0.09) and 

varied in chromatic angles. As discussed in Section 4.3.2, chromatic displacement 



117 

 

of the reference stimulus is a factor that affects the afterimage threshold. Therefore, 

if the CDs of reference stimuli are changed, the measured afterimage thresholds 

will change accordingly and so does the ‘result shape’.  

4.3.5 The effect of background luminance 

Kelly and Martinez-Uriegas (1993) used a flashed-grating threshold-elevation 

technique to measure chromatic and achromatic afterimages as functions of the 

green/red balance of a grating. They found that the threshold only peaked when the 

test flash was isoluminant (Kelly and Martinez-Uriegas, 1993).  

Figure 4-6 shows the afterimage results measured in a normal subject at high 

mesopic (6cd/m2) and photopic (60cd/m2) range. The tests were repeated six times 

in each stimulus condition. In the tests, the reference stimuli employed had 

chromatic angle of 125o, CD of 0.09 and the gap time of 1 second. To obtain the 

largest threshold at each background luminance level, both the reference and the 

test stimuli were kept at the same luminance as the background, i.e., either 6 or 

60cd/m2. Due to the limit of the screen phosphors and the algorithm employed, the 

largest luminance that could be measured in the afterimage program was 60cd/m2. 

Although there is some variance in chromatic afterimage strength between the two 

stimulus conditions, the variation is not statistically significant (p = 0.48).  
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Figure 4-6. Afterimage thresholds measured at 6cd/m2 and 
60cd/m2. Tests were repeatedly measured for six times for each 
stimulus conditions. The mean and one standard deviation values 
of the six tests were plotted. The stimuli had a chromatic 
displacement angle of 125o, CD of 0.09 and gap time of 1 second. 
The luminance of stimuli employed was changed accordingly to 
have the same luminance as that of the background. 

 

4.4 Results from deuteranopes 

Afterimage thresholds measured in two deuteranopes 

Preliminary results showed that the deuteranopes exhibited significantly larger 

afterimage thresholds when measured immediately after the reference stimulus 

disappeared (gap time = 0s). However, when measured just after the stimulus 

offset, with delays of 1s, 2s, 4s etc., the thresholds decayed dramatically compared 

with the initial value, followed by an exponential decrease and then asymptote to a 

straight line. Student’s t tests were computed at each point. The results showed that 
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there are significantly differences (p < 0.05) between the two groups when gap time 

equals to 0, 1, 4, 6, 8 and 10s. However, the p-value is approximately equal to 0.08 

when gap time equals 2s and this may suggest that the measured afterimage 

strength is not significantly different at this point.  

 

Figure 4-7. (A) Afterimage thresholds measured for two 
deuteranopes and (B) results for 10 normal subjects with normal 
colour vision. Both deuteranopes have much larger initial 
thresholds and the asymptotes are much higher than those 
measured in normal trichromats. 

A comparison of pupil responses to chromatic stimuli measured in one normal 

subject and one deuteranope is shown in Figure 4-8. Both subjects exhibit very 

large onset pupil responses to the bluish stimulus and good offset pupil responses 

to the greenish stimulus. However, the deuteranope subject shows an absent onset 

pupil response to the onset of the greenish stimulus.  
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Figure 4-8. Pupil responses in a normal trichromat measured for 
stimulus colours that correspond to chromatic angles of 125o and 
249o (A). Similar data are shown for deuteranope in section (B). 
The pupil response is absent to the onset of the stimulus but is 
present at the offset of the d-isoluminant greenish stimulus. 
Significant pupil constrictions can however be observed at the 
onset of the bluish stimulus which contains a large rod contrast 
component. The subject was aware of both colours, although the 
perceived colours were undoubtedly different to those experienced 
by a normal trichromat. 

 

Figure 4-9. A comparison of the measured afterimage strength to 
two chromatic stimuli between a deuteranope and a normal 
trichromat. Two reference stimuli corresponding to angles of 125o 

(A) and 249o (B) were employed. The deuteranope yielded very 
similar results to the normal trichromat to in response to the bluish 
stimulus (B), but shows quite different results to the greenish 
stimulus (A). 
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4.5 Results from subjects with palinopsia and visual snow 

The Red/Green and yellow/blue chromatic sensitivity, visual acuity, chromatic 

afterimage strength and duration and pupil colour responses were measured in the 

six subjects with visual snow syndrome. The tests were carried out in collaboration 

with Ruba Alissa.  

All of the six visual snow (VS) subjects exhibited both normal visual acuity and 

colour detection thresholds. Figure 4-10 (A & B) shows typical results from one VS 

subject. His visual acuity measured binocularly yield slightly lower threshold (~0.25 

arc min) than that measured with each eye separately and his R/G and Y/B 

chromatic sensitivity results are within the normal range. 

 

Figure 4-10. (A) Example of visual acuity (A) and chromatic 
sensitivity (B) measured in a subject with VS syndrome. The error 
bars plot ±2 standard errors that were obtained from the visual 
acuity staircase algorithm.  

A comparison of the measured afterimage strength and duration between 10 normal 

trichromats and 6 VS subjects is shown in Figure 4-11. Because the error bars in 

A B 
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Figure 4-11 show standard errors for the groups, the VS subjects do not exhibit 

significantly different results from those obtained from the normal trichromats.  

 

Figure 4-11. Chromatic afterimage strength and duration results 
measured in 10 normal subjects and in 6 VS subjects. The error 
bars plot the standard errors for the groups of VS and normal 
trichromats. The difference between the two groups at each point 
is not statistically significant (p > 0.05). 

Pupil responses to chromatic stimulus have also been measured in 9 normal 

subjects and in 6 VS subjects (Figure 4-12). The chromatic stimulus employed had 

0 rods contrast in addition to being photopically isoluminant (shown in Figure 4-1A). 

Both normal subjects and 2 VS subjects exhibited initial pupil constrictions to the 

onset of the coloured stimulus, with a latency of 320ms, followed by recovery during 

the stimulus and a secondary pupil constriction at the stimulus offset with latencies 

at approximately between 320 and 420ms. The secondary pupil responses can be 

attributed to the perceived red afterimages, which were reported to be seen by 

every subject at the stimulus offset. However, the pupil responses in the other 4 VS 
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subjects lacked the rapid recovery phase following the initial pupil constriction to the 

stimulus onset.  

 

Figure 4-12. Pupil responses to chromatic stimulus measured in 9 
normal subjects (white curves) and in 6 VS subjects (green and 
black curves). All subjects exhibited pupil constrictions to the 
stimulus onset and further constrictions at stimulus offset. The 
pupil recoveries rapidly following the initial constrictions in the 
normal subjects and 2 VS subjects. However, 4 of 6 VS subjects 
showed absent or slow recovery during the stimulus. 

All the 9 normal subjects showed rapid recovery during the stimulus following the 

initial constriction. However, 3 of the 6 VS subjects exhibited completely absence of 

the rapid recovery. This result suggests the presence of a more sustained retinal 

afferent signal that may drive the pupil response in some of the VS patients and this 

may be linked to differences in retinal processing of visual signals that cause the 

perception of visual snow/prolonged afterimages when coloured stimulus is viewed 

against a uniform background.  
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4.6 Mechanisms for chromatic afterimages 

4.6.1 Normal Trichromats 

The chromatic afterimage thresholds corresponding to the d-isoluminant stimulus 

measured in normal trichromats reveal an exponential decay. These results are 

consistent with those reported in previous studies (Kelly and Martinez-Uriegas, 

1993). Other studies have argued for possible mechanisms that drive the 

afterimage responses based on the colour opponent theory (Thompson and Burr, 

2009, Mollon, 1974, Francis, 2010). Using the same theory, a simple model was 

derived to explain the results obtained in the current study.  

Figure 4-13 shows the perceived afterimage as the opponent colour of the 

reference stimulus. This decays exponentially and after 10s the threshold is very 

close to the expected threshold for colour detection in normal subjects. Because the 

“greenish” reference stimulus is designed to be d-isoluminant according to the 

standard observer model, only the chromatic channel exhibits response signals to 

the reference stimulus. Therefore the afterimage is also likely to reflect any changes 

in the same chromatic channel as the reference stimulus. This argument is the 

basis of the schematic diagram.  
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Figure 4-13. A schematic diagram shows the perceived reference 
stimulus and the opponent colour seen by a colour normal 
observer. The green rectangle shows the reference stimulus, the 
black line in the middle displays the time line and the red curve 
illustrates the perceived afterimage strength. It is drawn in the 
opposite side of the line to show the perceived afterimage as the 
opponent colour of the reference stimulus. 

The subjects in Figure 4-2 have normal colour vision. Their colour vision thresholds 

fall in the gray region (Figure 4-14). The gray region shows the mean data obtained 

from 330 normal trichromats in the CAD test and the data was collected by 

Rodriguez-Carmona in 2005 (Rodriguez-Carmona et al., 2005). The colour vision 

results suggest that, in order to distinguish the employed greenish colour (125o) 

from the background, even the most sensitive normal subject (e.g., result shown in 

Figure 4-14(A)) will need a CD with at least 0.003 to detect moving target in that 

chromatic displacement direction. This value is much larger than the smallest 

afterimage thresholds (<0.002) obtained from the normal trichromats but much 

smaller than the smallest afterimage thresholds (0.012) obtained from the 

deuteranope (Figure 4-2(C)). Similarly, when a bluish stimulus (249o) is employed 

(Figure 4-9(B)), the smallest afterimage threshold is approximately 0.008 in the 

normal subject and this is larger than the normal trichromats smallest afterimage 

thresholds (~0.006) but less than deuteranope’s chromatic threshold of this 

chromatic displacement direction (~0.011).  

In fact, for the largest delay times investigated (when t = 8s or 10s), one reports 

seeing no chromatic afterimages. Then, the task becomes to match the test 

stimulus to background, which is equivalent to measuring one’s chromatic 

discrimination threshold with respect to the achromatic background. Because the 

stimulus is designed to be isoluminant for the standard observer, a threshold of 

approximately ~ 0.004 is expected for the 125o directions. The 0.004 is the medium 
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value from the normal trichromats colour vision results, but at that specific 

chromatic displacement direction, results obtained from normal trichromats can vary 

from ~0.003 to ~0.005.  

The fact that the afterimage threshold is smaller than the actual measured 

chromatic threshold with the CAD suggests that either the subjects tested might be 

more sensitive than the standard median observer or that other channels might be 

involved. Since normal subjects may differ significantly from the standard observer, 

the “isoluminant” stimulus might not be exactly isoluminant to every normal subject 

investigated. In this case, one could rely on the residual luminance signal to detect 

the luminance contrast difference between the stimulus and the background when 

the colour signal becomes really weak. The detection of small luminance contrast 

signals may therefore be lower than the final thresholds when afterimage signals 

are negligible. This also explains why modern colour vision tests employ some 

dynamic luminance mask technique to minimize the detected residual luminance 

signal (Barbur et al., 1993, Mollon and Regan, 1999).  
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Figure 4-14. Chromatic thresholds measured in a subject with 
normal colour vision (A) and a deuteranope (B & C). In the normal 
subject, the measurements were carried out in 16 different 
directions. However in the deuteranope, 12 angles were measured 
in the red and green directions. 

 

4.6.2 The afterimage thresholds reveal dichromacy 

The deuteranope shows similar pupil responses to the bluish stimulus, but very 

different responses to the greenish stimulus when compared to the normal subject. 

This suggests that the deuteranope might use the same chromatic mechanism for 
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the bluish stimulus, but very different mechanism for the greenish stimulus. Figure 

4-7(A) shows that the measured afterimage thresholds for the deuteranopes are 

different when compared to results for normal subjects in two ways – a very large 

initial afterimage threshold when t = 0 and abnormal high thresholds following an 

exponential trend for the rest (t = 1, 2 … 10).  

Possible mechanism for the large initial afterimage threshold 

Due to the lack of M cones, the stimulus is no longer d-isoluminant to a 

deuteranope. In fact, to generate the isoluminant greenish stimulus in a normal 

trichromat, the M cone signal is increased whereas the L cone signal is decreased 

to balance the overall luminance change. Because the deuteranope subject only 

has L- and S-cones, he only responds to L- and S- cone signals. When the stimulus 

is presented, the deuteranope detects L-and S- cone signal decrements and the 

offset of the stimulus causes L- and S- cone increments. The L cone increment may 

well result in an overall luminance increment at stimulus offset. 

 

Figure 4-15. A schematic diagram shows perceived reference 
stimulus from the deuteranopes. The gray rectangle shows the L 
cone signal decrement and the red arrow indicates the sudden 
increment at stimulus offset. 

For the standard observer, the luminance signal is defined as the sum of the L and 

M cone signals (L+M) and the yellow-blue colour signal is defined as the difference 

between the S cone signal and the sum of L and M cone signals (S - (L+M)). Due to 

the absence of M cones in deuteranopes, both the (L+M) and S - (L+M) signals 

yield different results. Therefore, the gray rectangle shown in Figure 4-15 can 



129 

 

indicate either a luminance decrement, a yellow blue colour signal or the 

combination of the two. 

Nevertheless, in all these cases, the reference stimulus can be viewed as two 

components (the gray region and the red arrow in Figure 4-15). So the generated 

afterimage can also be modelled as two stages. 

 

Figure 4-16. A deuteranope may well match the perceived 
‘afterimage’ in two stages – (A) the curve shows the match of the 
afterimage created in the gray rectangle and (B) the red rectangle 
illustrates the matching signal of the impulse signal. (C) The final 
result is the sum of the signals produced by the two mechanisms. 
Notice that, the test stimulus is the exact opponent colour of the 
reference stimulus, i.e., the chromatic angle is reversed by 180o. 
Therefore, a deuteranope subject only responds to the L-cone 
increment in the test stimulus. Both colours are seen the same by 
the deuteranopes. The colour used in the figure is intended only 
for illustration purposes. 

Figure 4-16 (A & B) shows how the afterimage perceived by a deuteranope can be 

modelled and separated in two parts – one part to match the afterimage caused by 

a stimulus (either a luminance decrement, a blue colour signal or the combination or 

the two) and one part to match the offset increment signal. The final outcome is the 

sum of the two matches shown in Figure 4-16(C). The model therefore explains the 

large initial afterimage threshold shown in Figure 4-7(A) and Figure 4-9(A) for the 

deuteranope. When the bluish stimulus (249o) is employed (Figure 4-9(B)), the 

deuteranope subject yields just a little higher initial threshold than the normal 
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trichromat. This is because for this particular angle, the L and M cone contrasts are 

approximately equal to 0%. Therefore, it is much more isoluminant to the 

deuteranope. Also, the yellow-blue chromatic sensitivity is very similar between a 

normal subject and a deuteranope. Hence, the measured thresholds have similar 

values and shape. 

 

Mechanism for the abnormally high final thresholds 

Figure 4-9 (B) shows that along the chromatic displacement of 249o, the results for 

the normal subject are similar to the deuteranope. The deuteranope’s final threshold 

is, however, higher than the corresponding threshold in a normal trichromat. The 

deuteranope’s colour thresholds are shown in Figure 4-14 (B & C) and his yellow-

blue threshold is approximately 0.015 which is only slightly more than his smallest 

afterimage thresholds (around 0.011). This suggests that the deuteranope may also 

use some luminance signal to match the test stimulus with the background.  

A similar pattern is observed for the greenish stimulus (125o) in Figure 4-9(A), 

where the normal’s thresholds are much lower than that of the deuteranope’s. 

However, the deuteranope shows very similar thresholds (within 1 standard 

deviation) in both figures in the tail part of the curves (x > 6s). This suggests that the 

deuteranope uses the same mechanism for both stimuli. Because they only have 

two types of cones, the signal generated provide the inputs to all three channels – 

red-green, yellow-blue and luminance channel.  

As demonstrated in Figure 1-22, Brown reported that the luminosity functions from 

deuteranopes are very similar to those of normal trichromats in the long wavelength 
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region (>590nm) whereas in the short wavelength region (<590nm), the 

deuteranopes are less sensitive to luminance (Brown and Wald, 1964). This is not 

surprising since the luminance channel depends only on L cone signals in 

deuteranope. These findings confirm these expectations and also show that the 

afterimage results for the deuteranope subjects can be accounted for using a single 

system colour discrimination, that is S – L.  

4.6.3 Pupil colour responses in dichromacy depend on signal 

difference from the two types of cones 

A comparison of pupil responses to stimuli that have 125o and 249o between 

dichromats and normal subjects is also shown in Figure 4-8. A more extensive 

study in pupillometry with stimuli that can have specific angles can be used to 

confirm the deduced results in the last section. Three possible outcomes can also 

be used to explain the results measured in deuteranopes for chromatic 

displacement directions that yield Zero S-cone signals (i.e., 155o and 335o shown in 

Figure 4-17). 

(1) Pupil constriction caused by an increment in L cone signal. 

(2) Pupil responses due to a difference (S – L) in cone signals. 

(3) A combination of the above signals. 

In the last section, the results suggested that an increment in L cone signal 

contributes to luminance detection in the deuteranope, and that the effectiveness of 

this luminance signal can be reduced by burying the stimulus in dynamic random 

luminance noise. Therefore, it is of interest to compare the pupil responses between 
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the tests that incorporate high levels of luminance noise and the tests that do not. 

On the other hand, we would expect that pupil responses to stimuli that have 

chromatic angles of 70o and 249o to be always present, due to the large S-cone 

contrasts which initiate a colour signal that is not affected by the luminance contrast 

noise. 2 normal trichromats, 2 protanope and 2 deuteranope subjects have been 

tested in this section. The chromatic displacement angles of interest and the 

corresponding cone contrasts generated in the stimuli are shown in Figure 4-17 and 

in Table 4-1, respectively. 

 

Figure 4-17. The graph shows selected chromatic displacement 
angles that have minimum and maximum S-cone contrasts. 
Examples of the corresponding visual stimuli are also shown – 
chromatic angle equals 70o (A); 155o (B); 249o (C) and 335o (D). 
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Chromatic angles (deg) 
Photoreceptor contrast (%) 

L M S Rods 

70 -0.2 -1.0 -81.7 -28.4 

155 -6.5 11.8 0.4 12.55 

249 0.9 -0.2 86.80 28.90 

335 10.55 -19.19 -0.74 -20.36 

Table 4-1. Selected photoreceptor contrasts generated by the 
coloured stimuli employed in pupil studies. 

Two types of dynamic luminance contrast noise were employed (Figure 4-18) – the 

Spatial Random Luminance Masking (RLMs), a technique that masks the detection 

of “local” luminance contrast signals generated by the coloured stimulus, and the 

Temporal Random Luminance Masking (RLMt) that masks the spatially pooled 

component of luminance contrast change.  

 

Figure 4-18. Dynamic luminance contrast noise employed in pupil 
studies. RLMt – luminance noise that masks components that 
have large spatial luminance summation, RLMs – noise that 
masks components that have local spatial summation and 
example stimulus with noises. 
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Figure 4-19. Example pupil responses measured in a protanope - 
P, a deuteranope - D and a normal trichromatic - N. Results in the 
first and second columns are shown for stimulus conditions with 
and without the dynamic luminance contrast noise (RLMs & RLMt). 
Results in the third column showed the superimposed result – the 
coloured traces were kept the same from the tests that did not 
have the noises whilst the black traces were the results from the 
corresponding stimulus conditions from the tests with the noises. 
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Figure 4-19 shows pupil responses measured in one normal trichromat, one 

deuteranope and one protanope subject. Student’s t tests were carried out for the 

pupil response latencies at stimulus onset and offset between the two tests within 

same group and between groups for the same tests and the results showed no 

significant differences (p values > 0.05). The pupil response latencies can also be 

seen clearly in the superimposed diagrams in third column of Figure 4-19.  

Although, both normal and deuteranope groups are likely to use the same pupil 

pathways (Figure 1-24), the two groups exhibited different pupil responses.  

The normal subject produces very similar pupil responses between the tests without 

noises and the tests with noises. Only the pupil response to the offset of the 

yellowish (70o) stimulus is reduced. This pupil response may be attributed to rod 

stimulation (increment) at stimulus offset. The results suggest that the rapid 

luminance contrast noise does not have obvious effects on the pupil response and 

that when the noise fails to mask pupil responses, the latter can be attributed to 

colour signals.  

Unlike normal trichromats, in the absence of noise, the protanopes show large pupil 

responses to the offset of the reddish stimulus (335o) and the onset of the greenish 

stimulus (155o). In the presence of the noise, the pupil responses to the offset of the 

reddish stimulus and to the onset of the greenish stimulus are reduced. However, 

these pupil responses are not eliminated. On the other hand, the pupil responses to 

the yellowish and bluish stimuli are similar to those measured in the normal subject. 

The deuteranope shows completely opposite results to the reddish and greenish 

stimuli, but with much smaller response amplitudes. The response amplitudes are 

also different, primarily because of the different cone contrasts employed. The 
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observed responses show large differences partly due to the natural variation in 

pupil response amplitudes between individuals  (Alexandridis et al., 1985).  

In order to show these pupil response amplitudes are significant, statistics was 

carried out on the pupil response traces of interest. These pupil response 

amplitudes range from 0.051mm to 0.3mm. The smallest pupil response amplitude 

of interest shown in Figure 4-19 (diagram in the middle) is the pupil response to 

reddish stimulus (chromatic angle= 335, CD= 0.08). The noise level in the pupil 

trace was estimated by measuring the changes in pupil diameter at two points in 

time t1, t2 (see Figure 4-20) estimated from the average pupil response traces. The 

average pupil response was obtained by average 32 pupil traces. The noise 

standard deviation was computed from the values extracted from individual pupil 

traces. This was found to be ~0.016. The pupil response amplitude for the trace is 

0.051mm and this pupil response amplitude is significant since the probability of 

measuring a pupil response amplitude larger than 0.051mm is extremely small (p < 

0.001).  

 

Figure 4-20. Example of pupil response diagram showing how the 
pupil response amplitude was extracted. 
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The pupil responses to the reddish and greenish stimuli measured in dichromats 

are reduced, but not eliminated, even when the amplitude of luminance contrast 

noise is high. This suggests that these responses combine a colour response and a 

luminance increment response. The luminance response is eliminated by the noise 

and leaves only the colour response. This finding supports the conclusions deduced 

from the afterimage test: that the deuteranope uses signals from the L cone only for 

the luminance channel and S – L for their chromatic channel. This result should also 

apply to protanopes who use M-cone signals only for detection of luminance and 

rely on the S – M signal for their colour channel. Tritanopes, on the other hand, use 

(L+M) for the luminance channel but can only discriminate red / green (L – M) 

colour differences.  

 

Figure 4-21. Pupil responses to isoluminant chromatic stimuli in 
protanopes, deuteranope and tritanopes. The direction of 
chromatic displacement was varied systematically from 0o to 360o. 
(Adapted with permission from Barbur (2004)). 

Barbur (2004) published a comprehensive review on pupil response components 

(Barbur, 2004b). The studies involved the use of grating-like colour stimuli, but 

similar luminance masking techniques to minimize the detection of luminance 

contrast signal. Pupil responses were measured for stimuli that varied from 0o to 
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360o in each class of dichromat. The author found that the maximum and minimum 

responses for the three groups of subjects were shifted for dichromats along the 

chromatic axis, and these minimum values corresponded to the colour confusion 

bands.  

In these studies, not only earlier results were confirmed, but we could also measure 

and predict more accurately the angles that yield zero response in dichromats. 

For the protanope, the colour discrimination mechanism relies on different signal 

from the S and M cones, i.e., S – M. Therefore, when the signals from these two 

types of cones are equal, the colour signal will be minimized and pupil colour 

responses will be absent. These chromatic angles can be found in Figure 4-17 

when the S cone and M cone have the same contrast value, i.e., 169o and 349o. 

Similarly for the deuteranope, the angles are 147o and 326o and in the tritanope 70o 

and 249o. These angles match well the minimum pupil responses shown in Figure 

4-21.  

Using the same approach, the chromatic angles that yield the maximum pupil 

response correspond to the largest colour signals for each group. For protanopes 

and deuteranopes, these angles are 70o and 249o, respectively. Tritanopes have 

two ranges of angles (120o and 220o) and (300o to 370o), because in these two 

ranges the different contrasts between L and M cones are similar when the signals 

are localised on the ellipse contour. Tritanopes show a ‘narrowed’ range of 

maximum values, partly because the stimuli employed had a constant chromatic 

displacement (along a circular contour  shown in Figure 4-17).  

The angles that produce minimum pupil colour responses for the dichromats are the 

angles of the protan-, deuteron- and tritan- confusion lines for the same background 
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chromaticity, in this case (0.298, 0.335). Using the same approach, we can predict 

the colour confusion lines for different background chromaticity and hence predict 

the maximum and minimum colour signals and the corresponding pupil responses. 
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5 A STUDY OF PUPIL RESPONSE COMPONENTS IN 

NORMAL SUBJECTS AND IN PATIENTS WITH 

CONGENITAL OR ACQUIRED HEMIANOPIA 

5.1 Introduction 

Unilateral destruction of the primary visual cortex causes loss of conscious visual 

perception in the counterlateral hemifield. Damage to the right side of the posterior 

portion of the brain or right optic tract can cause a loss of the left field of view in 

both eyes and vice versa. Homonymous hemianopia refers to a condition in which a 

person can see only to one side and it is usually secondary to stroke, head trauma 

or localised tumors (Zhang et al., 2006). 

Although the retina geniculostriate pathway (from retina to lateral geniculate 

nucleus of the thalamus to striate cortex) is the most thoroughly understood and 

studied visual pathway, the primary visual cortex is not its only target in the primate 

brain (Cowey and Stoerig, 1991). Cowey and Stoerig showed that there are at least 

10 pathways from the retina to the brain, and that the LGN also sends very small 

projections to prestriate cortical areas that survive damage to V1 (Cowey and 

Stoerig, 1992). 

A number of studies (Sahraie and Barbur, 1997, Barbur et al., 1994a, Weiskrantz et 

al., 1998, Barbur, 1996) have shown that pupil responses elicited with small stimuli 
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of low contrast (<40%) are normally absent in subjects with acquired damage of the 

primary visual cortex. The same studies also show that when large, high contrast 

stimuli are employed, there is no difference in pupil response between the sighted 

and the corresponding blind regions of the visual field. These studies also 

demonstrate a clear cortical contribution to the pupillary response because removal 

of V1 in monkeys also diminishes the pupil light reflex response (Weiskrantz et al., 

1998). However, other reports show that the pupil continues to respond to spatial 

structure and colour even in patients with loss of V1 (Weiskrantz et al., 1999). 

These observations suggest that specific stimulus attributes processed by 

extrastriate visual areas can influence the midbrain.  

The majority of subjects involved in the studies mentioned above had dense 

homonymous hemianopia from acquired unilateral occipital damage. These 

subjects were aware of their visual deficit and received medical care and training. 

However, those with congenital homonymous hemianopia who were born with the 

symptom are usually not aware of the visual deficit and are usually identified as 

abnormal via routine eye examination. Brain plasticity and development in early life 

(Kolb, 1995) may play an important role in determining the observed differences 

between acquired and congenital types. To understand more about the visual 

processing mechanisms in these subjects, we investigated and compared pupil 

responses to visual stimuli that isolate either photopic luminance or colour signals 

both in the sighted and in blind region of the visual fields.  
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5.2 Methods 

5.2.1 Subjects 

10 normal trichromats (aged between 28 to 55 years with a median of 32 years), 11 

subjects (aged between 44 and 72 years with a median of 53 years) with acquired 

homonymous hemianopia and four subjects (aged between 22 to 33 years with a 

median of 28 years) with congenital homonymous hemianopia caused by unilateral 

post-geniculate lesions participated in the study. The acquired group consists of 10 

subjects with occipital lesions and one subject with optic radiation. The subjects do 

not show any other functional loss as a result of cortical damage. All subjects were 

given written informed consent, and the study was approved by the research and 

Ethics Committee of City University London. 

Sex Cause Location of damage Age(years) Duration 
Male (JS) Infarct Occipital lobe & optic radiation 66 1 
Male (GY) Head injury Occipital lobe  53 40 
Male Surgery Occipital lobe  72 18 
Male Infarct Occipital lobe & optic radiation 67 

 
3 

Female Infarct Occipital lobe & optic radiation 44 1 
Male Infarct Occipital lobe & optic radiation 46 5 
Male Head injury Occipital lobe 44 34 
Male Infarct Occipital lobe & optic radiation 62 1 
Male Haemorrhage Occipital lobe  50 1 
Male Infarct Occipital lobe & optic radiation 63 2 
Male Haemorrhage Optic radiation 49 2 

Table 5-1. Summary of subjects with acquired homonymous 
hemianopia.  
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Sex Age(years) Detected Past medical history 

Male (RC) 22 Routine eye check up None  
Male (AA) 33 Routine eye check up None 
Female (NS) 28 Routine eye check up None 
Male (NJ) 33 Routine eye check up Illness at birth, required to 

wear a respirator for several 
months. 

Table 5-2. Summary of subjects with congenital hemianopia. 

5.2.2 Apparatus & pupillometry stimuli 

The P_SCAN system (introduced in section 2.2) was employed to generate 

appropriate stimuli, to measure the pupil responses and to monitor the subject’s 

point of regard. Stimuli were presented on a uniform background field either in the 

sighted or blind hemifields according to the visual field results for the hemianopia 

subjects or left or right visual field for the control subjects.  

Two types of stimuli were produced to isolate either chromatic or luminance 

channels. The stimuli were presented for 480ms in a 3.5s presentation, in which the 

size of pupil was measured continuously. The achromatic stimuli have fixed sizes 

but varied in contrast (20%, 100% and 400%). The choice of luminance, contrasts 

within a large range was based on findings from a previous study (Barbur, 2003). 

These earlier results show that two components (transient & sustained) are likely to 

be involved in the control of the PLR response. One component involves a direct 

projection to the striate cortex, and exhibits response saturation at large contrast 

(>40%). The second component exhibits low contrast gain, extensive spatial 

summation and is likely to reflect the properties of midbrain projections. The 

chromatic stimuli consist of one greenish stimulus and one reddish stimulus. The 

latter can have one of two chromatic saturations (Figure 5-1). The chromatic stimuli 
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were designed to be both photopically and scotopically isoluminant and were buried 

in dynamic contrast random luminance noise so as to minimize the detection of any 

possible residual luminance signals. The uniform background field had CIE 

chromaticity: 0.298, 0.335 and a luminance of 3cd/m2 for the pupil light reflex tests 

and 12cd/m2 for the pupil colour response tests. 

 

Figure 5-1. (a) Illustration of the visual stimuli designed to isolate 
luminance and chromatic channels. The chromatic stimuli were 
buried in RLM noise to minimize the detection of any residual 
luminance signal. (b) The angle of the sector (section b) subtends 
92o and they were presented 4.2o away from fixation, along the 
horizontal meridian. The uniform background field subtended a 
visual angle of 30ox24o. 

In the subjects with visual field loss, the locations of stimuli were restricted in the 

affected hemifield only. The affected hemifields were based on the parametric plots 

which we were informed by the ophthalmologists. Not all the visual field data was 

available to us, however, in parametric tests carried out by the ophthalmologists, 

they have demonstrated absence of residual vision in the affect areas of visual 

fields. The stimuli were then restricted to these locations. Figure 5-2 and Figure 5-3 

shows the examples of visual fields results superimposed with the stimuli employed 

in the acquired and congenital subjects.  
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When tested with our stimuli in the affected visual fields, the acquired subjects show 

no conscious perception of anything presented in the visual field whilst some of 

congenital cases were aware of something presented in their affected visual fields 

although they could not report the structure, colour or any other details of the 

stimulus. Stimuli were moved to different part of visual field was to ensure that any 

conscience perception of the stimulus when presented in the affect visual field was 

minimized. 

For all the participants with acquired damage, almost all of them showed dense and 

severe damage in their blind hemifields. Figure 5-2 shows the superimposed picture 

of the stimuli employed and the visual field result from one subject with acquired 

visual field loss in the right hemifield (subject GY). 

 

Figure 5-2. Humphrey Visual Field 24-2 results from subject GY 
superimposed with the stimulus employed. The stimulus was 
located 4.2o in the right hemifield. 

In the subjects with congenital visual field loss, however, the visual field loss is 

always not symmetrical or complete in the two eyes. Three of these participants 

showed a severe visual field loss in their blind hemifield and one of them (NJ) 

exhibited a large spare vision in the vertical pole. The stimulus was shifted 9o into 

the periphery in order to be restricted to his blind hemifield. 
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Figure 5-3. Superimposed visual field results and the stimulus 
employed from two subjects with congenital visual field loss – RC 
(A) and NJ (B).  

 

5.3 Results 

5.3.1 Pupil light reflex response measurements 

Pupil responses to light flux stimuli measured in a 30 years old subject with normal 

colour vision and in two subjects with acquired hemianopia subjects are shown in 

Figure 5-4. In the normal subject, the pupil responses measured from either the left 

hemifield or the right hemifield show almost no difference, and the light flux stimuli 
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produce a classic pupillogram with a latency of 280ms and with the largest pupil 

constriction to the stimulus that has the largest luminance contrast, i.e. 400%. The 

sighted hemifield yields PLR responses of similar response latency and amplitude 

in acquired hemianopia subjects, but are almost absent in the blind hemifield, 

especially when the stimulus has small luminance contrast. In the subject with 

acquired hemianopia – GY, the pupil starts responding to blind hemifield stimulation 

for luminance contrast greater than 100%. GY’s response latency to the largest 

contrast light flux stimulus employed is about 20ms longer in the blind hemifield 

than in the sighted hemifield. Pupil responses in subject JS are completely absent 

to both the 20% and 100% contrast light flux stimuli.   
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Figure 5-4. Pupil responses to light flux from a typical normal 
trichromat (a) and two subjects with acquired hemianopia – JS and 
GY (b & c). The MRI scan shows that subject GY has significant 
damage in the left primary visual cortex with sparing at the pole 
(Barbur et al., 1993). GY is clinically blind in the right hemifield, but 
exhibits small (~3.5o) macular sparing (Barbur et al., 1980). The 
pupil responses for the normal subject were measured either in 
the left hemifield (solid line) or the right hemifield (dotted line). In 
the case of hemianope, pupil responses were measured both 
either in the sighted and the blind hemifields. In each diagram, the 
lowest pupil responses traces were the raw response traces and 
the base lines reflect the steady-state pupil sizes. The other traces 
were shifted up vertically for clarity of presentation and analysis 
purposes. 

Unlike the subjects with acquired hemianopia, all the four patients with congenital 

loss of visual field show good PLR responses to all 3 stimuli (Figure 5-5). Subject 

NJ and NS (Figure 5-5 (c & d)) shows enhanced pupil responses in the blind 
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hemifields compared to the sighted hemifields, even to the stimulus that only has 

20% luminance contrast. Pupil response latencies to all stimuli are the same 

(approximately 280ms) for all congenital subjects. 

 

Figure 5-5 (a, b, c & d). Pupil responses to light flux changes in 
four congenital hemianopia subjects – RC, AA, NJ and NS. The 
MRI scan result is from subject AA (b) and it shows significant 
damage in the right primary visual cortex.  
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Figure 5-6. The mean and the corresponding 1 ±std for the ratios 
of pupil responses from the stimuli in the blind hemifields to those 
in the sighted hemifields in subjects with normal vision, acquired 
visual field loss and congenital visual field loss in the achromatic 
tests. The ratio from the normal group was calculated using the 
pupil amplitudes from the left hemifield divided by that of the right 
hemifield.  

Figure 5-6 shows the ratios of pupil responses from the stimuli in the sighted 

hemifield to those in the sighted hemifield for the three groups. The normal subjects 

exhibited very similar ratios (~1) to all the three achromatic stimuli. Patients with 

acquired loss of visual field showed absent pupil response to the stimulus that had 

the lowest luminance contrast (20%). However, when the contrasts of the stimuli 

were increased, they exhibited an increased ratio. The ratios from patients with 

congenital visual loss showed larger values than the other groups, but the standard 

deviations were also much larger. Student’s t tests were carried out to compare the 

results in respect to the normal subjects. When compared with the normal subjects, 

the patients with acquired visual loss showed significant different responses 

(p<0.05) to the stimuli that were of 20% and 100% whilst the patients with 
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congenital visual field loss exhibited significant difference (p <0.05) to the stimulus 

that was of 100%. 

5.3.2 Pupil colour responses measurements 

Figure 5-7 (a, b, c) shows a comparison of pupil responses to chromatic stimuli 

measured in a normal trichromat and in two subjects with acquired hemianopia. In 

normal subjects, both hemifields elicit pupil responses with very similar amplitudes 

and latencies. The largest response corresponds to the most saturated “red” 

stimulus. These responses are, however completely absent when the stimulus is 

presented to the blind hemifields in the subjects with acquired hemianopia. When 

the sighted hemifield is stimulated, both subjects with acquired hemianopia show 

relatively good pupil responses, with the largest response amplitude corresponding 

to the reddish stimulus of larger saturation.  
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Figure 5-7. Pupil responses to chromatic stimuli in a normal 
trichromat (a) and in two subjects with acquired hemianopia – (JS 
& GY) (b & c). 

The congenital hemianopes (Figure 5-8) show very different results when compared 

to the subjects with acquired hemianopia. The latter do not exhibit pupil responses 

when the stimulus is presented to the blind hemifield. In the sighted hemifield, all 

four congenital hemianopes exhibit pupil responses that are similar to those 

measured in the normal trichromat. Apart from subject AA showing an absent pupil 

response to the reddish stimulus that has a smaller CD in the blind hemifield, 

relatively good pupil responses can be observed in all congenital hemianopes. 

When compared to the sighted field, the response amplitudes are much reduced in 

the blind hemifield in subject RC (a) and AA (b). Subject NJ (b), on the other hand, 
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shows comparable pupil responses to the 1st and 3rd stimuli but an enhanced pupil 

response in the blind hemifield to the 2nd reddish stimulus that has the larger CD. 

Subject NS (d) also exhibit enhanced pupil responses to the two reddish stimuli. 

 

Figure 5-8 (a, b, c & d). Pupil responses to chromatic stimuli 
measured in four congenital hemianopes – RC, AA, NJ and NS. 
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Figure 5-9. The mean and the corresponding 1 ±std for the ratios 
of pupil responses from the stimuli in the blind hemifields to those 
in the sighted hemifields in subjects with normal vision, acquired 
visual field loss and congenital visual field loss in the chromatic 
tests. The ratio from the normal group was calculated using the 
pupil amplitudes from the left hemifield divided by that of the right 
hemifield. 

Figure 5-9 shows the ratios of pupil responses from the stimuli in the sighted 

hemifield to those in the sighted hemifield for the three groups in the tests with 

chromatic stimuli. The normal subjects exhibited very similar ratios (~1) to all the 

three achromatic stimuli. When compared with the normal subjects, patients with 

acquired loss of visual field showed absent pupil responses to all coloured stimuli 

which is significant from the normal group (p<0.05). The results from patients with 

congenital visual loss showed almost similar mean pupil response amplitudes to the 

reddish stimuli (p>0.05), significant smaller pupil responses to the greenish stimulus 

(0<0.01), but with much larger standard deviations.  
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5.4 Discussion 

Normal subjects show similar pupil responses to both light flux and chromatic 

stimuli with little or no difference between the two hemifields. Pupil responses 

measured in the blind hemifield of patients with acquired cortical damage are either 

absent or much reduced in response to both chromatic stimuli and luminance 

stimuli of low contrast. When the contrast of the light flux stimulus is increased, 

pupil responses increase in the blind hemifield and they yield similar responses for 

stimulus contrast above 400%. The absence of pupil responses to stimuli that are of 

low contrast (20%) are likely to be linked with cortical projections whilst the 

increased pupil responses to stimuli that are of large contrasts (100% & 400%) are 

likely to be associated with subcortical projections (Figure 1-24). Previous studies 

on patients with damage to the geniculostriate projections have revealed similar 

results (Barbur, 2004b, Brindley et al., 1969, Cibis et al., 1975, Harms, 1951, 

Kardon, 1992). 

Pupil responses measured in patients with congenital loss of visual field are, 

however, exhibited different results when compared to the acquired group. Unlikely 

the patients with acquired visual field loss who show no pupil responses to 

achromatic stimuli that are of low contrast or to chromatic stimuli, the patients with 

congenital loss showed relatively good PLR and PCR responses in their blind 

hemifields. In two subjects (NJ & NS), the pupil responses in the blind hemifields 

are greater than those measured in the sighted hemifields. The existence of a 

separate afferent pupil pathway associated with subcortical projections provides an 

explanation for the pupil responses that can be elicited with the light flux stimuli of 

high contrast. It cannot, however, explain the PCR responses, the PLR responses 
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to 20% light flux stimulus and the enhanced responses in the blind hemifield in the 

congenital subjects. For the congenital hemianopia group, these observations 

suggest that, in the absence of normal functioning of the direct geniculostriate 

projection, other enhanced projections to midbrain nuclei or to the extrastriate 

region of the brain (that bypass the primary visual cortex) may exist and that these 

projections are reflected in the pupillary pathways (Figure 1-24), however, why 

these signals are enhanced in the damaged visual fields is not clear.  

Using diffusion-weighted MRI techniques, Bridge (2008) reported that there was 

evidence suggesting there might be different connections between patients with 

cortical damage in childhood and normal subjects and the former might even have 

strengthened connections (Bridge et al., 2008). The enhanced neural activities are 

also evident in other studies. Results showed that individuals with Autistic Spectrum 

Disorders (ASD) exhibit superior skills in perception and attention, such as motion 

perception, relative to the general population (Milne et al., 2002, Plaisted Grant and 

Davis, 2009, Mottron et al., 2006). Studies that also show pupil responses are also 

affected in autistic subjects, but the mechanisms involved remain poorly understood 

(Anderson and Colombo, 2009, van Engeland et al., 1991).  

The subjects with congenital homonymous hemianopia are often unaware of their 

visual loss since this is always present in the absence of preceding normal visual 

experience. Any early changes in visual function as a result of plasticity during early 

development remain largely undetected. The enhanced subcortical function and/or 

functions that do not require a direct geniculo-striate projection are poorly 

understood and require further multidisciplinary studies.  
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6 MELANOPSIN SIGNALS AND THE PUPIL RESPONSE 

6.1 Introduction 

Since the discovery of the intrinsically photosensitive retinal ganglion cells (ipRGCs) 

(Berson et al., 2002), there has been a huge effort to study the extent to which 

melanopsin signals drive vision related mechanisms such as the pupil response. 

Rodless and coneless mice still show normal circadian patterns and pupillary 

responses in response to light stimuli. In humans, ipRGCs innervate the circadian 

pacemaker – the suprachiasmatic nucleus (SCN) and synchronize the circadian 

rhythms (Berson et al., 2002). Recent studies have shown that the steady-state size 

of the pupil during long exposure to intense stimuli and the corresponding sustained 

constriction in darkness following the offset of the stimulus (Gamlin et al., 2007) are 

likely to involve melanopsin signals through intrinsically photosensitive retinal 

ganglion cells. These cells also receive spatially pooled signals from rod and cone 

photoreceptors (Dacey et al., 2005), but the extent to which melanopsin contributes 

to rapid pupil responses elicited with brief stimuli remains unclear. 

This chapter examines and establishes the contribution that ipRGCs make to the 

dynamic pupil light reflex responses based on results from two different studies.  

In the first study, 10 normal trichromats, two subjects with rod deficiency, one rod 

monochromat and one subject with Optic Neuritis were investigated. When carefully 

interpreted, the findings from this study suggest that pupil responses to briefly 

presented stimuli are mediated largely by rod and cone signals with no contribution 
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from melanopsin. The results also suggest that, although more sluggish, rod signals 

remain unsaturated and can contribute to dynamic pupil responses at much higher 

light levels.  

Findings from some studies suggest that Leber’s Hereditary Optic Neuropathy 

(LHON) subjects lose visual function as a result of significant damage to the 

principal classes of ganglion cells and the ipRGCs can be preferential spared 

(Sadun et al., 2000, La Morgia et al., 2010). In order to examine such findings, we 

investigated a number of visual functions in LHON subjects. These included colour 

vision, motion perception and pupil responses to stimuli that isolate colour and 

grating responses. In addition, we also measured pupil responses to stimuli that 

isolate luminance, colour and combined rod/melanopsin signals. Four LHON 

subjects with different levels of damage and five normal subjects took part in the 

study. The results suggest that, in Leber’s disease, the pupil responses to the 

achromatic and rod stimuli are selectively spared. 

6.2 The contribution of the rod / Melanopsin driven ganglion 

cells to the dynamic pupil light reflex responses  

6.2.1 Introduction 

The discovery of the intrinsically photosensitive retinal ganglion cells (ipRGCs) 

(Berson et al., 2002) and their unique photopigment melanopsin (Provencio et al., 

2000, Provencio et al., 1998) significantly changed the classical view that rods and 

cones are the only photoreceptors in the eye and led to a reassessment of the non-
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image forming processing systems, such as the circadian photoentrainment and 

pupillary light reflex response (Hattar et al., 2002, Panda et al., 2002, Ruby et al., 

2002, Lucas et al., 2003, Mrosovsky and Hattar, 2003). It is well established that 

most of ganglion cells project to the visual cortex via the lateral geniculate nucleus 

(LGN) (Barbur et al., 1992), but a small number of fibres project to the Olivery 

Pretectal Nucleus (OPN), which is the main component in the brain that provides 

input signal to the Edinger-Westphal (EW) nucleus, which in turn controls the 

constriction of the sphincter muscle through parasympathetic innervation. Since the 

ipRGCs comprise 0.2 percent of approximately 1.5 million retinal ganglion cells in 

the human eye (Markwell et al., 2010, Dacey et al., 2005), it is of great interest to 

establish the extent to which intrinsically photosensitive retinal ganglion cells 

contribute to the control of the pupillary light reflex response in human vision.  

Previous reports have used experimental conditions where functional rods and 

cones are believed to be absent in order to isolate the ipRGCs component, for 

example, in transgenic animals lacking rods and cones (Lucas et al., 2001, Lucas et 

al., 2003, Panda et al., 2002, Ruby et al., 2002), in blind subjects (Zaidi et al., 2007) 

and in monkeys by pharmacological blockade of rods and cones (Gamlin et al., 

2007). Using transgenic animals, Lucas et al. (Lucas et al., 2003) measured pupil 

light reflex as a function of irradiance level and showed that rods and cones 

contribute to the pupillary control mechanism mainly under low irradiance levels, but 

melanopsin was required for the full pupil constriction at high irradiance levels. 

Other studies showed that the steady-state size of the pupil (Tsujimura et al., 2010) 

during long exposure to intense stimuli and the corresponding sustained 

constriction in darkness following the offset of the stimulus (Gamlin et al., 2007) are 

likely to involve melanopsin signals through ipRGCs. Berson also showed that the 
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Melanopsin signals are very sluggish and respond best only at very high light level 

conditions, usually orders of magnitude above rod threshold (Berson et al., 2002). 

 

Figure 6-1. Schematic diagram shows that the melanopsin only 
starts to respond when the light level is high, which rods 
approximately saturate (adapted from David Berson 2002). 

The ipRGC cells also receive spatially pooled signals from rod and cone 

photoreceptors and the extent to which melanopsin contributes to rapid pupil 

responses elicited with brief stimuli remains less clear. The purpose of this study 

was to examine how the dynamic pupil light reflex response changes with the level 

of light adaptation for stimuli that isolate luminance, colour or combined rod and 

melanopsin. The results obtained suggest that the dynamic pupil light reflex 

response in human vision involves mostly rod and cone signals, with little or no 

input from melanopsin derived signals. 

6.2.2 Methods 

Pupil responses, colour sensitivity and visual acuity were measured in this study. 

The general techniques of these tests have already been described in chapter 2. In 

addition to the description provided in the chapter 2, more information and details 
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are provided on the properties of visual stimuli employed for the pupil response 

tests and visual acuity tests.  

(a) Measurement of pupil size 

The pupil measurement was collected using the P-SCAN system (described in 

section 2.2). In this study, two P-SCAN systems were employed. One was 

connected to the four-primary illumination system (see Figure 6-2(a)), so that the 

pupil responses to stimuli generated in the four-primary illumination system could 

be measured. The other P-SCAN system was used independently to generate two 

stimuli that were both scotopically and photopically isoluminant and these stimuli 

were used to investigate pupil responses in the rod monochromat. 

(b) Stimuli designed to elicit pupil responses 

The principle pupil experiment employed three stimulus conditions – luminance, 

colour and rod/melanopsin. Each of these stimulus conditions was then measured 

against 3 different light levels and this was achieved by using two spectrally 

calibrated neutral density filters (0.8 and 2.0 OD). For the luminance and colour 

stimulus conditions, the background light levels were 438, 70.1 and 4.55 cd/m2 

whereas for the rod/melanopsin stimulus condition, the background light levels were 

456, 74.4 and 4.76 cd/m2. All stimulus conditions had an (x, y) - background 

chromaticity of (0.565, 0.390). 

Under the luminance stimulus condition (L + M stimulus), we varied the L and M 

cone modulation whilst the other photoreceptor signals (S-cone, rods and 

melanopsin) remained unchanged. The modulation of the luminance stimulus was 

28%. 
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Under the colour stimulus condition (L – M stimulus), the luminance modulation 

remained unchanged and the stimulus was defined purely as RG chromatic change. 

This was achieved by increasing the M cone contrast and decreasing the L cone 

contrast, so that the sum of the L and M signals or the luminance signals remains 

unchanged. The RG colour signal consists of ~ -6% L cone and 12% M cone 

modulation to reflect the average L:M ratio in the human eye.  

Under the rod/melanopsin stimulus condition (rod/melanopsin stimulus), the L, M 

and S cone signals were kept unchanged, but had ~50% and ~60% rods and 

melanopsin modulation, respectively. 

 

Table 6-1. The measured photoreceptor contrasts for luminance, 
colour and rod/melanopsin stimulus conditions with the spectral 
radiance distribution results.  

 

(c) Measurement of contrast acuity (CAA test) 

Figure 6-2(c) shows an example of stimuli that were employed in the high contrast 

acuity test. The details of the CAA test have been described in section 2.3. In this 

study, the stimulus had the maximum, negative contrast of -100%. The background 

field subtends a visual angle of 20o x 16o and was generated on a LaCie 

electronblue 22” CRT display (LaCie Ltd, London, UK). The chromaticity of the 

background was (0.2868, 0.3309) and four different background luminance were 

employed, i.e. 65, 26, 7.8 and 2.8 cd/m2. 

Condition L M S Melanopsin Rods
L+M 25.4 25.8 -0.1 -0.6 3.1
Mel / Rods -0.5 -0.9 3.7 56.4 47.4
L-M -6.8 12.6 0.2 -0.4 1.8

Contrast Measured from Spectral Scans
Modulation amplitude (%)

Photorector Excitation (%)

25.70
56.4 & 47.4
 -6.8 & 12.6
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(d) Subjects 

The studies reported here were carried out in ten control subjects (all wearing 

appropriate refraction and in the age range of 23 to 65 years; 6 males and 4 

females), one mild rod deficient, male subject (age 25), one retinitis pigmentosa, 

male subject (age 23), one rod monochromatic, male subject (age 55) and one 

subject with Multiple Sclerosis (MS) and related Optic Neuritis (age 52). All subjects 

were given written informed consent, and the study was approved by the research 

and Ethics Committee of City University London. 

The mild rod deficient subject has completely normal visual performance at high 

light levels, but is handicapped in the mesopic/scotopic range. The subject 

complains of poor visual acuity at night, e.g. this subject reports that he cannot see 

things clearly on the street or pavement at night even when the same conditions 

pose no problems to normal subjects. In order to confirm his potential rod 

deficiency, we measured his ability to resolve fine spatial details in the fovea as well 

as in the periphery and compared his results with normal trichromat subjects.  

The subject with retinitis pigmentosa was diagnosed with RP autosomal recessive 

inheritance in 2002. But, he reported that he actually had problems with his vision 

throughout his childhood. When he was young, he always found it difficult playing 

outdoors at night, which may have been caused by his rod deficiency. He also had 

a cataract surgery in late 2002 which improved his vision significantly and since 

then he became aware of his reduced field of view.  

The rod monochromat’s best corrected vision was 6/60 for the right and 6/36 for the 

left eye. He was diagnosed with vision problems at high light levels from childhood 

and prescribed dark glasses. In 1990, the subject was diagnosed to have congenital 
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nystagamus, ocular albinism and total colour blindness. In 1999, he reported that he 

noticed a dark area in his central visual field and was diagnosed with cone 

dystrophy. In 2001, he was diagnosed with ocular cutaneous albinism, bilateral 

foveal aplasia, bilateral posterior vitreous detachment and bilateral posterior polar 

lens opacities. A retina examination revealed that he had no obvious fovea. In 2004, 

the subject had a cataract surgery.  

(e) Procedure 

Firstly, colour sensitivity and contrast acuity tests were carried out in all subjects. 

Then, we used the 4-primary illumination system to carry out melanopsin 

pupillometry tests. Lastly, we also carried out the modified contrast acuity 

experiments for the mild rod deficient subject, the pupillometry experiments for the 

rod monochromat subject and for the Optic Neuritis subject and their results were 

compared with the corresponding results obtained in normal trichromats. 

In the melanopsin pupillometry tests, subjects fixated a black cross (subtended 1o 

and always presented in the centre of the background field). The disc stimulus 

subtended 17 degrees in diameter and was viewed binocularly as shown in Figure 

6-3(a). The fixation stimulus was well defined so as to minimize fluctuations of 

accommodation.  

Three stimuli and three background levels were employed in the study. Therefore, 

nine pupil tests were carried out with each subject. Each of these tests started after 

5 minutes adaptation to the corresponding background and involved the 

measurement of 32 pupil responses. Each presentation lasted 6 seconds and the 

stimulus was modulated in a half cycle sinusoidal envelope for 2 seconds and 

presented 1 second after the start of each presentation (see Figure 6-3(b)). The 
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measured 32 pupil traces were then averaged to obtain the mean pupil response 

trace. For each subject, the tests were interleaved using a latin-square design.  

 

Figure 6-2. (a) Schematic diagram of the primary experiment set-
up. A personal computer and an interface board controlled a four-
primary illumination system which was connected with the P-
SCAN system for the pupil measurement. The illumination system 
consisted of an optical diffuser and an integrating sphere which 
presented 17o circular onto the optical diffuser. (b) An example of 
the colour-defined stimuli in the CAD test. Random luminance 
noise was employed to minimize the luminance signal detection 
from the colour-defined targets. (c) An example of a visual acuity 
test stimulus. 



166 

 

 

Figure 6-3. (a) The stimulus was a disc of 17o in diameter.  (b) The 
pupil was continuously measured for 6 seconds. The stimulus was 
modulated as a two second half-cycle sinwave and its onset was 
delayed by one second with respect to the beginning of the pupil 
trace. (c) An example of an experiment test sequence. The 9 tests 
(3 stimulus conditions and 3 light levels) were interleaved and 
subjects were given at least 5 minutes to adapt to the background 
before each test. 

6.2.3 Results 

Figure 6-4 (a - h) shows pupil traces plotted as a function of time in seconds for a 

typical normal subject and one subject with mild rod deficiency. The two diagrams 

on the top row show the relative pupil diameters for the subjects, in which the pupil 

traces are shown on the original scale. For each screen luminance the mean 

responses to the three stimulus conditions were shifted vertically to ensure the 

same initial starting diameter. This makes it easier to observe the original pupil 

response amplitudes and latencies. In order to make comparisons amongst 

subjects, the pupil constrictions in bottom diagrams were scaled with respect to the 

largest pupil response amplitude among all the nine tests in one subject. This 
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makes it possible to compare the response amplitudes and latencies generated by 

the three stimuli. 

In the normal subject Figure 6-4 (a - d), each of the three stimuli produced brief 

pupillary constrictions at stimulus onset, with larger response amplitudes at lower 

light levels, which is consistent with previous studies (Barbur et al., 1992, Barbur et 

al., 1999). The colour modulation also produced a small pupil afterimage response 

at stimulus offset, especially at the highest light level. The rod/melanopsin stimulus 

condition yields larger response latencies, with the largest difference observed at 

the lowest light level.  

Unlike the typical normal subject, Figure 6-4 (e - h) shows the result in one subject 

with mild rod deficiency who shows normal responses to the colour and luminance 

modulation, but much reduced pupil constriction to rod/melanopsin modulation at 

each light level. In the normalized diagrams, when compared to the normal 

subject’s results (b-d), the mild rod deficient subject shows reduced pupil responses 

to the rod/melanopsin stimulus (blue traces in Figure 6-4 (f-h)), but this pupil 

responses are comparable for luminance and colour modulation.  
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Figure 6-4. Pupil response results from (a – d) a typical normal 
subject and (e – h) a subject with mild rod deficiency (e-h). The 
horizontal axis represents time in seconds and the vertical axis 
plots the pupil diameter. The black circled traces, the green 
rectangled traces and the blue triangled traces show the pupil 
responses to luminance, colour and rod/melanopsin modulation, 
respectively. Diagrams (a & e) in the top row show pupil 
responses on the original mm scale. The baselines in these traces 
show the corresponding steady-state pupil sizes and the absolute 
pupil constriction amplitude and latencies can be compared easily 
for each stimulus condition. The pupil constrictions in the bottom 
diagrams (b, c, d, f, g and h) have been normalized with respect to 
the individual subject’s largest pupil response amplitude among all 
the 9 traces, so that each pupil trace would have a maximum pupil 
constriction of 1. Each trace illustrates a mean pupil response 
trace of 32 measurements for each stimulus condition (i.e., 
luminance, colour and rod/malanopsin stimulus modulation) at 
each light level. The 3 rows (b & f, c & g and d & h) in the bottom 
diagram section correspond to the pupil response measurements 
at the lowest light level (4.8cd/m2), the mid light level (75cd/m2) 
and the highest light level (456cd/m2), respectively. Diagrams f, g 
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and h show pupil responses for the mild rod deficient subject. The 
traces reveal much reduced pupil response amplitude to the 
rod/melanopsin stimulus when compared to his pupil response 
amplitudes to the luminance and colour stimuli, especially at the 
lowest light level. However, in the normal subject (b, c and d), the 
pupil response amplitude to the three stimuli are very similar. 

The normal subject’s result shown in Figure 6-4 (a - d) is redrawn in Figure 6-5 (a - 

d) together with a Retinitis Pigmentosa subject who doesn’t have functioning rods in 

the eye and a rod monochromat subject who relies entirely on rod photoreceptors, 

so that we can compare the different pupil responses between the normal subject, 

the RP patient and the rod monochromat. 

The Retinitis Pigmentosa subject shows abnormal pupil responses to the luminance 

and colour stimuli at the middle and high light levels, but absent pupil responses to 

all stimuli at the lowest light level. These abnormal pupil responses are consistent 

with his poor acuity results shown in Figure 6-7 (c). However, the rod monochromat 

subject yields almost completely opposite pupil responses when compared to the 

Retinis Pigmentosa subject. He doesn’t show any pupil responses to the luminance 

and colour stimuli at any light level and his pupil response latency to the 

rod/melanopsin stimulus is similar to those measured in normals, but the response 

amplitude increases when light level is reduced. Even when the background 

luminance is 456cd/m2, which was previously believed to be well above the 

threshold for rod saturation, he still shows good pupil responses to the 

rod/melanopsin stimulus.   
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Figure 6-5. Pupil response results from (a – d) a normal subject, (e 
– h) the Retinitis Pigmentosa subject who has no functioning rods 
and (i – l) the rod monochromat subject who only functioning rods 
in the eye. The results from the Retinitis Pigmentosa and the rod 
monochromat subject have been shifted down so that they share 
the same vertical coordinates with the normal subject, but the 
scale has been kept the same. The Retinitis Pigmentosa subject 
and the rod monochromat yield almost completely opposite pupil 
response results. 
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Figure 6-6. CAD test results in the normal tricrhomat (a), in the 
mild rod deficient subject (b), in the retinis pigmentosa subject (c) 
and in the rod monochromat (d). The colour vision tests are 
carried out with a background of 26cd/m2. The mild rod deficient 
subject has excellent colour vision whereas neither the RP subject 
or the rod monochromat show any sign of colour vision and are 
unable to see or detect the presence of the colour defined targets 
even for chromatic saturations that are limited only by the 
phosphors of the display. 
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Figure 6-7. Contrast acuity results from a normal subject (a) 
compared with the mild rod deficient subject (b) measure in the 
fovea, -2.5o and -5o eccentricity when at 3 different background 
levels (26, 2.6 and 0.26cd/m2). The rod monochromat shows 
similar visual acuity threshold at the fovea when light level is high, 
but shows a much higher threshold in the periphery especalliy 
when light level is low and the rods are more dominate in visual 
performance. c & d show the contrast acuity results for the RP 
subject (c) and the rod monochromat (d) measured in the foveal 
region at each of four different background luminance levels (65, 
26, 7.8 and 2.8cd/m2). 

In order to ensure that the pupil responses measured in the rod monochromat were 

attributable entirely to rods, we employed the P-SCAN system to generate two 

double isoluminant stimuli (scotopically and photopically isoluminant) (see Figure 



173 

 

6-8 inset). Disc stimuli were presented in the centre of a uniform background field of 

12cd/m2 and subtended a visual angle of 9.5o. The photoreceptor contrasts were 

calculated along an ellipse contour Figure 6-8 (a) (origin at (0.298, 0.335)) in the 

CIE1931 chromaticity diagram as a function of chromatic angle as shown in Figure 

6-8 (b). Points A and B have zero-rod contrast and correspond to a chromatic 

displacement angles of 118o and 298o. Both stimuli correspond to a chromatic 

displacement of 0.1 units, as measured with respect to background chromaticity. 

The colour stimuli generated for these two directions are designed to have the 

same luminance as the background and this was achieved by increasing or 

decreasing the L or M contrast, because luminance signal is defined to be the sum 

of the L-cone and M-cone signal. The pupil was continuously measured for 6 

seconds in this experiment and the stimulus duration was 2.4 seconds. In order to 

minimize the pupil responses that might be triggered due to any residual luminance 

signal in these stimuli, dynamic random luminance masking of the checks was used 

to mask any local luminance contrast signal. The luminance of the whole stimulus 

also varied randomly within ±20% mean background luminance to mask any 

spatially pooled luminance signal. 

Figure 6-8(c & d) shows results for a normal subject and for the rod monochromat.  

Unlike the normal subject who had very good pupil responses to the double-

isoluminant stimuli, the rod monochromat failed to show any pupil responses to 

these two stimuli. This ensured that the rod monochromat doesn’t respond to a 

stimulus that doesn’t have a rod contrast and hence provided further evidence that 

he does not have functioning cones in the eye. Since the melanopsin signal is not 

completely absent in the absence of rod modulation, the results suggest that the 

modulation signal either too weak or simply unable to drive the pupil response. 
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Figure 6-8. Double-isoluminant stimuli employed to test for pupil 
responses in the rod monochromat. Diagram (a) shows the d-
isoluminant stimulus directions in the CIE 1931 chromatic diagram. 
The stimuli were discs of 9.5o in diameter and presented in the 
centre of a uniform background of luminance 12cd/m2. The red, 
green and blue dot lines represent the colour confusion lines. The 
black dotted ellipse shows the colour thresholds for an average of 
330 normal trichromats (Rodriguez-Carmona et al., 2005). The 
photoreceptor contrasts are calculated along this ellipse contour 
and are drawn in diagram (b) as a function of the chromatic 
displacement angle in degrees. The dots, crosses, squares and 
triangles show the contrasts generated in rods, L-cones, M-cones 
and S-cones, respectively. Point A has a chromatic angle of 118o 
and B has angle of 298o and both of them have 0 rod contrast for 
0.1 chromatic displacement (CD) from the background 
chromaticity (0.298, 0.335) in the CIE – (x,y) chromaticity chart. (c) 
Pupil responses to the d-isoluminant stimulus in a normal subject. 
The red dotted curve shows the pupil response to the reddish 
stimulus (i.e., θ = 298o, CD = 0.1) and the green curve is for the 
greenish stimulus (i.e., θ = 118o, CD = 0.1). (d) Pupil responses to 
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the d-isoluminant stimulus shown for the rod monochromat. Unlike 
the normal subject who shows good pupil responses to the d-
isoluminant stimuli, there are no pupil responses for these stimuli 
in the rod monochromat. 

6.2.4 Discussion 

(a) Contribution of ipRGCs via melanopsin derived signals to the pupil control 
pathway. 

This study employed four primary lights to generate photoreceptor specific pupil 

stimuli using the silent substitution technique (Smith et al., 1995, Pokorny et al., 

2004). The aim was to measure pupil responses to brief stimuli that isolate 

luminance, colour and rod / melanopsin signals. The completely opposite pupil 

response patterns to the rod / melanopsin stimulus measured in the rod 

monochromat and the severe rod deficient subject (or the retinitis pigmentosa 

subject) suggest that the pupil responses to the rod / melanopsin stimulus are 

mediated largely by rod signals and that melanopsin via the ipRGCs does not 

contribute significantly to the dynamic pupil light reflex response in human vision. 

These findings suggest that the dynamic pupil light reflex response in human vision 

involves mostly rods and cone signals, with little or no input from the ipRGCs.  

Furthermore, Figure 6-8 (b) shows that the d-isoluminant stimulus fails to elicit pupil 

responses in the rod monochromat. Although the d-isoluminant stimulus fails to 

stimulate rods and the subject has no functioning cones, the stimulus does, 

however, generate a small melanopsin signal, but this signal fails to drive the 

dynamic pupil light reflex response.  

Previous reports indicate some involvement of melanopsin signals in the control of 

the steady-state pupil size at much higher light (Tsujimura et al., 2010) and the 
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sustained constriction in darkness following the offset of long exposure to intense 

stimuli (Gamlin et al., 2007). These results are not, however, in conflict with the 

findings that emerge from the current study. The absence of detectable melanopsin 

signals in the dynamic pupil light reflex response may be due to the sluggish 

properties of the melanopsin signals.  

The number of classical photoreceptors (i.e., rods and cones) and the 

corresponding ganglion cells are significantly larger than the ipRGCs. There are 

approximately 90 - 120 million rods and 4.5 - 7 million cones in the eye  which 

connect to ganglion cells. The ipRGCs comprise only 0.2 percent of retinal ganglion 

cells in the human eye. The cone signals are optimized for spatial and temporal 

visual acuity whilst the rods respond well at lower light levels. The melanopsin 

signals are sluggish and the ipRGCs can integrate the light irradiance information 

over long time intervals, which provides a measure of exposure to light. The main 

function of these sluggish melanopsin signals is therefore to photoentrain the 

circadian rhythm (Ruby et al., 2002). These cells also have longest dendrites and 

largest fields of all known ganglion cells, with diameters of 305 to 1200 µm 

increasing with eccentricity (Dacey et al., 2005). Apart from the intrinsically 

photosensitive properties, the large receptive fields indicate that they also receive 

signal input from a large number of classical photoreceptors, especially from rods. 

Hence, it is not too surprising to discover that in the rod / melanopsin stimulus 

condition, the ipRGCs do not contribute to the dynamic pupil light reflex and that the 

only significant contribution to the pupil response is from rods and perhaps through 

the rods that innervate with the ipRGCs (see section 6.3). 

(b) Rod contribution to the pupillary pathway at high light levels. 
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The results from the rod monochromat also suggest that, although more sluggish, 

rod signals remain unsaturated and contribute to the dynamic pupil responses at 

much higher light levels. Previous studies have shown that rods can produce large 

pupillary responses when large stimuli are involved (Alpern and Ohba, 1972). 

Based on previous results and the current findings, it is reasonable to conclude that 

in normal subjects pupil responses to the rod / melanopsin stimulus are the result of 

stimulation of rods, and that rod signals are also effective at higher light levels. The 

fact that the rod monochromat exhibited even bigger pupil response amplitudes 

than those from normal subjects, especially from the lowest light levels, suggest 

that in normal vision rod signals may be inhibited or partially blocked by the cone 

signals. When light level was reduced, in normal subjects, the dynamic pupil 

responses to luminance, colour and rods stimulation tended to increase. This 

increase may however be caused, at least in part, by the increased steady-state 

pupil size, and the corresponding change in the operating range of the iris.  This 

result is also consistent with previous findings (Winn et al., 1994). 

(c) Pupil responses in the MS (Optic Neuritis) subject 

MS is an inflammatory disease in which the fatty myelin sheaths around the axons 

of the brain and spinal cord are damaged, leading to demyelination and scarring as 

well as a broad spectrum of signs and symptoms (Compston and Coles, 2008). 

Optic Neuritis is used to describe the inflammation of the optic nerve. The MS is the 

most common etiology for Optic Neuritis (Beck and Trobe, 1995).  

In 1986, Mullen and Plant reported that patients with optic neuritis showed  greater 

loss of chromatic sensitivity when compared to luminance sensitivity (Mullen and 

Plant, 1986). Another study from Wall (1990) showed that the ON patients could 
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have similar contrast sensitivity from the affected and unaffected eyes, however the 

Farnswarth-Munsell 100 Hue colour testing was found to be very abnormal in the 

affected eye. The author suggested that the P cells experienced greater damage 

when compared to the M cells (Wall, 1990). Moro et al measured pupil responses 

and assessed visual performance in 14 patients with a history of unilateral optic 

neuritis. The authors showed dissociation between visual acuity and colour 

sensitivity as well as between pupil responses to light flux and chromatic stimulus. 

These and other studies suggest that some degree of selective damage of ganglion 

cells may occur in ON (Flanagan and Zele, 2004, Moro et al., 2007).  

It is not known how ipRGCs are affected in ON subjects. Due to the special role that 

these cells play, they might be spared in ON. It is therefore of interest to carry out 

the rod/melanopsin experiment on a typical ON subject.  

The majority of the above studies have been carried out on patients with ON that 

were secondary to MS. So, we recruited an MS related ON subject (with No 

Perception of Light or NPL in the affected eye). In December 2008, the subject 

experienced sudden loss of vision in his right eye. In May 2009 the patient suffered 

a heart attack and lost control to the entire right side of his body in July 2009. He 

had been placed on Azathioprine treatment at a daily dose 150mg. He experienced 

a second attack of ON and as a result lost vision in his right eye, but the left eye is 

unaffected with a -2.5D refractive error.  

We examined his pupil responses using the four-primary system and his results are 
shown in Figure 6-9.  
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Figure 6-9. Pupil responses measured following stimuluation of the 
affected eye in the ON subject. The responses to the luminance 
and colour stimuli are almost absent. However, when light level is 
increased, the subject shows some pupil responses but only to 
rod/melanopsin stimulus. 

The pupil responses to photopic luminance and colour signals are very small under 

all conditions. However, when the light level is increased, the subject shows an 

increased pupil response but only to the rod/melanopsin stimulus. Our findings from 

the rod monochromat and the rod deficient subject suggest that only the rod signals 

generated by the rod/melanopsin stimulus are likely to drive the pupil response. 

This increased response might due to the fact that the rod/melanopsin stimulus has 

the largest rod signals at the highest light level condition, whereas in the lowest light 

level, the rod signals are not large enough to drive a pupil response through the 

residual ganglion cells that the ON subject may still have. In order to examine this 

hypothesis, a new pupil test was designed to stimulate rods effectively, but at a 

lower retinal illuminance.  
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The new test employs a background and luminance of 1 cd/m2. Seven achromatic 

stimuli with a fixed contrast 10,000% (i.e., 101cd/m2) were employed and the 

parameter varied was the size of the stimulus. The area of the stimulus changed 

approximately by 0.6 log units from one size to the next. The arrangement of the 

stimulus takes advantage of rod photoreceptor properties (highly sensitive at low 

light levels and large spatial summation).  

Stimulus number Width x height (degree2) Log(area) 
1 0.6 x 0.4 -0.6 
2 1.2 x 0.9 0.02 
3 2.4 x 1.8 0.6 
4 4.7 x 3.5 1.2 
5 9.3 x 7 1.8 
6 18.5 x 13.9 2.4 
7 36 x 27 2.9 

Table 6-2. Pupillometry tests with fixed stimulus contrast and 
variable size. 

 

Figure 6-10. Pupil responses measured in the ON subject. Tests 
were done monocularly in each eye. The dotted lines are 
responses from the affected eye and the solid lines are from the 
unaffected eye. The pupil responses are completely absent from 
the affected for all stimuli. (a) shows a comparison of pupil 
responses between the affected and unaffected eye. In (b), the 
pupil responses from the individual eye have been moved 
together. When the stimulus size increases, the pupil constriction 
amplitude increases. We can also observe an increase in latency 
as the size of the stimulus decreases. Each trace represents an 
average of 32 pupil response measurements. 
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The results shown in Figure 6-10 show that the pupil responses from the unaffected 

eye increase in amplitude with the size of the stimulus. In contrast, there are no 

responses from the affected eye. This suggests that the pupil responses in the 

affected eye do not reflect spatially summed rod signals, which is contrary to our 

expectation. The conditions between the two experiments were examined carefully 

and we found that, in the new test, the unaffected eye was covered with a new eye 

patch, which ensured that no residual light could reach the retina in the unaffected 

eye. If the pupil responds to light flex change on the retina as detected by the most 

common photoreceptor (i.e., rods), then even small amounts of diffuse light that end 

up stimulating mostly the dark adapted peripheral retina in the normal patched eye 

may be sufficient to drive the pupil response. Figure 6-9 shows that some pupil 

response can be elicited when stimulating the affected eye but only for the highest 

background luminance. Although the rod/melanopsin modulation is the same for all 

three background luminance levels employed, the net “light flex” change as 

detected by the rod/melanopsin system is largest for largest luminance. The amount 

of stray light that may end up stimulating the dark adapted normal eye (and 

particularly the peripheral retina) also corresponds to the largest background 

luminance employed. In order to test for this alternative hypothesis, the earlier pupil 

measurements were repeated using the new eye patch which ensured that there 

was no stray light entering the unaffected eye.  



182 

 

 

Figure 6-11. Pupil responses in the ON patient measured in 
repeated tests when stimulating the affect eye. When great care is 
taken to ensure that no stray light can reach the unaffected eye, 
there are no pupil responses at any light level.  

The results show that the pupil responses are absent to all stimuli at all light levels 

when stimulating affected eye in the ON subject. The possible damage of ipRGCs 

in the ON subject is not known. The results obtained in the RP subject and the rod 

monochromat suggest that the rod contrast is the only signal that drive the pupil 

response in the rod/melanopsin condition. If the ON subject has any spared 

ganglion cells that can carry the rods signals to the brain, one can reasonably 

expect to elicit some form of pupil response, especially when the maximum rods 

signal is used. But, the pupil responses are completely absent when stimulating the 

affected eye. This finding suggests that all ganglion cell nerve fibres are severely 

damaged in the affected eye with no sparing of ipRGCs.  
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6.3 Select sparing of visual pathways in Leber’s disease 

6.3.1 Background 

Leber hereditary optic neuropathy (LHON) or Leber optic atrophy is a 

mitochondrially inherited form of vision loss, which is caused by degeneration of 

retinal ganglion cells and their axons. Patients with this disease usually suffer a 

large decrease of visual acuity and colour vision, as a result of acute loss of 

ganglion cells that mediate central vision. Males are affected much more than 

females whereas mothers who have LHON pass it to all offspring, but fathers don’t. 

Sadun’s group (2000) showed that in LHON there can be selective dissociation 

damage in different types of neurones. The authors suggested that parvocellular 

neurones might be affected more than magnocellular neurones (Sadun et al., 

2000). A more recent study on a post-mortem examination provided first evidence 

suggesting the existence of preferential sparing of ipRGCs in LHON patients (La 

Morgia et al., 2010).  

The purpose of this study was to examine whether pupil response components are 

linked to different classes of ganglion cells and whether the Magnocellular, 

Parvocellular or the ipRGCs pathways are equally damaged in LHON.  
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6.3.2 Methods 

(a) Subjects: 

The study was carried out in three LHON patients selected to reflect different stages 

of visual disability and five normal age and gender-matched control subjects. All of 

the LHON subjects have good photoreceptor function based on the results obtained 

from electrodiagnostic testing. However, Goldmann perimetry results showed all 

LHON subjects had central visual field loss and that the damage affected at least 

the central 10 degrees.  

 Age Gender Onset Visual Acuity 
Patient 1 (mild) 19 Male 6 months ago 6/36 
Patient 2 (moderate) 61 Female 21 months ago 1/120 
Patient 3 (severe) 58 Male 48 months ago Hand movement 

Table 6-3. Summary description of LHON subjects. Subject 1 has 
shortest duration and best visual acuity whereas subject 3 has the 
longest duration and worst visual acuity. 

(b) Apparatus: 

In each subject, a number of aspects of visual performance including colour 

sensitivity, high contrast acuity, contrast sensitivity and first order motion sensitivity 

were measured. Pupil responses to colour and grating stimuli as well as light flux 

changes that stimulate preferentially rods and melanopsin were also measured. All 

tests were carried out monocularly. In the LHON subjects, the most affected eyes 

were always tested.  

Measurement of chromatic sensitivity 

The standard CAD test with a background luminance of 26cd/m2 was employed 

(see Chapter 2.4).  
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Measurement of coherent motion threshold 

The motion test was also carried out using the CAD program. But instead of 

defining the moving stimulus as a colour signal, the stimulus was achromatic and 

defined by luminance contrast. The test measures the contrast of the stimulus 

needed to detect motion when buried in the dynamic luminance contrast noise of 

6%, 12% and 24%.  

Measurement of contrast sensitivity and contrast acuity  

The CAA test was used to measure the contrast sensitivity and also the subject’s 

high contrast acuity. The stimulus was presented in the centre of a uniform 

background field (26cd/m2) for 600ms in both tests. The observer’s task was to 

press one of the four buttons located on the corners (top left, top right, bottom left 

and bottom right) of a button box to indicate the location of the gap in the stimulus. 

In the contrast sensitivity test, the stimulus had a fixed size of 73.2 arc min and a 

staircase method was employed to measure the threshold of the stimulus contrast 

that an observer needs to detect the gap of the Landolt ring. But, in the high 

contrast acuity test, the stimulus was fixed in contrast (-100%) and the 

measurements variable was the size of the stimulus.   

Pupillometry  

The P-SCAN system was employed in this study. The stimulus was a circular disc 

of 10o diameter (example stimuli are shown in Figure 6-12). The stimulus was 

presented in a uniform background field as a rectangle pulse of duration 400ms. 

The luminance of the background was 12 cd/m2 and the chromaticity was (0.298, 
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0.335). Each test required the continuous measurement of the pupil for 6 seconds. 

Four different stimuli were employed: 

1. An achromatic light flux increment that had a contrast of 171% with respect 

to the uniform background (Figure 6-12 (a)). 

2. A coloured stimulus that is photopically and scotopicolly isoluminant (i.e., d-

isoluminant) (Figure 6-12 (b)). The stimulus is defined by its colour contrast 

to in a normal trichromat. The stimulus is also buried in a 30% random 

luminance mask (RLM) which reduces/eliminates the detection of any 

residual luminance signal that may trigger a pupil response. Unlike the 

stimulus, the dynamic RLM noise is presented for all 6 seconds of the test.  

3. A photopically isoluminant stimulus that has the maximum rod contrast 

(171%). This stimulus also has a 30% dynamic RLM (Figure 6-12 (c)). 

4. A square-wave grating stimulus that has the same luminance as the 

background. The spatial frequency was 5.5 cycles/degree (Figure 6-12 (d)).  

 

Figure 6-12. Examples of visual stimuli employed to trigger pupil 
responses. (a) light flux stimulus; (b) d-isoluminant colour stimulus; 
(c) stimulus that has the same photopic luminance as the 
background, but has maximum rod contrast, and (d) an achromatic 
grating stimulus that has the same luminance as the background. 
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6.3.3 Results 

It is well established that the P-pathway exhibits chromatic opponency and 

responds optimally to gratings of high spatial frequency and low temporal frequency 

(Lennie and Movshon, 2005, Merigan and Maunsell, 1990). Therefore colour and 

grating stimuli were employed. The M-pathway on the other hand, responds 

optimally to chaos grating and moving stimuli. It is of interest to examine the extent 

to which these pathways contribute to the pupil response.  

Colour vision and high contrast acuity results: P-pathway assessment 

Figure 6-13 (b) shows the CAD test results for all 3 LHON subjects. All of their 

colour thresholds reach the limits imposed by the phosphors of the display. The 

high contrast acuity results are shown in Figure 6-14. The high contrast acuity 

thresholds in LHON subjects are also much higher than the corresponding 

thresholds measured in normal trichromats. The large colour sensitivity and acuity 

loss in LHON subjects suggests extensive damage to the P-pathway.  

 

Figure 6-13. Colour vision results for (a) a normal trichromat 
subject and (b) the 3 LHON subjects. None of the LHON subjects 
were able to detect the presence of the colour defined stimulus, 
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even for the largest chromatic saturations possible on the visual 
display. 

 

Figure 6-14. High contrast acuity results measured using a Landolt 
C stimulus for a normal trichromat and for the three LHON 
subjects. The normal subject needs about one min arc to detect 
the gap of the Landolt ring while the thresholds of the mild and 
moderate LHON subjects are approximately 22 and 40 times 
higher than that of the normal subject. The severe LHON subject 
was unable to detect direction of the gap in the stimulus even for 
the largest stimulus sizes (73.2 arc min) possible on the visual 
display. 

Motion sensitivity and contrast acuity results: M-pathway assessment: 

Figure 6-15 and Figure 6-16 show motion and contrast acuity thresholds for the 

LHON subjects and a typical normal trichromat. The subject with moderate loss was 

unable to participate in the contrast acuity test and soon after the initial study he 

was no long available. Apart from that particular test, subjects perform worse as the 

severity of LHON increases. LHON subjects thresholds were much larger than 

those measured in the normal trichromat. The severe LHON subject failed to detect 

the stimulus, even for luminance contrasts limited only by the visual display. The 

poor results from the LHON subjects suggest that the M-pathway is also heavily 

damaged.  
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Figure 6-15. Motion tests results for the LHON subjects. The target 
was buried with the dynamic luminance mask (6%, 12% and 24%). 
The normal subject shows a small increase in thresholds with level 
of RLM. The LHON subjects show much higher thresholds than 
that of the normal subject and the severe LHON subject’s 
thresholds reach the limits imposed by the phosphors of the 
display. Interestingly, the moderate subjects show a larger 
increase in thresholds with increasing RLM. This observation 
suggests that although both P and M neurons are damaged. The 
largest loss corresponds to the P pathway.  

 

Figure 6-16. Contrast sensitivity results for the mild and severe 
LHON subjects and a normal trichromat. The normal subject’s 
threshold is approximately 1.7% while the threshold for the mild 
LHON subject is about 27 higher than that of the normal 
trichromat. The severely affected LHON subject cannot carry out 
the test even for the highest thresholds set by the limits of the 
visual display. 

Pupillometry results: Pupil pathways assessment 

The normal subject showed good pupil responses to all four stimuli Figure 6-17 (a). 

The latencies to the d-isoluminant and grating stimuli were approximately 40 – 
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60ms longer than that of the light flux stimuli (the achromatic and the blue stimulus 

which has the largest rod contrast components). Similar latency measurements 

have also been reported in earlier pupil studies (Barbur et al., 1992, Alexandridis et 

al., 1991, Tsujimura et al., 2001). Because the blue stimulus is photopicly 

isoluminant, the pupil response to the blue stimulus reflects changes in the 

contribution that rod signals make to the PLR response (Barbur, 1996). Unlike the 

pupil colour and grating responses, the faster pupil response latencies to blue and 

achromatic stimuli suggest that the dominant component that drives the pupil 

response is the pupil light reflex rather than the colour responses caused by S-cone 

excitation.  

Not only are the latencies the same, but the pupil light reflex responses to both the 

achromatic and the blue stimulus from the normal subject also yield similar 

response amplitudes. The two response curves seem to be identical. This may 

suggest that both responses are driven by one similar pupil component. Because 

both stimuli have exactly the same rod contrast (171%), these large rod 

components mainly drive the pupil responses.  
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Figure 6-17. Pupillometry results from (a) a typical normal subject, 
(b) the mild LHON subject – patient one, (c) the moderate LHON 
subject – patient two, and (d) the severe LHON subject – patient 
three. 

As the severity of the LHON disease increases, the pupil response amplitudes to d-

isoluminant colour and grating stimuli decrease and the latencies increase. In the 

case of the severe LHON subject, the pupil responses to d-isoluminant colour and 

the grating stimulus are completely absent. The pupil light reflex response 

measured in response to short wavelength stimuli that trigger large rod signal 

increments in normal eyes also shows a large decrease in LHON, but the 

responses are not completely absent but similar in amplitude to those elicited by 

achromatic stimuli of equivalent rod contrast. 
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6.3.4 Discussion 

This study demonstrates selective loss of pupil responses in Lebers disease that 

are generally in good agreement with the corresponding visual loss.  

The patients show complete absence of colour vision (both for RG and YB 

discrimination). As the severity of LHON disease increases, their motion detection, 

high contrast acuity and contrast sensitivity also decrease. These results suggest 

significant damage to the parvocellular and magnocellular cells in LHON and as a 

result, the pupil colour and grating responses are also very small or absent.  

However, the pupil light reflex response remains normal in the mild LHON subject 

when compared to the normal trichromat except for the grating stimulus is also 

reduced. In the case of the severe LHON subject, the response latencies are 

increased and amplitudes are significantly reduced, but these responses are not 

completely absent.  

As discussed earlier in section 6.2, rod signals can contribute significantly to the 

pupil light reflex response in the rod monochromat. In LHON, the ipRGCs may be 

spared or less affected (La Morgia et al., 2010). These findings suggest that the 

dynamic pupil light reflex response pathway rely largely on the rod signals and that 

this pathway is spared in Lebers disease. Since the P and M pathways are heavily 

damaged, these findings suggest that the melanopsin labelled ganglion cells which 

receive a large rod input can be less affected in LHON.  
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6.3.5 Future work 

In the motion test, when both the dynamic luminance mask and the static luminance 

mask are used in a normal trichromat, the modulation amplitude of the static 

luminance mask doesn’t affect one’s threshold. An increase in the amplitude of 

dynamic luminance masking produces corresponding increase in motion threshold 

in a normal subject. 

 

Figure 6-18. Motion thresholds in a normal trichromat. The Y-axis 
plots the threshold contrast the subject needs in order to detect 
the moving target. The results reveal a systematic increase in 
thresholds with increasing levels of dynamic luminance contrast 
noise. When static luminance noise was employed, the thresholds 
remain unchanged. 

The motion tests with the LHON subjects employed only dynamic luminance 

contrast noise. Results show increased thresholds when the RLM noise amplitude 

is increased, with higher thresholds, but similar trends to those measured in normal 

trichromat. Coherent first order motion relies on the M-pathway which is heavily 

desensitized by the presence of dynamic RLM noise (Barbur, 2004a, Lu and 

Sperling, 1995). Consequently, a normal subject shows increasing thresholds with 

increasing levels of dynamic luminance contrast noise. In LHON subjects, earlier 
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studies have suggested that the M-pathway is more damaged than the P-pathway 

(Sadun et al., 2000). If the M-pathway is damaged much more extensively in LHON, 

the subjects must rely more on their P-pathway to detect the motion. But, because 

the Pavocellular cells have reduced sensitivity for detection of moving stimuli, it is 

expected that the use of static contrast noise would also cause an increase in 

threshold with the level of the noise. This observation/prediction requires further 

experimental studies.  
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7 SUMMARY AND DISCUSSION 

This thesis combines together a number of studies designed to investigate pupil 

response components and colour perception mechanisms, with emphasis on the 

measurement of chromatic afterimages.  

A complete description of the implementation of a new psychophysics afterimage 

measurement application has been given. This application includes a number of 

highly abstracted and extendable functional modules like a front-side GUI, a front-

side psychophysics program, a server-side database and a server-side web portal 

(a design that follows the classic waterfall software engineering model). Detailed 

display calibration methods and usage were also given. This application was then 

used to measure the strength of perceived afterimages in both normal trichromats 

and colour deficient subjects. In normal trichromats, a number of stimulus 

parameters that affect the strength and duration of afterimages were varied. Results 

in the normal subject group revealed the same trends and are consistent. The 

deuteranopes yielded significantly different results from those obtained from the 

normal subjects when using d-isoluminant colour stimuli, whereas when the 

stimulus employed had a large S-cone contrast, the results revealed a smaller 

difference. A model was derived to account for the significant difference between 

the two groups. The analysis based on the measured afterimage results and the 

model developed suggest that in deuteranopia, the signals from the L cones are 

used for the luminance channel and the signal between L and S cones (S – L) is 

used for the colour channel. It is also assumed that the same theory also applies to 



196 

 

protanopia and tritanopia, in which it is M and (L+M) for luminance and (S – M) and 

(L – M) for the colour.  

Although these findings are consistent with other earlier studies, the outcome also 

accounts for the findings obtained in the pupil studies. Objective pupil afterimage 

responses were also investigated to compare with the measured strength and 

duration of perceived afterimages thresholds. We designed the pupillary stimuli 

based on their S-cone contrast values (either maximum or minimum) and we found 

that the results from pupil measurements showed consistency with the measured 

perceived afterimage results and hence confirmed the theoretical predictions. 

Furthermore, the simple model proposed here can also be used to predict the pupil 

responses observed, such as the maximum and minimum pupil responses in 

dichromats and the colour confusion lines for any given background, provided one 

is also to compute the corresponding photoreceptor contrasts.  

In this study, pupil response differences between subjects with either congenital or 

acquired hemianopia were compared. Stimuli that isolated photopic luminance and 

colour signals were employed to compare the pupil responses elicited in the sighted 

and the blind hemifields. Pupil colour responses and the pupil light reflex responses 

to stimuli of low contrast were absent in the blind hemifield in the acquired group. In 

the congenital group, some of these responses were similar and even enhanced 

when compared to those elicited in the sighted hemifield. The results obtained in 

the subjects with acquired hemianopia were consistent with earlier findings 

(Alexandridis et al., 1985, Barbur, 2003) and also confirmed the pupil pathways 

(Figure 1-24). The differences in results when comparing acquired and congenital 
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hemianopes suggest that considerable reorganisation of neural projections and 

function occur during early visual development (Bridge et al., 2008).  

Lastly, we investigated whether ipRGCs and melanopsin make a significant 

contribution to the dynamic pupil light reflex response by investigation both normal 

subjects as well as selected patients with damaged visual pathways. The properties 

of the ipRGCs and its contributions to pupil responses have been investigated 

mostly in mice (Berson et al., 2002, Lucas et al., 2003, Panda et al., 2002). These 

studies reveal a contribution ipRGCs make to the control of pupil response, but the 

extent to which this also happens in man remains controversial. 

The light stimulator apparatus developed by Tsujimura (Tsujimura et al., 2010) 

employs a four primary system to generate stimuli that isolate luminance, colour or 

rods/melanopsin signals. We found that the mild rod deficient subject showed 

relatively smaller pupil responses to the rod/melanopsin stimulus when compared to 

that of normal subjects. The RP subject displayed absent pupil responses to the 

rod/melanopsin stimulus, but good responses to the luminance and colour, whereas 

the rod monochromat subject yielded completely opposite results. These findings 

suggest that only rods contribute to the pupil response when the stimulus isolates 

rod/melanopsin pigment.  

We also compared other stimulus properties, such as modulation types – sinwave, 

squarewave or sawtooth modulation and different stimulus durations, amplitudes 

and frequencies in a number of preliminary studies in normal subjects. None of the 

results obtained suggest that melanopsin derived signals contribute to the dynamic 

pupil light reflex response. Because the rod/melanopsin stimulus generates both a 

melanopsin and rod pigment modulation, we wanted to recruit a rod deficient 
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subject to do the test. Previous studies suggest that rods saturate at higher light 

levels (Aguilar and Stiles, 1954) and it is therefore reasonable to assume that rod 

signals do not contribute to visual function at high light levels and that any pupil 

responses reflect either cone or melanopsin based signals. Three light adaptation 

levels were employed that would be optimum for either the rods component, the 

melanopsin component or a mixture of the two. After testing a rod deficient subject, 

we found his responses to the rod/melanopsin stimulus are totally consistent with 

rod responses. We therefore recruited and tested a subject with RP and a rod 

monochromat, and their results showed that the pupil responses were only from the 

rods and that melanopsin doesn’t contribute to the dynamic pupil response. 

Moreover, our rod monochromat continued to respond well to the rod/melanopsin 

stimulus even at 456 cd/m2. This suggests that the rods do not saturate completely 

and continue to respond at high luminance levels in the periphery of the visual field.  

Colour vision, visual acuity, contrast acuity, motion and pupillometry tests were 

designed to investigate a group of subjects with Leber’s Hereditary Optic 

Neuropathy. The results show that as the level of disease severity increases, the 

responses linked to Parvocellular- and Margnocelluar- pathways decrease, but the 

pupil light reflex responses mediated by rods remain less affected. These results 

suggest that in LHON, some ganglion cells classes are less affected and that the 

remaining pupil light reflex response may well be linked to rod signals that drive 

ipRGCs. 

In conclusion, this thesis describes findings from several studies in pupillometry and 

links the results to the measurement of chromatic afterimages. The work leads to 

new findings by combining a number of visual psychophysical studies with 
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measurement of pupil responses to stimuli that isolate photoreceptor signals both in 

normal subjects and in patients with damaged visual pathways. Overall, the findings 

from these investigations provide improved understandings of chromatic processes 

and stimulus specific pupil responses. In addition, a versatile visual psychophysics 

platform has been developed with its first application in the measurement of 

chromatic afterimages.  
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APPENDIX - A GUIDE OF THE QAA APPLICATION 

To start the QAA application, we can simply double click the shortcut icon on the 

desktop. This actually runs the “Front-end GUI” module.  

 

Then the application checks if the experimenters want to run the application with a 

database support.  

 

By clicking the “yes” button, the GUI then comes up. The GUI consists of 4 tabs: 

“Porgram settings”, “Background & fixation”, “Stimulus Options” and “Help page”. 

These tabs are separated by the stimuli properties. By clicking the “Use default 

settings to all pages” button, the most commonly used stimuli information will be 

selected in all tabs. The following figure shows “Program Settings” tab. 
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The afterimage website’s home page is shown below. The 4 navigation links in the 

top menu are always displayed. However, the “Afterimage Results” button only 

works after users log in.  

 

When the “Log in/out” button is clicked, users can input his username and 

passwords obtained from the left hand side.  

 

The follow figure shows an example how the log in menu changes after I log in.  
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Because my account has been assigned a full administrator right, I can browse 

everybody’s detailed results. The following figure shows that after I logged in, I 

pressed the “Afterimage Results” and searched with a keyword “wei”. My first 5 test 

results are then shown on the page. For a subject, he/she can only browse his/her 

own result. 
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