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Abstract: Finite element method is a powerful technique for solving a wide range of engineering
problems. However, the existence of the spurious solutions in full-vectorial finite element method
has been a major problem for both acoustic and optic modal analyses. For emerging photonic
devices exploiting light-sound interactions in high index contrast waveguides, this problem is a
major limitation. A penalty function is introduced to remove these unwanted spurious modes
in acoustic waveguides, which also identifies the acoustic modes more easily. Numerically
simulated results also show considerably improved vector mode profiles. The proposed penalty
method has been applied for the characterization of low index contrast single mode fiber and also
for high index contrast silicon nanowire to demonstrate its effectiveness.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Stimulated Brillouin Scattering (SBS) is an important nonlinear optical effect that occurs due to
the interaction of optical and acoustic waves in a medium. Acoustic waves are generated due
to the process of electrostriction where high-intensity light wave traveling through a medium
produces mechanical vibrations resulting in the scattered light and phonons [1]. The SBS has
attracted considerable attention due to its adverse power limiting effect on the performance of
optical networks [2]. Similarly, for high power fiber lasers, which have excellent properties, such
as high beam quality, high efficiency, very high output power capability and ease of thermal
management, however, the SBS is often considered as one of the main limitations [3]. To
overcome this limitation SBS threshold level is required to be increased, which may be achieved
by using different techniques, such as the modification of the fiber geometry in order to push the
acoustic modes into cladding [4], use a higher effective area multimode fibers [5, 6] or doping
fiber with anti-acoustic material to suppress SBS [7]. On the other hand, SBS can be exploited
for many useful applications such as temperature and strain sensors. Most recently, the SBS
is being exploited for several innovative applications, such as slow and fast light and Brillouin
cooling [8–12]. To understand the complex light-sound interactions, accurate analyses of both
optical and acoustic modes is required. Various theoretical methods have been reported which
can be used for modeling of optical [13] and acoustic [14] waveguides by solving relevant optical
and acoustic wave equations [15]. Besides, a commercial solver COMSOL Multiphysics [16]
could be used to calculate the Brillouin gain spectrum of optical waveguides.
Full-vectorial finite element (FEM) code can be formulated by considering nodes [17] and

edges [18] of a mesh element. FEM based modal solution using node and edge elements are
equally efficient and accurate. However, it is observed that the node elements based modal
solution contains extraneous nonphysical or spurious modes. A scalar formulation [19, 20] may
be a simpler approach and free of spurious solution but the vector formulations are not only
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more accurate but also essential, particularly, when optical index contrast is high. In 1984, it
was reported that the vector based FEM formulations are affected by the existence of spurious
modes [17]. It was identified that as the vector formulation considered only two curl equations
but did not consider the divergence-free nature of the field, which allowed spurious modes to
appear. As these spurious solutions introduce difficulties to identify physical modes and also
deteriorate eigenvector quality, therefore different techniques have been considered to eliminate
them.
On the other hand, the classification of acoustic modes is even more complex than that of

optical modes. There can be different types of acoustic modes, such as longitudinal, transverse,
bending, torsional or flexural modes. For a high index contrast waveguide, these acoustic modes
are hybrid in nature. A full-vectorial FEM modal solution provides accurate mode profiles but
the existence of the spurious solutions make it challenging to recognize the real modes of interest.
Therefore, it is very important to address the appearance of spurious solutions and also to find a
way to eliminate them.

In this paper, we used a penalty approach to modify the node element based acoustic wave
variational formulation and successfully applied to eliminate the spurious acoustic modes in
both low and high index contrast acoustic waveguides. The introduction of penalty term resulted
in not only improved quality of acoustic modes but also eliminated spurious modes without
deteriorating the eigenvalues of the desired modes. The proposed penalty approach is tested for
both low and high index contrast acoustic waveguides, reported in following sections.

2. Spurious modes in optical solutions

The FEM is a powerful and versatile numerical method used for solving the electromagnetic
field problems in optical waveguides. The existence of spurious solutions in FEM based vector
formulations is often considered as a shortcoming of these formulations. These spurious modes
are only numerically generated solutions and have no physical significance and simply considered
as wrong solutions [21]. Although the existence of spurious solutions in electromagnetic field
problems was identified but little research was carried out in order to eliminate these solutions.
Konrad [22] first suggested that rigorous boundary condition can be imposed to eliminate the
spurious modes, however, the results were not satisfactory. Rahman and Davies proposed a novel
penalty method [17], used with the full-vectorial H field formulation to eliminate the spurious
modes in the optical modal analysis.

The full-vectorial optical formulation incorporating penalty method based on the minimization
of the full H-field energy functional [23] is given in Eq. (1).

ω2
o =

∫ ∫
[(∇ ×H)∗ · ε̂−1(∇ ×H) + α (∇ ·H)∗(∇ ·H)] dxdy∫ ∫

H∗ · µ̂H dxdy
(1)

Here, ωo is the angular frequency, ω2
o is the eigenvalue for the optical system of the equations, H

is the full-vectorial magnetic field component, * is used for the complex conjugate transpose, µ̂
and ε̂ are the permeability and permittivity tensors, respectively. Here, α is the penalty function
weighting factor to impose divergence free magnetic field to eliminate spurious modes.

This approach has been a successful and significant improvement was observed in the quality
of optical modes. However, in order to observe the light-sound interaction, the quality of
acoustic mode is also very important. In acoustic modal solution, these spurious solutions behave
differently and also depends on the type of modes and acoustic index contrast. In order to study
acoustic wave propagation in liquid, Winkler and Davies proposed an approach similar to Rahman
and Davies, where noticeable reduction of the spurious modes was noted [24]. They proposed to
restrict the flexibility of the problem by constraining it. Some improvement in the eigenvectors
of the physical modes along the reduction of spurious modes were noted. However, a very small
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mesh size, limited to only 24 triangular elements, was considered. Besides that, no study was
presented to observe the effect of penalty value on the modes in any acoustic waveguide.

3. Introduction of penalty term in acoustic modal solutions

The acoustic wave propagation along the z-direction is associated with the molecular displacement
and for a time harmonic acoustic wave the displacement field, Ui (in i=x, y and z directions) may
be written as in Eq. (2) [25];

Ui = u(ux, uy, juz)expj(ωa t−kaz) (2)

Here, ωa, is the angular acoustic frequency, ka, is the acoustic propagation constant and ux , uy ,
uz are particle displacement vectors along the x, y and z directions, respectively. Similarly, the
deformation in an acoustically vibrating body is described by the strain field, S, which is related
to the partial derivative of the particle displacements, u and can be written as in Eq. (3) [26];

S = ∇u (3)

The elastic restoring force can be written in terms of stress field and in a freely vibrating
medium the inertial elastic restoring forces are related to translation equation of motion and given
as [26, 27];

∇ · T = ρ∂
2u
∂t2 (4)

here, ρ is the material density. Solution of the aforementioned equation depends on the accurate
implication of the boundary condition,

u · n̂ = 0; n̂ is the unit vector (5)

and a constraint equation which describes that the rotational energy of the propagating wave is
zero.

∇ × u = 0 (6)

Strain and stress are linearly proportional according to Hooke’s Law and can be written as;

Ti j = ci jklSkl; i, j, k, l = x, y, z (7)

Here, ci jkl are the microscopic spring constants and termed as elastic stiffness constants. The
matrix form of the stiffness tensors can be written as

[T] = [c][S] (8)

The fundamental FEM based variational expression used in acoustic modal solution can be
obtained using strain displacement relation, equation of motion and stress strain relation, as given
in Eqs. (3)–(8), and can be written as [24];

ω2
a =

∫ ∫
[(∇ · U)∗ · [C] (∇ · U)] dxdy∫ ∫

U∗ · ρU dxdy
(9)

Here, ωa is the acoustic angular frequency, U is the displacement eigenvector, ρ and [C] are the
density of the material and elastic stiffness tensor, respectively. The above mentioned acoustic
wave equation can be reduced to a general eigenvalue equation [27]:

[A]U − ω2
a[B]U = 0 (10)
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The [A] matrix is known as the stiffness matrix, related to the strain energy and [B] matrix is the
mass matrix related to the kinetic energy. Here, ω2

a is the eigenvalue and the eigenvector U are
the unknown values of nodal displacements vectors.

The formulation given by Eq. (9) is considered to be sufficient for modeling of acoustic modes
in waveguides. However, this formulation also generates spurious solutions which not only effect
the desired mode quality but also introduce difficulty in recognizing the physical modes. To
eliminate these spurious modes, Eq. (9) can be modified by adding the two curl equations as
a penalty term. The augmented full-vectorial FEM based acoustic formulation is given by Eq.
(11). Here, the ∇ × U = 0 constraint on the displacement vector is introduced in a least squares
manner by a weighting factor, the penalty term, α, and this is used to control the elimination of
spurious solutions.

ω2
a =

∫ ∫
[(∇ · U)∗ · [C](∇ · U) + α (∇ × U)∗ · (∇ × U)] dxdy∫ ∫

U∗ · ρU dxdy
(11)

The curl-curl section of the augmented formulation enforces the acoustic field to suppress the
rotational energy of the propagating acoustic wave. An increasingly large penalty term makes the
Eq. (11) overpower to the shear mode. Therefore, the corresponding eigenvectors move towards
the longitudinal mode and results in the spurious free longitudinal modes. This formulation can
make a considerable improvement in the acoustic modal solutions by reducing or even eliminating
spurious modes along with a significant improvement in the eigenvector quality, as shown in the
following sections.

4. Effect of penalty term in low index contrast acoustic waveguide

4.1. Elimination of spurious modes

In order to study the effect of penalty term, first we have considered a low-index contrast single
mode optical fiber (SMF) with a core radius of 4.1 µm. The core consist of 6.24 %wt of GeO2
and 93.76 %wt of SiO2, whereas, cladding is taken as pure SiO2. The shear and longitudinal
acoustic velocities of the core are taken as as 3644.85 m/s and 5794.626 m/s, respectively.
Similarly for cladding, shear and longitudinal velocities are taken as 3760 m/s and 5970 m/s,
respectively [28]. The material density of core and cladding are considered as 2291.25 kg/m3

and 2201 kg/m3, respectively.
An in-house full-vectorial FEM based computer program for acoustic modal analysis based on

the formulation given in Eq. (11) has been developed. We have exploited the available two-fold
symmetry and only a quarter of the waveguide is simulated. This allows a much better mesh
refinement with given computer resources and also avoid degeneration of modes which have
identical eigenvalues [29, 30]. Besides, we have used polar mesh system which is more efficient
in the distribution of discretized triangular elements along the curved interface of a circular
waveguide [31].

Optical modal analysis has also been carried out for this SMF with the refractive indices of
the Ge-doped core and pure silica cladding are taken as 1.44905 and 1.444, respectively at the
optical wavelength of 1.55 µm. The propagation constant and effective index of the Hy dominant
fundamental optical LP01 mode are calculated as βop = 5.86205 rad/µm and ne f f = 1.446116,
respectively, at the operating wavelength of 1.55 µm. However, in order to observe the light-sound
interaction in optical waveguides the phase matching condition given in Eq. (12) should also be
satisfied [32, 33].

ka = 2 βopt (12)

Considering the phase matching condition given in Eq. (12) the acoustic propagation constant or
wave vector is calculated as ka=11.7241 rad/µm. Although, this fiber supports only a single
mode for quasi-TE or quasi-TM polarization, however can guide several acoustic modes depending
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Fig. 1. Reduction of spurious solutions with penalty (α) term for the Uz dominant LP01
acoustic mode in a SMF.

on the acoustic wavenumber. The phase matching condition can be fulfilled by multiple acoustic
modes having different acoustic velocities and frequencies. This results in the interaction of
the LP01 optical mode with not only the fundamental acoustic mode but also with other higher
order acoustic modes. The phase-matched fundamental longitudinal acoustic (LP01) mode with
dominant Uz vector is found at frequency 10.82414 GHz with its corresponding acoustic velocity
of 5800.8391 m/s. However, when a computer code using Eq. (9) is considered, in addition to
this fundamental longitudinal acoustic mode, unfortunately, many other non-physical modes were
also observed in the modal solutions. The existence of these spurious modes resulted in difficulty
to identify a particular mode of interest and multiple iterations were carried out in order to find
the correct mode. In addition to this, the original mode quality was also significantly affected by
the existence of spurious modes when no penalty term is used. Figure 1 shows the presence of a
single physical LP01 mode shown by a square and many other non-physical spurious modes by
crosses, respectively, with the increase in the penalty value (α). In each simulation run maximum
five eigenvalues were obtained. It can be observed that when α = 0, there are four spurious
modes (shown by crosses) in the vicinity along with only one physical mode (green square),
which is the fundamental longitudinal (LP01) acoustic mode in this case. However, when the
value of α is more than 1 × 105, the spurious modes vanish completely and the mode quality
also improves significantly. Moreover, it can also be observed that the frequency of fundamental
longitudinal mode at α = 1× 105 remains almost the same as that is obtained when α = 0. Effect
of penalty value on the eigenvalue accuracy is discussed later.

4.2. Improvement in the mode quality

Figure 2 shows the dominant and non-dominant vector displacement profiles of the fundamental
longitudinal acoustic LP01 mode when no penalty term was used (α = 0). The dominant Uz

displacement vector of the LP01 mode is only slightly affected by the presence of spurious
solutions, as shown in Fig. 2(c), but where a closer inspection shows small ripples in the contour
lines. However, the non-dominant displacement vectors Ux and Uy profiles shown in Figs. 2(a)
and 2(b), respectively, are more noisy than the dominant Uz vector profile. As in this case, the
magnitude of non-dominant displacement vectors Ux and Uy were 40 times smaller than that of
the dominant Uz vector, so the smaller non-dominant displacement vectors were more affected
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by the noise and are of significantly poor quality. Maybe because of such poor quality, nature of
non-dominant displacement vectors of acoustic modes has often not been discussed in published
reports. As the available two-fold symmetry of the fiber is exploited here, so only a quarter of the
structure is shown in Fig. 2. The Gaussian-like displacement vector profile of the dominant Uz

vector has the peak value at the center of the core and monotonically decreases along the radius of
the fiber. However, the non-dominant Ux displacement vector has maxima on the x-axis and zero
value along the y-axis as shown in Fig. 2(a). Similarly, the non-dominant Uy displacement vector
has maxima value along the y-axis and zero along the x-axis as shown in Fig. 2(b). However,
quality of these non-dominant components shown here is very poor.
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Fig. 2. Dominant and non-dominant displacement vector profiles of the fundamental
longitudinal LP01 acoustic mode for α = 0 where, (a) Ux , (b) Uy and (c) Uz contours,
respectively.

The possible reason for noise in the vector displacement profiles of longitudinal acoustic
modes is that, for a lower or zero value of α, the spurious modes with eigenvalues close to the
desired physical modes, which in this case is the LP01 mode, perturbed this truly physical mode.
When two eigenvalues are close then their eigenvectors can easily get mixed up during eigenvalue
solutions. However, after the introduction of the penalty term and choosing α = 1 × 105, the
eigenvalues of spurious modes are pushed away from the physical mode and results in a clean
mode profile, as shown in Fig. 3.
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Fig. 3. Dominant and non-dominant displacement vector profiles of the fundamental
longitudinal LP01 acoustic mode for α = 105, where, (a) Ux , (b) Uy and (c) Uz contours,
respectively.

It can be observed that the non-dominant Ux and Uy displacement vectors of LP01 acoustic
mode shown in Figs. 3(a) and 3(b), respectively, have significantly improved compared to
the mode profiles shown earlier in Fig. 2, without the use of a penalty term. This significant
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improvement in the mode quality not only provides a more accurate modal solution but also allows
us to understand the full-vectorial nature of these modes, their profiles and relative magnitudes
and if possible to exploit them. It also helps to utilize computer resources more efficiently by
reducing the multiple iterations often needed to refine individual modes.

Fig. 4. Variation of frequency with respect to change in the value of penalty term (α) for the
Uz dominant LP01 acoustic mode.

4.3. Effect of penalty and mesh density on modal solution

It is well known that the solution accuracy of FEM based modal solution is strongly dependent
on the discretized mesh elements. Hence, in our simulations, polar mesh is used and mesh
density was varied with different values of α. For our analyses we have used three different mesh
densities as low, medium, and high with 119800, 479600, and 1439400 first-order triangular
elements, respectively, to see the impact on the frequency shift with the penalty factor. The
frequency of the fundamental longitudinal mode is calculated as 10.823981 GHz, 10.824098
GHz, and 10.829219 GHz for a low, medium and high mesh densities, respectively, at α = 105.
Although, the variation in the frequency is little, however, we have used a moderate value of α to
avoid spurious modes along with a finer mesh for our subsequent simulations to achieve a higher
accuracy.
Figure 4 shows the effect on frequency when the penalty term, α increases from 1 × 106 to

a very higher value in the order of 1 × 1011. It can be noted that the frequency did not change
significantly up to 1 × 106 and so not shown here. However, when the penalty factor is increased
more to observe its behavior on the frequency, it can be noticed that the acoustic frequency
increases. This increase in frequency is also strongly related to the density of mesh distribution
used. When a more dense mesh is used, the increase is less as compared to a relatively coarse
mesh division. This is due to the fact that higher mesh distribution is more accurate than the
lower mesh. For this reason, we have used a much refined mesh distribution for our modal
solutions to achieve a higher accuracy.

4.4. Effect of penalty term on higher order longitudinal modes

As mentioned earlier that for a given optical mode, the phase matching condition given by Eq.
(12) may be satisfied by multiple acoustic modes. Which suggest that several acoustic modes can
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interact with the fundamental optical mode in a SMF and hence it is also necessary to study these
higher order acoustic modes. To observe the impact of penalty term we have also simulated some
higher order acoustic modes and the results clearly demonstrate highly improved eigenvectors
similar to that of the fundamental acoustic mode, shown earlier in Fig. 3.

(a) LP02 (b) LP41

Fig. 5. Dominant Uz displacement vector contours of higher order longitudinal acoustic
modes for α = 0.

(a) LP02 (b) LP41

Fig. 6. Dominant Uz displacement vector contours of higher order longitudinal acoustic
modes for α = 105.

Figures 5(a) and 5(b) show the dominant Uz vector profiles of two higher order LP02 and LP41
longitudinal acoustic modes, respectively for α = 0. Variation of displacement vector profile
of these modes along the fiber radius are also shown as insets. The ripples in contour plots of
the displacement vector clearly show that the higher order mode profiles are also considerably
affected by the presence of spurious modes. It can be noted that, even quality of this dominant
component of higher order mode is poor compared that of the fundamental LP01 acoustic mode,
shown in Fig. 2(c). The quality of their non-dominant displacement vector profiles was even
worse than that of LP01 acoustic mode and not shown here. However, the introduction of penalty
term in acoustic formulation resulted in much smooth contour plots of these two higher order
LP02 and LP41 acoustic modes and these are as shown in Fig. 6. Variations of their displacement
vectors along the radius of the fiber are also shown as the insets in Fig. 6.

Table 1 shows the frequency shift and longitudinal velocities of fundamental and higher order
longitudinal modes for α = 0 and α = 105. It can be observed that there is only a small change in
these values which indicate the accuracy of the modal solutions are not affected when the penalty
terms are used.
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Table 1. Effect of α on frequency shift and longitudinal velocities of the fundamental and
higher order longitudinal acoustic modes.

Mode
Without penalty (α=0) With Penalty (α=105)

Frequency
shift
(GHz)

Longitudinal
velocity
(m/s)

Frequency
shift
(GHz)

Longitudinal
velocity
(m/s)

LP01 10.8241 5800.8391 10.8240 5800.8257
LP02 10.8732 5827.1568 10.8730 5827.059
LP41 10.9265 5855.7582 10.9275 5856.277
LP03 10.9593 5873.2883 10.9591 5873.1817

5. Effect of penalty term in high index contrast acoustic waveguide

Recently, SBS based nanowire structures are also being considered for many exotic photonic
devices, such as microwave photonic filters [34], resonators [35] and on-chip high-performance
optical signal processing [36,37]. Acoustic modes in high index contrast acoustic waveguides
are even more complex than in a low index contrast optical fiber. The magnitudes of their
non-dominant displacement vectors are higher and displacement vector profiles often have
stronger spatial variations. In order to observe the effect of penalty term in such nano-structures,

(a) (b)

Fig. 7. (a) The dominant Uz vector displacement of a highly hybrid mode and (b) is the
variation along the x-axis, when α = 0.

(a) (b) (c)

Fig. 8. (a) The non-dominant Ux vector displacement profile of a highly hybrid longitudinal
mode (b) the variation of Ux displacement vector along the x-axis when α = 0, and (c) when
α = 100.

next, we have considered a high index contrast air-clad silicon nanowire for modal solutions.
Here, we have considered a suspended silicon nanowire with its width and height being 450 nm
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and 230 nm, respectively. The acoustic shear and longitudinal velocities of silicon are taken as
Vs = 5840 m/s, Vl = 8433 m/s, respectively. Similarly, the longitudinal velocity of air is chosen
as 340 m/s while the shear velocity is zero. The material densities of silicon and air are taken
as ρsi=2331 kg/m3 and ρair=1.29 kg/m3, respectively. Moreover, the phase matched acoustic
propagation constant is calculated as ka = 18.47796 rad/µm.

The contour plot of the dominantUz displacement vector of a highly hybridmode at f = 24.8012
GHz and V = 8433.3184 m/s, is shown in Fig. 7(a). The dominant Uz displacement vector
profile of this longitudinal acoustic mode has a reasonably clean profile without the penalty term.
However, still poor quality contour lines can be clearly observed just outside the core as shown
in Fig. 7(a). From the dominant Uz vector displacement profile along the x-axis, shown in Fig.
7(b), it can be observed that the amplitude nearly constant inside core but with a superimposed
sinusoidal like variation and reduces rapidly to zero value with damping oscillations at the core
and cladding interfaces.

However, the non-dominantUx andUy vector displacement profiles with their small magnitudes
are more susceptible to the existence of the spurious modes. Figure 8(a) shows the contour plot
of the non-dominant Ux vector displacement profile of this highly hybrid mode without the use
of a penalty term. The non-dominant Ux vector has almost constant magnitude along the y-axis,
but with two positive and two negative peaks along the x-axis. Its variation along the x-axis is
shown in Fig. 8(b). Two positive and two negative peaks are visible but very noisy oscillations
outside the core is also clearly visible in Fig. 8(b) when no penalty term is used. However,
with the introduction of penalty value (α = 100), the vector displacement profiles is improved
significantly and damped oscillations at the two interfaces are clearly visible, as shown in Fig.
8(c). It can also be noted that for this high-index contrast waveguide, non-dominant vectors are
relatively large (here 1/10th) compared to a low index contrast SMF (1/40th only), shown earlier.
It should be noted that non-dominant displacement vectors of a high index contrast acoustic
waveguide are high and a full-vectorial acoustic analysis should be necessary.

The penalty term is mainly used to eliminate the spurious solutions and to improve the accuracy
of the acoustic modal solution. Hence, it has very little effect on the acoustic mode’s frequency
and velocity of propagation. The optimum value of the penalty term for both low and high index
contrast waveguides is obtained by ‘trial and error’ method. The value is increased from zero
to a higher value in both low and high index contrast waveguides until all spurious modes are
removed. It is observed that for a low index contrast waveguides the penalty value needs to be
higher such as α = 105 and for low index contrast a low value of α = 100 is sufficient to eliminate
the spurious modes.

6. Conclusion

A new full-vectorial finite element method based formulation is proposed here to suppress
spurious modes for both low index and high index contrast acoustic waveguides. The FEM
based vector formulation is not only more accurate but essential to study high index contrast
waveguides. However, the existence of spurious solutions often deteriorates the quality of a
physical mode. A penalty function, incorporating curl equation is used in order to eliminate
these unwanted spurious modes. Effect of full-vectorial nature of the acoustic modes can only be
studied through accurate characterization of the dominant and non-dominant displacement vector
profiles. Our proposed method clearly demonstrated the significant improvement in the quality
of the mode profiles. The spurious modes have been totally removed for low index contrast SMF
and also for high index contrast waveguides. Our proposed penalty method results in improving
the mode quality which will be useful to study complex light-sound interaction by employing the
full-vectorial mode profiles in optical waveguides for many potential applications and optimize
their performances.

                                                                                                Vol. 27, No. 8 | 15 Apr 2019 | OPTICS EXPRESS 10909 



References
1. A. Yeniay, J. M. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical

fibers,” J. Lightwave Technol. 20(8), 1425 (2002).
2. H. L. Bras, M. Moignard, and B. Charbonnier, “Brillouin scattering in radio over fiber transmission,” in National

Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 20017), paper JWA86.
3. J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tunnermann, “The rising

power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
4. M. J. Li, X. Chen, J. Wang, A. B. Ruffin, D. T. Walton, S. Li, D. A. Nolan, S. Gray, and L. A. Zenteno, “Fiber

designs for reducing stimulated Brillouin scattering,” in Optical Fiber Communication Conference (Optical Society
of America, 2006), p. 3.

5. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra large effective area,
higher order mode fibers: a new strategy for high power lasers,” Laser Photonics Rev. 2(6),429–448 (2008).

6. M. D. Mermelstein, S. Ramachandran, J. M. Fini, and S. Ghalmi, “SBS gain efficiency measurements and modeling
in a 1714 µm2 effective area LP08 higher-order mode optical fiber,” Opt. Express 15(24), 15952–15963 (2007).

7. S. Gray, D. T. Walton, X. Chen, J. Wang, M-J. Li, A. Liu, A. B. Ruffin, J. A. Demeritt, and L. A. Zenteno,
“Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power,
single-frequency sources,” IEEE J. Sel. Top. Quantum Electron. 15(1), 37–46 (2009).

8. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Enhanced simultaneous distributed strain and temperature fiber
sensor employing spontaneous Brillouin scattering and optical pulse coding,” IEEE Photonics Technol. Lett. 21(7),
450–452 (2009).

9. L. Thevenaz, M. Nikles, A. Fellay, M. Facchini, and P. Robert, “Truly distributed strain and temperature sensing
using embedded optical fibers,” Proc. SPIE 3330, 301–314 (1998).

10. K. Y. Song, K. S. Abedin, K. Hotate, M. G. Herraez, and L. Thevenaz, “Highly efficient Brillouin slow and fast light
using As2Se3 chalcogenide fiber,” Opt. Express 14(13), 5860–5865 (2006).

11. T. Schneider, “Time delay limits of stimulated-Brillouin-scattering-based slow light systems,” Opt. Lett. 33(13),
1398–1400 (2008).

12. G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8(3),
203–207 (2012).

13. S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML
boundary conditions,” Opt. Quantum Electron. 33(4), 359–371 (2001).

14. W. W. Zou, Z. Y. He, and K. Hotate,“Two-dimensional finite element modal analysis of Brillouin gain spectra in
optical fibers,” IEEE Photon. Technol. Lett. 18(23), 2487–2489 (2006).

15. C. Wolff, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Stimulated Brillouin scattering in integrated photonic
waveguides: Forces, scattering mechanisms, and coupled-mode analysis,” Phys. Rev. A. 92(1), 013836 (2015).

16. S. Dasgupta, F. Poletti, S. Liu, P. Petropoulos, D. J. Richardson, L. Gruner-Nielsen, and S. Herstrom, “Modeling
Brillouin gain spectrum of solid and microstructured optical fibers using a finite element method,” J. Lightwave
Technol. 29(1), 22–30 (2011).

17. B. M. A. Rahman and J. B. Davies, “Penalty function improvement of waveguide solution by finite elements,” IEEE
Trans. Microw. Theory Tech. 32(8), 922–928 (1984).

18. M. Koshiba, “Optical waveguide theory by the finite element method,” IEICE Trans. Electronics 97(7), 625–635
(2014).

19. W. Zou, Z. He, and K. Hotate, “Acoustic modal analysis and control in W-shaped triple-layer optical fibers with
highly-germanium-doped core and F-doped inner cladding,” Opt. Express 16(14), 10006–10017 (2008).

20. Y. S. Mamdem, E. Burov, L. A. de Montmorillon, Y. Jaouen, G. Moreau, R. Gabet, and F. Taillade, “Importance of
residual stresses in the Brillouin gain spectrum of single mode optical fibers,” Opt. Express 20(2), 1790–1797 (2012).

21. D. Sun, J. Manges, X. Yuan, and Z. Cendes, “Spurious modes in finite-element methods,” IEEE Antennas Propag.
Mag. 37(5), 12–24 (1995).

22. A. Konrad, “Vector variational formulation of electromagnetic fields in anisotropic media,” IEEE Trans. Microw.
Theory Tech. 24(9), 55–559 (1976).

23. B. M. A. Rahman and A. Agrawal, Finite Element Modeling Methods for Photonics (Artech House, 2013).
24. J. R. Winkler and J. B. Davies, “Elimination of spurious modes in finite element analysis,” J. Comput. Phys. 56(1),

1–14 (1984).
25. P. E. Lagasse, “Higher–order finite–element analysis of topographic guides supporting elastic surface waves,” J.

Acoust. Soc. Am. 53(4), 1116–1122, (1973).
26. B. A. Auld, Acoustic Fields and Waves in Solids, Vol. 2 (Ripol Classic, 1973).
27. S. Sriratanavaree, B.M. A. Rahman, D.M. H. Leung, N. Kejalakshmy, and K. T. V. Grattan, “Rigorous characterization

of acoustic-optical interactions in silicon slot waveguides by full-vectorial finite element method,” Opt. Express
22(8), 9528–9537 (2014).

28. I. C. M. Littler, L. B. Fu, E. C. Magi, D. Pudo, and B. J. Eggleton, “Widely tunable, acousto-optic resonances in
chalcogenide As2Se3 fiber,” Opt. Express 14(18), 8088–8095 (2006).

29. S. Virally, N. Godbout, S. Lacroix, and L. Labonte, “Two-fold symmetric geometries for tailored phasematching in
birefringent solid-core air-silica microstructured fibers,” Opt. Express 18(10), 10731–10741 (2010).

30. M. Koshiba and K. Inoue, “Simple and efficient finite–element analysis of microwave and optical waveguides,” IEEE

                                                                                                Vol. 27, No. 8 | 15 Apr 2019 | OPTICS EXPRESS 10910 



Trans. Microw. Theory Tech. 40(2), 371–377 (1992).
31. A. Kumar, V. Rastogi, A. Agrawal, and B. M. A. Rahman, “Birefringence analysis of segmented cladding fiber,”

Appl. Opt. 51(15), 3104–3108, (2012).
32. P. Dainese, P. S. J. Russell, N. Joly, N., J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif,

“Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,”
Nat. Phys. 2(6), 388 (2006).

33. A. Gulistan, M. M. Rahman, S. Ghosh, and B. M. A. Rahman, “Tailoring light-sound interactions in a single mode
fiber for the high-power transmission or sensing applications,” Proc. SPIE 10714, 1071403 (2018).

34. A. C. Bedoya, B. Morrison, M. Pagani, D.Marpaung, and B. J. Eggleton, “Tunable narrowband microwave photonic
filter created by stimulated Brillouin scattering from a silicon nanowire,” Opt. Lett. 40(17), 4154–4157 (2015).

35. R. Zhang, J. Sun, G. Chen, M. Cheng, and J. Jiang, “Demonstration of highly efficient forward stimulated Brillouin
scattering in partly suspended silicon nanowire racetrack resonators,” Appl. Phys. Lett. 111(3), 031102 (2017).

36. R. Pant, C. G. Poulton, D. Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. L. Davies, S. J. Madden, and B. J.
Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19(9), 8285–8290 (2011).

37. M. S. Kang, A. Butsch, and P. St. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal
fiber,” Nat. Photonics 5(9), 549–553 (2011).

                                                                                                Vol. 27, No. 8 | 15 Apr 2019 | OPTICS EXPRESS 10911 




