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Abstract

This thesis examines the influence of moment-resisting supports on the behaviour of concrete-steel
composite perforated beams using custom pre- and post-processing software through a parametric
FE investigation.

The use of moment-resisting supports is beneficial in decreasing the maximum midspan de-
flection and the bending moment carried by a beam. Currently, design guidance for composite
perforated beams focuses on simple supports, leaving open the potential benefits of using fixed or
partially-fixed supports for further investigation. For the investigation, due the number of param-
eters it encompasses, several software packages were developed. This software allowed extensive
automation of the work-flow from the mesh generation to the data processing by minimising the
required user input. Additionally, the pre-processor allows the customisation of the FE model be-
yond the capabilities available to the user via the FE program interface, while the post-processor
enables a detailed investigation of the FE results. The software capabilities were validated against
physical experiments available from the literature for non-composite and composite cases. Follow-
ing this, a series of parameters were examined in order to establish the influence of each on the
beam capacity for various support conditions. In addition, transitional behavioural values for each
of the investigated parameters are established, identifying when a failure mode change occurs for
each support type. Finally, the FE results were processed further and compared directly against
available literature by extracting the nodal forces and moments for each of the beams to establish
the internal force distribution. This allowed the investigation of various failure modes in greater
detail and bypassed the simplifying behavioural assumptions required when calculating the internal
forces for these structural systems. It was shown that these algorithms can be used as a basis to
extend the guidance to cover moment-resisting design and examine the various failure modes in
greater detail.
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Glossary

batch A group of FE models, usually investigating a single parameter.

cell The region of the perforated beams consisting of a zone bordered by the adjacent half web-
posts (shown graphically in fig. 2.3). It is normally a regular subdivision of the beam with
the exception usually being the initial perforation which has a mutable end-post width,
depending on the initial spacing.

extrude The process by which a series of mesh nodes are generated at chosen locations along an
axis by varying one of the nodes’ coordinates and storing the new nodes.

feature modifications defined on the model geometry by the user that instruct ABAQUS to modify
the mesh accordingly.

microplane A predefined virtual plane used in the M7 model, onto which the applied strain can
be decomposed and applied. These resolved strain components have simplified nonlinear re-
lationships with the corresponding microplane stresses. There are typically 21+ microplanes
at a material point.

model The collection of arrays, constants and other data structures stored in Matlab in the course
of the mesh generation procedure which could be used to produce an input file (or similar)
for an FE program.

seed The information required to subdivide a region, such as an edge, into mesh node locations.

set A group of batches.

slice Slices refer to the sections for a tee from the edge of the perforation to the edge of the cell
(either the face of the flange or the interface between two cells at the web-post) or the vertical
sections for the slab and reinforcement. This is shown graphically in fig. 2.14.

throat This, in the context of a web-post & steel beam tees, refers to the narrowest part of the
component (at angles ϕ = 180 or 0 for the web-post before or after a perforation & ϕ = 90
for the top and ϕ = 270 for the bottom tee).
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Acronyms

API Application Programming Interface.

CA Cell Array.

EPP Elastic, Perfectly Plastic.

FE Finite Element.

FEA Finite Element Analysis.

GUI Graphical User Interface.

HMS High Moment Side.

LE Linear Elastic.

LHS Left-Hand Side.

LMS Low Moment Side.

LPF Load Proportionality Factor.

MEP Mechanical, Electrical, Plumbing.

N-R Newton-Raphson.

NA Neutral Axis.

PNA Plastic Neutral Axis.

RHS Right-Hand Side.

SLS Serviceability Limit State.

UDL Uniformly Distributed Load.

ULS Ultimate Limit State.

UMAT User MATerial.

VUMAT Vectorised User MATerial.
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Key Symbols

Af flange area.

Asl area of tensile reinforcement for concrete
crack control.

Aw web area.

D steel beam total depth, m..

E Young’s modulus.

L beam span.

MRd bending moment resistance of a compo-
nent.

Mel,Rd elastic bending moment resistance.

Mo,Rd bending moment at the perforation cen-
treline.

Mpl,Rd plastic bending moment resistance.

NEd axial force.

NRd axial force resistance.

Nc,Rd axial force concrete slab resistance.

Npl,Rd axial force plastic resistance in tee.

VEd vertical shear.

Vc,Rd concrete slab shear resistance.

Vpl,Rd plastic shear resistance in the steel.

Vwp,Rd web-post longitudinal shear resistance.

Wpl plastic section modulus.

λ̄ web-post slenderness.

χ buckling resistance reduction factor.

ϵ strain.

γM0 partial resistance factor for steel compo-
nents.

µ shear utilisation ratio.

ϕ the angle measured from the positive x-axis
counter-clockwise about the z-axis.

σ stress.

θ the angle measured for the top tee from ϕ = 90
and for the bottom tee from ϕ = 270 as
counter-clockwise positive.

beff,o effective slab width at the perforation
centre.

bf flange width, m..

bw effective width of concrete flange for shear.

d circular perforation diameter (in m. unless
otherwise stated).

ds slab depth, m..

fcd concrete design strength.

fck concrete cylinder strength.

fudl,norm FE UDL output for a given load
state (first yield, SLS or peak) normalised
against the equivalent plain web UDL at
failure using simple supports (see § 4.7).

fv steel shear strength.

fy steel yield strength.

h steel beam depth.

heff distance between the top and bottom tee
centroids.

ho perforation depth.

hs,eff effective concrete slab depth for punching
shear.

hs total slab depth.

hw web height.

lbd design anchorage length of tensile reinforce-
ment.

lc effective length.

lo effective perforation opening.

lw web-post buckling length.

no number of perforations in the beam web.

nsc,o number of studs from the support to the
perforation centre.
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s perforation spacing, m..

sini initial web-post width (or end-post width),
m..

so edge-to-edge web-post width.

sw web-post width, = s− d, m..

tf flange thickness, m..

tw,eff effective web thickness.

tw web thickness, m..

wadd additional displacement due to one or
more perforations.

wb deflection of equivalent unperforated beam.

zel depth of tee centroid from the flange face.

zpl depth of tee plastic neutral axis from the
flange face.
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Chapter 1

Introduction

Perforated steel beams have been in use within structural frames for decades1 and are mainly used
to incorporate services (such as electric cables, drainage pipework and other ducts) in a building
without compromising height clearance, as shown in fig. 1.1. A perforated beam is manufactured
to have a series of openings in its web, either by cutting the openings into the web or by cutting a
smaller depth section and welding it to form a deeper one. Various perforation shapes can be used,
such as rectangular, hexagonal, circular or elliptic (Tsavdaridis and D’Mello 2012; K. F. Chung
et al. 2003).

Figure 1.1: By using perforated beams, Mechanical, Electrical, Plumbing (MEP) services can be
readily incorporated within the floor depth (from https://www.steelconstruction.info (n.d.))

The increase in adoption, as a result of their utility, drove research into their behaviour in order
to optimise the overall design, particularly since their implementation could lead to significant
reinforcement2 costs around the opening, as shown in R. Redwood and Cho (1993). This is due to
the reduction of shear and moment capacity near the openings as well as the introduction of the
’Vierendeel’ type mechanism as a failure mode (K. Chung et al. 2001).

The use of perforations in non-continuous composite beams led to further improvements of this
structural system. This research became the basis of the design guidance used at the time, such as

1For those interested in the history of castellated beams since their inception, see Knowles (1991)
2Perforation reinforcement is in the form of horizontal stiffener plates welded to the web or rings welded in the

perforation, which improve the vertical shear transfer across the perforation due to the locally increased moment
capacity (Lawson and Hicks 2011)
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the Steel Construction Institute’s (SCI) publications P068 (Lawson 1987) and P100 (Ward 1994).
The guidance was later expanded in SCI’s P355 (Lawson and Hicks 2011) to cover cases which
incorporated the following:

• asymmetric sections

• slender webs

• openings with a significant length
depth ratio

• asymmetric opening positions in the web

• openings formed by removing an intermediate web-post

Initially, the beams were considered simply as two contributing tee sections. This approach
was proven to be inadequate, primarily due to four-corner bending (or Vierendeel) developing over
the perforation length (Knowles 1991) leading to a significant understimation of the stresses and
displacement at the perforations. Due to the characteristic form at failure, four-corner bending
is generally referred to as Vierendeel bending. In this document, failure exhibiting four-corner
bending will generally be referred to as Vierendeel-type.

When subjected to vertical loading, commonly from a floor slab, horizontal perforated steel
beams can exhibit the following failure modes (Kerdal and Nethercot 1984):

• Vierendeel-type mechanism

• lateral-torsional buckling of one or more web posts

• web-post buckling failure

• rupture of the weld at a web post

• lateral-torsional buckling of the beam

• flexural failure

A perforated beam is designed as an assemblage of structural members (ibid.). There are two
main approaches used during design as shown in K. F. Chung et al. (2003):

• Tee-section approach: the analysis considers the global actions on the beam as a series of
local moments and forces at the opening

• Perforated section approach: the beam is designed considering the opening as the critical
part of the beam and, often, shear-moment interaction curves are used

A disadvantage of using these analytical methods (tee-section and perforated section approaches
or similar) is that the resulting prediction may not be representative of the actual behaviour that
would occur, due to the simplifications necessary to make analytical methods a routinely useable
tool. This was the case in the work reported by Srimani and Das (1978) where it was found that
while deflections could be accounted for, stresses were not in close agreement to the equivalent
analytical results.

The use of implicit Finite Element Analysis (FEA) thus became widespread since it provides
a more complete view of the nonlinear stress state developing in the depth of the beam alongside
ensuring equilibrium (K. Chung et al. 2001; Tsavdaridis and D’Mello 2012; Srimani and Das 1978;
Oostrom and Sherbourne 1972; K. F. Chung et al. 2003). Note that in older studies, the limited
computational capabilities often led to disagreement with tests, a problem that should be more
easily overcome with modern hardware.
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FEA results show that while the various parameters describing the perforation geometry have
an impact on the beam shear and moment capacity, it is the critical length that has the greatest
effect due to the emergence of the Vierendeel-type mechanism (T. C. H. Liu and K. F. Chung
2003), particularly for large perforations (Tsavdaridis and D’Mello 2012).

Thus, steel perforated beams’ range of behaviour is understood to be governed by three actions:
global bending, global shear and local Vierendeel actions (K. F. Chung et al. 2003) and this range
can be adequately captured using FEA.

In Lawson, K. F. Chung, et al. (1992) it was shown that simply supported composite cellular
beams are also largely dependent on the development of Vierendeel type mechanisms and the
conclusions from this study show significant similarities to failure results from non-composite beam
research, indicating that the main failure types are:

• pure vertical shear failure due to the reduced steel section

• tension failure at the bottom of the steel section

• Vierendeel-type mechanism formation at an opening

These relate to the failure types reported for steel perforated beams due to global shear action,
global moment action or the effect of local bending at the openings (R. Redwood and Cho 1993).
However, the addition of a reinforced concrete slab and the consequence of composite action at the
top of the beam leads to an increase in both shear and moment resistance (R. Redwood and Cho
1993; Darwin and Donahey 1988). This suggests that the failure would now be centred around new
critical components such as the bottom steel tee tensile resistance, shown in Lawson, K. F. Chung,
et al. (1992), or the stud head strength and ductility, as shown in Wang and K. Chung (2008). The
composite behaviour (and therefore the concrete behaviour) must then be modelled appropriately
in order to reveal the mechanisms governing failure, both near the perforations where shear stud
mobilisation is expected and the redistribution of forces during slippage among adjacent studs
(ibid.).

Therefore, in order to capture some of these aspects, which would be difficult to observe ex-
perimentally (Queiroz et al. 2007), the use of finite elements is commonly used as the basis for
design (K. F. Chung et al. 2003). By making use of finite elements, the behaviour in the section
and in the concrete can be examined in greater detail, allowing an examination of the behaviour
in locations of complex stress states, such as those that exist close to the shear studs.

There is a lack of literature regarding the behaviour of composite perforated beams using
semi-rigid composite connections to steel columns. In Fu et al. (2007) it is demonstrated that
finite element analysis could adequately capture the behaviour of semi-rigid composite beam-steel
column connections. Therefore a similar approach can be taken when modelling the similar, albeit
more complex, behaviour of composite cellular beams using moment resisting connections. An
additional consideration is that relatively simple constitutive models for concrete were used in the
past (Fu et al. 2007; Tsavdaridis and D’Mello 2012) and the introduction of a more sophisticated
concrete constitutive model could provide insight to the behaviour of concrete near components
such as the shear stud heads or adjacent to the steel-concrete interface near the openings.

The work by Wang and K. Chung (2008) arguably represents the current state of the art for
composite perforated beam analysis. However, simple supports where used and therefore only sag-
ging moment, without considering the effect of the perforations near the connection. Additionally
a modified version of the ABAQUS model described in § 1.6.1.1 was used in Wang and K. Chung
(ibid.), which is suitable for mainly monotonic loading, see fig. 1.2.

9



Figure 1.2: Concrete model used in Wang and K. Chung (2008). Left shows the idealised uni-
axial tension and compression stress-strain relationships, whereas the right shows the peak stress
envelope for biaxial loading.

While P355 can be used to design a wide range of composite and non-composite perforated
beams, there is no provision for the design of beams incorporating moment-resisting supports. The
advantages of using continuous beams are well established, particularly with regards to the reduc-
tion in the moment carried by the beam and the subsequent reduction in deflection. Alternatively,
lighter sections may be used for the same load case. This could reduce the cost of the project,
when a large number of perforated beams are used. As of writing, there is no guidance which an
engineer can refer to in order to design a composite perforated beam utilising moment-resisting
connections.

1.1 Aims and objectives

The primary aim of this project is to examine and quantify the influence of a wide range of
geometric parameters on the beam behaviour for boundary conditions ranging from simple to fully
fixed supports.

The primary project aims can be summarised:

• Investigate the influence of various boundary conditions and key parameters on the beam
behaviour.

• Examine the influence of the concrete material on the beam behaviour.

• Test the limits of current design guidance.

This is be done by:

• developing software that will facilitate an extensively automated parametric study with the
chosen FE package (ABAQUS)

• conducting a qualitative and quantitative FEA study of the influence of the various param-
eters on the beam behaviour with a primary focus on the geometry of the perforated beam

• developing new methods to calculate the internal forces and moments using data obtained
from the FEA

• implementing an advanced material model for use in large scale FE analyses

• using FEA to explore cases not adequately covered in literature or guidance
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1.2 Project structure

The project structure is as follows:

• In chapter 1 the current guidance for the design of perforated beams is examined alongside
key material constitutive models.

• chapter 2 presents the pre- and post-processing packages developed for this project.

• chapter 3 discusses the implementation of the M7 microplane model for concrete and ex-
amines its behaviour (uniaxial and multiaxial) for several sets of material parameters.

• In chapter 4 the results of the numerical investigation (including validation) are presented
and compiled for each boundary condition type: simply supported, fixed endplate and fully
fixed.

• chapter 5 builds on the results from the numerical investigation in chapter 4, compares
against current guidance and investigates the beam behaviour locally (primarily examining
the internal forces).

• chapter 6 provides a summary of each chapter and key observations in addition to potential
further work.

1.3 A review of the perforated beam design literature

The current design guidance contained in P355 (Lawson and Hicks 2011) is compatible with and
supplementary to Eurocodes 3 & 4 given that there is, as of writing, no amendment to cover the
design of such beams. P355 covers the following:

• beams fabricated from hot-rolled sections and plates

• symmetric and asymmetric sections3

• steel sections with Class 1, 2 and 3 flanges and Class 1, 2, 3 and 4 webs

• symmetric and asymmetric perforation placement

• circular, rectangular and elongated circular openings

• widely and closely-spaced openings

• cellular beams with uniform web thickness

• notched beams

P355 does not, however, cover:

• significantly asymmetric sections (web and flange asymmetry)

• composite and noncomposite continuous beams or beams with any moment resistance at the
supports

In addition, the P355 guidance deviates from the practice found in P100 whereby the Vierendeel,
or four-corner, type failure is considered at an angle through the perforation tee. Instead, P355
advises the calculation of the tee moment resistance using its unadjusted, vertical section geometry.

3With a maximum bottom to top flange area ratio of less than 3 to 1.
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1.3.1 Perforated beam capacities according to P355

P355 provides guidance on the design of simply supported composite and non-composite beams
such that the beam is able to, at the Ultimate Limit State (ULS):

• resist flexural failure at the maximum moment (midspan)

• provide adequate shear connection at the slab-flange interface in composite cases

• resist shear failure at the supports

• resist bending-shear (or flexural-shear) failure along the beam length

• resist local failure at connections and under point loads

• provide adequate tranverse shear reinforcement

Some of these failure modes are represented graphically in fig. 1.3. In addition, it is designed
to adhere to the Serviceability Limit State (SLS) rules covering:

• deflection due to imposed loads

• total deflection including the effect of self-weight

• vibration requirements, which are not examined in this project

Figure 1.3: Web perforations introduce a number of failure modes that must be considered (Lawson
and Hicks 2011)
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1.3.1.1 Four-corner or Vierendeel resistance

Figure 1.4: Vierendeel bending is referred to as such due to the two tees at a perforation bending
as a moment resisting frame with the tees being the equivalent to the frame’s horizontal beams
and the web or web-posts being the equivalent to the vertical columns. In this figure from Kerdal
and Nethercot (1984), (a) shows the entire beam with the failure visible on the right-hand side
while (b) shows a close-up of the failure mode.

Vierendeel resistance (see fig. 1.4 for the characteristic failure shape) is considered as the summation
of the bending resistances of the four corners in a perforation, two for each tee.

2MbT,NV,Rd + 2MtT,NV,Rd +Mvc,Rd ≥ VEdle (1.1)

where MbT,NV,Rd, MtT,NV,Rd and Mvc,Rd are the contributions from the bottom tee, top tee
and concrete slab respectively. These contributions must be sufficient to resist the moment caused
by the vertical shear VEd being transferred across an opening of effective length le. The vertical
shear in this calculation is from the lower moment side.

The bending resistance of the tees depends on their classification and must account for the
vertical shear and any coexisting axial forces.

Plastic bending resistance of a tee The plastic bending resistance of a tee (either top or
bottom and assuming that the Plastic Neutral Axis (PNA) is in the flange) can thus be calculated:

Mpl,Rd = Aw,T fy

γM0
(0.5hw,T + tf − zpl) + Affy

γM0
(0.5tf − zpl +

z2
pl

tf
) (1.2)

where Aw,T , Af are the tee web and flange areas, hw,T and tf are the height of the tee web and
flange thickness respectively. The plastic resistance for a tee must then be reduced for the cases
including a coexisting axial force, for class 1 or 2 sections:
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Mpl,N,Rd = Mpl,Rd

(
1 −

(
NEd

Npl,Rd

)2
)

(1.3)

Additionally, the shear carried by the section must also be accounted for by applying a further
reduction to the bending resistance by using the reduced web thickness in 1.2 as given by:

tw,eff = tw(1 − (2µ− 1)2) for cases where µ ≥ 0.5 (1.4)

µ = VEd

VRd
(1.5)

Elastic bending resistance of a tee The elastic bending resistance of a tee is covered for
Class 3 or 4 (in compliance with Class 3 limits when using the effective section) tees. The bending
resistance is thus:

Mel,Rd = Aw,T fy(0.5hw,T + tf − zel)2 +Affy(zel − 0.5tf )2

hw,T + tf − zel
(1.6)

where

zel = Aw,T (0.5hw,T + tf ) + 0.5tfAf

Af +Aw,T
(1.7)

The elastic bending resistance must be reduced, if there is a coexisting axial force, using the
following:

Mel,N,Rd = Mel,Rd

(
1 −

(
NEd

NRd

)2
)

(1.8)

With elastic analysis, shear reductions to the bending capacity are ignored as long as the global
vertical shear resistance is satisfied.

Concrete slab bending contribution The concrete slab, working alongside the top tee com-
positely, has a contributing effect to the local perforation resistance to Vierendeel-type failure.
This contribution is limited by the force that can be carried by the studs in the slab:

Mvc,Rd = ∆Nc,Rd(hs + zt − 0.5hc)ko (1.9)

∆Nc,Rd = nsc,oPRd (1.10)

∆Nc,Rd is the force carried by the number of studs, nsc,o, from the support to the opening
centreline. In general, P355 does not consider the influence of the concrete strength for this
calculation and relies only on the number of studs and their flexibility (see Lawson and Hicks
(2011, sec. 3.4.6)).

1.3.1.2 Flexural resistance at an opening

The flexural resistance of a beam at the centreline of a perforation is calculated by first determining
the position of the PNA using equilibrium.
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PNA in the slab, Nc,Rd > NbT,Rd In the cases where the bottom tee tensile resistance, NbT,Rd,
is smaller than the concrete slab compression resistance, Nc,Rd, the PNA is assumed to lie in the
slab.

Nc,Rd = min (0.85fcdbeff,ohc , nscPRd) (1.11)

The plastic bending resistance can thus be calculated:

Mo,Rd = NbT,Rd(heff + zt + hs − 0.5zc) (1.12)

where heff is the length between the tee centroids, zt is the depth of the top tee centroid from
the flange face and the depth of concrete in compression is calculated by using:

zc = Nc,Rd

0.85fcdbeff,o
≤ hc (1.13)

PNA in the top tee, Nc,Rd < NbT,Rd In the cases where the slab capacity can be resisted by
the bottom tee alone, the PNA is assumed to lie in the top tee. The top tee is, alongside the
slab, in compression and assumed to be carrying the remaining force NbT,Rd −Nc,Rd. The plastic
bending resistance is thus:

Mo,Rd = NbT,Rdheff +Nc,Rd(zt + hs − 0.5hc) (1.14)

The top tee must be able to carry the excess force:

AtT fy

γM0
≥ NbT,Rd −Nc,Rd (1.15)

1.3.1.3 Vertical shear resistance at an opening

The vertical shear resistance at an opening is considered as the combination of the shear resistance
due to the steel beam, Vpl,Rd, and a contribution from the slab, Vc,Rd:

Vpl,Rd = Avfy/
√

3
γM0

(1.16)

and

Vc,Rd =
(
CRd,ck(100ρ1fck)1/3 + k1σcp

)
bwd ≥ (vmink1σcp) bwd (1.17)

where
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CRd,c = 0.18/γc (1.18)

k = 1 +
√

200
d

≤ 2.0 (1.19)

ρ1 = Asl

bwd
≤ 0.02 (1.20)

k1 = 0.15 (1.21)

σcp = Nc,Ed

beffhc
≤ 0.2fcd (1.22)

bw = bf + 2hs,eff (1.23)

hs,eff ≈ 0.75hs (1.24)

vmin = 0.035k3/2f
1/2
ck (1.25)

where Asl considers the mesh beyond ≥ lbd + d from the considered section. Note that here, d
is the effective slab depth.

1.3.1.4 Web-post resistance to longitudinal shear, buckling and bending failures

The web-posts between the openings are susceptible to longitudinal shear, buckling and bending
failures.

Longitudinal shear resistance Unlike plain-webbed beams, longitudinal or horizontal shear
at the web-post becomes a concern due to the relatively limited amount of material available to
resist the build-up of shear stress. This is also a concern due to welding that may be required at
that interface and could lead to weld rupture in extreme cases as seen in fig. 1.5.

Figure 1.5: As perforated sections are commonly assembled from welded tees, rupture at the web-
posts is an additional consideration and crucial for thin and narrow web-posts. This image is from
Kerdal and Nethercot (1984) and shows a ruptured weld due to longitudinal shear at a web-post.

The resistance to longitudinal shear is thus calculated for the narrowest part, throat, of the
web-post:
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Vwp,Rd = sotwfy/
√

3
γM0

(1.26)

where so = s− lo is the edge-to-edge web-post width and tw is the web-post thickness.

Buckling resistance Buckling occurs as a result of the strut action developing due to the force
transfer occuring between the top and bottom tees in the steel beam, see fig. 1.6. It is dependent
on the opening shape, the web-post slenderness and the opening asymmetry. There are two cases
covered in the guidance: widely- and closely-spaced openings. Since this project is only examining
circular perforations, only the relevant guidance will be presented here. Buckling is negligible for
cases where ho/tw ≤ 25.

Figure 1.6: These beams exhibit web-post buckling as a result of the vertical force (Kerdal and
Nethercot 1984).

In the case of widely-spaced openings, the buckling length is calculated as:

lw = 0.7ho (1.27)

Thus the web-post slenderness, λ̄, and the buckling resistance reduction factor, χ, are calculated
using:

λ̄ = 2.5ho

tw

1
λ1

(1.28)

λ1 = π

√
E

fy
= 94ϵ (1.29)

ϵ =
√

235/fy (1.30)

Note that λ1 is as defined in BS EN 1993-1-1 6.3.1.3. Nwp,Rd is then determined using the
definition in BS EN 1993-1-1 6.3.1:

Nwp,Rd = χ
0.5hotwfy

γM1
(1.31)

Closely-spaced openings are modified to account for the reduction in the available material but
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use the same approach as previously. Thus:

lw = 0.5
√

(s2
o + h2

o) (1.32)

λ̄ =
1.75

√
s2

o + h2
o

tw

1
λ1

(1.33)

(1.34)

where λ1 is as defined in BS EN 1993-1-1 6.3.1.3 and shown previously. The buckling resistance
is thus:

Nwp,Rd = χ
sotwfy

γM1
(1.35)

for closely-spaced openings.

Bending resistance The web-post between two adjacent perforations carries a moment caused
by the resulting Vierendeel bending action at the neighbouring top and bottom tees. The bending
resistance for circular perforations is thus:

Mwp,Rd = s2
otw
6

fy

γM0
(1.36)

Circular perforations are particularly resistant due to the relatively large amount of material
at the bending locations and may only be critical for closely spaced rectangular openings.

1.3.2 Serviceability Limit State (SLS) for perforated beams

The inclusion of perforations in a beam results in increased deflection relative to the equivalent
plain-web beam due to the reduced flexural stiffness, Vierendeel-type yielding at the openings and
the resulting reduction in beam stiffness. It is assumed in Lawson and Hicks (2011) that the elastic
properties are accurate up to yielding and so the loss of stiffness at a perforation is established
using the elastic stresses. The key assumption in this approach is that the elastic stress field is
unaltered from the equivalent plain beam theoretical field, making it easier to include the loss of
stiffness as a reduction in the second moment of area. In addition, since the SLS is considered in
the linear elastic range, the additional deflection caused by each perforation in the beam can be
superimposed, giving a net additional deflection due to the openings. An early investigation of
the additional deflection due to a perforation in a steel beam can be found in Dougherty (1980),
whereby the author considered, analytically, the slope compatibility for bending and shear at a
perforation, with each tee considered as a beam fixed at the web-post. A more recent analytical
approach can be found in Zhou et al. (2012) but the presented equations are relatively complex
and not suitable for composite sections. In Benitez et al. (1990) and Benitez et al. (1998) the
stiffness method is used to conduct a parametric study and establish design recommendations
based on the ratios of the second moment of area of the unperforated beam to the perforated
region and the ratio of the opening length to the beam span. It should be noted that while only
the approximate deflection equations were used for this project, Lawson and Hicks (2011, sec.
6.1) includes an alternative set of deflection equations. While the specifics of their derivation and
associated assumptions are not shown in Lawson and Hicks (ibid.), the equations suggest a similar
procedure to Dougherty (1980) was used.
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Conversely, Lawson and Hicks (2011, sec. 6.2) states that the approximate equations were
derived empirically, based on the additional deflection due to loss of stiffness at an opening. This
suggests a procedure similar to that found in Benitez et al. (1990) and Benitez et al. (1998).

Additional deflection due to multiple openings In the case of no openings, the additional
deflection wadd is calculated as:

wadd = 0.7noko
lo
L

ho

h
wb (1.37)

which for cellular beams, where lo = 0.45ho, reduces to

wadd = 0.47no

(
ho

h

)2
h

L
wb (1.38)

Additional deflection due to single perforation An alternative approach is to consider the
deflection due to each perforation in turn and add the contribution to calculate the total. For an
isolated opening, the additional deflection is calculated using:

wadd = ko
lo
L

ho

h

(
1 − x

L

)
wb for x ≤ 0.5L (1.39)

wadd = ko
lo
L

ho

h

x

L
wb for x > 0.5L (1.40)

where ko = 1.5 for unstiffened openings, lo = 0.45ho for circular openings and wb is the bending
deflection of the equivalent unperforated beam.

1.4 Additional guidance on perforated beam capacities

1.4.1 Perforation utilisation calculation using the approach by K. Chung
et al. (2001)

As Vierendeel-type yielding develops at an angle ϕ to the perforation vertical centreline, it is
practical to consider equilibrium for an inclined cross-section of a given tee as shown in fig. 1.7.
The tee is subject to three co-existing actions (ibid.):

• axial force Nϕ,Sd caused by the global bending moment MSd

• shear force Vϕ,Sd caused by the global shear force VSd

• a local bending moment Mϕ,Sd resulting from the global vertical shear force being transferred
across the perforation from the low moment side (LMS) to the high moment side (HMS)

Mo,Rd = fyWo,pl (1.41)

Wo,pl = Wpl − d2
otw
4

(1.42)

Vo,Rd = fvAvo (1.43)

Avo = Av − dotw (1.44)
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where Wpl is the plastic section modulus, do is the perforation diameter, tw is the web thickness,

fv =
√

3
3

fy

γM0
is the shear capacity of the steel, Av is the unperforated section shear area and h is

the section depth.

Figure 1.7: The tee internal forces and resistances are found for an inclined section ϕ/2 which is
at ϕ from the perforation centreline (K. Chung et al. 2001).

LMS hinge formation At the low-moment side, the actions carried by a cross-section can be
calculated using:

Nϕ,Sd = No,Sd cos
(
ϕ

2

)
+ Vo,Sd sin

(
ϕ

2

)
(1.45)

Vϕ,Sd = No,Sd sin
(
ϕ

2

)
− Vo,Sd cos

(
ϕ

2

)
(1.46)

Mϕ,Sd = Vo,Sdu−No,Sdv −Mo,Sd (hogging negative moment) (1.47)

where u and v are the horizontal and vertical distances from the centroid of the vertical cross-
section at the perforation to the centroid of the inclined cross-section at angle ϕ from the vertical.

HMS hinge formation At the high-moment side, the actions carried by a cross-section can be
calculated using:

Nϕ,Sd = No,Sd cos
(
ϕ

2

)
− Vo,Sd sin

(
ϕ

2

)
(1.48)

Vϕ,Sd = No,Sd sin
(
ϕ

2

)
+ Vo,Sd cos

(
ϕ

2

)
(1.49)

Mϕ,Sd = Vo,Sdu+No,Sdv +Mo,Sd (hogging negative moment) (1.50)

1.4.2 Review of the Vierendeel calculations in a commercial software,
CELLBEAM

CELLBEAM is a commercial software package available to use freely by ASD Westok (Kloeckner
Metals UK n.d.) and is developed and maintained by SCI. The software is based on design guid-
ance, mainly Eurocodes 3 & 4 and equivalent guidance from BS 5950, and covers non-composite
simply supported and fixed perforated beam design as well as composite simply supported cases.
The perforated beams can have any number of perforations with additional provisions covering
infilling. Note that the calculations undertaken by CELLBEAM are based on the guidance alone.
CELLBEAM does not conduct Finite Element (FE) or equivalent analyses.

The Vierendeel capacity and loading calculations are of particular interest since, according
to documentation available in versions 10.2.1 and 10.3.0, they use an approach similar to that
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presented in K. Chung et al. (2001) based on SCI’s superceded design guidance P100. Specifically,
the Vierendeel actions for circular openings are calculated at a cross-section inclined by θ to the
vertical.

Figure 1.8: The forces and resistances using the approach in CELLBEAM are also at an angle,
in this case θ, from the vertical but unlike the approach in K. Chung et al. (2001), the inclined
section geometry remains at θ. This is a diagram from the help files (section 2.2.9) in CELLBEAM
v10.3.0.

Thus,

Pθ = P cos θ − V sin θ (1.51)

Vθ = Pw sin θ + V cos θ (1.52)

where P and V refer to the axial and shear forces respectively, while Pw refers to the axial
force applied on the web of the tee under consideration. Note that Pθ and Vθ refer to the axial
and shear forces at an incline θ to the vertical (see fig. 1.8). The axial force acting on the tee web
is distributed by area:

Pw = Aw

Aw +Af
P (1.53)

where Aw, Af are the areas of the web and flange respectively. The Vierendeel moment is thus:

Mθ = Vθ (htt tan θ − x sin θ) + Pθ (x cos θ − y) (1.54)

where htt is the depth of the top tee, x and y are the elastic centroids of the tee section along
the inclined and vertical planes respectively. This procedure is conducted at 2.5 deg increments
from the vertical, with the actions calculated for each inclined cross-section of the tee. The critical
cross-section can then be determined by combining the axial force and Vierendeel moment into a
unity factor:

Pθ

Pmax
+ Mθ

Mmax
≤ 1 (1.55)

where Pmax and Mmax are the axial and bending resistances of the critical cross-section. The
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effect of the shear force on the tee section is considered via the effective web thickness during the
capacity calculations but is otherwise separate from the Vierendeel unity factor.

Shear redistribution The calculations for the Vierendeel capacity are iterative due to the effect
of the shear on the moment capacity. The guidance itself mentions this but does not provide clear
instructions, meaning that an approach similar to the shear redistribution procedure may have
been used in the software. For this project, the guidance provided in EN 1993-1-1 section 6.2.10
(3) and EN 1993-1-1 section 6.2.8 (3) has been used. The moment resistances for the top and
bottom tees are initially calculated using the unreduced respective web thickness to provide µ,
after which µ is used to reduce the web thickness and the resistances recalculated.

1.5 An overview of the types of concrete constitutive mod-
els

Concrete constitutive stress-strain models can be broadly classified by whether they consider the
concrete as a continuum (plasticity and damage mechanics models are included in this category)
even when softening occurs, or they treat the material as being discontinuous through the intro-
duction of discrete, trackable cracks.

Plasticity One approach is to use plasticity theory whereby the behaviour of the material is
governed by a yield function, a hardening rule, and a flow rule. The yield function is used to define
a yield surface bounding the elastic stress domain and its evolution (the way the shape develops
in stress space) is described by the hardening rule. The development of plastic strains is then
governed by the flow rule. The yield surface, flow rule and hardening/softening rule is usually
described, in the simplest case as in Wai-Fah Chen (1988), respectively as

f(σij) = 0 (1.56)

dϵpij = dλ
∂g

∂σij

f=g==⇒ dλ
∂f

∂σij
(1.57)

F (σij , k) = f(σij) − k = 0 (1.58)

Figure 1.9: Yield surface from K. J. Willam and Warnke (1974)

where σij is the stress tensor, ϵij is the strain tensor, λ is a scalar hardening parameter which
is determinable through algebraic manipulation when constructing the plasticity model and k is a
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constant identifying the yield stress.
K. J. Willam and Warnke (1974) developed a triaxial plasticity model for concrete, the initial

yield surface of which is shown in fig. 1.9, which adequately represented the failure surface but un-
derlined the need for additional research in examining the failure mechanism underpinning fracture
under non-uniform stress conditions. Another plasticity model by Grassl, Lundgren, et al. (2002)
made use of the volumetric component of the plastic strain as the hardening parameter. However,
the models making use of plasticity alone cannot often capture the nonlinear unloading behaviour
of concrete which features stiffness degradation, making them more suitable for monotonic loading.

A perfectly plastic approach such as that in K. J. Willam and Warnke (1974) does not take into
consideration the work hardening which occurs during loading in compression. The way in which
concrete hardening and plastic flow are treated is important an aspect of a constitutive model. In
Han and W. Chen (1985) an initial yield surface is defined which, after being reached, changes
shape while work-hardening. This is, it is argued in Han and W. Chen (ibid.), more representative
of concrete behaviour since the previous treatment of the yield surface as a scaled version of the
peak strength surface would lead to an incorrect prediction of the tensile and confined compressive
behaviour.

Other models focused on the behaviour under specific circumstances or conditions (such as
biaxial stresses found in nuclear containment vessels as in Vecchio and Collins (1986)). These
models were gradually extended, as the overall behaviour was examined further and experimental
data became available, in order to investigate behaviour further, such as softening due to cracking
(Vecchio and Collins 1993).

Other constitutive models which where based on plasticity theory include E.-S. Chen and
Buyukozturk (1985), Ohtani and W.-F. Chen (1988), Etse and K. Willam (1994), Karabinis and
Kiousis (1994), Bazant (1978), Feenstra and Borst (1996), Dragon and Mroz (1979), and Voyiad-
jis and Abu-Lebdeh (1994). Some more recent plasticity models include Park and Kim (2005),
Carrazedo et al. (2013), and Li and Crouch (2010). However the effectiveness of a purely plastic
model is limited to monotonic loading due to the fact that it does not inherently deal with stiffness
degradation following load cycling, as shown in fig. 1.10.

Figure 1.10: Elastic-Plastic model example uniaxial compression stress-strain curve from Wai-Fah
Chen (1988)

Damage Some more information regarding the application of damage will be presented here
since it is often used in conjunction with plasticity to describe concrete behaviour by taking into
account stiffness degradation.

Damage refers to the degradation of some material property as straining occurs up to the point
at which the material can no longer carry load, often referred to as rupture.

In the simplest case of secant elasticity, a scalar damage parameter d is introduced so that the
stiffness of the material in one dimension, Young’s Modulus E, degrades from the initial, uncracked
value E to
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Es = (1 − d)E (1.59)

where d = 0 initially and d → 1 as damage progresses. Using this approach however leads to
the inappropriate phenomenon of no plastic strains occuring, as shown in fig. 1.11. For concrete, a
model might consider the difference between tension and compression by using a damage variable
associated with each process, an approach taken by Contrafatto and Cuomo (2006). Isotropic
damage is a simplification and though adequate for concrete under simpler loading conditions
(ibid.), does not follow the essentially anisotropic damage induced in concrete during loading, as
discussed in Ortiz (1985). Nevertheless, models which make use of higher order damage variables,
such as second or fourth order tensors, frequently encounter problems during their numerical
implementation (Contrafatto and Cuomo 2006).

Figure 1.11: Damage model example uniaxial compression stress-strain curve from Wai-Fah Chen
(1988)

An example of a discrete crack model can be found in Jirasek and Zimmermann (1998a) whereby
the Rotating Crack or RC model is extended to track multiple orthogonal cracks while identifying
the source of spurious stress transfer across widely opened cracks, termed stress locking. A sub-
sequent paper, Jirasek and Zimmermann (1998b), introduced scalar damage in order to overcome
several issues in addition to stress locking, namely mesh-induced directional bias and instability
during loading.

Other continuum damage models include Lemaitre (1985), Loland (1980), Lubarda et al. (1994),
Mazars and Pijaudier-Cabot (1989), Resende and Martin (1984), Simo and Ju (1987), and Ozbolt
and Bazant (1996).

Plastic-damage By combining damage and plasticity models, several aspects of the behaviour of
concrete such as stiffness degradation and plastic straining, as shown in fig. 1.12, can be captured
as part of a single constitutive model (Lubliner et al. 1989). A notable example of a plastic-
damage model was developed in Ortiz (1985) whereby concrete is a combination of two phases,
aggregate and mortar, the interaction of which drives the overall concrete behaviour. The model
described in Ortiz (1982) is unique in that the material compliance tensors characterise the damage
undergone in the material directly and allow damage to occur in both compression and tension.
Another example of a plastic-damage model for concrete is developed in Lubliner et al. (1989),
which demonstrates that plasticity used in conjunction with damage can yield reasonable results.
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Figure 1.12: Plastic-Damage model example uniaxial compression stress-strain curve from Wai-Fah
Chen (1988)

In the case of anisotropic damage, a tensor, e.g. Mijkl, can be introduced such that

σij = Mijklσ̄kl (1.60)

where σ̄kl is the effective stress. Other plastic-damage models can be found in Cicekli et al.
(2007), Contrafatto and Cuomo (2006), Jason et al. (2010), Jefferson (2003), Grassl and Jirasek
(2006), Grassl, Xenos, et al. (2013), Carol et al. (2001), and Xotta et al. (2016).

Microplane models The microplane theory was established in order to capture the anisotropic
plastic-damage behaviour of concrete and similar brittle-plastic materials (Bazant and B. H. Oh
1983). This approach is based on the hypothesis that the strain can be resolved on a series of mi-
croplanes. While computationally heavy, this model allows the investigation of concrete behaviour
on what is referred to in Caner and Bazant (2013a) as a more intuitive level for engineers, i.e. on
distinct planes rather than by using tensors. § 1.7 provides further details and its implemention is
discussed in chapter 3.

1.6 ABAQUS material model options

1.6.1 Concrete models

1.6.1.1 Inelastic constitutive model for concrete

One of two concrete models which exist within ABAQUS/Standard makes use of a Drucker-Prager
yield criterion and a smeared crack approach with a compressive surface and a tensile ‘crack
detection surface’ (see fig. 1.13). This section covers the two chief behavioural components of this
model, as described in Simulia (2010). This model makes use of various user-defined constants
which control the yield surface as well as its evolution through hardening.
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Figure 1.13: Plane stress concrete failure surfaces from Simulia (2010)

Starting with the compression behaviour, the following user defined parameters are employed:
the yield stress in the state of pure shear τc, the constants α0 and c0 are found by making use of
rϵ

bc, the ratio of the plastic strain component ϵpl
11 from a monotonically loaded biaxial compression

test to that from a monotonically loaded uniaxial compression test. The value of rϵ
bc is typically

≈ 1.28. Note that λc can be found from

(
ϵpl

c

)c

11 = λc

(
1 + c0

9

)( α0√
3

− 1
)

(1.61)

since
(
ϵpl

c

)c

11, α0 and c0 are known. From these, the uniaxial compression yield stress fc,
hardening τc and flow rule dϵpl

c are defined as:

fc = q −
√

3α0p−
√

3τc = 0, where p = −1
3

(σ11 + σ22 + σ33) and q =
√

3
2
sijsij (1.62)

τc =
(

1√
3

− α0

3

)
σc , (1.63)

dϵpl
c = dλc

(
1 + c0

(
p

σc

2
))

∂fc

∂σ
(1.64)

The above predominantly describes compressive behaviour, whereas the approach is different
in the case of predominantly tensile loading. The reason for this is due to cracking and so the
yield, flow, hardening and elasticity are re-formulated in order to account for the different approach
adopted.

In this case, the constant b0 is found from the ratios f and rσ
t while λt, the hardening parameter,

from the user defined tension stiffening data and the constant b0. In addition, the shear retention
data is user defined and is used to determine the damaged elasticity.

From b0,

b0 = 3
1 + (2 − f)rσ

t −
√

1 + (frσ
t )2 + frσ

t

1 + rσ
t (1 − f)

(1.65)

the yield function, or ‘crack detection surface’, ft can be calculated as
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ft = q̂ −
(

3 − b0
σt

σu
t

)
p̂−

(
2 − b0

3
σt

σu
t

)
σt = 0 (1.66)

The associated flow rule is

dϵpl
t = dλt

∂ft

∂σ
if ft = 0 & dλt > 0 (1.67)

dϵpl
t = 0 otherwise. (1.68)

The ratios f and rσ
t are defined such that cracking would occur, during plane stress loading,

at the point where the principal stresses, (σI , σII , σIII) are −σu
c , frσ

t σ
u
c and 0 respectively. The

tension stiffening data is provided by the user, a representation shown in fig. 1.14, by defining the
magnitude of the uniaxial tensile stress σt as a function of the inelastic strain. This leads to the
definition of the hardening parameter as

dλt = (dϵpl
t )11

2 − b0

3
σt

σu
t

(1.69)

Figure 1.14: Tension stiffening idealisation (Simulia 2010)

An important aspect of this approach is the treatment of the elasticity following crack detection.
Once a crack has formed, its orientation is recorded along with its location. The elasticity is then
dependent on the conditions of the crack, i.e. whether it is open or closed. Overriding summation
due to repeated indices, the stiffness Dijkl thus follows the conditions:

Dαααα =
σopen

αα

ϵopen
αα

where ϵopen
αα = maxϵel

αα if ϵopen
αα > ϵαα > 0 (1.70)

Dαααα =
σopen

αα

ϵopen
αα

if ϵopen
αα = ϵαα (1.71)

The shear components of elasticity are defined as
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Dαβαβ = Ĝ (1.72)

where

Ĝ = ρcloseG if ϵαα ≤ 0 (1.73)

Ĝ = ρopenG if ϵαα > 0 (1.74)

Note that ρclose is defined by the user from the shear retention data (see fig. 1.15) and ρopen =(
1 −

ϵ̄el
αα

ϵmax

)
where ϵ̄el =

⟨
ϵel

αα

⟩
+
⟨
ϵel

ββ

⟩
. Note that ⟨⟩ are Macaulay brackets.

Figure 1.15: Shear retention from Simulia (2010)

1.6.1.2 Damaged plasticity model for concrete and other quasi-brittle materials

The yield criterion is based on that proposed by Lubliner et al. (1989) as:

F (σ̄, ϵ̃pl) = 1
1 − α

(
q̄ − 3αp̄+ β(ϵ̃pl)

⟨ˆ̄σmax
⟩

− γ
⟨
−ˆ̄σmax

⟩)
− σ̄c(ϵ̃pl

c ) (1.75)

where p̄ = −1
3
σ̄ii, q̄ =

√
3
2
sijsij , ˆ̄σmax is the algebraic maximum eigenvalue of σ̄ and

β(ϵ̃pl) = σ̄c(ϵ̃pl
c )

σ̄t(ϵ̃pl
t )

(1 − α) − (1 + α) (1.76)

Note that if ˆ̄σmax = 0, F (σ̄, ϵ̃pl) reduces to the Drucker-Prager yield criterion. Additionally,
the two dimensionless material constants, α and γ, which are used only if ˆ̄σmax < 0 is defined as

α = σb0 − σc0

2σb0 − σc0
(1.77)

γ = 3(1 −Kc)
2Kc − 1

(1.78)
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See fig. 1.16 for the influence of Kc on the yield surface shape and fig. 1.17 for the biaxial peak
stress envelope.

Figure 1.16: Effect of Kc on the yield surface shape in principal stress space (looking down the
hydrostatic axis)

If, however, ˆ̄σmax > 0 then

Kt = β + 3
2β + 3

(1.79)

Figure 1.17: Biaxial yield surface from Simulia (2010)

Flow is nonassociated and is defined in Simulia (2010) as

ϵ̇pl = λ̇
∂G(σ̄)
∂σ̄

(1.80)

The flow potential used in this model is
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G =
√

(ϵσt0 tanψ)2 + q̄2 − p̄ tanψ (1.81)

where ψ is the dilation angle, σt0 is the uniaxial tensile peak stress and ϵ is the eccentricity (a
constant which defines the rate at which the function approaches the asymptote).

Hardening makes use of two parameters; one each for compression and tension. In Simulia
(2010) the theory associated with the hardening parameters is developed for the uniaxial case and
then extended to multiaxial cases. Here only the multiaxial case will be shown, since it can be
reduced to the uniaxial form. Using modifications to Lubliner et al. (1989) based on Lee and Fenves
(1998), the evolution equations for the hardening parameters ϵ̃pl

t in tension and ϵ̃pl
c in compression

are:

˙̃
ϵpl

t = r(ˆ̄σ)ˆ̇ϵpl
max, (1.82)

˙̃
ϵpl

c = −(1 − r(ˆ̄σ))ˆ̇ϵpl
min (1.83)

where ˆ̇ϵpl
max and ˆ̇ϵpl

min are the maximum and minimum eigenvalues of the plastic strain rate
tensor ϵ̇pl

ij and

r(ˆ̄σ) =
∑3

i=1
⟨ ˆ̄σi

⟩∑3
i=1
∣∣ ˆ̄σi

∣∣ (1.84)

The elastic stiffness degradation is taken into consideration by making use of a scalar damage
variable, d. Thus

Del
ijkl = (1 − d)(Del

ijkl)0 where 0 ≤ d ≤ 1 (1.85)

where (Del
ijkl)0 is the undamaged elastic stiffness. In order to maintain consistency with the

uniaxial monotonic responses,

(1 − d) = (1 − stdc)(1 − scdt), where 0 ≤ st, sc ≤ 1 (1.86)

More specifically, by setting an appropriate value for wt and wc and considering that 0 ≤
wt, wc ≤ 1, st and sc become

st = 1 − wtr(ˆ̄σ) , (1.87)

st = 1 − wcr(1 − ˆ̄σ) . (1.88)

By default, wt = 0 and wc = 1 so that the tensile cracks can be reversed under compression
while the opposite does not hold (see fig. 1.18).
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Figure 1.18: Tension-compression-tension cycle from Simulia (2010) representing the effect of dif-
ferent values of wt and wc

1.6.1.3 Discussion

Both ABAQUS concrete models are quite simple: the first is intended primarily for standard
monotonic loading and is similar to models used in research, as in Baskar et al. (2002), while
the second can also capture confinement4 effects (which may be more important near the studs
when modelling reinforced concrete slabs with discrete connectors). While their capabilities may
be rather limited, they are chosen as reasonable representatives of the type of concrete models
available in commercial finite element software.

By making use of the concrete constitutive modelling capabilities of ABAQUS and the addi-
tional adaptation of the M7 microplane model, a comparison can be directly made between the
various constitutive models, with an emphasis on the level of sophistication that is required to
capture the behaviour at locations where the concrete behaviour is complex.

1.7 The M7 microplane model

1.7.1 Introduction

An approach often taken when developing plasticity models for concrete is that distinct values of
stress or strain are chosen (based on experimental data) to calibrate the stress-strain behaviour
using data primarily from uniaxial loading in compression and/or tension (CEB-FIP Model Code 90
1993; Buyukozturk and Shareef 1985; Loh et al. 2004b; Lawson and Saverirajan 2011). By contrast,
microplane models do not draw directly upon assumed stress (or strain) values to determine when
the change in behaviour occurs, but rather make use of a large body of experimental data in order
to calibrate the model.

It is well known that the behaviour of concrete varies depending on its stress state; particularly
the degree of multiaxial confinement. When analysing beams using finite elements, there is a
prevailing use of relatively simple, uniaxial stress-strain models for concrete, as discussed in Baskar
et al. (2002), and, in the case of composite perforated beams, the effect of simplifying concrete
behaviour may be a source of overconservative design, particularly near the shear stud connectors
where confinement could occur (Loh et al. 2004a). There is therefore a need to examine regions
in the reinforced concrete slab of a composite beam, particularly one with perforations, where the

4Confinement of concrete around the shear stud heads occurs due to the use of a mesh. As reported in Y. Liu
and Alkhatib (2013), absence of a mesh leads to failure by concrete crushing and cracking while adequate meshing
leads to an increase in concrete strength and failure by stud shear. This would not be adequately captured by a
material model focusing on uniaxial stress states and not considering the effect of confinement.
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concrete can be severely cracked but still maintain its strength due to confinement as discussed in
Loh et al. (2004a).

1.7.1.1 Microplanes

Crystalline materials such as metals are known to have a distinct structure which, depending on
the way the crystal formed, will contain a number of boundaries or planes separating the crystal
lattice. These planes influence the behaviour of the crystal and the way the lattice behaves when
stressed. The study of the behaviour based on these slip planes in Taylor (1934) forms the basis
of the microplane models. The microplane models consider the concrete as a material lattice in a
similar way, with the cement and aggregate being equivalent to the bond and atoms in the crystal
structure (see a graphical representation of this in fig. 1.19). The microplanes are the analogue of
slip planes for concrete.

Figure 1.19: From Caner and Bazant (2013a), representation of the microplanes at vertices and
midpoints at a polyhedron’s edges, as planes defined by aggregate contact and a vector decompo-
sition for a single microplane.

The microplane model relies conceptually on the projection of the stress and strain second-order
tensors to vectors, and the reverse, on hypothetical planes (termed microplanes) passing through
a point in the material. The finite element method sub-divides a structure to a finite number of
elements which are joined at nodes. Within each of these elements are the Gaussian integration
points where the stress and strain states are calculated by making use of the constitutive model.
At these points, a set of microplanes (usually between 21 to 61) are introduced; each microplane
defined by a distinct orientation. The strain components are resolved in the normal and tangential
direction for each of these microplanes. Following this, the corresponding (normal and tangential)
stress components are calculated using empirical relationships. The contribution of each of the
stresses acting on the microplanes is then numerically integrated to recover the macroscopic stress
state. The procedure is detailed in Bazant and B. Oh (1986).
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Figure 1.20: Microplane stress-strain boundaries (Caner and Bazant 2013a). (a) Normal mi-
croplane stress boundary, (b) Deviatoric microplane stress boundary, (c) Volumetric microplane
stress boundary, (d) Shear microplane stress boundary

The solution to this is to make use of multiple microplanes. Following numerical experimen-
tation, it was shown in Bazant and B. Oh (ibid.) that postpeak softening behaviour is captured
adequately using a minimum of 21 microplanes. The orientation of these planes follows Gaus-
sian distributions, as described in Bazant and B. Oh (ibid.) and their contribution is weighted
depending on their orientation.

For each microplane, the strain ϵ is resolved into normal ϵN and shear ϵT components. Once
these are found, there is a one-to-one relationship between those strains and their associated stresses
(Bazant 1984), such as ϵN and σN . The calculations make use of each strain vector’s magnitude
directly rather than its direction, thereby making the core relationships scalar5.

A key concept, which will be developed further in § 3.1, is that the microplane stress-strain re-
lationships are linear except when a stress component reaches a stress boundary. These boundaries
exist for each type of microplane stress: tensile σb

N , compressive (in the form of volumetric σb
V and

deviatoric σb
D) and shear σb

T which, much like conventional yield surfaces, cannot be exceeded and
thus set a limit to the microplane stress for each of the components (see fig. 1.20).

At this point, the microplane stresses are known but are only relevant to the specific microplane
on which they were calculated. By making use of the principle of virtual work, the microplane
stresses are used to calculate their global stress contribution at that integration point.

This is done by considering that within a unit sphere of material, the work by the externally
applied stresses and resulting strains are equal to the work of the microplane stresses and strains
when considering the microplane stresses as tractions on the unit sphere6,

2π
3

(σijδϵij) =
∫

Ω
(σNδϵN + σLδϵL + σMδϵM ) dΩ (1.89)

where Ω is the surface of a unit hemisphere and i and j represent the row and column number,
respectively, of [σ] and [δϵ].

5This is a reasonable approach as the direction of the vectors will not alter during the calculations.
6Further details can be found in Bazant (1984) and Bazant and B. Oh (1986).
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This integration is undertaken numerically using eq. (3.43), as shown in § 3.1, by making use
of a Gaussian scheme described by Bazant and B. Oh (1986).

By numerically integrating the contribution from each microplane the global stress state is
calculated at that point.

1.7.1.2 Summary of predecessors and related literature

M-series of models The term ’microplane’ and the various accompanying hypotheses of its use
can be traced back to what is referred to as M0 in Bazant (1984). In M0, the loading surfaces used
had a relation to both normal and shear strain simultaneously, Bazant (ibid., eq. 3.5), a feature
which was removed and replaced with one-to-one relationships between the resolved strain and
stress components (e.g.ϵN & σN ).

The first data was fitted using M1, a model that presented strain softening behaviour (Bazant
and B. H. Oh 1983). M1 however only focused on and was solely used to fit, uniaxial tensile
behaviour.

M2 by Bazant and Prat (1988), introduced the concept of the volumetric-deviatoric split where
the normal strains applied on each microplane are split into their volumetric and deviatoric com-
ponents. This allowed M2 to model both uniaxial compression and tension.

M3 by Bazant, Xiang, et al. (1996) introduced the concept of stress-strain boundaries on the
microplane level; their introduction was considered necessary in order to account for large tensile
strains during triaxial loading while also allowing different types of strain due to compression,
tension or shear to be dealt with separately.

M4 (developed by Bazant, Caner, et al. (2000)) subsequently introduced several changes, mainly
regarding the volumetric-deviatoric split and stress-strain boundary formulations. The volumetric-
deviatoric split introduced problems such as excessive lateral expansion and stress locking at post-
peak uniaxial tension and issues with the unloading behaviour.

The expansion and stress locking issues were partially dealt with in M5 by dealing with tension
and compression separately in Bazant and Caner (2005).

However as these problems still persisted, M6f was developed by Caner and Bazant (2011). It
established the transition from a volumetric-deviatoric split to no-split under tension in order to
deal with the spurious lateral straining and deals with the normal strain as the combination of
volumetric and deviatoric components, thus allowing coupled effects between shear and dilatancy
to be more accurately described.

Other Literature Some notable examples of related literature which have either contributed to
understanding the M7 model or have provided insight into its extended application are presented
here. This is particularly the case due to some ambiguities in the algorithm which are described
in § 3.2.

One such important paper is the subsequent implementation of M7 for fiber reinforced concrete
as M7f by Caner, Bazant, and Wendner (2013). In it, the algorithm is presented again but an
ambiguity regarding the condition linked to the use of the microplane Young’s Modulus is described
in greater detail than in M7 by Caner and Bazant (2013a).

Of particular interest was the appendix in Caner and Bazant (2000) where the algorithm of a
driver routine is presented. This led to the development of a driver routine and an iteration loop
detailed in F.1.

Additionally, the linearisation of the microplane model, specifically M2, by Kuhl and Ramm
(1998) should be noted. By modifying the original approach from using an explicit algorithm
and secant modulus of elasticity to one where the tangent stiffness can be generated, the acoustic
tensor and hence the initiation of localisation can be seen in greater detail. In addition, this implicit
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reformulation is better suited to the application of the microplane models to structural analysis
than the explicit formulation used originally Bazant and Prat (1988).

Conceptually, the Taylor models, the slip theory of plasticity and the microplane models are
related albeit that the Taylor models utilise a micromechanical approach in considering the be-
haviour of the crystallites but do not always adhere to equilibrium between them (Brocca and
Bazant 2000), the slip theory is semi-graphical and more phenomenological in its approach (ibid.)
while the microplane models consider a further phenomenological approach through validation. In
addition, the microplane approach is a spiritual successor to the slip theory of plasticity but with
the key differnce that the static constraint is changed to a kinematic constraint, leading the mi-
croplane models to be dependent on the strain rather than stress tensor. Thus, while the M-series
of microplane models is developed for use with concrete in particular, the microplane approach
itself could, with appropriate modification, be used for metals as well.

The microplane material models’ number of constants (in M7 a total of 30) make it to calibrate
for a desired concrete. As a result, an optimisation algorithm would be required for any routine
use. One such attempt has been done previously for the M4 model in Kucerova and Leps (2013).
Such an approach could be automated in order to provide the appropriate constants for specified
concrete behaviour.

1.7.2 Steel models

ABAQUS has several options available when modelling steel, collectively referred to as classical
metal plasticity models. Yield criteria may be chosen between von Mises, for isotropic yield, and
its modifications in the form of Hill, if anisotropic yield is required, or Johnson-Cook. If perfect
plasticity is not used, the user can specify between isotropic, kinematic or combined hardening.
In these models, the flow rule is assumed associated and the damage, or elastic degradation, rules
used depend on the type of damage expected, i.e. by using a ductile criterion, ωD, which relies
on the development and combination of voids or a shear criterion, ωS , which relies on shear band
localisation. Both these models are phenomenological and available in Hooputra et al. (2010).

Yield Criteria Hardening
Rules

Flow Rule Damage

Initiation Evolution

von Mises Isotropic
Associated

ωD =
∫ ( dϵ̄pl

ϵ̄pl
D

(
η, ˙̄ϵpl

)) = 1 ∆ωD = ∆ϵ̄pl

ϵ̄pl
D

(
η, ˙̄ϵpl

) ≥ 0

Hill Kinematic ωS =
∫ ( dϵ̄pl

ϵ̄pl
S

(
θS , ˙̄ϵpl

)) = 1 ∆ωS = ∆ϵ̄pl

ϵ̄pl
S

(
θS , ˙̄ϵpl

) ≥ 0

Johnson-Cook Combined
Isotrop-
ic/Kine-
matic
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Chapter 2

Custom Finite Element pre- and
post-processors

2.1 Introduction

In order to undertake the many ABAQUS implicit and explicit finite element analyses reported
in this thesis, a purpose-built set of computer programs were devised and implemented to prepare
the FE input files and post-process the FE results. This was a significant undertaking, comprising
over 54403 lines of code in over 451 files.

This project required strict control over the finite element mesh and various parameters defin-
ing each analysis, such as the geometry and the material properties. Automation of the model
generation and postprocessing procedures can enable a more extensive study to be conducted by
minimising the amount of manual interaction required. This chapter is aimed at those readers
who would like to adopt a similar approach, favouring automation and customisation, for their
own projects, alongside interfacing with closed-source software such as ABAQUS. Note that while
the software was built using Matlab & Python and the analyses conducted using ABAQUS, the
approach should be applicable to similar software and adaptable to the reader’s preferences.

The software was written to extend any capabilities that were considered insufficient or inef-
ficient within ABAQUS; specifically the mesh generation during pre-processing and manipulation
of the FEA results as part of the post-processing.

The initial analyses were conducted by directly using ABAQUS to produce the models through
the Graphical User Interface (GUI). While the mesh generation module in ABAQUS is powerful
enough for general use, features can be used to customise the mesh further 1. Introducing features
into the model can be done manually or, as most actions through the GUI, by using a Python
script. As with the mesh generator, this tool is sufficient for projects where extreme control over
the mesh (particularly the node locations) is not crucial. However, for this project the reliance on
features would be cumbersome to the overall process.

The intention was therefore to produce a software package which would:

(a) Allow customiseable and parametric model generation capable of streamlining the pre-processing
for the project.

(b) Automate the model generation (pre-processing) and data analysis (post-processing) proce-
dure where possible.

(c) Allow extensions, where desireable, to be implemented in the software package 2.
1Examples of features include ’cuts’ through the model, which can be used to define desireable locations, such as

the mid-depth of a beam, and ’extrusions’, which were used to produce the perforations for those initial analyses.
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It should be noted that ABAQUS can be used to run parametric tests in two ways:

(a) By setting up a template input file and using the *PARAMETER keyword. This also requires a
python script (.psf) that will be used to produce the parametric input files.

(b) By using the Python/C++ API3to control ABAQUS and untertake tests parametrically.

The first option is potentially more straightforward but is not easy to automate, since a template
file would be required for each batch of analyses, requiring the template file to by written manually.
In addition, it does not provide a sufficient level of control over the model, particularly the mesh,
without further input, making the process suboptimal for extensive automation.

The second option offers greater control over the produced model since the API has access to all
of the ABAQUS GUI’s capabilities. This however means that there are also significant limitations
in its use, given that some of ABAQUS’s capabilities can only be enabled outside of the GUI, by
editing the input files 4. Some of these limitations are listed here:

• The GUI does not contain all the required parametric capabilities in one interface. Examples
include:

– buckling tests require input editing to define the initial imperfection magnitude and
accompanying buckling mode

– spring directional behaviour must be manually defined in the input file if not constant
along its axis

– merging the mesh or geometry between two parts of a model, such as the slab and the
studs, cannot be easily controlled (i.e. merging is not, as of ABAQUS 6.13, able to be
isolated to part of a part)

• The mesh generation module does not allow mesh customisation without further user input,
either manually or through the Python API.

2Extensions in the form of programs that introduce new capabilities into the pre- and post-processing procedures.
Examples include simulating a UDL, simulating contact via springs and determining the internal loading from the
nodal forces at a chosen location.

3An Application Programming Interface (API) provides the user of an application the tools, generally in the
form of programming libraries, to write programs that can interact with the application.

4Editing an .inp file was experimented with initially and was found to be a reasonable solution for isolated cases,
at which point it could be done manually, instead of relying on extensive software.
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2.2 Benefits of custom pre- and post-software

Instead of using one of the two above methods, and due to the various shortcomings of each, an
alternative approach was used, whereby the pre-processing and part of the post-processing was
replaced by custom software.

This software is able to succesfully overcome the issues listed above. The custom pre-processor
enables:

• Efficient generation of large number of models

• Greater customisation of mesh

• Extension of capabilities as required due to its modular form

• Capabilities beyond ABAQUS (such as automated buckling and post-buckling analyses with-
out needing input file editing and custom definition of spring and connector elements)

In addition to this, the custom post-processor enables:

• More efficient output of large amount of data

• Custom processing of data beyond ABAQUS’s capabilities

As this software is automated (following initiation by a user) it facilitates a streamlined workflow
with minimal user interaction and more efficient generation and processing of results. In addition,
this software could be modified to function with other software packages with similar input file
capabilities and data output.

This software is presented in § 2.3 for the pre-processing and § 2.4 & § 2.5 for the post-processing
procedures. An overview of the workflow can be seen below in fig. 2.1, divided into four parts:
model generation, model analysis, data extraction and finally data processing. Each of
these will be covered in the following sections in line with their execution sequence.

In addition to this, a collection of programs was written, based on existing design guidance, in
order to directly compare with applicable FE results.
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Figure 2.1: This is an overview of the entire process flow from the model specification in control.m
to data processing. The entire procedure can be divided into four main parts: model generation,
model analysis, data extraction and finally data processing. Each of these will be discussed in
detail in the following sections.
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Figure 2.2: Subdivision of the beam into components.

Figure 2.3: Representation of the geometry as referred to in the mesh generation procedure.

2.3 Automatic creation of FE input files

The mesh generator was originally designed to produce meshes for cellular beams which feature a
repetitive geometry. It was later expanded to cover requirements beyond the original scope, such
as variations in the perforation diameter and the mesh seeds between cells. The approach however
hasn’t changed significantly and a given beam is thought of as a collection of components: an
optional initial segment (initial) and a series of ’cells’: the unique cell first (cell 1) and any
number of repeating cells (cell 2 onwards) as shown in fig. 2.2. Each cell is itself subdivided into a
top and bottom subcomponent, essentially a top and bottom ’tee’, to allow for asymmetric beams.

2.3.1 Mesh generator

The first step of the workflow is the Model Generation shown in fig. 2.1, initiated by the
control script control.m. Before being able to run the analysis, a mesh must be generated using
mesh_gen.m and then, alongside the material data and boundary conditions and other model
definitions, written to a file compatible with the FE software of choice, in this case ABAQUS’s
.inp file format using inp_gen.m. A control script defines all of the parameters required in both
the model and input generation and is used to produce anything from a single to multiple analyses
(which will be referred to as batches) or multiple batches (which will be referred to as sets).
Generally, a single parameter is examined in each batch.

The mesh generator, mesh_gen.m, makes use of a collection of functions, each of which con-
structs different components of the model in a strict sequence, categorised by region: web, end-
plate, flanges, stiffeners, studs & reinforcement.

The mesh generator function can be found in § A.1.

Preliminaries Prior to mesh generation, some of the geometry concerning the first perforation
(and, if symmetric, the last) is calculated. The total_endspace, calculated during this step, refers
to the web-post width preceding the first perforation and LHS refers to the distance from the edge
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of the first cell to its centre. Note that cell_side is half the web-post width between two adjacent
perforations.

1 % INITIAL

2 total_endspace = LHS - diameter /2;

3 cell_side = (centres - diameter)/2;

4 if (total_endspace - cell_side) >= tol

5 initial.length = (total_endspace - cell_side);

6 initial.LHS = LHS - initial.length;

7 else

8 initial.length = 0;

9 initial.LHS = LHS;

10 end

Web The web mesh is generated first, including all the perforations and the optional initial
web-post segment using cell_mesh.m and initialmesh.m respectively (§ A.1.1 and § A.1.5). As
discussed previously, the beam geometry is subdivided into an optional initial plain web segment,
a unique first cell and a number of additional cells. The web itself is an assembly of cells, as shown
in fig. 2.2, which are merged at their interfaces to form it.

The web mesh generation procedure, following the preliminary calculations shown previously,
begins with a call to cell_mesh():

1 function [perforation_nodes , element_S4 , perforation_nodes_temp , element , beam , midspan] = ...

2 cell_mesh(tol , x_node_count_top , y_node_count_top , x_node_count_bot , y_node_count_bot ,

↪→ intermediate_node_count , diameter , cell_number , centres , cell_side , span , top_t_depth ,

↪→ bot_t_depth , initial , bolt , cellremesh , meshgen , inp)

The first cell’s mesh for the beam, cell 1, is always generated prior to any others in two
forms: one containing nodes at appropriate ylocal locations to account for additional endplate and
bolt nodes (perforation_nodes_withbolts) and one without (perforation_nodes). The second
version is used as a basis for subsequent cells. Alongside these, the arrays containing the element
topology, element_S4_withbolts and element_S4 respectively, are returned as output.

1 % Generate the initial perforation with and without the bolt nodes

2 [perforation_nodes_withbolts , perforation_nodes , element_S4_withbolts , element_S4] = ...

3 cell_mesh_initial(tol , x_node_count_top , y_node_count_top , x_node_count_bot , y_node_count_bot ,

↪→ intermediate_node_count , diameter , cell_side , top_t_depth , bot_t_depth , initial , bolt ,

↪→ meshgen);

The first cell is defined by its main variables: the perforation diameter (diameter, 2r in fig. 2.4),
the cell top depth (top_t_depth, dt), the bottom depth (bot_t_depth, db), LHS (wi + r) and
cell_side (wc + r).

The number of nodes for the various cell components are provided by the user in control.m.
The node count and spacing, collectively referred to as the mesh seed, are used to divide the cell
radially and circumferentially. Each component of the cell is independent of the other, excluding
the radial mesh subdivision: the number of nodes along a line from the edge of the perforation to
the edge of the cell must be the same for compatibility between the various regions. This can be
seen in fig. 2.5, where the external nodes 1 - 8 have a direct correspondence to the internal nodes
9 - 16. This rule applies for any number of intermediate nodes. By making use of the geometry
for the cell, a series of nodes can be placed along its external edge (A - H in fig. 2.4). Each edge
length is subdivided by the respective node count: B - D by x_node_count_top, A - B & E -
D by y_node_count_top, F - H by x_node_count_bot and E - F & A - H by y_node_count_bot.
Following this, mesh nodes are placed at the coordinates of each equally spaced subdivision. In
addition, the length between all external - internal node pairs (such as A & I or D & L) is divided
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Figure 2.4: This is the representation of the geometry defining a single cell. All the variables
shown are either provided directly by the user in control.m (dt, db) or are calculated from the
input geometry (r, wi, wc) of the beam. Note that for the first perforation in a beam, the initial
web-post width wi is usually different to the adjacent web-post half-width wc since the space from
the edge of the beam to the first perforation is usually different from the perforation centres. The
variables have been renamed here to simplify the representation.

into intermediate_node_count equally spaced subdivisions with nodes placed at the subdivision
coordinates, excluding those at the internal and external edges.

The nodes are thus labelled/numbered strictly within each cell sequentially from the external
to the internal nodes and their labels are used to assemble each element. Due to the enforced
compatibility between these radial nodes (as is shown in fig. 2.5), this provides a simple algorithm
minimising the calculations required to assemble the elements for each cell.

If a change in the parameters of one or more of the given cells in an analysis necessitates a change
in the mesh, the cell_remesh.m function is used to produce compatible cells for assembly. This
change could be in the geometry (diameter, thickness of components) or the cell seed. cell_remesh

distinguishes between the -ve and +ve sides, along the xlocal axis, of a single cell and their associated
mesh seeds. Doing this allows mesh changes between cells, such as the gradually coarsening meshes
used in the mesh refinement study.

1 switch lower(cellremesh.switch)

2 case 'coarse '

3 cellremesh.cell_number = cell_number;

4 % cellremesh.format = [( perforation no.) (y_node_count_top_l) (x_node_count_top) (

↪→ y_node_count_top_r) (y_node_count_bot_r) (x_node_count_bot) (y_node_count_bot_l) (

↪→ intermediate_node_count) (diameter) (top_t_depth) (bot_t_depth)];

5 cellremesh = cell_remesh(tol , cellremesh , initial , meshgen);

6 end

Each cell seed is checked for compatibility with the previous cell, using perforationcheck.m,
prior to the web mesh generation. Mesh compatibility is ensured by comparing the mesh seeds at
a given interface and adjusting the definitions appropriately to ensure that the generated nodes
are produced at suitable locations. The verified mesh seed is used to position the nodes and then
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Figure 2.5: This is a representation of the numbering procedure for the simplest cell that can be
produced, with minimal external (1, 2, ..., 8) and internal nodes (9, ..., 16) and no intermediate
nodes. The nodes’ labels (1, 2, ..., 16) are used directly as the basis for the element 1 topology (1,
9, 10, 2).

the elements are assembled using the same procedure as the standard web procedure. Following
element assembly, the modified cell is stored in a CA5, with the CA index corresponding to the
cell number, allowing easy retrieval when the web is assembled.

After each of the cells has been assembled, they are all ’merged’ by replacing the nodes at
an interface (as shown in fig. 2.6) with the previous cell nodes using their absolute position as
the criteria. The arrays containing the node information, beam.nodes.total, and the global shell
element topology array, element_S4, are updated and output by cell_mesh.m.

Following the cell mesh generation, initialmesh.m is called in mesh_gen(). In the cases where
the initial.length exceeds, in width, half the cell length, essentially when total_endspace −
cell_side >= tol, a rectangular initial mesh is produced for the initial segment, as shown in
fig. 2.2, using initialmesh() to avoid producing distorted cell elements.

1 function [beam , element , initial] = initialmesh(tol , beam , element , initial , y_node_count_top ,

↪→ y_node_count_bot , meshgen);

This is done by storing the nodes’ coordinates at the location of the initial web-post - first
cell interface (nodes 1, 2 & 8 in fig. 2.7a) and then producing the new nodes by replacing their x
coordinates with the required value (nodes 10002, 10004 & 10006). This procedure is repeated up
to the edge of the beam. Similarly to the cell mesh generation, once the nodes are produced and
stored, using initial.nodes.array, they are relabelled to follow the convention. Their labels are
then used to assemble the mesh elements.

The updated node and shell element arrays are then returned. In addition, the top and bottom

5CA refers to the Matlab ’cell array’ data type, which can be used to store a variety of data. This is used over
a regular ’array’ which would require the number of elements in all beam cells to be equal. If a similar data type
or suitable alternative is not available to the reader, one recommendation is to pad the data for compatibility with
the largest array member.
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Figure 2.6: Nodes at the interface (4, 5, 6) between the two cells are merged by replacing the
nodes in the current perforation (comprising the nodes 10001, 10002, ..., 10016) with nodes from
the previous cell. In this example the nodes 10001, 10002 and 10008 (not shown) are replaced by
5, 4 and 6 respectively in elements 9 and 16, shown as larger circles at the interface.

1 % Sort the rows to follow initial endspace naming convention (top left to bot right)
2 % of the form:
3 % 1 - 2 - 3
4 % 4 - 5 - 6
5 % 7 - 8 - 9
6 for I = 1: length(initial.nodes.matrix) - initial.node.number.depth
7 initial.nodes.matrix(I, 1) = beam.nodes.total(end , 1) + 100000 + I;
8 end
9 initial.nodes.matrix_noperf = initial.nodes.matrix (1:( end - initial.node.number.depth), :);

10 initial.nodes.matrix = sortrows(initial.nodes.matrix , [-3 2]);
11 initial.nodes.matrix_noperf = sortrows(initial.nodes.matrix_noperf , [-3 2]);
12
13 % Assemble the shell elements
14 kounter = 1;
15 for I = 1:(( initial.node.number.length - 1)*( initial.node.number.depth - 1)) % Ignore bot row
16 if mod(I, initial.node.number.length - 1) ~= 0
17 A = initial.nodes.matrix(I, :);
18 B = initial.nodes.matrix(I + 1, :);
19 C = initial.nodes.matrix(I + 1 + (initial.node.number.length - 1), :);
20 D = initial.nodes.matrix(I + (initial.node.number.length - 1), :);
21 % [LIA , LOCB] = ismember(B(1 ,2:3), beam.nodes.total (: ,2:3), 'rows ');
22 % [LIA2 , LOCB2] = ismember(C(1 ,2:3), beam.nodes.total (: ,2:3), 'rows ');
23 % if LIA == 1
24 % B = beam.nodes.total(LOCB , :);
25 % end
26 % if LIA2 == 1
27 % C = beam.nodes.total(LOCB2 , :);
28 % end
29 initial.elements.S4(kounter , :) = [element.S4.topology(end , 1) + kounter A(1,1) D(1,1) C

↪→ (1,1) B(1,1)];
30 kounter = kounter + 1;
31 end
32 end
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web elements and nodes are stored in arrays for use during input generation.
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Figure 2.7: Top: The initial mesh, when generated, is rectangular and is used to avoid distorting
the cell mesh.
Bottom: An example of the distortion due to a large width initial web-post. The distortion becomes
more pronounced if the elements are slender and as total_endspace becomes larger. This can be
offset by alternatively introducing additional intermediate nodes
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1 % Generate the nodes
2 % LHS
3 for I = 1: length(endplate.nodes.LHS(:, 1))
4 endplate.nodes.matrix = [endplate.nodes.matrix; endplate.nodes.mid(:, 1:3) endplate.nodes.LHS(I, 4)

↪→ *ones(length(endplate.nodes.mid(:, 1)), 1)];
5 end
6 % Add mid nodes
7 endplate.nodes.matrix = [endplate.nodes.matrix; endplate.nodes.mid];
8 % RHS
9 for I = 1: length(endplate.nodes.RHS(:, 1))

10 endplate.nodes.matrix = [endplate.nodes.matrix; endplate.nodes.mid(:, 1:3) endplate.nodes.RHS(I, 4)
↪→ *ones(length(endplate.nodes.mid(:, 1)), 1)];

11 end

Endplate The endplate nodes are generated, using endplate_mesh.m (§ A.1.6), by finding the
beam nodes (beam.nodes.total) located at the start of the beam and extruding those node loca-
tions to produce the set of endplate nodes as shown in fig. 2.8.

1 function [beam , flange , element , mod_ , bolt, endplate] = endplate_mesh(tol , beam , bolt , flange , initial

↪→ , top_t_flange , bot_t_flange , top_t_depth , bot_t_depth , element, endplate , meshgen)

To ensure compatibility between the web, endplate and flanges, the node locations must be con-
sidered simultaneously at the global y-z plane where the endplate is to be located (x = 0 always
applies). Due to this dependency between the endplate, flange and stiffener meshes, a part of the
flange mesh generation is handled by endplate_mesh(). During this procedure, the flange node
arrays for the top, flange.top.nodes.matrix, and bottom flanges, flange.bot.nodes.matrix,
are generated whilst accounting for the endplate-flange interfaces, asymmetry between the top
and bottom flanges and any additional nodes due to endplate bolts or stiffeners that are to
be included later. The initial.nodes.matrix nodes at the x = 0 y-z plane are then stored
in an array, endplate.nodes.mid, while the flange nodes are stored in endplate.nodes.LHS &
endplate.nodes.RHS for the -ve and +ve z-axis nodes respectively. These arrays account for all
the node unique coordinates and are combined to produce an endplate mesh compatible with the
web, flange and stiffener meshes.

The elements are then produced in a similar way to the rectangular mesh used for the initial
web-post, again by considering the node numbering alone. The global node and the shell element
arrays are then updated and returned alongside arrays with the endplate nodes and elements for
use in input generation.

5This is done to simplify the process of generating a z-symmetric endplate.
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Figure 2.8: A representation of the endplate mesh construction procedure. The y-coordinates
from the initial nodes first cell (1, 2, 8, red nodes) are combined with the z-coordinates from the
calculated flange-endplate interface node locations (17, 18, ...) to create a regular grid of nodes.
Note that the nodes at either endplate edge are always used by default (represented by 17, blue
nodes). The elements are assembled by considering the node labels (example element 9 (17, 18,
24, 23) shown).

If an endplate is not requested during mesh generation, endplate_mesh.m is used only to
calculate the flange node locations for use in flanges_mesh.m, making the call to endplate_mesh()

non-optional in the current software version.

Flanges The flange mesh generation procedure is initiated by calling the flanges_mesh.m (§ A.1.7)
function during mesh_gen().

1 function [element , beam , flange , ftnl , fbnl , mod_top] = flanges_mesh(tol , inp , meshgen , beam , flange ,

↪→ mod_ , bolt , midspan, endplate , element , top_t_flange , bot_t_flange)

The function is divided into two components, dealing with the top and bottom flange sequen-
tially. In both cases, the mesh generation commences by identifying the nodes at the web-flange
interface, found in beam.nodes.total, and storing them in the flange.top.mid.nodes array. These
nodes already contain all the unique x-axis coordinates and can be extruded to produce the top
flange node array flange.top.nodes.array. The mesh generation for the flange nodes at the x = 0
y-z plane, and therefore the web-endplate-flange interface accounting for optional stiffener loca-
tions, has been completed by endplate_mesh(), accounting for the z-axis coordinates to extrude
the flange.top.mid.nodes to:

1 % Generate the new nodes for the top flange

2 flange.top.nodes.array = [];

3 if strcmp(meshgen.settings.endplate , 'True')

4 for I = 1:mod_

5 flange.top.nodes.array = [flange.top.nodes.array; zeros(ftnl , 1) flange.top.mid.nodes(:, 1:2)

↪→ ones(ftnl , 1)*endplate.nodes.matrix(I, 4)];

6 end
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7 else

8 for I = 1: length(flange.top.nodes.matrix(:, 4))

9 flange.top.nodes.array = [flange.top.nodes.array; zeros(ftnl , 1) flange.top.mid.nodes(:, 1:2)

↪→ ones(ftnl , 1)*flange.top.nodes.matrix(I, 4)];

10 end

11 end

The nodes produced outside of the flange width are removed and the remaining nodes are
renamed to follow the flange labelling convention:

1 % Include only the nodes lying inside the flange width

2 flange.top.nodes.array = flange.top.nodes.array(find(abs(flange.top.nodes.array(:, 4)) <=

↪→ top_t_flange /2 + tol), :);

3 mod_top = length(unique(flange.top.nodes.array(:, 4)));

4 % Rename the nodes using the following convention

5 % | 1 - 2 - 3 - 4 - 5 - 6 |

6 % | 7 - 8 - 9 - 10 - 11 - 12 | TOP FLANGE

7 % | 13 - 14 - 15 - 16 - 17 - 18 |

8 flange.top.nodes.array = sortrows(flange.top.nodes.array , [4 2]);

9 for I = 1: length(flange.top.nodes.array (:,1))

10 flange.top.nodes.array(I, 1) = beam.nodes.total(end , 1) + 100000 + I;

11 end

Following the node generation, the shell elements are assembled by making use of the node
labelling convention. During element assembly, the flange-web interface nodes are merged. This
procedure is repeated for the bottom flange and the updated global node beam.nodes.total, global
shell element element.S4.topology and flange shell element arrays (for the top and bottom sepa-
rately) are then returned for further use.

Stiffeners If stiffeners are defined for the analysis, along with their locations and which side of
the beam they are welded to, if not both, then a procedure similar to the endplate generation is
used to form the stiffener by calling stiffeners_mesh() (§ A.1.8):

1 function [beam , element , stiffener] = stiffeners_mesh(tol , inp , span , beam , element , stiffener)

The procedure begins by finding the web and flange nodes, stored in beam.nodes.steel, at the
requested global x-axis locations, stiffener.locations. These coordinates are stored in the local
locs array and provide the unique y and z components for the nodes to be generated:

1 unique_ys = unique(round(locs(:, 3), 6));

2 number_ys = length(unique_ys);

3 unique_zs = unique(round(locs(:, 4), 6));

4 number_zs = length(unique_zs);

5 if number_ys == 0 | number_zs == 0

6 warning('stiffeners_mesh: No suitable node locations found in the beam.')

7 end

The unique coordinates stored in unique_ys and unique_zs are combined to generate the stiff-
ener nodes:

1 % Produce the stiffener nodes (all of them , including flange duplicates)

2 stiffener.nodes{I} = [];

3 for J = 1: number_ys

4 addition = [zeros(number_zs , 1) ...

5 ones(number_zs , 1)*stiffener.locations(I, 1) ...

6 unique_ys(J)*ones(number_zs , 1) ...

7 unique_zs ];

8 stiffener.nodes{I} = [stiffener.nodes{I}; addition ];

9 end

These nodes are renamed following the same naming convention used for the endplate, as shown
in fig. 2.8 but for each stiffener separately:
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1 % Relabel elements to follow naming convention as shown below:

2 % 1 - 2 - 3

3 % 4 - 5 - 6

4 % 7 - 8 - 9

5 % 10 - 11 - 12

6 % 13 - 14 - 15

7 stiffener.nodes{I} = sortrows(stiffener.nodes{I}, [-3 4]);

8 for J = 1: length(stiffener.nodes{I}(:, 1))

9 stiffener.nodes{I}(J, 1) = beam.nodes.total(end , 1) + 100000 + J;

10 end

The shell elements are assembled using the same procedure as the endplate and again using
the node labelling convention to form each element. Nodes at the flange-stiffener and web-stiffener
interfaces are merged during element assembly by evaluating their absolute position, within a
tolerance tol, and replacing with the appropriate web or flange node label appropriately.

Studs Studs can be requested, using stud_mesh() (§ A.1.9) to generate the stud mesh.

1 function [nodes_B31_full , nodes_B31_partial , elements_B31 , beam] = stud_mesh(tol , flange , element , beam

↪→ , stud)

A stud mesh can be generated for either single or double row cases and the algorithm changes
depending on the user request. In the single row case the studs are positioned along the web-top
flange interface where z = 0 and within stud.extents(1) <= x <= stud.extents(end).

1 topflange = flange.top.nodes.array(find(flange.top.nodes.array(:, 2) ~= 0 & flange.top.nodes.array

↪→ (:, 2) ~= max(flange.top.nodes.array(:, 2))), :);

2 topflange = topflange(find(stud.extents (1) - tol <= topflange(:, 2) & topflange(:, 2) <= stud.

↪→ extents(end) + tol), :);

3 val1 = 0.0; % Mid loc

The first stud is placed at a distance stud.pitch from the beam edge. Suitable locations are
then identified one at a time along the interface by ensuring a minimum distance from one stud to
another as defined by the pitch, stud.pitch up to stud.extents(end).

1 flange_locs = topflange(find(topflange(:, 4) == val1), :);

2 length1 = length(flange_locs (:, 1));

3 % nodes_B31_matrix = sortrows(flange_locs , [4 2]); % These nodes are shared with the flange nodes

↪→ and hence have to maintain the top flange numbering

4 spacing_matrix (1, :) = flange_locs (1, :);

5 kounter = 1;

6 for I = 2: length1

7 if (flange_locs(I, 2) - spacing_matrix(kounter , 2)) >= stud.pitch - tol

8 kounter = kounter + 1;

9 spacing_matrix(kounter , :) = flange_locs(I, :);

10 end

11 end

In the double row case z = 0, and suitable locations nearest the middle of the half-width of
the top flange, either side of the web, are identified and used. The procedure is the same as that
for the single row case, whereby each node location is spaced at a minimum of a single pitch length
from the previous and within the limits in the x-axis as defined by stud.extents. At this point
of the algorithm each of the node locations identified are essentially x- and z-coordinate pairs and
can be combined with the unique y-locations, stored in the stud.depths vector, to produce the
array of new stud nodes, nodes_B31_partial:

1 % Generate new stud nodes

2 nodes_B31_full = [];

3 nodes_B31_partial = [];

4 kounter = 1;
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5 for I = 2: length(stud.depths)

6 nodes_B31_partial = [nodes_B31_partial; nodes_B31_matrix (:, 1:2) nodes_B31_matrix (:, 3) + ones(

↪→ length(nodes_B31_matrix (:, 1)), 1)*stud.depths(I) nodes_B31_matrix (:, 4)];

7 kounter = kounter + 1;

8 end

The new nodes are renamed using the stud labelling convention and added to nodes_B31_full,
which contained the nodes at the concrete-flange interface. The B31 elements are then assembled
for each node pair into the global beam element array for the studs, elements_B31 and returned
as output.

Slab In the composite cases, the slab mesh is generated in two parts (using § A.1.10): the
region above the steel beam’s top flange (Region 2 in fig. 2.9) and the two regions extending from
either side beyond the top flange (Regions 1 & 3, referred to as the slab LHS and RHS ’flanges’
respectively in the code).

Figure 2.9: Cross-section of the structure (looking longitudinally down the beam towards the left
support). This diagram shows the subdivision of the slab into regions. During mesh generation,
Regions 1 & 3 are referred to as Left-Hand Side (LHS) and Right-Hand Side (RHS) slab flanges.

Slab mesh generation is initiated by calling slab_mesh() in mesh_gen.m.

1 function [beam , sequence , s_nodes] = slab_mesh(tol , flange , beam , seeding , slab , mod_ , bolt ,

↪→ nodes_B31_full , elements_B31 , mod_top , reinf , meshgen)

The slab generation commences by identifying all the top flange node locations that lie within
the x-axis extents, found in beam.nodes.total, as defined by the user input, slab.extents, and
storing them in the local nodes array. By making direct use of the top flange nodes’ global x-
and z-coordinates the nodes at the flange-slab interface can be merged or, alternatively, springs
can be defined between each flange-slab node pair in order to simulate contact alongside discrete
connectors. These nodes are stored as duplicates in a separate local array, nodes, and if the slab
extends beyond the top flange width, the nodes at either edge of the top flange are extruded at
each of the unique z-coordinates defined by the mesh seeding procedure and accounting for any
reinforcement locations as necessary.
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Figure 2.10: Plan view of the slab ’flanges’ bottom face node generation procedure. The unique
x-coordinates from the nearest steel flange edge are extruded along the unique z-coordinates to
produce a rectangular mesh.

The locations are then extruded at each of the y-locations as defined by the slab depth array,
slab.depths. This array contains represents the slab depth seed and includes the stud heights
used previously during stud generation, allowing the mesh to be merged at those coordinates. The
slab mesh is then assembled by utilising the labelling convention used during the node generation.
The slab and top flange can be merged at this point by replacing the slab nodes by the top flange
nodes at the slab-flange interface.

Reinforcement Following the slab mesh generation, discrete reinforcement can be defined and
generated by making use of the existing slab nodes, s_nodes; no new nodes are produced during
this procedure. Discrete longitudinal reinforcement (along the global x-axis) is generated by calling
reinf_mesh() (§ A.1.11),

1 function reinf = \textcolor{red}{ reinf_mesh }(tol , reinf , s_nodes , sequence)

while lateral reinforcement (along the global z-axis) is generated by calling lat_reinf_mesh()

(§ A.1.12):

1 function reinf = \textcolor{red}{ reinf_mesh_lat }(tol , reinf , s_nodes , sequence , B31_count)

The longitudinal reinforcement mesh will initially attempt to identify a suitable location within
the slab by finding all the nodes in s_nodes that satisfy the height requirement reinf.height.val

within a suitable tolerance. Should a suitable location not be identified, the algorithm will attempt
to find an alternative depth within the slab (or height from the bottom slab face) by adjusting the
height tolerance reinf.height.tol until a location is found:
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1 % Find and store the temporary list of all nodes satisfying the height requirements (i.e. y positions

↪→ )

2 reinf.temp.locs = s_nodes(find(abs(s_nodes(:, 3) - reinf.height.val) <= reinf.height.tol) ,:);

3

4 % The reinf.height.tol is a dynamic tolerance in that it changes value

5 % while searching for an appropriate reinforcement positioning

6 % given the height.

7 % NOTE: A possible error could be caused leading to an endless loop.

8 % This would potentially be due to the initial height set for the

9 % reinforcement location being too near the middle of two possible positions

10 % i.e. the search radius may , in certain cases , only find either 0 or 2 values.

11 while length(unique(reinf.temp.locs(:, 3))) ~= 1

12 if length(unique(reinf.temp.locs(:, 3))) > 1

13 reinf.height.tol = reinf.height.tol - tol;

14 elseif length(unique(reinf.temp.locs(:, 3))) < 1

15 reinf.height.tol = reinf.height.tol + tol;

16 end

17 reinf.temp.locs = s_nodes(find(abs(s_nodes(:, 3) - reinf.height.val) <= reinf.height.tol) ,:);

18 end

The valid set of slab nodes is identified and stored in reinf.temp.locs. Following this, the
algorithm will, (depending on whether the absolute positioning switch reinf.absolute.switch was
used or not) either assign suitable z-axis positions or attempt to identify the nodes in reinf.temp.locs

that satisfy the absolute z-axis positions defined by the user. If the user did not specify abso-
lute positions for the reinforcement bars, the algorithm will attempt to position the total num-
ber of bars, reinf.bar.count.total, symmetrically in the slab and at a minimum distance of
reinf.bar.spacing from one another and from the lateral slab edges (at -ve and +ve z). When
the reinf.bar.count.total parity is even, then the algorithm will place the first two bars at
reinf.bar.spacing

2 <= z <= − reinf.bar.spacing
2 . If the reinf.bar.count.total is odd, an initial bar is

always placed at z = 0, with the next bars being placed at a distance reinf.bar.spacing <= z.
If the user specified an exact position for each bar, as defined by reinf.temp.locs, these locations
are used to identify and store the slab nodes at those exact locations, returning an error if that is
not possible. Once all the suitable nodes have been identified and stored in reinf.perm.coords,
they are used to identify series of continuous ’rows’ of nodes in the slab, similarly to the stud
algorithm. Each node is then used alongside the one it follows to assemble a B31 element until the
entire bar is completed. The element topology is then stored in reinf.perm.elements.

Finalising procedure At the end of the procedure, the completed mesh, comprising arrays
which describe the nodes and element topology for each of the mesh components described pre-
viously, is stored in a .mat file. This is done to streamline the model generation procedure since
the same mesh can be reused, so long as the mesh is unchanged, by simply accessing the mesh
stored in the respective file. This is generally done for every mesh in a given batch where there is
a change in the mesh from one analysis to another and can reduce the mesh generation time for a
batch significantly. For an overview of the workflow, see fig. 2.11.
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Figure 2.11: A flow diagram representing the mesh generation process from initiation by control.m
to saving the produced mesh in Matlab’s proprietary .mat format.
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2.3.2 Input generator

ABAQUS makes use of input (.inp) files to conduct each analysis. These files contain all the
information necessary for an analysis, including the element nodes, topologies, material definitions
& assignments and boundary conditions. It is therefore necessary to ’translate’ the data from
Matlab into this format, in order to run each analysis and this is done by using the input generator,
inp_gen.m (§ B.1). The input files themselves are formatted text files which make use of keywords,
stylised in the text as *Keyword, at specific points or ’levels’ in the file. *Keywords are used to define
everything that is required for an analysis, from the analysis name to the material parameters in
a specified region. In addition, some of ABAQUS’s capabilities are only available via *Keywords,
meaning that a user must utilise them directly in order to benefit from ABAQUS’s full capabilities.
By automating the input file generation procedure, these capabilities can be used without resorting
to manual file editing, thus enabling large scale parametric analyses. The input format adopted
mirrors that used by ABAQUS. By grouping multiple input files into a single directory, they can
be run as a batch. Each input file can be used to run an analysis, generally, without any other form
of input. Exceptions to this include cases where custom material models are used, which require
supporting files to run. The input generator is thus the bridge between the various arrays defining
the mesh, as generated by Matlab, and the analysis software, ABAQUS in this case. An input file
itelf is subdivided into components:

• The *Heading and *Preprint which are used to define some minor analysis details such as
the analysis name.

• The *Part section, which is normally used to define several components of an analysis, each
with an associated mesh. In this project, only a single *Part exists and that includes all the
mesh components. Under *Part, the keywords defining the element sets and various section
properties are found along with other required keywords.

• The *Assembly section.

• Other keywords that don’t have to be strictly included in the *Part or *Assembly sections
that include:

– The *Material and various *Boundary conditions such as *Cload or *Buckle.

– *Imperfection definitions.

– Analysis *Step definitions. While there may be multiple of these, this project generally
uses a single *Step.

– *Solver controls or other *Controls that affect the solution during analysis (such as
the tolerances or number of iterations in a region or globally).

– *Output requests.

Following the input file generation, a batch (.bat) file is produced to further automate the
analysis procedure. Batch files contain calls to the ABAQUS solver with the general format:

1 abaqus job=jobname cpus=cpu_count interactive

The batch file is written to the directory of each batch of analyses and is used to queue them
for execution. Multiple batch files can be, currently, manually assembled to run a set of batches,
generally referred to as a set, sequentially until they complete. This can also be extended to the data
extraction procedure, allowing for a set of analyses to be executed and processed independently,
enabling minimal user interaction during the parametric analyses.

5Some of these capabilities include running *Postbuckling analyses and defining the directional stiffness of a
nonlinear *Spring.
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2.4 Extraction of FE results

Given the nature of this project, extensive data needs to be extracted and processed following each
FE analysis. This data includes loads at specified nodes as well as displacements, forces, moments,
stresses and strains at relevant locations as required, each of which, alongside its direction (11, 22,
33, 12... corresponding to global x, y, z, xy, etc.), is referred to generically as a field in ABAQUS.

ABAQUS stores the data from an analysis in a proprietary format (.odb files). In this project,
data is extracted either by using Python commands through the API directly or by using the GUI.
Most commands appear to be available only through the API while those more suited to visuali-
sation are available through the ABAQUS/CAE GUI interface. There is therefore a distinction to
be made between those scripts that make use of the API alone, covered in § 2.4.1, and those that
make use of GUI-applicable API commands covered in § 2.4.2. In the second case, ABAQUS/CAE,
when used to access an .odb file, will produce an abaqus.rpy file which contains the user’s actions
during that session as Python code compatible with the API. This is similar to many programs’
macro capabilities and can be used to rapidly produce simple scripts automating the visualisation
and data extraction capabilities available to the GUI. It must be noted that the GUI-recorded code
generally makes use of methods, such as session.xyDataListFromField(), which store the data in
an intermediate form suited to manipulation through the GUI. For large datasets, saving data in an
intermediate form rather than accessing and writing directly leads to a significant increase in the
processing time, making this approach unsuitable for extensive data extraction6. This approach
was used only for limited data extraction, mainly for load/displacement at selected nodesets, or
for visualisation of results and graphics, such as the stress contours of the models in order to limit
the computational power required.

Node and element sets defined previously during mesh generation are used to define regions of
interest for data extraction. A summary of the procedure follows.

The data to be extracted is subdivided amongst a set of functions that interact with ABAQUS.
This was done to modularise the approach for added redundancy, but also to manage the memory
usage during execution7. A library was written, utilities.py, to serve as the basis of each of the
functions. The various fields are then extracted using:

• U.py (load/displacement, various metrics for general use)

• stress.py (stress field by global component, the nodeKeys.csv file which contains a matrix
of elements alongside their connected nodes)

• strain.py (strain field by global component)

• force.py (force field by global component)

• moment.py (moment field by global component)

Each batch directory contains a folder with the extracted results. The data is further divided
into fields (force (f), stress (s), strain (e), ...) corresponding to the variable extracted from each
test (1, 2, ..., i). Each field is subdivided into components corresponding to the global coordinate
system (fxx, fyy, ...) and each of those contains the output from each node, n, with each .csv file
containing the contributions from all the connected elements. The node connectivities are saved
in the nodeKey.csv file, produced during the U.py extraction, and are used when there is a need

6The results showed that extracting a field of data (S11 for instance) using this approach for part of the model
could easily extend beyond an hour and use a significant amount of memory, while accessing the data directly from
the API for the same field could be done for the entire model over a similar duration and with less overhead.

7ABAQUS may have a potential memory leak, whereby closing a previous database does not release memory
until the session itself is closed. Alternatively, the extraction software may need a patch to handle memory used
approriately. The issue has been mitigated when necessary by further subdividing each type of extraction into
several analyses instead of the entire batch.
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to consider the contributions from the elements at a node (such as when averaging or calculating
the equilibrium). By standardising the file hierarchy during extraction, the data processing can
also be standardised across different batches.

2.4.1 Field and fieldKey extraction

The primary approach used involves accessing the data directly (using the utlities module de-
veloped for this project and found in § C.6), in its native format using the Python API, for the
majority of the project output. Each .odb file contains a single odb object which in turn contains all
the data from the analysis: the Model data (parts, materials, initial and boundary conditions, and
physical constants) and the Results data (see fig. 2.12 and fig. 2.13 for a graphical representation).
Each step, as defined previously using *Step in the input generation, is now a container for the
frames object. The frames object contains the collection of increments from the analysis at which
output was requested. The increments correspond to time units for static (implicit) and quasi-
static (explicit) analyses and load-proportionality factor values for post-buckling analyses. Each
frame therefore represents a point during the analysis at which the frame.fieldOutputs[’field’]

values were requested for a desired ’field’ such as the stress along the global x- or y-axis, ’S11’ or
’S22’ respectively, at a time. The rootAssembly object is used to identify relevant keys() to access
fields from the relevant containers8. Thus the data field during a load step, at a given point in the
analysis can be requested using:

1 variable = steps['stepKey ']. frames[frameNumber ]. fieldOutputs['fieldKey ']

The extraction must be repeated frame-by-frame with the data from each frame combined to
form the analysis data at each node, as described in algorithm 1. The extracted data must then be
written to .csv files for further processing in Matlab. To write data to .csv, the writeDataToCSV()

function is used, shown in algorithm 2. This function writes the field data, normally from
fieldstore_c, to .csv files corresponding to the file structure hierarchy described in fig. 2.1. In
addition to the field data, the associated elements for each node, from fieldKeys, are written
to fieldKey.csv in a chosen field directory using fieldkeyPrint(). Note that since this file is
describing the mesh topology from the nodal, rather than element, perspective, it is identical for
any field extracted, so long as it contains the entirety of the mesh9.

8It is also used to index nodeSets and elementSets into lists. These lists are used during extraction to specify
the relevant region in the model.

9If the field is extracted for only part of the mesh, fieldKeys.csv will also only describe that part.
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Figure 2.12: ABAQUS .odb object structure hierarchy.

Figure 2.13: ABAQUS .odb data structure hierarchy.
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Result: Extraction using odbExtract()

store the step keys from odb.steps.keys() in steps;
for each step in steps do

store odb.steps[step].frames in frames;
for each frame in frames do

if field is either stress or strain then
if a region is specified then

store the frame fieldOutput in variable using region;
else

store the frame fieldOutput in variable;
end
for value in values do

if sectionPoint in the shell element is valid then
identify the component being extracted (i.e. 11, 22, 33 or 12, correspond
to the column index, comploc, 0, 1, 2 or 3 in value.data[comploc])

store the data from value.data of the node, defined by value.nodeLabel,
of the element, value.elementLabel, in the valstore dictionary

end
end

else if field is nodal force then
if a region is specified then

store the frame fieldOutput in variable using region;
else

store the frame fieldOutput in variable;
end
for value in values do

if sectionPoint in the shell element is valid then
store the data from value.data of the node, defined by value.nodeLabel,
of the element, value.elementLabel, in the valstore dictionary

end
end

end
end
store the values in the fieldstore list which contains the keyvalues alongside the data
values

store the values from fieldstore into a compact version, fieldstore_c, simplifying
the dictionary to exclude the keyvalues from the stored data

return valstore, fieldstore, fieldstore_c, fieldKeys
end

Algorithm 1: Overview of odbExtract()
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Input: local directory folderpath, odb number I, data
Result: Write data to .csv files using writeDataToCSV()

define the postprocessing directory, newpath as ./folderpath/Postprocessing/I/;
generate the newpath directory if it’s not available;
for each key1 in data do

the key name, key1, is used to identify what data field is stored in the dictionary;
if key1 defines a stress, strain, nodal force or displacement field then

for each key2 in data[key1] do
for each nodekey in data[key1][key2] do

reshape the data from row- to column-based, atad;
find the number of element contributions to the selected node; store in
dupes;

if dupes == 1 then
ensure that the newpath/key1/key2/nodekey.csv directory exists;
write data[key1][key2][nodekey] to nodekey.csv;

else if dupes > 1 then
store the data in a column-based format in the local list var;
do this for each element contribution at the node so that each column in
the data is for an element contribution and each row defines a step
increment;

ensure that the newpath/key1/key2/nodekey.csv directory exists;
write each row of var to nodekey.csv;

end
end

end
else if key1 defines a displacement component along a global axis then

for each nodekey in data[key1] do
reshape the data from row- to column-based, atad;
find the number of element contributions to the selected node; store in dupes;
if dupes == 1 then

ensure that the newpath/key1/nodekey.csv directory exists;
write data[key1][nodekey] to nodekey.csv;

else if dupes > 1 then
store the data in a column-based format in the local list var;
do this for each element contribution at the node so that each column in the
data is for an element contribution and each row defines a step increment;

ensure that the newpath/key1/nodekey.csv directory exists;
write each row of var to nodekey.csv;

end
end

else if key1 defines the sum of applied external forces, FSUM then
write the data, data[key1], to /newpath/f.csv;

end
end

Algorithm 2: Overview of writeDataToCSV()
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2.4.2 Additional data extraction

In addition to the field data, other results are extracted and stored in the form of .csv files for
further processing. Originally limited only to the force and displacement at a select few nodes, U.py
was enhanced to extract the force and displacement at the loaded nodeSets for non-composite and
composite cases, the nodes’ labels and coordinates, alongside the number of nodes and elements in
the model, nodeCount and eleCount, automatically. In order to do this, U.py is placed in the batch
directory and executed using the ABAQUS API. An overview of the algorithm is shown below.
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Result: Write data to .csv files using U.py

import required libraries, including utilities.py;
identify the .odb files in current directory and store them in list Is;
for each I in Is do

open the ./I.odb file;
open session using the ./I.odb file;
if there are slab nodes in the model then

load the displacement (U1, U2, U3) data using xyDataListFromField() for the slab
nodes nodeSet along z = 0 and at the top of the slab (referred to as
’SLAB_NODES_TOP_MID’);

if is loaded at defined locations (’SLAB_NODES_TOP_MID_POS’) then
load the force data from those nodes;

else
load the force data from the ’SLAB_NODES_TOP_MID’ nodes;

end
else

load the displacement (U1, U2, U3) data using xyDataListFromField() for the
flange nodes nodeSet along z = 0 at the top flange (referred to as
’FLANGE_NODES_TOP_MID’);

if is loaded at defined locations (’FLANGE_NODES_TOP_MID_POS’) then
load the force data from those nodes;

else
load the force data from the ’FLANGE_NODES_TOP_MID’ nodes;

end
end
load the diplacement along the y-axis for the flange node at midspan at the top
flange-web interface and z = 0, the ’MIDSPAN_NODE_S’ nodeSet;

save the loaded nodes’ and the ’MIDSPAN_NODE_S’ nodeSet’s labels as tm_nodes

and mns_node respectively;
count the nodes and elements using utilities.nodeCount() and
utilities.elementCount()

store the loaded nodes’ label into forcenodes and their coordinates to forceCoords;
write the forceCoords to ./Postprocessing/I/forceCoords.csv;
use utilities.extractStandardForce() to extract the forces and their sum over the
beam;

extract the displacement components along each global axis for the tm_nodes using
utilities.extractExpandedDisplacement();

extract the y-axis displacement for mns_node using
utilities.extractStandardDisplacement();

write the data to .csv files;
if there is a slab in the model then

write the slab node labels;
end
delete all session keys;
close the odb

end
print the number of elements to Postprocessing/eleCount.csv;
print the number of nodes to Postprocessing/nodeCount.csv;

Algorithm 3: Overview of U.py script
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Other data or visuals use basic techniques that can be adopted easily through the use of the
ABAQUS documentation and the autogenerated abaqus.rpy.

2.5 Processing of FE results

The bulk of the project’s data processing is handled using Matlab, including plotting and visuali-
sation. Since the data is stored in .csv files, using Matlab’s csvread function is sufficient. However,
the amount of data being accessed, combined with the further processing required means that rou-
tinely reading the text files causes a considerable delay10. This is exarcebated by the processing
required to sort the data into more useful structures. The structure format itself mirrors the folder
hierarchy shown in the previous section, with fields subdivided into components and sorted by
node label.

Thus the text files are accessed and, after being sorted into structures, are saved as a MAT-file.
MAT-files are proprietary and can be accessed by Matlab much more rapidly, at the cost of having
to process and save the data beforehand.

An alternative that wasn’t implemented would be to save the Python-extracted data into a Mat-
lab compatible format directly, such as a MAT file. This could potentially be possible by making
use of the SciPy library’s savemat, thus potentially reducing the postprocessing time substantially.

Data processing is split into four main procedures:

• Post-processing of the data into more useable forms using postProcess.m

• Calculation of actions (force, moments) using the post-processed data (method covered in
§ 2.5.1)

• Visualisation of the results (shown in chapter 4)

• Comparison with guidance (shown in chapter 5)

postProcess Post-processing is used to classify the previously archived data into Matlab struc-
tures, by field and component, so that additional operations on it can be conducted. The program
accesses the data, initially in the form of .csv files, and stores them in suitable structure arrays of
the form field.component, where the component refers to the global axis component. Following
this, the now structured data can be further sorted into various subdivisions that are helpful when
examining the mesh in greater detail. These are generally referred to as ’slices’ for each of the
various beam segments:

• slices for the steel beam cells (using findSectionAngles())

• slabSlices for the slab (using sortSlabNodes())

• reinfSlices for the reinforcement parallel to the global x-axis (using sortSlabNodes())

• reinfSlicesLat for the reinforcement parallel to the global z-axis (also using sortSlabNodes())

The procedure commences by calling postProcess() (§ D.1) in a batch directory containing a
valid ./Postprocessing folder, with the full procedure shown in pseudocode in algorithm 4.

Unlike the stress or strain fields, NFORC output (which includes both forces and moments) will
average to the equilibrated state at each node during an implicit FE analysis, with negligible error,
in accordance with the tolerance set in ABAQUS. Therefore, in order to calculate the equilibrating
force at a beam section, the unaveraged contributions from the local elements must be considered

10For most cases, a batch can take over an hour of processing. Multiple batches can be processed simultaneously,
however.
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instead. For this project, the sections through the beam are always defined using nodes to form a
boundary. The element contributions are then considered relative to this boundary, with averaging
used only for elements that lie on a chosen side of the boundary. An example of this can be seen
in fig. 2.16 where a vertical section through the perforation web (defined by nodes 7 - 3) defines
two groups of elements: 2 & 7 and 3 & 6. The vertical equilibrium force is calculated using the
contributions from one of either groups but must be adjusted accordingly since they would be
opposite in value11. This procedure is conducted to standardise the data accessing procedure for
the element contributions at the nodes being examined during a series of calculations. This ensures
that the correct node values are used during subsequent equilibrium calculations and streamlines
the process.

Note that during the structure generation for the steel beam i perforation J contained in
slices, each set of nodes forming a slice (commonly accessed in their ordered format using
slices{i}{J}.ordered_nodes) is stored in a clockwise order starting from 180o. In fig. 2.14, the S

slice comprises nodes 3 and 11, S + 1 contains 4 and 12, with the classification continuing in this
fashion12. Additionally, each slice’s element contributions are classified as negative (i.e. from the
radially preceding elements) or positive (i.e. from the radially succeeding elements). In fig. 2.14,
slice S has element 2 as a negative contributing element and element 3 as positive, with slice S +

1 classifying 3 and 4 as negative and positive respectively.

S

-ve +ve

S + 1

-ve

+ve

1

2

5

678

9

10

11

13

14

15

16

2 3

4

3

11

4

12

Figure 2.14: Definition of slices in a perforation using findSectionAngles().

11An ideal mesh would lead to equal but opposite values.
12Note that slices{i}{J}.ordered_nodes{S} contains the nodes in order from the perforation edge outwards (e.g.

for S, this would be (11, 3))
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load fingerprint.csv from the local directory;
load eleCount.csv, nodeCount.csv and times.csv if each exists;
for each test, i, in the local result directory ./Postprocessing do

load the displacement, u, coordinates, coords, elements, elements, external force, F
and, if available, the force coordinates forceCoords;

for each, j, of the fields stored in folds do
for each, k, of the field components stored in subfolds do

if the ./Postprocessing/i/folds{j}/subfolds{k}/ then
identify and store the list of all the .csv files in csvlist;
for each, l, of the files in csvlist do

store the csvlist using a structure of the form
field.component.csvlist{i};

store the field data using a structure of the form
field.component.vals{i}{l};

end
end

end
end

end
store the Matlab workspace as processed.mat in ./Postprocessing;
for each test, i, in the result directory do

if sn.csv exists then
load slab coordinates as coords_c, load steel coordinates as coords_s;

else
load steel coordinates as coords_s;

end
for each cell, J, in cell_number(i) do

load elements as elementlabels, load fieldKeys.csv as fieldKeys;
use findSectionAngles() to sort the data into slices{i}{J};
for each slice S in slices{i}{J} do

find the contributions from the relevant elements at the nodes using
addSliceContributions(), for the forces and moments, to calculate the
forces/moments at each perforation ’slice’;

end
end
if sn.csv exists then

store the concrete fieldKeys as fieldKeys_c;
use sortSlabNodes() to sort the data into slabSlices{i};
use addSlabContributions() to calculate the forces at each concrete ’slice’;

end
if longitudinal reinforcement data exists then

store the reinforcement fieldKeys as fieldKeys_r;
use sortSlabNodes() to sort the data into reinfSlices{i};
use addSlabContributions() to calculate the forces at each reinforcement ’slice’;

end
if lateral reinforcement data exists then

store the concrete fieldKeys as fieldKeys_lr;
use sortSlabNodes() to sort the data into reinfSlicesLat{i};
use addSlabContributions() to calculate the forces at each lateral reinforcement
’slice’;

end
end
store the Matlab workspace as postprocessed.mat in ./Postprocessing;

Algorithm 4: postProcess() procedure
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2.5.1 Calculation of actions using FE data

The calculation of the global actions at a section in the FE model (such as the vertical section
through the whole beam at a perforation) can, for idealised boundary conditions, be calculated
directly from the loading on the beam. An example of this is the calculation of the bending
moment and vertical shear at a perforation for a simply supported beam. Indeed, this approach
is used in § 4.5 & § 4.6 since it requires a minimal amount of data, making it efficient. This
approach, however, is not suitable for cases outside the scope of the theory, an example being
when the support boundary conditions are semi-rigid, and particularly when the user would need
to calculate the local actions (e.g. the vertical shear for the bottom tee).

In the absence of experimental data, hand (or analytical) calculations can be a reasonable
method of verification. However, they rely on simplifying assumptions which could, themselves,
be too conservative or potentially incorrect depending on the specific test being examined. By
post-processing the FE data directly, a user does not have to rely on analytical calculations to
bridge the gap from the simulation to the equivalent equilibrium actions for regions of interest and
can avoid excessive simplification. In addition, this post-processing approach allows the evaluation
of the assumptions in the analytical calculations and can be used to suggest improvements where
applicable.

To do this, the nodal forces for a desired series of nodes are used to calculate the equilibrium
forces. This procedure is used both for a local action (e.g. the axial force in a tee section) or
for a through-beam section (e.g. the global vertical shear at a perforation centre). In addition,
the stress field is analysed to estimate the location of the neutral axis for the beam. The Neutral
Axis (NA) estimation is done for each of the primary components: the slab and each of the tees.
Each of these components has a NA assigned to it which could coincide with one or both of the
other components, depending on the type of failure that is developing locally. The results in
chapter 5 track this behaviour and show whether a component is bending independently, as is the
case in Vierendeel-type bending, or as part of the beam section in cases where global bending is
predominant.

The actions are calculated by region using:

• findSliceEquilibrium() for the steel section (§ D.7)

• findSlabEquilibrium() for the slab (§ D.8)

• findReinfEquilibrium() for the longitudinal reinforcement (§ D.9)

• findLatReinfEquilibrium() for the lateral reinforcement (§ D.10)

and which can be referred to collectively as the equilibrium functions, after the neutral axis has
been determined for each component using estimateNA() (§ D.6).

Following this, the actions in each component can be combined to calculate the desired local or
global force or moment and thus provide a direct comparison with theory and analytical approaches.

Estimation of Neutral Axis (NA) location using stress field When calculating the moment
for a section, there are two options: calculate the moment from an arbitrarily chosen location if the
component is in equilibrium or identify the neutral axis location and use it to calculate the moment.
The first option was examined as part of the project but ultimately substituted in favour of the
direct estimation of the NA using the stress field. Using the first option is a common approach in
analytical calculations with its basis on the principle of superposition allowing the decomposition
of the stress field to an axial and pure bending component. By doing so, the moment can be
calculated using the pure bending stress profile alongside the section geometry. In the numerical
adaptation of this approach the axial force is calculated as a sum of all the section nodes and then
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redistributed among them in order to calculate a bending profile. This redistribution procedure
is crucial to the correct calculation of the bending profile and must consider the geometry (node
spacing and component thickness for shell elements) as well as the local material properties (steel,
concrete)13. The calculation of the component NA relies on the examination of the local normal
stress field14 from the FEA. This procedure relies on the identification of the locations where there
is a change in the stress signedness as potential locations for the NA of the component or beam
section.

The stress field, extracted from the Finite Element Analysis (FEA) and transformed previously
to coincide with the plane of the inclined section, is simplified from 3D to 2D geometry (or, relative
to the section from a 2D stress field, field, to a 1D stress vector, simplified_field along the
section depth), by averaging the stress values at each unique local y-axis location, pos. The visual
equivalent to this procedure is shown in fig. 2.15.

1 % Simplify field from 2D to 1D by adding the values at identical locations

2 unique_pos = unique(pos);

3 for indx = 1: length(unique_pos)

4 indices = find(abs(pos - unique_pos(indx)) <= 1e-4);

5 if length(indices) >= 2

6 if nargin >= 3

7 if strcmp(varargin {1}, 'average ')

8 denom = length(indices);

9 end

10 else

11 denom = 1;

12 end

13 simplified_field (:, indx) = sum(field(:, indices) ')'/denom;

14 else

15 simplified_field (:, indx) = field(:, indices);

16 end

17 end

Using the simplified stress field, the possible NA location can then be identified.

1 for row = 1: length(simplified_field (:, 1))

2 signchange = signChange(simplified_field(row , :));

3 % for signloc = 1: length(signchange.sign)

4 if abs(sum(simplified_field(row , :)) - 0) <= 1e-3 | length(signchange.sign) >= 2

5 NA_estimate(row , 1) = NaN;

6 elseif all(simplified_field(row , :) >= 0) | ...

7 all(simplified_field(row , :) < 0)

8 NA_estimate(row , 1) = NaN;

9 else

10 % [Y, I] = sort(simplified_field(row , :));

11 % pos_sorted = unique_pos(I);

12 % field_sorted = simplified_field(row , I);

13 signindex = signchange.sign;

14 NA_estimate(row , 1) = interpn(simplified_field(row , signindex:signindex +1), unique_pos(

↪→ signindex:signindex +1), 0);

15 if NA_estimate(row , 1) ~= NaN

16 NA_estimate(row , 1) = interp1(simplified_field(row , signindex:signindex +1), unique_pos(

↪→ signindex:signindex +1), 0, 'linear ', 'extrap ');

17 end

18 end

19 % end

20 end

It should be noted that the stress field examined is often non-trivial due to the numerical nature
of the solution when using FE and multiple local ’dips’ in the stress can sometimes be identified
in the vicinity of a potential NA. Currently, the NA is considered valid only if a single location is
identified within the input field.

13One way to simplify the redistribution procedure is to consider the axial force on a per-component basis and
distribute only the component axial force among the local component nodes.

14The local normal stress refers to the transformed stress for inclined sections.
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Additionally, while the stress field is examined here, this approach could be used for the strain
field but for the purposes of this project and to minimise the amount of post-processing involved,
only the stress field is examined by default.

Figure 2.15: Stress field simplification during the NA estimation procedure. The stress field as
output from the FE is simplified into a vector format with values averaged at the different y-axis
nodal positions.

Global and local moment using nodal forces and estimated NA Following the estimation
of the NA location for each of the components, which may coincide for some, the primary interest is
the calculation of the section moment at the perforation centres and the contribution to it from each
of the components. Each of the equilibrium functions mentioned earlier (findSliceEquilibrium(),
findSlabEquilibrium(), findReinfEquilibrium(), findLatReinfEquilibrium()) calculates the
local equilibrium forces and the component moment contribution, given the component NA calcu-
lated previously.

The procedure is summarised in algorithm 5 for findSliceEquilibrium(), but the approach
is applicable for all the functions with the exception that the slab and reinforcement forces don’t
need to be transformed and do not carry nodal moment as shell elements do.

The moment, shown in algorithm 5, is calculated as the sum of the normal forces to the inclined
slice (i.e. the local x-axis forces at each node)15.

subSlice versus default NA procedure The default approach of simplifying the stress field
in a section (as shown in fig. 2.15), was found to adversely affect the accuracy of the NA prediction.
In many instances, it would be unable to identify a potential location, leading to a sharp drop in
the calculated moment and large deviation from the theory.

To counteract this, the slab is divided into sub-slices along the z-axis, typically at each of
the unique node locations along z in a slab section. Following this, the same procedure shown
previously is applied to each of the subSlices in order to avoid simplifying the slab’s stress field.
While there is no change to the basic algorithm shown previously, its application is significantly

15Note that this is not the section moment, eqMoment since shell and beam elements can carry moment at their
nodes.

68



Input: odb number i, perforation J, slice S, fields forces and moments, slices structure
and component NA ybar

set phi = slices{i}{J}.thetas(S) and theta = slices{i}{J}.thetas(S);
calculate the rotation matrix R;
set the number of nodes and the time steps as nodeCount and timeCount;
for each node, n, in nodeCount do

store the global -ve and +ve element nodal force contributions at node n in
forcestore.nve.global(:, kk, n) and forcestore.pve.global(:, kk, n) where
kk = 1, 2 for x- and y-axis components respectively;

transform the global force matrices stored in forcestore.nve.global(:, :, n) and
forcestore.pve.global(:, :, n) to forcestore.nve.local(:, :, n) and
forcestore.pve.local(:, :, n);

store the local forces on a per-node n vector in forcestore.nve.localx(t, n) &
forcestore.pve.localx(t, n) for the -ve and +ve local element contributions in the
local x-axis for all time steps t;

store the local forces on a per-node n vector in forcestore.nve.localy(t, n) &
forcestore.pve.localy(t, n) for the -ve and +ve local element contributions in the
local y-axis for all time steps t;

calculate the force eqForce.nve(t, kk) and eqForce.pve(t, kk) as the sum of all the
local node contributions forcestore.nve.local(t, kk, n) and
forcestore.pve.local(t, kk, n) respectively for all time steps t and with kk = 1, 2
for the x- and y-axis values respectively;

end
calculate the section moment due to the local x-axis nodal forces using
calcSectionMoment() and the NA as calculated previously for the +ve and -ve element
contributions;

if the nodes are from shell elements, add the moment contributions about the z-axis for
each node to moment for the +ve and -ve element contributions;

return the moment (eqMoment.nve and eqMoment.pve);
Algorithm 5: findSliceEquilibrium() procedure

modified and so this approach is generally referred to as the subSlice approach to distinguish
between it and the simplification of the slab stress field.
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Local and global vertical shear using nodal forces One of the primary actions of interest is
the vertical shear force at the perforation centres. It was previously shown that the nodal force/-
moment output, NFORC, is archived and manipulated into the forces and moments structures. Thus,
for test i, perforation J located at slices{i}{J}.x from the support and slices S, the equilibrium
functions are called to calculate the local actions eqForce and eqMoment. The slices S for the steel
beam (top and bottom tees) are identified from their ϕ angles stored in slices{i}{J}.phis(S)

such that ϕ = 90o or 270o and used in findSliceEquilibrium(). For the slab, the suitable slice is
identified using the perforation centre location slices{i}{J}.x. The equilibrium vertical force is
thus the sum of the contributions from each of the components.
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Web-post shear longitudinal calculation using nodal forces A similar procedure to that
for vertical shear is used for the horizontal web-post shear calculations. The horizontal slices, S,
that define the web-post are identified from slices using their angle slices{i}{J}.phis(S). Using
findSliceEquilibrium(), the local forces are then calculated. Note that the forces are transformed
to correspond to the local x- and y-axes for each slice. Thus, the forces of the horizontal slice’s
positive contribution for the J + 1 perforation and the horizontal slice’s negative contribution of
the J perforation can now be added to calculate the web-post horizontal shear (see fig. 2.17).
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Figure 2.17: Graphical representation of the procedure that selects the relevant elements and nodes
for the calculation of the longitudinal force at a web-post.
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2.6 Chapter summary

ABAQUS was chosen due to its extensive modelling capabilities and customiseability through its
API as well as support for user-written material models (User MATerial (UMAT) & Vectorised User
MATerial (VUMAT)). However, the API was found to be limited in its customisation capabilities
and insufficient when automating, sometimes requiring user input and complicating the workflow.

A replacement for the ABAQUS pre-processor was developed to address this. The replacement
pre-processor consists of two main functions: mesh_gen.m & inp_gen.m and are used to produce a
model ready for analysis. Both were developed with extensive parametric capabilities.

In addition, a post-processor package was developed and used in conjunction with ABAQUS’s
odb viewer to further analyse the FE results.

These packages (pre- and post-processors) were developed such that the entire workflow from
mesh generation to analysis and finally data processing can be conducted automatically, greatly
improving the efficiency of the parametric study and minimising user input as required.

Their capabilities enable the parametric study conducted in chapter 4, while the post-processor
allows the study of the internal forces in the beam, conducted in chapter 5.
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Chapter 3

Implementation and examination
of the M7 constitutive model for
concrete

3.1 Theory

3.1.1 Definitions

• Material Point: An integration point in an element in the material

• Microplane: A plane passing through a material, or integration point, with an orientation
defined by an associated normal vector ni. The number of microplanes is constant for all
integration points.

• Stress-Strain Boundaries: These microplane level boundaries define a limiting stress that
cannot be exceeded by the microplane stresses

• History Variables: Variables of the M7 model which are updated during calculations and
contain information regarding the loading path

• Global Variables: Variables that are common to all microplanes

• Material Subroutine: The M7 microplane model in the form of a subroutine, or function,
that can be called during calculations

• Driver Routine: A software routine which enables the material subroutine to calculate a
solution to mixed boundary condition problems during a single integration or material point
simulation

• Increment: Refers to the advance from one point satisfying the boundary conditions to the
next

• Step: Refers to the advance from one iteration within an increment to another during con-
vergence

3.1.2 Procedure

Preliminaries The numerical implementation of the M7 model (partly described by Caner and
Bazant (2013a)) was optimised by moving those calculations common to all microplanes outside
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the main loop in order to reduce the amount of calculations required. The adopted procedure will
be shown here to clarify the changes made. Note that the variable names were not changed from
those used in Caner and Bazant (2013a).

Prior to calling the material subroutine, from here on referred to as M7.m or M7, the projection
matrix Nij is calculated using the normal vectors, ni defined in Bazant and B. Oh (1986), while
mi and li are left to the user to define1. This enables the projection matrices Mij and Lij to be
calculated and stored at the beginning. Additionally, the k and c constants are defined prior to
calling the M7 subroutine.

Note that after an investigation during the validation procedure, a number of behaviours were
identified in the model that led to a significant difference between the results obtained and those
reported by the authors in Caner and Bazant (2013a). After discussion, a corrigendum, subse-
quently published as Caner and Bazant (2015), was incorporated to the implementation which
solved some of the issues behind the model behaviour. The following sections use the amended
code following the instructions from the original authors; some of the original results have been
included to compare (see fig. E.1).

Implementation During a call of M7, represented diagrammatically in fig. 3.1, the variables
common to all microplanes are calculated or defined first in Steps 1-6. It should be pointed out
that M7.m requires the definition of 30 constants of which the 5 k constants, the 21 c constants,
the reference2 Young’s Modulus E0 and reference compressive strength f

′

c0 are defined by Caner
and Bazant (2013b) and Caner and Bazant (2015)3, leaving the user to define the remaining 3:
the Young’s Modulus E, Poisson ratio v and concrete compressive strength f

′

c.
During Step 1, the material constants are defined in the called function using the previously

globally defined k and c values. In addition, Young’s Modulus E, Poisson ratio v, reference
Young’s Modulus E0, reference compressive strength f

′

c0 and the concrete compressive strength
f

′

c are defined as variables in the function M7.m. However, the k constants can be adjusted for
different types of concrete whereas the c constants theoretically stay the same for any concrete.

Step 2 calculates the normal undamaged microplane Young’s Modulus EN0, γ0 and the trans-
verse microplane Young’s Modulus ET . It should be noted at this point that Steps 1-2 are essen-
tially preparatory Matlab calculations and could be moved outside the M7 subroutine entirely.

EN0 = E

1 − 2v
(3.1)

γ0 = f
′

c0
E0

− f
′

c

E
(3.2)

ET = E(1 − 4v)
(1 − 2v)(1 + v)

(3.3)

During Step 3, the previous volumetric strain ϵoV , change in volumetric strain ∆ϵV and the
current volumetric strain ϵV are calculated.

ϵoV = ϵ11 + ϵ22 + ϵ33

3
(3.4)

∆ϵV = ∆ϵ11 + ∆ϵ22 + ∆ϵ33

3
(3.5)

ϵV = ϵoV + ∆ϵV (3.6)

1A trial code was also used where the vector was orthogonal to each of the axes in turn in order to examine
possible bias; this showed no change in the results and hence no bias.

2Reference here is a term used by Caner and Bazant (2013a) to distinguish them from those defined by the user.
3The corrections added c21 to the list of constants
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In Step 4, the elastic volumetric strain ϵe, the maximum and minimum principal strains ϵoI and
ϵoIII , α and the volumetric microplane stress-strain boundary σb

V are calculated. The volumetric
boundary is the first of two components of the normal microplane boundary in compression.

ϵe =
⟨

−σo
V

EN0

⟩
(3.7)

α = k5

1 + ϵe

(
ϵoI − ϵoIII

k1

)c20

+ k4 (3.8)

σb
V = −Ek1k3 exp

(
−ϵV
k1α

)
(3.9)

where ϵoI and ϵoIII are the maximum and minimum principal strains respectively from the
beginning of the current iteration.

During Step 5 and 6, γ1, β2, β3 are calculated and the maximum tensile volumetric strain
is stored as ζ =

∫
⟨dϵV ⟩. Note that ζ acts as a measure of the damage accumulated during the

concrete loading, which was interpreted as the sum of all the positive contributions of dϵV from
past steps. Following this, for each microplane µ in turn, are Steps 7-16. In other words, the
orientation of the microplane has an impact on all of the calculations presented in these steps.

γ1 = exp(γ0) tanh
(
c9 ⟨−ϵV ⟩

k1

)
(3.10)

β2 = c5γ1 + c7 (3.11)

β3 = c6γ1 + c8 (3.12)

During Step 7, the normal ϵN , transverse ϵL and ϵM strains, as well as their respective change
∆ϵN , ∆ϵL and ∆ϵM are calculated. These are the projections of the global strain and change in
strain onto each microplane.

ϵN = Nijϵij (3.13)

ϵM = Mijϵij (3.14)

ϵL = Lijϵij (3.15)

∆ϵN = Nij∆ϵij (3.16)

∆ϵM = Mij∆ϵij (3.17)

∆ϵL = Lij∆ϵij (3.18)

(3.19)

In Step 8, the old deviatoric microplane strain ϵoD, change ∆ϵD and the current deviatoric
microplane strain ϵD are calculated. These, along with the variables calculated previously in Step
5 enable the calculation of the microplane deviatoric stress boundary σb

D. This is the second of
the two components of the compressive normal microplane boundary.
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∆ϵD = ∆ϵN − ∆ϵV (3.20)

ϵoD = ϵN − ϵoV (3.21)

ϵD = ϵoD + ∆ϵD (3.22)

σb
D = − Ek1β3

1 +
(

⟨−ϵD⟩
k1β2

)2 (3.23)

During Step 9, the value of ϵN is calculated and then the damaged value for the normal
microplane Young’s Modulus EN is calculated using the appropriate loading condition. Following
this, the elastic normal microplane stress σe

N is calculated.

ϵN = ϵV + ϵD (3.24)

EN = EN0
exp

(
−c13ϵ

+
N0
)

1 + 0.1ζ2 if σo
N ≥ 0 (3.25)

EN = EN0 if σo
N > EN0ϵN & σo

N ∆ϵN < 0 (3.26)

otherwise EN = EN0

(
exp

−c14|ϵ
0−
N

|
1+c15ϵe +c16ϵe

)
if σo

N < 0 (3.27)

σe
N = σo

N + EN ∆ϵN (3.28)

At Step 10, β1 is calculated and used to calculate the tensile normal microplane boundary σb
N .

β1 = −c1 + c17 exp (−c19 ⟨ϵe − c18⟩) (3.29)

σb
N = Ek1β1 exp

(
− ⟨ϵN − β1c2k1⟩

−c4ϵesignϵe + k1c3

)
(3.30)

Note that if σb
N < 0 then σb

N = 0.
During Step 11, a mathematical condition is implemented based on the magnitude of the

normal elastic stress σe
N relative to the normal tensile and compressive boundaries, σb

N and σb
D +

σb
V respectively. The condition identifies the loading type as compression (negative) or tension

(positive) and then selects the elastic value if it is below the boundary or the boundary value if it
is exceeded.

σN = max
(
min

(
σe

N , σb
N

)
, σb

V + σb
D

)
(3.31)

At Step 12, the history variables are updated. ϵ+N0 and ϵ−N0 represent the maximum tensile and
compressive, or positive and negative, strain saved when the normal boundary has been exceeded.

ϵ+N0 = max
(
ϵN ,

(
ϵ+N0
)old
)

(3.32)

ϵ−N0 = max
(
ϵN ,

(
ϵ−N0
)old
)

(3.33)

During Step 13, the current volumetric stress σV is estimated using the average of the normal
microplane stresses and associated weighting, w.
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σV = 1
2π

Nµ∑
µ=1

wµσN , (3.34)

where Nµ is the number of microplanes. The sum is done alongside the microplane calculations.
It can be implemented separately following the microplane calculations alongside Step 17.

During Step 14, σ̂o
N and the microplane shear stress boundary σb

τ are calculated.

σ̂o
N = ⟨ET k1c11 − c12 ⟨ϵV ⟩⟩ (3.35)

σb
τ =

(
(c10 ⟨σ̂o

N − σN ⟩)−1 + (ET k1k2)−1
)−1

if σN ≤ 0 (3.36)

or σb
τ =

(
(c10σ̂

o
N )−1 + (ET k1k2)−1

)−1
if σN > 0 (3.37)

During Step 15, the elastic shear stress σe
τ , as well as the shear stress στ are calculated first.

These are then used to scale the shear stress components σL and σM .

σe
τ =

√
(σo

L + ET ∆ϵL)2 + (σo
M + ET ∆ϵM )2 (3.38)

στ = min
(
σb

τ , σe
τ

)
(3.39)

σL = (σo
L + ET ∆ϵL) στ

σe
τ

(3.40)

σM = (σo
M + ET ∆ϵM ) στ

σe
τ

(3.41)

Note that equations (3.40) and (3.41) differ in Caner and Bazant (2013a) and Caner, Bazant,
and Wendner (2013) with the scaling applied only to the shear increment in the latter reference.

During Step 16, the microplane stresses are used to form the stress state in the microplane,
s

(µ)
ij , and are integrated by making use of the weighted sum to σij ,

s
(µ)
ij = σNNij + σLLij + σMMij (3.42)

σij = 6
Nµ∑
µ=1

wµs
(µ)
ij , (3.43)

while the calculated values of σN , σL and σM are stored4.
Finally, after the microplane calculations are complete, the volumetric stress and the global

strain are updated in Step 17. Note that this step is done once, not for each microplane in turn.

σo
V = σV (3.44)

ϵij = ϵij + ∆ϵij (3.45)

Thus Steps 1-6 and 17 are global while Steps 7-16 are microplane dependent.

4They are stored for each microplane in three separate Nµ × 1 vectors.
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Step 1. Initially set/define k1-k5 and c1-c20, E, v, E0, f
′
c0, f

′
c , ϵij and ∆ϵi

��
Step 2. Calculate EN0, γ0, ET

��
Step 3. Calculate ϵo

V , ∆ϵV and ϵV

��
Step 4. Calculate ϵe, ϵo

I , ϵo
III , α and σb

V

��
Step 5. Calculate γ1, β2, β3

��
Step 6. Update ζ

��
Step 7. Calculate ϵN , ϵL, ϵM and ∆ϵN , ∆ϵL, ∆ϵM

��
Step 8. Calculate ∆ϵD, ϵo

D, ϵD and σb
D

��
Step 9. Calculate EN using the appropriate condition and then calculate σe

N

��
Step 10. Calculate β1 and then σb

N

��
Step 11. Set σN to the elastic result or drop to boundary.

��
Step 12. Update ϵ+

N0 and ϵ−
N0

��
Step 13. Calculate σV

��
Step 14. Calculate σ̂o

N and σb
τ

��
Step 15. Calculate σe

τ , set στ and calculate σL and σM

��
Step 16. Calculate sij , σij and store σN , σL and σM

��
Step 17. Update σo

V and ϵij

Figure 3.1: M7.m calculation procedure.

Following correspondence with Prof. Caner, now available in Caner and Bazant (2015), the
following corrections were highlighted regarding (3.8), (3.30), (3.29) and (3.35) respectively:
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α = k5

1 +
min

(⟨
−σ0

V

⟩
, c21

)
EN0

(
ϵoI − ϵoIII

k1

)c20

+ k4 where c21 = 250MPa. (3.46)

σb
N = Ek1β1 exp

(
− ⟨ϵN − β1c2k1⟩
c4ϵe + k1c3

)
(3.47)

where β1 = −c1 + c17 exp
(
−c19

⟨
−σ0

V − c18
⟩
/EN0

)
and c18 = 62.5MPa.

σ̂o
N = ET ⟨k1c11 − c12 ⟨ϵV ⟩⟩ (3.48)

A note on the notation In this Chapter indicial notation is used. This is done to both allow
those wishing to further examine the original papers to do so more seamlessly and to enable those
reading the source code to relate the expressions more clearly.

3.2 Point simulation: validation & results

The implementation previously described in this chapter was subsequently written to Matlab and
Fortran code and used in this section to compare against the results reported in Caner and Bazant
(2013b). This was done for various load cases simulating uniaxial tension & compression, as well
as confined, hydrostatic and triaxial compression in order to cover a wide range of simulations
and ensure that the implementation is functional and robust for further use. To conduct these
simulations, a driver subroutine was used, featuring a Newton-Raphson iteration scheme, that
enforces the desired mixed mode (mixed stress and strain) conditions and acquires the resulting
model output. This investigation was conducted without the use of FE.

3.2.1 Simulation results

During validation, including after the corrections following correspondence with Prof. Caner, it
was found that several of the c constants needed to be adjusted. The following figures compare
the results acquired using each set of c constants alongside the reported M7 output from Caner and
Bazant (ibid.).
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Parameter
Default value as reported

in Caner and Bazant
(2013b, table 1)

Modified value as used in
point simulations

f
′

c0, MPa. 15.08 15.08
E0, GPa. 20 20
c1 8.9 ∗ 10−2 8.9 ∗ 10−2

c2 17.6 ∗ 10−2 17.6 ∗ 10−2

c3 4 1
c4 50 50
c5 3500 3500
c6 20 20
c7 1 1
c8 8 8
c9 1.2 ∗ 10−2 1.2 ∗ 10−2

c10 0.33 0.33
c11 0.5 0.5
c12 2.36 2.36
c13 4500 4500
c14 300 300
c15 4000 4000
c16 60 60
c17 1.4 1.8

c18, MPa. 62.5 ∗ 106 (corrected from
1.6 ∗ 10−3) 62.5 ∗ 106

c19 1000 1000
c20 1.8 1.8
c21, MPa. 250 250

The results in fig. 3.2 and 3.5 show that when using the default values, there is a drop in
peak compression capacity and unrealistic tensile behaviour, particularly following the initiation
of nonlinear behaviour. The constants modified, c3 and c17 were reported to affect the postpeak
slope in uniaxial tension and tensile strength respectively and can subequently be shown to have a
significant impact on those behaviours, while having a minimal effect on other, largely compressive
behaviour. This can be seen in figs. 3.3, 3.4, 3.6 and 3.7.

As a result, the modified values are deemed suitable for use alongside the rest of the unmodified
constants for the remainder of the study.
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Figure 3.2: Uniaxial compression simulation comparing against the results from Caner and Bazant
(2013b, fig. 1a).
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Figure 3.3: Confined compression simulation comparing against the results from Caner and Bazant
(2013b, fig. 1f).
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Figure 3.4: Hydrostatic compression simulation comparing against the results from Caner and
Bazant (2013b, fig. 1g).
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Figure 3.5: Uniaxial tension simulation comparing against the results from Caner and Bazant
(2013b, fig. 1h).
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Figure 3.6: Biaxial peak stress envelope comparing against the results from Caner and Bazant
(2013b, fig. 1d).
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Figure 3.7: Triaxial compression simulation comparing against the results from Caner and Bazant
(2013b, fig. 1c).
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Table 3.1

Parameter
Values used in simulation and associated figures

Default 3.2 & 3.8 3.3 3.4
3.5, simu-

lation
a

3.5, simu-
lation

b
3.6 3.7

E, GPa. 25 30.173 41.369 35.163 26 31.87 37.921 24.132
v 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
k1, ∗10−6 150 100 120 150 200 215 120 80
k2 110 110 110 110 110 110 110 110
k3 30 20 10 5 30 30 30 12
k4 100 40 150 80 95 95 95 38
k5, ∗10−3 0.1 0.1 0 0 0 0 40 0.2

3.2.2 Investigation of various loading conditions for selected sets of k-
constants

It is stated in Caner and Bazant (2013a) that the k-constants are the only parameters that need
to be calibrated against a desired concrete’s behaviour while the c-constants remain the same for
the majority of concrete types. However, the results in the original article are calibrated for each
simulation validated against and there is no investigation of the unified behaviour for a chosen set
of k values. Of particular interest to most structural engineers is the concrete uniaxial stress-strain
behaviour in compression and shear. However, the stress state experienced by a large percentage of
concrete in a given structure will include additional stresses leading to, at the very least, a biaxial
stress state. By investigating the simulated behaviour for a set of k values in a more comprehensive
manner, the user can ensure that the behaviour is realistic for a variety of boundary conditions.
In this part of the study, sets of k constants are investigated under various simulated boundary
conditions, in order to form a more comprehensive view of the behaviour associated with each set.
These results are compiled to form the biaxial peak stress envelopes for each set of k values to
provide a better insight of the M7 behaviour.

3.2.2.1 Investigation using parameters from uniaxial compression simulation 3.2

Fig. 3.8 shows that this k set represents adequately accurate uniaxial compressive behaviour up
to peak and relatively simplified, stiffer behaviour post-peak. Additionally, the uniaxial tensile
behaviour shown in fig. 3.9, is within ≈ 5.3% of the uniaxial compression peak stress but exhibits
the characteristic ’leaf’-stiffening behaviour also seen in fig. 3.5. Examining the normalised peak
stress half-envelope in fig. 3.10, it can be seen that while the uniaxial behaviour appears adequate,
the biaxial behaviour is greatly overestimating the concrete capacity for compression-compression
loading by exhibiting a 60% increase in capacity relative to the uniaxial compression case. In
addition, the tension-tension loading shows an increase to ≈ 6.1% of the uniaxial compression
capacity. While this is a modest increase to the capacity itself, it represents an increase of ≈ 86.6%
relative to the uniaxial tension capacity instead of the expected decrease due to the unfavourable
loading condition being simulated.
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Figure 3.8: Uniaxial compression simulation using the 3.2 parameters.
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Figure 3.9: Uniaxial tension simulation using the 3.2 parameters.
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Figure 3.10: Biaxial peak stress envelope using the 3.2 parameters for σ33 = 0..

3.2.2.2 Investigation using parameters from uniaxial tension simulation 3.5

fig. 3.11 shows that this k set adequately represents the uniaxial tensile stress-strain response up
to the peak, while conequently exhibiting the characteristic post-peak ’leaf’ softening caused by
the gradual activation of tensile microplane behaviour. The result for the uniaxial compression
simulation using the k set for fig. 3.11 concrete a is shown in fig. 3.12. Qualitatively the response
appears reasonable with a uniaxial tension response of ≈ 4.2% the peak uniaxial compression stress
of ≈ 87.62 MPa.

The biaxial peak stress envelope for concrete a, shown in fig. 3.13, indicates a potentially
non-conservative compression-compression response with a peak increase of 58.1% relative to the
uniaxial compression capacity for a σ11

σ22
= 2.75 ratio. Additionally, the tension-tension response

is unrealistic, exhibiting an increase to 4.76% of peak uniaxial compression. Overall, the peak
tension/peak compression ratio is very conservative, potentially offsetting this issue but also making
the model inefficient when modelling cases where tensile failure is a particular concern.
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Figure 3.11: The uniaxial tensile behaviour from the point simulations using the modified con-
stants is plotted in conjunction with the digitised experimental data available in Caner and Bazant
(2013b). As groups of similarly oriented microplanes’s stress boundaries are reached, there is a sud-
den change in behaviour, manifesting in noticeable ’leaf-like’ points in the macroscopic behaviour.
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Figure 3.12: Uniaxial compression point simulation output using the modified c-constants.
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Figure 3.13: Biaxial peak stress envelope for σ33 = 0.

3.3 Comparison of biaxial envelopes of concrete models in
ABAQUS & M7

A series of cube simulations (mirroring physical cube tests) were conducted in ABAQUS with
the loading applied to each of the cube faces defining a ratio (and thus an angle) in the biaxial
envelope. Non-convergence is assumed to mean that the peak has been reached, since the N-R
algorithm in ABAQUS is not suited to solving for material softening. This was done for the key
concrete models available to ABAQUS/Implicit and which would be considered the alternatives to
a custom model such as M7. These models were introduced previously in § 1.6.1.

For the conc 1, or the smeared cracking model, the values in Table 3.2 were used to define the
required material parameters alongside the digitised stress-strain response of the M7 simulation,
fig. 3.14. The tension stiffening behaviour for the conc 1 model can be characterised using either
a stress-strain or stress-displacement response. For unreinforced members, a stress-strain response
used to define the tensile stiffening of a concrete member (such as the slab in a composite beam)
could lead to significant mesh sensitivity as a result of its dependency on element length. This
can be overcome by using a stress-displacement rather than stress-strain criterion, and thereby
defining a crack size at which the stress carried by an element is zero (see ABAQUS/CAE v6.13
Analysis Users’ manual 23.6.1 under Fracture energy cracking criterion). The uo value is typically
calibrated but as the cube size is 1 m3 it was thought to base the uo on the recommended strain
value of 10−4 as the displacement as well. Alternatively, ABAQUS 6.13 23.6.1 suggests values of
uo 0.05 to 0.08 mm. for normal and high strength concrete respectively.

E, GPa. v uo, m.
37.921 0.18 0.0001

Table 3.2: conc 1 parameters used in fig. 3.15 & fig. 3.16
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For the conc 2, or damaged plasticity model, the values in Table 3.3 are used alongside the
digitised M7 stress-strain response in fig. 3.14. In addition to this, the tension stiffening in the
model is defined as shown in Table 3.4.

Table 3.3: conc 2 parameters used in fig. 3.15 & fig. 3.16

E0, GPa. v ψ Eccentricity, ϵ fb0
fc0

K Viscosity
30 0.18 30 0.1 1.16 2/3 0

Table 3.4: conc 2 tension stiffening

σt,MPa. ϵ̃ck
t

6 0
0 10−3

Note that the parameters used in the definition are shown for completeness since the simulations
only reached peak and are required for the analysis. Therefore, those influencing the stiffness and
post-peak behaviour do not affect the biaxial peak stress envelope.

E, GPa. 37.921
v 0.18
k1, ∗10−6 120
k2 110
k3 30
k4 95
k5 0.04

Table 3.5
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Figure 3.14: Digitised M7 compressive uniaxial stress-strain response, used as input for the conc
1 & conc 2 models.
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Figure 3.16

conc 1 and conc 2 share the compression-compression boundary but deviate mainly on the
tension-compression. conc 1 appears to have the largest tension-compression capacity. conc 2
is far more conservative and exhibits an essentially linear response from the tension-tension to
uniaxial compression. The M7 material model is bordered by the two models, with the conc 2
model coinciding with M7 at highly tensile stress states and conc 1 at increasingly compressive
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states, particularly when transitioning from tension-tension to uniaxial compression. M7 deviates
considerably from either model at compression-compression, where there is an overestimation of
the capacity, similarly to previous observations.

The tensile response appears overly conservative, relative to the experimental data, for both
the M7 and conc 2 models, making them less suitable for FE analyses featuring highly tensile
stress such as that expected in the moment-resisting beam simulations.

In addition, the M7 model’s tendency to overpredict the compression-compression peak allow-
able stress could mean it would be unsafe without suitable calibration. As the point simulations
show that the material parameters may not have a significant effect on that response, this might
mean modification of the M7 algorithm itself would be required.
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Figure 3.17: Plots of the time (in seconds) it took to complete an analysis for each biaxial ratio.
The labels each are ( σ11

σ , σ22
σ ) where σ is an absolute value used during model generation. The left

plot shows the results for all the models while the right excludes the conc 1 model which exhibits
spikes in the compression-tension regions. Note that the von Mises analyses are not visible as they
ranged from 2 - 3 seconds for all biaxial ratios.

3.4 Chapter summary

M7 was chosen as a suitable candidate for further study and implementation into a UMAT due to
its potential ability to model the complex stress states for concrete.

It features a unique formulation that leads to anisotropy through the decomposition of the
applied strain into vector components on optimally orientated planes. The anisotropy develops as
a result of the loading history leading to damage and the interaction between the microplanes.

In this chapter it was implemented in Matlab and Fortran for material point simulations and
later into a UMAT for use in larger scale finite element analyses using ABAQUS/Implicit.

However the UMAT implementation was found to be unsuitable for use in large scale simulations
(as described in § 4.10), leading to non-convergence when used for anything more than just a few
elements.

Some additional observations should be noted:

• M7 needs to be calibrated for each type or sample of concrete. This is typically by adjusting
the k-constants but simulations on the implemented version show that the c-constants may
also need to be adjusted.
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– The large number of material constants (30 in total) means that this model would
require an automated optimisation procedure to adjust the parameters if intended for
routine use as done in Kucerova and Leps (2013) for the M4 model.

– The material constants do not have a direct relationship with the material’s physical
properties but try to mirror the behaviour seen under certain loading conditions.

• The number of microplanes leads to an increase in the computational time. For 37 mi-
croplanes, the average runtime appears to fluctuate around a mean of ≈ 300 to ≈ 400
seconds (see fig. 3.17).

• The interaction between the microplanes (and subsequent integration) can lead to spurious
results during loading as seen in fig. 3.11. This can complicate the use of the M7 model
for larger-scale FE simulations as the ssudden change in behaviour could make the analyses
more difficult to converge.
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Chapter 4

ABAQUS Finite Element (FE)
analyses

4.1 FE model

4.1.1 Element types used

In order to simulate the composite beams adequately using FE, their constituent components must
be modelled using suitable element types. In addition, the elements must be compatible for both
ABAQUS/Implicit and ABAQUS/Explicit to ensure that the mesh examined between the two
solvers is identical. Note also that the elements chosen for each component are influenced by the
mesh generation algorithm and its capabilities.

While ABAQUS has access to various types of shell elements, including for thin and thick shell
problems, the general purpose shell elements (S3, S4) and their reduced integration counterparts
(S3R, S4R) are suitable for all loading conditions and shell problems (Simulia 2013a). Of these, the
S4 element type is suitable for in-plane bending problems and does not suffer from shear locking.
In addition, the S4 element does not require hourglass control (ibid.). As a result of this, three-
dimensional 4-node general-purpose S4 shell elements are used for the steel beam web and flanges
across all the simulations.

The concrete slab, being of simple geometry, is assembled using fully integrated, three-dimensional,
8-noded hexahedral elements (C3D8). These are available within both Implicit and Explicit solvers
and were more easily incorporated into the mesh generator. Additionally, they are compatible with
both ABAQUS’s embedded elements and the use of discrete reinforcement.

To simulate the discrete reinforcement, three-dimensional, 2-noded truss elements are used
(T3D2).

The studs are simulated by making use of three-dimensional, 2-noded beam elements (B31).
In addition to the elements used to assemble the mesh, connectors and springs were chosen

to simulate contact in lieu of the standard ABAQUS contact simulation. This was done both
for efficiency (at the flange-slab interface) and because it would allow the simulation of contact
without the need for a column (at the column-beam interface).

As a column is not defined, the regular contact simulation in ABAQUS cannot be used as it
needs existing surfaces. The approach here is to use 2-noded springs (*SPRING) for which one node
is fixed in 3D space. The other end is connected to the endplate.

The connector elements (CONN3D2) are used at the flange-slab interface, where the either
end of each is connected to a flange node and its counterpart along z1, with a *CONNECTOR STOP
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definition used to simulate contact while simulteneously allowing separation.

4.1.2 Solver settings

For this project, both implicit and explicit solvers available in ABAQUS were used in an attempt
to overcome the issues related to non-convergence due to the nonlinear nature of both the material
models and the geometry.

The ABAQUS/Implicit solver uses, by default, a Newton-Raphson (N-R) iteration procedure.
The incrementation in ABAQUS is defined in terms of a total ’time’ period, for each *STEP.
The defaults are modified so that the maximum increment is 0.1 over a default period of 1, with
minimum increments of 10−12 and an initial of 0.001. In addition to these settings, the solver
adopts automatic sub-incrementation.

In cases which include perturbations, particularly when using *IMPERFECTION, and where buck-
ling is expected, the Riks solver is used. The modified Riks method is a type of arc-length pro-
cedure, seeking the solution by using a load magnitude parameter (also referred to as the Load
Proportionality Factor (LPF) in ABAQUS and its documentation) instead of directly solving for
the desired load or displacement (Simulia 2013a, sec. 2.3.2). However, the Riks method is not
entirely robust or always suitable to solving problems with significant material nonlinearity (as
occurs in concrete) as the method can lead to unintended loading (or unloading) as it may identify
another equilibrium path.

Due to the non-convergence being a consequence of the material softening in concrete, a dynamic
procedure was used, with some success, to reach convergence when the static procedure was unable
to.

Thus, an approach to overcoming the limitations of ABAQUS/Implicit is through the use
of the Explicit solver, which is generally used for short duration dynamic simulations such as
blast or impact but can be used to simulate quasi-static loading with suitable settings. A quasi-
static analysis experiences negligible dynamic effects and this is enforced in an explicit analysis by
ensuring that the load is applied gradually, in sufficiently small time increments while balancing
the total analysis time. As the analysis time is linked to the stability limit calculated by ABAQUS,
mass scaling can be used to increase the minimum allowable time step and thus reduce the total
runtime. This fine-tuning precludes complete automation, with the procedure adopted consisting
of the mesh generation and initial run in ABAQUS, followed by an examination of the results,
particularly the output energy and ratios between the kinetic, external and total. After this, the
settings are adjusted (either by reducing the increment size or adjusting the applied Uniformly
Distributed Load (UDL)) and the simulation is re-run to improve the results.

4.2 Mesh refinement study

Mesh refinement studies are a standard part of FE analyses which provide insight into the balance
between accuracy and computational cost. The aim of this preliminary study is to prepare for the
parametric studies that will follow and ensure they are undertaken to adequate accuracy. Since
this thesis encompasses a multitude of variables, with those considered most critical discussed in
§ 4.4, it is important to examine their influence in detail. For this reason, a series of meshes are
produced. The overall aim is to identify mesh generation settings (mainly the mesh seeds) that
will serve as a basis for the parametric study.

The nature of this research requires greater finite element mesh refinement locally, near the
support and the initial perforation while still capturing the overall deformation behaviour of the

1Note that this approach allows the simulation of contact with an arbitrary gap between the two surfaces and
was used in § 4.3.2.
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beam. The stress field beyond the first few perforations is of secondary importance and it is pru-
dent to use a non-uniform mesh along the beam length to reduce the computational cost while
maintaining the desired accuracy. This mesh refinement study quantifies the drop in accuracy when
using different coarsening rules and identifies reasonable mesh settings for use in subsequent anal-
yses. The study encompases batches of meshes with progressively increasing coarseness alongside
a benchmarking mesh model (0.inp). All batches share the same steel beam geometry, which was
chosen to represent a standard configuration, but differ in the mesh_gen settings used to generate
the mesh, as well as material models. Specifically, all meshes feature a simply supported 0.6 m.
deep steel beam with 0.375 m. diameter circular web perforations (62.5% of the depth) and a 2.0
m. wide by 0.135 m. deep concrete slab in the composite cases. Note that there is no discrete
reinforcement introduced in the concrete slab and there is full interaction2between the beam and
slab in the composite cases for these meshes.

All the simulations use both x- and z-symmetry and the beam span remains constant for all
the meshes at ≈ 7.76 m.

4.2.1 Methodology

For the mesh refinement study, the custom mesh generator (mesh_gen.m) was used to produce
a benchmark mesh (0.inp) and groups of progressively coarser meshes in batches – 11 groups of
3 meshes per batch. The groups feature a progressive reduction the mesh seed from the second
group onwards (i.e. 4.inp onwards). Each group’s initial mesh is uniform along its length while the
subsequent two feature a gradual reduction in their node counts, defined by a perforation-count-
based linear and exponential reduction respectively (see figure fig. 4.1). Thus in a given group, the
reduced node count nr for a given perforation I is expressed as 3:

nr = n ∗ αi

I
(4.1)

nr = n ∗ (αi)I (4.2)

The difference from one group to another is due to a factor, α, which is used to reduce the node
count progressively. The factor itself is simply defined as 4:

α = (1, 0.9, 0.8, ...0) (4.3)

The post-processed data gives a view of the behaviour of each mesh in, broadly, two ways:
global and local behaviour. Therefore a series of metrics is necessary to evaluate a given mesh.
Since the research generally focuses on the region near the connection, local behavioural metrics
are examined in addition to global metrics.

The global behaviour is examined by mainly considering the load-displacement response from
each mesh. This highlights the stiffening effect due to element reduction (conversely, an increase in
the number of elements will produce a ’softer’ mesh since the idealised FE structure will be able to
reproduce local deformation gradients). The local behaviour is examined primarily by considering
the average stress output at the nodes alongside their associated element contributions. This
metric is based on the assumption that an infinitely fine mesh would feature negligible differences
between different element contributions at a given node. This is done for multiple nodes at critical
locations shared between meshes. In the case of the steel beam, the equivalent von Mises stress

2The top surface of the flange and the bottom surface of the concrete slab share all displacements.
3Due to the nature of the exponential reduction in the seed count, an unintended side effect is that the third

(3.inp) mesh in each batch for the mesh refinement studies is identical to the first due to the factor α1 being unity
for all its perforations.

4Note that there is a minimum number of nodes for a given perforation component and so when ai = 0, the
minimum is used instead.
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at the nodes is used. Note that the von Mises stress has already been calculated by ABAQUS as
part of the results and not calculated as is done in other parts of the project. The equivalent von
Mises stress can nevertheless be calculated using eq. 4.4.

The concrete slab is a examined by using the principal stresses calculated at the nodes.
In addition to the above, the local behaviour is examined also by using the output error indi-

cators and examining the field qualitatively at critical locations. This, used in conjunction with
the plotted data, should be adequate in making a reasonable choice regarding the mesh generation
parameters.

σmises =
√

(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6(σ12 + σ23 + σ31)2

2
(4.4)

All these simulations were conducted using displacement control, applying a maximum diplace-
ment of 0.2 m. at the mid-flange point at midspan for the non-composite tests and at the mid-slab
point at midspan for the composite cases.
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4.2.2 Non-composite perforated steel beam

(a) Plain, symmetric meshes 1,
4, 7,... 31

(b) Plain, linear reduction
meshes 2, 5, 8,... 32

(c) Plain, exponential reduction
meshes 3, 6, 9,... 33

Figure 4.1: An overview of the meshes used during the non-composite mesh refinement study. It is
recognised that the individual elements in the higher-density meshes are not visible. The intention
was to provide a useful visual representation of the mesh seed reduction presented previously. The
benchmark mesh 0 is shown at the top.
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The global behaviour, in the form of force-displacement is examined first. This is done in figure
4.2, plotting the response of the two non-composite model batches. This plot demonstrates the
stiffening effect that can be expected due to the reduction in the number of elements (and nodes)
in a given mesh relative to the benchmark (mesh 0).
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(b) Linear elastic, perfectly plastic

Figure 4.2: Load-displacement plots from the non-composite steel beam refinement meshes featur-
ing the uniform mesh from each group (i.e. 1, 4, 7, ...) in the batch alongside the benchmark (mesh
0). Both plots feature the vertical force plotted against the vertical displacement at midspan.

The results in figure 4.3 show that the use of a coarsening rule could, in some cases, provide
adequate results relative to a uniform mesh. This is due to the steel near the first few perforations
adjacent to the support (on the left of the beam) undergoing the greatest plasticity. Having
a greater number of elements in those perforations would then be more efficient than using a
uniform mesh with fewer elements in those regions.

As an example, the results for meshes 18 and 19, with a normalised peak force of approximately
1.154 and 1.233 respectively, equate to the use of 3270 and 8472 nodes5. Other cases include 9
& 10, with 14024 & 28952 nodes for predicted normalised peak force of approximately 1.063 &
1.062 respectively, and 6 & 7, with 26432 & 35786 nodes for approximate predictions of 1.017 &
1.027. Considering that the analysis duration is linked to the node count6, there is motivation
to make efficient use of limited computational capabilities by sacrificing accuracy in favour of a
shorter analysis time.

The previous results are significant but can be considered secondary for the purpose of the over-
all research aims. Of primary importance is the prediction of the stress field near the connection.
For this purpose, the von Mises stress is considered for the steel beam. The von Mises stress at
the chosen locations is averaged from each of the element contributions and plotted for each mesh
to demonstrate the resulting spread in figs. 4.5 and 4.6.

Mesh 0 is used as a benchmark for this series of meshes, as the most granular of the meshes.

6Using the current computer set-up, the range is approximately 0.01 - 0.02
s

node6Note that the normalised peak force corresponds to the maximum load-carrying capacity as seen in fig. 4.2.
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Figure 4.3: Linear elastic mesh model peak forces (normalised against the benchmark force) plotted
against their associated mesh number. The node count n for the uniform mesh in each group is
also included except for the benchmark mesh.

The results for the linear elastic cases in fig. 4.3 show that there is a distinct plateuing, with
the uniform cases 4, 7,... 22 within 5% and 1, 7 and 13 within 1% of the ultimate, and in these
cases also peak, force prediction. The results for the perfectly plastic cases however show that
there is a more limited plateau, with mesh 1 and meshes 4 & 7 being within 1% and 5% of
the benchmark respectively. Therefore, while the benchmark is adequate for this series of meshes,
further work, beyond the current scope and computational capabilities, would be useful in aqcuiring
more accurate benchmark results. Considering the linear reduction cases, shown in fig. 4.1, have
an overall worse performance with regards to the displacement up to group 5 (meshes 13-157)
where the exponential cases become less accurate. The exponential cases up to group 5 can make
for adequate candidates where a trade-off in runtime versus accuracy is of greater importance.
Mesh 6 (exponential, 26432 nodes) has fewer nodes than mesh 10 (uniform, 28952 nodes) while
still providing a better estimate of the beam displacement. Another viable basis for the parametric
simulations is mesh 9 (14024 nodes) which provides estimates within 10% of those made by mesh
0 while using requiring far fewer nodes/elements and approximately half the runtime of mesh 6
(242s v. 136s).

7With the exception of mesh 29 for the linear elastic case.
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Figure 4.4: Shared node locations for all perforations. These locations are always used during the
construction of a cell and correspond to the basic geometry shown in fig. 2.4.
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Figure 4.5: Scatter plot (LE mesh refinement) showing the spread of the normalised von Mises
stresses for each shared node location shown in fig. 4.4. Note that the points chosen for the scatter
are located at positions shared between the meshes. Each node’s element contribution average
von Mises stress is normalised against the corresponding von Mises average from mesh 0. For a
visualisation of each mesh, see fig. 4.1.
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Figure 4.6: Same scatter plot as fig. 4.5, but for the linear elastic, perfectly plastic batch. For a
visualisation of each mesh, see fig. 4.1.
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4.2.3 Perforated steel beams with concrete slab

The second part of the mesh study focuses on the composite cases. The behaviour of the steel
component can be contrasted with the results from the non-composite meshes. Note that the
meshes examined make use of linear elasticity and perfect plasticity for the steel only. In these
analyses, the concrete is always assigned a linear elastic model.

These meshes were generated using updated algorithms relative to those used for the non-
composite meshes in § 4.2.2, with the main algorithm updates, at the time, enabling the generation
of a concrete slab in the mesh (see fig. 4.7 and fig. 4.8)8.

Figure 4.7: Isometric view of mesh 33. This view shows more clearly the mesh settings for the slab
along the z-axis but also along its depth.

8Additional capabilities included discrete reinforcement and shear stud generation but were incomplete. As a
result they were excluded from the mesh generation and used in § 4.3.
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(a) Composite, symmetric
meshes 1, 4, 7,... 31

(b) Composite, linear reduction
meshes 2, 5, 8,... 32

(c) Composite, exponential re-
duction meshes 3, 6, 9,... 33

Figure 4.8: An overview of the meshes used during the composite mesh refinement study. As
noted previously in fig. 4.1, individual elements are not visible in the higher-density meshes. The
benchmark mesh 0 is shown at the top.
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(a) Linear elastic steel and concrete
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(b) Linear elastic concrete & linear elastic, perfectly-
plastic steel

Figure 4.9: Load-displacement results from the composite cases, featuring the uniform mesh from
each group (i.e. 1, 4, 7, ...) in the batch alongside the benchmark (mesh 0). Both plots feature
the vertical force plotted against the vertical displacement at midspan.
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Figure 4.10: Peak forces (normalised against the benchmark force) plotted against their associated
mesh number for the composite mesh refinement study. The node count n for the uniform mesh
in each group is also included except for the benchmark mesh.

4.2.3.1 Steel

The normalised results in figs. 4.11 and 4.12 past the initial perforation show a larger variation in
the stress results compared with figs. 4.5 and 4.6. The inclusion of solid elements as part of the
composite beam’s slab could require greater granularity in order to avoid an over-stiff response.
The inclusion of a slab appears to make the model more sensitive to element coarsening (mainly
seen in fig. 4.11 and less in fig. 4.12). Note that the outliers appear to mainly be in the meshes
with the linear and then the exponential coarsening rule, suggesting that those outliers probably
result from the farther perforations and progress towards the perforation as the meshes become
coarser.
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Figure 4.11: Scatter plot showing the spread of the von Mises stresses normalised against the
benchmark value for each shared node location shown in fig. 4.4 for the composite linear elastic
batch.
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Figure 4.12: Similar scatter plot to fig. 4.11, but for the linear elastic, perfectly plastic composite
batch.
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4.2.3.2 Concrete

Figure 4.13: Concrete slab outline alongside the stress locations used to extract the data for
fig. 4.14, fig. 4.15 and fig. 4.16. These locations coincide with the perforation and web-post cen-
trelines along the beam length.

For the concrete slab, an examination of the principal stresses at the nodes was considered more
appropriate than using von Mises equivalent stresses.

In ABAQUS, the sign convention is tensile positive and, in the context of the principal stresses,
the S1 or σ1 stress is the minimum (and most compressive stress), S2 or σ2 the intermediate (and
can be either compressive or tensile) and S3 or σ3 is the maximum (and most tensile stress).

These principal stresses were extracted directly from the ABAQUS .odb for the nodes at the
bottom and top slab faces at the perforation and web-post centres along the x-axis as shown in
fig. 4.13. As these locations are shared among all the meshes, each node output is normalised
against the output from the same node in the benchmark mesh 0. This approach is the same
used previously for the steel von Mises field. However, the direction of the principal stresses is not
examined.

The results, figs. 4.14 to 4.16, show the immediate impact of the mesh coarsening on the
normalised stresses. fig. 4.14 shows the influence of the coarsening rules on the compressive stress
prediction. The uniform reduction rule shows consistently more accurate results, as would be
expected, since the number of slab elements is dependent on the number of web nodes in the x-
axis. For meshes 1 - 9 the linear reduction leads to a higher normalised stress before the exponential
reduction becomes more influential and overtakes for meshes 10 onwards.

Similar observations can be made for the principal tensile stress S3, seen in fig. 4.16.
The intermediate normalise stress ratios are notable, as seen in fig. 4.15. As σ2 changes sign,

the local behaviour can change substantially and the ratio becomes extremely large (in excess of
50).

In all the examined models for this batch, the normalised stress ratio is generally ≥ 1.5 and
greatly exceeding the normalised stresses observed in the steel for both non-composite and com-
posite batches from meshes 1 onwards. This implies that the slab mesh would require far greater
granularity in the benchmark. In addition, a more extensive examination of the influence of the
slab depth seed may be needed before drawing conclusions with respect to the slab mesh settings.

However, as the slab becomes a limiting factor during mesh generation and analysis, the mesh
settings cannot be investigated further for this thesis. The mesh generation settings are thus chosen
based on the steel behaviour.
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Figure 4.14: Scatter plot (EPP composite mesh refinement) of the normalised σ1 (minimum)
principal stress.

Figure 4.15: Scatter plot (EPP composite mesh refinement) of the normalised σ2 (intermediate)
principal stress.
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Figure 4.16: Scatter plot (EPP composite mesh refinement) of the normalised σ3 (maximum)
principal stress.

4.2.4 Summary and mesh_gen settings

• A mesh refinement study was conducted that examined the global load-displacement be-
haviour of two batches of models: a non-composite and a composite.

– Both consisted of 33 increasingly coarse meshes alongside a benchmark mesh 0.

– Linear and exponential coarsening rules were examined to investigate the effect of coars-
ening along the beam length (progressive perforation node reduction).

– This was in addition to a uniform rule where the mesh seed was constant for each beam.

• The mesh for steel components in the perforated beams was examined using the von Mises
equivalent stresses at common node locations and found to provide adequate information
regarding the mesh settings necessary.

– The benchmark mesh had to be sufficiently granular and this was limited by the com-
putational capabilities of the hardware used.

– Combining this information with the global behaviour of the beam is found to be ade-
quate. The global behaviour is insufficient on its own, given that the behaviour locally
can vary substantially depending on the local mesh coarseness.

• The concrete slab mesh suitability was examined using the principal stresses at common node
locations.

– Any reduction in the perforations’ mesh seed led to an immediate influence on the slab
normalised principal stresses.
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– The computational capabilities limited further examination of the concrete behaviour.
Further study of the mesh settings on the slab behaviour could be conducted by con-
structing a significantly smaller mesh or concentrating on a small region or interest.

• The results show that mesh settings for meshes 10 - 22 are suitable (see figs. 4.3 & 4.10).

– This means that the seed should vary between 5 - 15 nodes across the cell length
(longitudinally along the x-axis), 16 - 40 nodes along the depth of the cell (y-axis) and
14 - 34 from the perforation edge to the cell outer edge (radially from the perforation
centre).

– Note that due to additional considerations during the composite mesh generation (in-
cluding the additional nodes due to the discrete reinforcement) the final seed values
used were, on average, adjusted to 12 across the cell length, 16 across the depth and 8
nodes radially.

4.3 Validation using experimental data from literature

Before conducting the next stage of parametric FE tests, a comparison against experimental results
from the literature is required, with the aim to:

• ensure the software packages are performing as expected

• compare against available physical test data, as relevant as possible to the thesis

• identify shortcomings in the analyses and suggest improvements to the methods

To achieve this, validating physical tests were found that could be used as a basis for comparison.
These tests were chosen to cover both non-composite as well as composite cases.

Note that since this validation intended to examine the effectiveness of the mesh and input
generators, it was crucial that the FE models were generated entirely by using the custom software
alone, and no modification to either the mesh or the input file itself was undertaken following
generation.

4.3.1 Non-composite validation

Single perforation validation A validation series was conducted to compare against an often-
used set of experimental results found in K. Chung et al. (2001) and originally from R. G. Redwood
and McCutcheon (1968). These experiments were not as closely related to the beams that will be
examined in this project as would be ideal, but validation against the simpler geometry is helpful
in identifying any potential issues in the software. The experiments in R. G. Redwood and Mc-
Cutcheon (ibid.) which provided this data consisted of two monotonically loaded, simply supported
non-composite beams of different lengths each with a single perforation in their web (see fig. 4.18).
During the experiments, both beams exhibited Vierendeel-type failure at the perforation as ex-
pected. In addition, the use of a single perforation effectively eliminates the beam’s susceptibility
to other failure modes, such as web-post buckling, which are dependent on the web-post width
between adjacent perforations.

The FE models simulating these experiments made use of displacement control using a Newton-
Raphson iteration scheme. The displacement was applied at the location shown in fig. 4.18 for each
beam. A stiffener was used at that location to avoid local failure due to the point displacement.
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2A 3A

Flanges
Yield strength, MPa. 352 311

Tensile strength, MPa. 503 476

Web
Yield strength, MPa. 376 361

Tensile strength, MPa. 512 492

Table 4.1: Steel parameters used in the FE models, adapted from K. Chung et al. (2001). Note
that the tensile strength was used as the peak steel strength in a multilinear model, with a tangent
modulus ET = 1000 MPa. as calculated in Tsavdaridis (2010).
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Figure 4.17: The datapoints from the experiments were digitised and are plotted here alongside
the results calculated from the FE output. The bending moment was calculated from the applied
force in the FE and plotted here against the vertical displacement at midspan.

The results from the FE (meshes shown in fig. 4.19), compared against the digitised experi-
mental data, shown in fig. 4.17 show that the load-displacement results are in overall agreement.
The models did not include any initial imperfection and so the behaviour was governed mainly by
Vierendeel-type bending in test 2A and primarily bending in 3A.

Figure 4.18: Model geometry for 2A and 3A as shown in K. Chung et al. (2001). All shown
measurements are in mm.
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Figure 4.19: From top to bottom: the meshes used in the analyses for models 2A and 3A respec-
tively. Note that the shell element size ranges from approximately 0.01 near the perforation edge
to 0.05 m. across the rest of the model.

Multiple perforation validation This validation was conducted against the experimental re-
sults for a series of plain, simply supported, monotonically loaded beams with multiple perforations.
These tests used cellular beams, fabricated from NPI_240, NPI_260 & NPI_280 sections, des-
ignated NPI_CB_240, NPI_CB_260 and NPI_CB_280 respectively. For each section, four (4)
beams were produced and tested for a total of 12 tests. The experiments, and the associated data
and geometry (shown in Table 4.2) are from Erdal and Saka (2013).

Each sample was loaded vertically using a load cell at midspan, with an average span of 3.0
m. and simple supports. Note that additional lateral bracing was used for all specimens at the
supports to prevent lateral movement. Additionally, following the first two tests for the first batch
(using NPI_240 sections), additional lateral supports were added at midspan due to failure by
lateral-torsional buckling, which is an unintended premature failure mode. Following this, the
primary failure mode was stated as web-post buckling for NPI_CB_240 beams, Vierendeel-type
failure alongside web buckling for NPI_CB_260 and web-post buckling for NPI_CB_280 beams.

It should be noted however that this interpretation appears incorrect since the failure in all
cases was clearly due to the localised loading, causing buckling in the cases where there is a web-
post in the region, tests NPI_CB_240 & NPI_CB_280, and significant bending in the cases where
the load is applied at the centre of a perforation, tests NPI_CB_260.

As Vierendeel-type failure occurs due to the development of plasticity at four corners around
the perforation and not bending at a single tee, it would appear that localised bending failure
in the top tee occured in NPI_CB_260 (see fig. 4.22). Therefore, the cases are either exhibiting
web-post buckling or significant bending-type failure modes at the load location, all of which could
have been prevented in order to study the beam behaviour more effectively outside of the load
point.
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The NPI_CB_260 and NPI_CB_280 tests exhibited minor lateral displacement following the
additional lateral midspan support, typically 10% and 5% respectively. Lateral displacement
measurements for tests 3 & 4 using NPI_CB_240 section were unavailable.

In order to validate the FE analyses and pre- and post-processor software, the experimental
samples were modelled using mesh_gen.m and inp_gen.m. The geometry and material specifi-
cations for the models were as given in Erdal (2011) & Erdal and Saka (2013) and presented in
Table 4.2 and fig. 4.20. The FE models made use of nonlinear geometry in order to allow the
larger displacement failure types to develop, particularly Vierendeel-type and buckling failures at
the perforations. Additionally, x-axis (along the beam length) symmetry was used. The mesh
settings used in mesh_gen.m were based on the results from the mesh refinement study conducted
in Section 4.2. The material for the steel utilises a von-Mises non-linear material model alongside
a displacement controlled Newton-Raphson solver. While both displacement and load control were
experimented with, the former was considered a closer representation of the physical experiment
whereby a load cell is used to apply a load across the top flange at midspan. For the material
parameters used, the data from tension tests, after the initiation of plasticity, was digitised for
each of the models and input as part of the material plasticity constitutive model in ABAQUS, in
a tabular format.

Two validation batches were run, with and without an initial imperfection (using the meshes
shown in fig. 4.21) in order to study the effect of buckling on the beam resistance. The first
batch did not include an initial imperfection and included lateral support at the flange edges,
not the web itself. While the load-displacement results show a correlation, the local failure mode
itself does not match that shown during the experiments, primarily in the cases where web-post
buckling was reported. The post-buckling case included an imperfection (which was calculated as
depth between flanges

250 (Muller et al. 2003)) in the mesh and which led to buckling in all analyses at
the load location. This led to noticeable buckling at the loaded web-post in both NPI_CB_240
& NPI_CB_280 with available images for the NPI_CB_240 models showing a correlation in
behaviour. The load-displacement behaviour did not, however, alter significantly even with the
inclusion of an imperfection in these cases. The softening in fig. 4.25 was therefore unlikely to be
due to buckling during loading.

In fig. 4.25, and to a lesser extent fig. 4.24, there is a deviation in behaviour as the simulation
is approaching yield. This could be due to the material parameters chosen (in each case, the
first specimen from the tensile tests was chosen) but it is likely that the cause was the improper
execution of the data acquisition and the inadequate lateral bracing of the specimens, particularly
for the NPI_CB_280 experiments. This was stated as being the reason behind adopting a lateral
brace in the first place, following significant lateral displacement in the NPI_CB_240 experiment
(Erdal 2011). Images from the experiments show that the vertical LVDTs were placed near the load
cell at the top flange which was subject to significant local distortion due to a lack of additional
local stiffening.
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NPI_CB_240 NPI_CB_260 NPI_CB_280
Beam Depth 0.3556 0.3945 0.4069
Beam Width 0.106 0.113 0.119
Flange Thickness 0.0131 0.0141 0.0152
Web Thickness 0.0087 0.0094 0.0101
Perforation Diameter 0.251 0.286 0.271
Web-post Width 0.094 0.103 0.163
Length 2.846 2.831 2.820

Table 4.2: Geometry used in the FE models (all units in m.)
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Figure 4.20: Steel coupon uniaxial stress-strain data used as input for the multi-perforation non-
composite validation. This data was digitised from Erdal (2011).
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Figure 4.21: From top to bottom: the meshes as used for the analyses for models NPI_CB_240,
NPI_CB_260 and NPI_CB_280 respectively.

Figure 4.22: LVDT placement as reported in Erdal and Saka (2013). Note the location of the
LVDT on the top flange and its proximity to the loading point.

The results of the FE models are presented in figs. 4.23 to 4.25. In fig. 4.23, the results from
the experimental cases for tests 3 to 4 for NPI_CB_240 are compared against the FE results. The

116



result is in overall agreement with model 4 but exhibits a softer response than model 3. Tests 1 &
2 were excluded due to the previously mentioned insufficient lateral support at midspan causing
large lateral displacement due to lateral-torsional buckling. In fig. 4.24 the response is largely in
agreement until 5 mm. displacement, where there is a marked difference between the FE and
experimental load capacity9. In fig. 4.25 the response is stiffer than the experimental data for a
large part of the simulation. The ultimate load at the end of the analysis is largely in agreement
with the experiment.

All the FE failure modes, in the post-buckling cases, appear to agree with the experimental
failure modes. In particular, the buckling/post-buckling analyses capture the localised effects at
the loading position, as seen in fig. 4.26, and are sufficient for use in further analyses.

Nevertheless, the uncertainty regarding the experimental data necessitates further validation
in order to ensure that the modelling approach is appropriate. The results from the experiments
suggest that the lateral displacement is non-negligible for fig. 4.24 (above a load of ≈ 110 kN.) and
fig. 4.25 (above a load of ≈ 95 kN.). This could have a significant impact on the apparent stiffness
of the beam, and would suggest that the lateral bracing may not have fully prevented the impact
of lateral displacement on the beam behaviour. Contrary to this, fig. 4.23 was reported to have
shown negligible lateral displacement and appears to be in overall agreement with the FE models
which prevented lateral diplacement of tees. Note that the exact location of the lateral brace was
not reported and so the FE models always featured lateral bracing at the same x-axis location as
the load point (i.e. at midspan).
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Figure 4.23: NPI_CB_240 digitised experimental data compared against the FE result at midspan.
Note that only the upper flange results are digitised, corresponding to the FE result location.

9Note that no adjustment to the material parameters was made to improve the fit to the experimental data
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Figure 4.24: NPI_CB_260 digitised experimental data compared against the FE result at midspan.
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Figure 4.25: NPI_CB_280 digitised experimental data compared against the FE result at midspan.
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Figure 4.26: From top to bottom: models NPI_CB_240, NPI_CB_260 and NPI_CB_280 from
the post-buckling FE analyses. Note that the midspan exhibits largely localised failure modes. The
web and flanges can move laterally but the edge of each flange is supported laterally to simulate
the brace used in the experiments. The boundary conditions are also visible to highlight, including
the x-axis symmetry conditions at midspan. The von Mises equivalent stress contours are shown
in the steel, with blue being zero stress and red being fy = 355 MPa. (with grey being yielded
areas). Note that the coupon tests fig. 4.20 for the NPI_CB_260 & NPI_CB_280 show a uniaxial
stress-strain behaviour nearer an S 275 section (with fy = 275 MPa.) even though the experimental
sections in the physical tests were graded as S 355.
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Test designation
Concrete uniaxial

compressive strength, fck,
MPa.

Steel tensile stress at
yield, fyk, MPa.

1A & 1B 42 452
3 30.2 408

Table 4.3: The default material parameters used for the § 4.3.2 FE simulations. Note that the
Young’s modulus used for the steel and concrete components was Es = 200 GPa. and Ecm = 30
GPa. respectively.

4.3.2 Composite validation

In addition to the non-composite validation, a series of FE analyses were conducted and compared
with the data from a series of physical experiments conducted in "Tests on Composite Beams with
Web Openings" (Muller et al. 2003). These experiments were undertaken as part of the overall
project and were the contribution to the work package by RWTH. The intention behind the study
itself was to examine the behaviour of composite beams with multiple perforations under "normal"
conditions. Thus the beams were loaded to failure at the locations shown in fig. 4.29 & fig. 4.37.

The physical experiments covered a variety of cases, including some geometries which cannot
be generated by the current version of mesh_gen10.

As a result, specific physical experiments were chosen. These tests cover two cases: a symmetric
(top and bottom tee symmetric) composite simply supported cellular beam (tests 1A, 1B) and a
highly asymmetric11version (test 3). All physical experiments made use of HOLORIB sheets (a
type of profiled steel sheet manufactured by TATA steel) but due to the capabilities of the software,
the FE model was simplified and does not include a steel sheet or the profile.

In lieu of simulating the profiled steel sheet, a series of analyses were conducted (referred to as
FE gap, shown in fig. 4.32 & fig. 4.35) where there is a space in the concrete slab from the top tee
flange face up to the maximum height of the sheet profile used in the experiments.

In the solid slab cases, the contact between the slab and top flange is enforced by merging the
nodes at their locations, although vertical shear studs were also included. In the case incorporating
a gap between the slab and the top flange, studs are used alongside connectors between the slab -
top flange nodes to simulate contact.

All the analyses were conducted using an initial imperfection in the mesh resulting from a
corresponding previously completed elastic buckling analysis. An overview of the meshes can be
seen in fig. 4.28.

Finally, there is some uncertainty regarding the material parameters appropriate for these tests
and so a batch was run incorporating adjusted values for the materials, particularly the steel stress-
strain behaviour. In Muller et al. (ibid.), the FE analyses were calibrated against the experimental
results while the measured values for the concrete strength, fck are provided. Alongside these,
several values for the steel yield, fyk are provided in each case, the lowest of which is subsequently
used as the default yield value for the tests. The additional yield values stated in the report for each
experiment were incorporated into additional FE simulations using speculative multi-linear stress-
strain profiles for the steel. As there was no steel coupon tests to acquire uniaxial stress-strain
data from, these speculative analyses were conducted in an attempt to evaluate their influence on
beam behaviour.

10Examples include elongated openings, inclusion of secondary beams and half-infilled perforations. All of these
are currently beyond the scope of the mesh generator.

11Non-symmetric top and bottom tee sections.
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Figure 4.27: The adjusted uniaxial tension stress-strain behaviour incorporating the steel stress
values stated in Muller et al. (2003) but at assumed strain values.
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Figure 4.28: Overview of the meshes used to simulate tests 1A, 1B and 3 from top to bottom
respectively.

Tests 1A & 1B The physical experiments on which the analyses are based were conducted using
the same beam as shown in fig. 4.29 but in two phases. The beam was loaded to failure in the
web-post between perforations 11 and 12 initially, followed by the infilling of perforations 11 and
12, using a plate bolted across the two openings, before being reloaded to failure. Both the top and
bottom tees are based on IPE 400 sections. For the FE analysis, the two phases were considered
as separate beams, as shown in figs. 4.30 and 4.31. Note that no discrete reinforcement was used
in the concrete for these models. This would potentially affect the capacity of the concrete in the
analysis since the stress in the concrete would be distributed less efficiently in an unperforated
slab.

For the FE validation, four batches were analysed with the following features (the steel beam
in each case is as shown in fig. 4.29):

• FE studs only, (adjusted): Discrete shear studs and contact simulation (using ABAQUS
connectors) alongside a solid concrete slab. The steel stress-strain behaviour input is shown
in fig. 4.27.

• FE (adjusted): The same settings used for the FE studs only, adjusted batch, with the only
difference being that there is no contact simulation between the concrete slab and top flange
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face (steel beam top tee). Instead, the two are merged at their nodes (i.e. they share the
nodes and have perfect interaction preventing slip and vertical penetration of the slab through
the flange).

• FE solid: This batch is identical to the FE adjusted, except that it uses the default steel
material behaviour shown in Table 4.3 for the steel beam.

• FE gap: This batch makes use of discrete vertical shear studs in the concrete slab and
contact simulation between the slab and top steel flange (by using ABAQUS connectors) but
features a gap between the bottom of the slab and top face of the steel top flange. The gap
corresponds to the maximum height of the profiled sheet used in the physical experiments,
0.051 m. (also seen in fig. 4.29)

The simulation results for test 1A show that there is a general agreement in the load-displacement
behaviour overall but a dependency on the contact type when considering the peak load capacity.
The adjusted results show this clearly since the main difference between them is the contact type.
In the full contact case (merged nodes, FE (adjusted) shown in fig. 4.32), there is a much better
agreement with the capacity than without the use of merged nodes. Note that the former case
leads to a distinct drop in capacity due to web-post buckling in the web-post between perforations
11 & 12 (see also fig. 4.34) as expected from the physical experiment. This is the critical failure
mode at this load level, with the simulated beam not yet exhibiting significant yielding in any
other region. The merged nodes however prevent any slip between the concrete and steel flange
and therefore lead to a stiffer response in load-displacement.
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Figure 4.29: The geometry of the beam used in tests 1A and 1B from Muller et al. (2003) (all
dimensions are in millimeters).
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Figure 4.30: The FE model equivalent to test 1A.

Figure 4.31: The FE model equivalent to test 1B. Note the infilled perforations 11 & 12 relative
to fig. 4.30.
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Figure 4.32: The FE results alongside the digitised data from test 1A. The beam unloading is
clearly visible following peak in the experimental data (unloading was not simulated in the FE
analyses).
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Figure 4.33: The deflection measured from the top slab face plotted against the position along
the beam for the FE (adjusted) 1A case. The individual markers are the digitised results from
the physical experiments while those corresponding to them but joined by lines are from the FE
output interpolated at the force values reported in Muller et al. (2003).
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Figure 4.34: The von Mises contour plot for model 1A (specifically, FE (adjusted) in fig. 4.32) is
shown here with the developing failure mode. Note that this is not the end of the analysis and the
slab is not shown. For the contours, blue corresponds to a von Mises equivalent stress of 0, red to
the yield value fy = 355 MPa. and grey corresponds to elements that have yielded.

The FE simulation results for test 1B show agreement regardless of contact conditions, with
the material parameters having a larger effect on the behaviour in contrast to the previous results.
Ultimately, the FE failure was due to web-post buckling between perforations 1 and 2 (web-post
1/2, see also fig. 4.36), making it the critical failure mode. This is found to be in agreement with
the experimental result. The bottom tee sections of the 4th - 9th perforations are also exhibiting
yielding, meaning that any reinforcement or infilling (or reduction of the diameter) of the first
two perforations would likely lead to a bending-type failure mode developing in the beam. This
is consistent with guidance: locations with high shear are susceptible to Vierendeel and web-post
buckling type failure while lower shear allows the development of bending failures.
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Figure 4.35: The FE results alongside the digitised data from test 1B. The beam unloading is
clearly visible following peak in the experimental data (unloading was not simulated in the FE
analyses).

Figure 4.36: The von Mises equivalent stress contour plot for model 1B (FE (adjusted) in fig. 4.35)
is shown here with the developing failure mode (the concrete slab is not shown). For the contours,
blue corresponds to a von Mises equivalent stress of 0, red to the yield value fy = 355 MPa. and
grey corresponds to elements that have yielded.

Test 3 Test 3 was simulated using the beam shown in fig. 4.37. This case features a highly
asymmetric beam with a slender top tee based on an IPE 300 section and a stockier bottom tee
based on a HEB 340 section (see fig. 4.38). The results in fig. 4.40 show a similar load capacity and
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behaviour qualitatively, including the drop in capacity due to web-post buckling in the 11/12 web-
post (as shown in fig. 4.39), but a significant difference in stiffness, leading to 0.01 m. difference
in displacement at peak (see also fig. 4.41). However, the critical failure mode in the FEA is
in agreement with the physical experiment. Additionally, the difference in sections between the
top and bottom tees has changed the buckling mode in the 11/12 web-post, as also reported in
the experimental results. The simulation incorporating a gap (FE gap in fig. 4.40) appears to be
capturing the qualitative behaviour of the physical experiment up to peak but exhibits a softer
response, potentially due to an insufficient interaction between the slab and concrete. It might be
adviseable to examine the same test after making use of a profiled concrete slab and improving
the contact simulation.

Figure 4.37: The geometry of the beam used in test 3 from Muller et al. (2003) (all dimensions are
in millimeters).
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Figure 4.38: The FE model equivalent to test 3. Support conditions are shown.

Figure 4.39: The von Mises equivalent stress contour plot from the FEA for model 3 is shown here
with the developing failure mode. For the contours, blue corresponds to a von Mises equivalent
stress of 0, red to the yield value fy = 355 MPa. and grey corresponds to elements that have
yielded.

130



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

Midspan Deflection, m

0

100

200

300

400

500

600

700

F
o
rc

e
, 
k
N

FE studs only (adjusted)

FE (adjusted)

FE solid

FE gap

3

Figure 4.40: Load-displacement for all the models examined in the composite validation for model
3.
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Figure 4.41: The deflection measured from the top slab face plotted against the location along the
beam for the FE (adjusted) 3 case. As already seen in fig. 4.33, the discrete symbols were digitised
from the experimental results in Muller et al. (2003).

4.3.3 Validation summary

A series of physical experiments available from published literature were used to validate both
the mesh and input generators and associated software as well as ensure that simulations can be
conducted succesfully for non-composite and composite perforated beams. The results from the
validation models can be summarised as follows:

• The non-composite cases can be adequately modelled using the developed software. Global
behaviour, via load-displacement, appears to be largely dependent on the use of appropriate
material constants. To capture local behaviour, the use of an elastic buckling prediction
and the introduction of an initial imperfection was adequate and was shown to mirror the
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physical experiments. Care must be taken to ensure the initial imperfection does not lead to
unrealistic results and recommendations from experimental studies often provide adequate
rules-of-thumb.

• The composite cases can be adequately modelled using the developed software. The global
behaviour is largely dependent on the steel material constants used and the type of contact
simulation employed. All cases included an initial imperfection and this was shown to be
adequate in capturing the localised failure modes, provided a suitable initial imperfection is
introduced.

• The validation results show qualitatively analogous behaviour but there is a significant de-
viation numerically with regards particularly to the stiffness in the composite cellular cases.
This is due to a combination of factors, mainly the assumptions made for the material be-
haviour (due to lack of comprehensive experimental data) and simplifications to the contact
simulation. In particular, fig. 4.40 shows a significant deviation in stiffness but not capac-
ity. This is attributed to the idealised contact, with the merged nodes between the slab
and top steel flange preventing slip that would occur during normal loading in the physical
experiments.

It can therefore be concluded that mesh_gen.m and inp_gen.m appear suitable for this project
and enable the degree of customisation and automation of the workflow intended. The use of a von
Mises model for the steel and Mohr-Coulomb for the concrete appears to be adequate provided that
suitable uniaxial stress-strain data and other material parameters are used during their definition
for the FEA.

4.4 Choice of FE parameters for parametric study

The FE parameters which could be examined as part of the parametric study can be subdivided
into two categories:

• geometric, which includes those for the steel beam, the concrete slab (including any pro-
filed sheets), the beam-slab shear connection (usually studs), the reinforcement (longitudinal
and/or lateral) and any additional components for the beams such as stiffeners (for the steel
beam web or perforations) and the beam-column connection (including the endplate and
bolts or welds)

• material, which includes several steel constants (such as the elastic and yield parameters)
in the various components (steel beam’s flanges, web, stiffeners, reinforcement, studs etc.)
and the type of concrete model used, together with its material constants

Other possible parameters, such as those influencing the boundary conditions or interactions
between the beam components were not covered extensively due to time limitations but can be
considered with the current versions of both mesh_gen and inp_gen.

For this project, the primary focus is on several key parameters which are considered to have
the greatest impact on the beam behaviour. For the steel, these cover the perforation diameter,
spacing, initial spacing (from the support to the initial perforation centre). The influence of the
steel section is considered by investigating the flange width and thickness and the web thickness for
symmetric and asymmetric cases. For the concrete, the primary geometric parameter considered
is the depth of the slab.
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4.4.1 Parameter dependencies

Many of the parameters, mainly those influencing the beam length (which is generally maintained
to ≈ 7 - 8 m. if possible), impact other aspects of the beam geometry as they are varied in a batch.
As the mesh_gen is set to maintain a similar beam length between models, other beam parameters
are adjusted (such as the number of perforations).

The influence of each parameter is explained below and applies for all the examined sets and
their respective FE batches.

Parameters which have some influence, but not examined explicitly in the current parametric
analyses, are not included below. These include embedded components such as the reinforcement
spacing and/or total reinforcement bar count and the transverse shear stud spacing in the top
flange when using a group of two studs.

Perforation diameter, d The perforation diameter batches are analysed using stationary per-
foration locations. This means that as the perforations’ size changes, their position in the beam is
identical, meaning that the beams’ length and perforation count is also constant. As a result, the
web-post widths are influenced, leading to the coupling between the perforation diameter and the
web-post widths.

Perforation centres, s The FE batches examining the perforation spacing (or centres, in terms
of location along the x-axis) also directly examine the influence of the web-post width. As a result
of keeping the beam lengths as similar as possible, the number of perforations must increase as the
perforation spacing decreases, leading to a coupling between the perforation spacing, the number
of perforations and the beam length, assuming that it is kept to similar values. As an example,
the simply supported batch features a variation of between 7.8 - 8.125 m. for models 6 and 3
respectively.

Initial spacing, sini The initial spacing refers to the distance from the support at the edge of
the beam to the centre of the initial perforation (in general, as x-axis symmetry is used, this is
from the left-hand side in the figures). Therefore, this parameter is directly linked to the initial
web-post width. In addition, since the spacing between subsequent perforations stays constant, the
length is adjusted and thus the number of perforations is also influenced. As a result, the initial
spacing is coupled with the number of perforations and the beam span.

Flange width, bf The flange width refers to the total width of either the top, bf,top, bottom,
bf,bot or both of the tees in the global z-axis. Each tee can be considered to be completely inde-
pendent of the other, without influencing other beam components. It should be noted that the
current version of the mesh generator uses existing flange node locations as the basis of the stud
position and therefore the stud position in the z-axis is influenced by the flange width indirectly
(by default, the studs are placed at the node nearest the flange quarter-width).

Flange thickness, tf The flange thickness, similarly to the flange width, is independent for top
and bottom tees and, as a shell element property, does not influence any other parameter.

Web thickness, tw The web thickness also distinguishes between the top and bottom tees of
the steel beam but as with the flange thickness does not influence any other parameter.

Slab depth, ds The slab depth is defined as a separate component to all the others and is thus
completely independent.
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4.5 Non-composite analyses varying the position of a single
perforation

When conducting parametric analyses for beams with multiple perforations (i.e. cellular beams),
many of the considered geometric parameters are inter-dependent. It is therefore beneficial to
attempt to reduce the model complexity and isolate variables as much as possible. The length
of the beam will be dependent on the cell variables which define it; the web-post width would
influence the number of cells in the beam and potentially its length etc. Inevitably, examining one
parameter may lead to changes in the others. This makes a pure parametric study more difficult
to conduct. To counter this problem, a solution is to reduce the number of perforations to one
per half-span and examine its effect on the beam behaviour as it is progressively moved along the
x-axis, with each perforation location being a distinct analysis. This is the same approach used in
K. Chung et al. (2001).

The location of the perforation along the x-axis is therefore the parameter being examined in
these analyses. This can be done for a variety of beam lengths (from 5 to 10 m.) arranged in
batches and perforation diameters (from 0% to 80% of the total steel beam depth (i.e. including
the flange thickness)) arranged in sets12. The FE capacities can then be plotted to assist in the
identification of critical locations for the perforations.

Due to the failure modes expected for perforated beams, particularly Vierendeel-type yielding,
nonlinear geometry is used in all models for the project. Alongside the nonlinear material def-
initions, this can lead to premature non-convergence. As a consequence of this, the capacity of
a given beam may be significantly underestimated. Conversely, the beam may exhibit multiple
failure modes during loading. An example of both cases can be seen in fig. 4.42, such as models
1 & 3 respectively. For this reason, the load at the initial point of contraflexure in the beam
load-displacement response, if one exists, or the maximum load attained by an analysis is chosen
as the capacity for subsequent figures.

12Note that a batch contains mutliple analyses and a set contains multiple batches.
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Figure 4.42: This plot illustrates the issue of both premature non-convergence and multiple failures
for different analyses in a single batch of simulations. The data used is from the fixed-end 2.5 m.
half-span (5.0 m. span) batch in fig. 4.50a. The dimensions given in the legend show the distance
from the left support to the centre of the single perforation. Models 1, 2, 4, 6 & 8 appear to have
failed prematurely while models 3 & 5 exhibit two failure modes: an initial Vierendeel-type failure
at the perforation followed by extensive yielding at the support.

The capacities for the perforated cases, assembled as batches in fig. 4.44a - 4.51b, are plotted
alongside the equivalent unperforated beam capacity, represented as a dotted line for each batch
span. Note that the mesh used in the unperforated simulations had an average element size along
the x-axis of 0.005 m. versus 0.03 - 0.05 m. for the perforated cases, accounting for the capacity
over-estimation in cases such as the 2.5 m. batch in fig. 4.50b.

All the simulations make use of nonlinear geometry in order to account for the large deforma-
tions that can occur in the vicinity of the perforation. Each simulation is symmetric in both the
global x- and z-axis. ABAQUS/Implicit uses a Newton-Raphson iteration scheme. All the analyses
were conducted with a single *STEP during which the load was applied over a ’time’ period, T , of
1.0, using automatic incrementation with a maximum increment of 0.1. The output requests were
also set to 0.1T .

The beam span varies from 5 to 10 m. depending on the batch within the set and all beams
have a 0.6 m. total beam depth, making use of Advance UKB 610x229x140 sections (Steel building
design: Design data (P363) 2011) for both tees and with a single perforation having a relative
diameter of between 0.2 - 0.8 of the total depth.

The steel model used in the simulations adopts a von Mises yield criterion with a yield and
peak stress of 355 MPa. for all the steel components. Note that there is no adjustment to the yield
value due to component thickness.

The beams were examined using both simple and fixed supports with all models incorporating
an endplate at the support location. A UDL is simulated along the beam length (applied along
the beam section centreline, at z = 0) by means of concentrated forces at regular 0.1 m. intervals.

4.5.1 Simply Supported

Influence of single cell location on load capacity A series of FE analyses was conducted
for simply supported cases to serve as both a benchmark and a reference for subsequent studies.
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These analyses are divided into five sets of batches, each set using a different perforation diameter
(from 0% to 80% of the total beam depth), and each batch varying the beam length (from 5 to 10
m.). Each analysis in a given batch comprises a single perforation incrementally shifted along the
x-axis from the (left) support until the perforation centre coincides with the beam midspan.

These analyses are conducted with both x- and z-axis symmetries, thereby preventing both web-
post buckling and lateral-torsional buckling as failure modes. The UDL is simulated by applying
nodal point loads at regular (0.1 m.) intervals. The beam is then loaded monotonically until the
external load value is reached or non-convergence ceases the analysis.

Note that the capacities for the unperforated beam simulations are plotted as dotted lines in
the figures to provide a benchmark for each of the spans.

Fig. 4.44a shows the effect of the diameter changes the beam behaviour for all the spans and
perforation locations. For the 5 m. case, the reduction in capacity (relative to the equivalent
unperforated beam) varies from 64.3% when the perforation centre is nearest the support (at 0.29
m. distance) to 17.6% at midspan. This pattern (where the perforation reduces the capacity of
the beam with increasing proximity to the support) is consistent for spans up to 9 m. where
the reduction in capacity is more uniform regardless of position. This behaviour is due to the
susceptibility of large perforations to shear-induced Vierendeel-type failure. As the span reduces,
the shear at the support increases and makes the perforations located near the support the critical
component.

In fig. 4.44b the effect of the perforation on the beam capacity is diminished due to the reduction
in diameter. While the shorter span beams (with spans of 5 and 6 m.) are more susceptible to
Vierendeel-type failure (reduction of 27.5% near the support, 11.5% at midspan and 14.3% at the
support to 11.1% at midspan respectively) the longer span beams show a consistent reduction
in capacity due to bending failure. This increasingly flexural behaviour gradually appears in the
shorter span beams with decreasing perforation diameter, as shown in fig. 4.45a and fig. 4.45b.

Figure 4.43: A single web perforation is introduced at close proximity to the support and gradually
’shifted’ along the beam length (along the x-axis) until it reaches midspan.
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(a) FE results for symmetric beam lengths ranging from 5 to 10 m. with a perforation diameter of 80 %
of the total beam depth.
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(b) Results for symmetric beam lengths ranging from 5 to 10 m. with a perforation diameter of 60 % of
the total beam depth.

Figure 4.44
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(a) Results for symmetric beam lengths ranging from 5 to 10 m. with a perforation diameter of 40 % of
the total beam depth.
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(b) Results for symmetric beam lengths ranging from 5 to 10 m. with a perforation diameter of 20 % of
the total beam depth.

Figure 4.45
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Moment-shear interaction Each of the models from the previously presented batches rep-
resents a different moment-shear ratio depending on the position of the perforation centreline
along the global x-axis. By combining the serviceability and peak result from each FE analysis, a
moment-shear interaction curve can be generated for each set. Each of the fig. 4.46 - fig. 4.49 plots’
results have been normalised against the equivalent perforated beam capacity for pure bending,
Mo,Rd, and vertical shear, Vo,Rd calculated from theory (see § 1.4.1 or (K. Chung et al. 2001)).

The length appears to influence mainly the shear response, with a more subdued effect on the
moment resistance for all the examined models. When transitioning from the longest span (10 m.)
to the shortest (5 m.), the vertical shear carried at peak is reduced from a shear ratio of ≈ 1.8
to ≈ 1.6 with a mean of ≈ 1.714. This indicates that the guidance (see § 1.4.1) could lead to
a consistent underestimation of the true shear capacity for perforations with diameter to depth
ratios of 0.8. The moment ratio varies from ≈ 1.053 to ≈ 1.001 with a mean moment ratio of
≈ 0.996. The theoretical calculations can therefore be considered as being consistent with the FE
results.

For the models with a diameter to depth ratio of 0.6 (or 60%) fig. 4.47 shows that there is a
significant impact on the predicted peak shear force, with a maximum shear ratio of ≈ 1.42 when
spans are ≤ 7 m. while that ratio reduces gradually to ≈ 1.01 for spans ≥ 9 m. An examination
of the von Mises stresses, when the web openings are nearest the support, indicates a gradual
transition from a Vierendeel-type behaviour to bending yielding around the perforation as the
span increases, with a simultaneous increase in midspan yielding. This, alongside the results in
fig. 4.44b for longer spans, suggests that the critical failure mode indeed transitions from Vierendeel
to bending even when the perforation is located near the support for large spans. A similar pattern
is observed for the set with ratio diameter

depth = 0.4 in fig. 4.48 and with ratio diameter
depth = 0.2 in fig. 4.49.

In all these cases, the results show a consistent calculation of the peak moment but a significant
influence of the span on the shear ratio due to the critical failure mode being midspan bending
rather than failure linked to the perforation near the support.

The SLS behaviour between sets (dotted lines in fig. 4.46 - fig. 4.49) is as expected since the
ratio reduces as the perforation diameter decreases and the resistances increase. Note that the
proximity of the perforation to the support, however, leads to a rapid decline in the shear ratio,
meaning that the SLS is reached at significantly lower loads and making it a primary consideration
for design.
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Figure 4.46: The moment-shear interaction plots for the 80% perforation diameter-to-depth ratio
set for 5 - 10 m. spans. The dotted lines indicate the Serviceability Limit State (SLS) envelope,
whereas the full lines indicate the envelope corresponding to the peak load.
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Figure 4.47: The moment-shear interaction plots for the 60% perforation diameter-to-depth ratio
set for 5 - 10 m. spans. The dotted lines indicate the SLS envelope, whereas the full lines indicate
the envelope corresponding to the peak load.
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Figure 4.48: The moment-shear interaction plots for the 40% perforation diameter-to-depth ratio
set for 5 - 10 m. spans. The dotted lines indicate the SLS envelope, whereas the full lines indicate
the envelope corresponding to the peak load.

142



0 0.2 0.4 0.6 0.8 1 1.2

MSd

Mo,Rd

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
S
d

V
o
,R

d

5.0 m.

6.0 m.

7.0 m.

8.0 m.

9.0 m.

10.0 m.

Figure 4.49: The moment-shear interaction plots for the 20% perforation diameter-to-depth ratio
set for 5 - 10 m. spans. The dotted lines indicate the SLS envelope, whereas the full lines indicate
the envelope corresponding to the peak load.
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4.5.2 Fully Fixed

Influence of a single cell location on load capacity These models are identical to the
simply supported cases in all aspects excluding the supporting boundary conditions. In this series
of models, the beam is fixed at the support (left-hand side in the diagrams) and is still symmetric
with respect to the x- and z-axes to prevent web-post and lateral-torsional buckling failure modes.

In fig. 4.50a the capacity of the simulated beam appears to be largely dependent on the cell
location in the beam. In the 5 m. span case, the largest reduction in capacity occurs when the
perforation is nearest the support, as seen previously in the simply supported cases. The additional
moment carried near the support amplifies the effect of the perforation position on the capacity,
leading to a higher reduction in capacity than the simply supported cases (80.8%, 79.8%, 78.5%,
75.4%, 76% and 83.3% for each of the beam spans from 5 to 10 m. respectively) with a mean
reduction of 78.96% for a given beam with a perforation adjacent to the support. Of particular
interest however is the behaviour at a medium distance from the support which, in fig. 4.50a,
exhibits a rapid increase in capacity (mean 175%) followed by a sharp drop (by a mean of -52.7%)
followed by another rapid increase in capacity (mean 184.8%). While this behaviour occurs for
spans ≥ 8 m. in fig. 4.50a, it is most extreme for the 10 m. span batch. A closer examination
of the load-displacement behaviour reveals that while some of the beams reach a non-convergent
state at low capacities, others continue supporting increasing load values despite the region near
the perforation having become significantly plastic. In those cases, other failure modes appear and
coexist alongside the initial mode. This behaviour is not surprising given that the redistribution
of stresses to the rest of the unperforated beam could lead to significant additional load capacity.
This behaviour would not translate to cellular beams (i.e. beams with multiple circular web
perforations), since the secondary failure modes would limit efficient redistribution.

In fig. 4.50b the effect of the perforation on the beam capacity appears to be modest, with
the exception of the cases adjacent to the support and particularly the first, 5 m. span, batch.
Some beam capacities in the 5 m. span batch exceed the FE predicted unperforated beam capacity
estimate. This occurs in fig. 4.51a and fig. 4.51b and is indicative of a potential premature end
to the analysis during the unperforated FE simulations. This, coupled with the load-displacement
behaviour from the first set of batches in the fixed support case show that non-convergence is a
potential issue even for relatively simple analyses. Note that the other batches in the respective
sets also exceed the predicted beam capacity but to a much lesser extent. Excluding the first batch
in each set, the results in fig. 4.50b to fig. 4.51b show that the perforation has an effect on the
predicted capacity when the perforation is adjacent to the support or when it is located beyond
2, 1.75 and 1.5 m. from the support, regardless of the span length, for 6 - 10 m. spans.
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(a) Results for symmetric beam lengths ranging from 5 to 10 m. with a perforation diameter of 80 % of
the total beam depth.
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(b) Results for symmetric beam lengths ranging from 5 to 10 m. with a perforation diameter of 60 % of
the total beam depth.

Figure 4.50
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(a) Results for symmetric beam lengths ranging from 5 to 10 m. with a perforation diameter of 40 % of
the total beam depth.
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(b) Results for symmetric beam lengths ranging from 5 to 10 m. with a perforation diameter of 20 % of
the total beam depth.

Figure 4.51
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Moment-shear interaction The moment-shear ratios calculated for the fixed support, x- and
z-symmetric non-composite FE analyses are plotted here. Each of fig. 4.52 to fig. 4.56 corresponds
to fig. 4.50a to fig. 4.51b for perforation diameters in the 0.2 ≤ diameter

depth ≤ 0.8 range. While
the models are still not as complex as the composite simulations, non-convergence issues occured
for a number of them, leading to an early interruption in many of these cases. Note that, with
the exception of the diameter

depth = 0.8 simulations, all subsequent analyses are plotted without any
of the data removed. The results in fig. 4.52 demonstrate the non-convergence issue faced and,
following the removal of those simulations where there was an inability to reach force equilibrium
(convergence), the envelope is replotted in fig. 4.53.

In fig. 4.53, the shear ratio varies from ≈ 2.7 to ≈ 2 for the 10 m. and 7 m. span simulations
respectively when MSd

Mo,Rd
= 0. In fig. 4.54, the beam span has an impact on the moment-shear

peak load ratios, indicating that the critical failure mode is likely a combination of Vierendeel and
midspan bending. The shear ratio is particularly influenced by the change in beam span. As a
result of this dependency, as the span increases the maximum shear ratio decreases. The shear
ratio drops significantly when the perforation is nearest the support in each batch. The reduction
is most significant for shorter span simulations, with the 5 m. model showing a drop from a shear
ratio of ≈ 3.17 (when the perforation is 0.48 m. from the support) to ≈ 1.98 at 0.23 m. from
the support; equal to a 37.5% decrease. Likewise, the 6, 7 and 9 m. span models feature a drop
of 16.8%, 20.7% and 13.2% when moving the perforation from 0.48 to 0.23 m. from the support,
while the 8 and 10 m. predictions show a drop of 18.8% and 26.4% for a change in perforation
location from 0.73 to 0.23 m. from the support. This is in agreement with the results in fig. 4.50b
and a direct result of the Vierendeel action in the web surrounding the perforation.

As shown previously, fig. 4.55 illustrates that the beam span influences the shear and moment
ratios. The pattern observed earlier holds here as well, with the shear ratio exhibiting a sudden
drop when near the support. For spans ≤ 9 m. this occurs when the perforation moves from 0.42
to 0.17 m. from the support, with a drop of 12%, 13.8%, 18.3%. 7.8% and 11.1%. For the 10 m.
span model, there is a reduction of 11.9% when the perforation moves from 0.67 to 0.17 m. from
the support.

For the models featuring a diameter
depth = 0.2, the models exhibit drops in the shear ratio (when

the perforation moves from 0.36 to 0.11 m. from the support) of 2.1%, 5.2%, 7.7%, 10.3%, 13.2%
and 17% for spans of 5 to 10 m.

The span and diameter size appear to have a minimal effect on the moment ratio when the
perforation centre is at midspan. Upon closer examination of the load-displacement plots for each
of the batches (and particularly for the 9 m. span cases) it was found that the FE analyses are
consistently facing convergence issues when the critical failure mode is due to bending, either due
to yielding at the support or as a combination of yielding at the support and near the perforation
centre. A potential cause of this is considered to be the idealised stress-strain profile of the
steel material model, which utilises perfect plasticity (that is, no strain hardening) beyond first
yielding, and the consequent inability of the analysis to redistribute the stresses locally, preventing
ABAQUS from finding a further post-yield solution. The FE predictions are therefore conservative,
particularly for the cases with MSd

Mo,Rd
≥ 0.4.

The beam span influences the shear ratio in all the sets, with a reduced influence on the moment
ratio. In fig. 4.53, the shear ratio at the ULS for the 5 m. span is, in most cases, below that of
the 10 m. model, in contrast to the results in fig. 4.54 to fig. 4.56 where the results show an
increase in the shear ratio as the beam spans reduce. This is due to the impact of the perforation
on the beam capacity for diameter

depth of 0.8, influencing the load capacity of the beam even when
the perforation is located further from the support, as seen in fig. 4.50a. This, except for the
cases nearest the support, does not happen for diameter

depth ≤ 0.6, with the perforation influencing the
behaviour either when it is very near to the support or as it approaches midspan and influences the
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bending resistance. In these cases, the critical failure mode appears to be shifting from Vierendeel
to midspan bending, similarly to the results observed in § 4.5.1.
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Figure 4.52: The complete set of FE predictions (moment and shear ratios at ’peak’ and SLS)
for diameter

depth = 0.8 with fixed supports. Note the dramatic ’drops’ indicating premature non-
convergence during those FE simulations. The dotted lines indicate the SLS envelope, whereas the
full lines indicate the envelope corresponding to the peak load.
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Figure 4.53: The results from fig. 4.52 after removing the non-converged cases. The dotted lines
indicate the SLS envelope, whereas the full lines indicate the envelope corresponding to the peak
load.
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Figure 4.54: The complete set of FE predictions (moment and shear ratios at ’peak’ and SLS) for
diameter

depth = 0.6 with fixed supports. Note that the peak results use solid lines, while the SLS results
makes use of dotted lines.
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Figure 4.55: The complete set of FE predictions (moment and shear ratios at ’peak’ and SLS) for
diameter

depth = 0.4 with fixed supports. Note that the peak results use solid lines, while the SLS results
makes use of dotted lines.
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Figure 4.56: The complete set of FE predictions (moment and shear ratios at ’peak’ and SLS) for
diameter

depth = 0.2 with fixed supports. Note that the peak results use solid lines, while the SLS results
makes use of dotted lines.

4.6 Composite analyses varying the position of a single per-
foration

In the previous section, sets of analyses were conducted, varying the diameter and position of
a single perforation along different spans of non-composite beams. This section uses the same
approach whilst incorporating a concrete slab with discrete vertical shear connectors (shear studs)
and reinforcement13to form a steel-concrete composite beam. The issues faced previously in § 4.5
(with reference to the difficulty in reaching convergence) occurred again and were mitigated by
running several additional analyses using ABAQUS/Explicit.

4.6.1 Simply supported

The tests in this subsection were run using either ABAQUS/Implicit (which makes use of the
Newton-Raphson iteration scheme) or quasi-static ABAQUS/Explicit (which uses an explicit cen-
tral difference time-stepping approach with out-of-balance forces carried over to the next time
step). In the ABAQUS/Implicit simulations, the same settings as in § 4.5 were used. Note that
ABAQUS/Explicit 6.14 does not have a specific quasi-static option but rather the user must en-
sure that the model is not exhibiting significant dynamic behaviour, by examining the kinetic and
internal energies as well as the external work. An ideal simulation would have negligible kinetic
energy; below 5% was considered appropriate for this project based on the ABAQUS documen-

13Longitudinal and lateral (along the x-axis and z-axis respectively).
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tation14. In the ABAQUS/Explicit simulations, most models were simulated over a time period
of 10 seconds with variable mass scaling. All explicit models made use of variable mass scaling
with the amount of scaling adjusted for each test, thereby influencing the size and total number
of increments. The load is applied by making use of ABAQUS’s built-in, nonlinear, smooth step
amplitude (see fig. 4.57), primarily to minimise the dynamic effects at the initial and final stages
of the simulation.

Figure 4.57: Smooth step amplitude used during the ABAQUS/Explicit analyses (Simulia 2013b,
sec. 34.1.2)

The FE meshes are identical to those in § 4.5, making use of Advance UKB 610x229x140
sections (Steel building design: Design data (P363) 2011) for both the top and bottom half of the
beam, with the addition of discrete reinforcement and stud connectors alongside the slab. The slab
itself is solid, 2.4 m. wide by 0.1 m. deep for all the tests. The composite beam features discrete
connectors arranged in pairs at the approximate middle of each top flange half, and with a pitch of
0.15 m. The first stud pair is located one pitch length away (i.e. 0.15 m.) from the support edge.
For the slab-flange interface, ABAQUS *CONNECTOR elements are used, featuring ’stop’ behaviour
when the slab-flange gap is zero, preventing each slab-flange node pair from passing through each
other. The reinforcement is modelled as discrete truss elements which share nodes with the slab
hexahedral (C3D8 ) elements. Both longitudinal and lateral reinforcement are modelled, with the
same spacing of 0.2 m. but with a varying diameter such that the equivalent reinforcement area
is 0.4% of the vertical cross-sectional area of the slab along the longitudinal (x) and transverse (z)
directions15. In the explicit FE analyses, a standard value of density, commonly found in literature
and in agreement with Steel building design: Design data (P363) (2011) (the ’blue book’ as it is
often referred to), was used based on the material type with steel set at 7800 kg

m3 and concrete at
2400 kg

m3 .
The boundary conditions are also identical to those found in § 4.5 for the simply supported

simulations, with the main difference being that the vertical (applied downwards along -y) force is
now applied onto the slab at 0.1 m. spacings instead of onto the top flange.

14If the model is influenced by dynamic effects, it would appear significantly stiffer during the elastic range and
overpredict the capacity at failure. Note that a high initial kinetic/internal work ratio is acceptable if the kinetic
energy contribution reduces significantly later in the simulation.

15Corresponding to the slab length and width respectively.
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4.6.1.1 Implicit results

Influence of single cell location on load capacity The results using ABAQUS/Implicit were
susceptible to non-convergence and frequently resulted in the analysis stopping before reaching a
post-yield state, depending on whether the critical failure mode was in the steel beam or in the
concrete slab.

This is most evident when considering the load-displacement behaviour for each of the batches.
In fig. 4.58, the results show that as the beam diameter reduces, and the steel beam is no longer
the critical component, such that failure in the slab becomes increasingly likely. This leads to
a gradual increase to the number of analyses not converging as seen in fig. 4.58a to fig. 4.58d.
fig. 4.59 provides an overview of this behaviour. Short span beams with large perforations are
susceptible to failure at the support and more dependent on the slab for additional resistance
locally. As the beam length increases, from fig. 4.59a to fig. 4.59f, more FE simulations are able to
achieve convergence post-peak, since the failure migrates from near the support to midspan, with
the concrete mainly in compression.

These simulations, including the results in fig. 4.60 to 4.65, are only useful in identifying
potential overall trends and are shown here for completeness.
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Figure 4.58: Load-displacement results for the 5 m. span tests using a different size diameter in
the perforation. The legends show the model number, followed by the distance of the perforation
centre from the nearest support. It is evident that many of the FE simulations do not reach a clear
peak plateau as a consequence of non-convergence.
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Figure 4.59: Load-displacement results for the 5 - 10 m. span tests with 80% depth diameter using
an implicit solution procedure in ABAQUS. Similarly to what was already observed in fig. 4.58,
the FE simulations were unable to reach a peak for longer spans. However, it should be noted that
the increase in the composite beam span appears to influence the number of FE simulations which
reach a post-yield state. This is likely related to the failure mode moving from the concrete slab
to the steel beam.
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(a) Single perforation simulations for symmetric beam lengths ranging from 5 to 10 m. with a perforation
diameter of 80 % of the total steel beam depth.
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(b) Single perforation simulations for symmetric beam lengths ranging from 5 to 10 m. with a perforation
diameter of 60 % of the total steel beam depth.

Figure 4.60
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(a) Single perforation simulations for symmetric beam lengths ranging from 5 to 10 m. with a perforation
diameter of 40 % of the total steel beam depth.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Perforation Location, m

100

150

200

250

300

350

400

450

500

550

U
D

L
 P

e
a
k
 L

o
a
d
, 
k
N

/m

(b) Single perforation simulations for symmetric beam lengths ranging from 5 to 10 m. with a perforation
diameter of 20 % of the total steel beam depth.

Figure 4.61

Moment-shear interaction In fig. 4.62, the shear-moment interaction for a 80% perforation
diameter shows a similar trend to that already observed in fig. 4.46. The results, while not at
capacity, show a potential increase of approximately 0.5 in MSd

Mo,Rd
at midspan (for VSd

Vo,Rd
= 0).

Similarly, the shear capacity exhibits an increase near the support, suggesting that the slab has a
considerable impact on the shear force distribution.

The rest (fig. 4.63 to 4.65) appear to show a potentially lesser decline in the shear capacity for
a higher moment than the equivalent non-composite results. This occurs as a consequence of the
slab adding to the shear capacity directly while reducing the yielding expected in the top tee.
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These figures and findings cannot be used in isolation, due to the issues faced during analy-
sis. For this reason, a mixed ABAQUS/Implicit and ABAQUS/Explicit group of FE results was
examined in § 4.6.1.2 to study the beam failure further.
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Figure 4.62: Moment-shear interaction for various beam spans for a single perforation of 80% of
the total steel beam depth. The dotted lines indicate the SLS envelope, whereas the full lines
indicate the envelope corresponding to the peak load.
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Figure 4.63: Moment-shear interaction for various beam spans for a single perforation of 60% of
the total steel beam depth. The dotted lines indicate the SLS envelope, whereas the full lines
indicate the envelope corresponding to the peak load.
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Figure 4.64: Moment-shear interaction for various beam spans for a single perforation of 40% of
the total steel beam depth. The dotted lines indicate the SLS envelope, whereas the full lines
indicate the envelope corresponding to the peak load.
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Figure 4.65: Moment-shear interaction for various beam spans for a single perforation of 20% of
the total steel beam depth. The dotted lines indicate the SLS envelope, whereas the full lines
indicate the envelope corresponding to the peak load.

4.6.1.2 Combined implicit and explicit (hybrid) results

One way to overcome the shortcomings of using ABAQUS/Implicit with concrete-type failures is
to utilise ABAQUS/Explicit. In this part of the thesis, results from individual simulations using
either ABAQUS/Implicit or ABAQUS/Explicit have been combined to clarify the behaviour close
to or at the peak load.

The simulations in the explicit set use a default time period of 10 s.16. In addition, *Variable
Mass Scaling was applied uniformly to the model to reduce the analysis duration, with a default
target increment size of dt = 5e-6 s. As the process of determining the optimum time increment
for a given beam model was not automated, some analyses had to have their target time increment
reduced in order to avoid dynamic effects. A suitable time increment (thus influencing the amount
of mass scaling applied) was determined by looking at both the energy output in ABAQUS (e.g.
see fig. 4.66) and the load-displacement behaviour in relation to the equivalent ABAQUS/Implicit
model (which is identical except for the type of analysis which simulated it, see fig. 4.67).

Note that the filled markers indicate a simulation completed using ABAQUS/Explicit.
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Figure 4.66: Plot of the energy output from ABAQUS showing the external work (ALLWK), kinetic
energy (ALLKE), total energy (ETOTAL) and the internal energy (ALLIE) for the entire model. As
dynamic effects begin influencing the results, the kinetic energy would increase, with an associated
decrease in the internal energy and deviation from the total work done (for Model 1, from the 80%
diameter batch with a span of 5 m.).

Figure 4.67: Plot of the load-displacement output for an Explicit simulation relative to the Implicit
version (for Model 1, from the 80% diameter batch with a span of 5 m.). For an ideally quasi-
static analysis, the two would coincide, with deviations occuring as dynamic effect become more
influential.

Influence of single cell location on load capacity The results in fig. 4.68a show that large
single perforations influence the capacity of the beam most near the support, except for relatively
long span beams, for which the impact is highest at midspan. This is due to the critical failure
mode change from a short span beam (high shear near support makes it susceptible to Vierendeel
with increasing diameter perforations) to long span (bending failure with capacity reduced mainly
when a large perforation is located in close proximity to the support).

16Note that some older simulations used a longer time period of 20 s.
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In fig. 4.68b, the reduction in flexural capacity at midspan appears to be less significant than
that seen in fig. 4.68a, while the impact on the Vierendeel capacity when the perforation is near the
support continues to be considerable. Once again, the shorter span beams are influenced more due
to the high shear near the support relative to long-span beams which are susceptible to midspan
bending failure.
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(a) Single perforation simulations for symmetric beam lengths ranging from 5 to 10 m. with a perforation
diameter of 80 % of the total steel beam depth.
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(b) Single perforation simulations for symmetric beam lengths ranging from 5 to 10 m. with a perforation
diameter of 40 % of the total steel beam depth.

Figure 4.68

Moment-shear interaction The impact of the perforation near the support is most clearly
seen in fig. 4.69.
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The observation made previously for the ABAQUS/Implicit results regarding the influence of
the slab appears to be verified from the results shown in fig. 4.69 and fig. 4.70, whereby the impact
of higher moment on the shear capacity is reduced by the slab increasing the shear and moment
capacity locally and reducing the force placed on the top tee.

However, the results in fig. 4.69 exhibit a notable drop in VSd

Vo,Rd
near the support. The cause of

this is likely linked to the contact simulation approach adopted, which is unable to prevent node
penetration (i.e. the concrete slab moving ’through’ the top steel flange and vice versa) when there
is significant displacement in the x-z plane. As a result, the behaviour near the support would
need to be examined further while ensuring adequate slab-flange contact.

In fig. 4.70, the shear ratio does not appear to be influenced significantly by the beam length,
staying within the 1.2 - 1.4 range while the moment ratio increases alongside the beam length.
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Figure 4.69: Moment-shear interaction for various beam spans for a single perforation of 80% of
the total steel beam depth. The dotted lines indicate the SLS envelope, whereas the full lines
indicate the envelope corresponding to the peak load.
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Figure 4.70: Moment-shear interaction for various beam spans for a single perforation of 40% of
the total steel beam depth. The dotted lines indicate the SLS envelope, whereas the full lines
indicate the envelope corresponding to the peak load.
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4.6.2 Fixed endplate

4.6.2.1 Implicit results

This series of analyses comprises composite beams featuring a single web perforation at varying
positions along the beam length. The beams all feature x- and z-axis symmetry to prevent buckling
failure modes. In addition, discrete reinforcement and shear connectors are used in addition to
contact simulating springs at the flange-slab interface.

The beam utilises a von-Mises yield criterion with perfect plasticity for the steel. The uniaxial
behaviour of the material is bilinear with yield at 355 MPa. for all the beam components. This
material was also used for the vertical shear studs. The reinforcement used a linear elastic material
model. The concrete is modelled using a Mohr-Coulomb model featuring a tension cutoff.

As these simulations were conducted using a material susceptible to tensile failure using a par-
ticularly unfavourable form of loading, non-convergence issues were expected due to the concrete
material near studs and reinforcement. These issues utlimately lead to the analyses ending pre-
maturely in many cases and thus the likely peak capacity is not always obtained from the Implicit
analyses. These tests were useful to conduct (see the associated results in fig. 4.72 to 4.73 and
the load-displacement behaviour in fig. 4.71), however, since they could help isolate which cases
are most susceptible to potential concrete failures and provide data up to non-convergence. The
non-convergence issue explains why the results from beams with smaller diameter perforations,
such as fig. 4.73b, ’predict’ a lower capacity than those with larger perforations. As the perfo-
ration diameter reduces, the steel beam becomes less critical and the slab carries higher stresses,
making it more susceptible to failure and hence non-convergence during analysis. The global beam
behaviour, examined using the load-displacement figures, can be used as an indicator of prema-
ture non-convergence (a numerical instability having caused ABAQUS to stop the analysis) versus
non-convergence due to material failure (i.e. the beam has become a mechanism).

More insight is obtained by examining the stress patterns at failure; these locations can be
determined and whether the beam state is due to a locally isolated region or whether multiple
locations are experiencing a failure type.

The results for beams containing a perforation diameter 0.8 × depth reveal that the beam is
primarily subject to Vierendeel-type yielding for all cases except the final two (the penultimate is
subject to a combination of both and the final is always subject to bending-type yielding).

An examination of the beams using 0.6×depth diameter perforations show a co-existing bending
failure developing alongside the Vierendeel yielding. This holds for all perforation locations except
the final two, similar to 0.8 × depth.

The results, excluding the first two, for a perforation diameter ≤ 0.4 × depth, show that the
steel beam undergoes yielding near the support and has limited Vierendeel-type yielding.
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(b) Diameter 60% total steel beam depth

0 1 2 3 4 5 6 7 8

Midspan Deflection, m ×10-3

0

100

200

300

400

500

600

700

U
n
if
o
rm

ly
 d

is
tr

ib
u
te

d
 l
o
a
d
, 
k
N

/m

Model # 1, 0.17 m.

Model # 2, 0.67 m.

Model # 3, 1.17 m.

Model # 4, 1.67 m.

Model # 5, 2.17 m.

Model # 6, 2.50 m.

(c) Diameter 40% total steel beam depth

0 1 2 3 4 5 6

Midspan Deflection, m ×10-3

0

100

200

300

400

500

600

U
n
if
o
rm

ly
 d

is
tr

ib
u
te

d
 l
o
a
d
, 
k
N

/m

Model # 1, 0.11 m.

Model # 2, 0.61 m.

Model # 3, 1.11 m.

Model # 4, 1.61 m.

Model # 5, 2.11 m.

Model # 6, 2.50 m.

(d) Diameter 20% total steel beam depth

Figure 4.71: Load-displacement results for the 5 m. span tests using a different size diameter in
the perforation. The legends show the model number, followed by the distance of the perforation
centre from the nearest support.
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(a) Single perforation simulations for symmetric beam lengths ranging from 5 to 10 m. with a perforation
diameter of 80 % of the total steel beam depth.
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(b) Single perforation simulations for symmetric beam lengths ranging from 5 to 10 m. with a perforation
diameter of 60 % of the total steel beam depth.

Figure 4.72
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(a) Single perforation simulations for symmetric beam lengths ranging from 5 to 10 m. with a perforation
diameter of 40 % of the total steel beam depth.
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(b) Single perforation simulations for symmetric beam lengths ranging from 5 to 10 m. with a perforation
diameter of 20 % of the total steel beam depth.

Figure 4.73
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4.6.3 Fully fixed

4.6.3.1 Implicit results

This series of simulations features boundary conditions attempting to simulate full fixity at the
support. Similar to previous tests, both x- and z-axis symmetries are used to prevent buckling
failures. Due to the nature of the boundary conditions and material definitions, particularly for
the concrete slab, non-convergence was expected. Nevertheless, these analyses were deemed useful
in order to provide a basis for further investigation using alternative approaches.

The global behaviour can be seen in fig. 4.74.
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Figure 4.74: Load-displacement results for the 5 m. span tests using a different size diameter in
the perforation. The legends show the model number, followed by the distance of the perforation
centre from the nearest support.

Influence of single cell location on load capacity The impact of the perforation can be seen
in the results in fig. 4.75a to 4.76b. The perforation is most influential nearest the support as it
is subject to high shear alongside the support moment. This makes it more susceptible to failure
than the shear alone as in the simply supported case.

However, a reduction in perforation diameter appears to reduce the impact of the support. In
addition, as the beam span increases and the critical failure mode changes to bending, the impact
of a perforation near the support is less significant.
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(a) Single perforation simulations for symmetric beam lengths ranging from 5 to 10 m. with a perforation
diameter of 80 % of the total steel beam depth.
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(b) Single perforation simulations for symmetric beam lengths ranging from 5 to 10 m. with a perforation
diameter of 60 % of the total steel beam depth.

Figure 4.75
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(a) Single perforation simulations for symmetric beam lengths ranging from 5 to 10 m. with a perforation
diameter of 40 % of the total steel beam depth.
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(b) Single perforation simulations for symmetric beam lengths ranging from 5 to 10 m. with a perforation
diameter of 20 % of the total steel beam depth.

Figure 4.76

4.6.3.2 Combined implicit and explicit (hybrid) results

As in the simply supported set, a mixture of primarily ABAQUS/Explicit simulations alongside
ABAQUS/Implicit was used to examine the failure behaviour in greater detail.

Note that the filled markers indicate a simulation completed using ABAQUS/Explicit.

Influence of cell location on beam capacity The results in fig. 4.77a show that the influence
of the perforation is significant in the region near the support; with an eventual plateauing in the
beam capacity as the perforation location approaches midspan. For the 5 m. span simulations, the
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capacity near the support drops by approximately 56% relative to the results where the perforation
is > 1 m. from the support. The equivalent drop for the 7 m. span simulation is 62.5% near the
support. For the 9 m. spam simulation, the drop in capacity near the support is smaller at
approximately 50%. There are not enough datapoints from simulations to examine how proximal
this is to the support but it could be assumed that beyond 1 - 2 m. the influence is reduced.

Fig. 4.77b shows that the drop in capacity, near the support, is reduced by 26.9%, 13.3% &
0.09% for the 5, 7 & 9 m. span simulations respectively.
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(a) Single perforation simulations for symmetric beam lengths ranging from 5 to 10 m. with a perforation
diameter of 80 % of the total steel beam depth.
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(b) Single perforation simulations for symmetric beam lengths ranging from 5 to 10 m. with a perforation
diameter of 40 % of the total steel beam depth.

Figure 4.77
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Moment-shear interaction As with the non-composite fixed results examined previously in
fig. 4.53, there is a drop in the shear capacity occuring due to the influence of the applied moment
near the perforation in fig. 4.78, with the exception of the 9 m. simulation. However, this is not
observed in fig. 4.79 with the results near the perforation. In addition, the presence of a slab
appears to lead to an increase in the moment capacity near the support from an approximate
minimum MSd

Mo,Rd
of -1 in fig. 4.55 to -1.5 in fig. 4.79. This would need to be examined further and

confirmed experimentally, as it would suggest that the slab may have a significant contribution
even for highly tensile regions such as those modelled in these simulations.
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Figure 4.78: Moment-shear interaction for various beam spans for a single perforation of 80% of
the total steel beam depth. The dotted lines indicate the SLS envelope, whereas the full lines
indicate the envelope corresponding to the peak load.
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Figure 4.79: Moment-shear interaction for various beam spans for a single perforation of 40% of
the total steel beam depth.

4.7 Composite parametric models: Simply supported

Parametric simulations have been conducted with the aim to identify the influence of each pa-
rameter on the behaviour and the critical failure mode of the beam. While these cases can be
designed using currently available guidance (mainly contained in Lawson and Hicks (2011)) this
study aims to provide both a more extensive examination of the behaviour in the beam as well
as a basis for the as-yet unexamined cases incorporating moment-resisting supports that will fol-
low. Of particular interest is the failure location, especially for Vierendeel-type failures, and the
relationship between a chosen parameter and the global behaviour of the beam, particularly the
load-displacement response. These parametric models were all generated using the mesh_gen.m

and inp_gen.m programs presented in § 2.3. Symmetry along both the x- and z-axis was used in
order to prevent buckling failures. For each parameter being examined, the values are chosen to
cover a range, extending to extreme cases. The other parameters are kept constant using a default
value considered acceptable in the existing design guidance.

Following this, the normalised applied Uniformly Distributed Load (UDL) for different loading
stages is examined:

• the SLS, which is interpolated from the FE data for a displacement of L

360
• the first yield, which is chosen to be the point at which the local tangent in the load-

displacement plot is less than half the initial tangent calculated numerically

• the peak state, which is either the end of the analysis or, in some cases, the point at which a
mechanism or significant yielding has formed17
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Note that the normalised UDL, Fudl,norm refers to the UDL calculated from the FE, Fudl,F E

normalised using the UDL at the Ultimate Limit State (ULS), Fudl,def , for a simply supported
unperforated composite beam determined using the default values in Table 4.4. Thus,

Fudl,norm = Fudl,F E

Fudl,def
(4.5)

A fit of the data can then be produced for each case, in order to simplify the relationship
between the normalised load and the examined parameters for each batch.

These datapoints could coincide under certain scenarios, particularly if there is an early inter-
ruption to the analysis due to non-convergence rather than mechanism formation. An example of
this is seen in fig. 4.80.

A note on the section figures and resulting equations The figures in this section follow a
standardised format.

• Load-displacement figures feature markers that show the identified SLS and first yield states
(crosses and squares respectively). The ULS is always at the end of the load-displacement
for each beam and represented as circles only in the normalised UDL versus parameter plots
(such as fig. 4.82). All these markers are shared across the figures as a way to relate the
figures directly.

• The von Mises contour figures feature a rainbow colour scheme where zero stress is blue and
fy = 355 MPa. is red. Note that grey represents elements exceeding the yield stress, fy.

• In each batch, the applied UDL at each of the three states is normalised against the UDL
for midspan bending failure of a simply supported unperforated, non-composite beam shown
using the default values in Table 4.4. This enables a relationship between the normalised
UDL capacity, Fudl,norm, and the parameter or parameter ratio to be examined. Note that
this relationship is only valid within the examined range and has not been developed for any
use outside of it.

– In some cases, the fit from Matlab is deemed incorrect as it crosses over higher load
states (i.e. the first yield equation extends above the peak, as in fig. 4.99 & fig. 4.111)
or features an equation type that is unrealistic (such as the first yield fit in fig. 4.96
for values of tf ≥ 0.037 m.). In these types of figures, the plots of the load state and
associated equations should be used with care (and only within the bounds defined by
the other load states) and are represented with dashed lines to distinguish from the
others.

• In some of the simulations, the parameter being examined influences the beam length (which
is generally kept within 7 - 8 m. if possible) and number of perforations. Since additional
perforations reduce the stiffness and capacity, an additional plot of the peak load estimate
from the FE versus the examined parameter (or parameter ratio) is presented, showing
the number of perforations in each of the examined models in a batch (for an example, see
fig. 4.86). These figures also feature an estimate of the load at the next equilibrium increment
(shown as an error bar at each symbol), indicating the potential proximity of the current
load value to the beam capacity (i.e. the larger the estimate, the further the beam capacity
may be from the FE peak load).

17In those cases, it could be considered the ULS.
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• A colour-coding convention is established for the numerical study, with the equations coded
orange refering to equations with at least one point considered as non-converged (e.g. the
predicted ’first yield’ point coincides with the ULS, indicating that the analysis may have
ended too soon to establish the beam capacity) and those coded red containing only points
coinciding with another limit state (often the SLS).

Table 4.4: Overview of models and the default values used during model generation

Parameter Examined Parameter Range, m. Default Value, m.
Perforation Diameter, d 0.18 - 0.48 0.375
Perforation Centres, s 0.475 - 0.975 0.575

Initial Spacing, sini
0.375 - 0.975 to initial

perforation centre 0.575

Flange Width, bf 0.075 - 0.375 0.2302
Flange Thickness, tf 0.007 - 0.047 0.0221
Web Thickness, tw 0.005 - 0.030 0.0131
Slab Depth, ds 0.1 - 0.25 0.135
Bottom Flange Width, bf,bot 0.075 - 0.375 0.2302
Bottom Flange Thickness, tf,bot 0.007 - 0.047 0.0221
Bottom Web Thickness, tw,bot 0.005 - 0.030 0.0131

Table 4.5

Parameter Examined Non-converged analyses
Perforation Diameter, d 4
Perforation Centres, s 4 & 5
Initial Spacing, sini All analyses (1 - 4)
Flange Width, bf 2 & 3
Flange Thickness, tf 1 - 3
Web Thickness, tw 2 & 3
Slab Depth, ds 1, 3 & 4
Bottom Flange Width, bf,bot 1
Bottom Flange Thickness, tf,bot 1, 2 & 3
Bottom Web Thickness, tw,bot 2 & 3

4.7.1 Perforation diameter

In this batch, the diameter was examined for values between 30% - 80% of the default total
beam depth, 0.6 metres. An examination of the equivalent von Mises stress in the beam shows
that perforations above ≈ 60% (63.3%, 0.38 m. diameter) exhibit distinct Vierendeel-type or
bending yielding depending on the location. Perforations adjacent to the support, particularly the
initial, are susceptible to Vierendeel action due to the high vertical force, while bending becomes
progressively dominant along the beam length. The final perforation is subject to only bending
yielding. Beams containing perforations with a diameter ≤ 46.67% (or 0.28 m.) exhibit yielding
due to bending, except the initial perforation which is subject to high local vertical loading. Those
beams with intermediate perforation diameters can therefore be considered as transitional and
susceptible to both simultaneously. It should be noted that the 0.48 m. diameter simulation,
model 1 in fig. 4.80, appears to have ended prematurely following some minor nonlinearity.
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Model # 3, 0.467, 0.28 m.

Model # 4, 0.300, 0.18 m.

Figure 4.80: UDL versus vertical midspan displacement for the simply supported diameter para-
metric FE batch. The first yield and SLS locations are marked and correspond to the datapoints
used in fig. 4.82. Note that the increasing diameter leads to a reduction in both stiffness and
capacity.

Figure 4.81: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and grey
corresponding to 0, fy and > fy stress respectively) for the simply supported parametric diameter
batch with diameters of, from top to bottom: 0.48, 0.38 and 0.18 m.

Influence on beam capacity The FE results are used to produce a series of best-fit equations
for the examined range of the diameter

depth (or d

D
) ratio when plotted against the normalised UDL,

Fudl,norm.
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Fudl,norm = −1.54
(

d
D

)2

+ 0.665 d
D

+ 1.13 at peak (1 non-converged point) (4.6)

= −0.889
(

d
D

)2

+ 0.380 d
D

+ 0.825 at the SLS (4.7)

= −0.512 d
D

+ 1.09 at first yield (4.8)

In all of the cases, the increasing perforation size leads to a marked decrease in the normalised
load. This is most evident in the SLS and peak cases as seen in fig. 4.82. This decrease is caused
primarily by the change in failure mode from bending at the midspan to Vierendeel in the initial
perforation as seen in fig. 4.81 and becomes more evident at d

D
≥ 0.6. This coincides with model

3 which was found to be transitional, featuring both Vierendeel and bending yielding.
Additionally, the SLS and peak results in fig. 4.82 show that due to the failure mode, and

potentially the additional material available, models 1 & 2 ( d
D of 0.3 & 0.467 respectively) are

able to redistribute the stress during yielding and attain peak loads, on average, 30% higher than
the SLS loads for the same models. Conversely, the Vierendeel mechanism is far less able to
accommodate stress redistribution leading to a more modest 10 - 20% increase in loading before
reaching peak.

Note that the simplified material model for the steel, which did not include strain hardening
effects, makes these results (and the associated equations derived from them) conservative for the
range examined.
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Figure 4.82: Normalised UDL plotted against d
D for the simply supported composite diameter

batch for the three loading states.
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4.7.2 Perforation centres

The perforation spacing18determines the web-post width between adjacent perforations. Due to
this, it is a direct contributor to the susceptibility of beams to both web-post buckling and failure
due to horizontal shear. Web-post buckling in particular is considered a premature failure mode and
is always avoided by increasing the web-post width, adjusting the applied load, using web stiffeners
or a combination of these. Horizontal shear at the web is a concern due to the top-bottom tee
weld. This should be factored in when considering the weld capacity.

In this parametric FE batch, the web-post width varies from 0.1 - 0.6 m. from the edge of one
perforation to the next. Guidelines in Lawson and Hicks (2011) suggest that in high shear regions
the web-post width should be ≥ 0.4 ∗ d which would be, using the default model values, ≥ 0.15
and higher than the minimum value examined. Of the analyses in the batch, simulations 4 and 5
are considered to have ended prior to achieving peak capacity.

The results show that when sw > 0.2 m. the beam is susceptible to mainly Vierendeel and
bending-shear, while when sw < 0.2 m. the web-post longitudinal shear becomes a critical failure
mode. When sw = 0.2 m. a transitional failure type is occuring, whereby the perforation and
web-post yielding are occuring simultaneously.
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Figure 4.83: UDL versus vertical midspan displacement for the simply supported parametric FE
batch with varying web-post widths. The markers correspond to the states examined in fig. 4.85.
Note that the gradual decrease in web-post widths leads to a reduction in stiffness and capacity.

18All the beams in this project, unless stated otherwise feature regularly spaced perforations.
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Figure 4.84: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and
grey corresponding to 0, fy and > fy stress respectively) for the simply supported parametric
perforation spacing batch with web-post widths of, from top to bottom: 0.6, 0.2 and 0.1 m.

Influence on the beam capacity As web-post width limits are considered relative to the
perforation diameter, the web-post width ratio, s−d

d , is related here to the normalised load applied
on the beam at the SLS, initial yield and peak stages.

Fudl,norm = 0.093sw

d
+ 0.787 at peak (2 non-converged points) (4.9)

= 0.113sw

d
+ 0.577 at the SLS (4.10)

= 0.088sw

d
+ 0.676 at first yield (4.11)

An increase in web-post width leads to an increase in capacity, but with a lesser impact than
expected, even though the FE simulations appear to have predicted significant yielding, as seen
in fig. 4.84. This is notable, given that the number of perforations has increased with decreasing
web-post width (see also fig. 4.86). It implies that the web-post width, in the context of composite
beams, has a lesser influence on the beam capacity than other parameters when out-of-plane
movement is prevented. The results seen in fig. 4.85 show that the relationship between the
normalised UDL and sw

d
can be essentially described linearly for all the loading stages. Fudl,norm

varies between 0.843 & 0.946 for sw

d
values of 0.267 & 1.6 respectively. On average, the beams at

first yield are smaller by Fudl,norm = 0.116, meaning that the beams do not, on average, redistribute
stress extensively during loading.These results can be used when web-posts are not susceptible to
out-of-plane failures, for which cases these estimates are considered conservative, due to the strain
hardening that would occur and but was not modelled here.

4.7.3 Initial spacing

The effect of the initial web-post width, depending on the boundary conditions, can potentially
govern the critical failure mode. In these models, the proximity to the support governs the beam’s
susceptibility to Vierendeel-type failure, since buckling is prevented due to the enforced x- and
z-symmetries. However, the initial web-post is usually either sufficiently wide or connected to an
endplate, thus limiting out-of-plane movement.

The web-post width varies between 0.1875 - 0.7875 m. in these models, whilst maintaining
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Figure 4.85: Normalised UDL plotted against sw

d = s−d
d for the simply supported composite batch

for the three loading states.

constant diameter, perforation centres and, approximately, span. As a result, the number of
perforations had to be adjusted, impacting the global beam behaviour. The local results are,
however, indicative of the effect of the initial spacing to the critical failure mode. The results show
that while the initial perforation always exhibits some Vierendeel-type yielding, the transitional
web-post width is in the region of 0.1875 m. or 0.5 × d and in agreement with the guidance that
the web-post width should be ≥ 0.5 × d (Lawson and Hicks 2011).

All the analyses in this batch are considered to have ended too early to establish their predicted
capacity.
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Figure 4.86: As the perforation centres reduce, the number of perforations is adjusted to maintain
a similar beam length.
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Figure 4.87: UDL versus vertical midspan displacement for the simply supported initial web-post
width parametric FE batch. The first yield and SLS locations are marked and correspond to the
datapoints used in fig. 4.89. Note that the decreasing initial spacing leads to a reduction in stiffness
and should also reduce the capacity. In this plot, the models have not reached peak (or post-yield)
in the global behaviour.
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Figure 4.88: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and grey
corresponding to 0, fy and > fy stress respectively) for the simply supported parametric initial
spacing batch with initial web-post widths of, from top to bottom: 0.7875, 0.5875 and 0.1875 m.
to the first perforation edge.

Influence on the beam capacity The initial web-post width is considered in reference to the
diameter size and so the normalised UDL is plotted here alongside the sini

d
ratio for the models

examined.

Fudl,norm = 0.012sini

d
+ 0.8 at first yield and peak (non-converged) (4.12)

= 0.034sini

d
+ 0.630 at the SLS (4.13)

In fig. 4.89, the results exhibit linear relationships between the normalised UDL and the sini

d
ratio. It would appear that, as seen in fig. 4.88, the failure type does not change significantly with
the increased proximity to the support, with the expected influence of local vertical shear near
the support leading to increased Vierendeel yielding. When using the simplified fit for the peak,
an increase in sini

d
from 0.4 to 2.4 leads to an increase in the predicted capacity by a negligible

amount of ≈ 2.42%. In the context of the results, particularly when considering fig. 4.87 and
fig. 4.88, the beams with an initial web-post width following recommendations (≥ 0.5d) have not
yielded extensively and would be able to support a higher load before forming a mechanism.

Note that as with the perforation spacing examined previously, the gradual decrease in the
initial perforation spacing leads to an increase in the perforation count (maximum of 1 additional
perforation, see fig. 4.90).
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Figure 4.89: Normalised UDL plotted against sini

d for the simply supported composite batch for
the three loading states. Note that the first yield and peak datapoints used are the same, leading
to the fits coinciding.
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Figure 4.90: As the initial web-post width decreases, an additional perforation may be added in
order to maintain a similar beam length, impacting the stiffness and load capacity of the beam.
This plot shows the number of perforations alongside the beam capacity estimate from the FE
simulations.
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4.7.4 Flange width

Lawson and Hicks (2011) noted that the flanges contribute to the bending resistance of a given
tee. The flange width should thus only improve the beam capacity when Vierendeel or bending
are the main causes of failure.

These models examine the effect of using flange widths of between 0.075 - 0.375 m. on the beam
failure mode. The studs in this batch use the default model generation algorithm, meaning that
their position in the z direction is influenced by the flange width. As expected from the literature,
the bending capacity improves with increasing beam width, leading to the shear failure modes
becoming critical as bending failures become secondary. Models 1 & 2 appear to be failing due to
bending (flange widths of 0.075 & 0.175 m.). Model 3 (0.275 m. flange width) is a transitional
case, with yielding due to shear appearing at the web-posts and perforation web.

Note that since web-posts subject to shear are susceptible to buckling (ibid.), an increase in
bending resistance may not lead to an improvement in capacity.

The models in this batch appear to have failed prematurely due to non-convergence, with models
2 and 3 exhibiting a coincident predicted initial yield and ULS (see fig. 4.91), indicating that there is
a potential contribution from the slab, leading to concrete failure during analysis. When examining
the results, the studs are alternating between tension and compression approximately before and
after the perforation centrelines in models 1 & 2. This behaviour is regarded as an indicator of
Vierendeel bending and this is consistent with the concrete contributing more to the local bending
resistance due to the flanges being relatively small.
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Figure 4.91: UDL versus vertical midspan displacement for the simply supported symmetric flange
width parametric FE batch. The first yield and SLS locations are marked and correspond to the
datapoints used in fig. 4.93. Note that the increasing flange width leads to an increase in stiffness
and load capacity.
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Figure 4.92: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and grey
corresponding to 0, fy and > fy stress respectively) for the simply supported parametric flange
width batch with values of, from top to bottom: 0.075, 0.275 and 0.375 m.

Influence on the beam capacity An increase in the flange width leads to an increase in the
beam capacity. In fig. 4.93, the normalised UDL is plotted against the symmetric flange width,
bf . The flange width exhibits a nonlinear relationship with the normalised UDL but due to the
number of models and the examined range, a linear fit has been produced for the first yield and
peak load stages. A comparison of the peak results for flange widths of 0.075 and 0.375 m. shows
that the latter exhibits an increase of ≈ 67% in the normalised UDL capacity of the beam, to
Fudl,norm = 1.066. Note that the additional material for wider flange widths allows a much larger
increase in capacity from SLS to peak. For flanges of 0.075 m. the increase from the SLS to peak
is a mere 0.0178, against an increase of 0.178 for 0.375 m. flanges.

Fudl,norm = 2.19bf + 0.259 at peak (2 non-converged points) (4.14)

= −2.16b2
f + 2.35bf + 0.233 at the SLS (4.15)

= 1.71bf + 0.318 at first yield (4.16)
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Figure 4.93: Normalised UDL plotted against bf for the simply supported composite batch for the
three loading states.

4.7.5 Flange thickness

Similarly to the flange width analyses, this batch examines the effect of the flange thickness on
the beam behaviour. Since the overall flange geometry is unchanged, the studs’ location along
the z-axis is not affected. The models used flange thickness values between 0.007 - 0.047 m. for
both top and bottom tees, with simulations 1 - 3 considered to have ended prior to achieving peak
capacity. Similarly to the flange width batch (§ 4.7.4), the flange thickness leads to an increased
bending capacity, leading to shear failures in the web-posts.

As a result, an increase in flange thickness will lead to an increase in the bending capacity and,
in accordance with Eurocode 3, a minor increase in shear resistance for a given tee. This translates
to both increased capacity and stiffness with increasing flange thickness with diminishing effect,
particularly for tf > 0.04 m.

In this batch, models 1 - 2 (tf of 0.017 and 0.027 m. respectively) exhibit yielding primarily
due to bending, with failure developing at the perforation at midspan, model 3 (tf of 0.037 m.)
is transitional and features yielding due to bending at midspan, as well as yielding at the 1/2
web-post and Vierendeel yielding at the initial perforation. Finally, for tf ≥ 0.047 m. the first
perforations become critical, with yielding in the web becoming dominant.

In K. Chung et al. (2001) it is argued that cases with thick flanges exhibit a significant increase
in shear capacity. Using the shear-interaction curves presented in the article, there is an increase
of 10% and 13% when changing from sections UB 457x152x52 (mm. kg.) and UB 610x229x101

(mm. kg.) to UB 457x152x82 (mm. kg.) and UB 610x229x140 (mm. kg.) respectively. That article,
however, potentially ignores that alongside the flange thickness increase, there is an increase in
web thickness and an increase in the bending capacity (and thus reduction in the tee yielding
in the web). The effect is therefore not isolated effectively to an explicit contribution from the
flanges without examining the overall influence of the flanges on the tees. The simulation results
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(load-displacement behaviour shown in fig. 4.94) show that the flange thickness appears to have
influenced the local vertical shear resistance, leading to reduced web yielding, although this may
need to be investigated further.
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Figure 4.94: UDL versus vertical midspan displacement for the simply supported symmetric flange
thickness parametric FE batch. The first yield and SLS locations are marked and correspond to
the datapoints used in fig. 4.96. Note that the increasing flange thickness leads to an increase in
stiffness and load capacity.

Figure 4.95: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and grey
corresponding to 0, fy and > fy stress respectively) for the simply supported parametric flange
thickness batch with values of, from top to bottom: 0.007, 0.027 and 0.047 m.

Influence on the beam capacity The normalised UDL is plotted against the symmetric flange
thickness, tf in fig. 4.96. The relationship between Fudl,norm and the flange thickness is nonlinear,
given that the flange thickness has a similar impact on the beam resistances as the flange width.
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While not seen in the equations fitted to this set of data, it would be expected to see a plateau at
extreme values due to the increased influence of the web geometry on the beam resistances. Even
so, the equations for the peak and first yield load stages can be used to estimate the potential
influence of the flange thickness on the beam capacity for the range covered. The results show that
the flange thickness can influence the beam capacity by as much as 80% from the lowest flange
thickness examined at 0.007 m. to the highest at 0.047 m. For tf = 0.047 the peak is 26.7% higher
than the load at SLS.

Fudl,norm = −635t2f + 46.7tf + 0.075 at peak (3 non-converged points) (4.17)

= −169t2f + 21.2tf + 0.270 at the SLS (4.18)

= −444t2f + 44.4tf + 0.066 at first yield (4.19)
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Figure 4.96: Normalised UDL plotted against tf for the simply supported composite batch for the
three loading states.

4.7.6 Web thickness

A tee’s web thickness primarily influences the shear resistance of that tee (Lawson and Hicks 2011),
and, in conjunction with the web-post width, its resistance to web-post bending and buckling.

The web thicknesses are varied between 0.005 - 0.030 m. for both tees simultaneously over
3 models. Due to the x- and z-symmetry in all the analyses for this batch, the influence of
the web thickness on the failure mode itself excludes web-post bending and buckling, with the
primary influence being on the increased shear resistance mainly in longitudinal shear. While a
limited number, these analyses were conducted to provide a comparison for the subsequent moment
resisting cases.

In fig. 4.97, the load-displacement behaviour shows how the reduction in web-thickness leads
to a reduction in both capacity and stiffness. Note that only model 1, featuring a web thickness of
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0.005 m. has exhibited a nonlinear response, with analyses 2 and 3 not establishing a clear peak
capacity.

For tw < 0.02 m. the web-post shear becomes critical and the failure location moves to the
support and the subsequent web-posts. As a result, for values of web thickness ≥ 0.005 m., the
effects of shear are secondary to the bending occuring at midspan.
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Figure 4.97: UDL versus vertical midspan displacement for the simply supported symmetric web
thickness parametric FE batch. The first yield and SLS locations are marked and correspond to
the datapoints used in fig. 4.99. Note that the increasing web thickness leads to an increase in
stiffness and load capacity.

Figure 4.98: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and
grey corresponding to 0, fy and > fy stress respectively) for the simply supported parametric web
thickness batch with values of, from top to bottom: 0.005, 0.020 and 0.030 m.
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Influence on the beam capacity The normalised UDL is plotted here against the web thick-
ness, tw in fig. 4.99.

While limited in number, the results show that Fudl,norm increases by 0.444 (a potential increase
in beam capacity of 44.4%) when the web thickness increases from 0.005 to 0.03 m. Interestingly,
the mean increase in the allowable peak remains relatively constant, with a mean of 11.2% increased
capacity in the peak relative to the SLS, regardless of the web thickness. This is probably due to
models 2 & 3 being in the elastic range still and so this increase in peak capacity should not be
used without further investigation.

Note that in fig. 4.98, only model 1 has achieved extensive yielding.
This means that while the equation for peak can be used as a basic safe behavioural bound,

additional simulations and examination of the peak behaviour are necessary. These equations are
conservative as a result.

Fudl,norm = −592t2w + 38.5tw + 0.355 at peak (2 non-converged points) (4.20)

= −443t2w + 34.5tw + 0.251 at the SLS (4.21)

= −1066t2w + 62.2tw + 0.071 at first yield (4.22)
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Figure 4.99: Normalised UDL plotted against tw for the simply supported composite batch for the
three loading states.

4.7.7 Slab depth

For composite perforated beams, the slab becomes a contributor to bending resistances, including
Vierendeel-type bending, for the top tee. These simulations examined slab depths varying between
0.1 - 0.25 m. in order to quantify the effect of the slab on the beam behaviour, over 4 simulations
of which simulations 1, 3 and 4 are considered to have ended prior to achieving peak capacity.
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The composite action improved the beam capacity, although the analyses appeared to have
ceased prematurely due to non-convergence. In addition, the slab has influenced the yielding
pattern slightly, as shown in fig. 4.101, indicating that there is an influence on (and potential
improvement to) the vertical shear capacity at the perforation centres.
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Figure 4.100: UDL versus vertical midspan displacement for the simply supported slab depth para-
metric FE batch. The first yield and SLS locations are marked and correspond to the datapoints
used in fig. 4.102. Note that the increasing slab depth leads to an increase in stiffness and load
capacity.

Figure 4.101: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and
grey corresponding to 0, fy and > fy stress respectively) for the simply supported parametric slab
depth batch with values of, from top to bottom: 0.1, 0.135 and 0.25 m.
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Influence on the beam capacity The influence of the slab depth on the normalised UDL
is demonstrated in fig. 4.102. While the relationship is potentially nonlinear for all the loading
stages, a simplified set of linear equations are produced to describe conservative bounds for the
beam capacities. An increase in slab thickness from 0.1 to 0.25 m. leads to an increase of 24.54%
in the normalised capacity for the peak load stage. As the slab influences multiple resistances,
this increase would vary depending on the specifics of the cellular beam to which it is attached.
However, the general impact of a slab (in theory) is on the vertical shear and Vierendeel resistances,
alongside the bending resistance at midspan.

Fudl,norm = 1.56ds + 0.668 at peak (3 non-converged points) (4.23)

= 2.38ds + 0.391 at the SLS (4.24)

= 1.63ds + 0.651 at first yield (4.25)
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Figure 4.102: Normalised UDL plotted against ds for the simply supported composite batch for
the three loading states.

4.7.8 Asymmetric flange width

The flange width of the bottom tee is varied over a range of 0.075 - 0.375 m. using 4 models. All
simulations appear to have reached some level of nonlinearity, with model 1 considered to not have
reached peak capacity.

As the flange width for the bottom tee is increased, the bending capacity increases, leading to
increased capacity for the beam, until the web-post yielding becomes a critical factor for bf,bot ≥
0.375.

For bf,bot ≤ 0.175 m. the critical failure mode is bending at midspan, while for bf,bot ≈ 0.175
m. the beam is exhibiting yielding at the Vierendeel corners in the initial perforation and at the
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1-2 web-post alongside the beanding yielding near midspan, making it a transitional model (see
fig. 4.104).
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Figure 4.103: UDL versus vertical midspan displacement for the simply supported asymmetric
flange width parametric FE batch. The first yield and SLS locations are marked and correspond
to the datapoints used in fig. 4.105. Note that the increasing bottom flange width leads to an
increase in stiffness and load capacity.

Figure 4.104: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and
grey corresponding to 0, fy and > fy stress respectively) for the simply supported parametric
asymmetric flange width batch with values of, from top to bottom: 0.075, 0.175 and 0.375 m.

Influence on the beam capacity The normalised UDL magnitude is plotted against the ratio
of the bottom to top flange width, bf,bot

bf,top
, in fig. 4.105. The effect of varying the bottom flange

width has a direct bearing on the beam capacity.
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At the SLS load stage, the results at either extreme of the examined range show that an increase
in the bottom flange width from 0.075 m. to 0.375 m. ( bf,bot

bf,top
of 0.326 and 1.629 respectively)

translates to an increase of 62.2% in the normalised beam capacity. Moreover, the increased width
affords a larger increase in capacity, with the SLS to peak difference being 6.35% & 25.7% at 0.075
& 0.375 m. respectively.

Fudl,norm = −0.353
(
bf,bot

bf,top

)2

+ 1.16 bf,bot

bf,top
+ 0.108 at peak (1 non-converged point) (4.26)

= −0.131
(
bf,bot

bf,top

)2

+ 0.583 bf,bot

bf,top
+ 0.206 at the SLS (4.27)

= −0.235
(
bf,bot

bf,top

)2

+ 0.828 bf,bot

bf,top
+ 0.182 at first yield (4.28)
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Figure 4.105: Normalised UDL plotted against bf,bot

bf,top
for the simply supported composite batch for

the three loading states.

4.7.9 Asymmetric flange thickness

Similarly to using a different flange width for the bottom tee, this batch of 5 analyses was conducted
to examine the effect of an asymmetric flange thickness in the bottom tee in a 0.007 - 0.047 m.
range. Of the analyses in the batch, models 1, 2 and 3 are considered to have ended prior to
achieving peak capacity.

For models with tf,bot ≤ 0.017 m. the critical failure mode is bending at midspan, with a
potential transitional model when tf,bot ≈ 0.037 m.

For tf,bot ≥ 0.047 m. the failure mode has changed to being in the web-post with failure
primarily occuring adjacent to the initial perforation.

The load-displacement behaviour is shown in fig. 4.106.
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Figure 4.106: UDL versus vertical midspan displacement for the simply supported asymmetric
flange thickness parametric FE batch. The first yield and SLS locations are marked and correspond
to the datapoints used in fig. 4.108. The increasing bottom flange thickness leads to an increase
in stiffness and load capacity.

Figure 4.107: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and
grey corresponding to 0, fy and > fy stress respectively) for the simply supported parametric
asymmetric flange thickness batch with values of, from top to bottom: 0.007, 0.017 and 0.047 m.

Influence on the beam capacity The resulting normalised UDL and bottom to top flange
thickness ratio, tf,bot

tf,top
, have been compiled in fig. 4.108 for the first yield, SLS and peak loading

stages.
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Fudl,norm = −0.186
(
tf,bot

tf,top

)2

+ 0.886 tf,bot

tf,top
+ 0.106 at peak (3 non-converged points)

(4.29)

= 0.216 tf,bot

tf,top
+ 0.436 at the SLS

(4.30)

= 0.160
(
tf,bot

tf,top

)3

− 0.896
(
tf,bot

tf,top

)2

+ 1.64 tf,bot

tf,top
− 0.081 at first yield

(4.31)
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Figure 4.108: Normalised UDL plotted against tf,bot

tf,top
for the simply supported composite batch for

the three loading states.

4.7.10 Asymmetric web thickness

This batch examines the effect of asymmetric web thickness between top and bottom tees for
bottom tee web thicknesses of 0.005, 0.02 and 0.03 m. The results show that the beam load
capacity will improve for cases where the bottom tee web is critical (see fig. 4.109 for the load-
displacement behaviour). Note however that models 2 and 3 are considered to have ended prior to
achieving peak capacity.

The failure mode thus tends to change from web-post yield at the bottom tee, alongside bending
near the midspan for tw,bot ≤ 0.005 m. to web-post yielding in the top tee and bending at midspan
at the bottom tee.
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Model # 1, 0.382, 0.005 m.

Model # 2, 1.527, 0.020 m.

Model # 3, 2.290, 0.030 m.

Figure 4.109: UDL versus vertical midspan displacement for the simply supported asymmetric
web thickness parametric FE batch. The first yield and SLS locations are marked and correspond
to the datapoints used in fig. 4.111. The increasing bottom web thickness leads to an increase in
stiffness and load capacity.

Figure 4.110: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and
grey corresponding to 0, fy and > fy stress respectively) for the simply supported parametric
asymmetric web thickness batch with values of, from top to bottom: 0.005, 0.020 and 0.030 m.

Influence on the beam capacity The influence of varying the bottom tee web thickness is
plotted in fig. 4.111.

The results are limited but the resulting equations shown here can be used as an estimate of
the behaviour when out-of-plane movement is prevented.
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Fudl,norm = 0.092 tw,bot

tw,top
+ 0.760 at peak (2 non-converged points) (4.32)

= 0.186 tw,bot

tw,top
+ 0.415 at the SLS (4.33)

= 0.288 tw,bot

tw,top
− 0.367 at first yield (4.34)
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Figure 4.111: Normalised UDL plotted against tw,bot

tw,top
for the simply supported composite batch for

the three loading states.

4.8 Composite parametric models: Fixed endplate

The parametric analyses conducted for this section examine the effect of an ideal moment-resisting
connection at the support but without a fixed concrete slab. The slab is only connected to the
beam, thereby simulating a scenario akin to a beam connected to a corner column and without
slab continuity.

These simulations cover cases not available in the current guidance and are a basis for further
investigation.

The procedure established in § 4.7 is repeated here, with various loading stages (SLS, first yield
and peak) being examined in order to establish simplified relationships between the normalised
applied UDL, Fudl,norm, and the parameter or ratio being investigated.

A note on the section figures The figures in this section follow the standardised format
established in § 4.7.
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Table 4.6: Overview of analyses and the default values used during model generation

Parameter Examined Parameter Range, m. Default Value, m.
Perforation Diameter, d 0.18 - 0.48 0.375
Perforation Centres, s 0.425 - 0.975 0.575

Initial Spacing, sini
0.225 - 0.975 to initial

perforation centre 0.575

Flange Width, bf 0.075 - 0.375 0.2302
Flange Thickness, tf 0.007 - 0.052 0.0221
Web Thickness, tw 0.005 - 0.030 0.0131
Slab Depth, ds 0.1 - 0.25 0.135
Bottom Flange Width, bf,bot 0.075 - 0.375 0.2302
Bottom Flange Thickness, tf,bot 0.007 - 0.052 0.0221
Bottom Web Thickness, tw,bot 0.005 - 0.030 0.0131

Table 4.7

Parameter Examined Non-converged analyses
Perforation Diameter, d
Perforation Centres, s
Initial Spacing, sini 2, 4, 6 & 14
Flange Width, bf 1
Flange Thickness, tf
Web Thickness, tw 6
Slab Depth, ds 6
Bottom Flange Width, bf,bot 2
Bottom Flange Thickness, tf,bot

Bottom Web Thickness, tw,bot

4.8.1 Perforation diameter

In the first batch of analyses examined in this set, the perforation diameter, d, is examined using
7 simulations, covering the range shown in Table 4.6. The diameter appears to have a dominant
influence, with web-post yielding appearing in the d = 0.48 m. model, with a web-post width
s − d = 0.4 m. being considerably above the recommended guideline ( s−d

d = 0.83 > 0.4 for high
shear). Note that the boundary conditions exacerbate the influence of the diameter, since the region
near the support is critical. All the simulations achieved a satisfactory level of nonlinearity, as seen
in fig. 4.112 without early non-convergence in the analyses. The models all feature developing
failure modes in adjacent to the initial perforation, with Vierendeel action dominant for d > 0.38
m. (or 63.3% of the beam depth, D), a transitional failure developing when 0.38 ≥ d ≥ 0.28 and
bending becoming critical, alongside Vierendeel and longitudinal web-post shear when d < 0.28 m.
in diameter (see fig. 4.113).
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Model # 1, 0.800, 0.48 m.

Model # 2, 0.717, 0.43 m.

Model # 3, 0.633, 0.38 m.

Model # 4, 0.550, 0.33 m.

Model # 5, 0.467, 0.28 m.

Model # 6, 0.383, 0.23 m.

Model # 7, 0.300, 0.18 m.

Figure 4.112: UDL versus vertical midspan displacement for the fixed endplate diameter parametric
FE batch. The first yield and SLS locations are marked and correspond to the datapoints used in
fig. 4.114. The increasing diameter leads to a reduction in both stiffness and capacity.

Figure 4.113: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and
grey corresponding to 0, fy and > fy stress respectively) for the fixed endplate parametric diameter
models with diameters of, from top to bottom, 0.48, 0.33 & 0.18 m.

Influence on the beam capacity The relationship between Fudl,norm and the d

D
ratio can be

simplified to a series of linear equations for all the loading stages, as shown in fig. 4.114. As the d

D
increases, the capacities of the initial perforation are reduced, primarily the Vierendeel, bending
and vertical shear.

The results also show that the influence of the perforation diameter is consistent between the
loading stages, without a significant change in the shape of the pattern.
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Figure 4.114: Normalised UDL plotted against d
D for the fixed endplate composite batch for the

three loading states.

Fudl,norm = −1.94 d
D

+ 2.42 at peak (4.35)

= −1.74 d
D

+ 2.19 at the SLS (4.36)

= −1.43 d
D

+ 1.75 at first yield (4.37)

4.8.2 Perforation centres

In this batch, 12 simulations were conducted to cover the range of perforation centre spacings, s,
as defined in Table 4.6. A number of the analyses appear to have been interrupted early (non-
convergence), as seen in fig. 4.115. The majority of the analyses reached at least two of the
three stages. Fig. 4.115 shows that many also achieved adequate nonlinearity to allow further
investigation. For d = 0.375 m. and s ≥ 0.975 (equating to a web-post width-to-diameter ratio of
s−d

d = sw

d = 1.0) the region surrounding the initial perforation develops extensive yielding, with
web-post yielding co-existing when 0.975 ≥ s ≥ 0.525; becoming more prevalent when s ≤ 0.525.
The increase in the number of perforations has a direct impact on the beam stiffness, leading to
increased displacement as well as a reduction in capacity (seen in fig. 4.117). As the perforation
spacing reduces, the web-post yielding becomes more prominent but the critical failure mode is
not influenced until s = 0.575 m. or sw = 0.2 m. From that point onwards, the web-post yields
throughout its width alongside the initial perforation (see fig. 4.116).
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Figure 4.115: UDL versus vertical midspan displacement for the fixed endplate web-post width
parametric FE batch. The markers correspond to the states examined in fig. 4.118. Note that the
gradual decrease in web-post widths leads to a reduction in stiffness and capacity.

Figure 4.116: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and grey
corresponding to 0, fy and > fy stress respectively) for the fixed endplate parametric perforation
spacing models with web-post widths of, from top to bottom, 0.6, 0.2 & 0.05 m.

Influence on the beam capacity The reduction in web-post width as the perforation spac-
ing reduces makes longitudinal web-post shear more prominent alongside yielding at the initial
perforation.

Since bending and buckling is prevented, the web-post width influences the load stages for
values of sw ≤≈ 0.3 m. for d = 0.375 m., while for sw ≥ 0.3 the impact on the capacity is steadily
diminishing.
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Figure 4.117: As the perforation centres reduce, the number of perforations is adjusted to maintain
a similar beam length.

This influence is consistent between load stages, with a plateauing for values exceding s−d
d = 0.6.

As this batch uses symmetry, bending and buckling at the web-post has not been included and
therefore these equations are not considered conservative.

Fudl,norm = 1.07 exp(0.119sw

d
) − 3.04 exp(−11sw

d
) at peak (4.38)

= 1.05 exp(0.095sw

d
) − 1.24 exp(−4.34sw

d
) at the SLS (4.39)

= exp(−0.024sw

d
) − 1.05 exp(−3.05sw

d
) at first yield (4.40)

4.8.3 Initial spacing

In this batch, 16 FE simulations have been analysed to investigate the influence of the initial
spacing, sini and the associated initial web-post width, sw,ini = sini −d/2, on the beam behaviour.
Of the analyses in the batch, models 2, 4, 6 and 14 are considered to have ended prior to achieving
peak capacity as they are below the expected SLS trend for their sini

d
ratio (see fig. 4.125). The

initial web-post width is calculated as a result of the location of the initial perforation. In other
words, the proximity of the initial perforation to the support is a primary consideration in this
batch, rather than the behaviour of the initial web-post itself. The most significant impact on
the beam behaviour arises from greater proximity to the support, with the initial web-post largely
unaffected by changes to its width. This is due to the way the boundary conditions are implemented
for these models, with the endplate simulated as being fixed at all of its nodes. As a result, the
initial web-post is not influenced by the loading since the stress propagates through the top and
bottom tees into the local region, seen in fig. 4.120. Therefore, as the initial spacing reduces, the
beam capacity will reduce alongside its stiffness (see fig. 4.119 and fig. 4.122). Failure is adjacent
to the initial perforation with secondary yielding in the subsequent perforations and web-posts.
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Figure 4.118: Normalised UDL plotted against sw

d = s−d
d for the fixed endplate composite batch

for the three loading states.

Overall, the failure mode does not change with the initial spacing.
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Figure 4.119: UDL versus vertical midspan displacement for the fixed endplate initial spacing
parametric FE batch. The markers correspond to the states examined in fig. 4.121. Note that the
gradual decrease in initial spacing leads to a reduction in stiffness and capacity.

206



Figure 4.120: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and
grey corresponding to 0, fy and > fy stress respectively) for the fixed endplate parametric initial
perforation spacing models with initial web-post widths of, from top to bottom, 0.7875, 0.2375 &
0.0375 m.

Influence on the beam capacity

Fudl,norm = 0.132sini

d
+ 0.89 at peak (4 non-converged points) (4.41)

= 0.167sini

d
+ 0.796 at the SLS (4.42)

= 0.186sini

d
+ 0.572 at first yield (4.43)
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Figure 4.122: As the initial web-post width decreases, an additional perforation may be added in
order to maintain a similar beam length. This impacts the stiffness and load capacity of the beam.
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Figure 4.121: Normalised UDL plotted against sini

d for the fixed endplate composite batch for the
three loading states. Note that some of the ULS datapoints are below the SLS equation, indicating
that the beam failure did not develop fully before the analysis ended.

4.8.4 Flange width

In this batch, 7 analyses were conducted for a flange width, bf , range of 0.075 - 0.375 m. for both
top and bottom tee, with model 1 considered to have ended prior to achieving peak capacity. As
would be expected, an increase in the flange width leads to an increase in the bending capacity, in
addition to the stiffness of the beam as a whole. Simulations with bf < 0.225 m. are susceptible to
bending failure in the bottom tee, while those with bf > 0.225 m. exhibit extensive yielding in the
web. In addition, as seen in fig. 4.123, the flange width has a diminishing influence for bf > 0.2 m.
in both stiffness and capacity as the web becomes the critical component.

See fig. 4.124 for a visualisation of the von Mises stress in the steel.
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Model # 1, 0.075 m.

Model # 2, 0.125 m.

Model # 3, 0.175 m.

Model # 4, 0.225 m.

Model # 5, 0.275 m.

Model # 6, 0.325 m.

Model # 7, 0.375 m.

Figure 4.123: UDL versus vertical midspan displacement for the fixed endplate symmetric flange
width parametric FE batch. The first yield and SLS locations are marked and correspond to the
datapoints used in fig. 4.125. Note that the increasing flange width leads to an increase in stiffness
and load capacity.

Figure 4.124: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and grey
corresponding to 0, fy and > fy stress respectively) for the fixed endplate parametric simulations
with flange widths of, from top to bottom, 0.075, 0.225 & 0.375 m.

Influence on the beam capacity

Fudl,norm = 19.7b3
f − 21.8b2

f + 7.6bf + 0.255 at peak (1 non-converged point) (4.44)

= 5.24b3
f − 5.71b2

f + 2.07bf + 0.741 at the SLS (4.45)

= 0.774 at first yield (4.46)
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Figure 4.125: Normalised UDL plotted against bf for the fixed endplate composite batch for the
three loading states. Note that the first yield and SLS load states must be constrained by fitted
peak (for bf ≤≈ 0.15 m.).

4.8.5 Flange thickness

In this batch, 10 analyses were conducted for an ft range of 0.007 - 0.052 m.
The flange thickness influences the beam capacity in a similar way to the flange width (see

fig. 4.126). Models with ft < 0.027 m. are primarily subject to bending yielding, while ft > 0.027
m. leads to increasing web-post yielding as the web becomes the critical component, as seen in
fig. 4.127. Additionally, at low thicknesses the bottom flange is subject to additional yielding due
to high compressive axial loads caused by the support conditions.
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Figure 4.126: UDL versus vertical midspan displacement for the fixed endplate symmetric flange
thickness parametric FE batch. The first yield and SLS locations are marked and correspond to
the datapoints used in fig. 4.128. Note that the increasing flange thickness leads to an increase in
stiffness and load capacity.

Figure 4.127: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and grey
corresponding to 0, fy and > fy stress respectively) for the fixed endplate parametric simulations
with flange thicknesses of, from top to bottom, 0.007, 0.027 & 0.052 m.

Influence on the beam capacity

Fudl,norm = −185t2f + 26.6tf + 0.574 at peak (4.47)

= 3.47tf + 0.878 at the SLS (4.48)

= 3.66tf + 0.656 at first yield (4.49)
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Figure 4.128: Normalised UDL plotted against tf for the fixed endplate composite batch for the
three loading states. Note that the SLS fit should not be crossing over the peak and is valid only
when bound by the peak fit. Additionally, the first yield fit does not adequately capture the rapid
drop in capacity for tf ≤≈ 0.017 m.

4.8.6 Web thickness

In this batch, 6 analyses were conducted over a tw range of 0.005 - 0.03 m. with model 6 considered
to have ended prior to achieving its peak capacity, while appearing close to it (see the plateau in
fig. 4.129).

As seen previously, the web thickness influences primarily the shear resistance at the perforation
centres and the resistances for the web-posts, particularly with respect to the longitudinal shear
they carry.

Models with tw < 0.02 m. exhibit extensive web-post yielding with minor bottom flange
yielding due to bending at the initial perforation (see fig. 4.130). Models with tw > 0.02 m. lead
to an overall increase in the capacity. However, the bottom flange is susceptible to yielding due to
the local compressive force and a potential limit on the influence of the web thickness.
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Model # 1, 0.005 m.

Model # 2, 0.010 m.

Model # 3, 0.015 m.

Model # 4, 0.020 m.

Model # 5, 0.025 m.

Model # 6, 0.030 m.

Figure 4.129: UDL versus vertical midspan displacement for the fixed endplate symmetric web
thickness parametric FE batch. The first yield and SLS locations are marked and correspond to
the datapoints used in fig. 4.131. Note that the increasing web thickness leads to an increase in
stiffness and load capacity.

Figure 4.130: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and grey
corresponding to 0, fy and > fy stress respectively) for the fixed endplate parametric simulations
with web thicknesses of, from top to bottom, 0.005, 0.02 & 0.03 m.

Influence on the beam capacity

Fudl,norm = −825t2w + 75.1tw + 0.258 at peak (1 non-converged point) (4.50)

= −662t2w + 75.9tw + 0.093 at the SLS (4.51)

= −571t2w + 71.8tw − 0.062 at first yield (4.52)
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Figure 4.131: Normalised UDL plotted against tw for the fixed endplate composite batch for the
three loading states. Note that the ULS point for model 6 (tw = 0.03 m.) coincides with the
equivalent SLS state. From the behaviour observed in fig. 4.129, it can be said that while the
failure mode appears to be underdeveloped, the beam itself may not have a significantly higher
capacity than that observed, given that strain hardening is prevented.
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4.8.7 Slab depth

A total of 17 analyses were conducted for this batch, examining the influence of the slab depth on
the beam behaviour. Of the analyses in the batch, model 6 is considered to have ended prior to
achieving peak capacity.

The slab depth does not appear to influence the beam’s critical failure mode (see fig. 4.133)
but leads to an overall increase in load capacity and stiffness.
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Figure 4.132: UDL versus vertical midspan displacement for the fixed endplate slab depth para-
metric FE batch. The first yield and SLS locations are marked and correspond to the datapoints
used in fig. 4.134. Note that the increasing slab depth leads to an increase in stiffness and load
capacity.

Figure 4.133: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and grey
corresponding to 0, fy and > fy stress respectively) for the fixed endplate parametric simulations
with slab depths of, from top to bottom, 0.1, 0.17 & 0.25 m.
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Figure 4.134: Normalised UDL plotted against ds for the fixed endplate composite batch for the
three loading states. The peak and first yield fits appear to be reasonable behavioural bounds. Note
that the result for model 6 (slab depth of 0.14 m.) did not converge to a significantly post-peak
behaviour (see also fig. 4.132).

Influence on beam capacity

Fudl,norm = 0.633ds + 1.15 at peak (1 non-converged point) (4.53)

= 2.62ds + 0.702 at the SLS (4.54)

= 2.09ds + 0.538 at first yield (4.55)

4.8.8 Asymmetric flange width

A batch of 7 analyses, for which the bottom flange width ranges from 0.075 to 0.375 m. was
conducted to investigate its impact, with model 2 considered to have ended before reaching peak
capacity.

The bottom flange width influences the bending capacity of the bottom tee as well as its axial
resistance (shown in fig. 4.135). For bottom flange widths of < 0.175 m. the bottom flange
is susceptible to yielding near the support, with additional yielding in web-posts 2 and 3. As
the bottom flange width increases to > 0.175 m. there is an increase in both the capacity and
stiffness with a diminishing influence as the primary failure mode becomes web yielding both at
the perforation centre and the adjacent web-posts for the first few perforations.
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Model # 1, 0.326, 0.075 m.

Model # 2, 0.543, 0.125 m.

Model # 3, 0.760, 0.175 m.

Model # 5, 1.195, 0.275 m.

Model # 6, 1.412, 0.325 m.

Model # 7, 1.629, 0.375 m.

Figure 4.135: UDL versus vertical midspan displacement for the fixed endplate asymmetric flange
width parametric FE batch. The first yield and SLS locations are marked and correspond to the
datapoints used in fig. 4.137. Note that the increasing bottom flange width leads to an increase in
stiffness and load capacity.

Figure 4.136: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and grey
corresponding to 0, fy and > fy stress respectively) for the fixed endplate parametric simulations
with bottom flange widths of, from top to bottom, 0.075, 0.175 & 0.375 m.
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Figure 4.137: Normalised UDL plotted against bf,bot

bf,top
for the fixed endplate composite batch for

the three loading states. Note that the peak state fit will need to be improved to capture the
plateauing expected for bf,bot

bf,top
≥≈ 1.2. Of the peak state datapoints, note that for model 2 (with

bf,bot

bf,top
≈ 0.543) the result has not reached significant post-yield and is considered as non-converged

with respect to the peak state.

Influence on the beam capacity

Fudl,norm = −0.211
(
bf,bot

bf,top

)2

+ 0.559 bf,bot

bf,top
+ 0.709 at peak (1 non-converged point) (4.56)

= −0.132
(
bf,bot

bf,top

)2

+ 0.370 bf,bot

bf,top
+ 0.734 at the SLS (4.57)

= −0.106
(
bf,bot

bf,top

)2

+ 0.280 bf,bot

bf,top
+ 0.621 at first yield (4.58)

4.8.9 Asymmetric flange thickness

A batch of 10 analyses was conducted for the bottom flange thickness, over a range of 0.007 to
0.052 m.

As with the bottom flange width, increasing the flange thickness leads to an increase in stiffness
and capacity (see fig. 4.138), with the limit to its influence being the switch from yielding in the
flanges (for < 0.027 m.) to yielding in the web for > 0.027 m.
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Figure 4.138: UDL versus vertical midspan displacement for the fixed endplate asymmetric flange
thickness parametric FE batch. The first yield and SLS locations are marked and correspond to
the datapoints used in fig. 4.140. The increasing bottom flange thickness leads to an increase in
stiffness and load capacity.

Figure 4.139: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and grey
corresponding to 0, fy and > fy stress respectively) for the fixed endplate parametric simulations
with bottom flange thicknesses of, from top to bottom, 0.007, 0.027 & 0.052 m.
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Figure 4.140: Normalised UDL plotted against tf,bot

tf,top
for the fixed endplate composite batch for

the three loading states. Note that the fit for the SLS cannot exceed, and must be constrained by,
the peak fit.

Influence on the beam capacity

Fudl,norm = −0.033
(
tf,bot

tf,top

)2

+ 0.359 tf,bot

tf,top
+ 0.730 at peak (4.59)

= 0.030 tf,bot

tf,top
+ 0.946 at the SLS (4.60)

= 0.063
(
tf,bot

tf,top

)3

− 0.290
(
tf,bot

tf,top

)2

+ 0.414 tf,bot

tf,top
+ 0.622 at first yield (4.61)

4.8.10 Asymmetric web thickness

A batch of 6 analyses was conducted over a range of 0.005 to 0.03 m. for the bottom web thickness.
The influence of the bottom web thickness is similar to that seen previously in the simply supported
case. However, due to the support moment and associated initial web-post yielding, the bottom
web thickness can play a crucial role in preventing extensive yielding from occuring. By doing so,
the beam capacity can be increased (see fig. 4.141) until the critical failure mode becomes bending
at the initial perforation, seen in fig. 4.142.
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Model # 1, 0.382, 0.005 m.

Model # 2, 0.763, 0.010 m.

Model # 3, 1.145, 0.015 m.

Model # 4, 1.527, 0.020 m.

Model # 5, 1.908, 0.025 m.

Model # 6, 2.290, 0.030 m.

Figure 4.141: UDL versus vertical midspan displacement for the fixed endplate asymmetric web
thickness parametric FE batch. The first yield and SLS locations are marked and correspond to
the datapoints used in fig. 4.143. The increasing bottom web thickness leads to an increase in
stiffness and load capacity.

Figure 4.142: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and grey
corresponding to 0, fy and > fy stress respectively) for the fixed endplate parametric simulations
with bottom web thicknesses of, from top to bottom, 0.005, 0.015 & 0.03 m.
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Figure 4.143: Normalised UDL plotted against tw,bot

tw,top
for the fixed endplate composite batch for

the three loading states.

Influence on the beam capacity

Fudl,norm = 0.319 tw,bot

tw,top
+ 0.758 at peak (4.62)

= 0.289 tw,bot

tw,top
+ 0.584 at the SLS (4.63)

= 0.266 tw,bot

tw,top
+ 0.385 at first yield (4.64)

4.9 Composite parametric analyses: Fully fixed support

In this section, a series of parametric analysis results are presented, covering cases where the
support is fully fixed. This is done by simulating slab continuity and fixity at the endplate. These
simulations cover cases for which there is no design guidance, as of writing, similarly to the fixed
endplate set. These parametric models were all generated using the mesh_gen.m and inp_gen.m

programs presented in § 2.3 as with the previous sections. Symmetry along both the x- and z-axis
was used in order to prevent buckling failures and reduce the analysis time.

A note on the section figures The figures in this section follow the standardised format
established in § 4.7.
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Table 4.8: Overview of models and the default values used during model generation

Parameter Examined Parameter Range, m. Default Value, m.
Perforation Diameter, d 0.18 - 0.48 0.375
Perforation Centres, s 0.425 - 0.975 0.575

Initial Spacing, sini
0.225 - 0.975 to initial

perforation centre 0.575

Flange Width, bf 0.075 - 0.375 0.2302
Flange Thickness, tf 0.007 - 0.052 0.0221
Web Thickness, tw 0.005 - 0.030 0.0131
Slab Depth, ds 0.1 - 0.25 0.135
Bottom Flange Width, bf 0.075 - 0.375 0.2302
Bottom Flange Thickness, tf 0.007 - 0.052 0.0221
Bottom Web Thickness, tw 0.005 - 0.030 0.0131

Table 4.9

Parameter Examined Non-converged analyses
Perforation Diameter, d
Perforation Centres, s 5 & 7
Initial Spacing, sini 1, 2, 6, 11 & 14
Flange Width, bf 1
Flange Thickness, tf 2
Web Thickness, tw
Slab Depth, ds

Bottom Flange Width, bf,bot

Bottom Flange Thickness, tf,bot

Bottom Web Thickness, tw,bot

4.9.1 Perforation diameter

In this batch, 7 analyses were conducted to investigate the impact of the diameter on the beam
behaviour. A large number of them were able to achieve significant post-yield loading but many
appear to have been prematurely ended, as seen in fig. 4.144. The von Mises stress contours shown
in fig. 4.145 illustrate that Vierendeel-type yielding is dominant in the first perforation for the 0.38
- 0.48 m. range of diameters (perforations 63.3 - 80 % of depth), a transitional Vierendeel and
bending-shear combination of yielding occurring for model 4 (perforations 55% of depth). The
remaining models covering the range 0.18 - 0.28 m. (equivalent to 30 - 46.67% of depth) all exhibit
minor Vierendeel-type yielding alongside bending-shear type yielding.
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Model # 1, 0.800, 0.48 m.

Model # 2, 0.717, 0.43 m.

Model # 3, 0.633, 0.38 m.

Model # 4, 0.550, 0.33 m.

Model # 5, 0.467, 0.28 m.

Model # 6, 0.383, 0.23 m.

Model # 7, 0.300, 0.18 m.

Figure 4.144: UDL versus vertical midspan displacement for the fully fixed diameter parametric
FE batch. The first yield and SLS locations are marked and correspond to the datapoints used in
fig. 4.146. The increasing diameter leads to a reduction in both stiffness and capacity.

Figure 4.145: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and
grey corresponding to 0, fy and > fy stress respectively) for models 1, 4 and 7 from top to bottom
with diameter of 0.48, 0.33 & 0.18 m. respectively.

Influence on beam capacity As was done previously, a series of best-fit equations are produced
here for each of the loading stages.
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Fudl,norm = −1.9
(
d

D

)2

− 0.3
(
d

D

)
+ 1.89 at peak (4.65)

= −1.5
(
d

D

)2

− 0.074
(
d

D

)
+ 1.81 at the SLS (4.66)

= −1.02
(
d

D

)2

− 0.3
(
d

D

)
+ 1.47 at first yield (4.67)
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Figure 4.146: After normalising the UDL at the SLS and peak (normally caused by nonconvergence
for implicit simulations) using the equivalent capacity of a simply supported equivalent plain-
webbed beam, the relationship with diameter

depth can be examined. This figure uses the FEA results
from 7.92 m. span beams with stationary perforations of varying diameter.

4.9.2 Perforation centres

The models in this batch examined the effect of the perforation spacing and the web-post width on
the beam behaviour. The batch covers the 0.425 - 0.975 m. range for s, equivalent to 0.05 - 0.6 m.
web-post width, sw. While the web-post exhibits longitudinal shear yielding by the end of all the
batch simulations, its manifestation occurs simultaneously with the Vierendeel and bending-shear
yielding in model 7 (0.3 m. or 0.8 × diameter). Subsequent models are increasingly influenced
by the web-post width and the primary failure mode becomes longitudinal shear failure between
adjacent perforations.

Note that due to the relationship between the perforation spacing and the number of per-
forations in a given span and its influence on the beam behaviour, the effect of the additional
perforations is not isolated (see fig. 4.149 for the perforation count for each model) and hence the
results in fig. 4.150 must not be viewed in isolation from the global behaviour (shown in fig. 4.147)
and the accompanying beam failure mode.
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Figure 4.147: UDL versus vertical midspan displacement for the fully fixed web-post width para-
metric FE batch. The markers correspond to the states examined in fig. 4.150. Note that the
gradual decrease in web-post widths leads to a reduction in stiffness and capacity.

Figure 4.148: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and
grey corresponding to 0, fy and > fy stress respectively) for models 1, 8 and 12 from top to bottom
with web-post widths of 0.6, 0.25 & 0.05 m. respectively.
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Figure 4.149: As the perforation centres reduce, the number of perforations is adjusted to maintain
a similar beam length.

Influence on the beam capacity

Fudl,norm = −0.344
(sw

d

)2
+ 0.945

(sw

d

)
+ 0.701 at peak (2 non-converged points) (4.68)

= −0.543
(sw

d

)2
+ 1.4

(sw

d

)
+ 0.360 at the SLS (4.69)

= −0.473
(sw

d

)2
+ 1.15

(sw

d

)
+ 0.237 at first yield (4.70)
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Figure 4.150: Normalised UDL plotted against sw

d = s−d
d for the fully fixed composite batch for

the three loading states. Note the points considered as non-converged for the ULS state located
below the SLS equation and corresponding to models 5 and 7 (ratios of 1.067 and 0.8 respectively).

4.9.3 Initial spacing

The initial perforation’s distance from the support is an important parameter to consider, par-
ticularly when using moment-resisting supports. The nature of the boundary conditions can lead
to both moment and shear being carried by the initial perforation depending on its proximity. A
typical solution to this would be to reinforce locally if the perforation is necessary at that location
or remove the perforation, either by infilling or using a plain web. This parametric FE batch
examines the effect of the initial perforation distance from the support on the beam behaviour for
a 0.225 - 0.975 m. range, equivalent to 0.0375 - 0.7875 m. web-post width and 0.1 - 2.1×diameter.
The results in fig. 4.151 and 4.152 show that the initial web-post is not susceptible to yielding due
to the way the boundary conditions are applied leading to stress propagation at the top and bot-
tom flanges. Thus the primary impact on the beam behaviour is a result of the initial perforation
distance from the support, leading to a reduction in capacity and stiffness.

As in previously seen batches, fig. 4.153 shows the number of perforations for each examined
model.
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Figure 4.151: UDL versus vertical midspan displacement for the fully fixed initial spacing para-
metric FE batch. The markers correspond to the states examined in fig. 4.154. Note that the
gradual decrease in initial spacing leads to a reduction in stiffness and capacity.

Figure 4.152: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and
grey corresponding to 0, fy and > fy stress respectively) for models 1, 7 and 16 from top to bottom
with end-post widths of 0.7875, 0.4875 & 0.0375 m. respectively.
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6 perfs.

7 perfs.

Figure 4.153: As the initial web-post width decreases, an additional perforation may be added in
order to maintain a similar beam length. This impacts the stiffness and load capacity of the beam.

Influence on the beam capacity

Fudl,norm = 0.187sini

d
+ 0.855 at peak (5 non-converged points) (4.71)

= 0.149sini

d
+ 0.844 at the SLS (4.72)

= 0.135sini

d
+ 0.625 at first yield (4.73)
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Figure 4.154: Normalised UDL plotted against sini

d for the fully fixed composite batch for the
three loading states. The ULS features several points which either coincide with the first yield
state (models 11 and 14 with ratios of 0.7667 and 0.3667 respectively) or drop below the SLS
equation (models 1, 2 & 6 with ratios of 2.1, 1.9667 & 1.4333 respectively).

4.9.4 Flange width

For this batch, 7 analyses were conducted for a bf range of 0.075 to 0.375 m. for both tees. The
load-displacement behaviour for each model in the batch is seen in fig. 4.155. Note that model 1
is considered to have ended prior to achieving peak capacity and without significant non-linearity
in its load-displacement behaviour.

The influence of the flange width is very similar to that already observed in § 4.8, with those
models featuring bf < 0.175 m. subject to bending failure, and those with bf > 0.175 m. susceptible
to extensive yielding in the web. Models 1 - 2 mainly exhibit bending and web-post yielding while
model 3 is transitional, with vertical shear appearing to become more critical as the bending
resistance increases. Alongside this, model 3 is the last one in the batch to exhibit developing
flange yield in the bottom tee due to the axial force at the support. Models 4 - 7 exhibit increasing
yield in the web alongside a progressively diminishing increase in the beam capacity.
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Model # 1, 0.075 m.

Model # 2, 0.125 m.

Model # 3, 0.175 m.

Model # 4, 0.225 m.

Model # 5, 0.275 m.

Model # 6, 0.325 m.

Model # 7, 0.375 m.

Figure 4.155: UDL versus vertical midspan displacement for the fully fixed symmetric flange
width parametric FE batch. The first yield and SLS locations are marked and correspond to the
datapoints used in fig. 4.157. Note that the increasing flange width leads to an increase in stiffness
and load capacity.

Figure 4.156: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and
grey corresponding to 0, fy and > fy stress respectively) for models 1, 3 and 7 from top to bottom
with flange widths of 0.075, 0.175 & 0.375 m. respectively.

Influence on the beam capacity

Fudl,norm = 1.27bf + 0.742 at peak (1 non-converged point) (4.74)

= −0.830b2
f + 0.641bf + 0.898 at the SLS (4.75)

= 0.317bf + 0.703 at first yield (4.76)
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Figure 4.157: Normalised UDL plotted against bf for the fully fixed composite batch for the three
loading states.

4.9.5 Flange thickness

In this batch, 10 analyses were conducted to examine the flange thickness influence on the fully
fixed composite beams (see fig. 4.158 for the load-displacement behaviour for the batch).

Model 2 considered to have ended prior to achieving peak capacity.
These models varied the flange thickness tf from 0.007 to 0.052 m. and have a similar influence

to the flange width on the beam capacity.
As tf primarily influences the bending capacity, according to theory, the Vierendeel resistance

also increases. Models 1 - 2 (tf ≤ 0.012 m.) are primarily exhibiting yielding due to bending at
the initial perforation, with additional yielding in the bottom tee due to the expected axial force
it carries. As the thickness increases (tf > 0.012 m.) web yielding becomes critical, with yielding
occuring primarily in the web at tf = 0.052 m.
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Figure 4.158: UDL versus vertical midspan displacement for the fully fixed symmetric flange
thickness parametric FE batch. The first yield and SLS locations are marked and correspond to
the datapoints used in fig. 4.160. Note that the increasing flange thickness leads to an increase in
stiffness and load capacity.

Figure 4.159: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and
grey corresponding to 0, fy and > fy stress respectively) for models 1, 2 and 10 from top to bottom
with flange thicknesses of 0.007, 0.012 & 0.052 respectively.

Influence on the beam capacity

Fudl,norm = −256t2f + 30.6tf + 0.528 at peak (1 non-converged point) (4.77)

= 2.59tf + 0.944 at the SLS (4.78)

= 2.91tf + 0.687 at first yield (4.79)
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Figure 4.160: Normalised UDL plotted against tf for the fully fixed composite batch for the three
loading states.

4.9.6 Web thickness

A batch of 6 analyses was conducted to examine the influence of the web thickness over a range of
0.005 to 0.03 m. for both tees. The web thickness appears to have a significant impact on both the
stiffness and the capacity of the beams (see fig. 4.161). All models examined exhibited yielding in
the web-post between the first and second perforations, with model 3 being the transitional case,
for which significant yielding due to bending manifests prior to analysis termination.
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Model # 1, 0.005 m.

Model # 2, 0.010 m.

Model # 3, 0.015 m.

Model # 4, 0.020 m.

Model # 5, 0.025 m.

Model # 6, 0.030 m.

Figure 4.161: UDL versus vertical midspan displacement for the fully fixed symmetric web thick-
ness parametric FE batch. The first yield and SLS locations are marked and correspond to the
datapoints used in fig. 4.163. Note that the increasing web thickness leads to an increase in stiffness
and load capacity.

Figure 4.162: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and
grey corresponding to 0, fy and > fy stress respectively) for models 1, 3 and 6 from top to bottom
with web thicknesses of 0.005, 0.015 & 0.03 m. respectively.

Influence on the beam capacity

Fudl,norm = 50.8tw + 0.355 at peak (4.80)

= 51.9tw + 0.312 at the SLS (4.81)

= 49.3tw + 0.101 at first yield (4.82)
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Figure 4.163: Normalised UDL plotted against tw for the fully fixed composite batch for the three
loading states.

4.9.7 Slab depth

In this batch, 17 analyses with slab depths of 0.1 - 0.25 m. were conducted to investigate the
impact of the slab depth on the beam behaviour with fully fixed supports.

The slab appears to increase the perforations’ bending, Vierendeel and vertical shear capacities
as well as stiffness, as seen in fig. 4.164. This leads to secondary failure modes becoming more
prevalent, particularly web-post yielding.

In addition, as the slab depth increases, the concrete becomes a more influential component
and prone to failure, leading to increased probability of premature termination during analysis.
Nevertheless, a significant number of the examined models achieved satisfactory post-yield.

As the slab depth increases, the bottom tee bending and Vierendeel, along with the web-post
longitudinal shear, becomes more prevalent.
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Figure 4.164: UDL versus vertical midspan displacement for the fully fixed slab depth parametric
FE batch. The first yield and SLS locations are marked and correspond to the datapoints used in
fig. 4.166. Note that the increasing slab depth leads to an increase in stiffness and load capacity.

Figure 4.165: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and
grey corresponding to 0, fy and > fy stress respectively) for models 1, 8 and 17 from top to bottom
with a slab depth of 0.1, 0.16 & 0.25 m. respectively.

Influence on the beam capacity

Fudl,norm = 1.55ds + 0.924 at peak (4.83)

= 2.93ds + 0.715 at the SLS (4.84)

= 1.98ds + 0.539 at first yield (4.85)
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Figure 4.166: Normalised UDL plotted against ds for the fully fixed composite batch for the three
loading states. Not that the SLS fit is not suitable for use since it exceeds the peak fit for ds ≥≈ 0.15
m.

4.9.8 Asymmetric flange width

In this batch, 7 analyses were conducted over a range of 0.075 to 0.375 m. to investigate the
impact of the bottom flange width on the beam behaviour. Similarly to the fixed endplate results
seen previously in fig. 4.136, the results in this batch show that the bottom flange width primarily
leads to the increase of the bending and axial capacities for the bottom tee without much apparent
impact on the stress distribution in the perforations. This increase in the flange width naturally
leads to an increase in both the stiffness and capacity (see fig. 4.167) until the primarily failure
mode transitions to the web, leading yielding to yielding at the throat of the perforation centres
and the web-posts.
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Model # 1, 0.326, 0.075 m.

Model # 2, 0.543, 0.125 m.

Model # 3, 0.760, 0.175 m.

Model # 5, 1.195, 0.275 m.

Model # 6, 1.412, 0.325 m.

Model # 7, 1.629, 0.375 m.

Figure 4.167: UDL versus vertical midspan displacement for the fully fixed asymmetric flange
width parametric FE batch. The first yield and SLS locations are marked and correspond to the
datapoints used in fig. 4.169. Note that the increasing bottom flange width leads to an increase in
stiffness and load capacity.

Figure 4.168: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and
grey corresponding to 0, fy and > fy stress respectively) for models 1, 3 and 7 from top to bottom
corresponding to bottom flange widths of 0.075, 0.175 & 0.375 m. respectively.
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Influence on the beam capacity

Fudl,norm = −0.317
(
bf,bot

bf,top

)2

+ 0.781 bf,bot

bf,top
+ 0.632 at peak (4.86)

= −0.130
(
bf,bot

bf,top

)2

+ 0.360 bf,bot

bf,top
+ 0.767 at the SLS (4.87)

= −0.106
(
bf,bot

bf,top

)2

+ 0.280 bf,bot

bf,top
+ 0.621 at first yield (4.88)
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Figure 4.169: Normalised UDL plotted against bf,bot

bf,top
for the fully fixed composite batch for the

three loading states. Note that the peak fit does not feature a plateauing for higher ratios of bf,bot

bf,top

as would be expected, making it unsuitable for bf,bot

bf,top
≥ 1.2.

4.9.9 Asymmetric flange thickness

In this batch, 10 analyses were conducted over a range of 0.007 to 0.052 m. for the bottom flange
thickness. The results in fig. 4.171 exhibit behaviour already seen previously in fig. 4.139, with
respect to the von Mises stress distribution. As before, the increase in the bottom flange thickness
increases the capacity and stiffness (see fig. 4.170) and leads to the development of yielding in the
top tee and adjacent web-posts.
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Figure 4.170: UDL versus vertical midspan displacement for the fully fixed asymmetric flange
thickness parametric FE batch. The first yield and SLS locations are marked and correspond to
the datapoints used in fig. 4.172. The increasing bottom flange thickness leads to an increase in
stiffness and load capacity.

Figure 4.171: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and
grey corresponding to 0, fy and > fy stress respectively) for models 1, 6 and 10 from top to bottom
with bottom flange thicknesses of 0.007, 0.032 & 0.052 m. respectively.
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Influence on the beam capacity

Fudl,norm = −0.072
(
tf,bot

tf,top

)2

+ 0.541 tf,bot

tf,top
+ 0.611 at peak (4.89)

= 0.031 tf,bot

tf,top
+ 0.971 at the SLS (4.90)

= 0.021 tf,bot

tf,top
+ 0.762 at first yield (4.91)
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Figure 4.172: Normalised UDL plotted against tf,bot

tf,top
for the fully fixed composite batch for the

three loading states.

4.9.10 Asymmetric web thickness

The final batch in this set focuses on the bottom web thickness for a range of 0.005 to 0.03 m. over
6 analyses. As seen previously, increasing the bottom web thickness improves both the stiffness
and capacity (see fig. 4.173), with a much more diminished impact for values of ≥ 0.02 m. or a
ratio of 1.53 between the bottom and top web thicknesses.
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Model # 1, 0.382, 0.005 m.

Model # 2, 0.763, 0.010 m.

Model # 3, 1.145, 0.015 m.

Model # 4, 1.527, 0.020 m.
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Figure 4.173: UDL versus vertical midspan displacement for the fully fixed asymmetric web thick-
ness parametric FE batch. The first yield and SLS locations are marked and correspond to the
datapoints used in fig. 4.175. The increasing bottom web thickness leads to an increase in stiffness
and load capacity.

Figure 4.174: von Mises stress contour plots at peak (rainbow colour scheme with blue, red and
grey corresponding to 0, fy and > fy stress respectively) for models 1, 4 and 6 from top to bottom
with bottom web thicknesses of 0.005, 0.02 & 0.03 m. respectively.
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Influence on the beam capacity

Fudl,norm = 0.192
(
tw,bot

tw,top

)3

− 0.978
(
tw,bot
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)2
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− 0.148 at peak (4.92)
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Figure 4.175: Normalised UDL plotted against tw,bot

tw,top
for the fully fixed composite batch for the

three loading states.
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4.10 Influence of concrete material model on the beam be-
haviour

A batch of analyses using the material models (conc 1, conc 2 and M7) was conducted. The
purpose of this batch was two-fold:

• Examine the influence of the concrete model on the beam behaviour

• Test the use of the M7 material model in a large scale analysis

The batch consists of 8 simulations19.

Simulation # Concrete material model
1 Linear Elasticity
2 von Mises
3 conc 1
4 conc 2
5 M7

6 M7 (initial stud region) &
Mohr-Coulomb (rest of slab)

7 M7

8 M7 (all stud adjacent elements)
& Mohr-Coulomb (rest of slab)

Table 4.10: Overview of batch

All the simulations feature fixed supports as used previously in § 4.9.
As simulation 1 uses a linear elastic model for the concrete, failure develops only in the steel

components and mainly in the steel beam near the support. fig. 4.176 shows that the model does
not experience convergence issues until yielding is extensive; the steel in the initial perforation has
yielded almost entirely and is forming a mechanism.

Figure 4.176: von Mises stress contour plot of the steel beam web at peak (rainbow colour scheme
with blue, red and grey corresponding to 0, fy and > fy stress respectively) for simulation 1.

In simulation 2, the concrete will fail when it has reached a von Mises stress equivalent to
its cube strength. As a result, failure near the support is greatly over-estimated, in addition
to the capacity at the slab-stud-flange nodes where there is localised tension due to the slab
movement. Note that this would not occur in a physical experiment since the slab would detach
before developing significant tension. However, the von Mises stress in the slab from the analysis
shows that stress tends to concentrate at the studs, potentially leading to non-convergence issues
as would be experienced when using other material models.

19Note that previously, models was used to refer to an analysis from a batch. In order to avoid confusion here,
’simulations’ is used instead.
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Figure 4.177: Isosurface plot of the averaged (75%) von Mises stress in the slab region up to the
middle of the first web-post (web-post between perforations 1 & 2). Note the stress developing ini-
tially in the stud region (left) and the eventual local material failure (appearing as gaps), especially
near the support (right-hand side).

Simulations 3 & 4 were not able to achieve convergence with significant yielding in the steel,
suggesting that the highly tensile region near the support and studs led to a non-convergence early
in the analysis.

In simulation 5, the entire beam made use of the M7 material model. In addition, the ABAQUS
settings were adjusted in order to account for the increased number of iterations required during
the analysis. The parameters chosen were based on the cube tests conducted previously. The
analysis was not able to converge for this simulation, indicating that the stability of M7 in UMAT
form may not be adequate without further adaptation or a potential change in the algorithm.

As a result of the findings in simulation 5, a smaller sample of the slab (essentially a small
group of elements) was assigned the M7 material model in simulation 6 (see fig. 4.178), with the
rest making use of Mohr-Coulomb with a tension cut-off as used in chapter 420. The chosen group
of elements consisted of those bordering (and thus sharing nodes with) the initial stud. Due to the
limited number of elements using M7, the simulation was able to converge with limited success.
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Figure 4.178: Location of the M7 material model assignment in model 6. The elements in red
around the initial stud have been assigned the M7 model, while the rest of the slab features a
Mohr-Coulomb model used later in chapter 4.

As was previously seen in § 4.6, the dynamic implicit solver in ABAQUS is potentially capable
of converging succesfully for analyses susceptible to stiffness-related non-convergence. For this
reason, simulations 7 & 8 were conduted using the ABAQUS/Implicit dynamic solver instead.
Simulation 7 was otherwise identical to simulation 5 but was unable to converge. In simulation 8,
M7 was applied to all elements bordering studs along the length of the beam, seen graphically in
fig. 4.179. As with simulation 7, it was unable to converge.

Figure 4.179: Location of the M7 material model assignment in model 8. The elements in red
around the studs have been assigned the M7 model, while the rest of the slab features a Mohr-
Coulomb model used later in chapter 4.

20The inclusion of additional studs’ adjacent elements led to non-convergence, even with the inclusion of a total
of two (2) studs.
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4.11 Discussion of results and comparison of the influence
of the boundary conditions

In this section, the results from each of the batches are examined across the three types of boundary
conditions applied: simply supported, fixed endplate and fully fixed.

4.11.1 Perforation diameter

The perforation diameter is, as would be expected, one of the most influential geometric parameters
with regards to the failure mode and beam behaviour. The failure mode is found to be dependent
on the diameter size, with a consistent influence between the three boundary conditions examined.

In all the examined boundary types, for diameter-to-depth ratios of d
D > 0.6 (or ≈ 60%), the

influence of Vierendeel becomes dominant, for the examined steel beams with a depth of 0.6 m.
The failure mode changes when ≤ 46.67% to primarily bending. Furthermore, all cases featuring

moment-resisting supports exhibit additional yielding at the web-posts, thought to be caused
primarily by web-post longitudinal shear. This becomes a secondary failure mode alongside the
primary depending on the diameter ratio.

In addition, the boundary conditions themselves influence the failure mode. For the simply
supported batch, the failure mode is a combination of Vierendeel at the initial perforation with
bending at midspan for d

D > 0.6. As the diameter reduces, the Vierendeel in the initial perforation
becomes far less influential, with midspan bending dominating.

Conversely, for both of the moment resisting batches, the failure location shifts to the initial
perforation as a result of the boundary conditions but the type of failure is then dependent on the
diameter ratio as discussed previously.

4.11.2 Perforation centres

The spacing between the perforations impacts with web-post width and as such is an important
consideration during design.

For sufficiently small web-post widths, the critical failure mode will be influenced, leading to
an inefficient design.

For the simply supported batch, it was found that when sw < 0.2 m. the beams would be
influenced by web-post yielding and a reduced capacity. Conversely, both the moment resisting
batches show that web-post yielding is present even for large web-post widths. It becomes more
prevalent when sw < 0.2 m. and is in agreement with the simply supported case.

Thus, for a ratio of s−d
d = sw

d ≤ 0.333, the web-post width appears to become a coexisting
failure mode alongside bending or Vierendeel.

4.11.3 Initial spacing

The initial perforation spacing from the edge of the beam was also examined as it impacts both
the initial web-post width, or end-post, and the distance of the perforations from the support. As
the perforations move nearer the supports, the failure mode developing in the perforation will be
influenced. This is due to the high shear in the region and, in the case of the moment-resisting
batches, the additional moment that must be transferred.

In the simply supported batch, the results show that the initial perforation is always undergo-
ing some Vierendeel-type yielding for the initial perforation locations examined. The decreasing
distance however makes the influence of the shear more impactful, leading to increased influence
when sini ≤ 0.4, with the Vierendeel appearing dominant when sini = d

2 . Introducing moment
resistance at the supports leads to increased stress at the top and bottom flanges. As this occurs
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in addition to the increased shear locally, this leads to the gradual reduction in capacity and stiff-
ness. The failure mode does not appear to be influenced however, and so there is no discernable
transition value in the same way as for the simply supported case.

4.11.4 Flange width

The flange width is generally considered in theory to be the basis of the bending resistance, with
no effect on the shear resistance beyond the region adjacent to the web (and depending on the way
it was manufactured).

Thus, as the flange width increases, increasing the bending resistance with it, secondary failure
modes become critical.

In the simply supported batches, values of bf < 0.275 m. were found to lead to bending
failure at midspan while values of > 0.275 m. lead to the formation of a mechanism at the initial
perforation due to bending and vertical shear, in addition to longitudinal shear in the web-posts.
In the moment resisting batches, small values of flange width (< 0.225 m. for the fixed endplate
and < 0.175 m. for the fully fixed batch) severely limit the axial resistance of the bottom tee
and lead to extensive yielding locally. As the flange width increases above those values, the axial
resistance becomes a secondary consideration with failure occuring due to bending and web-post
yielding at the initial perforation.

4.11.5 Flange thickness

In the simply supported batch, it was found that for tf < 0.037 m. the critical failure mode is
due to bending at midspan. As the flange thickness increases (tf > 0.037 m.), the primary failure
mode becomes bending at the support and yielding at the web-posts.

As with the flange width batches, the introduction of moment resistance at the support then
leads to axial forces at the bottom tee. For the fixed endplate case, tf < 0.027 m. the axial force is
primarily the cause of yielding at the support. Higher values of flange thickness mitigate this and
lead to primarily bending and web-yielding. The same occurs for the fully fixed batch but with
a transitional value of tf = 0.012 m. instead. This is likely due to the improvement in resistance
caused by the boundary conditions.

4.11.6 Web thickness

As the web thickness has a direct influence on the capacity of the web, increasing the thickness
beyond 0.02 m. is found to have a minor influence on the beam behaviour.

For the simply supported batch, tw < 0.02 m. leads to extensive yielding in the web near the
support while tw > 0.02 m. leads to bending yielding developing at midspan.

This is consistent with the fixed endplate case (although bending yielding is not at the initial
perforation), indicating that the fixed support does not impact the failure mode but does influence
the failure location.

The same observation can be made for the fully fixed batch but for a transitional value of
tw = 0.015 m.

4.11.7 Slab depth

The slab depth is found to lead to an overall increase in the beam stiffness and capacity. This is
due to its improvement of the bending resistance across a section but also locally for the top tee
(increasing its Vierendeel capacity) and shear capacity.

This is found for all the examined support conditions, without an apparent influence on the
failure mode when examining the von Mises distributions.
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4.11.8 Asymmetric flange width

For the simply supported batch, it was found that bf,bot < 0.175 m. leads to yielding at midspan
due to bending while higher values lead to mechanism formation at the initial perforation alongside
web-post yielding.

The change to fixed endplate supports does not influence the transitional value and leads to a
change in failure mode from crushing at the bottom flange to bending and web yielding.

The same impact is found for the fully fixed case.

4.11.9 Asymmetric flange thickness

The bottom flange thickness batches appear to have a largely identical impact to the beam be-
haviour as the bottom flange width batches.

The transitional values for each support type examined vary more significantly however (0.037,
0.027 & 0.032 m. for simply supported, fixed endplate and fully fixed respectively).

4.11.10 Asymmetric web thickness

Increasing the bottom web thickness highlights the impact it has on the failure mode developing
during loading.

In the simply supported batch, for tw,bot < 0.02 m. the bottom web yields extensively at the
web-posts (including the end-post).

In the fixed batches the transitional value is in a similar range of 0.015 ≤ tw,bot ≤ 0.02 m.
An interesting effect of using low bottom web thicknesses is on the failure mode that develops

for subsequent perforations. As the web is unable to propagate stress once fully yielded, the top
tee appears to bend, leading to local bending-type yielding seen in model 1 in fig. 4.110, fig. 4.142
& fig. 4.174.

4.12 Chapter summary and recommendations

In this chapter, the software introduced previously in chapter 2 is used to conduct a mesh refinement
investigation, validation and parametric study for plain and composite cellular beams.

• The mesh refinement study showed that focusing on a ’global’ measure of behaviour, such as
the load-displacement, of the beams is insufficient

– The global behaviour must be investigated in conjunction with other, local, measures.
In this study, the local behaviour was examined relative to a benchmark mesh at shared
nodal positions and was used to adjust the mesh seed for the study.

• The impact of various perforation sizes on the capacity for simply supported and fixed non-
composite beams was quantified by introducing single perforations (in each symmetric half-
span) in varying locations along the beam.

• The same approach was used for composite beams, covering simply supported, fixed endplate
and fully fixed boundary types by again introducing perforations at various locations along
the beam.

• For each of the boundary types (simply supported, fixed endplate and fully fixed) a set of
analyses was conducted covering the primary geometric variables governing the composite
beam behaviour.
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– These analyses included varying the diameter, initial perforation spacing and perforation
centres as well as the section geometry (flange width and thickness and web thickness).

– Parametric analysis was also done asymmetrically, by varying the bottom tee section
properties only.

– Excluding the co-dependence of some of the variables, each variable was examined in
isolation where possible or by minimising the impact of co-dependent variables.

• The concrete material model and associated brittle behaviour is thought to have led to non-
convergence and influenced the results in many, in not all, the batches.

– Its impact on the results was mitigated by utilising alternative analytical approaches,
mainly ABAQUS/Explicit and a limited number of ABAQUS/Implicit dynamic quasi-
static analyses.

Some design recommendations include:

• Avoiding the placement of perforations nearer than sini

d ratio of 0.5 and at midspan in order
to avoid the regions of highest shear and moment.

• Reducing the perforation diameter if d
D > 0.6.

• Ensuring that sw

d > 0.333 to limit the influence of web-post yielding.

Note that Table 4.11 can be used as a guideline when designing composite perforated beams
in the examined ranges.
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4.13 Overview of chapter results

The following tables are a compilation of the results as shown in each of the composite parametric
sections. The best-fit equations from Matlab are shown in the legend for each of the plots. The
relationships shown can be rounded to the standard of 3 significant figures without impacting
accuracy for practical use, as shown in tables 4.12 to 4.14.

Note that the default parameter values and the range examined for each boundary type (simply
supported, fixed endplate and fully fixed) can be found in Table 4.4, 4.6 and 4.8 respectively.

The color-coding convention established for the numerical study is adopted for these tables
as well, with the equations coded orange refering to equations with at least one point considered
as non-converged and those coded red containing only points coinciding with another limit state
(often the SLS) as introduced in § 4.7.

These equations are useful in that they represent the results algebraically. However, they should
not be used in isolation from the overall behaviour seen in the batch, with care taken to ensure that
they are not extrapolated beyond the examined range. For a given parameter, it is recommended
to examine the overall batch results before making use of its associated equation, to ensure that
the parameter is covered by an adequate amount of datapoints in the range of interest.
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Table 4.11: Summary of critical failure modes and the related transitional values for each parameter
and boundary condition examined

Parameter Examined Simply Supported Fixed Endplate Fully Fixed
Perforation diameter
to steel beam depth,
d
D

Vierendeel if d
D > 0.6, primarily bending for d

D ≤ 0.4667 (transitional 0.4667 ≤
d
D < 0.6)

Web-post width to
perforation diameter,
sw

d

Web-post yield becomes
primary for sw

d ≤ 0.333
Web-post yield becomes more prevalent for sw

d ≤
0.333, otherwise is secondary

Initial web-post width
to perforation
diameter, sini

d

Increasing proximity to support increases influence of Vierendeel for sini

d ≤
1.067, Vierendeel dominant when sini

d ≤ 0.5

Flange Width, bf (m.)

Failure at midspan for
bf ≤ 0.275, mechanism at

initial perforation and
shear in web-posts for

bf > 0.275 m.

Yielding at bottom tee at
support becomes primary

for bf < 0.225 m.

Yielding at bottom tee at
support becomes primary

for bf < 0.175 m.

Flange Thickness, tf
(m.)

Midspan bending primary
for tf < 0.037 m. and
yielding at the initial

perforation for tf > 0.037
m. (transitional value of

tf = 0.037 m.)

Yielding at bottom tee at
support becomes primary

for tf < 0.027 m.

Yielding at bottom tee at
support becomes primary

for tf < 0.012 m.

Web Thickness, tw (m.)
Web-post yield primary for tw < 0.02 m. and bend-
ing otherwise (transitional value of tw = 0.02 m.)

Same as other cases but
for a transitional value of

tw = 0.015 m.
Slab Depth, ds (m.) No apparent transitional value

Bottom to top flange
width ratio, bf,bot

bf,top

bf,bot

bf,top
< 0.175 m. leads to yielding at midspan becoming critical (transitional

value of bf,bot

bf,top
= 0.175 m.)

Bottom to top flange
thickness ratio, tf,bot

tf,top

Same impact as bf,bot

bf,top
but

for a transitional value of
tf,bot

tf,top
= 0.037 m.

Same impact as bf,bot

bf,top
but

for a transitional value of
tf,bot

tf,top
= 0.027 m.

Same impact as bf,bot

bf,top
but

for a transitional value of
tf,bot

tf,top
= 0.032 m.

Bottom to top web
thickness ratio, tw,bot

tw,top

Web yielding becomes
primary for tw,bot

tw,top
< 0.02

m. (transitional value of
tw,bot

tw,top
= 0.02 m.)

Web yielding becomes primary at a transitional
range of 0.015 ≤ tw,bot

tw,top
≤ 0.02 m.
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Table 4.12: Summary of the peak normalised UDL predictions as a consequence of varying each
geometric constant or ratio within the examined ranges

Parameter Examined Simply Supported Fixed Endplate Fully Fixed
Perforation diameter
to steel beam depth,
d
D

−1.54
(

d
D

)2

+ 0.665 d
D

+
1.13

−1.94 d
D

+ 2.42 −1.9
(

d
D

)2−0.3
(

d
D

)
+1.89

Web-post width to
perforation diameter,
sw

d

0.093 sw

d + 0.787 1.07 exp(0.119 sw

d ) −
3.04 exp(−11 sw

d )
−0.344

(
sw

d

)2 +
0.945

(
sw

d

)
+ 0.701

Initial web-post width
to perforation
diameter, sini

d

0.012sini

d
+ 0.8 0.132sini

d
+ 0.89 0.187sini

d
+ 0.855

Flange width, bf (m.) 2.19bf + 0.259 19.7b3
f − 21.8b2

f + 7.6bf +
0.255 1.27bf + 0.742

Flange thickness, tf
(m.) −635t2f + 46.7tf + 0.075 −185t2f + 26.6tf + 0.574 −256t2f + 30.6tf + 0.528

Web thickness, tw (m.) −592t2w + 38.5tw + 0.355 −825t2w + 75.1tw + 0.258 50.8tw + 0.355
Slab depth, ds (m.) 1.56ds + 0.668 0.633ds + 1.15 1.55ds + 0.924

Bottom to top flange
width ratio, bf,bot

bf,top

−0.353
(
bf,bot

bf,top

)2

+

1.16 bf,bot

bf,top
+ 0.108

−0.211
(
bf,bot

bf,top

)2

+

0.559 bf,bot

bf,top
+ 0.709

−0.317
(
bf,bot

bf,top

)2

+

0.781 bf,bot

bf,top
+ 0.632

Bottom to top flange
thickness ratio, tf,bot

tf,top

−0.186
(
tf,bot

tf,top

)2

+

0.886 tf,bot

tf,top
+ 0.106

−0.033
(
tf,bot

tf,top

)2

+

0.359 tf,bot

tf,top
+ 0.730

−0.072
(
tf,bot

tf,top

)2

+

0.541 tf,bot

tf,top
+ 0.611

Bottom to top web
thickness ratio, tw,bot

tw,top

0.092 tw,bot

tw,top
+ 0.760 0.319 tw,bot

tw,top
+ 0.758

0.192
(
tw,bot

tw,top

)3

−

0.978
(
tw,bot

tw,top

)2

+

1.83 tw,bot

tw,top
− 0.148
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Table 4.13: Summary of the SLS normalised UDL predictions as a consequence of varying each
geometric constant or ratio within the examined ranges

Parameter Examined Simply Supported Fixed Endplate Fully Fixed

Perforation diameter
to steel beam depth,
d
D

−0.889
(

d
D

)2

+

0.380 d
D

+ 0.825
−1.74 d

D
+ 2.19 −1.5

(
d
D

)2 − 0.074
(

d
D

)
+

1.81

Web-post width to
perforation diameter,
sw

d

0.113sw

d
+ 0.577 1.05 exp(0.095 sw

d ) −
1.24 exp(−4.34 sw

d )
−0.543

(
sw

d

)2 +
1.4
(

sw

d

)
+ 0.360

Initial web-post width
to perforation
diameter, sini

d

0.034sini

d
+ 0.630 0.167sini

d
+ 0.796 0.149sini

d
+ 0.844

Flange Width, bf (m.) −2.16b2
f + 2.35bf + 0.233 5.24b3

f − 5.71b2
f +

2.07bf + 0.741 −0.830b2
f +0.641bf +0.898

Flange Thickness, tf
(m.) −169t2f + 21.2tf + 0.270 3.47tf + 0.878 2.59tf + 0.944

Web Thickness, tw (m.) −443t2w + 34.5tw + 0.2511 −662t2w + 75.9tw + 0.093 51.9tw + 0.312
Slab Depth, ds (m.) 2.38ds + 0.391 2.62ds + 0.702 2.93ds + 0.715

Bottom to top flange
width ratio, bf,bot

bf,top

−0.131
(
bf,bot

bf,top

)2

+

0.583 bf,bot

bf,top
+ 0.206

−0.132
(
bf,bot

bf,top

)2

+

0.370 bf,bot

bf,top
+ 0.734

−0.130
(
bf,bot

bf,top

)2

+

0.360 bf,bot

bf,top
+ 0.767

Bottom to top flange
thickness ratio, tf,bot

tf,top

0.216 tf,bot

tf,top
+ 0.436 0.030 tf,bot

tf,top
+ 0.946 0.031 tf,bot

tf,top
+ 0.971

Bottom to top web
thickness ratio, tw,bot

tw,top

0.186 tw,bot

tw,top
+ 0.415 0.289 tw,bot

tw,top
+ 0.584

0.149
(
tw,bot

tw,top

)3

−

0.836
(
tw,bot

tw,top

)2

+

1.62 tw,bot

tw,top
+ 0.075
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Table 4.14: Summary of the first yield normalised UDL predictions as a consequence of varying
each geometric constant or ratio within the examined ranges

Parameter Examined Simply Supported Fixed Endplate Fully Fixed
Perforation diameter
to steel beam depth,
d
D

−0.512 d
D

+ 1.09 −1.43 d
D

+ 1.75 −1.02
(

d
D

)2 − 0.3
(

d
D

)
+

1.47

Web-post width to
perforation diameter,
sw

d

0.088sw

d
+ 0.676 exp(−0.024 sw

d ) −
1.05 exp(−3.05 sw

d )
−0.473

(
sw

d

)2 +
1.15

(
sw

d

)
+ 0.237

Initial web-post width
to perforation
diameter, sini

d

0.012sini

d
+ 0.8 0.186sini

d
+ 0.572 0.135sini

d
+ 0.625

Flange Width, bf (m.) 1.71bf + 0.318 0.774 0.317bf + 0.703
Flange Thickness, tf
(m.) −444t2f + 44.4tf + 0.066 3.66tf + 0.656 2.91tf + 0.687

Web Thickness, tw (m.) −1066t2w + 62.2tw + 0.071 −571t2w + 71.8tw − 0.062 49.3tw + 0.101
Slab Depth, ds (m.) 1.68ds + 0.651 2.09ds + 0.538 1.98ds + 0.539

Bottom to top flange
width ratio, bf,bot

bf,top

−0.235
(
bf,bot

bf,top

)2

+

0.828 bf,bot

bf,top
+ 0.182

−0.106
(
bf,bot

bf,top

)2

+

0.280 bf,bot

bf,top
+ 0.621

−0.106
(
bf,bot

bf,top

)2

+

0.280 bf,bot

bf,top
+ 0.621

Bottom to top flange
thickness ratio, tf,bot

tf,top

0.160
(
tf,bot

tf,top

)3

−

0.896
(
tf,bot

tf,top

)2

+

1.64 tf,bot

tf,top
− 0.081

0.063
(
tf,bot

tf,top

)3

−

0.290
(
tf,bot

tf,top

)2

+

0.414 tf,bot

tf,top
+ 0.622

0.021 tf,bot

tf,top
+ 0.762

Bottom to top web
thickness ratio, tw,bot

tw,top

0.288 tw,bot

tw,top
− 0.367 0.266 tw,bot

tw,top
+ 0.385

0.074
(
tw,bot

tw,top

)3

−

0.547
(
tw,bot

tw,top

)2

+

1.28 tw,bot

tw,top
− 0.059
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Chapter 5

Calculation of equilibrium forces
and moments using FE results

5.1 Introduction

As discussed in chapter 1, the currently available guidance has a focus on designing simply sup-
ported plain and composite perforated beams. In Lawson and Hicks (2011) this accounts for
rectangular and circular perforations and their elongated versions only. As a result, there is no
provision for cases with moment-resisting supports or continuous beams.

Additionally, the guidance that is available, due to the complexity of the internal force distri-
bution, is subject to simplifying assumptions when considering the local forces at the perforations.
A number of these assumptions appear to be based on past practice, such as the vertical shear
distribution in a section. Some assumptions used in P355 are (from Lawson and Hicks (ibid., sec.
2.5 & 3.1.4)):

• A relatively small vertical shear force acts at the beam at a perforation opening limited by
the punching shear and pull-out resistance of the connectors.

• After an initial assumption regarding the shear distribution among the tees, there is a re-
distribution based on the Vierendeel resistance at the perforation as calculated using the
approach in Lawson and Hicks (ibid., sec. 3.4.1)

• The shear carried by the bottom tee can be neglected for large perforations

• Slab vertical shear is limited by the punching shear of the studs

• Plastic analysis is assumed for all load levels, influencing the way the internal forces are
calculated

• The bending centre is generally assumed to be near the perforation centre

It is also worth noting that the rules used in P355 were established for mainly rectangular
perforations, with their application being extended to circular perforations by making use of the
generalised effective length and height shown in § 5.2.3, themselves established using non-composite
research1.

In this chapter, a series of algorithms have been developed and deployed to investigate the
output from the FEA results. These provide the bridge between the simulation and the theory
and allow a closer investigation of the nature of the internal forces. Thus, this chapter aims to:

1From Lawson and Hicks (2011), R. G. Redwood (1973).
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• Calculate, from the simulations, the internal forces and moments at the perforations to gain
insight into the local force distribution

• Evaluate, where possible, the examined guidance for the vertical shear, bending, vierendeel
and web-post longitudinal shear internal forces using the FE results

• Examine the equivalent cases when using fixed support conditions in order to support further
work in establishing design guidance

These aims are achieved by:

• Digitising the relevant guidance contained in Lawson and Hicks (ibid.), K. Chung et al. (2001)
and SCI (2017)

• Developing custom programs for the calculation of the internal forces (axial and shear) for
various components with a focus on the two tees and the slab

• Developing an algorithm and program to determine the location of the neutral axis (NA) in
the section using output fields (primarily von Mises) and using it to calculate the moment
from the FE’s output nodal forces directly

– The simply supported set is used to validate the novel NA algorithm developed during
this thesis, by comparing the section moment due to the applied external load (using the
equilibrium approach from theory) and the the moment calculated from the FE nodal
forces using the algorithm.

– This is then extended to the fully fixed FE set, for which the plasticity will influence
the support moment as the beam becomes plastic which can manifest as a deviation
between the two predictions. For this reason, this algorithm can provide a powerful tool
when examining the developing failure modes with moment-resisting supports.

• Establishing the range of possible Vierendeel angles and the critical angle using the von Mises
output at a perforation edge for the examined batches and comparing with guidance where
possible

This chapter is organised into two main parts with § 5.2 examining simply supported simulations
previously seen in § 4.7 and § 5.3 the fully fixed simulations shown in § 4.9.

A note on the section figures The figures in the following sections use a standardised format.

• The plots’ legend format features the model number, followed by the relevant parameter
ratio (if there is one) and the parameter value. Each batch has been previously presented in
chapter 4.

• Using x and square markers signifies using the default and subSlice algorithms respectively.
The o marker is used for the peak load.

• When the marker is filled, this means that the perforation is at midspan.
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5.2 Evaluation of design guidance using FEA results

In this section, the design guidance approach for simply supported cases is compared against the
FEA results. This is done in order to assess the assumptions behind the calculation of the actions
due to applied loading, as well as the developing failure modes.

Calculations are conducted using the digitised design guidance software written for this project,
described previously in chapter 2. Using the digitised guidance, an assessment of its suitability is
first conducted, examining each primary action in turn: vertical shear, bending moment, Vierendeel
bending and web-post longitudinal shear.

The FE analyses post-processed for this section feature simply supported composite perforated
beams with a simulated UDL comprising equally spaced point loads at 0.1 m. intervals. Therefore,
equivalent analytical calculations can be used to directly compare the shear and moment at a
beam section along the global x-axis to compare with the findings from the FE calculations. While
the vertical shear at a perforation is, as shown in § 2.5, relatively simple to calculate from the
nodal forces, the section moment relies on significant simplification of the stress (or strain) field
in the section. Due to this, the calculation of the neutral axis in the section becomes non-trivial,
particularly in cases with multiple zero-stress locations over the depth of the section. By making
use of the approach shown previously in chapter 2, the neutral axis, if one can be identified,
is estimated by taking into account the stress field acting on the section as a whole, as well as
the individual components (slab, top tee, bottom tee). An alternative to calculating the NA
location is to attempt to decompose the nodal forces to equivalent axial and moment couple forces,
rendering the NA calculation unnecessary. This approach can be based on the assumption that
the equivalent axial force is distributed amongst the nodes in a section, while taking into account
the section geometry and node location2.

The results from using both the digitised guidance, equivalent to hand calculations, and the
post-processed results from the FEA are shown here. Specifically, fig. 5.1 shows the ratio of the
FE vertical shear at a perforation normalised against the calculated vertical shear equivalent to
the UDL applied in the FE and for the same geometry and material properties. The same is done
for the section moment, shown in figs. 5.2 and 5.3. In the simply supported composite perforated
beam cases, the results using the algorithms presented in chapter 2 are adequate and show a
good match for both the vertical shear and moment calculations for the majority of cases. This
makes them a reliable tool with which to evaluate the simply supported composite set against the
equivalent digitised guidance.

2An algorithm for this approach has been developed and adapted to the software but is not presented/used here.
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Figure 5.1: This plot shows the ratio between the FE and applied analytical global shear at the
perforation, VF E

VEd
, against the cell # for various perforation diameter sizes (legend features d

D
ratio

and d). The resulting ratios for all the models (and their perforations) remain at ≈ 1 and indicate
agreement between the analytical and FE calculations.
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Figure 5.2: This plot shows the ratio between the FE and applied analytical global moment at
the perforation, MF E

MEd
, against the cell # for various perforation diameter sizes (legend features d

D
ratio and d). The MF E prediction was calculated using an estimate of the NA location based on
the stress along the global x-axis and the nodal forces at the cross-section at the perforation.
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Figure 5.3: This figure differs from fig. 5.2 in the method used to calculate the MF E prediction.
Unlike previously, the slab’s contribution to section moment MF E is calculated by estimating the
NA for each group of contributing nodes along the z-axis using the subSlice algorithm (legend

features d

D
ratio and d).

5.2.1 Applied vertical shear at perforation centre

CELLBEAM An assumption used in CELLBEAM (v10.3 help document, pg. 153) is that the
global vertical shear at a perforation centreline can be distributed between the two tees by the
shear area. Using this approach, the global shear at a perforation, VEd is thus applied onto the
top and bottom tees (SCI 2017),

Vt,Ed = VEd
Av,tT

Av,tT +Av,bT
(5.1)

Vb,Ed = VEd
Av,bT

Av,tT +Av,bT
(5.2)

Note that CELLBEAM conducts a redistribution procedure as part of the Vierendeel calcula-
tions but does not appear to do so for the global vertical resistance at a perforation.

P355 In P355 (Lawson and Hicks 2011), the global applied vertical shear at a perforation can
be compared against the section vertical shear resistance as shown previously in § 1.3.1.3. That
approach considers the section equilibrium at that location but does not enable the calculation
of shear reduction factors for each tee. For this reason, a shear redistribution procedure is used.
This process is based on the calculation of a limiting value of shear being carried across a given tee
by considering the Vierendeel capacity of that tee. The process commences by assuming that the
bottom tee does not carry any vertical shear force, and thus Vb,Rd = 0. In that case, the top tee
resists the shear and a utilisation factor, µ, can be calculated and used to determine the effective
top tee web thickness, tw,eff . Based on this interpetation,
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tw,eff = tw(1 − (2µ− 1)2) for cases where µ ≥ 0.5 (5.3)

µini = VEd

Vt,Rd
(5.4)

are calculated. Following this, the top and bottom tee bending resistances, MtT,NV,Rd and
MbT,NV,Rd, can be calculated as shown previously in § 1.3.1. The resistance for the bottom tee
can then be used to calculate the shear force,

Vb,Ed = 2MbT,NV,Rd

le
(5.5)

and the coexisting shear force in the top tee can be calculated as the remaining value

Vt,Ed = VEd − Vb,Ed (5.6)

Additional guidance on implementation Note that this approach does not include the slab
contribution and this potentially causes an overestimation of the shear utilisation, µ, of the tees.
In addition, it is unclear whether the effective thickness for both tees initially is calculated using
µini which assumes the least favourable conditions on the top tee, or whether the bottom tee is
not subject to reductions initially.

For these reasons, and consistency, an alternative approach is adopted for the digitised guidance
where the slab contribution is considered in the initial estimates but the same utilisation factor,
µini is used for both tees when calculating their resistances. Thus:

µini = VEd − Vc,Rd

Vt,Rd + Vb,Rd
(5.7)

tw,eff = tw(1 − (2µ− 1)2) for each tee, for cases where µ ≥ 0.5 (5.8)

Following this, the shear force is initially apportioned based on the shear area,

Vt,Ed = (VEd − Vc,Rd) Av,tT

Av,tT +Av,bT
(5.9)

Vb,Ed = (VEd − Vc,Rd) Av,bT

Av,tT +Av,bT
(5.10)

and is then adjusted depending on the tee bending resistances 2MbT,NV,Rd

le
and 2MtT,NV,Rd

le
for

the top and bottom respectively. Therefore

Vb,Ed ≤ min
(

2MbT,NV,Rd

le
, Vb,Rd

)
(5.11)

Vt,Ed = VEd − Vc,Rd − Vb,Ed ≥ 0 (5.12)

5.2.1.1 FE results and comparison

The division of shear between the two tees can lead to over-conservative designs due to the overes-
timation of shear force carried by the tees and the potential reduction in moment capacity for each
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one in cases of high shear. In addition to this, the shear carried by the slab may be considerably
underestimated particularly for composite beams with large web perforations.

The vertical shear for each of the primary components at the centre of a perforation is examined
here. The primary focus here is an investigation into the vertical shear distribution among these
components for each of the parameters examined in § 4.7.

Note that the shear is calculated, for simplification, using eq. 5.1 or eq. 5.2 for the top and
bottom tee respectively. This is done to simplify the comparison since the lack of iteration makes
it more accessible to routine design.

Diameter In fig. 5.4 the data shows that the shear ratio between the top and bottom tees is
influenced by the perforation diameter. The ratio for the initial perforation decreases from a
maximum of 1.2 with 0.18 m. perforations to 0.75 with 0.48 m. perforations for an overall steel
beam depth of 0.6 m. with the 0.38 m. (equal to 63.3% of the depth) perforation model exhibiting
a ratio of 1 between the top and bottom tee vertical shear.

While the Vtop,F E

Vbot,F E
stays relatively consistent for the initial perforations (with a slight decrease

and increase for the 0.18 and 0.48 m. tests respectively up to perforation 3) there is a significant
change in ratio at perforation 4 with decreasing perforation diameter and particularly for the 0.38
m. model. In this case, the ratio increases considerably to 2.7 from 1. This is due to the drop
in shear capacity for the bottom tee as a consequence of the significant bending yield beyond
perforation 3. Due to this, the top tee then carries a much higher percentage of the shear relative
to the bottom tee. Previous perforations feature Vierendeel yielding, which does not inhibit the
vertical shear capacity of the tee. This additional shear is then distributed primarily to the slab,
as seen when comparing figures 5.6 and 5.7, while the top tee continues to carry approximately
the same amount of shear as previously in the absence of yielding (as seen for cells 1-3 in fig. 5.5)
with a reduction in capacity in perforation 4. This does not appear to be happening for the
0.48 m. perforation diameter model due to non-convergence occuring before it is able to yield
significantly. Therefore, for beams featuring large perforations, 80% of the total depth or more,
this redistribution at failure may not occur since a mechanism would likely develop before it.

These results show therefore that the distribution between tees could be predicted more accu-
rately by considering the impact of the perforation size.
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Figure 5.4: This plot shows the ratio between the top and bottom steel tees, Vtop,F E

Vbot,F E
, against

the cell # for various perforation diameter sizes (legend features d

D
ratio and d for this plot and

subsequent plots from this batch). The depth is constant, 0.6 m., for all models.
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Figure 5.5: The ratio of the shear carried in the top tee, Vtop,F E , to the total vertical shear at the
perforation centre, Vtotal,F E , is plotted here for each cell # for various perforation diameter sizes.
Note that the amount of shear carried by the top tee (excluding the slab) is adversely influenced by
the perforation diameter but remains relatively constant throughout the beam, with the exception
of the penultimate perforation # 4. The final perforation result is not plotted.
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Figure 5.6: Plot of the ratio of the shear carried in the bottom tee, Vbot,F E , to the total vertical
shear at the perforation centre, Vtotal,F E , is plotted here for each cell # for various perforation
diameter sizes.
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Figure 5.7: Plot of the ratio of the shear carried in the slab, Vslab,F E , to the total vertical shear,
Vtotal,F E , is plotted here against the cell # for various perforation diameter sizes.

Figures 5.8 & 5.9 show that the ratio between the calculated FE vertical shear and the top
and bottom analytical predictions in a perforation are significantly different. The top tee appears
to carry at most ≈ 0.47 (for the 0.18 m. diameter model) of the predicted analytical vertical
shear, itself being half of the global shear at that perforation. The bottom tee carries even less,
with a maximum ratio of ≈ 0.4 for the 0.18 m. diameter model. The rest is carried by the slab.
This increases substantially for the 0.48 m. models, with the slab carrying approximately half,
Vslab,F E

Vtotal,F E
≈ 0.5, of the applied total.
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Figure 5.8: In this plot the ratio of the top tee vertical shear from the FEA, Vtop,F E , to the tee
vertical shear calculated using the digitised guidance, VSd, is plotted against the cell # for various
perforation diameter sizes.
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Figure 5.9: In this plot the ratio of the bottom tee vertical shear from the FEA, Vbot,F E , to the tee
vertical shear calculated using the digitised guidance, VSd, is plotted against the cell # for various
perforation diameter sizes.

Web-post width The results in fig. 5.10 show that the division of vertical shear between the
top and bottom tees is roughly equal at the initial perforation, with a ratio of Vtop,F E

Vbot,F E
varrying

between approximately 0.97 - 1.05. Beyond the initial perforation, there is a slight reducing trend
for the Vtop,F E

Vbot,F E
ratio along the beam with a sudden increase in the ratio at the final perforation

for each case. This is a result of the significant reduction in shear capacity for the bottom tee as
a result of bending for the perforations approaching the midspan. This drop near the midspan is
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also shown in fig. 5.12 for all the examined cases.
In fig. 5.11, the Vtop,F E

Vtotal,F E
ratio varies between approximately 0.35 - 0.38 at the initial perforation

with an average increasing trend along the beam to midspan. In general, the amount of shear
carried by the top tee increases near the midspan, with model 6 being the most extreme example
of this. Conversely, in fig. 5.13 the slab shows an increase corresponding to the bottom tee shear
drop, indicating that the slab tends to carry the shear that the bottom tee sheds, rather than the
top tee, which would be assumed to.

Overall, fig. 5.14 shows that the guidance tends to overpredict the amount of shear carried by
the top tee by an average of over 20%, with the exception of the 0.1 m. case, which shows an
increase in the shear carried by ≈ 40% relative to the prediction from the digitised guidance. This
pattern also occurs with the bottom tee, shown in fig. 5.15.
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Figure 5.10: This plot shows the ratio between the top and bottom steel tees, Vtop,F E

Vbot,F E
, against the

cell # for various web-post widths (legend features sw

D
ratio and sw for this plot and subsequent

plots from this batch).

268



1 2 3 4 5 6 7

Cell number

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

V
to
p
,F

E

V
to
ta
l,
F
E

Model # 1, 1.600, 0.6 m.

Model # 2, 1.333, 0.5 m.

Model # 3, 1.067, 0.4 m.

Model # 4, 0.800, 0.3 m.

Model # 5, 0.533, 0.2 m.

Model # 6, 0.267, 0.1 m.

Figure 5.11: Plot of the top tee vertical shear to the total shear at the perforation centres calculated
from the FEA.
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Figure 5.12: Plot of the bottom tee vertical shear to the total shear at the perforation centres
calculated from the FEA.
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Figure 5.13: Plot of the concrete slab vertical shear to the total shear at the perforation centres
calculated from the FEA.
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Figure 5.14: Plot of the ratio of top tee vertical shear calculated from the FEA results and that
from the digitised guidance against the perforation number.
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Figure 5.15: Plot of the ratio of bottom tee vertical shear calculated from the FEA results and
that from the digitised guidance against the perforation number.

Initial web-post width The results in fig. 5.16 show that the initial web-post width does not
have a clear impact on the shear distribution between the top and bottom tees, likely due to the
lack of significant post-yield results from the analysis (see fig. 4.87). The ratio stays between 0.8 -
1.2 during all the analyses, and for all perforations, with a narrower range of 0.87 - 0.98 for cells
1 - 2.

When comparing the FEA results to the analytical equivalent applied global shear VSd in figs.
5.20 & 5.21, the FE results show the analytical shear forces deviate from the FE values with
increasing proximity to the support for both the top and bottom tees, with the lowest ratios being
0.68 and 0.75 respectively. This is offset by the slab carrying the load instead of the steel tees,
seen in fig. 5.19.

In fig. 5.17 there is a trend of the shear carried by the top tee increasing from a ratio of ≈ 0.33
of the total nearest the support to a maximum of 0.48 for the 0.39 m. case when moving towards
the midspan of the model. This also occurs for the bottom tee (see fig. 5.18), with a low of ≈ 0.35
at the first perforation to ≈ 0.43 for the perforation nearest the midspan. Consequently, the slab
carries the rest of the shear, with a ratio of 0.25 - 0.3 at the centre of perforation 1 and a lowest
of ≈ 0.1 at perforation 4 for the 0.39 m. case.

In fig. 5.20 & fig. 5.21, Vtop,F E

VSd
& Vbot,F E

VSd
approach unity when moving towards the beam

midspan, with the lowest ratios consistently at the initial perforation for each test, with ratios of
≈ 0.67 - 0.75 for the top and ≈ 0.75 - 0.79 for the bottom tee.
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Figure 5.16: This plot shows the ratio between the top and bottom steel tees, Vtop,F E

Vbot,F E
, against the

cell # for various initial web-post widths (legend features sini

D
ratio and the distance from the

support to the initial perforation centre (sini + d/2) for this plot and subsequent plots from this
batch).
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Figure 5.17: This plot represents the division of the vertical shear to the top tee at the perforation
centres by examining the ratio of the top tee shear to the total for various initial web-post widths.
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Figure 5.18: The ratio of the bottom tee vertical shear to the total is plotted here against the
perforation centre where it is located for various initial web-post widths.
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Figure 5.19: Plot of the ratio of the concrete slab vertical shear to the total, both calculated from
the FEA for various initial web-post widths.
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Figure 5.20: Plot of the ratio of top tee vertical shear calculated from the FEA results and that
from the digitised guidance against the perforation number for various initial web-post widths.

1 2 3 4 5 6

Cell number

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

V
bo
t,
F
E

V
S
d

Model # 1, 2.100, 0.975 m.

Model # 2, 1.567, 0.775 m.

Model # 3, 1.033, 0.575 m.

Model # 4, 0.500, 0.375 m.

Figure 5.21: Plot of the ratio of top tee vertical shear calculated from the FEA results and that
from the digitised guidance against the perforation number for various initial web-post widths.

Flange width In fig. 5.22 shows a consistent reduction in the amount of shear carried by the top
tee (from approximately 0.94 - 1.05 at the initial perforation), relative to the bottom, along the
beam length with the exception of the final perforation, where it varies between approximately 0.95
- 1.3. The flange width is seen to influence the Vtop,F E

Vbot,F E
ratio for the initial and final perforations,

with increasing flange widths leading to a reduction in the amount of shear carried by the top tee
at the first and the opposite at the final perforation.

The flange width influence becomes more apparent in fig. 5.23, where the increase in flange
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width leads to an increase in the percentage of shear carried by the tee. The ratio varies at
perforation 1, approximately, from 0.35 - 0.37, to a much more prominent range of 0.3 - 0.54 at the
final perforation centre. This is also shown to occur for the bottom tee shear as shown in fig. 5.24,
with the flange width leading to a greater range than for the top tee. The ratio varies between
0.33 - 0.38 for the initial perforation and 0.31 - 0.42 for the final perforation at midspan.

As a result of this, the slab also exhibits a variation in the shear carried, with the slab accounting
for between 0.25 - 0.33 at the first perforation and 0.04 - 0.4 of the total shear at perforation 6
(see fig. 5.25).

The results in fig. 5.26 show that the digitised guidance tends to overestimate the shear in the
top tee by over 20% for all cases (ratio 0.7 - 0.78) for the initial perforation, with the initial ratio
staying largely consistent until the final perforation in all cases. At that point (cell # 6) the ratio
varies between approximately 0.56 - 1.23 for the corresponding flange widths from 0.07 - 0.38 m.

Conversely, in fig. 5.27 the ratio increases consistently from 0.67 - 0.78 at the initial perforation
to 0.57 - 0.95 at perforation 6, with the exception of the 0.07 m. case which exhibits a significant
drop from ≈ 0.77 to ≈ 0.57, likely due to the short width leading to extensive yielding during
bending and a significant reduction in the associated shear capacity at that point.
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Figure 5.22: This plot shows the ratio between the top and bottom steel tees, Vtop,F E

Vbot,F E
, against the

cell # for various flange widths (legend features bf for this plot and subsequent plots from this
batch).
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Figure 5.23: Plot of the top tee vertical shear to the total shear at the perforation centres calculated
from the FEA.
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Figure 5.24: Plot of the bottom tee vertical shear to the total shear at the perforation centres
calculated from the FEA.
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Figure 5.25: Plot of the slab vertical shear to the total shear at the perforation centres calculated
from the FEA.
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Figure 5.26: The ratio of the vertical shear calculated using the FEA and the digitised guidance
for the top tee plotted against the cell number.
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Figure 5.27: The ratio of the vertical shear calculated using the FEA and the digitised guidance
for the bottom tee plotted against the cell number.

Flange thickness In fig. 5.28, the results show that the flange thickness does influence the
top-to-bottom tee vertical shear ratio but the results are not conclusive, given that the increase
in thickness does not lead to a consistent influence on the ratio. Overall, the vertical shear is
relatively equally divided between the two tees at the initial perforation, with a ratio ranging
between, approximately, 0.9 - 1.0. This ratio reduces consistently for intermediate perforations,
down to 0.68 - 0.87 approximately, until the penultimate perforation, at which there is a significant
increase in the ratio due to the expected reduction of the shear capacity at the bottom tee caused
by bending.

In fig. 5.29, an increase in flange thickness appears to generally lead to a lower top-to-bottom
vertical shear distribution. However, this is not conclusive given that the 0.047 m. flange case
does not conform to pattern. Overall, it can be concluded that the shear tends to be roughly
equally distributed between the steel tees at the initial perforation (ratio approximate range of
0.92 - 1.02), with the ratio reducing for subsequent perforations to a range of 0.7 - 0.88 at the
penultimate perforation. The final perforation features a considerable increase to ≈ 1.1 for all
cases except the 0.017 m. model for which the increase is to ≈ 1.5.

Conversely, the bottom tee shear ratio tends to increase along the beam. In fig. 5.30, with the
initial perforation shear ratios largely unaffected by the flange thicknesses at around 0.37, with the
characteristic drop near midspan.

Note that fig. 5.32 and 5.33 also show the comparison between the FE and analytical results.
The slab results, seen in fig. 5.31, show a consistent trend with the shear ratio reducing along

the length of the beam.

278



1 2 3 4 5 6

Cell number

0.6

0.8

1

1.2

1.4

1.6

1.8

V
to
p
,F

E

V
bo
t,
F
E

Model # 1, 0.007 m.

Model # 2, 0.017 m.

Model # 3, 0.027 m.

Model # 4, 0.037 m.

Model # 5, 0.047 m.

Figure 5.28: This plot shows the ratio between the top and bottom steel tees, Vtop,F E

Vbot,F E
, against the

cell # for various flange thicknesses (legend features tf for this plot and subsequent plots from this
batch).
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Figure 5.29: Plot of the top tee vertical shear to the total shear at the perforation centres calculated
from the FEA.
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Figure 5.30: Plot of the bottom tee vertical shear to the total shear at the perforation centres
calculated from the FEA.

1 2 3 4 5 6

Cell number

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

V
s
la
b,
F
E

V
to
ta
l,
F
E

Model # 1, 0.007 m.

Model # 2, 0.017 m.

Model # 3, 0.027 m.

Model # 4, 0.037 m.

Model # 5, 0.047 m.

Figure 5.31: Plot of the slab vertical shear to the total shear at the perforation centres calculated
from the FEA.
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Figure 5.32: The ratio of the vertical shear calculated using the FEA and the digitised guidance
for the top tee plotted against the cell number.
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Figure 5.33: The ratio of the vertical shear calculated using the FEA and the digitised guidance
for the bottom tee plotted against the cell number

Web thickness In fig. 5.34, the results indicate that an increase in web thickness leads to
an increase in the top-to-bottom shear ratio distribution for all the perforations. This pattern
continues in fig. 5.35 for the top tee while the influence of the web on the bottom tee is much
smaller, seen in fig. 5.36. The reverse is true for the slab in fig. 5.37, with the increase in the web
thickness reducing the ratio of shear carried by the slab.

Note that a greater number of analyses over the prescribed range would be required in order
to have more confidence in the validity of these findings. Such a study falls outside the scope of
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this project.
The results of the comparison between the FE and analytical shear are shown in fig. 5.38 and

5.39.
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Figure 5.34: This plot shows the ratio between the top and bottom steel tees, Vtop,F E

Vbot,F E
, against the

cell # for various web thicknesses (legend features tw for this plot and subsequent plots from this
batch).
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Figure 5.35: Plot of the top tee vertical shear to the total shear at the perforation centres calculated
from the FEA.

282



1 2 3 4 5 6

Cell number

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

V
bo
t,
F
E

V
to
ta
l,
F
E

Model # 1, 0.005 m.

Model # 2, 0.020 m.

Model # 3, 0.030 m.

Figure 5.36: Plot of the bottom tee vertical shear to the total shear at the perforation centres
calculated from the FEA.
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Figure 5.37: Plot of the slab vertical shear to the total shear at the perforation centres calculated
from the FEA.
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Figure 5.38: The ratio of the vertical shear calculated using the FEA and the digitised guidance
for the top tee plotted against the cell number.
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Figure 5.39: The ratio of the vertical shear calculated using the FEA and the digitised guidance
for the bottom tee plotted against the cell number.

Slab depth With the exception of model 2, the slab depth appears to have no impact on the
shear distribution between the top and bottom tees (see fig. 5.40). It is important to consider,
however, that model 2 appears to be the only one, based on fig. 4.100, to be exhibiting more
noticeable nonlinearity and is potentially indicative of the behaviour that would occur post-yield.

Based on this observation in model 2, it is clear that the drop in shear seen in fig. 5.42 leads to
increased shear in the slab, and to a lesser extent the top tee (see fig. 5.41). The drop in the bottom
tee shear is from 29.2% of the total pre-yield to 9.1% post-yield with the slab shear increasing from
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40.2% to 52.3% and the top tee from 30.7% to 38.7%.
The FE to analytical comparison results for the top and bottom tees is shown in fig. 5.44 and

5.45 respectively.
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Figure 5.40: This plot shows the ratio between the top and bottom steel tees, Vtop,F E

Vbot,F E
, against

the cell # for various slab depths (legend features ds for this plot and subsequent plots from this
batch).
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Figure 5.41: Plot of the top tee vertical shear to the total shear at the perforation centres calculated
from the FEA.
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Figure 5.42: Plot of the bottom tee vertical shear to the total shear at the perforation centres
calculated from the FEA.
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Figure 5.43: Plot of the slab vertical shear to the total shear at the perforation centres calculated
from the FEA.
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Figure 5.44: The ratio of the vertical shear calculated using the FEA and the digitised guidance
for the top tee plotted against the cell number.
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Figure 5.45: The ratio of the vertical shear calculated using the FEA and the digitised guidance
for the bottom tee plotted against the cell number.

Asymmetric flange width The results in fig. 5.46 show that the initial web-post width has a
minor impact on the shear distribution for perforations 1 - 4, with an increase in the asymmetry
ratio, tf,bot

tf,top
, leading to decrease in the Vtop,F E

Vbot,F E
ratio as the bottom tee capacity increases. Perfora-

tions 5 & 6 appear to be more influenced by the asymmetric flange width, with a decrease in ratio
from approximately 1.5 to 1.3.

In fig. 5.47 the shear ratio stays relatively constant from the initial perforation range of 0.33 -
0.36 along the beam with the exception of the penultimate beam perforation 6, at which point the
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ratio varies between 0.27 - 0.5. Model 2 appears to be a notable case, whereby the top tee shear
drops from 43.6% of the total shear to -3%, while the bottom tee shear drops from 30.9% to 12%,
with the slab shear (see fig. 5.48) conversely increasing from 25.6% to 90.7% (see fig. 5.49). As
model 2 is the only model that (as shown in fig. 4.103) exhibits significant post-yield behaviour,
it can be considered indicative of the behaviour that should be expected following steel yield. In
those cases, the slab could provide the primary vertical shear resistance locally.

The FE output is compared against the analytical results in fig. 5.50 and 5.51 for the top and
bottom tees respectively.
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Figure 5.46: This plot shows the ratio between the top and bottom steel tees, Vtop,F E

Vbot,F E
, against the

cell # for various asymmetric flange width ratios (legend features bf,bot
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Figure 5.47: Plot of the top tee vertical shear to the total shear at the perforation centres calculated
from the FEA.
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Figure 5.48: Plot of the bottom tee vertical shear to the total shear at the perforation centres
calculated from the FEA.
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Figure 5.49: Plot of the slab vertical shear to the total shear at the perforation centres calculated
from the FEA.
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Figure 5.50: The ratio of the vertical shear calculated using the FEA and the digitised guidance
for the top tee plotted against the cell number.
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Figure 5.51: The ratio of the vertical shear calculated using the FEA and the digitised guidance
for the bottom tee plotted against the cell number.

Asymmetric flange thickness The results in fig. 5.52 show that the asymmetric flange thick-
ness ratio tf,bot

tf,top
appears to consistently lead to a reduction in the shear ratio Vtop,F E

Vbot,F E
at all the

perforations. This is particularly prominent for the initial perforation, whereby the ratio varies
from a low of 0.75 to approximately 1 for tf,bot

tf,top
= 0.77. The ratio tends to reduce along the beam,

with the exception being perforation 6. At that point, there is a significant increase from a previous
range of 0.72 - 0.88 at perforation 5 to 1.18 - 1.35 at perforation 6.

Fig. 5.53 reveals a dependency on the bottom flange thickness, with an increasing asymmetry
ratio leading to a reduction of the shear carried by the top tee at the initial perforation from 0.37
for Vtop,F E

Vbot,F E
= 0.77 to 0.3 for Vtop,F E

Vbot,F E
= 2.13. Conversely, the increasing ratio leads to an increase

in the amount of shear carried by the top tee at the penultimate perforation. The influence of the
asymmetry ratio on the shear in the top tee switches between perforations 3 and 4.

The influence of the asymmetry is less consistent for the bottom tee itself, with it influencing
primarily perforation 4 onwards where an increase in the asymmetry ratio leads to an increase in
the shear carried by the bottom tee, seen in fig. 5.54.

Overall, the fig. 5.55 exhibits a reduction in the associated shear ratio along the beam length
with the asymmetry ratio increasing the shear ratio at the initial perforation and reducing it at
perforation 6.

Fig. 5.56 shows that the shear distribution in the digitised guidance overpredicts the shear
carried by the top tee by over 20% for the majority of perforations, with the single exception being
the penultimate perforation # 6, which is subject to the increased shear due to redistribution
caused by bending at the bottom tee.

Fig. 5.57, conversely, shows an overall increase in the Vbot,F E

VSd
ratio along the beam.
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Figure 5.52: This plot shows the ratio between the top and bottom steel tees, Vtop,F E

Vbot,F E
, against the

cell # for various bottom tee flange thicknesses (legend features tf,bot

tf,top
ratio and tf,bot for this plot

and subsequent plots from this batch).
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Figure 5.53: Plot of the top tee vertical shear to the total shear at the perforation centres calculated
from the FEA.
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Figure 5.54: Plot of the bottom tee vertical shear to the total shear at the perforation centres
calculated from the FEA.
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Figure 5.55: Plot of the slab shear to the total shear at the perforation centres calculated from the
FEA.
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Figure 5.56: The ratio of the vertical shear calculated using the FEA and the digitised guidance
for the top tee plotted against the cell number.

1 2 3 4 5 6

Cell number

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

V
bo
t,
F
E

V
S
d

Model # 1, 0.317, 0.007 m.

Model # 2, 0.769, 0.017 m.

Model # 3, 1.222, 0.027 m.

Model # 4, 1.674, 0.037 m.

Model # 5, 2.127, 0.047 m.

Figure 5.57: The ratio of the vertical shear calculated using the FEA and the digitised guidance
for the bottom tee plotted against the cell number.

Asymmetric web thickness In fig. 5.58, the shear distribution is influenced by the web thick-
ness, particularly for an asymmetry ratio of tw,bot

tw,top
= 0.38. An increase in the asymmetry ratio,

and thus a larger bottom tee web thickness relative to the top tee, leads to a progressive reduction
in the top tee shear with diminishing influence (see fig. 5.59). The results show that the top tee
and the slab (see also fig. 5.61) account for the largest percentage of the total shear at the initial
perforation (≈ 42.5% and ≈ 31%) with the distribution changing significantly for an asymmetry
ratio of 1.53 or over, whereby the bottom tee then accounts for over 42% of the total vertical shear.
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This is expected, with the web thickness influencing the shear capacity, but it should be noted
that even when the asymmetry ratio is over 2 (2.29 in this case), the bottom tee still only accounts
for 45% of the total shear (see fig. 5.60).

As a result, the digitised guidance tends to overestimate the vertical shear carried by the top
tee by approximately 30%, and the bottom by 10-20% (see fig. 5.62 and 5.63). An exception to
this is the highly asymmetric 0.38 ratio case, for which the difference between the FE output and
the digitised guidance result is considerable. In the top tee, the shear carried by the top tee is up
to 35% higher than that from the guidance. Additionally, the bottom tee shear calculations show
nearly 50% less shear is carried at the initial perforation and almost 100% more at the penultimate
perforation than the shear distribution from the guidance.

1 2 3 4 5 6

Cell number

0.4

0.6

0.8

1

1.2

1.4

1.6

V
to
p
,F

E

V
bo
t,
F
E

Model # 1, 0.382, 0.005 m.

Model # 2, 1.527, 0.020 m.

Model # 3, 2.290, 0.030 m.

Figure 5.58: This plot shows the ratio between the top and bottom steel tees, Vtop,F E
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, against the

cell # for various bottom tee web thicknesses (legend features tw,bot
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ratio and tw,bot for this plot

and subsequent plots from this batch).

295



1 2 3 4 5 6

Cell number

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

V
to
p
,F

E

V
to
ta
l,
F
E

Model # 1, 0.382, 0.005 m.

Model # 2, 1.527, 0.020 m.

Model # 3, 2.290, 0.030 m.

Figure 5.59: Plot of the top tee vertical shear to the total shear at the perforation centres calculated
from the FEA.
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Figure 5.60: Plot of the bottom tee vertical shear to the total shear at the perforation centres
calculated from the FEA.
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Figure 5.61: Plot of the slab vertical shear to the total shear at the perforation centres calculated
from the FEA.
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Figure 5.62: The ratio of the vertical shear calculated using the FEA and the digitised guidance
for the top tee plotted against the cell number.
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Figure 5.63: The ratio of the vertical shear calculated using the FEA and the digitised guidance
for the bottom tee plotted against the cell number.

5.2.2 Applied moment at a perforation and direct calculation from the
FE results

Analytical calculations relevant to CELLBEAM & P355 The design guidance covers
simply supported composite perforated beams and therefore the section moment at a perforation
can be calculated by simply considering the applied loading. In these FE models, a UDL is applied
by using concentrated point loads at nodes along the slab middle at 0.1 m. regular intervals, Fpoint.
Thus the UDL, w, for the analytical calculations is:

w = Fsup

L/2
(5.13)

where Fsup =
∑
Fpoint and L is the span of the model. Note that these models utilise x- and

z-axis symmetry. The moment at a location, x, is thus

MEd = 2 (Fsupx− Fixi) (5.14)

where Fi is the force applied at xi from the support. For hand calculations, this could be
simplified further to

MEd = 2
(
Fsupx− wx2

2

)
(5.15)

but would introduce a minor error due to the deviation from the applied force configuration.

5.2.2.1 FE results and comparison

For these calculations, the algorithm used requires the calculation of the NA for each of the
primary components: the two steel tees, the slab and the reinforcement. An investigation of the
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stress behaviour in a vertical section at a chosen perforation shows that, excluding cases where
there are multiple zero stress locations in a component, the neutral axis can be calculated by
considering the x-axis stresses at the cross-section (i.e. normal to the section). The location of the
NA is considered to be an indicator of the type of failure:

• Bending: single NA in the cross-section or one NA in the steel and another in the slab

• Vierendeel: three NA locations detected, each in either of the tees and the slab

Additionally, by estimating the NA for each component, the contribution from each can be
examined at each of the perforation centres.

Note that the results shown for each batch correspond to the batch results shown in § 4.7.
Using the algorithm to estimate a potential set of bending locations is able to provide accurate

results for the purposes of this project. This can be demonstrated by comparing the results from
fig. 5.2 and 5.3 against the results when using the NA calculated from theory in fig. 5.64 and 5.65.
Regardless, MF E,theory is within ≈ 25% of the MEd values, underpredicting the applied moment.
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Figure 5.64: This plot shows the ratio between the FE and applied analytical global moment at the
perforation, MF E

MEd
, against the cell # for various diameters. The MF E prediction was calculated

using the theoretical NA location as calculated from the section geometry.
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Figure 5.65: This plot shows the ratio between the FE and applied analytical global moment at
the perforation, MF E,theory

MEd
, against the cell # for various initial web-post widths. The MF E,theory

prediction was calculated using the theoretical NA location as calculated from the section geometry.
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Diameter The diameter of the perforations has a direct effect on the bending profile of the
beam at the perforation centres and thus on the estimated NA locations. The resulting moment
calculated using the estimated NA, alongside the nodal forces extracted from the FE, have been
shown previously in fig. 5.2, where the mean of the ratio, MF E

MEd
, is 1.03 - 1.05 and thus an FE

estimate within 5% of MEd. Therefore these results are considered a reliable, though simplified,
indicator of the bending behaviour for the different components.

The top tee accounts for a negligible percentage of the moment resistance for model 1, just
0.4% of the total on average. This increases to a range of 2 - 10% for model 4 and is reflected
in the NA estimates in fig. 5.66. On average, the top tee accounts for 5.6% of the total moment
resistance in model 4. As would be expected, the bottom tee consistently accounts for the majority
of the moment capacity, approximately 70-80% of the total for all the cases.

In model 1, the average contribution from the bottom tee is 85.5% of the total, dropping to
74.7% for model 4.

Consequently, the slab accounts for the remaining resistance, with an average contribution of
14.1% and 19.7% for model 1 and 4 respectively.

The results show that the FE estimated NA locations are consistently located nearer the slab
NA than the theoretical prediction and that the slab and steel beam are bending about different
axes, as is often the case in non-ideal composites.

For a perforation diameter > 0.38 m. the NA estimate is not influenced by the perforation
location with all the component NAs located within the slab depth. For a perforation diameter
≤ 0.38 m. the diameter reduction leads to a divergence between the tee and slab NAs with the
slab bending about a different axis than the steel beam. As the perforations move towards the
midspan, the tee NAs tend towards the slab estimate.

The behaviour is notable in that increased bending moment in the beam appears to lead to
agreement in the NA for the steel beam and slab. The influence of Vierendeel action is not likely to
be a cause of the deviation since smaller perforation models are more susceptible to this deviation
whilst being more resistant to the influence of shear across the smaller opening. It is thus concluded
that the most likely cause is the contact simulation used between the steel beam and slab, which is
prone to allowing penetration between the contact nodes in regions with slip along the x-z plane.
In those cases, the contact simulating elements would not prevent vertical translation, leading to
the noticeable variation in NA locations as the components are bending independently, locally.
Models with very large perforations would still be bending enough to influence the stress profile
across the perforation centre. Consequently, the slab NA is potentially a better estimate of the
NA for this batch.
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Figure 5.66: The neutral axis location estimate (shown using symbols) for each of the primary
components (two tees and slab) for models 1, 2 and 4 compared against the elastic neutral axis
estimate (Analytical NA) calculated at the perforations. Diagrams of the corresponding beams
(showing the perforation sizes and spacing for the half-span) are super-imposed in the graphs to
illustrate the trends. This form of presentation is adopted in subsequent figures.
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Web-post width fig. 5.67 shows that the moment ratio stays within 10%, on average, for all the
models with the notable exception of model 6. In model 6, the ratio for perforations 1 & 2 shows a
significant deviation from the equivalent analytical moment calculation, suggesting that the local
NA estimate for those perforations is not an accurate prediction. The web-post width influences
the number of perforations in the beam and therefore the failure mode, but not the beam profile
itself. In general, models 1 and 5 (in fig. 5.68) show that the NA stays close to the top flange-slab
interface for all the perforations except the initial, which is influenced by the support conditions.

The top tee accounts for an average of 1.5% of the moment for model 1, with a maximum of
2.8% at the initial perforation.This does not alter significantly from one model to another, with
the top tee contribution remaining similar, on average, across the beam for models up to # 5.
The exception to this is model 6 which is also notable for the change in the failure mode as shown
previously in fig. 4.84.

The bottom tee contribution varies between 80.5 & 81.3% on average for models 1 & 5 respec-
tively, with the initial perforation accounting for 73.1 & 62.8% of the total.

The remaining resistance is provided by the slab, with a contribution of 24.1 & 29% for the
initial perforation for models 1 & 5 respectively. This ratio drops in subsequent perforations to an
average of 17.2 & 18% for models 1 & 5.

The same influence on the first perforation’s NA estimate observed in the diameter batch is
seen here. The NA does not appear to be influenced by the perforation spacing, as would generally
be expected, with the exception of the estimates for model 6. The NA algorithm shows that at
the third perforation, the slab is bending about its own axis, separate from the two tees which
share the bottom tee NA. While this is puzzling, it is possible that the extensive yielding in the
web-posts leads to a significant change in the bending profile. However, due to this shift in NA
location, and the implication that the steel is thus bending about a location at the bottom tee, it is
concluded that despite an accurate quantitative prediction relative to the theory, the NA location
must be incorrect and due to an unintended rule in the current version of the algorithm.
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Figure 5.67: This plot shows the ratio between the FE and applied analytical global moment at
the perforation, MF E

MEd
, against the cell # for various web-post widths (legend features sw
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sw for this plot).
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Figure 5.68: The neutral axis estimate for each of the primary components (two tees and slab) for
models 1, 5 and 6 compared against the elastic neutral axis estimate calculated at perforations.
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Initial web-post width The results in fig. 5.69 show that the predictions remain within 5% on
average for all the models examined and their perforations.

As the initial web-post width does not influence the NA location the FE results show a minor
impact on the NA location as the initial web-post width reduces. The location of the NA for the
initial perforation itself is significantly different to that of subsequent cells, as shown in fig. 5.70,
due to the proximity to the support.

The top tee initial perforation provides a minor contribution to the moment resistance, amount-
ing to 1.8 - 8.1% of the total. However, the average contribution of the top tee across the beam
for models 1 & 4 is 0.7 and 0.8% of the total respectively, and essentially negligible.

The bottom tee continues to account for the largest percentage of the moment resistance at the
perforation centres. The initial perforation contribution averages 66.9% for all the models, with
minor variation between them. The subsequent perforations consistently account for approximately
82% of the moment capacity, with the rest of the contribution derived from the slab.

The behaviour identified previously in the diameter batch is observed again in the first perfo-
ration for all the models in fig. 5.70.

The initial web-post width, and hence the location of the perforations along the x-axis, has no
apparent influence on the NA estimate. However, it should be noted that the simulations did not
achieve measurable post-yield global behaviour, shown in fig. 4.87, even though there is significant
yielding in the web for all the models, seen in fig. 4.88.
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Figure 5.69: This plot shows the ratio between the FE and applied analytical global moment at
the perforation, MF E

MEd
, against the cell # for various initial web-post widths (legend features sini

D
ratio and the distance from the support to the initial perforation centre (sini + d/2) for this plot).
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Figure 5.70: The neutral axis estimate for each of the primary components (two tees and slab) for
models 1, 2 and 4 compared against the elastic neutral axis estimate calculated at perforations.
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Flange width In fig. 5.71, the result for model 4 shows that the prediction at the final step is
insufficiently accurate for the second perforation. This is likely due to the bottom tee NA location
estimated as being in the bottom tee web and thus underestimating the moment carried at that
perforation. Overall however, the prediction appears to be accurate enough to be a reasonable
indicator of the NA locations and the associated behaviour.

The estimated NA location (see fig. 5.72) remains near the slab-top flange interface for the
majority of the perforations in the examined models, with the exception of the initial perforation
due to the proximity of the support.

Generally, the increase in flange width leads to a decrease in the contribution of the top tee to
the total moment carried. At the initial perforation, the top tee carries approximately 5.5 - 8.4%
of the total moment. This drops to an average of 0.4 - 1.4 % in the subsequent perforations. The
top tee therefore consistently accounts for a very small percentage of the beam moment capacity,
based on the NA estimate and FE results shown here.

By contrast, the bottom tee consistently accounts for over 80% of the total moment carried,
with the rest being carried by the slab. In model 1, the mean contribution from the bottom tee is
83.5% , with perforations 2 - 6 from models 2 & 3 accounting for similar amounts of the total (84.5%
and 83.4%).Note that the initial perforations for models 2 & 3 have a much smaller contribution
of approximately 63.7%.

The most notable case in this batch is model 4, which again shows an independent NA detected
for the bottom tee for perforation 2, and an associated drop in the calculated moment at that
perforation. Excluding that case (and the first perforation) for each model3, the NA estimate is
not influenced significantly by the flange width for bf ≥ 0.175 m.
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Figure 5.71: This plot shows the ratio between the FE and applied analytical global moment at
the perforation, MF E

MEd
, against the cell # for various flange widths.

3See the diameter batch for further details.
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Figure 5.72: The neutral axis estimate for each of the primary components (two tees and slab) for
models 1, 3 and 4 compared against the elastic neutral axis estimate calculated at perforations.
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Flange thickness The prediction of the NA is most accurate for models 1 - 3, with models
4 & 5 showing a significant deviation in the predictions for perforations 2 & 3. This is linked
to the estimation location of the NA being in the bottom tee web, as seen in fig. 5.73 and 5.74.
Ignoring the perforations where the estimate differs significantly from the theoretical calculations,
the flange thickness does not appear to influence the location of the NA significantly beyond the
initial perforation, which is itself influenced by the support. This is potentially linked to the fact
that these tests did not converge to extensive post-yield behaviour and so the results should be
viewed with caution.

The top tee continues to carry a negligible percentage of the total moment from perforation #
2 onwards for all tests, with the initial perforation accounting for 5.5 - 12.3% of the total.

Similarly, the bottom tee accounts for over 80% of the moment beyond the initial perforation,
for which the contribution drops to 63.1 - 72.3% of the total.

As with the flange width batch’s model 4, this batch’s models’ 4 & 5 perforations 2 & 3 show
a significant drop in the calculated moment when the bottom tee estimated NA is found to be
within its depth.

The flange thickness appears to have a greater influence on the NA location than the flange
width however, with increasing values leading to the shared NA moving towards the perforation
centres.
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Figure 5.73: This plot shows the ratio between the FE and applied analytical global moment at
the perforation, MF E

MEd
, against the cell # for various flange thicknesses.
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Figure 5.74: The neutral axis estimate for each of the primary components (two tees and slab) for
models 1, 3 and 5 compared against the elastic neutral axis estimate calculated at perforations.
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Web thickness The results in fig. 5.75 show that the NA estimate for model 1 are unreliable for
perforations 2 - 4 but are within acceptable ratios for other perforations and models in the batch.
Thus, the overall results in fig. 5.76 show a limited influence on the NA except in extreme cases,
as seen in perforation 1 for model 1.

The top tee at the initial perforation in all the models accounts for 8 - 15.8% of the total
moment, with the average for subsequent perforations in models 2 & 3 being negligible (0.5 - 0.7
%)

The bottom tee accounts for approximately 60% of the moment at the initial perforation for
models 2 & 3 and continues to account for approximately 80% of the total moment for subsequent
perforations. It is notable that in model 1, the bottom tee at the initial perforation accounts for
17.8% of the total, in contrast to the other models, and leading to a sharp increase in the slab
moment.

It should be noted however that additional data is needed before the behaviour can be decided
upon conclusively.

As with the flange batches, model 1 exhibits a drop in the calculated moment when the bottom
tee NA is placed within its depth, with the exception of the first perforation, which does not exhibit
a drop in accuracy relative to the analytical prediction.
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Figure 5.75: This plot shows the ratio between the FE and applied analytical global moment at
the perforation, MF E

MEd
, against the cell # for various web thicknesses.
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Figure 5.76: The neutral axis estimate for each of the primary components (two tees and slab) for
models 1, 2 and 3 compared against the elastic neutral axis estimate calculated at perforations.
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Slab depth The results in fig. 5.77 show that the prediction using the FE estimated NA is within
10% of the theory and so can be considered reliable. The NA is located within the top tee web for
model 1, at the top flange-slab interface in model 2, and in the concrete for model 4, as seen in
fig. 5.78. In all these cases, the estimated NA location is esentially shared between the components
from perforations 2 onwards. At the initial perforation, the steel beam and slab have separate NA
locations.

The top tee carries a small amount of the moment at the initial perforation for all the examined
models, ranging between 1.2 - 2.7 % of the total, with the subsequent perforations’ top tee carrying
a negligible amount of the moment.

The bottom tee continues to account for the majority of the moment resistance at each perfo-
ration, with the contribution averaging between 76.6 - 82.4% of the total.
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Figure 5.77: This plot shows the ratio between the FE and applied analytical global moment at
the perforation, MF E

MEd
, against the cell # for various slab depths.
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Figure 5.78: The neutral axis estimate for each of the primary components (two tees and slab) for
models 1, 2 and 4 compared against the elastic neutral axis estimate calculated at perforations.
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Asymmetric flange width The results in fig. 5.79 show that the predictions for the moment
are generally within 10% of the theory with the exception of model 4, perforation #2. In that case,
the prediction shows a significant deviation locally, and this is related to the algorithm estimating
that the bottom tee NA is located in the bottom tee web as shown in fig. 5.80.

Similarly to the symmetric flange width batch, the top tee accounts for a relatively negligible
proportion of the moment contribution (in the region of 4 - 8% in the first and < 1% for subsequent
perforations), while the bottom tee accounts for the majority of the resistance (generally > 80%
of the total), with the slab carrying the remaining moment.
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Figure 5.79: This plot shows the ratio between the FE and applied analytical global moment at the
perforation, MF E

MEd
, against the cell # for various bottom tee flange widths (legend features bf,bot

bf,top

ratio and bf,bot for this plot).
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Figure 5.80: The neutral axis estimate for each of the primary components (two tees and slab) for
models 1, 2 and 4 compared against the elastic neutral axis estimate calculated at perforations.
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Asymmetric flange thickness In fig. 5.81, the FE-to-analytical moment ratio is in agreement,
and within 10% generally, for the majority of the models, with the exception of models’ 4 & 5
perforations 2 & 3. The resulting NA estimates are shown in fig. 5.82.

The top tee accounts for 4 - 9% of the moment at the initial perforation, with a negligible
moment for subsequent perforations for all the models. The bottom tee accounts for over 80% of
the moment at all perforations, except the initial where it accounts for 62 - 85% of the total.
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Figure 5.81: This plot shows the ratio between the FE and applied analytical global moment at
the perforation, MF E

MEd
, against the cell # for various bottom tee flange thicknesses (legend features

tf,bot

tf,top
ratio and tf,bot for this plot).
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Figure 5.82: The neutral axis estimate for each of the primary components (two tees and slab) for
models 1, 2 and 5 compared against the elastic neutral axis estimate calculated at perforations.
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Asymmetric web thickness The results in fig. 5.83 show that the NA location prediction for
model 1 is not reliable to use to draw conclusions, while the results for models 2 & 3 are within
10% of the theoretical predictions.

The observations from the previous batches also apply here, with the moment contributions
from each of the components remaining within the expected range of 2 - 8% of the total for the
top tee at the initial perforation, and negligible after, over 80% on average for the bottom tee for
all perforations and the rest carried by the slab.

The estimated NA locations from the FE output are shown in fig. 5.84.
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Figure 5.83: This plot shows the ratio between the FE and applied analytical global moment at
the perforation, MF E

MEd
, against the cell # for various bottom tee web thicknesses (legend features
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tw,top
ratio and tw,bot for this plot).
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Figure 5.84: The neutral axis estimate for each of the primary components (two tees and slab) for
models 1, 2 and 5 compared against the elastic neutral axis estimate calculated at perforations.
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5.2.3 Development and resistance of Vierendeel-type mechanisms

CELLBEAM The guidance for CELLBEAM (see (SCI 2017, sec. 2.2.9)) covers the calculation
of the equilibrium actions, axial, shear and moment, at an inclined tee section through either the
top or bottom half of a perforation and was presented previously in § 1.4.2.

Approach used in K. Chung et al. (2001) Similarly to the CELLBEAM calculations for the
Vierendeel capacity and associated actions is the guidance provided by ibid. Unlike in CELLBEAM,
the calculations at an angle ϕ from the vertical are conducted on a section at ϕ/2 from the vertical
(see fig. 1.7 for more details). This impacts the thickness of the inclined flange and the depth of the
inclined web and is potentially more realistic given that for large values of ϕ the inclined section
capacities could overestimate the local Vierendeel capacity.

P355 The approach used in P355, covered previously in § 1.3.1, is more suitable for hand calcu-
lations, given that there is limited re-calculation to apply shear and axial reductions and no need
for iteration at different angles. This means that there is no explicitly calculated critical angle but
one can be assumed from the diagonal of the equivalent rectangle as defined in P355 and shown in
fig. 5.85.

le = 0.45ho

ho

24o

Figure 5.85: In P355 the calculations are based on the simplification of a perforation ho to an
equivalent rectangular perforation with an opening length le = 0.45ho and height ho. While not
explicitly stated, an equivalent rectangular opening of this type (dashed lines) would experience
Vierendeel action in the region near the corners of the rectangle shown above, which would be at
an angle of ≈ 24o.

5.2.3.1 FEA results and comparison

In this part of the study, the Vierendeel failure is examined by evaluating the yield location at the
perforation edge, using the stress output from the FE analyses.

This is done in order to evaluate the previously presented guidance currently available which
allows a designer to find the critical section based on the geometry of a slanted section of angle ϕ.

Each cell (perforation and related web-post width or half-width, if next to another cell) is
considered as four 90o quadrants. The location of initial Vierendeel yield is then determined for
each quadrant by identifying the nodes with the highest von Mises stress. If available, the nodes
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where yield is exceeded are also shown as a range, highlighting the locations within which should
be the critical Vierendeel angle. Note that when a range has been succesfully identified, the
maximum stress angle identified from the FE becomes secondary since it is potentially subject to
minor numerical variations within adjacent nodes and therefore not as reliable. In those cases, the
mean of each quadrant range is a better estimate of the potential critical Vierendeel angle. The
peak stress location is used as an estimate of the Vierendeel bending angle, although this might
not be the case for large ϕ angles. In addition, the current algorithm is susceptible to identifying a
false critical angle location since the peak stress at the perforation edge at or beyond yield will be
influenced by element extrapolation. As a result, the critical angle prediction from the FE must
be seen in the context of both the overall range and the internal force distribution.

An example internal force distribution is shown in fig. 5.86. The perforation is represented by
the polar diagram itself, with the circumference representing the section angles for a tee, measured
counter-clockwise from the x-axis (at 0o). The force (in this case the axial force perpendicular to
the inclined section) is calculated for the full set of available slices for the steel beam and for all
load increments and subsequently used to produce the contours. Finally, the critical section angle,
as identified from the von Mises stress at the perforation edge nodes, is also plotted to examine
the possible relation between it and the internal forces. Note that the angles at which there is
a sudden drop or spike in the value occurs when there is a transition from a section including a
flange to one without (i.e. web-post). Unless otherwise stated, all forces in the polar plots are in
MN.
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Figure 5.86: Radial plot showing the internal axial force distribution for the beam with a 0.48 m.
diameter perforation (from the composite, simple supported FEA diameter batch, see § 4.7.1) at
perforation 1. Subsequent plots of this type follow the same format.

Diameter The results for the simply supported composite diameter batch are very similar for
equivalent perforations between the models. The behaviour shown in fig. 5.87 occurs throughout the
batch, with the yield ranges changing from Vierendeel action to primarily bending as perforations
approach midspan. The comparison against the predictions from the digitised guidance show that
the approach by K. Chung et al. (2001) tends to be within the overall yield range, particularly
when the perforations are mainly in Vierendeel or bending (i.e. perforations 1, 2 & 5). However,
the predictions from the digitised guidance tend to be much nearer the vertical than the location
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of the FE-acquired critical angle.
The first perforation’s results show that the side nearest the support (90 - 270 degrees) is

not influenced by the diameter, suggesting that the force distribution is not very dependent on
the perforation diameter at the load levels examined. The critical angles appear to consistently
be in the vicinity of the peak axial force and often near or at the peak shear force. Developing
Vierendeel-type yielding, seen in model 1, perforation 1, leads to the formation of a characteristic
’buttefly’ pattern in the axial force distribution at the perforation.

Figure 5.87: 0.48 m. perforation diameter model results. The Vierendeel angle prediction using the
algorithm based on the approach from K. Chung et al. (2001) (top) the approach from CELLBEAM
(bot) are compared against the FEA estimate. The yielding nodes are shown in red, with the
maximum stress angle being shown with a solid line. The equivalent predictions using the guidance
from K. Chung et al. (2001) and CELLBEAM and shown as dashed (top) and dotted (bottom)
lines respectively.
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(a)

(b)

Figure 5.88: Axial (top) and shear (bottom) forces (in MN.) for the initial perforation for models
1, 2 & 4 (from left to right, 0.48, 0.38 and 0.18 m. diameter) from the simply supported diameter
batch. The forces shown are plotted for up to approximately the lowest common final UDL before
failure or non-convergence.

Web-post width The results in this batch (see fig. 5.89 to 5.91), for s − d ≥ 0.2 m. show
yield ranges similar to those shown in fig. 5.87. For s − d = 0.2, the estimated critical angle and
associated range, particularly on the low-moment side top tee, is influenced by the web-post yield.
This eventually leads to critical angles occuring in adjacent web-posts instead of the top or bottom
tees as seen in fig. 5.91 and as result, the algorithms identifying the critical angle are no longer
relevant.

While the edge detection identifies potential Vierendeel-type patterns, only the initial perfora-
tion is subject to significant Vierendeel action. fig. 4.84 shows that the yielding at the i = 1, J =
1 perforation is mainly due to bending, and that is reflected in fig. 5.92a with a ’teardrop’ pattern
for the bottom tee axial force. In addition, the ’butterfly’ pattern (see fig. 5.92) suggests that the
top tee is subject to bending at its corners more than the bottom.
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Figure 5.89: Vierendeel angle range and critical angle (solid line) from the FE output. The
Vierendeel angle prediction using the algorithm based on the approach from K. Chung et al.
(2001) (top, dashed lines) and the approach from CELLBEAM (bot, dotted lines) is compared
against the FEA estimate for the 0.6 m. web-post width model.

Figure 5.90: Similar figure to fig. 5.89 but for the 0.2 m. web-post width model.
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Figure 5.91: Similar figure to fig. 5.89 but for the 0.1 m. web-post width model.

(a)

(b)

Figure 5.92: Axial (top) and shear (bottom) forces for the initial perforation for models 1, 5 & 6
(from left to right, 0.6, 0.2 and 0.1 m. web-post widths respectively) from the simply supported
web-post width batch.

Initial web-post width The results from this batch (see fig. 5.94) show that the initial web-
post width does not influence the overall range of potential critical Vierendeel angles, with the
predictions from (K. Chung et al. 2001) in fig. 5.93 considered accurate for perforations 1 - 3.
Perforation 4 shows significant deviation for the top tee’s low moment side.
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Figure 5.93: Vierendeel angle range and critical angle (solid line) from the FE output. The
Vierendeel angle prediction using the algorithm based on the approach from K. Chung et al. 2001
(top, dashed lines) and the approach from CELLBEAM (bot, dotted lines) is compared against
the FEA estimate for the 0.1875 m. initial web-post width model.

(a)

(b)

Figure 5.94: Axial (top) and shear (bottom) forces for the initial perforation for models 1, 2 &
4 (from left to right, 0.7875, 0.5875 & 0.1875 m. initial web-post widths respectively) from the
simply supported batch.

Flange width It is interesting to examine this batch from this perspective, as none of these
tests show Vierendeel action as a critical failure mode, meaning that the predictions from the
guidance should, ideally, be qualitatively similar to the FE output given that a bending failure is
still considered as part of the iterative calculations for both the Chung- and CELLBEAM-based
algorithms. Overall, the predictions in fig. 5.95 to 5.97 are ambiguous, with some predictions
appearing to be quite close to both the FE estimate (such as in fig. 5.95 for the Chung prediction
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for the initial perforation) and the expected behaviour (fig. 5.95 predictions for the final few
perforations with the Chung algorithm). As expected however, the algorithms are unsuitable for
failure modes involving the web-post. This is particularly the case in model 4, where the critical
failure mode is a mix of local bending and web-post yielding (fig. 4.92, with comparison from
fig. 5.97).

The section forces for the initial perforations for each respective model examined in this section
are shown in fig. 5.98.

Figure 5.95: Vierendeel angle range and critical angle (solid line) from the FE output. The
Vierendeel angle prediction using the algorithm based on the approach from K. Chung et al.
(2001) (top, dashed lines) and the approach from CELLBEAM (bot, dotted lines) is compared
against the FEA estimate for the 0.075 m. symmetric flange width model.

Figure 5.96: Similar figure to fig. 5.95 but for the 0.275 m. flange width model.

328



Figure 5.97: Similar figure to fig. 5.95 but for the 0.375 m. flange width model.

(a)

(b)

Figure 5.98: Axial (top) and shear (bottom) forces for the initial perforation for models 1, 3 & 4
(from left to right 0.075, 0.275 and 0.375 m. respectively) from the simply supported flange width
batch. The flange width does not appear to have influenced the internal axial and shear force
distribution.

Flange thickness Model 3 (see fig. 5.99), tf = 0.027 m., appears to be most influenced by
Vierendeel bending. Using the approach in K. Chung et al. (2001) is adequate for the first three
perforations, with the results generally staying within the yield range and more inaccurate results
after. Note that the estimates for the low moment side using this approach tend towards the
vertical for the bottom tee which is in keeping with the behaviour expected from fig. 4.95.

Conversely, CELLBEAM tends to output more vertical critical angles.
The results in fig. 5.100 show a negligible variation in the axial and shear internal force distri-

bution. It is possible that the flange thickness could have a greater influence on the internal force
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distribution post-yield rather than up to the load levels reached in this batch.

Figure 5.99: Vierendeel angle range and critical angle (solid line) from the FE output. The
Vierendeel angle prediction using the algorithm based on the approach from K. Chung et al.
(2001) (top, dashed lines) and the approach from CELLBEAM (bot, dotted lines) is compared
against the FEA estimate for the 0.027 m. symmetric flange thickness model.

(a)

(b)

Figure 5.100: Axial (top) and shear (bottom) forces for the initial perforation for models 1, 3 &
5 (from left to right 0.007, 0.027 and 0.047 m. respectively) from the simply supported flange
thickness batch.

Web thickness These results as shown in fig. 5.101 to 5.103 and fig. 5.104, being relatively
limited in number, were subject to either extensive web yielding or primarily bending failure, with
only the start of potential Vierendeel yielding occuring near the support. In those cases (models
2 & 3), the results beyond the first two perforations differ significantly at the top tee for both the
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Chung and CELLBEAM algorithms, both of which tend towards the vertical.
The web thickness appears to have an influence on the internal force distribution with the shear

force increasing with the web thickness and a simultaneous decrease in the peak axial force.

Figure 5.101: Vierendeel angle range and critical angle (solid line) from the FE output. The
Vierendeel angle prediction using the algorithm based on the approach from K. Chung et al.
(2001) (top, dashed lines) and the approach from CELLBEAM (bot, dotted lines) is compared
against the FEA estimate for the 0.005 m. symmetric web thickness model.

Figure 5.102: Similar figure to fig. 5.101 but for the 0.020 m. web thickness model.
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Figure 5.103: Similar figure to fig. 5.101 but for the 0.030 m. web thickness model.

(a)

(b)

Figure 5.104: Axial (top) and shear (bottom) forces for the initial perforation for models 1, 2 & 3
(from left to right 0.005, 0.020 and 0.030 m. respectively) from the simply supported web thickness
batch.

Slab depth In this batch, the yield ranges are not influenced significantly by the slab depth.
The resulting Chung predictions shown in fig. 5.105 to fig. 5.107 tend to stay within the yield range
when Vierendeel action is more likely, with the predictions becoming more inaccurate as bending
becomes the critical failure mode while CELLBEAM predictions tend towards the vertical at each
perforation.

The lack of an influence on the internal force distribution is reflected in fig. 5.108, with only a
minor influence on the axial force distribution for the high moment side for model 4.
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Figure 5.105: Vierendeel angle range and critical angle (solid line) from the FE output. The
Vierendeel angle prediction using the algorithm based on the approach from K. Chung et al.
(2001) (top, dashed lines) and the approach from CELLBEAM (bot, dotted lines) is compared
against the FEA estimate for the 0.1 m. slab depth model.

Figure 5.106: Similar figure to fig. 5.105 but for the 0.135 m. slab depth model.
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Figure 5.107: Similar figure to fig. 5.105 but for the 0.25 m. slab depth model.

(a)

(b)

Figure 5.108: Axial (top) and shear (bottom) forces for the initial perforation for models 1, 2 &
4 (from left to right 0.1, 0.135 and 0.25 m. respectively) from the simply supported slab depth
batch.

Asymmetric flange width For models 2 & 4 the Chung estimates again stay within the yield
range (see fig. 5.109 to 5.111).

In fig. 5.112 the critical angles appear to shift from near the peak axial and shear to near high
axial forces as bending and web-post yielding become more prominent in model 4.
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Figure 5.109: Vierendeel angle range and critical angle (solid line) from the FE output. The
Vierendeel angle prediction using the algorithm based on the approach from K. Chung et al.
(2001) (top, dashed lines) and the approach from CELLBEAM (bot, dotted lines) is compared
against the FEA estimate for the 0.075 m. asymmetric flange width model.

Figure 5.110: Similar figure to fig. 5.109 but for the 0.175 m. bottom flange width model.
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Figure 5.111: Similar figure to fig. 5.109 but for the 0.375 m. bottom flange width model.

(a)

(b)

Figure 5.112: Axial (top) and shear (bottom) forces for the initial perforation for models 1, 2 & 4
(from left to right 0.075, 0.175 and 0.375 m. respectively) from the simply supported asymmetric
flange width batch.

Asymmetric flange thickness As seen in fig. 4.107, the bottom flange thickness has a similar
influence on the behaviour as the width, leading to the shift from bending at midspan to yielding at
the initial perforation and the web-posts. Consequently, the predictions using Chung in fig. 5.114
and fig. 5.115 tend to be within the yield range if there is a formation of Vierendeel yielding and
are inaccurate when web-post shear is prevalent.

The results in fig. 5.116 follow the pattern seen in fig. 5.112, previously, with the shear force
influence appearing to diminish as the flange thickness increases.
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Figure 5.113: Vierendeel angle range and critical angle (solid line) from the FE output. The
Vierendeel angle prediction using the algorithm based on the approach from K. Chung et al.
(2001) (top, dashed lines) and the approach from CELLBEAM (bot, dotted lines) is compared
against the FEA estimate for the 0.007 m. asymmetric flange thickness model.

Figure 5.114: Similar figure to fig. 5.113 but for the 0.017 m. bottom flange thickness model.
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Figure 5.115: Similar figure to fig. 5.113 but for the 0.047 m. bottom flange thickness model.

(a)

(b)

Figure 5.116: Axial (top) and shear (bottom) forces for the initial perforation for models 1, 2 & 5
(from left to right 0.007, 0.017 and 0.047 m. respectively) from the simply supported asymmetric
flange thickness batch.

Asymmetric web thickness Vierendeel action appears to be more influential for models 2 &
3 since web-post yielding is significant for all three models as shown in fig. 5.117 to 5.119.

Chung predictions are reasonable, even when there is a combined web-post and Vierendeel yield
developing, seen in fig. 5.119 perforations 1 and 2.

As the bottom web thickness increases, the axial force distribution appears to change from
bending (at model 1) to more of a Vierendeel-type profile for the top tee and bending for the
bottom at model 3. The shear increases as well, with the shear at the web-post (0 degrees)
increasing as seen in fig. 5.120b.
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Figure 5.117: Vierendeel angle range and critical angle (solid line) from the FE output. The
Vierendeel angle prediction using the algorithm based on the approach from K. Chung et al.
(2001) (top, dashed lines) and the approach from CELLBEAM (bot, dotted lines) is compared
against the FEA estimate for the 0.005 m. asymmetric web thickness model.

Figure 5.118: Similar figure to fig. 5.117 but for the 0.020 m. bottom web thickness model.
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Figure 5.119: Similar figure to fig. 5.117 but for the 0.030 m. bottom web thickness model.

(a)

(b)

Figure 5.120: Axial (top) and shear (bottom) forces for the initial perforation for models 1, 2 &
3 (from left to right 0.005, 0.020 and 0.030 m. respectively) from the simply supported diameter
batch.

5.2.4 Applied web-post longitudinal shear

P355 In P355, the longitudinal shear at the narrowest web-post width location is stated as being
due to the build-up of tension in the bottom tee. However, the mobilisation of the concrete slab
in the regions adjacent to the web-post depends on the number of shear connectors between the
adjacent openings. Therefore, an initial estimate of the web-post longitudinal shear can be found,
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Vwp,Ed = VEds

heff + zt + hs − 0.5hc
(5.16)

where VEd is the average shear of the adjacent web openings, s is the centre-centre perforation
spacing, heff is the length between the tee centroids (conservatively, the distance between the
elastic NAs), zt the depth of the centroid of the top tee measured from the flange, hs is the depth
of the slab and hc the depth of concrete above the profile.

The amount of incremental compression force mobilised by the slab due to the studs is found
by using

∆Ncs,Rd = nsc,sPRd (5.17)

where nsc,s is the number of studs between the adjacent web-openings (i.e. number of studs
above the web-post) and PRd is the shear connector resistance following any reductions covered
in BS EN 1994-1-1 sec. 6.6.3. Should ∆Ncs,Rd be insufficient, the web-post longitudinal shear
increases and can be calculated as

Vwp,Ed = VEds− ∆Ncs,Rd (zt + hs − 0.5hc)
heff

(5.18)

with the larger of either eq. 5.16 or eq. 5.18 used for further calculations.

CELLBEAM In CELLBEAM, the web-post longitudinal shear is considered, as shown in (SCI
2017, sec. 2.2.10) as the difference between the adjacent perforations’ axial force

Vwp,Ed = Ni+1 −Ni (5.19)

Due to it not being stated explicitly, it is assumed that the contribution of both tees is consid-
ered. Therefore,

Ni = NtT,Ed,i +NbT,Ed,i (5.20)

Ni+1 = NtT,Ed,i+1 +NbT,Ed,i+1 (5.21)

where i is the current web-post’s preceding perforation.
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5.2.4.1 FEA results and comparison

Diameter The longitudinal shear ratio in this batch (see fig. 5.121) is influenced at web-post
2 by the diameter, with a gradual reduction of the ratio along the beam length. Note that the
web-post width is variable alongside the diameter.
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Web-post width In this batch (see fig. 5.122), only model 6 is showing a significantly different
web-post shear ratio, with all other models staying approximately constant throughout the perfo-
rations and between models. As the web-posts are very thin and prone to rapid yielding during
loading, the shear they can carry will be severely reduced. This appears to lead to the reduction
from the average for web-posts 2 - 5. Beyond web-post 5, the ratio increases for model 6.
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Initial web-post width The longitudinal shear ratio in this batch (fig. 5.123) does not appear
to have a large influence on the ratio itself.

2 3 4 5 6

Web-post number

0.4

0.5

0.6

0.7

0.8

0.9

1
V
w
p
,F

E

V
w
p
,E

d
Model # 1, 2.100, 0.975 m.

Model # 2, 1.567, 0.775 m.

Model # 3, 1.033, 0.575 m.

Model # 4, 0.500, 0.375 m.

Figure 5.123: Ratio of the longitudinal shear from FE and theory, Vwp,F E

Vwp,Ed
, at the web-post preceding

each cell. These results are from the simply supported initial web-post width batch (legend features
sini

D
ratio and the distance from the support to the initial perforation centre (sini + d/2)).

344



Flange width The models in this batch (fig. 5.124) show that there is an influence on the web-
post shear caused by the flange widths. At the second web-post, an increase in the flange width
leads to a decrease in the web-post shear, this behaviour reversing along the beam, leading to an
increase in the web-post longitudinal shear with an increase in the symmetric flange width.
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each cell. These results are from the simply supported flange width batch (legend features bf ).
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Flange thickness The flange thickness batch results (fig. 5.125) mirror the behaviour seen in the
flange width batch: larger flange thicknesses leading to a smaller web-post shear ratio at the initial
web-posts and the reverse along the beam length, with an increase in flange thickness leading to
an increase in the shear ratio up to a maximum for model 4 (model 5 shows the same behaviour).
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Web thickness The results from this batch (fig. 5.126) show similar behaviour to that observed
previously, with the web-post shear ratio remaining around 0.4 for models 1 & 2 and exhibiting
behaviour in model 3 similar to that seen in the web-post width batch, model 6.
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Slab depth The slab depth appears to be influencing the web-post longitudinal shear in the
same way (see fig. 5.127), regardless of the web-post width number. An increase in the slab depth
leads to a decrease in the web-post shear ratio.
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Asymmetric flange width In this batch (see fig. 5.128), the results show a similar behaviour
to that already seen in the symmetric flange width batch. The notable case however in this batch
is model 2 which from the load-displacement output in Ch. 3 is much further along the post-yield
than the others. This is interesting, considering that the web-posts showing a sharp decline in the
ratio are not yielding yet, with only the top and bottom tees exbhibiting extensive yielding.

2 3 4 5 6

Web-post number

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V
w
p
,F

E

V
w
p
,E

d
Model # 1, 0.326, 0.075 m.

Model # 2, 0.760, 0.175 m.

Model # 3, 1.195, 0.275 m.

Model # 4, 1.629, 0.375 m.

Figure 5.128: Ratio of the longitudinal shear from FE and theory, Vwp,F E

Vwp,Ed
, at the web-post preceding

each cell. These results are from the simply supported asymmetric flange width batch (legend
features bf,bot

bf,top
ratio and bf,bot).

349



Asymmetric flange thickness This batch (see fig. 5.129) shows that the increase in the bottom
flange thickness leads to a lower ratio for web-posts near the support and an increased ratio near
midspan.
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Asymmetric web thickness The results from this batch (see fig. 5.130) mirror the symmetric
web thickness results.
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5.3 FEA results for fully fixed cases

In this section, the simulations from § 4.9 are examined using the same approach as in § 5.2, in
order to evaluate the influence of the support conditions on the beam behaviour.

Note that since there is no current design guidance covering these simulations, the accuracy of
the output for the section vertical shear and moment is evaluated by using basic structural analysis.
As the findings from each batch show that, with relatively few exceptions, the FE-calculated section
shear compares very accurately against the hand calculations (as seen in fig. 5.131), the main focus
with respect to the accuracy is on the section moment. In general, it was found that the NA
algorithm is highly inaccurate for many of the simulations post-yield. This is the case for both the
default algorithm (with results in fig. 5.132) and the improved, subSlice algorithm (fig. 5.133).

As a result of this, the accuracy of the prediction for each of the models in a given batch is
examined for each perforation. The moment calculation is then presented for the highest load at
which

∣∣∣MF E

MEd
− 1
∣∣∣ ≤ 0.3. An example of this is shown in fig. 5.134, with the associated moment

calculations, shown by the symbols, presented in Figs. 5.135 & 5.136 for the default and subSliced

algorithms respectively.
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Figure 5.132: In this plot, the ratio of the moment calculated from the FE, MF E , and the applied
moment at the perforation centre, MEd, is plotted against the cell # for various perforation
diameter sizes (legend features d

D
ratio and d).
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Figure 5.134: Load-displacement diagram for the fully fixed diameter batch. Note that the locations
where the FE moment prediction is within 30% of the theoretical is shown using x and square
symbols when using the default and subSlice algorithms respectively.
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Figure 5.135: FE moment prediction normalised against the theoretical values at each perforation
using the default algorithm for various perforation diameter sizes (legend features d

D
ratio and d).
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Figure 5.136: FE moment prediction normalised against the theoretical values at each perforation
using the subSlice algorithm.
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5.3.1 Applied vertical shear at perforation centre calculated from the
FE output

Diameter The results from this batch (see fig. 5.137) show that an increased diameter leads
to an overall reduction in the shear ratio throughout the beam. Near the supports this ranges
from 1.01 to 1.25 and becomes far more pronounced at the penultimate perforation, with the ratio
ranging between 0.56 to 1.23.

The top tee shear ratio, Vtop,F E

Vtotal,F E
, exhibits an increase on the initial perforation, followed by a

relatively constant ratio throughout the rest of the beam.
In the bottom tee, the shear ratio, Vbot,F E

Vtotal,F E
, exhibits an overall increasing trend from 0.18 -

0.36 at the initial perforation to 0.36 - 0.38 near midspan.
As the slab accounts for the remaining shear, the shear ratio, Vslab,F E

Vtotal,F E
, varies from 0.22 - 0.63

at the initial perforation to 0.16 - 0.44 nearest the midspan. The slab shear ratio thus increases
with an increase in the perforation diameter.
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Figure 5.137: This plot shows the ratio between the top and bottom steel tees, Vtop,F E

Vbot,F E
, against

the cell # for various perforation diameter sizes (legend features d

D
ratio and d for this plot and

subsequent plots from this batch).
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Figure 5.138: The ratio of the shear carried in the top tee, Vtop,F E , to the total vertical shear at
the perforation centre, Vtotal,F E , is plotted here for each cell # for various perforation diameter
sizes.
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Figure 5.139: Plot of the ratio of the shear carried in the bottom tee, Vbot,F E , to the total vertical
shear at the perforation centre, Vtotal,F E , is plotted here for each cell # for various perforation
diameter sizes.
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Figure 5.140: Plot of the ratio of the shear carried in the slab, Vslab,F E , to the total vertical shear,
Vtotal,F E , is plotted here against the perforation # for various perforation diameter sizes.

Web-post width The results in fig. 5.141 do not show a clear influence of the web-post width
on the distribution of shear between the top and bottom tees.

The top tee exhibits an upwards trend in its contribution to the total shear along the length
of the beam from a minimum of 0.28 - 0.38 of the total at the initial perforation to a maximum of
0.73 of the total for model 11 at perforation 7.

The bottom tee similarly exhibits an upwards trend from 0.24 - 0.34 at the initial perforation
to a maximum of 0.76 of the total at perforation 7 for model 11.

The slab thus contributes between 0.28 - 0.47 at the initial perforation and an average of 0.22
- 0.3 throughout the beam, reaching a negligible contribution near midspan. An exception to this
is model 11, in which it appears that the slab is exhibiting negative shear near midspan.
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Figure 5.141: This plot shows the ratio between the top and bottom steel tees, Vtop,F E

Vbot,F E
, against the

cell # for various web-post widths (legend features sw

D
ratio and sw for this plot and subsequent

plots from this batch).
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Figure 5.142: The ratio of the shear carried in the top tee, Vtop,F E , to the total vertical shear at
the perforation centre, Vtotal,F E , is plotted here for each cell # for various web-post widths.
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Figure 5.143: Plot of the ratio of the shear carried in the bottom tee, Vbot,F E , to the total vertical
shear at the perforation centre, Vtotal,F E , is plotted here for each cell # for various web-post
widths.
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Figure 5.144: Plot of the ratio of the shear carried in the slab, Vslab,F E , to the total vertical shear,
Vtotal,F E , is plotted here against the perforation # for various web-post widths.

Initial web-post width The initial web-post width does not, in this batch, exhibit a clear
influence on the shear ratio between the top and bottom tees, as seen in fig. 5.145. Overall, the
shear ratio within a range of 0.85 - 1.02 along the beam, with a substantial increase in models’ 1,
4 and 7 final perforations, when approaching the midspan, to a maximum of 1.19, 1.27 and 1.29
respectively.

The top tee accounts on average, for 0.31 - 0.44 of the total, with an increasing trend along
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the beam length from 0.26 - 0.31 at the initial perforation to a maximum range of 0.44 - 0.52 at
perforation 5 and a drop in the ratio near midspan.

The bottom tee exhibits a similar increasing trend as the top tee, from a range of 0.3 - 0.34
at the initial perforation (excluding model 16), to a maximum of 0.4 - 0.56 at perforation 5 and a
subsequent drop in the ratio.

The slab thus accounts for approximately 40% of the shear near the support with a reduction
in the contribution along the beam length.
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Figure 5.145: This plot shows the ratio between the top and bottom steel tees, Vtop,F E

Vbot,F E
, against

the cell # for various initial web-post widths (legend features sini

D
ratio and the distance from the

support to the initial perforation centre (sini + d/2) for this plot and subsequent plots from this
batch).
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Figure 5.146: The ratio of the shear carried in the top tee, Vtop,F E , to the total vertical shear at
the perforation centre, Vtotal,F E , is plotted here for each cell.
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Figure 5.147: Plot of the ratio of the shear carried in the bottom tee, Vbot,F E , to the total vertical
shear at the perforation centre, Vtotal,F E , is plotted here for each cell.
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Figure 5.148: Plot of the ratio of the shear carried in the slab, Vslab,F E , to the total vertical shear,
Vtotal,F E , is plotted here against the perforation #.

Flange width The results from this batch show that the flange width has an influence on the
shear distribution between the top and bottom tees, with an increase in flange width leading to a
reduction in the ratio near the support and the reverse near midspan, with this influence switching
when moving from perforation 5 to 6. An exception to this observation is model 6. There is
a downwards trend from an initial range of 1.03 - 1.26 to a minimum range of 0.75 - 0.87 at
perforation 5. This is then followed by a sharp increase to a range of 1.23 - 1.4.

The top tee accounts for an increasing percentage of the vertical shear along the beam length,
from a range of 0.32 - 0.41 at the initial perforation to 0.43 - 0.61 near midspan. The bottom tee
also accounts for an increasing amount of the vertical shear overall, but exhibits a sharp decline
at the penultimate perforation # 6.
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Figure 5.149: This plot shows the ratio between the top and bottom steel tees, Vtop,F E

Vbot,F E
, against

the cell # for various flange widths (legend features bf for this plot and subsequent plots from this
batch).
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Figure 5.150: The ratio of the shear carried in the top tee, Vtop,F E , to the total vertical shear at
the perforation centre, Vtotal,F E , is plotted here for each cell.
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Figure 5.151: Plot of the ratio of the shear carried in the bottom tee, Vbot,F E , to the total vertical
shear at the perforation centre, Vtotal,F E , is plotted here for each cell.
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Figure 5.152: Plot of the ratio of the shear carried in the slab, Vslab,F E , to the total vertical shear,
Vtotal,F E , is plotted here against the perforation #.

Flange thickness The results in fig. 5.153 show a similar behaviour to that already seen in
the flange width batch: the increasing flange thickness leads to an increase in Vtop,F E

Vbot,F E
for the

initial perforation (1.07 - 1.3), a downward trend along the beam (to 0.67 - 1.02 at perforation 5)
and a sudden increase in the ratio at the penultimate perforation and reversal of the influence to
decreasing the ratio with an increase in thickness.

The behaviour from the flange width batch is also mirrored in the shear distribution in the two
tees. The top tee accounts for 0.32 - 0.5 of the total vertical shear at the initial perforation and
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exhibits an increasing trend along the beam length to a maximum of 0.5 - 0.65 at perforation 6.
The bottom tee accounts for 0.3 - 0.41 of the total vertical shear at the initial perforation, increases
to 0.38 - 0.64 at perforation 5 and exhibits a minor drop at perforation 6.

The slab contribution exhibits an overall downwards trend along the beam length, with model
9 showing a negative shear ratio.
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Figure 5.153: This plot shows the ratio between the top and bottom steel tees, Vtop,F E

Vbot,F E
, against

the cell # for various flange thicknesses (legend features tf for this plot and subsequent plots from
this batch).
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Figure 5.154: The ratio of the shear carried in the top tee, Vtop,F E , to the total vertical shear at
the perforation centre, Vtotal,F E , is plotted here for each cell.
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Figure 5.155: Plot of the ratio of the shear carried in the bottom tee, Vbot,F E , to the total vertical
shear at the perforation centre, Vtotal,F E , is plotted here for each cell.
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Figure 5.156: Plot of the ratio of the shear carried in the slab, Vslab,F E , to the total vertical shear,
Vtotal,F E , is plotted here against the perforation #.

Web thickness The results from this batch show that the web thickness impacts the shear
distribution between the tees, particularly near the midspan. An increase in the web thickness
leads to an increase in the ratio between the top and bottom steel tees (shown in fig. 5.157, from
0.94 in model 1 to 1.21 in 6 at perforation 1 and from 1.18 to 1.52 at perforation 6).

The top tee has a relatively constant ratio for models 4 - 6 (0.41 - 0.46 at perforation 1 to 0.37
- 0.38 at perforation 5) and an increasing trend for the rest of the examined models. All exhibit
a substantial increase in the shear ratio at the penultimate perforation 6. Similarly, the bottom

367



tee ratio does not change significantly for models 4 - 6 but increases along the beam length for the
rest of the models.
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Figure 5.157: This plot shows the ratio between the top and bottom steel tees, Vtop,F E

Vbot,F E
, against

the cell # for various web thicknesses (legend features tw for this plot and subsequent plots from
this batch).
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Figure 5.158: The ratio of the shear carried in the top tee, Vtop,F E , to the total vertical shear at
the perforation centre, Vtotal,F E , is plotted here for each cell.
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Figure 5.159: Plot of the ratio of the shear carried in the bottom tee, Vbot,F E , to the total vertical
shear at the perforation centre, Vtotal,F E , is plotted here for each cell.
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Figure 5.160: Plot of the ratio of the shear carried in the slab, Vslab,F E , to the total vertical shear,
Vtotal,F E , is plotted here against the perforation #.

Slab depth The slab depth appears to influence the top-bottom tee ratio (see fig. 5.161) mainly
at the initial and penultimate perforations, where an increase in the slab depth leads to a decrease
to the ratio at the initial perforation. The reverse happens at the penultimate perforation.

Additionally, the increase in slab depth leads to an increase in the ratio of the shear it carries,
alongside a decrease for both the top and bottom tees.
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Figure 5.161: This plot shows the ratio between the top and bottom steel tees, Vtop,F E

Vbot,F E
, against

the cell # for various slab depths (legend features ds for this plot and subsequent plots from this
batch).
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Figure 5.162: The ratio of the shear carried in the top tee, Vtop,F E , to the total vertical shear at
the perforation centre, Vtotal,F E , is plotted here for each cell.
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Figure 5.163: Plot of the ratio of the shear carried in the bottom tee, Vbot,F E , to the total vertical
shear at the perforation centre, Vtotal,F E , is plotted here for each cell.
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Figure 5.164: Plot of the ratio of the shear carried in the slab, Vslab,F E , to the total vertical shear,
Vtotal,F E , is plotted here against the perforation #.

Asymmetric flange width The results from this batch show that an increase in the bottom
flange width leads to a decrease in the top-bottom shear ratio at the initial, as shown in fig. 5.165,
and a minor increase at the penultimate perforation. For models 1 & 2, the main impact is
at perforation 1 while for the rest of the models, the impact is much less pronounced. This is
expected since the initial perforation is, in the fixed case, usually the critical perforation due to
the combination of local moment and high shear.

The influence of the bottom flange width on the top-bottom tee ratio is greatest near the
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support, with an increase in the bottom tee flange width leading to a reduction in the amount
of shear carried by the top tee while simultaneously increasing the shear in the bottom tee. This
influence diminishes beyond model 6, and thus a ratio of 1.412.

The slab shear ratio does not appear to be consistently influenced by the bottom tee flange
width variation.
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Figure 5.165: This plot shows the ratio between the top and bottom steel tees, Vtop,F E

Vbot,F E
, against

the cell # for various bottom tee flange widths (legend features bf,bot

bf,top
ratio and bf,bot for this plot

and subsequent plots from this batch).
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Figure 5.166: The ratio of the shear carried in the top tee, Vtop,F E , to the total vertical shear at
the perforation centre, Vtotal,F E , is plotted here for each cell.
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Figure 5.167: Plot of the ratio of the shear carried in the bottom tee, Vbot,F E , to the total vertical
shear at the perforation centre, Vtotal,F E , is plotted here for each cell.
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Figure 5.168: Plot of the ratio of the shear carried in the slab, Vslab,F E , to the total vertical shear,
Vtotal,F E , is plotted here against the perforation #.

Asymmetric flange thickness As with the asymmetric flange width case, near the support
the increase in flange thickness for the bottom tee leads to a decrease in the top-bottom ratio
(see fig. 5.169) at the initial perforation. This impact is much less pronounced at the penultimate
perforation. Model 8 is notable in that it is further along the post-yield, indicating that the impact
post-yield may become more pronounced for the perforations near midspan than for the initial.
Overall, the top tee shear ratio stays relatively consistent, with a minor increase, throughout the
beam length with a sharp increase near midspan, considered to be caused due to the bending. The
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bottom tee flange width generally leads to a slight reduction in the ratio. The bottom tee exhibits
two main behavioural patterns along the beam: largely consistent ratio for models 1 & 2 (which
did not reach post-yield) and an increase to the ratio for models 4, 6 & 8.
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Figure 5.169: This plot shows the ratio between the top and bottom steel tees, Vtop,F E

Vbot,F E
, against

the cell # for various bottom tee flange thicknesses (legend features tf,bot

tf,top
ratio and tf,bot for this

plot and subsequent plots from this batch).
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Figure 5.170: The ratio of the shear carried in the top tee, Vtop,F E , to the total vertical shear at
the perforation centre, Vtotal,F E , is plotted here for each cell.
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Figure 5.171: Plot of the ratio of the shear carried in the bottom tee, Vbot,F E , to the total vertical
shear at the perforation centre, Vtotal,F E , is plotted here for each cell.
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Figure 5.172: Plot of the ratio of the shear carried in the slab, Vslab,F E , to the total vertical shear,
Vtotal,F E , is plotted here against the perforation #.

Asymmetric web thickness As would be expected, the bottom tee web thickness has a sub-
stantial effect on the shear distribution between the two tees, with an increase leading to a decrease
in the top-bottom shear ratio (see fig. 5.173). In general, the top tee shear distribution is itself not
influenced as much as the bottom tee is dependent on the web thickness, leading to an increase
from 0.25 to 0.45 at perforation 1 and 0.38 to 0.58 at perforation 6, when comparing model 1 to
model 6.
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Figure 5.173: This plot shows the ratio between the top and bottom steel tees, Vtop,F E

Vbot,F E
, against

the cell # for various bottom tee web thicknesses (legend features tw,bot

tw,top
ratio and tw,bot for this

plot and subsequent plots from this batch).
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Figure 5.174: The ratio of the shear carried in the top tee, Vtop,F E , to the total vertical shear at
the perforation centre, Vtotal,F E , is plotted here for each cell.
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Figure 5.175: Plot of the ratio of the shear carried in the bottom tee, Vbot,F E , to the total vertical
shear at the perforation centre, Vtotal,F E , is plotted here for each cell.
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Figure 5.176: Plot of the ratio of the shear carried in the slab, Vslab,F E , to the total vertical shear,
Vtotal,F E , is plotted here against the perforation #.

5.3.2 Applied moment at a perforation and direct calculation from the
FE results

Diameter The load-displacement results and associated points for which the results are within
30% shown in fig. 5.177.

The top tee accounts for a negligible amount of the total section moment, with a peak average
of 3.8% of the total at perforation 3 for the examined models. Conversely, the bottom tee accounts
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for an average of 95.7% of the total moment at perforation 1 across the examined models, with
an overall increasing contribution as the diameter size reduces. Its contribution decreases to 73 -
80% for perforations 3 - 5, as the slab simultaneously begins to contribute more (23.2 - 18.9% of
the total respectively).This is due to the section moment switching to sagging bending, leading to
a greater influence by the slab.

The above findings are reflected in the estimated positions for the NA. Near the support, and
due to the hogging bending in that region, the NA is placed at or above the slab-flange interface,
leading to a significant moment contribution by the bottom tee. As the bending switches to sagging
along the beam, the average NA location tends towards the perforation centre instead as the slab
is able to contribute in compression. An exception to this is model 3 in fig. 5.179, where the slab
NA differs greatly from the top and bottom tees’. This leads to a drop in the accuracy of the
estimate, see fig. 5.178.
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Figure 5.177: Load-displacement diagram for the fully fixed diameter batch. Note that the locations
where the FE moment prediction is within 30% of the theoretical are shown using x and square
symbols when using the standard and subSlice algorithms respectively (legend features d

D
ratio

and d for this plot and subsequent plots from this batch).
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Figure 5.178: FE moment prediction normalised against the theoretical values at each perforation
using the subSlice algorithm.
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Figure 5.179: The neutral axis estimate for each of the primary components (two tees and slab)
for models 1, 3 and 7 compared against the elastic neutral axis estimate calculated at perforations.

Web-post width The results in fig. 5.180 show that the estimates are accurate mainly for
pre-yield loads, with the exception of model 7.

The top tee contribution continues to be insignificant relative to the other components.
The bottom tee consistently contributes the most to the section moment at the perforations

(generally over 80% with the exception of 11, perforation 4 at which it drops to 69.3%). In addition,
it exhibits similar behaviour to that found in the initial web-post width batch, whereby the moment
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in the bottom tee partially negates that carried by the slab.
The results in fig. 5.181 show that when

∣∣∣MF E

MEd
− 1
∣∣∣ ≤≈ 0.2 or 20% the FE-derived NA locations

(see fig. 5.182) stay approximately constant along the beam length within the top tee depth,
suggesting that the web-post width itself does not influence the NA location, as would be expected
from theory.
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Figure 5.180: Load-displacement diagram for the fully fixed web-post width batch. Note that the
locations where the FE moment prediction is within 30% of the theoretical are shown using x and
square symbols when using the standard and subSlice algorithms respectively (legend features sw

D
ratio and sw for this plot and subsequent plots from this batch).
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Figure 5.181: FE moment prediction normalised against the theoretical values at each perforation
using the subSlice algorithm.
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Figure 5.182: The neutral axis estimate for each of the primary components (two tees and slab) for
models 1, 8 and 11 compared against the elastic neutral axis estimate calculated at perforations.
Note that for the final model, 12, the resulting NA estimates were beyond the specified tolerance
of 30% for at least one perforation throughout its load history.
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Initial web-post width As seen in fig. 5.183, the NA estimates and associated moment calcu-
lations from the FE beyond yield are limited with the exception of model 4. For this model the
MF E

MEd
ranges between 0.77 - 1.17 (see fig. 5.184).

The top tee contribution to the total section moment is insignificant, usually < 1% of the total.
The key contributor to the section moment is the bottom tee which usually accounts for over 80%
of the total section moment. It is interesting to note, however, that there is unexpected behaviour
in some cases, with the moment calculations showing the bottom tee negating the moment carried
by the slab (seen in model 1, perforation 2), or vice versa (as in model 10). While this appears to
linked to the accuracy of the prediction at the perforation (i.e. model 1, perforation 2 exhibits a
difference of over 20% relative to the theory), this does not apply to model 10 which is found to
be relatively accurate throughout its length.

In addition to the above observations, the FE-estimated NA tends to the centre of the slab
near the support and towards the perforation centres over the next few perforations. Following
this, it remains at approximately the same position until midspan. This is shown in fig. 5.185.
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Figure 5.183: Load-displacement diagram for the fully fixed initial web-post width batch. Note
that the locations where the FE moment prediction is within 30% of the theoretical are shown
using x and square symbols when using the standard and subSlice algorithms respectively (legend
features sini

D
ratio and the distance from the support to the initial perforation centre (sini + d/2)

for this plot and subsequent plots from this batch).
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Figure 5.184: FE moment prediction normalised against the theoretical values at each perforation
using the subSlice algorithm.
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Figure 5.185: The neutral axis estimate for each of the primary components (two tees and slab) for
models 1, 4 and 16 compared against the elastic neutral axis estimate calculated at perforations.
Note that for model 7, which is considered transitional, the resulting NA estimates were beyond
the specified tolerance of 30% for at least one perforation throughout its load history.
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Flange width For this batch, the load-displacement output and chosen load points for which
the estimated accuracy is adequate are shown in fig. 5.186. In fig. 5.187 the moment ratio stays
at approximately 1.0 for perforations 1 & 4-7 with a substantial variation occuring at perforations
2-3 for the examined models. As the flange width influences the bending profile, an increase in
the width for both tees should lead to the NA moving closer to the perforation centre. This is
observed in perforations 1 and 4 onwards in fig. 5.188. It is interesting to note that the deviation
from unity occuring for perforations 2 & 3 appears linked to the locations of the NAs in those
perforations. In model 1, the current version of the algorithm estimates that the tees’ NAs are
jointly located above the slab NA. This behaviour is due to the simplification of the stress field
across the beam section, leading to the mismatch between the slab and tees. It is also notable that
at perforation 3 the NA location is distinct for each of the components. This would imply that
each is bending locally, expected to happen post-yield. In fig. 4.156, the perforation is exhibiting
considerable yielding which could thus alter the bending profile locally. Nevertheless, the deviation
from the theoretical section moment at that perforation implies that further examination might
be needed to ensure that the result is valid.

The top tee continues to contribute the least, overall, to the moment carried while the bottom
tee accounts for over 70% for all perforations except # 3. At perforation 3, the bottom tee contri-
bution drops significantly to an average of 3.4% of the total moment, while the slab contribution
spikes to an average of 91.5% of the moment.

This change in behaviour manifests in the NA estimates in fig. 5.191, with the bottom tee NA
being placed within its depth leading to a significantly diminished contribution.
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Figure 5.186: Load-displacement diagram for the fully fixed flange width batch. Note that the
locations where the FE moment prediction is within 30% of the theoretical are shown using x and
square symbols when using the standard and subSlice algorithms respectively (legend features bf

for this plot and subsequent plots from this batch).
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Figure 5.187: FE moment prediction normalised against the theoretical values at each perforation
using the subSlice algorithm.
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Figure 5.188: The neutral axis estimate for each of the primary components (two tees and slab)
for models 1, 3 and 7 compared against the elastic neutral axis estimate calculated at perforations.
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Flange thickness For this batch, the load-displacement output and chosen load points for which
the estimated accuracy is adequate are shown in fig. 5.189. In fig. 5.190 the moment ratio stays at
approximately 1.0 for perforations 1 & 4 - 7 across the examined models, with the largest deviation
found for models 4 (perforation 2, ratio of 0.724) & 5 (perforation 3, ratio of 1.287). However, all
models exhibit a deviation which appears to increase with the flange thickness.

The top tee continues to contribute the least, overall, to the moment carried while the bottom
tee accounts for over 70% for all perforations except # 3. At perforation 3, the bottom tee
contribution drops significantly to an average of 4% of the total moment, while the slab contribution
spikes to an average of 90.7% of the moment.

This behaviour thus mirrors the observations already seen in the flange width batch, with the
same consequences regarding the local behaviour.
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Figure 5.189: Load-displacement diagram for the fully fixed flange thickness batch. Note that the
locations where the FE moment prediction is within 30% of the theoretical are shown using x and
square symbols when using the standard and subSlice algorithms respectively (legend features tf
for this plot and subsequent plots from this batch).
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Figure 5.190: FE moment prediction normalised against the theoretical values at each perforation
using the subSlice algorithm.
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Figure 5.191: The neutral axis estimate for each of the primary components (two tees and slab) for
models 1, 2 and 10 compared against the elastic neutral axis estimate calculated at perforations.
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Web thickness The load-displacement output and chosen load points for which the estimated
accuracy is adequate are shown in fig. 5.192. The quality of the predictions seen in fig. 5.193
mirrors the previous batches, with the moment ratio deviating further from unity for perforations
2 - 3 than the rest across all models.

Unlike other batches, the top tee exhibits a significant contribution to the moment at higher
thicknesses, with it increasing from 2.7 % in model 2 to 16.9% in model 6. Similarly to other
batches, the bottom tee contribution remains above 70% for all perforations except # 3, at which
the majority of the moment (average of 87.6%) is carried by the slab. Note however that the
slab contribution reduces with increasing web thickness, from 95.1% to 75.7% in models 2 and 6
respectively, the difference mainly going to the bottom tee.

Note that the estimated NA locations from the FE output are shown in fig. 5.194.
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Figure 5.192: Load-displacement diagram for the fully fixed web thickness batch. Note that the
locations where the FE moment prediction is within 30% of the theoretical are shown using x and
square symbols when using the standard and subSlice algorithms respectively (legend features tw
for this plot and subsequent plots from this batch).
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Figure 5.193: FE moment prediction normalised against the theoretical values at each perforation
using the subSlice algorithm.
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Figure 5.194: The neutral axis estimate for each of the primary components (two tees and slab)
for models 1, 3 and 6 compared against the elastic neutral axis estimate calculated at perforations.

Slab depth The load-displacement output and chosen load points for which the estimated ac-
curacy is adequate are shown in fig. 5.195. In fig. 5.196, the moment ratio is in agreement with
the pattern observed previously (perforations 2 & 3 deviate from unity to a far greater extent than
the others), with the overall deviation increasing for larger values of slab depth.

The results from this batch show that, as would be expected, larger slab depths lead to greater
contribution to the moment resistance, with an associated reduction in the contribution from the
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top and bottom tees for all models and perforations with the exception of perforation 3. The top
tee continues to have a minimal influence in general, with the highest moment contribution being
11.5% of the total at perforation 3. This reduces to 1.3% for a slab depth of 0.25 m. Similarly,
the bottom tee generally contributes the most to the section moment, and is not influenced by
the slab depth for perforation 2. The slab influence is most evident at perforation 3, at which the
contribution reduces from 72.3% at model 1 to 41.3% of the total at model 17. As a result, over
the same range, the slab contribution increases from 16.1% to 57.4%.

Note that the estimated NA locations from the FE output are shown in fig. 5.197.
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Figure 5.195: Load-displacement diagram for the fully fixed slab depth batch. Note that the
locations where the FE moment prediction is within 30% of the theoretical are shown using x and
square symbols when using the standard and subSlice algorithms respectively (legend features ds

for this plot and subsequent plots from this batch).
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Figure 5.196: FE moment prediction normalised against the theoretical values at each perforation
using the subSlice algorithm.
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Figure 5.197: The neutral axis estimate for each of the primary components (two tees and slab) for
models 1, 8 and 17 compared against the elastic neutral axis estimate calculated at perforations.
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Asymmetric flange width The load-displacement output and chosen load points for which the
estimated accuracy is adequate are shown in fig. 5.198. The results in fig. 5.199 mirror the results
observed previously, without a clear influence on MF E

MEd
alongside the increase in the bottom tee

width.
As the bottom tee flange width increases, it is expected that the moment contribution by

the bottom tee would increase. The results however show that the increase is relatively minor
(approximately 1.8 - 8.9% increase) from model 1 to model 7.

Note that the estimated NA locations from the FE output are shown in fig. 5.200.
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Figure 5.198: Load-displacement diagram for the fully fixed bottom flange width batch. Note that
the locations where the FE moment prediction is within 30% of the theoretical are shown using x
and square symbols when using the standard and subSlice algorithms respectively (legend features
bf,bot

bf,top
ratio and bf,bot for this plot and subsequent plots from this batch).
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Figure 5.199: FE moment prediction normalised against the theoretical values at each perforation
using the subSlice algorithm. The familiar pattern observed previously is seen here, with perfo-
rations 2 & 3 exhibiting a significant deviation from unity relative to the rest of the perforations.
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Figure 5.200: The neutral axis estimate for each of the primary components (two tees and slab) for
models 1, 8 and 17 compared against the elastic neutral axis estimate calculated at perforations.
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Asymmetric flange thickness The results in this batch reflect the observations from the asym-
metric flange width batch. An increase in the bottom tee flange thickness leads to a modest increase
to its contribution.

Note that fig. 5.201 shows the points for which the accuracy of the moment prediction from the
FE relative to the theoretical is sufficient, fig. 5.202 shows the FE to analytical prediction ratio
and fig. 5.203 shows the estimated NA locations from the FE output.
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Figure 5.201: Load-displacement diagram for the fully fixed bottom flange thickness batch. Note
that the locations where the FE moment prediction is within 30% of the theoretical are shown
using x and square symbols when using the standard and subSlice algorithms respectively (legend
features tf,bot

tf,top
ratio and tf,bot for this plot and subsequent plots from this batch).
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Figure 5.202: FE moment prediction normalised against the theoretical values at each perforation
using the subSlice algorithm. The familiar pattern observed previously is seen here, with perfo-
rations 2 & 3 exhibiting a significant deviation from unity relative to the rest of the perforations.
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Figure 5.203: The neutral axis estimate for each of the primary components (two tees and slab) for
models 1, 6 and 10 compared against the elastic neutral axis estimate calculated at perforations.
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Asymmetric web thickness The results from this batch are in agreement with the observations
from the previous batches. The top tee does not contribute significantly in any of the examined
models and across the perforations. The bottom tee accounts for at least 70% of the moment
contribution, except in perforation 3 across all models, in which case the slab contributes 84.7-97%
of the moment followed by an average of 23.4% at perforation 4 to 17.1% at perforation 7.

Note that fig. 5.204 shows the points for which the accuracy of the moment prediction from the
FE relative to the theoretical is sufficient, fig. 5.205 shows the FE to analytical prediction ratio and
fig. 5.206 shows the estimated NA locations from the FE output for the asymmetric web thickness
batch.
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Figure 5.204: Load-displacement diagram for the fully fixed bottom flange thickness batch. Note
that the locations where the FE moment prediction is within 30% of the theoretical are shown
using x and square symbols when using the standard and subSlice algorithms respectively (legend
features tw,bot

tw,top
ratio and tw,bot for this plot and subsequent plots from this batch).
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Figure 5.205: FE moment prediction normalised against the theoretical values at each perforation
using the subSlice algorithm.
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Figure 5.206: The neutral axis estimate for each of the primary components (two tees and slab)
for models 1, 4 and 6 compared against the elastic neutral axis estimate calculated at perforations.
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5.3.3 Development and resistance of Vierendeel-type mechanisms

Diameter While larger perforations are susceptible to Vierendeel, the support conditions lead
to high axial loading at the bottom tee, reflected in the internal force distribution. This is the case
regardless of diameter size.

The overall behavioural pattern does not change as the diameter reduces, with the internal
force distribution scaling asymmetrically instead. The top tee always exhibits two regions of high
axial force at either side of the perforation centre; the top half of the ’butterfly’ pattern identified in
§ 5.2.3. The magnitude of the axial force in the top tee decreases alongside the decreasing diameter
while the shear simultaneously increases. The bottom tee is always subject to a bending-type
axial ’teardrop’ pattern. The magnitude of this axial force increases with the diameter reduction,
alongside the shear.

The above can be seen in fig. 5.207 and fig. 5.208.

Figure 5.207: Models 1, 4 & 7 from the fully fixed diameter batch, equivalent to fig. 4.145.
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(a)

(b)

Figure 5.208: Axial (top) and shear (bottom) forces for the initial perforation for models 1, 4 & 7
(from left to right) from the fully fixed diameter batch.
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Web-post width As the web-post width is reduced, the failure mode will change from Vierendeel
and bending to web-post shear as seen in fig. 4.148 (see also fig. 5.209).

The reduction in web-post width, and thus the longitudinal shear capacity, leads to a modest
influence on the axial force for sufficiently spaced perforations (as in fig. 5.210 models 1 & 8) and
a significant effect at model 12.

It would appear that the fully yielded web-post is unable to sustain a conventional bending
profile and the top and bottom tees appear as if bending individually, leading to the stress pattern
seen previously in fig. 4.148.

Figure 5.209: Models 1, 8 & 12 from the fully fixed web-post width batch, equivalent to fig. 4.148.

(a)

(b)

Figure 5.210: Axial (top) and shear (bottom) forces for the initial perforation for models 1, 8 &
12 from the fully fixed web-post width batch.
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Initial web-post width Increased distance from the support reduces the impact of the section
moment, leading to a Vierendeel pattern with some influence by the axial force at the bottom
tee (for the von Mises field, see fig. 4.152 and fig. 5.211). As the perforations move nearer the
support, the pattern for the top tee remains the same, while the bottom tee develops a ’teardrop’
pattern. This change occurs at around the transitional initial web-post width model, # 7, which
is equivalent to 0.675 m. from the support to the perforation edge. The section forces are plotted
in fig. 5.212 for the axial and shear force at each section angle.

Figure 5.211: Models 1, 7 & 16 from the fully fixed initial web-post width batch, equivalent to
fig. 4.152.

(a)

(b)

Figure 5.212: Axial (top) and shear (bottom) forces for the initial perforation for models 1, 7 &
16 from the fully fixed initial web-post width batch.
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Flange width While the flange width influences the bending capacity, leading to other fail-
ure modes becoming critical at large flange widths, the overall internal force distribution is not
influenced for any of the examined values (see fig. 5.214).

The change in the yield angles shown in fig. 5.213 is due to other failure modes becoming
prevalent, particularly as the web yields more at larger flange widths. This is also seen in fig. 4.156.

Figure 5.213: Models 1, 3 & 7 from the fully fixed flange width batch, equivalent to fig. 4.156.

(a)

(b)

Figure 5.214: Axial (top) and shear (bottom) forces for the initial perforation for models 1, 3 & 7
from the fully fixed flange width batch.
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Flange thickness The flange thickness has largely the same influence on the beam behaviour
as the flange width and as it increases, the web yields more extensively.

The range of yielded nodes and the peak von Mises are shown in fig. 5.215.
As seen in the flange width batch previously, the pattern in fig. 5.216 for either axial or shear

is not influenced by the change in flange thickness.

Figure 5.215: Models 1, 2 & 10 from the fully fixed flange thickness batch, equivalent to fig. 4.159.

(a)

(b)

Figure 5.216: Axial (top) and shear (bottom) forces for the initial perforation for models 1, 2 &
10 from the fully fixed flange thickness batch.
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Web thickness As the web thickness for each tee increases, the shear resistance in particular
would experience a significant increase, in addition to an increase in the the axial capacity and a
minor influence on the bending capacity, particularly for inclined slices.

The range of yielded nodes and the peak von Mises are shown in fig. 5.217.
This is in agreement with the internal force distribution as seen in fig. 5.218, where the increase

in web thickness leads to an increase in the axial and shear magnitudes in models 3 & 6. Addition-
ally, when the web is extremely slender, as in model 1, the failure mode appears to have changed.
This is potentially linked to the extensive web-post yield occuring in that model, leading to a
failure similar to that seen in fig. 5.210 model 12. The associated von Mises field was previously
shown in fig. 4.162.

Figure 5.217: Models 1, 3 & 6 from the fully fixed web thickness batch, equivalent to fig. 4.162.

(a)

(b)

Figure 5.218: Axial (top) and shear (bottom) forces for the initial perforation for models 1, 3 & 6
from the fully fixed web thickness batch.
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Slab depth The slab depth influences the bending profile of the beam, in addition to increasing
the shear and Vierendeel resistance at the perforation centre.

The slab depth influence on the Vierendeel range, and therefore potential critical angle loca-
tions, can be seen in fig. 5.219.

In fig. 5.220, the internal force distribution pattern is not influenced qualitatively, but the
relative magnitude between the quadrants is. As the slab depth increases, the internal shear
retains its distribution but scales down in magnitude. The axial force in the bottom tee is reduced
with the slab depth, while the axial force in the 90o - 180o quadrant simultaneously increases.

Figure 5.219: Models 1, 8 & 17 from the fully fixed slab depth batch, equivalent to fig. 4.165.

(a)

(b)

Figure 5.220: Axial (top) and shear (bottom) forces for the initial perforation for models 1, 8 &
17 from the fully fixed slab depth batch.
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Asymmetric flange width In this batch (see fig. 5.221 for potential critical Vierendeel angles)
the bottom tee flange width is examined in isolation of other variables. The results in fig. 4.168
show, for model 1, the susceptibility of the bottom tee to the local axial force, with increasing flange
widths increasing the critical mode and hence the beam capacity. The internal force distribution
shown in fig. 5.222 does not appear to be influenced singificantly by the bottom flange width,
indicating that the main influence is on the overall capacity.

Figure 5.221: Models 1, 3 & 7 from the fully fixed bottom flange width batch, equivalent to
fig. 4.168.

(a)

(b)

Figure 5.222: Axial (top) and shear (bottom) forces for the initial perforation for models 1, 3 & 7
from the fully fixed bottom flange width batch.

Asymmetric flange thickness As with the flange width, the bottom flange thickness results
show an influence on the beam capacity but not the internal force distribution itself.
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The range of yielded nodes at the perforation edge, including the peak von Mises stress location,
is shown in fig. 5.223. In addition, fig. 5.224 shows the internal axial and shear force for each section
in the initial perforation.

Figure 5.223: Models 1, 6 & 10 from the fully fixed bottom flange thickness batch, equivalent to
fig. 4.171.

(a)

(b)

Figure 5.224: Axial (top) and shear (bottom) forces for the initial perforation for models 1, 6 &
10 from the fully fixed bottom flange thickness batch.
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Asymmetric web thickness The bottom web thickness has an influential effect on the force
distribution at low thickness values. As the web-post reaches full yield, the bending profile appears
to be influenced, leading to stress conentration at the top tee, as seen in fig. 4.174 for model 1. As
the web thickness increases, the stress is propagated more efficiently to the bottom tee, leading to
the expected failure modes developing.

As in previous batches, the range of yielded nodes at the perforation edge, including the peak
von Mises stress location, is shown in fig. 5.225. In addition, fig. 5.226 shows the internal axial
and shear force for each section in the initial perforation.

Figure 5.225: Models 1, 4 & 6 from the fully fixed bottom web thickness batch, equivalent to
fig. 4.174.

(a)

(b)

Figure 5.226: Axial (top) and shear (bottom) forces for the initial perforation for models 1, 4 & 6
from the fully fixed bottom web thickness batch.
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5.3.4 Applied web-post longitudinal shear

As was done previously, the web-post longitudinal shear in the beams is calculated from the nodal
forces at the web-post throat for all but the initial web-post. The results are compared against
those calculated in the simply supported set. In addition to this, the results are plotted for each
web-post along the beam length.

Diameter In this batch, the web-post shear increases as the diameter reduces in size, as seen
in fig. 5.227. In addition to this, the amount of shear in the web-posts increases along the beam
when the boundary conditions change from simple to fixed. In fig. 5.228 the results show a sharp
decrease in the simple-to-fixed ratio in web-post # 4 for d ≤ 0.38 m.
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Figure 5.227: Web-post shear plotted against the associated web-post for the diameter batch
(legend features d

D
ratio and d for this plot and subsequent plots from this batch).
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Figure 5.228: Ratio of the web-post shear from the simply supported batch, Vwp,F E,simple, against
the equivalent fixed model, Vwp,F E,fixed, plotted against the web-post number.
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Web-post width The results in fig. 5.229 show that the amount of shear in the web-posts tends
to decrease along the beam length. In models which have yielded significantly, such as model 11,
the web-post capacity limits the force carried. As a result, the amount of shear carried for those
cases appears relatively constant along the beam.

The increasing web-post width leads to an associated increase in the shear force carried for all
the examined cases.

In fig. 5.230 the results are compared with the simply supported set and with the exception of
model 5,
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Figure 5.229: Web-post shear plotted against the associated web-post for the web-post width batch
(legend features sw

D
ratio and sw for this plot and subsequent plots from this batch).
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Figure 5.230: Ratio of the web-post shear from the simply supported batch, Vwp,F E,simple, against
the equivalent fixed model, Vwp,F E,fixed, plotted against the web-post number.
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Initial web-post width The results in fig. 5.231 appear to indicate that a reduction in the
initial perforation distance from the support leads to a reduction in the web-post shear at the
end of loading. However, this plot can be misleading given that the amount of yielding occuring
influences the web-post shear capacity. An example of this is model # 11, which has only started
to exhibit web-post yielding and has an almost linearly decreasing (in absolute terms) web-post
shear along the beam length.

This indicates that as a beam’s web-posts yield, the web-post shear may itself redistribute to
other, less yielded web-posts.

Note also fig. 5.232, which compares the shear in the beam when using simple supports relative
to the fully fixed case.
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Figure 5.231: Web-post shear plotted against the associated web-post for the initial web-post width
batch (legend features sini

D
ratio and the distance from the support to the initial perforation centre

(sini + d/2) for this plot and subsequent plots from this batch).
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Figure 5.232: Ratio of the web-post shear from the simply supported batch, Vwp,F E,simple, against
the equivalent fixed model, Vwp,F E,fixed, plotted against the web-post number.
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Flange width As the flange width increases, the bending capacity likewise increases and becomes
less critical. For values bf = 0.125 m. the web-post yielding becomes more influential leading to
yielding up to capacity as in model 7 in fig. 5.233.

In fig. 5.234, the results show the ratio between the simply supported and fixed batches.
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Figure 5.233: Web-post shear plotted against the associated web-post for the flange width batch
(legend features bf for this plot and subsequent plots from this batch).
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Figure 5.234: Ratio of the web-post shear from the simply supported batch, Vwp,F E,simple, against
the equivalent fixed model, Vwp,F E,fixed, plotted against the web-post number.
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Flange thickness The results in this batch, particularly fig. 5.235, mirror those already seen
in the symmetric flange width batch previously. In this batch, for ft ≥ 0.017 m. web-posts 2 - 4
reach capacity with subsequent at carrying carious loads depending on the UDL at failure.

See also fig. 5.236 for a comparison between the simply supported and fully fixed cases along
the beam length.
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Figure 5.235: Web-post shear plotted against the associated web-post for the flange thickness batch
(legend features tf for this plot and subsequent plots from this batch).
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Figure 5.236: Ratio of the web-post shear from the simply supported batch, Vwp,F E,simple, against
the equivalent fixed model, Vwp,F E,fixed, plotted against the web-post number.
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Web thickness The results from the web thickness batch are shown in fig. 5.237 and fig. 5.238.
The results mirror previous findings, whereby the capacity limits the longitudinal shear in the web
alongside a gradual reduction in magnitude along the beam length.
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Figure 5.237: Web-post shear plotted against the associated web-post for the web thickness batch
(legend features tw for this plot and subsequent plots from this batch).
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Figure 5.238: Ratio of the web-post shear from the simply supported batch, Vwp,F E,simple, against
the equivalent fixed model, Vwp,F E,fixed, plotted against the web-post number.
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Slab depth The results in this batch shown in fig. 5.239 demonstrate that the slab does not
have a consistent influence on the longitudinal web-post shear force for various slab depths at the
predicted failure loads.

The ratio between the simply supported and fixed web-post shear for each perforation is also
shown in fig. 5.240.
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Figure 5.239: Web-post shear plotted against the associated web-post for the slab depth batch
(legend features ds for this plot and subsequent plots from this batch).
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Figure 5.240: Ratio of the web-post shear from the simply supported batch, Vwp,F E,simple, against
the equivalent fixed model, Vwp,F E,fixed, plotted against the web-post number.
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Asymmetric flange width Varying the bottom flange width leads to the behaviour observed in
the symmetric case, with the bending increase allowing the web-post longitudinal shear to develop
to capacity.

The behaviour is shown in fig. 5.241 and compared against the simply supported batch in
fig. 5.242.
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Figure 5.241: Web-post shear plotted against the associated web-post for the bottom flange width
batch (legend features bf,bot

bf,top
ratio and bf,bot for this plot and subsequent plots from this batch).
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Figure 5.242: Ratio of the web-post shear from the simply supported batch, Vwp,F E,simple, against
the equivalent fixed model, Vwp,F E,fixed, plotted against the web-post number.
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Asymmetric flange thickness As with the asymmetric flange width batch, the results here
mirror those for which the bending resistance increase allows the development of the longitudinal
shear in the web-posts to capacity.

The results for this batch are shown in fig. 5.243 and compared against the equivalent simply
supported batch in fig. 5.244.
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Figure 5.243: Web-post shear plotted against the associated web-post for the bottom flange thick-
ness batch (legend features tf,bot

tf,top
ratio and tf,bot for this plot and subsequent plots from this

batch).
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Figure 5.244: Ratio of the web-post shear from the simply supported batch, Vwp,F E,simple, against
the equivalent fixed model, Vwp,F E,fixed, plotted against the web-post number.
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Asymmetric web thickness Increasing the bottom web thickness appears to lead to an increase
in the capacity and therefore the longitudinal web-post shear force as seen in fig. 5.245 (see fig. 5.246
for a comparison against the simply supported case).

Like the symmetric case, the shear carried in the web-posts is lower in the fixed batch for very
low values (tw = 0.005 m.) than the simply supported case.
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Figure 5.245: Web-post shear plotted against the associated web-post for the bottom web thickness
batch (legend features tw,bot

tw,top
ratio and tw,bot for this plot and subsequent plots from this batch).
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Figure 5.246: Ratio of the web-post shear from the simply supported batch, Vwp,F E,simple, against
the equivalent fixed model, Vwp,F E,fixed, plotted against the web-post number.
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5.4 Chapter summary and recommendations

The software introduced in § 2.5 is used to post-process the composite nonlinear FE analyses
presented in chapter 4 for the simply supported and fully fixed sets for the:

• vertical shear and section moment (through the NA estimate) at the perforation centres

• longitudinal web-post shear

• Vierendeel critical angles

For the simply supported set, the available guidance was also digitised and compared against
the results from the FE.

The primary motivation for this chapter is to use the data from the FE analyses to directly
calculate key actions and provide a direct link between numerical results from FE and equilibrium
forces & moments at critical locations. This approach allows the determination of the internal
force distribution directly and paves the way for a more complete assessment of the available
guidance for simply supported beams and the introduction of new recommendations for those
utilising moment-resisting connections.

• The shear contribution from each of the primary components was quantified for each of the
batches presented in chapter 4.

– The total vertical shear calculated from the FE was compared against the theoretical
shear and was generally in agreement for both sets (within ±10% with few exceptions)

– It was found that the shear distribution among the two tees and slab is influenced
by various parameters either directly (by the reducing diameter size, see fig. 5.4) or
indirectly (by the yielding caused in the bottom tee leading to less shear capacity, see
fig. 5.10) and the influence quantified

∗ The perforation diameter appears to have the largest impact on the distribution
of vertical shear among the tees and concrete slab (see fig. 5.5 - 5.7), while the
slab depth directly impacts the percentage of the vertical shear the slab carries (see
fig. 5.43) while keeping the ratio roughly equal between the two tees.

∗ Other parameters, such as the flange width (see fig. 5.149) influence the shear
distribution throughout the beam in different ways, suggesting that a parameter’s
influence can differ for different locations in the same beam.

– Table 5.4 summarises the slab contribution range as a ratio of the total for each of the
examined parameters. Excluding the negative contributions (which are considered to
be a result of web-post yielding leading to independent loading between the top and
bottom of the composite beam) the slab is found to contribute from 10 - 60% depending
on the boundary conditions and beam geometry. This implies that the tee vertical shear
reduction in moment capacity would be far lower and therefore a more efficient beam
could be found relative to one utilising the assumption that the tees (and often the top,
see Lawson and Hicks (2011)) carry the vertical shear.

• The NA algorithm (developed in § 2.5.1) was used to estimate the NA location in each beam
section at the perforation centres using an FE field (in this case the stress at each node).
This algorithm was developed to be independent of the boundary conditions, so that it could
be used for a variety of support fixities.

– The results show that the NA location can be identified reliably using this algorithm
for the simply supported set (for example, see fig. 5.69) but is inaccurate for the fully
fixed set for loads generally exceeding yield.
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∗ As a result, results for the fully fixed batches are shown for
∣∣∣MF E

MEd

∣∣∣ ≤ 0.3 (e.g.
fig. 5.178).

– In addition, when perforation tees are found to be bending about their own axis (i.e.
NA for the component lying within its depth), there is usually an associated drop in the
estimated accuracy, suggesting that further improvements are necessary (see fig. 5.75).

∗ The current version of the algorithm works by examining the simplified stress field
for points of contraflexure. This is done hierarchically, for the entire section first
(including the slab) and then for each of the components. NA locations are chosen
based on these points of contraflexure, thereby introducing errors if those are not
the true locations of bending.

• Potential critical Vierendeel angle ranges were established by identifying the nodes at the
perforation edge that have yielded (see § 5.2.3 & § 5.3.3).

– For the simply supported set, the critical Vierendeel section angles calculated using the
guidance (shown in § 1.3.1 & § 1.4.2) were plotted alongside the FE estimates. It can
be seen that the approach by K. Chung et al. (2001) is consistently more accurate and
tended to stay within the established range when Vierendeel action was more significant.
A similar approach can thus be developed for fixed supports.

• The internal force distribution at each perforation was calculated and plotted for critical
perforations from selected models in each batch using a novel approach developed for this
project (shown in § 2.5.1).

– This distribution was plotted alongside the angle of the peak von Mises stress location
at the perforation edge. It was found that the internal force distribution (particularly
the axial force) can relate well to the overall von Mises yielding that occurs (see for
example fig. 5.87 & fig. 5.88).

• The longitudinal shear carried by the web-posts (exluding the initial) was calculated for each
of the examined batches (see § 5.2.4).

– In the simply supported set, the longitudinal shear is found to be consistently < 50% of
the force calculated from the digitised guidance, which could potentially lead to over-
conservative designs in practice.

– In the fully fixed set, the FE results are shown and compared against the FE results
from the simply supported set for each batch. As the web-post longitudinal shear is not
usually the critical failure mode (except for the web-post width batch, see fig. 5.229),
the web-post shear plots develop a pattern linking them to the load state they attained.
In other words, if another failure mode is critical, only some web-posts will have been
loaded to capacity, making it appear as though the web-post longitudinal shear changes
with the examined parameter (for example, see fig. 5.243). Nevertheless, the results in
§ 5.3.4 show that switching from simply to fully fixed supports leads to an increase of
at least 20% in the longitudinal web-post shear.

As a result of the above, some recommendations can be made:

• The approach in K. Chung et al. (ibid.) was found to be reasonably accurate when attempting
to identify a critical angle but is more suited to software implementation than the approach
in P355.
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• The shear distribution can be adjusted based on the results from this chapter and summarised
in Table 5.1 to Table 5.4. More particularly, the slab contribution is found to be substantial
and could help when designing more efficient beams.

Note that Table 4.11 can be used as a guideline when designing composite perforated beams
in the examined ranges.

Table 5.1: Ratios of the vertical shear carried by the top tee against the total at the perforations
for the examined parameters (note that these ranges serve as a quick reference and are taking into
account output from multiple beams and perforations from each batch)

Parameter Examined Simply Supported Fully Fixed
Perforation diameter
to steel beam depth,
d
D

0.1911 - 0.4831 0.1818 - 0.4986

Web-post width to
perforation diameter,
sw

d

0.3416 - 0.6480 0.2473 - 1.0571

Initial web-post width
to perforation
diameter, sini

d

0.3310 - 0.4812 0.2587 - 0.6115

Flange Width, bf (m.) 0.3039 - 0.5409 0.3218 - 0.6081
Flange Thickness, tf
(m.) 0.3344 - 0.5187 0.3221 - 0.6517

Web Thickness, tw (m.) 0.2470 - 0.5938 0.2606 - 0.6515
Slab Depth, ds (m.) 0.2345 - 0.4329 0.1721 - 0.4441
Bottom to top flange
width ratio, bf,bot

bf,top

-0.0303 - 0.5099 0.3262 - 0.5860 (model 4
did not converge)

Bottom to top flange
thickness ratio, tf,bot

tf,top

0.3024 - 0.5516 0.2958 - 0.7286

Bottom to top web
thickness ratio, tw,bot

tw,top

0.3207 - 0.6236 0.2637 - 0.6533
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Table 5.2: Ratios of the vertical shear carried by the bottom tee against the total at the perforations
for the examined parameters (note that these ranges serve as a quick reference and are taking into
account output from multiple beams and perforations from each batch)

Parameter Examined Simply Supported Fully Fixed
Perforation diameter
to steel beam depth,
d
D

0.1283 - 0.4314 0.1807 - 0.4419

Web-post width to
perforation diameter,
sw

d

0.0598 - 0.6807 0.2245 - 0.8717

Initial web-post width
to perforation
diameter, sini

d

0.3492 - 0.4386 0.1984 - 0.6629

Flange Width, bf (m.) 0.3086 - 0.4945 0.3009 - 0.5728
Flange Thickness, tf
(m.) 0.3128 - 0.5248 0.2879 - 0.7084

Web Thickness, tw (m.) 0.2958 - 0.6411 0.2845 - 0.6362
Slab Depth, ds (m.) 0.0914 - 0.4472 0.2223 - 0.4377
Bottom to top flange
width ratio, bf,bot

bf,top

0.1200 - 0.4817 0.2716 - 0.5683 (model 4
did not converge)

Bottom to top flange
thickness ratio, tf,bot

tf,top

0.3440 - 0.5434 0.3020 - 0.6629

Bottom to top web
thickness ratio, tw,bot

tw,top

0.2650 - 1.3064 0.2450 - 0.6388

Table 5.3: Ratios of the top/bottom tee vertical shear ratio at the perforations for the examined
parameters (note that these ranges serve as a quick reference and are taking into account output
from multiple beams and perforations from each batch)

Parameter Examined Simply Supported Fully Fixed
Perforation diameter
to steel beam depth,
d
D

0.5557 - 2.7332 0.5603 - 1.2512

Web-post width to
perforation diameter,
sw

d

0.7804 - 7.2461 0.7127 - 1.3863

Initial web-post width
to perforation
diameter, sini

d

0.8169 - 1.1708 0.5934 - 2.2360

Flange Width, bf (m.) 0.8159 - 1.2823 0.7520 - 1.3956
Flange Thickness, tf
(m.) 0.6935 - 1.6147 0.6672 - 1.7538

Web Thickness, tw (m.) 0.6295 - 1.3124 0.6873 - 1.5242
Slab Depth, ds (m.) 0.7953 - 4.2363 0.7362 - 1.1067
Bottom to top flange
width ratio, bf,bot

bf,top

-0.2523 - 1.8869 0.7453 - 1.4599 (model 4
did not converge)

Bottom to top flange
thickness ratio, tf,bot

tf,top

0.7290 - 1.3458 0.6891 - 1.3858

Bottom to top web
thickness ratio, tw,bot

tw,top

0.4698 - 1.5956 0.5892 - 2.0652
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Table 5.4: Ratios of the vertical shear carried by the concrete slab against the total at the per-
forations for the examined parameters (note that these ranges serve as a quick reference and are
taking into account output from multiple beams and perforations from each batch)

Parameter Examined Simply Supported Fully Fixed
Perforation diameter
to steel beam depth,
d
D

0.0932 - 0.5309 0.0670 - 0.6339

Web-post width to
perforation diameter,
sw

d

- 0.3267 - 0.5229, (note
that model 6 which

exhibits a negative ratio)

-0.8164 - 0.5095 (with
model 11 exhibiting a

negative ratio)
Initial web-post width
to perforation
diameter, sini

d

0.1096 - 0.3195 -0.1482 - 0.4081

Flange Width, bf (m.)
0.0394 - 0.3886, ratio

increasing with
decreasing flange width

-0.0520 - 0.3740

Flange Thickness, tf
(m.) 0.0225 - 0.3065 -0.3584 - 0.3726

Web Thickness, tw (m.) -0.2151 - 0.4505 -0.2003 - 0.4251

Slab Depth, ds (m.)
0.1413 - 0.5614,

increasing with the slab
depth

0.1212 - 0.5936

Bottom to top flange
width ratio, bf,bot

bf,top

from 0.0715 - 0.9075
(ratio of 0.9 for model 2,

perforation 6)

-0.0237 - 0.3589 (model 4
did not converge)

Bottom to top flange
thickness ratio, tf,bot

tf,top

-0.0033 - 0.3074
-0.3804 - 0.3722 (model 8

exhibits the negative
ratio)

Bottom to top web
thickness ratio, tw,bot

tw,top

-0.9355 - 0.3363 (note
that model 1 exhibits a

negative ratio)
-0.2289 - 0.3930
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Chapter 6

Conclusions

6.1 Project summary

One structural form now widely used in the construction industry is perforated steel beams. The
presence of holes within the web of a beam allow the incorporation of services to buildings without
adversely impacting the floor to ceiling height or requiring an extension to the height of the building
itself, making them more efficient than previous solutions. Furthermore, introducing partial or full
end fixity (where the beam joins a column) rather than assuming a simple support can offer
additional load carrying capacity, thereby increasing the efficiency of the structural form. Such
a structural solution may, however, be susceptible to alternative failure modes (from those seen
previously) which have been examined before for simply supported cases. This project focuses on
investigating this structural form in some detail and examining the effect of boundary conditions
which have not yet been considered by existing design guidance.

Due to the parametric nature of this FE-based project, several software packages were created
and developed by the author, with the intention to automate the process and extend the capabilities
beyond those available from commercial packages such as ABAQUS.

Given some set-up using a control script, the software (mesh_gen and inp_gen) can be used to
generate and run any number of simulations with little, or no, user input or interaction, thereby
cutting down the whole investigation process significantly. This approach can be used for similar
FE structural analysis packages and could enable efficient use of computational resources.

In addition, the use of a sophisticated concrete constitutive model from literature was examined,
enabling comparison with existing concrete material models within ABAQUS/Implicit.

The guidance for perforated beam design uses several simplifications to enable routine design,
in addition to assumptions already made in numerical studies regarding the beam behaviour lo-
cally. These assumptions are often tested implicitly during research and so this project avoids
doing the same by directly calculating the relevant beam behaviour (such as the internal force dis-
tribution) directly from the detailed FE simulations using the developed packages (postProcess
and postProcess_NA).

Finally, guidance available for the design of this structural system was digitised and used to
directly compare against the FE results for the simply supported simulation set.

6.2 Key observations

• In chapter 3, the M7 microplane constitutive model for concrete was implemented in Matlab
for material point simulations.

– M7 requires the definition of 30 material constants (5 k-constants, 21 c-constants, E,
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E0, v & f
′

c0), each of which influences the behaviour of each microplane (see § 3.1). It
is shown that the c-constants needed to be modified in order to achieve the behaviour
reported in Caner and Bazant (2013b). This calibration procedure is time-consuming
and not suitable for routine use.

– The Implicit implementation of M7 requires a considerable number of iterations (5 - 6
initially, increasing to 100+ when the behaviour becomes highly nonlinear), making M7
a computationally expensive material model.

– M7 exhibits spurious behaviour (most noticeable in the uniaxial tension simulations,
such as that shown in fig. 3.5). This behaviour is due to multiple microplanes’ sudden
change of behaviour during loading (i.e. a group of similarly orientated microplanes
simultaneously reach a stress boundary and force a redistribution of the applied strain
among the remaining microplanes).

– Additionally, it was found to be non-conservative in biaxial compression (see in fig. 3.6).
Modifying the default material parameters reported in Caner and Bazant (ibid.) did not
influence the biaxial peak stress envelope significantly.

– The M7 User MATerial (UMAT) implementation (for ABAQUS/Implicit) was shown
to be unstable when used in a large scale FE simulation (see § 4.10) making it unusable
in its current state.

• In chapter 4, the software developed previously (see chapter 2), was used to validate against
physical experiments from literature, conduct an extensive FE parametric study and post-
process the resulting FE data. The following observations can be made:

– A mesh refinement study (see § 4.2) was conducted using 3 seed reduction rules over 2
batches of 34 models each (68 in total, see § 4.2.1).

∗ It was found that the suitability of a mesh must be examined from both a global
and local behavioural perspective. Examining the global response alone can lead to
a inefficient mesh for the localised behaviour and thus influence the overall study
(see for example mesh # 19 fig. 4.2 & fig. 4.3 in contrast to its local behaviour in
fig. 4.5).

∗ A mesh refinement study is particularly important for composite simulations (such
as those conducted during this project) when the local behaviour is being investi-
gated in detail. The composite material response (in this case, the concrete slab)
can be influenced significantly by the chosen mesh settings (see § 4.2.3).

– The influence of a single circular web perforation in the steel beam (for each half-span
due to symmetry) on the beam response was examined in § 4.5 and § 4.6 for various
perforation locations along the beam length, boundary conditions and perforation di-
ameters (ranging from 20 - 80% of the total steel depth). The results show that the
influence of a single perforation increases with the perforation size and proximity to
the support but becomes less significant as the beam length increases (see fig. 4.44a &
fig. 4.50b). For longer spans, the perforation influence is more significant when near the
midspan instead.

– Overall, the parametric study (approximately 1435 analyses for the composite set and
an equivalent amount for the non-noncomposite) showed that the circular perforation
diameter, flange width and flange & web thicknesses are the most significant with respect
to the beam capacity and the type of failure mode that will develop (i.e. fig. 4.82,
fig. 4.93, fig. 4.96 & fig. 4.99).
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∗ Most, if not all, the batches suffered from non-convergence issues (see fig. 4.83 for
example), particularly when conducting the composite FE analyses.
· Non-convergence appears to be more prevalent when the concrete slab is more

susceptible to failure. The use of discrete shear vertical connectors and discrete
reinforcement bars exacerbated the issue (see fig. 4.177) as the shared nodes at
the stud- and reinforcement-concrete slab locations acted as stress concentra-
tors. This was complicated further by the contact simulation at the slab-flange
interface, which did not sufficiently model the interaction between the two.

∗ While the concrete slab contribution is justifiably omitted as negligible in calcula-
tions with significant tensile stress, the inclusion of a reinforced concrete slab should
not be ignored entirely. The concrete cracking is likely to occur locally to the sup-
port, with much of the slab remaining intact and the longitudinal reinforcement
offsetting the developing material discontinuity at the support. Additionally, the
concrete slab improves the stiffness of the beam regardless of the support conditions.

– The issue of non-convergence was partially offset by using ABAQUS/Explicit to conduct
several quasi-static simulations (see § 4.6.1.2 and § 4.6.3.2). These simulations showed
that ABAQUS/Explicit is a suitable alternative for large scale FE parametric analyses to
ABAQUS/Implicit, assuming that quasi-static behaviour is enforced for each simulation.

• In chapter 5, the simulations from the parametric FE study (chapter 4) were post-processed
using the software developed in chapter 2 in order to examine the internal force and moment
distribution in more detail.

– The results show that the vertical shear distribution is highly influenced by both the
examined parameters (reduction with increase in diameter size, see fig. 5.5 to fig. 5.7)
and that the concrete slab can provide the majority of the vertical shear resistance at
the perforation centres. This shows that the distribution of shear using the shear area
of the two tees is too simplistic since the slab is a major contributor and potentially too
conservative in P355 (see § 5.2.1 or Lawson and Hicks (2011)) where the bottom tee is
not apportioned any vertical shear.

– The NA algorithm developed in chapter 2 was used to estimate the NA locations for
each of the composite beam components (concrete slab, top tee, bottom tee). These
estimates were then used alongside the nodal forces to calculate the section moment at
the perforation centres.

∗ The algorithm was shown to be sufficiently accurate for the simply supported sim-
ulations (see fig. 5.2), generally showing an accuracy relative to the theoretical
moment calculations of within 10-20%. Exceptions to this occur when the section
has yielded extensively (see fig. 5.83).

∗ In the fully fixed simulations, the algorithm was found to be sufficiently accurate
up to the development of plasticity in the section (see fig. 5.132). As a result, the
simulations were investigated only when the accuracy relative to theory was within
30%.

– The critical Vierendeel angles were identified using the von Mises equivalent stress at
the perforation edge. This helped establish both the range of possible angles and the
critical angle based on the peak von Mises stress at the perforation edge. In the simply
supported set, the estimates are compared directly with the estimates from the adopted
guidance (see fig. 5.87). Overall, it would appear that an approach similar to K. Chung
et al. (2001) could be a suitable (if somewhat conservative) candidate for fully fixed
cases.
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– The internal force distribution was examined in detail for the critical perforations for
both the simply supported and fully fixed sets. There appears to be some correlation
between the internal shear and axial force and the estimated critical angle although it
would appear that the peak von Mises stress beyond local yield is a poor predictor, since
the extrapolated nodal value is dependent on the element size.

– The longitudinal shear at the web-posts was found to be consistently about 40 - 50% of
the predictions from guidance (see § 5.2.4 & § 5.3.4), indicating that the assumptions
in theory may be leading to overestimation at the web.
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6.3 Recommendations for further work

• In order to examine M7 further, a calibration algorithm could be developed that can auto-
matically ’fit’ a set of input concrete data from physical experiments. This would allow a
better investigation of the model and its capabilities.

• Due to the lack of suitable experimental data, a series of physical experiments are needed to
further validate and extend the numerical investigation. These experiments should include
continuous composite perforated beams to investigate the slab behaviour near the perforation
and the behaviour during loading.

• The numerical investigation should be extended to cover material parameters (steel & con-
crete behaviour mainly).

• The current data fits describing the relationship between the normalised beam capacity and
the examined parameters and ratios (summarised in Table 4.12 to 4.14) can be improved
further to provide guidance beyond the examined parameter ranges. The equations used for
the fits can also be improved upon to reflect the physical behaviour more accurately.

• Several of mesh_gen’s capabilities were not used due to time limitations. A future study can
be extended to cover the connection geometry in detail (for example, theendplate & bolt
geometry, material and contact) as well as the buckling behaviour of the beams.1

• ABAQUS/Explicit was found to be a useful tool (overcoming some ABAQUS/Implicit limi-
tations) when examining the nonlinear material behaviour of structural concrete as it offers
the potential to capture the behaviour up to the point of maximum capacity.

– In order to run quasi-static simulations efficiently, mass scaling is used to increase the
predicted stable time increment to the value defined during model generation. Currently,
the mass scaling settings are semi-automated in inp_gen but this could be automated
to allow large scale ABAQUS/Explicit FE simulations (as was done for ABAQUS/Im-
plicit).

• The methods developed for this project can be used alongside the FE data to extend the
guidance to cover moment-resisting composite perforated beam design. This task would be
particularly effective with input from industry.

– The axial forces at the perforation sections can be examined using the same approach as
for the vertical shear force. This would allow a detailed examination of the axial force
distribution among the concrete slab and steel tees.

– An improved NA algorithm could also be used to investigate the web-post bending
failure mode further, as it could be used to establish how it develops during loading.

– The slab behaviour near the support can be examined further, focusing on the behaviour
beyond concrete cracking across the slab width. Preliminary simulations (not included
in the thesis) have shown that the concrete cracks outwards from the beam, with the
inclusion of reinforcement preventing a drop in stiffness and capacity, in contrast to an
unreinforced slab which reverts to the non-composite steel beam behaviour.

– The shear stud influence can be examined in greater detail and improvements to the
mesh generator can model the stud geometry and shear stud-concrete slab contact more

1Some preliminary composite simulations have shown that the added complexity from buckling behaviour may
necessitate further improvements in the methodology. Additionally, the Riks solver was found to be ineffective, with
the solver often tracing an unintended equilibrium path (often unloading the beam in the process instead of loading
it as intended).
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realistically. Currently, the studs do not model separation from the concrete, leading
to tensile stresses developing in the concrete and local failure, and are not capturing
punching shear within the slab in their current form.

• The Vierendeel failure mode can be investigated further by making use of the novel internal
force and moment distribution techniques developed in this thesis (see § 2.5).

• The NA algorithm can be improved to allow more accurate NA detection.

– The current software version does not succesfully identify bending in an inclined tee (as
required for Vierendeel calculations) but can be extended to do so by improving the NA
algorithm to cover cases with primarily axial loading.

– Improvements include producing an equivalent field from the input which would allow
decomposition to an axial and bending component.

6.4 Summary of appendices

The Appendices following this chapter are supplementary to this thesis and contain the source
code for the most important components of the software developed in chapter 2 and the M7
implementation shown in chapter 3.

• Appendix A contains the source code for the main functions used during the mesh generation
procedure (mesh_gen.m)

• Appendix B contains the source code for the input generator, inp_gen

• Appendix C contains the source code for the Python software developed to automate the FE
data extraction process (shown in § 2.4)

• Appendix D presents the software used to process the extracted FE data (as shown in § 2.5)

• Appendix E contains the Matlab implementation of the M7 microplane model for concrete

• Appendix F presents the point simulation routine used to simulate a variety of applied strain
states (which, with minor modifications, was used to simulate multiaxial strain states)

• Appendix G presents a copy of the Fortran M7 microplane model implementation into a
UMAT, directly compatible with ABAQUS 6.13.
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Appendix A

Mesh generator

A.1 Source code, mesh_gen()

1 function [beam , element , elements_B31 , sequence , reinf ,...

2 flange , stiffener, endplate , nodes_B31_partial , s_nodes ,...

3 bolt , midspan] ...

4 = ...

5 mesh_gen(tol , inp , meshgen , LHS , RHS , diameter , cell_number , centres , span

↪→ ,...

6 top_t_depth , top_t_thickness , top_t_flange ,...

7 top_t_flange_thickness , top_t_strength ,...

8 bot_t_depth , bot_t_thickness , bot_t_flange ,...

9 bot_t_flange_thickness , bot_t_strength , stiffener ,...

10 slab , cylinder_strength , mesh_area ,...

11 mesh_yield , stud_diameter , stud_height , stud_count_total ,...

12 stud, endplate , initial ,...

13 intermediate_node_count , x_node_count_top , y_node_count_top ,...

14 x_node_count_bot , y_node_count_bot , flange , bolt , seeding , reinf ,

↪→ cellremesh)

15

16 % CURRENT (under development)

17

18 % ------------------------------------------------------------------

19 % INITIAL

20 total_endspace = LHS - diameter /2;

21 cell_side = (centres - diameter)/2;

22 if (total_endspace - cell_side) >= tol

23 initial.length = (total_endspace - cell_side);

24 initial.LHS = LHS - initial.length;

25 else

26 initial.length = 0;

27 initial.LHS = LHS;

28 end

29 % ------------------------------------------------------------------

30 % CELL NODE MESH GENERATION

31 [beam.nodes.inicell , element_S4 , perforation_nodes_temp , element , beam , midspan] = cell_mesh(tol ,

↪→ x_node_count_top , y_node_count_top , ...

32 x_node_count_bot , y_node_count_bot , ...

33 intermediate_node_count , ...

34 diameter , cell_number , centres , cell_side , span , top_t_depth , bot_t_depth

↪→ , ...

35 initial , bolt , cellremesh , meshgen , inp);

36

37 % WRITE element_S4 TO THE RELEVANT SECTION

38 % ------------------------------------------------------------------

39 % [dump1 , dump2 , perforation_count] = size(perforation_nodes_temp)

40

41 % % PLOTTING MESH using the element_S4 array

42 % hold on

43 % for I = 1:size(element.S4.topology)

44 % A = beam.nodes.total(find(beam.nodes.total(:, 1) == element.S4.topology(I, 2)), :);
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45 % B = beam.nodes.total(find(beam.nodes.total(:, 1) == element.S4.topology(I, 3)), :);

46 % C = beam.nodes.total(find(beam.nodes.total(:, 1) == element.S4.topology(I, 4)), :);

47 % D = beam.nodes.total(find(beam.nodes.total(:, 1) == element.S4.topology(I, 5)), :);

48 % plot([A(1, 2); B(1, 2); C(1, 2); D(1, 2); A(1, 2)], [A(1, 3); B(1, 3); C(1, 3); D(1, 3); A(1,

↪→ 3)], '-')

49 % end

50 % hold off

51 % axis equal

52

53 % ------------------------------------------------------------------

54 % ------------------------------------------------------------------

55

56 % GENERATING THE INITIAL WEB POST

57 % Determine the number of nodes along the length and depth (x and y axes)

58

59 [beam , element , initial] = initialmesh(tol , beam , element , initial , y_node_count_top ,

↪→ y_node_count_bot , meshgen);

60

61 % ------------------------------------------------------------------

62 % ------------------------------------------------------------------

63 % GENERATING THE ENDPLATE

64

65 if strcmp(meshgen.settings.endplate , 'True')

66 [beam , ~, element , mod_ , bolt, endplate] = endplate_mesh(tol , beam , bolt , flange , initial ,

↪→ top_t_flange , bot_t_flange , top_t_depth , bot_t_depth , element, endplate , meshgen);

67 else

68 [~, flange , ~, mod_ , ~, ~] = endplate_mesh(tol , beam , bolt , flange , initial , top_t_flange ,

↪→ bot_t_flange , top_t_depth , bot_t_depth , element, endplate , meshgen);

69 % Add z-axis to perforation node matrix

70 beam.nodes.total(:, 4) = zeros(length(beam.nodes.total(:, 1)), 1);

71 end

72

73 % ------------------------------------------------------------------

74 % ------------------------------------------------------------------

75

76 % GENERATING THE BEAM TOP AND BOTTOM FLANGES

77

78 [element , beam , flange , ftnl , fbnl , mod_top] = flanges_mesh(tol , inp , meshgen , beam , flange , mod_ ,

↪→ bolt , midspan, endplate , element , top_t_flange , bot_t_flange);

79

80 % ------------------------------------------------------------------

81 % ------------------------------------------------------------------

82 % % PLOTTING MESH using the element_S4 array

83 % hold on

84 % for I = 1: length(element.S4.topology)

85 % A = beam.nodes.total(find(beam.nodes.total == element.S4.topology(I, 2)), :);

86 % B = beam.nodes.total(find(beam.nodes.total == element.S4.topology(I, 3)), :);

87 % C = beam.nodes.total(find(beam.nodes.total == element.S4.topology(I, 4)), :);

88 % D = beam.nodes.total(find(beam.nodes.total == element.S4.topology(I, 5)), :);

89 % plot3 ([A(1, 2); B(1, 2); C(1, 2); D(1, 2); A(1, 2)], [A(1, 3); B(1, 3); C(1, 3); D(1, 3); A(1,

↪→ 3)], [A(1, 4); B(1, 4); C(1, 4); D(1, 4); A(1, 4)], '-')

90 % end

91 % hold off

92 % axis equal

93

94 % ------------------------------------------------------------------

95 % ------------------------------------------------------------------

96 % Generating the stiffener plates

97 if meshgen.specs.stiffener == 1

98 [beam , element , stiffener] = stiffeners_mesh(tol , inp , span , beam , element , stiffener);

99 end

100

101 % ------------------------------------------------------------------

102 % ------------------------------------------------------------------

103

104 if meshgen.specs.slab.switch == 1

105 if strcmp(meshgen.settings.studs , 'True')

106 % GENERATING THE STUD MESH

107 [nodes_B31_full , nodes_B31_partial , elements_B31 , beam] = stud_mesh(tol , flange , element , beam ,

↪→ stud);

108 else

109 nodes_B31_full = []; % This empty matrix is used to fix the fact that no

110 % B31 stud elements are produced
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111 nodes_B31_partial = [];

112 elements_B31 = 0; % This is only used in the elements count for the slab

113 end

114

115 % GENERATING THE SLAB MESH

116 [beam , sequence , s_nodes] = slab_mesh(tol , flange , beam , seeding , slab , mod_ , bolt , nodes_B31_full ,

↪→ elements_B31 , mod_top , reinf , meshgen);

117

118 % csvwrite('elements_C3D8.csv ', sequence , 0, 0)

119 % ------------------------------------------------------------------

120 % ------------------------------------------------------------------

121

122 % GENERATING THE LONGITUDINAL REINFORCEMENT MESH

123 if strcmp(meshgen.settings.reinf , 'True')

124 reinf = reinf_mesh(tol , reinf , s_nodes , sequence);

125 B31_count = reinf.perm.elements(end , 1) + 100000;

126 else

127 B31_count = sequence(end , 1) + 100000;

128 end

129 % GENERATING THE LATERAL REINFORCEMENT MESH

130 if strcmp(meshgen.settings.lat_reinf , 'True')

131 reinf = reinf_mesh_lat(tol , reinf , s_nodes , sequence , B31_count);

132 end

133 else

134 elements_B31 = 0;

135 nodes_B31_full = 0;

136 nodes_B31_partial = 0;

137 sequence = 0;

138 s_nodes = 0;

139 reinf = 0;

140 end

141

142 % ------------------------------------------------------------------

143 % % ------------------------------------------------------------------

144 % % PLOTTING MESH using the element_S4 array

145 % hold on

146 % for I = 1: length(element.S4.topology)

147 % A = beam.nodes.total(find(beam.nodes.total(:, 1) == element.S4.topology(I, 2)), :);

148 % B = beam.nodes.total(find(beam.nodes.total(:, 1) == element.S4.topology(I, 3)), :);

149 % C = beam.nodes.total(find(beam.nodes.total(:, 1) == element.S4.topology(I, 4)), :);

150 % D = beam.nodes.total(find(beam.nodes.total(:, 1) == element.S4.topology(I, 5)), :);

151 % plot3 ([A(1, 2); B(1, 2); C(1, 2); D(1, 2); A(1, 2)], [A(1, 3); B(1, 3); C(1, 3); D(1, 3); A(1,

↪→ 3)], [A(1, 4); B(1, 4); C(1, 4); D(1, 4); A(1, 4)], '-')

152 % end

153 % hold off

154 % axis equal

155

156 % % PLOTTING MESH using the s_nodes array

157 % hold on

158 % for I = 1: length(sequence(:, 1))

159 % A = beam.nodes.total(find(beam.nodes.total == sequence(I, 2)), :);

160 % B = beam.nodes.total(find(beam.nodes.total == sequence(I, 3)), :);

161 % C = beam.nodes.total(find(beam.nodes.total == sequence(I, 4)), :);

162 % D = beam.nodes.total(find(beam.nodes.total == sequence(I, 5)), :);

163 % E = beam.nodes.total(find(beam.nodes.total == sequence(I, 6)), :);

164 % F = beam.nodes.total(find(beam.nodes.total == sequence(I, 7)), :);

165 % G = beam.nodes.total(find(beam.nodes.total == sequence(I, 8)), :);

166 % H = beam.nodes.total(find(beam.nodes.total == sequence(I, 9)), :);

167 % plot3 ([A(1, 2); B(1, 2); C(1, 2); D(1, 2); A(1, 2); E(1, 2); F(1, 2); G(1, 2); H(1, 2); E(1, 2)

↪→ ], ...

168 % [A(1, 3); B(1, 3); C(1, 3); D(1, 3); A(1, 3); E(1, 3); F(1, 3); G(1, 3); H(1, 3); E(1, 3)

↪→ ], ...

169 % [A(1, 4); B(1, 4); C(1, 4); D(1, 4); A(1, 4); E(1, 4); F(1, 4); G(1, 4); H(1, 4); E(1, 4)

↪→ ], '-')

170 % end

171 % hold off

172 % axis equal
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A.1.1 cell_mesh()

1 function [perforation_nodes , element_S4 , perforation_nodes_temp , element , beam , midspan] = cell_mesh(

↪→ tol , x_node_count_top , y_node_count_top , ...

2 x_node_count_bot , y_node_count_bot , ...

3 intermediate_node_count , ...

4 diameter , cell_number , centres , cell_side , span , top_t_depth , bot_t_depth

↪→ , ...

5 initial , bolt , cellremesh , meshgen , inp)

6

7 % Generate the initial perforation with and without the bolt nodes

8 [perforation_nodes_withbolts , perforation_nodes , element_S4_withbolts , element_S4] =

↪→ cell_mesh_initial(tol , x_node_count_top , y_node_count_top , ...

9 x_node_count_bot , y_node_count_bot , ...

10 intermediate_node_count , ...

11 diameter , cell_side , top_t_depth , bot_t_depth , ...

12 initial , bolt , meshgen);

13

14 switch lower(cellremesh.switch)

15 case 'coarse '

16 cellremesh.cell_number = cell_number;

17 % cellremesh.format = [( perforation no.) (y_node_count_top_l) (x_node_count_top) (

↪→ y_node_count_top_r) (y_node_count_bot_r) (x_node_count_bot) (y_node_count_bot_l) (

↪→ intermediate_node_count) (diameter) (top_t_depth) (bot_t_depth)];

18 cellremesh = cell_remesh(tol , cellremesh , initial , meshgen);

19 end

20

21 switch lower(cellremesh.switch)

22 case 'coarse '

23 % Move the generated nodes from the initial (0,0) position to

24 % the correct position for the first perforation

25 for I = 1: length(cellremesh.perforation_nodes)

26 cellremesh.perforation_nodes{I} = cellplusconst(cellremesh.perforation_nodes{I}, round(initial.

↪→ LHS + initial.length , log10 (1/ tol)), 2);

27 end

28 perforation_nodes = cellremesh.perforation_nodes;

29 otherwise

30 % GENERATION of the rest of the perforated beam web 's half ---------

31 % Translate first perforation so that it is in the correct initial position

32 % since during the generation its centre was at (0, 0)

33 perforation_nodes (:, 2) = perforation_nodes (:, 2) + round(initial.LHS + initial.length , log10 (1/

↪→ tol));

34 end

35 perforation_nodes_withbolts (:, 2) = perforation_nodes_withbolts (:, 2) + round(initial.LHS + initial.

↪→ length , log10 (1/tol));

36

37

38 switch lower(cellremesh.switch)

39 case 'coarse '

40 % Move the perforations to their appropriate positions (except the first

41 % which is the initial and handled separately)

42 cellremesh.perforation_nodes_temp = cellremesh.perforation_nodes;

43 for I = 2: cellremesh.cell_number

44 cellremesh.perforation_nodes_temp{I} = cellplusconst(cellremesh.perforation_nodes_temp{I}, (I -

↪→ 1)*100000 , 1);

45 cellremesh.perforation_nodes_temp{I} = cellplusconst(cellremesh.perforation_nodes_temp{I}, (I -

↪→ 1)*round(centres , log10 (1/tol)), 2);

46 cellremesh.perforation_nodes_temp{I} = cellplusconst(cellremesh.perforation_nodes_temp{I}, 0,

↪→ 3);

47 end

48 perforation_nodes_temp = cellremesh.perforation_nodes_temp;

49 otherwise

50 % Produce the nodes for the rest of the perforated sections

51 % perforation_nodes_temp (:, :, 1) = perforation_nodes_withbolts;

52 for I = 2: cell_number % Except the first which is handled separately

53 perforation_nodes_temp (:, 1, I) = perforation_nodes (:, 1) + (I - 1) *100000;

54 perforation_nodes_temp (:, 2, I) = perforation_nodes (:, 2) + (I - 1)*round(centres , log10 (1/ tol)

↪→ );

55 perforation_nodes_temp (:, 3, I) = perforation_nodes (:, 3);

56 end

57 end
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58

59 % Producing ABAQUS compatible list of perforation nodes

60 beam.nodes.total = [];

61 beam.nodes.total = [beam.nodes.total; perforation_nodes_withbolts ];

62 switch lower(cellremesh.switch)

63 case 'coarse '

64 for I = 2: cellremesh.cell_number

65 beam.nodes.total = [beam.nodes.total; cell2mat(cellremesh.perforation_nodes_temp{I})];

66 end

67 otherwise

68 for I = 2: cell_number % Except the first which is handled separately

69 beam.nodes.total = [beam.nodes.total; perforation_nodes_temp (:, :, I)];

70 end

71 end

72 % ------------------------------------------------------------------

73 switch lower(cellremesh.switch)

74 case 'coarse '

75 element_S4_temp = cellremesh.element_S4;

76 for I = 2: cellremesh.cell_number % Except the first which is handled separately

77 previouselecount = cell2mat(cellremesh.element_S4{I});

78 element_S4_temp{I} = cellplusconst(element_S4_temp{I}, (I - 1)*previouselecount(end , 1), 1);

79 element_S4_temp{I} = cellplusconst(element_S4_temp{I}, (I - 1)*100000 , 2:5);

80 end

81 otherwise

82 % Element generation using naming convention

83 % element_S4_temp (:, :, 1) = element_S4;

84 for I = 2: cell_number % Except the first which is handled separately

85 element_S4_temp (:, 1, I) = element_S4 (:, 1) + (I - 1)*element_S4(end , 1);

86 element_S4_temp (:, 2:5, I) = element_S4 (:, 2:5) + (I - 1) *100000;

87 end

88 end

89

90 % Producing ABAQUS compatible list of perforation elements

91 element_S4 = [];

92 element_S4 = [element_S4; element_S4_withbolts ];

93 switch lower(cellremesh.switch)

94 case 'coarse '

95 for I = 1: cell_number - 1 % Except the first which is handled separately

96 element_S4 = [element_S4; cell2mat(element_S4_temp{I})];

97 end

98 otherwise

99 for I = 1: cell_number - 1 % Except the first which is handled separately

100 element_S4 = [element_S4; element_S4_temp (:, :, I)];

101 end

102 end

103

104 % Replace LHS nodes of each perforation with the correct RHS nodes from the

105 % previous perforation. This should happen for all perforations other than

106 % the first.

107 % beam.nodes.nondupe = beam.nodes.total;

108 for I = 2: length(element_S4 (1, 2:end)) + 1

109 for J = 1: length(element_S4 (:, 2))

110 K = find(beam.nodes.total(:, 1) == element_S4(J,I));

111 % % Note that abs(log10(tol) - 1) can be used instead of the default 6 or abs(log10(tol)) on its

↪→ own

112 % % since it was found that certain nodes for given meshing configurations would not merge

113 % % correctly. Bear in mind if node problems come up again , it might need to be adjusted

114 % % for certain models again.

115 % [LIA , LOCB] = ismember(round(beam.nodes.total(K, 2:3), log10 (1/ tol)), round(beam.nodes.total

↪→ (1:(K-1), 2:3), log10 (1/ tol)), 'rows ');

116 % This code relies on the fact that the previous perforation 's nodes

117 % would be located below (numerically) the current node being examined.

118

119 % Maybe improve runtime by using comparison only on nodes within an x-axis range

120 % to limit the number of nodes examined?

121 [LIA , LOCB] = comparison(tol , beam.nodes.total(K, :), beam.nodes.total (1:(K-1), :));

122 if LIA == 1

123 element_S4(J,I) = beam.nodes.total(LOCB , 1);

124 % beam.nodes.total(K, :) = []; % Remove the node entry to prevent

125 % % % the node from interfering with

126 % % % subsequent calculations

127 end

128 end
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129 end

130

131 midspan.length = span /2;

132 if strcmp(inp.settings.midspansymmetry , 'Symmetric ')

133 % By applying symmetry , remove half the elements:

134 [I, J] = size(element_S4);

135 element.S4.logic.perm = zeros(I, J - 1);

136 % Find all perforation nodes which are located before the

137 % specified length

138 y = beam.nodes.total(beam.nodes.total(:, 2) <= midspan.length + tol , :);

139 midspan.nodes = unique(y(:, 1), 'stable ');

140 % Maintain only those elements which contain only the above nodes

141 for I = 1: length(midspan.nodes(:, 1))

142 element.S4.logic.temp = element_S4 (:, 2:5) == midspan.nodes(I, 1);

143 element.S4.logic.perm = element.S4.logic.perm + element.S4.logic.temp;

144 end

145 [LIA , LOCB] = ismember(element.S4.logic.perm , ones(1, 4), 'rows');

146 element.S4.topology = element_S4(LIA , :); % Use only the elements

147 % whose nodes lie within the midspan.

148 elseif strcmp(inp.settings.midspansymmetry , 'Unsymmetric ')

149 [I, J] = size(element_S4);

150 element.S4.logic.perm = zeros(I, J - 1);

151 % Find all perforation nodes which exist in the beam

152 y = beam.nodes.total(beam.nodes.total(:, 2) <= span + tol , :);

153 y = unique(y(:, 1), 'stable ');

154 % Maintain only those elements which contain only the above nodes

155 for I = 1: length(y(:, 1))

156 element.S4.logic.temp = element_S4 (:, 2:5) == y(I, 1);

157 element.S4.logic.perm = element.S4.logic.perm + element.S4.logic.temp;

158 end

159 [LIA , LOCB] = ismember(element.S4.logic.perm , ones(1, 4), 'rows');

160 element.S4.topology = element_S4(LIA , :); % Use only the elements

161 % with nodes in the beam (i.e. remove any elements which would cause

162 % errors during mesh generation)

163 end

164

165 % Rename the elements to enforce numerical continuity (not strictly necessary)

166 for I = 1: length(element.S4.topology(:, 1))

167 element.S4.topology(I, 1) = I;

168 end

169 element.S4.perforations = element.S4.topology;
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A.1.2 cell_mesh_initial()

1 function [perforation_nodes_withbolts , perforation_nodes , element_S4_withbolts , element_S4] =

↪→ cell_mesh_initial(tol , x_node_count_top , y_node_count_top , ...

2 x_node_count_bot , y_node_count_bot , ...

3 intermediate_node_count , ...

4 diameter , cell_side , top_t_depth , bot_t_depth , ...

5 initial , bolt , meshgen)

6

7 % This function generates the initial perforation of the beam , with and without additional nodes

8 % to account for the bolt locations.

9 % ------------------------------------------------------------------

10 % General

11 radius = diameter /2;

12 intermediate_element_count = (2 + intermediate_node_count) - 1; % min of 2 nodes for a perforation.

13

14 % ------------------------------------------------------------------

15 % ------------------------------------------------------------------

16 % Initial perforation WITH bolt nodes (should not be for use in subsequent perforations)

17 top_t_additional = unique(bolt.locations(find(bolt.locations (:, 2) >= 0 & bolt.locations(:, 2) <=

↪→ top_t_depth), 2), 'stable ');

18 bot_t_additional = unique(bolt.locations(find(bolt.locations (:, 2) < 0 & bolt.locations(:, 2) >= -

↪→ bot_t_depth), 2), 'stable ');

19

20 % Discretization of sides [node_number x y z]

21 % Top Tee left hand side nodes

22 top_t_LHS_withbolts = [];

23 top_t_LHS_withbolts_element_count = y_node_count_top - 1;

24 top_t_LHS_withbolts_length = top_t_depth/top_t_LHS_withbolts_element_count;

25 for I = 1: y_node_count_top

26 top_t_LHS_withbolts(I, :) = [0 -initial.LHS (I - 1)*top_t_LHS_withbolts_length ];

27 end

28 for I = 1: length(top_t_additional (:, 1))

29 top_t_LHS_withbolts = [top_t_LHS_withbolts; 0 -initial.LHS top_t_additional(I, 1)];

30 end

31 top_t_LHS_withbolts = sortrows(top_t_LHS_withbolts , [3]);

32 top_t_LHS_withbolts (:, 1) = zeros(length(top_t_LHS_withbolts (:, 1)), 1);

33 top_t_LHS_withbolts = unique(top_t_LHS_withbolts , 'rows');

34

35 % Top Tee top nodes along length of beam section

36 top_t = [];

37 top_t_element_count = x_node_count_top - 1;

38 top_t_length = (initial.LHS + radius + cell_side)/top_t_element_count;

39 for I = 2: x_node_count_top % The first node already exists so start from 2

40 top_t(I - 1, :) = [0 ((I - 1)*top_t_length - (initial.LHS)) top_t_depth ];

41 end

42 % Add the additional requested nodes or perforation lateral mesh nodes

43 if strcmp(meshgen.settings.lat.switch , 'True') | meshgen.reinf_lat.absolute.switch == 1

44 % Shift the lat. reinforcement positions to match the perforation locations

45 % (since they haven 't been moved from the centre of the perforation yet)

46 lat_locs_shifted = meshgen.specs.lat.locs - initial.LHS - initial.length;

47 % Define the extents within which to search for additional nodes to add

48 extents = [-(initial.LHS) top_t(end , 2)];

49 % Store the applicable locations to insert

50 lat_locs = lat_locs_shifted(extents (1) < lat_locs_shifted & lat_locs_shifted <= extents (2)) ';

51

52 % Construct the matrix of additional nodes to insert

53 for I = 1: length(lat_locs)

54 if ~any(abs(lat_locs(I) - top_t(:, 2)) <= tol)

55 top_t = [top_t; 0 lat_locs(I) top_t_depth ];

56 end

57 end

58 top_t(:, 1) = zeros(length(top_t(:, 1)), 1);

59 top_t = unique(top_t , 'rows');

60 top_t = sortrows(top_t , [2]);

61 end

62

63 % Top Tee right hand side nodes

64 top_t_RHS = [];

65 top_t_RHS_element_count = y_node_count_top - 1;

66 top_t_RHS_length = top_t_depth/top_t_RHS_element_count;
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67 for I = y_node_count_top :-1:2

68 top_t_RHS(I - 1, :) = [0 (radius + cell_side) (top_t_depth - (I - 1)*top_t_RHS_length)];

69 end

70

71 % Bottom Tee RHS nodes

72 bot_t_RHS = [];

73 bot_t_RHS_element_count = y_node_count_bot - 1;

74 bot_t_RHS_length = bot_t_depth/bot_t_RHS_element_count;

75 for I = 2: y_node_count_bot % Mid LHS node created previously

76 bot_t_RHS(I - 1, :) = [0 (radius + cell_side) -(I - 1)*bot_t_RHS_length ];

77 end

78

79 % Bottom Tee length nodes

80 bot_t = [];

81 bot_t_element_count = x_node_count_bot - 1;

82 bot_t_length = (initial.LHS + radius + cell_side)/bot_t_element_count;

83 for I = 2: x_node_count_bot -1 % The first node already exists so start from 2 and last node handled by

↪→ LHS

84 bot_t(I - 1, :) = [0 (( radius + cell_side) - (I - 1)*bot_t_length) -bot_t_depth ];

85 end

86 % Add the additional requested nodes or perforation lateral mesh nodes

87 if strcmp(meshgen.settings.lat.switch , 'True')

88 % lat_locs_shifted = lat_locs_shifted from before

89 % extents = extents from before

90 % Store the applicable locations to insert

91 % lat_locs = lat_locs from before

92

93 % Construct the matrix of additional nodes to insert

94 % Note that this can produce duplicates at the LHS and RHS extents

95 % of the perforation cell

96 for I = 1: length(lat_locs)

97 if ~any(abs(lat_locs(I) - bot_t(:, 2)) <= tol)

98 bot_t = [bot_t; 0 lat_locs(I) -bot_t_depth ];

99 end

100 end

101 % bot_t(:, 1) = zeros(length(bot_t(:, 1)), 1);

102 bot_t = unique(bot_t , 'rows');

103 bot_t = sortrows(bot_t , [-2]);

104 end

105

106 % Bottom Tee LHS nodes

107 bot_t_LHS_withbolts = [];

108 bot_t_LHS_withbolts_element_count = y_node_count_bot - 1;

109 bot_t_LHS_withbolts_length = bot_t_depth/bot_t_LHS_withbolts_element_count;

110 for I = 1: y_node_count_bot -1 % Mid LHS node created previously

111 bot_t_LHS_withbolts(I, :) = [0 -initial.LHS -(y_node_count_bot - I)*bot_t_LHS_withbolts_length ];

112 end

113 for I = 1: length(bot_t_additional (:, 1))

114 bot_t_LHS_withbolts = [bot_t_LHS_withbolts; 0 -initial.LHS bot_t_additional(I, 1)];

115 end

116 bot_t_LHS_withbolts = sortrows(bot_t_LHS_withbolts , [3]);

117 bot_t_LHS_withbolts (:, 1) = zeros(length(bot_t_LHS_withbolts (:, 1)), 1);

118 bot_t_LHS_withbolts = unique(bot_t_LHS_withbolts , 'rows');

119

120

121 if abs(diameter - 0) <= tol

122 unique_xs = unique(round ([top_t(:, 2); top_t_LHS_withbolts (:, 2)], log10 (1/ tol)));

123 number_xs = length(unique_xs);

124 left_nodes = [top_t_LHS_withbolts; bot_t_LHS_withbolts ];

125 unique_ys = unique(left_nodes (:, 3));

126 number_ys = length(unique_ys);

127

128 % Produce the rest of the nodes using the left hand side

129 % nodes and the top T nodes (which include any reinforcement

130 % nodes as necessary)

131 perforation_nodes_withbolts = [];

132 for I = 1: number_ys

133 addition = [zeros(number_xs , 1) unique_xs unique_ys(I)*ones(number_xs , 1)];

134 perforation_nodes_withbolts = [perforation_nodes_withbolts; addition ];

135 end

136

137 % Relabel elements to follow naming convention as shown below

138 % from top left to bottom right:
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139 % 1 - 2 - 3

140 % 4 - 5 - 6

141 % 7 - 8 - 9

142 % 10 - 11 - 12

143 % 13 - 14 - 15

144 perforation_nodes_withbolts = sortrows(perforation_nodes_withbolts , [-3 2]);

145 for I = 1: length(perforation_nodes_withbolts (:, 1))

146 perforation_nodes_withbolts(I, 1) = I;

147 end

148

149 % Assemble the elements

150 unique_number = number_xs;

151 kounter = 1;

152 for I = 1: length(perforation_nodes_withbolts (:, 1)) - unique_number % All except the last row (

↪→ which includes the extra nodes from the bolts)

153 if mod(I, unique_number) ~= 0

154 A = perforation_nodes_withbolts(I, :);

155 B = perforation_nodes_withbolts(I + 1, :);

156 C = perforation_nodes_withbolts(I + 1 + unique_number , :);

157 D = perforation_nodes_withbolts(I + unique_number , :);

158 element_S4_withbolts(kounter , :) = [kounter A(1) D(1) C(1) B(1)];

159 kounter = kounter + 1;

160 end

161 end

162 else

163 % Section nodes (external)

164 perforation_external_nodes_withbolts = [top_t_LHS_withbolts;

165 top_t;

166 top_t_RHS;

167 bot_t_RHS;

168 bot_t;

169 bot_t_LHS_withbolts ];

170 % Remove duplicates

171 perforation_external_nodes_withbolts = unique(round(perforation_external_nodes_withbolts , log10 (1/

↪→ tol)), 'rows', 'stable ');

172 % Renumbering the nodes properly

173 for I = 1: length(perforation_external_nodes_withbolts)

174 perforation_external_nodes_withbolts(I,1) = I;

175 end

176 % ------------------------------------------------------------------

177 % INTERMEDIATE NODE GENERATION

178 x_axis = [1; 0];

179 y_axis = [0; 1];

180 intermediate_nodes_withbolts = [];

181 kount = perforation_external_nodes_withbolts(end , 1);

182 for J = 1: intermediate_node_count

183 for I = 1: length(perforation_external_nodes_withbolts)

184 if perforation_external_nodes_withbolts(I, 3) < 0

185 sygn = -1;

186 else

187 sygn = 1;

188 end

189 theta = sygn*acosd(dot(x_axis , perforation_external_nodes_withbolts(I, 2:3))/(sqrt(x_axis (1)^2

↪→ + x_axis (2)^2)*sqrt(perforation_external_nodes_withbolts(I,2)^2 +

↪→ perforation_external_nodes_withbolts(I,3)^2)));

190 intermediate_coords_withbolts = perforation_external_nodes_withbolts(I, 2:3) - radius *[cosd(

↪→ theta) sind(theta)];

191 intermediate_length_withbolts = sqrt(intermediate_coords_withbolts (1,1)^2 +

↪→ intermediate_coords_withbolts (1,2)^2)/intermediate_element_count;

192 kount = kount + 1;

193 intermediate_nodes_withbolts(kount -perforation_external_nodes_withbolts(end , 1), :) = [kount (

↪→ perforation_external_nodes_withbolts(I, 2:3) - J*intermediate_length_withbolts *[cosd(

↪→ theta) sind(theta)])];

194 end

195 end

196 % ------------------------------------------------------------------

197 % INTERNAL NODE GENERATION

198 x_axis = [1; 0];

199 y_axis = [0; 1];

200 perforation_internal_nodes_withbolts = [];

201 if intermediate_node_count < 0

202 warning('Intermediate node count cannot be negative ')

203 elseif intermediate_node_count == 0
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204 prev_count = perforation_external_nodes_withbolts(end , 1);

205 elseif intermediate_node_count > 0

206 prev_count = intermediate_nodes_withbolts(end , 1);

207 end

208

209 for I = 1: length(perforation_external_nodes_withbolts)

210 if perforation_external_nodes_withbolts(I, 3) < 0

211 sygn = -1;

212 else

213 sygn = 1;

214 end

215 theta = sygn*acosd(dot(x_axis , perforation_external_nodes_withbolts(I, 2:3))/(sqrt(x_axis (1)^2 +

↪→ x_axis (2)^2)*sqrt(perforation_external_nodes_withbolts(I,2)^2 +

↪→ perforation_external_nodes_withbolts(I,3)^2)));

216 kount = kount + 1;

217 perforation_internal_nodes_withbolts(kount -prev_count , :) = [kount radius *[cosd(theta) sind(theta

↪→ )]];

218 end

219 perforation_nodes_withbolts = [perforation_external_nodes_withbolts; intermediate_nodes_withbolts;

↪→ perforation_internal_nodes_withbolts ];

220 [external_node_count_withbolts , dump1 , dump2] = size(perforation_external_nodes_withbolts);

221 % ------------------------------------------------------------------

222 % PERFORATION SHELL NODE CONNECTIVITIES

223 cell_node_count = length(perforation_nodes_withbolts);

224 for I = 1:( cell_node_count - external_node_count_withbolts)

225 if mod(I, external_node_count_withbolts) == 0

226 A = perforation_nodes_withbolts(I,1);

227 B = perforation_nodes_withbolts (1 + (I/external_node_count_withbolts - 1)*

↪→ external_node_count_withbolts , 1);

228 C = perforation_nodes_withbolts (1 + (I/external_node_count_withbolts - 1)*

↪→ external_node_count_withbolts + external_node_count_withbolts , 1);

229 D = perforation_nodes_withbolts(I + 1 + external_node_count_withbolts - 1, 1);

230 element_S4_withbolts(I, :) = [I A D C B];

231 else

232 A = perforation_nodes_withbolts(I,1);

233 B = perforation_nodes_withbolts(I + 1, 1);

234 C = perforation_nodes_withbolts(I + 1 + external_node_count_withbolts , 1);

235 D = perforation_nodes_withbolts(I + 1 + external_node_count_withbolts - 1, 1);

236 element_S4_withbolts(I, :) = [I A D C B];

237 end

238 end

239 end

240 % ------------------------------------------------------------------

241 % ------------------------------------------------------------------

242 % Initial perforation WITHOUT bolt nodes (for use in subsequent perforations)

243

244 % Discretization of sides [node_number x y z]

245 % Top Tee left hand side nodes

246 top_t_LHS = [];

247 top_t_LHS_element_count = y_node_count_top - 1;

248 top_t_LHS_length = top_t_depth/top_t_LHS_element_count;

249 for I = 1: y_node_count_top

250 top_t_LHS(I, :) = [0 -(radius + cell_side) (I - 1)*top_t_LHS_length ];

251 end

252

253 % Top Tee top nodes along length of beam section

254 top_t = [];

255 top_t_element_count = x_node_count_top - 1;

256 top_t_length = 2*( radius + cell_side)/top_t_element_count;

257 for I = 2: x_node_count_top % The first node already exists so start from 2

258 top_t(I - 1, :) = [0 ((I - 1)*top_t_length - (radius + cell_side)) top_t_depth ];

259 end

260

261 % Bottom Tee length nodes

262 bot_t = [];

263 bot_t_element_count = x_node_count_bot - 1;

264 bot_t_length = 2*( radius + cell_side)/bot_t_element_count;

265 for I = 2: x_node_count_bot -1 % The first node already exists so start from 2 and last node handled by

↪→ LHS

266 bot_t(I - 1, :) = [0 (( radius + cell_side) - (I - 1)*bot_t_length) -bot_t_depth ];

267 end

268

269 % Bottom Tee LHS nodes
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270 bot_t_LHS = [];

271 bot_t_LHS_element_count = y_node_count_bot - 1;

272 bot_t_LHS_length = bot_t_depth/bot_t_LHS_element_count;

273 for I = 1: y_node_count_bot -1 % Mid LHS node created previously

274 bot_t_LHS(I, :) = [0 -(radius + cell_side) -(y_node_count_bot - I)*bot_t_LHS_length ];

275 end

276

277 if abs(diameter - 0) <= tol

278 unique_xs = unique(round ([top_t(:, 2); top_t_LHS (:, 2)], log10 (1/tol)));

279 number_xs = length(unique_xs);

280 left_nodes = [top_t_LHS; bot_t_LHS ];

281 unique_ys = unique(left_nodes (:, 3));

282 number_ys = length(unique_ys);

283

284 % Produce the rest of the nodes using the left hand side

285 % nodes and the top T nodes (which include any reinforcement

286 % nodes as necessary)

287 perforation_nodes = [];

288 for I = 1: number_ys

289 addition = [zeros(number_xs , 1) unique_xs unique_ys(I)*ones(number_xs , 1)];

290 perforation_nodes = [perforation_nodes; addition ];

291 end

292

293 % Relabel elements to follow naming convention as shown below

294 % from top left to bottom right:

295 % 1 - 2 - 3

296 % 4 - 5 - 6

297 % 7 - 8 - 9

298 % 10 - 11 - 12

299 % 13 - 14 - 15

300 perforation_nodes = sortrows(perforation_nodes , [-3 2]);

301 for I = 1: length(perforation_nodes (:, 1))

302 perforation_nodes(I, 1) = I;

303 end

304

305 % Assemble the elements

306 unique_number = number_xs;

307 kounter = 1;

308 for I = 1: length(perforation_nodes (:, 1)) - unique_number % All except the last row (which includes

↪→ the extra nodes from the bolts)

309 if mod(I, unique_number) ~= 0

310 A = perforation_nodes(I, :);

311 B = perforation_nodes(I + 1, :);

312 C = perforation_nodes(I + 1 + unique_number , :);

313 D = perforation_nodes(I + unique_number , :);

314 element_S4(kounter , :) = [kounter A(1) D(1) C(1) B(1)];

315 kounter = kounter + 1;

316 end

317 end

318 else

319 % Section nodes (external)

320 perforation_external_nodes = [top_t_LHS;

321 top_t;

322 top_t_RHS;

323 bot_t_RHS;

324 bot_t;

325 bot_t_LHS ];

326 % Remove duplicates

327 perforation_external_nodes = unique(round(perforation_external_nodes , log10 (1/tol)), 'rows', '

↪→ stable ');

328 % Renumbering the nodes properly

329 for I = 1: length(perforation_external_nodes)

330 perforation_external_nodes(I,1) = I + 100000;

331 end

332 % ------------------------------------------------------------------

333 % INTERMEDIATE NODE GENERATION

334 x_axis = [1; 0];

335 y_axis = [0; 1];

336 intermediate_nodes = [];

337 kount = perforation_external_nodes(end , 1) - 100000;

338 for J = 1: intermediate_node_count

339 for I = 1: length(perforation_external_nodes)

340 if perforation_external_nodes(I, 3) < 0
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341 sygn = -1;

342 else

343 sygn = 1;

344 end

345 theta = sygn*acosd(dot(x_axis , perforation_external_nodes(I, 2:3))/(sqrt(x_axis (1)^2 + x_axis

↪→ (2) ^2)*sqrt(perforation_external_nodes(I,2)^2 + perforation_external_nodes(I,3)^2)));

346 intermediate_coords = perforation_external_nodes(I, 2:3) - radius *[cosd(theta) sind(theta)];

347 intermediate_length = sqrt(intermediate_coords (1,1)^2 + intermediate_coords (1,2)^2)/

↪→ intermediate_element_count;

348 kount = kount + 1;

349 intermediate_nodes(kount -( perforation_external_nodes(end , 1) - 100000) , :) = [(kount + 100000)

↪→ (perforation_external_nodes(I, 2:3) - J*intermediate_length *[cosd(theta) sind(theta)])

↪→ ];

350 end

351 end

352 % ------------------------------------------------------------------

353 % INTERNAL NODE GENERATION

354 x_axis = [1; 0];

355 y_axis = [0; 1];

356 perforation_internal_nodes = [];

357 if intermediate_node_count < 0

358 warning('Intermediate node count cannot be negative ')

359 elseif intermediate_node_count == 0

360 prev_count = perforation_external_nodes(end , 1) - 100000;

361 elseif intermediate_node_count > 0

362 prev_count = intermediate_nodes(end , 1) - 100000;

363 end

364

365 for I = 1: length(perforation_external_nodes)

366 if perforation_external_nodes(I, 3) < 0

367 sygn = -1;

368 else

369 sygn = 1;

370 end

371 theta = sygn*acosd(dot(x_axis , perforation_external_nodes(I, 2:3))/(sqrt(x_axis (1)^2 + x_axis (2)

↪→ ^2)*sqrt(perforation_external_nodes(I,2)^2 + perforation_external_nodes(I,3)^2)));

372 kount = kount + 1;

373 perforation_internal_nodes(kount -prev_count , :) = [(kount + 100000) radius *[cosd(theta) sind(

↪→ theta)]];

374 end

375 perforation_nodes = [perforation_external_nodes; intermediate_nodes; perforation_internal_nodes ];

376 [external_node_count , dump1 , dump2] = size(perforation_external_nodes);

377 % ------------------------------------------------------------------

378 % PERFORATION SHELL NODE CONNECTIVITIES

379 cell_node_count = length(perforation_nodes);

380 for I = 1:( cell_node_count - external_node_count)

381 if mod(I, external_node_count) == 0

382 A = perforation_nodes(I, 1);

383 B = perforation_nodes (1 + (I/external_node_count - 1)*external_node_count , 1);

384 C = perforation_nodes (1 + (I/external_node_count - 1)*external_node_count + external_node_count

↪→ , 1);

385 D = perforation_nodes(I + 1 + external_node_count - 1, 1);

386 element_S4(I, :) = [I A D C B];

387 else

388 A = perforation_nodes(I, 1);

389 B = perforation_nodes(I + 1, 1);

390 C = perforation_nodes(I + 1 + external_node_count , 1);

391 D = perforation_nodes(I + 1 + external_node_count - 1, 1);

392 element_S4(I, :) = [I A D C B];

393 end

394 end

395 end

396 % ------------------------------------------------------------------

397 % ------------------------------------------------------------------
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A.1.3 cell_remesh()

1 function cellremesh = cell_remesh(tol , cellremesh , initial , meshgen)

2

3 cellremesh = perforationcheck(cellremesh);

4

5 for K = 1: length(cellremesh.format(:, 1))

6 diameter = cellremesh.format(K, 9);

7 intermediate_node_count = cellremesh.format(K, 8); % Minimum of 0

8 % Top Teec

9 x_node_count_top = cellremesh.format(K, 3); % Minimum of 3

10 y_node_count_top_l = cellremesh.format(K, 2); % Minimum of 2

11 y_node_count_top_r = cellremesh.format(K, 4); % Minimum of 2

12 % Bottom Tee

13 x_node_count_bot = cellremesh.format(K, 6); % Minimum of 3

14 y_node_count_bot_l = cellremesh.format(K, 7); % Minimum of 2

15 y_node_count_bot_r = cellremesh.format(K, 5); % Minimum of 2

16 centres = cellremesh.format(K, 10);

17 cell_side = (centres - diameter)/2;

18 top_t_depth = cellremesh.format(K, 11); %cellremesh.top_t_depth;

19 bot_t_depth = cellremesh.format(K, 12); %cellremesh.bot_t_depth;

20

21 % General

22 radius = diameter /2;

23 intermediate_element_count = (2 + intermediate_node_count) - 1; % min of 2 nodes for a perforation.

24

25 % ------------------------------------------------------------------

26 if abs(diameter - 0) <= tol

27 % Discretization of sides [node_number x y z]

28 % Top Tee left hand side nodes

29 top_t_LHS = [];

30 top_t_LHS_element_count = y_node_count_top_l - 1;

31 top_t_LHS_length = top_t_depth/top_t_LHS_element_count;

32 for I = 1: y_node_count_top_l

33 top_t_LHS(I, :) = [I -(radius + cell_side) (I - 1)*top_t_LHS_length ];

34 end

35

36 % Top Tee top nodes along length of beam section

37 top_t = [];

38 top_t_element_count = x_node_count_top - 1;

39 top_t_length = 2*( radius + cell_side)/top_t_element_count;

40 for I = 2: x_node_count_top % The first node already exists so start from 2

41 top_t(I - 1, :) = [I ((I - 1)*top_t_length - (radius + cell_side)) top_t_depth ];

42 end

43 % Add the additional requested nodes or perforation lateral mesh nodes

44 if strcmp(meshgen.settings.lat.switch , 'True') | meshgen.reinf_lat.absolute.switch == 1

45 % Shift the lat. reinforcement positions to match the perforation locations

46 % (since they haven 't been moved from the centre of the perforation yet)

47 lat_locs_shifted = meshgen.specs.lat.locs - (initial.LHS + initial.length) - (K - 1)*centres;

48 % Define the extents within which to search for additional nodes to add

49 extents = [top_t_LHS(1, 2) top_t(end , 2)];

50 % Store the applicable locations to insert

51 lat_locs = lat_locs_shifted(extents (1) < lat_locs_shifted & lat_locs_shifted <= extents (2)) ';

52

53 % Construct the matrix of additional nodes to insert

54 for I = 1: length(lat_locs)

55 if ~any(abs(lat_locs(I) - top_t(:, 2)) <= tol)

56 top_t = [top_t; top_t(end , 1) + 1 lat_locs(I) top_t_depth ];

57 end

58 end

59 top_t = sortrows(top_t , [2]);

60 top_t(:, 1) = zeros(length(top_t(:, 1)), 1);

61 top_t = unique(top_t , 'rows');

62 end

63

64 % In this case , the bottom Tee nodes

65 % MUST match the top nodes. Therefore ,

66 % use them to construct the bottom nodes

67 % bot_t = [top_t(:, 1:2) -bot_t_depth*ones(length(top_t(:, 1), 1)];

68

69 % Bottom Tee LHS nodes
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70 bot_t_LHS = [];

71 bot_t_LHS_element_count = y_node_count_bot_l - 1;

72 bot_t_LHS_length = bot_t_depth/bot_t_LHS_element_count;

73 for I = 1: y_node_count_bot_l -1 % Mid LHS node created previously

74 bot_t_LHS(I, :) = [I -(radius + cell_side) -(y_node_count_bot_l - I)*bot_t_LHS_length ];

75 end

76

77 unique_xs = unique(round ([top_t(:, 2); top_t_LHS(:, 2)], log10 (1/tol)));

78 number_xs = length(unique_xs);

79 left_nodes = [top_t_LHS; bot_t_LHS ];

80 unique_ys = unique(left_nodes (:, 3));

81 number_ys = length(unique_ys);

82

83 % Produce the rest of the nodes using the left hand side

84 % nodes and the top T nodes (which include any reinforcement

85 % nodes as necessary)

86 perforation_nodes = [];

87 for I = 1: number_ys

88 addition = [zeros(number_xs , 1) unique_xs unique_ys(I)*ones(number_xs , 1)];

89 perforation_nodes = [perforation_nodes; addition ];

90 end

91

92 % Relabel elements to follow naming convention as shown below

93 % from top left to bottom right:

94 % 1 - 2 - 3

95 % 4 - 5 - 6

96 % 7 - 8 - 9

97 % 10 - 11 - 12

98 % 13 - 14 - 15

99 perforation_nodes = sortrows(perforation_nodes , [-3 2]);

100 for I = 1: length(perforation_nodes (:, 1))

101 perforation_nodes(I, 1) = I + 100000;

102 end

103

104 % Update the nodelist for the perforation

105 cellremesh.perforation_nodes{K} = {perforation_nodes };

106

107 % Assemble the elements

108 unique_number = number_xs;

109 kounter = 1;

110 for I = 1: length(perforation_nodes (:, 1)) - unique_number % All except the last row (which

↪→ includes the extra nodes from the bolts)

111 if mod(I, unique_number) ~= 0

112 A = perforation_nodes(I, :);

113 B = perforation_nodes(I + 1, :);

114 C = perforation_nodes(I + 1 + unique_number , :);

115 D = perforation_nodes(I + unique_number , :);

116 holder(kounter , :) = [kounter A(1) D(1) C(1) B(1)];

117 kounter = kounter + 1;

118 end

119 end

120 cellremesh.element_S4{K} = {holder };

121 else

122 % Discretization of sides [node_number x y z]

123 % Top Tee left hand side nodes

124 top_t_LHS = [];

125 top_t_LHS_element_count = y_node_count_top_l - 1;

126 top_t_LHS_length = top_t_depth/top_t_LHS_element_count;

127 for I = 1: y_node_count_top_l

128 top_t_LHS(I, :) = [0 -(radius + cell_side) (I - 1)*top_t_LHS_length ];

129 end

130

131 % Top Tee top nodes along length of beam section

132 top_t = [];

133 top_t_element_count = x_node_count_top - 1;

134 top_t_length = 2*( radius + cell_side)/top_t_element_count;

135 for I = 2: x_node_count_top % The first node already exists so start from 2

136 top_t(I - 1, :) = [0 ((I - 1)*top_t_length - (radius + cell_side)) top_t_depth ];

137 end

138 % Add the additional requested nodes or perforation lateral mesh nodes

139 if strcmp(meshgen.settings.lat.switch , 'True') | meshgen.reinf_lat.absolute.switch == 1

140 % Shift the lat. reinforcement positions to match the perforation locations

141 % (since they haven 't been moved from the centre of the perforation yet)
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142 lat_locs_shifted = meshgen.specs.lat.locs - (initial.LHS + initial.length) - (K - 1)*centres;

143 % Define the extents within which to search for additional nodes to add

144 extents = [top_t_LHS(1, 2) top_t(end , 2)];

145 % Store the applicable locations to insert

146 lat_locs = lat_locs_shifted(extents (1) < lat_locs_shifted & lat_locs_shifted <= extents (2)) ';

147

148 % Construct the matrix of additional nodes to insert

149 % Note that this can produce duplicates at the LHS and RHS extents

150 % of the perforation cell

151 for I = 1: length(lat_locs)

152 if ~any(abs(lat_locs(I) - top_t(:, 2)) <= tol)

153 top_t = [top_t; top_t(end , 1) + 1 lat_locs(I) top_t_depth ];

154 end

155 end

156 top_t(:, 1) = zeros(length(top_t(:, 1)), 1);

157 top_t = unique(top_t , 'rows');

158 top_t = sortrows(top_t , [2]);

159 end

160

161 % Top Tee right hand side nodes

162 top_t_RHS = [];

163 top_t_RHS_element_count = y_node_count_top_r - 1;

164 top_t_RHS_length = top_t_depth/top_t_RHS_element_count;

165 for I = y_node_count_top_r :-1:2

166 top_t_RHS(I - 1, :) = [0 (radius + cell_side) (top_t_depth - (I - 1)*top_t_RHS_length)];

167 end

168

169 % Bottom Tee RHS nodes

170 bot_t_RHS = [];

171 bot_t_RHS_element_count = y_node_count_bot_r - 1;

172 bot_t_RHS_length = bot_t_depth/bot_t_RHS_element_count;

173 for I = 2: y_node_count_bot_r % Mid LHS node created previously

174 bot_t_RHS(I - 1, :) = [0 (radius + cell_side) -(I - 1)*bot_t_RHS_length ];

175 end

176

177 % Bottom Tee length nodes

178 bot_t = [];

179 bot_t_element_count = x_node_count_bot - 1;

180 bot_t_length = 2*( radius + cell_side)/bot_t_element_count;

181 for I = 2: x_node_count_bot -1 % The first node already exists so start from 2 and last node

↪→ handled by LHS

182 bot_t(I - 1, :) = [0 (( radius + cell_side) - (I - 1)*bot_t_length) -bot_t_depth ];

183 end

184 % Add the additional requested nodes or perforation lateral mesh nodes

185 if strcmp(meshgen.settings.lat.switch , 'True')

186 % Shift the lat. reinforcement positions to match the perforation locations

187 % (since they haven 't been moved from the centre of the perforation yet)

188 lat_locs_shifted = meshgen.specs.lat.locs - (initial.LHS + initial.length) - (K - 1)*centres;

189 % Define the extents within which to search for additional nodes to add

190 % extents = extents from before

191 % Store the applicable locations to insert

192 lat_locs = lat_locs_shifted(extents (1) < lat_locs_shifted & lat_locs_shifted <= extents (2)) ';

193

194 % Construct the matrix of additional nodes to insert

195 % Note that this can produce duplicates at the LHS and RHS extents

196 % of the perforation cell

197 for I = 1: length(lat_locs)

198 if ~any(abs(lat_locs(I) - bot_t(:, 2)) <= tol)

199 bot_t = [bot_t; bot_t(end , 1) + 1 lat_locs(I) -bot_t_depth ];

200 end

201 end

202 bot_t(:, 1) = zeros(length(bot_t(:, 1)), 1);

203 bot_t = unique(bot_t , 'rows');

204 bot_t = sortrows(bot_t , [-2]);

205 end

206

207 % Bottom Tee LHS nodes

208 bot_t_LHS = [];

209 bot_t_LHS_element_count = y_node_count_bot_l - 1;

210 bot_t_LHS_length = bot_t_depth/bot_t_LHS_element_count;

211 for I = 1: y_node_count_bot_l -1 % Mid LHS node created previously

212 bot_t_LHS(I, :) = [0 -(radius + cell_side) -(y_node_count_bot_l - I)*bot_t_LHS_length ];

213 end
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214

215 % Section nodes (external)

216 perforation_external_nodes = [top_t_LHS;

217 top_t;

218 top_t_RHS;

219 bot_t_RHS;

220 bot_t;

221 bot_t_LHS ];

222 % Remove duplicates

223 perforation_external_nodes = unique(round(perforation_external_nodes , log10 (1/tol)), 'rows', '

↪→ stable ');

224 % Renumbering the nodes properly

225 for I = 1: length(perforation_external_nodes)

226 perforation_external_nodes(I,1) = I + 100000;

227 end

228 % ------------------------------------------------------------------

229 % INTERMEDIATE NODE GENERATION

230 x_axis = [1; 0];

231 y_axis = [0; 1];

232 intermediate_nodes = [];

233 kount = perforation_external_nodes(end , 1) - 100000;

234 for J = 1: intermediate_node_count

235 for I = 1: length(perforation_external_nodes)

236 if perforation_external_nodes(I, 3) < 0

237 sygn = -1;

238 else

239 sygn = 1;

240 end

241 theta = sygn*acosd(dot(x_axis , perforation_external_nodes(I, 2:3))/(sqrt(x_axis (1)^2 + x_axis

↪→ (2)^2)*sqrt(perforation_external_nodes(I,2)^2 + perforation_external_nodes(I,3)^2)));

242 intermediate_coords = perforation_external_nodes(I, 2:3) - radius *[cosd(theta) sind(theta)];

243 intermediate_length = sqrt(intermediate_coords (1,1)^2 + intermediate_coords (1,2)^2)/

↪→ intermediate_element_count;

244 kount = kount + 1;

245 intermediate_nodes(kount -( perforation_external_nodes(end , 1) - 100000) , :) = [(kount +

↪→ 100000) (perforation_external_nodes(I, 2:3) - J*intermediate_length *[cosd(theta) sind

↪→ (theta)])];

246 end

247 end

248 % ------------------------------------------------------------------

249 % INTERNAL NODE GENERATION

250 x_axis = [1; 0];

251 y_axis = [0; 1];

252 perforation_internal_nodes = [];

253 if intermediate_node_count < 0

254 warning('Intermediate node count cannot be negative ')

255 elseif intermediate_node_count == 0

256 prev_count = perforation_external_nodes(end , 1) - 100000;

257 elseif intermediate_node_count > 0

258 prev_count = intermediate_nodes(end , 1) - 100000;

259 end

260

261 for I = 1: length(perforation_external_nodes)

262 if perforation_external_nodes(I, 3) < 0

263 sygn = -1;

264 else

265 sygn = 1;

266 end

267 theta = sygn*acosd(dot(x_axis , perforation_external_nodes(I, 2:3))/(sqrt(x_axis (1)^2 + x_axis

↪→ (2) ^2)*sqrt(perforation_external_nodes(I,2)^2 + perforation_external_nodes(I,3)^2)));

268 kount = kount + 1;

269 perforation_internal_nodes(kount -prev_count , :) = [(kount + 100000) radius *[cosd(theta) sind(

↪→ theta)]];

270 end

271 cellremesh.perforation_nodes{K} = {[ perforation_external_nodes; intermediate_nodes;

↪→ perforation_internal_nodes ]};

272 tempholder = [perforation_external_nodes; intermediate_nodes; perforation_internal_nodes ];

273

274 [external_node_count , dump1 , dump2] = size(perforation_external_nodes);

275 % ------------------------------------------------------------------

276 % PERFORATION SHELL NODE CONNECTIVITIES

277 cell_node_count = length(tempholder (:, 1));

278 for I = 1:( cell_node_count - external_node_count)

449



279 if mod(I, external_node_count) == 0

280 A = tempholder(I, 1);

281 B = tempholder (1 + (I/external_node_count - 1)*external_node_count , 1);

282 C = tempholder (1 + (I/external_node_count - 1)*external_node_count + external_node_count , 1);

283 D = tempholder(I + 1 + external_node_count - 1, 1);

284 holder(I, :) = [I A D C B];

285 cellremesh.element_S4{K} = {holder };

286 else

287 A = tempholder(I, 1);

288 B = tempholder(I + 1, 1);

289 C = tempholder(I + 1 + external_node_count , 1);

290 D = tempholder(I + 1 + external_node_count - 1, 1);

291 holder(I, :) = [I A D C B];

292 cellremesh.element_S4{K} = {holder };

293 end

294 end

295 % ------------------------------------------------------------------

296 % ------------------------------------------------------------------

297

298 % % PLOTTING MESH using the element_S4 array

299 % figure

300 % hold on

301 % for I = 1:size(cellremesh.element_S4 (:, 1, K))

302 % A = cellremesh.perforation_nodes(find(cellremesh.perforation_nodes (:, :, K) == cellremesh.

↪→ element_S4(I, 2, K)), :, K);

303 % B = cellremesh.perforation_nodes(find(cellremesh.perforation_nodes (:, :, K) == cellremesh.

↪→ element_S4(I, 3, K)), :, K);

304 % C = cellremesh.perforation_nodes(find(cellremesh.perforation_nodes (:, :, K) == cellremesh.

↪→ element_S4(I, 4, K)), :, K);

305 % D = cellremesh.perforation_nodes(find(cellremesh.perforation_nodes (:, :, K) == cellremesh.

↪→ element_S4(I, 5, K)), :, K);

306 % plot([A(1, 2); B(1, 2); C(1, 2); D(1, 2); A(1, 2)], [A(1, 3); B(1, 3); C(1, 3); D(1, 3); A

↪→ (1, 3)], '-')

307 % end

308 % hold off

309 % axis equal

310 end

311 clear holder tempholder

312 end
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A.1.4 cellplusconst()

1 function output = cellplusconst(cells , constant , arraycol)

2 % A function that enables the user to add a constant to

3 % a desired cell. The cell is converted to an array and then

4 % stored again as a cell.

5

6 temparray = cell2mat(cells);

7 temparray(:, arraycol) = temparray (:, arraycol) + constant;

8 output = {temparray };
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A.1.5 initialmesh()

1 function [beam , element , initial] = initialmesh(tol , beam , element , initial , y_node_count_top ,

↪→ y_node_count_bot , meshgen)

2

3 if initial.length > tol

4 % Find and store the end of the initial web post

5 initial.nodes.array(:,:,initial.node.number.length) = beam.nodes.total(find(abs(beam.nodes.total(:,

↪→ 2) - initial.length) <= tol), :);

6 initial.node.number.depth = length(initial.nodes.array(:, 1, initial.node.number.length));

7

8 % Generate the nodes

9 initial.increment = initial.length /( initial.node.number.length - 1);

10 initial.locs = initial.increment *(0: initial.node.number.length - 1);

11

12 % Add the additional initial perforation lateral mesh nodes

13 initial.add = [];

14 if strcmp(meshgen.settings.lat.switch , 'True')

15 % Define the extents within which to search for additional nodes to add

16 extents = [0 initial.length ];

17 % Store the applicable locations to insert

18 lat_locs = meshgen.specs.lat.locs(extents (1) < meshgen.specs.lat.locs + tol & meshgen.specs.lat.

↪→ locs - tol <= extents (2)) ';

19

20 % Construct the matrix of additional nodes to insert

21 for I = 1: length(lat_locs)

22 if ~any(abs(lat_locs(I) - initial.locs) <= tol)

23 initial.add = [initial.add lat_locs(I)];

24 end

25 end

26 initial.locs = [initial.locs initial.add];

27 initial.locs = sort(initial.locs);

28 initial.locs = unique(round(initial.locs , log10 (1/ tol)));

29 end

30

31 % Produce the set of decrements from the edge of the first perf

32 % to the edge of the beam (at the column)

33 initial.decrement = initial.locs - initial.length;

34 % Update the number of initial nodes to reflect any lateral mesh additions

35 % including the initial (which is not in initial.decrement)

36 initial.node.number.length = length(initial.decrement) + 1;

37

38 % Store the nodes in an array (:, :, :)

39 for I = length(initial.decrement - 1):-1:1

40 initial.nodes.array(:,:, I) = initial.nodes.array(:, :, end) + initial.decrement(I)*[ zeros(

↪→ initial.node.number.depth ,1) ones(initial.node.number.depth ,1) zeros(initial.node.number.

↪→ depth ,1)];

41 end

42 % Set the nodes at the very start of the beam to 0

43 % instead of the residual that is found above (usually in the

44 % region of 5e-17)

45 initial.nodes.array(:, 2, 1) = round(initial.nodes.array(:, 2, 1), log10 (1/tol));

46 % Restore the nodes to match those at the initial -first perforation interface

47 initial.nodes.array(:,:,initial.node.number.length) = beam.nodes.total(find(abs(beam.nodes.total(:,

↪→ 2) - initial.length) <= tol), :);

48 % Transfer stored nodes to a matrix (:, :)

49 initial.nodes.matrix = [];

50 for I = 1: length(initial.locs)

51 initial.nodes.matrix = [initial.nodes.matrix; initial.nodes.array(:,:,I)];

52 end

53 % Sort the rows to follow initial endspace naming convention (top left to bot right)

54 % of the form:

55 % 1 - 2 - 3

56 % 4 - 5 - 6

57 % 7 - 8 - 9

58 for I = 1: length(initial.nodes.matrix) - initial.node.number.depth

59 initial.nodes.matrix(I, 1) = beam.nodes.total(end , 1) + 100000 + I;

60 end

61 initial.nodes.matrix_noperf = initial.nodes.matrix (1:( end - initial.node.number.depth), :);

62 initial.nodes.matrix = sortrows(initial.nodes.matrix , [-3 2]);

63 initial.nodes.matrix_noperf = sortrows(initial.nodes.matrix_noperf , [-3 2]);
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64

65 % Assemble the shell elements

66 kounter = 1;

67 for I = 1:(( initial.node.number.length - 1)*( initial.node.number.depth - 1)) % Ignore bot row

68 if mod(I, initial.node.number.length - 1) ~= 0

69 A = initial.nodes.matrix(I, :);

70 B = initial.nodes.matrix(I + 1, :);

71 C = initial.nodes.matrix(I + 1 + (initial.node.number.length - 1), :);

72 D = initial.nodes.matrix(I + (initial.node.number.length - 1), :);

73 % [LIA , LOCB] = ismember(B(1 ,2:3), beam.nodes.total (: ,2:3), 'rows ');

74 % [LIA2 , LOCB2] = ismember(C(1 ,2:3), beam.nodes.total (: ,2:3), 'rows ');

75 % if LIA == 1

76 % B = beam.nodes.total(LOCB , :);

77 % end

78 % if LIA2 == 1

79 % C = beam.nodes.total(LOCB2 , :);

80 % end

81 initial.elements.S4(kounter , :) = [element.S4.topology(end , 1) + kounter A(1,1) D(1,1) C(1,1) B

↪→ (1,1)];

82 kounter = kounter + 1;

83 end

84 end

85

86 % Update perforation nodes

87 beam.nodes.total = [beam.nodes.total; initial.nodes.matrix_noperf ];

88

89 % Update element S4 topology

90 element.S4.topology = [element.S4.topology; initial.elements.S4];

91

92 % Extract the top and bottom web shell elements

93 beam.nodes.web.top = beam.nodes.total(find(beam.nodes.total(:, 3) >= 0), :);

94 beam.nodes.web.bot = beam.nodes.total(find(beam.nodes.total(:, 3) <= 0), :);

95 element.S4.web.top = [];

96 element.S4.web.bot = [];

97 for I = 1: length(element.S4.topology(:, 1))

98 if ismember(element.S4.topology(I, 2:end), beam.nodes.web.top(:, 1))

99 element.S4.web.top = [element.S4.web.top; element.S4.topology(I, :)];

100 elseif ismember(element.S4.topology(I, 2:end), beam.nodes.web.bot(:, 1))

101 element.S4.web.bot = [element.S4.web.bot; element.S4.topology(I, :)];

102 end

103 end

104 else

105 initial.nodes.matrix = beam.nodes.total(find(abs(beam.nodes.total(:, 2) - initial.length) <= tol),

↪→ :);

106

107 % Extract the top and bottom web shell elements

108 beam.nodes.web.top = beam.nodes.total(find(beam.nodes.total(:, 3) >= 0), :);

109 beam.nodes.web.bot = beam.nodes.total(find(beam.nodes.total(:, 3) <= 0), :);

110 element.S4.web.top = [];

111 element.S4.web.bot = [];

112 for I = 1: length(element.S4.topology(:, 1))

113 if ismember(element.S4.topology(I, 2:end), beam.nodes.web.top(:, 1))

114 element.S4.web.top = [element.S4.web.top; element.S4.topology(I, :)];

115 elseif ismember(element.S4.topology(I, 2:end), beam.nodes.web.bot(:, 1))

116 element.S4.web.bot = [element.S4.web.bot; element.S4.topology(I, :)];

117 end

118 end

119 end
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A.1.6 endplate_mesh()

1 function [beam , flange , element , mod_ , bolt, endplate] = endplate_mesh(tol , beam , bolt , flange ,

↪→ initial , top_t_flange , bot_t_flange , top_t_depth , bot_t_depth , element, endplate , meshgen)

2

3 % Add z-axis to perforation node matrix

4 beam.nodes.total(:, 4) = zeros(length(beam.nodes.total(:, 1)), 1);

5

6 bolt.locations = unique(bolt.locations , 'rows');

7 bolt.number = length(bolt.locations(:, 1));

8 bolt.unique.number = length(unique(bolt.locations(:, 3)));

9 if meshgen.specs.stiffener == 1

10 endplate.additional_locs = unique ([bolt.locations; endplate.stiffener.locs], 'rows');

11 else

12 endplate.additional_locs = unique(bolt.locations , 'rows');

13 end

14 endplate.additional_number = length(endplate.additional_locs (:, 1));

15

16 % Determine the nodes needed (LHS top and bot flanges , mid and then RHS top and bot)

17

18 % Calculate the top and bot flange requirements

19 flange.top.nodecount.width; % Set previously.

20 flange.top.nodecount.LHS = (flange.top.nodecount.width - 1)/2;

21 flange.top.nodecount.RHS = flange.top.nodecount.LHS;

22 flange.increment.top = top_t_flange /( flange.top.nodecount.width - 1);

23

24 flange.bot.nodecount.width; % Set previously.

25 flange.bot.nodecount.LHS = (flange.bot.nodecount.width - 1)/2;

26 flange.bot.nodecount.RHS = flange.bot.nodecount.LHS;

27 flange.increment.bot = bot_t_flange /( flange.bot.nodecount.width - 1);

28

29 % Flanges ----------------------------------------------------------

30

31 % Find the nodes shared between the web , flanges and endplate

32 flange.top.nodes.matrix(flange.top.nodecount.LHS + 1, :) = beam.nodes.total(find(beam.nodes.total(:,

↪→ 2) <= tol & abs(beam.nodes.total(:, 3) - top_t_depth) <= tol), :);

33 flange.bot.nodes.matrix(flange.bot.nodecount.LHS + 1, :) = beam.nodes.total(find(beam.nodes.total(:,

↪→ 2) <= tol & abs(beam.nodes.total(:, 3) - -bot_t_depth) <= tol), :);

34

35 % Generate the new nodes for the top flange - endplate shared edge

36 kounter = 1;

37 for I = 1: flange.top.nodecount.LHS

38 flange.top.nodes.matrix(flange.top.nodecount.LHS + 1 - I, :) = flange.top.nodes.matrix(flange.top.

↪→ nodecount.LHS + 1, :) - I*flange.increment.top*[ zeros (1,3) ones (1,1)];

39 kounter = kounter + 1;

40 end

41 for I = 1: flange.top.nodecount.RHS

42 flange.top.nodes.matrix(flange.top.nodecount.RHS + 1 + I, :) = flange.top.nodes.matrix(flange.top.

↪→ nodecount.LHS + 1, :) + I*flange.increment.top*[ zeros (1,3) ones (1,1)];

43 kounter = kounter + 1;

44 end

45 % Generate the new nodes for the bot flange - endplate shared edge

46 kounter = 1;

47 for I = 1: flange.bot.nodecount.LHS

48 flange.bot.nodes.matrix(flange.bot.nodecount.LHS + 1 - I, :) = flange.bot.nodes.matrix(flange.bot.

↪→ nodecount.LHS + 1, :) - I*flange.increment.bot*[ zeros (1,3) ones (1,1)];

49 kounter = kounter + 1;

50 end

51 for I = 1: flange.bot.nodecount.RHS

52 flange.bot.nodes.matrix(flange.bot.nodecount.RHS + 1 + I, :) = flange.bot.nodes.matrix(flange.bot.

↪→ nodecount.LHS + 1, :) + I*flange.increment.bot*[ zeros (1,3) ones (1,1)];

53 kounter = kounter + 1;

54 end

55 % Add additional nodes (to match the smaller flange) to the larger flange

56 if top_t_flange < bot_t_flange

57 for I = 1: length(flange.top.nodes.matrix(:, 4))

58 flange.bot.nodes.matrix = [flange.bot.nodes.matrix; flange.bot.nodes.matrix(1, 1:3) flange.top.

↪→ nodes.matrix(I, 4)];

59 end

60 elseif bot_t_flange < top_t_flange

61 for I = 1: length(flange.bot.nodes.matrix(:, 4))
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62 flange.top.nodes.matrix = [flange.top.nodes.matrix; flange.top.nodes.matrix(1, 1:3) flange.bot.

↪→ nodes.matrix(I, 4)];

63 end

64 elseif top_t_flange == bot_t_flange

65 'Equal flange widths '

66 end

67 if meshgen.specs.stiffener == 1

68 % Add additional nodes accounting for the stiffener locations

69 stiffener_zs = unique(endplate.stiffener.locs(:, 3));

70 if any(abs(stiffener_zs) <= bot_t_flange /2)

71 % Generate additional nodes within the bottom flange width

72 addition_bot = [zeros(length(stiffener_zs), 2) -bot_t_depth*ones(length(stiffener_zs), 1)

↪→ stiffener_zs(abs(stiffener_zs) <= bot_t_flange /2)];

73 flange.bot.nodes.matrix = [flange.bot.nodes.matrix; addition_bot ];

74 flange.bot.nodes.matrix(:, 1) = zeros(length(flange.bot.nodes.matrix(:, 1)), 1);

75 flange.bot.nodes.matrix = unique(round(flange.bot.nodes.matrix , log10 (1/tol)), 'rows');

76 else

77 addition_bot = [];

78 warning('endplate_mesh: Bottom flange doesn ''t contain any of the requested stiffener nodes ')

79 end

80

81 if any(abs(stiffener_zs) <= top_t_flange /2)

82 % Generate additional nodes within the top flange width

83 addition_top = [zeros(length(stiffener_zs), 2) top_t_depth*ones(length(stiffener_zs), 1)

↪→ stiffener_zs(abs(stiffener_zs) <= top_t_flange /2)];

84 flange.top.nodes.matrix = [flange.top.nodes.matrix; addition_top ];

85 flange.top.nodes.matrix(:, 1) = zeros(length(flange.top.nodes.matrix(:, 1)), 1);

86 flange.top.nodes.matrix = unique(round(flange.top.nodes.matrix , log10 (1/tol)), 'rows');

87 else

88 addition_top = [];

89 warning('endplate_mesh: Top flange doesn ''t contain any of the requested stiffener nodes ')

90 end

91 end

92 flange.nodes.matrix = [unique(flange.bot.nodes.matrix , 'rows'); unique(flange.top.nodes.matrix , 'rows

↪→ ')];

93

94 % Endplate ---------------------------------------------------------

95

96 % endplate.node.number.width = 3; % minimum of 3 but not used currently

97 endplate.nodes.matrix = [];

98 % Mid nodes first. NOTE that initial.nodes.matrix doesn 't have z coords initially.

99 endplate.nodes.mid = initial.nodes.matrix(find(abs(initial.nodes.matrix(:, 2) - min(initial.nodes.

↪→ matrix(:, 2))) <= tol), :);

100 endplate.nodes.mid = [endplate.nodes.mid zeros(length(endplate.nodes.mid), 1)];

101 % Endplate top and bottom nodes (shared with flanges)

102 endplate.nodes.LHS = flange.nodes.matrix(find(flange.nodes.matrix(:, 4) < 0) ,:);

103 endplate.nodes.RHS = flange.nodes.matrix(find(flange.nodes.matrix(:, 4) > 0) ,:);

104

105 % Generate the nodes

106 % LHS

107 for I = 1: length(endplate.nodes.LHS(:, 1))

108 endplate.nodes.matrix = [endplate.nodes.matrix; endplate.nodes.mid(:, 1:3) endplate.nodes.LHS(I, 4)

↪→ *ones(length(endplate.nodes.mid(:, 1)), 1)];

109 end

110 % Add mid nodes

111 endplate.nodes.matrix = [endplate.nodes.matrix; endplate.nodes.mid];

112 % RHS

113 for I = 1: length(endplate.nodes.RHS(:, 1))

114 endplate.nodes.matrix = [endplate.nodes.matrix; endplate.nodes.mid(:, 1:3) endplate.nodes.RHS(I, 4)

↪→ *ones(length(endplate.nodes.mid(:, 1)), 1)];

115 end

116

117 endplate.nodes.matrix = sortrows(endplate.nodes.matrix , [-3 4]);

118 endplate.nodes.matrix = unique(endplate.nodes.matrix , 'rows');

119 % Generate additional internal nodes due to the bolts and stiffeners

120 % Note that the node number given is zero to help when using

121 % the unique () function for rows following creation

122

123 if meshgen.specs.stiffener == 1

124 % Find all the unique y locations that need to be generated

125 unique_ys = unique ([bolt.locations(:, 2); endplate.stiffener.locs(:, 2); endplate.nodes.matrix(:,

↪→ 3)]);

126 number_ys = length(unique_ys);
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127 % Find all the unique z locations that need to be generated

128 unique_zs = unique ([bolt.locations(:, 3); endplate.stiffener.locs(:, 3); endplate.nodes.matrix(:,

↪→ 4)]);

129 number_zs = length(unique_zs);

130 else

131 % Find all the unique y locations that need to be generated

132 unique_ys = unique ([bolt.locations(:, 2); endplate.nodes.matrix(:, 3)]);

133 number_ys = length(unique_ys);

134 % Find all the unique z locations that need to be generated

135 unique_zs = unique ([bolt.locations(:, 3); endplate.nodes.matrix(:, 4)]);

136 number_zs = length(unique_zs);

137 end

138

139 endplate.additional_nodes = [];

140 for I = 1: number_ys

141 addition = [zeros(number_zs , 2) unique_ys(I)*ones(number_zs , 1) unique_zs]

142 endplate.additional_nodes = [endplate.additional_nodes; addition]

143 end

144

145 mod_ = length(find(endplate.additional_nodes (:, 3) == 0));

146

147 % OLD VERSION

148 % kounter = 1;

149 % for I = 1:endplate.additional_number
150 % % Generate additional nodes from the given additional locations

151 % endplate.additional_nodes(kounter , :) = [0 endplate.additional_locs(I, :)];

152 % kounter = kounter + 1;

153

154 % % Generate the additional internal nodes , caused by the additional

155 % % locations , along the z-axis

156 % for J = 1:endplate.additional_number
157 % endplate.additional_nodes(kounter , :) = [0 endplate.additional_locs(I, 1) endplate.

↪→ additional_locs(I, 2) endplate.nodes.matrix(J, 4)];

158 % kounter = kounter + 1;

159 % end

160

161 % % Generate the additional internal bolt nodes , caused by the bolt

162 % % locations , along the y-axis

163 % for J = 1: length(endplate.nodes.matrix(:, 1))/endplate.additional_number

164 % endplate.additional_nodes(kounter , :) = [0 endplate.additional_locs(I, 1) endplate.nodes.matrix

↪→ (J*endplate.additional_number , 3) endplate.additional_locs(I, 3)];

165 % kounter = kounter + 1;

166 % end

167 % end

168 % bolt.nodes = unique(round(bolt.nodes , 4), 'rows ');

169

170

171 endplate.nodes.matrix = [endplate.nodes.matrix; endplate.additional_nodes ];

172

173 % Set all nodes to zero to allow removal of duplicates

174 endplate.nodes.matrix(:, 1) = zeros(length(endplate.nodes.matrix(:, 1)), 1);

175

176 % Remove duplicate nodes created during bolt node creation

177 endplate.nodes.matrix = unique(round(endplate.nodes.matrix , log10 (1/tol)), 'rows');

178

179 % Relabel elements to follow naming convention as shown below:

180 % 1 - 2 - 3

181 % 4 - 5 - 6

182 % 7 - 8 - 9

183 % 10 - 11 - 12

184 % 13 - 14 - 15

185 endplate.nodes.matrix = sortrows(endplate.nodes.matrix , [-3 4]);

186 for I = 1: length(endplate.nodes.matrix(:, 1))

187 endplate.nodes.matrix(I, 1) = beam.nodes.total(end , 1) + 100000 + I;

188 end

189

190 % Assemble the elements

191 unique_number = length(endplate.nodes.matrix(find(abs(endplate.nodes.matrix(:, 3)) < tol), 3));

192 kounter = 1;

193 for I = 1: length(endplate.nodes.matrix(:, 1)) - unique_number % All except the last row (which

↪→ includes the extra nodes from the bolts)

194 if mod(I, unique_number) ~= 0

195 A = endplate.nodes.matrix(I, :);
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196 B = endplate.nodes.matrix(I + 1, :);

197 C = endplate.nodes.matrix(I + 1 + unique_number , :);

198 D = endplate.nodes.matrix(I + unique_number , :);

199 [LIA , LOCB] = ismember(A(1 ,2:4), round(beam.nodes.total (: ,2:4), log10 (1/tol)), 'rows');

200 [LIA2 , LOCB2] = ismember(B(1 ,2:4), round(beam.nodes.total (: ,2:4), log10 (1/tol)), 'rows');

201 [LIA3 , LOCB3] = ismember(C(1 ,2:4), round(beam.nodes.total (: ,2:4), log10 (1/tol)), 'rows');

202 [LIA4 , LOCB4] = ismember(D(1 ,2:4), round(beam.nodes.total (: ,2:4), log10 (1/tol)), 'rows');

203 if LIA == 1

204 A = beam.nodes.total(LOCB , :);

205 end

206 if LIA2 == 1

207 B = beam.nodes.total(LOCB2 , :);

208 end

209 if LIA3 == 1

210 C = beam.nodes.total(LOCB3 , :);

211 end

212 if LIA4 == 1

213 D = beam.nodes.total(LOCB4 , :);

214 end

215 endplate.element.matrix(kounter , :) = [element.S4.topology(end , 1) + kounter A(1,1) B(1,1) C(1,1) D

↪→ (1,1)];

216 kounter = kounter + 1;

217 end

218 end

219

220 % Store the bolt locations with the nodes

221 bolt.locations (:, 4) = zeros(bolt.number , 1);

222 for I = 1:bolt.number

223 [~, indxbolt] = ismember(bolt.locations(I, 1:3), endplate.nodes.matrix(:, 2:4), 'rows');

224 bolt.locations(I, 4) = endplate.nodes.matrix(indxbolt , 1);

225 end

226

227 % Store the endplate nodes not including bolt locations

228 [indxLI , ~] = ismember(endplate.nodes.matrix(:, 2:4), endplate.additional_locs (:, 1:3), 'rows');

229 endplate.nodes.excludingbolts = endplate.nodes.matrix (~indxLI , :);

230 endplate.nodes.excludingbolts = endplate.nodes.excludingbolts(find(endplate.nodes.excludingbolts (:,

↪→ 3) < max(endplate.nodes.matrix(:, 3))), :);

231

232 % Update perforation nodes

233 beam.nodes.total = [beam.nodes.total; endplate.nodes.matrix ];

234

235 % Update element S4 topology

236 element.S4.topology = [element.S4.topology; endplate.element.matrix ];
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A.1.7 flanges_mesh()

1 function [element , beam , flange , ftnl , fbnl , mod_top] = flanges_mesh(tol , inp , meshgen , beam , flange ,

↪→ mod_ , bolt , midspan, endplate , element , top_t_flange , bot_t_flange)

2

3 % TOP FLANGE -------------------------------------------------------

4

5 % Identify the relevant nodes

6 if strcmp(inp.settings.midspansymmetry , 'Symmetric ')

7 flange.top.mid.nodes = unique(round(beam.nodes.total(find(beam.nodes.total(:, 2) <= midspan.length

↪→ + tol & abs(beam.nodes.total(:, 3) - max(beam.nodes.web.top(:, 3))) <= tol & abs(beam.nodes

↪→ .total(:, 4)) <= tol), 2:4), log10 (1/tol)), 'rows');

8 elseif strcmp(inp.settings.midspansymmetry , 'Unsymmetric ')

9 flange.top.mid.nodes = unique(round(beam.nodes.total(find(beam.nodes.total(:, 2) <= midspan.length

↪→ *2 + tol & abs(beam.nodes.total(:, 3) - max(beam.nodes.web.top(:, 3))) <= tol & abs(beam.

↪→ nodes.total(:, 4)) <= tol), 2:4), log10 (1/ tol)), 'rows');

10 end

11 flange.top.nodecount.longitudinal = length(flange.top.mid.nodes(:, 1));

12 ftnl = flange.top.nodecount.longitudinal;

13

14 % Generate the new nodes for the top flange

15 flange.top.nodes.array = [];

16 if strcmp(meshgen.settings.endplate , 'True')

17 for I = 1:mod_

18 flange.top.nodes.array = [flange.top.nodes.array; zeros(ftnl , 1) flange.top.mid.nodes(:, 1:2)

↪→ ones(ftnl , 1)*endplate.nodes.matrix(I, 4)];

19 end

20 else

21 for I = 1: length(flange.top.nodes.matrix(:, 4))

22 flange.top.nodes.array = [flange.top.nodes.array; zeros(ftnl , 1) flange.top.mid.nodes(:, 1:2)

↪→ ones(ftnl , 1)*flange.top.nodes.matrix(I, 4)];

23 end

24 end

25 % Include only the nodes lying inside the flange width

26 flange.top.nodes.array = flange.top.nodes.array(find(abs(flange.top.nodes.array(:, 4)) <=

↪→ top_t_flange /2 + tol), :);

27 mod_top = length(unique(flange.top.nodes.array(:, 4)));

28 % Rename the nodes using the following convention

29 % | 1 - 2 - 3 - 4 - 5 - 6 |

30 % | 7 - 8 - 9 - 10 - 11 - 12 | TOP FLANGE

31 % | 13 - 14 - 15 - 16 - 17 - 18 |

32 flange.top.nodes.array = sortrows(flange.top.nodes.array , [4 2]);

33 for I = 1: length(flange.top.nodes.array (:,1))

34 flange.top.nodes.array(I, 1) = beam.nodes.total(end , 1) + 100000 + I;

35 end

36

37 % Assemble the S4 elements for the top flange

38 % This is done using the naming convention

39 kounter = 1;

40 cleanup = []; replacement = [];

41 for I = 1:( mod_top - 1)*ftnl

42 if mod(I, ftnl)

43 A = flange.top.nodes.array(I, :);

44 B = flange.top.nodes.array(I + 1, :);

45 C = flange.top.nodes.array(I + 1 + ftnl , :);

46 D = flange.top.nodes.array(I + ftnl , :);

47 [LIA , LOCB] = ismember(round(A(1 ,2:4), log10 (1/ tol)), round(beam.nodes.total (: ,2:4), log10 (1/tol)

↪→ ), 'rows');

48 [LIA2 , LOCB2] = ismember(round(B(1 ,2:4), log10 (1/ tol)), round(beam.nodes.total (: ,2:4), log10 (1/

↪→ tol)), 'rows');

49 [LIA3 , LOCB3] = ismember(round(C(1 ,2:4), log10 (1/ tol)), round(beam.nodes.total (: ,2:4), log10 (1/

↪→ tol)), 'rows');

50 [LIA4 , LOCB4] = ismember(round(D(1 ,2:4), log10 (1/ tol)), round(beam.nodes.total (: ,2:4), log10 (1/

↪→ tol)), 'rows');

51 if LIA == 1

52 A = beam.nodes.total(LOCB , :);

53 cleanup = [cleanup; I];

54 replacement = [replacement; LOCB];

55 end

56 if LIA2 == 1

57 B = beam.nodes.total(LOCB2 , :);
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58 cleanup = [cleanup; I + 1];

59 replacement = [replacement; LOCB2 ];

60 end

61 if LIA3 == 1

62 C = beam.nodes.total(LOCB3 , :);

63 cleanup = [cleanup; I + 1 + ftnl];

64 replacement = [replacement; LOCB3 ];

65 end

66 if LIA4 == 1

67 D = beam.nodes.total(LOCB4 , :);

68 cleanup = [cleanup; I + ftnl];

69 replacement = [replacement; LOCB4 ];

70 end

71 flange.top.elements.S4(kounter , :) = [element.S4.topology(end , 1) + kounter A(1,1) B(1,1) C(1,1)

↪→ D(1,1)];

72 kounter = kounter + 1;

73 end

74 end

75

76 % % Find the unique indices

77 % cleanup = unique(cleanup);

78 % replacement = unique(replacement);

79

80 % Gather the additional nodes as generated ...

81 flange_top_nodes_addition = flange.top.nodes.array;

82 % and remove the duplicates

83 flange_top_nodes_addition(cleanup , :) = [];

84

85 % Remove the duplicates in the top node array replaced by web nodes

86 flange.top.nodes.array(cleanup , :) = beam.nodes.total(replacement , :);

87

88 % Update perforation nodes to include the newly generated non -duplicate nodes

89 beam.nodes.total = [beam.nodes.total; flange_top_nodes_addition ];

90

91 % Update element S4 topology

92 element.S4.topology = [element.S4.topology; flange.top.elements.S4];

93

94 % BOT FLANGE -------------------------------------------------------

95

96 % Identify the relevant nodes

97 if strcmp(inp.settings.midspansymmetry , 'Symmetric ')

98 flange.bot.mid.nodes = unique(round(beam.nodes.total(find(beam.nodes.total(:, 2) <= midspan.length

↪→ + tol & abs(beam.nodes.total(:, 3) - min(beam.nodes.web.bot(:, 3))) <= tol & abs(beam.nodes

↪→ .total(:, 4)) <= tol), 2:4), log10 (1/ tol)), 'rows');

99 elseif strcmp(inp.settings.midspansymmetry , 'Unsymmetric ')

100 flange.bot.mid.nodes = unique(round(beam.nodes.total(find(beam.nodes.total(:, 2) <= midspan.length

↪→ *2 + tol & abs(beam.nodes.total(:, 3) - min(beam.nodes.web.bot(:, 3))) <= tol & abs(beam.

↪→ nodes.total(:, 4)) <= tol), 2:4), log10 (1/ tol)), 'rows');

101 end

102 flange.bot.nodecount.longitudinal = length(flange.bot.mid.nodes(:, 1));

103 fbnl = flange.bot.nodecount.longitudinal;

104

105 % Generate the new nodes for the bot flange

106 flange.bot.nodes.array = [];

107 if strcmp(meshgen.settings.endplate , 'True')

108 for I = 1:mod_

109 flange.bot.nodes.array = [flange.bot.nodes.array; zeros(fbnl , 1) flange.bot.mid.nodes(:, 1:2)

↪→ ones(fbnl , 1)*endplate.nodes.matrix(I, 4)];

110 end

111 else

112 for I = 1: length(flange.bot.nodes.matrix(:, 4))

113 flange.bot.nodes.array = [flange.bot.nodes.array; zeros(fbnl , 1) flange.bot.mid.nodes(:, 1:2)

↪→ ones(fbnl , 1)*flange.bot.nodes.matrix(I, 4)];

114 end

115 end

116 % Include only the nodes lying inside the flange width

117 flange.bot.nodes.array = flange.bot.nodes.array(find(abs(flange.bot.nodes.array(:, 4)) <=

↪→ bot_t_flange /2 + tol), :);

118 mod_bot = length(unique(flange.bot.nodes.array(:, 4)));

119 % Rename the nodes using the following convention

120 % | 1 - 2 - 3 - 4 - 5 - 6 |

121 % | 7 - 8 - 9 - 10 - 11 - 12 | BOT FLANGE

122 % | 13 - 14 - 15 - 16 - 17 - 18 |
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123 flange.bot.nodes.array = sortrows(flange.bot.nodes.array , [4 2]);

124 for I = 1: length(flange.bot.nodes.array (:,1))

125 flange.bot.nodes.array(I, 1) = beam.nodes.total(end , 1) + 100000 + I;

126 end

127

128 % Assemble the S4 elements for the bot flange

129 % This is done using the naming convention

130 kounter = 1;

131 for I = 1:( mod_bot - 1)*fbnl

132 if mod(I, fbnl)

133 A = flange.bot.nodes.array(I, :);

134 B = flange.bot.nodes.array(I + 1, :);

135 C = flange.bot.nodes.array(I + 1 + fbnl , :);

136 D = flange.bot.nodes.array(I + fbnl , :);

137 [LIA , LOCB] = ismember(round(A(1 ,2:4), log10 (1/ tol)), round(beam.nodes.total (: ,2:4), log10 (1/tol)

↪→ ), 'rows');

138 [LIA2 , LOCB2] = ismember(round(B(1 ,2:4), log10 (1/ tol)), round(beam.nodes.total (: ,2:4), log10 (1/

↪→ tol)), 'rows');

139 [LIA3 , LOCB3] = ismember(round(C(1 ,2:4), log10 (1/ tol)), round(beam.nodes.total (: ,2:4), log10 (1/

↪→ tol)), 'rows');

140 [LIA4 , LOCB4] = ismember(round(D(1 ,2:4), log10 (1/ tol)), round(beam.nodes.total (: ,2:4), log10 (1/

↪→ tol)), 'rows');

141 if LIA == 1

142 A = beam.nodes.total(LOCB , :);

143 end

144 if LIA2 == 1

145 B = beam.nodes.total(LOCB2 , :);

146 end

147 if LIA3 == 1

148 C = beam.nodes.total(LOCB3 , :);

149 end

150 if LIA4 == 1

151 D = beam.nodes.total(LOCB4 , :);

152 end

153 flange.bot.elements.S4(kounter , :) = [element.S4.topology(end , 1) + kounter A(1,1) D(1,1) C(1,1)

↪→ B(1,1)];

154 kounter = kounter + 1;

155 end

156 end

157

158 % Update perforation nodes

159 beam.nodes.total = [beam.nodes.total; flange.bot.nodes.array ];

160

161 % Store steel nodes

162 beam.nodes.steel = beam.nodes.total;

163

164 % Update element S4 topology

165 element.S4.topology = [element.S4.topology; flange.bot.elements.S4];
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A.1.8 stiffeners_mesh()

1 function [beam , element , stiffener] = stiffeners_mesh(tol , inp , span , beam , element , stiffener)

2

3 if strcmp(inp.settings.midspansymmetry , 'Unsymmetric ')

4 stiffener.count = length(find(stiffener.locations(:, 1) <= span + tol));

5 elseif strcmp(inp.settings.midspansymmetry , 'Symmetric ')

6 stiffener.count = length(find(stiffener.locations(:, 1) <= span/2 + tol));

7 end

8 % Find the nodes at each defined location along the beam

9 for I = 1: stiffener.count

10 if stiffener.locations(I, 2) >= 0

11 locs = beam.nodes.steel(find(abs(beam.nodes.steel(:, 2) - stiffener.locations(I, 1)) <= tol & ...

12 beam.nodes.steel(:, 4) <= stiffener.locations(I, 2) + tol & ...

13 beam.nodes.steel(:, 4) + tol >= 0), :);

14 elseif stiffener.locations(I, 2) < 0

15 locs = beam.nodes.steel(find(abs(beam.nodes.steel(:, 2) - stiffener.locations(I, 1)) <= tol & ...

16 beam.nodes.steel(:, 4) > stiffener.locations(I, 2) - tol & ...

17 beam.nodes.steel(:, 4) - tol <= 0), :);

18 end

19

20 unique_ys = unique(round(locs(:, 3), 6));

21 number_ys = length(unique_ys);

22 unique_zs = unique(round(locs(:, 4), 6));

23 number_zs = length(unique_zs);

24 if number_ys == 0 | number_zs == 0

25 warning('stiffeners_mesh: No suitable node locations found in the beam.')

26 end

27

28 % Produce the stiffener nodes (all of them , including flange duplicates)

29 stiffener.nodes{I} = [];

30 for J = 1: number_ys

31 addition = [zeros(number_zs , 1) ...

32 ones(number_zs , 1)*stiffener.locations(I, 1) ...

33 unique_ys(J)*ones(number_zs , 1) ...

34 unique_zs ];

35 stiffener.nodes{I} = [stiffener.nodes{I}; addition ];

36 end

37 % Relabel elements to follow naming convention as shown below:

38 % 1 - 2 - 3

39 % 4 - 5 - 6

40 % 7 - 8 - 9

41 % 10 - 11 - 12

42 % 13 - 14 - 15

43 stiffener.nodes{I} = sortrows(stiffener.nodes{I}, [-3 4]);

44 for J = 1: length(stiffener.nodes{I}(:, 1))

45 stiffener.nodes{I}(J, 1) = beam.nodes.total(end , 1) + 100000 + J;

46 end

47

48 % Assemble the elements

49 unique_number = number_zs;

50 kounter = 1;

51 for J = 1: length(stiffener.nodes{I}(:, 1)) - unique_number % All except the last row (which

↪→ includes the extra nodes from the bolts)

52 if mod(J, unique_number) ~= 0

53 A = stiffener.nodes{I}(J, :);

54 B = stiffener.nodes{I}(J + 1, :);

55 C = stiffener.nodes{I}(J + 1 + unique_number , :);

56 D = stiffener.nodes{I}(J + unique_number , :);

57 [LIA , LOCB] = ismember(round(A(1 ,2:4), abs(log10(tol))), round(beam.nodes.total (: ,2:4), abs(

↪→ log10(tol))), 'rows');

58 [LIA2 , LOCB2] = ismember(round(B(1 ,2:4), abs(log10(tol))), round(beam.nodes.total (: ,2:4), abs(

↪→ log10(tol))), 'rows');

59 [LIA3 , LOCB3] = ismember(round(C(1 ,2:4), abs(log10(tol))), round(beam.nodes.total (: ,2:4), abs(

↪→ log10(tol))), 'rows');

60 [LIA4 , LOCB4] = ismember(round(D(1 ,2:4), abs(log10(tol))), round(beam.nodes.total (: ,2:4), abs(

↪→ log10(tol))), 'rows');

61 if LIA == 1

62 A = beam.nodes.total(LOCB , :);

63 end

64 if LIA2 == 1
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65 B = beam.nodes.total(LOCB2 , :);

66 end

67 if LIA3 == 1

68 C = beam.nodes.total(LOCB3 , :);

69 end

70 if LIA4 == 1

71 D = beam.nodes.total(LOCB4 , :);

72 end

73 stiffener.element.matrix{I}(kounter , :) = [element.S4.topology(end , 1) + kounter A(1,1) B(1,1) C

↪→ (1,1) D(1,1)];

74 kounter = kounter + 1;

75 end

76 end

77

78 % Update perforation nodes

79 beam.nodes.total = [beam.nodes.total; stiffener.nodes{I}];

80

81 % Update element S4 topology

82 element.S4.topology = [element.S4.topology; stiffener.element.matrix{I}];

83 end
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A.1.9 stud_mesh()

1 function [nodes_B31_full , nodes_B31_partial , elements_B31 , beam] = stud_mesh(tol , flange , element ,

↪→ beam , stud)

2

3 nodes = beam.nodes.total;

4 % beam.nodes.steel = beam.nodes.total;

5

6 if stud.count_rows == 1

7 topflange = flange.top.nodes.array(find(flange.top.nodes.array(:, 2) ~= 0 & flange.top.nodes.array

↪→ (:, 2) ~= max(flange.top.nodes.array(:, 2))), :);

8 topflange = topflange(find(stud.extents (1) - tol <= topflange(:, 2) & topflange(:, 2) <= stud.

↪→ extents(end) + tol), :);

9 val1 = 0.0; % Mid loc

10

11 flange_locs = topflange(find(topflange(:, 4) == val1), :);

12 length1 = length(flange_locs (:, 1));

13 % nodes_B31_matrix = sortrows(flange_locs , [4 2]); % These nodes are shared with the flange nodes

↪→ and hence have to maintain the top flange numbering

14 spacing_matrix (1, :) = flange_locs (1, :);

15 kounter = 1;

16 for I = 2: length1

17 if (flange_locs(I, 2) - spacing_matrix(kounter , 2)) >= stud.pitch - tol

18 kounter = kounter + 1;

19 % if kounter == 3

20 % I

21 % end

22 spacing_matrix(kounter , :) = flange_locs(I, :);

23 end

24 end

25 nodes_B31_matrix = [];

26 for I = 1: length(spacing_matrix (:, 2))

27 nodes_B31_matrix = [nodes_B31_matrix; flange_locs(find(flange_locs (:, 2) == spacing_matrix(I, 2))

↪→ , :)];

28 end

29 nodes_B31_matrix = sortrows(nodes_B31_matrix , [4 2]);

30

31 % Generate new stud nodes

32 nodes_B31_full = [];

33 nodes_B31_partial = [];

34 kounter = 1;

35 for I = 2: length(stud.depths)

36 nodes_B31_partial = [nodes_B31_partial; nodes_B31_matrix (:, 1:2) nodes_B31_matrix (:, 3) + ones(

↪→ length(nodes_B31_matrix (:, 1)), 1)*stud.depths(I) nodes_B31_matrix (:, 4)];

37 kounter = kounter + 1;

38 end

39 % Rename the new nodes

40 for I = 1: length(nodes_B31_partial (:, 1))

41 nodes_B31_partial(I, 1) = nodes(end , 1) + 100000 + I;

42 end

43 % Collect all the B31 nodes

44 nodes_B31_full = [nodes_B31_matrix; nodes_B31_partial ];

45 % Add new stud nodes to the global node matrix

46 beam.nodes.total = [beam.nodes.total; nodes_B31_partial ];

47 % Assemble stud elements from the nodes using the sequence they were generated in

48 B31_count = 1;

49 for I = 1: length(nodes_B31_full (:, 1)) - length(nodes_B31_matrix (:, 1))

50 elements_B31(I, :) = [B31_count + element.S4.topology(end , 1) nodes_B31_full(I, 1) nodes_B31_full

↪→ (I + length(nodes_B31_matrix (:,1)), 1)];

51 B31_count = B31_count + 1;

52 end

53 elseif stud.count_rows == 2

54 % Rewrite this using appropriate names

55 topflange = flange.top.nodes.array(find(flange.top.nodes.array(:, 2) ~= 0 & flange.top.nodes.array

↪→ (:, 2) ~= max(flange.top.nodes.array(:, 2))), :);

56 topflange = topflange(find(stud.extents (1) - tol <= topflange(:, 2) & topflange(:, 2) <= stud.

↪→ extents(end) + tol), :);

57

58 topflange_nve_z = sortrows(topflange(find(topflange(:, 4) <= 0) ,:), [4]);

59 topflange_pve_z = sortrows(topflange(find(topflange(:, 4) >= 0) ,:), [-4]);

60 % At the moment , this function considers the mid node as the stud location.
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61 % This may need to be modified later on.

62 val1 = topflange_nve_z(ceil(end /2), 4); % Mid node

63 val2 = topflange_pve_z(ceil(end /2), 4); % Mid node

64

65 flange_locs_nve_z = topflange(find(topflange(:, 4) == val1), :);

66 flange_locs_pve_z = topflange(find(topflange(:, 4) == val2), :);

67 length1 = length(flange_locs_nve_z (:, 1));

68 length2 = length(flange_locs_pve_z (:, 1));

69 % nodes_B31_matrix = sortrows(flange_locs_nve_z , [4 2]); % These nodes are shared with the flange

↪→ nodes and hence have to maintain the top flange numbering

70 spacing_matrix (1, :) = flange_locs_nve_z (1, :);

71 kounter = 1;

72 for I = 2: length1

73 if (flange_locs_nve_z(I, 2) - spacing_matrix(kounter , 2)) >= stud.pitch - tol

74 kounter = kounter + 1;

75 spacing_matrix(kounter , :) = flange_locs_nve_z(I, :);

76 end

77 end

78 nodes_B31_matrix = [];

79 for I = 1: length(spacing_matrix (:, 2))

80 nodes_B31_matrix = [nodes_B31_matrix; flange_locs_nve_z(find(flange_locs_nve_z (:, 2) ==

↪→ spacing_matrix(I, 2)), :); flange_locs_pve_z(find(flange_locs_pve_z (:, 2) ==

↪→ spacing_matrix(I, 2)), :)];

81 end

82 nodes_B31_matrix = sortrows(nodes_B31_matrix , [4 2]);

83

84 % Generate new stud nodes

85 nodes_B31_full = [];

86 nodes_B31_partial = [];

87 kounter = 1;

88 for I = 2: length(stud.depths)

89 nodes_B31_partial = [nodes_B31_partial; nodes_B31_matrix (:, 1:2) nodes_B31_matrix (:, 3) + ones(

↪→ length(nodes_B31_matrix (:, 1)), 1)*stud.depths(I) nodes_B31_matrix (:, 4)];

90 kounter = kounter + 1;

91 end

92 % Rename the new nodes

93 for I = 1: length(nodes_B31_partial (:, 1))

94 nodes_B31_partial(I, 1) = nodes(end , 1) + 100000 + I;

95 end

96 % Collect all the B31 nodes

97 nodes_B31_full = [nodes_B31_matrix; nodes_B31_partial ];

98 % Add new stud nodes to the global node matrix

99 beam.nodes.total = [beam.nodes.total; nodes_B31_partial ];

100 % Assemble stud elements from the nodes using the sequence they were generated in

101 B31_count = 1;

102 for I = 1: length(nodes_B31_full (:, 1)) - length(nodes_B31_matrix (:, 1))

103 elements_B31(I, :) = [B31_count + element.S4.topology(end , 1) nodes_B31_full(I, 1) nodes_B31_full

↪→ (I + length(nodes_B31_matrix (:,1)), 1)];

104 B31_count = B31_count + 1;

105 end

106 end
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A.1.10 slab_mesh()

1 function [beam , sequence , s_nodes] = slab_mesh(tol , flange , beam , seeding , slab , mod_ , bolt ,

↪→ nodes_B31_full , elements_B31 , mod_top , reinf , meshgen)

2

3 nodes = beam.nodes.total;

4

5 % Define the z extents of the top flange

6 flange.top.extents.z = [min(flange.top.nodes.array(:, 4)); max(flange.top.nodes.array(:, 4))];

7 % Define the x extents of the top flange

8 flange.top.extents.x = slab.extents;

9

10 % Use only nodes that lie within the x extents as defined in

11 % flange.top.extents.x above

12 nodes = nodes(find(slab.extents (1) - tol <= nodes(:, 2) & nodes(:, 2) <= slab.extents(end) + tol), :)

↪→ ;

13

14 nodes_S4_matrix = flange.top.elements.S4;

15 % Top flange shell nodes stored in an array

16 kounter = 1;

17 [I, J] = size(nodes_S4_matrix);

18 for i = 1:I

19 for j = 2:J

20 if nodes_S4_matrix(i,j) ~= 0 & any(nodes_S4_matrix(i,j) == nodes(:, 1))

21 shell_node_store(kounter , 1) = nodes_S4_matrix(i,j);

22 shell_loc = find(nodes (:,1) == shell_node_store(kounter , 1));

23 shell_node_store(kounter , 2:4) = nodes(shell_loc , 2:4);

24 kounter = kounter + 1;

25 end

26 end

27 end

28 % Remove duplicates (ABAQUS did this automatically)

29 shell_node_store = unique(shell_node_store , 'rows', 'stable ');

30

31

32

33 % Additional nodes created to form the slab 'flanges '.

34 if slab.flanges == 0

35 seeding.L = [];

36 seeding.R = [];

37 elseif slab.flanges == 1

38 Xmax = max(shell_node_store (:,2));

39 Xmin = min(shell_node_store (:,2));

40 Ymax = max(shell_node_store (:,3));

41 Zmin = min(shell_node_store (:,4));

42 Zmax = max(shell_node_store (:,4));

43 TopFlangeWidth = abs(Zmax - Zmin);

44 node_number = beam.nodes.total(end , 1) + 100000;

45

46 L_flange_side = find(abs(shell_node_store (:,4) - Zmin) < tol & abs(shell_node_store (:,3) - Ymax) <

↪→ tol);

47 R_flange_side = find(abs(shell_node_store (:,4) - Zmax) < tol & abs(shell_node_store (:,3) - Ymax) <

↪→ tol);

48 if length(L_flange_side) ~= length(R_flange_side)

49 warning('Error: Flange side node numbers don''t match ')

50 end

51 halfwidth = (slab.width - TopFlangeWidth)/2; % Slab half -width beyond the steel flange.

52

53 kounter = 1;

54 for i = 1: length(seeding.L)

55 for j = 1: length(L_flange_side)

56 L_flange_nodes(kounter ,:) = [0 shell_node_store(L_flange_side(j,1), 2:3) (shell_node_store(

↪→ L_flange_side(j,1), 4)+halfwidth*seeding.L(i))];

57 kounter = kounter + 1;

58 end

59 end

60 L_flange_nodes = sortrows(L_flange_nodes , [2]);

61 kounter = 1;

62 for i = 1: length(seeding.R)

63 for j = 1: length(R_flange_side)

64 R_flange_nodes(kounter ,:) = [0 shell_node_store(R_flange_side(j,1), 2:3) (shell_node_store(
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↪→ R_flange_side(j,1), 4)+halfwidth*seeding.R(i))];

65 kounter = kounter + 1;

66 end

67 end

68 R_flange_nodes = sortrows(R_flange_nodes , [2]);

69 % beam.nodes.total = [beam.nodes.total; L_flange_nodes; R_flange_nodes ];

70 shell_node_store = [shell_node_store; L_flange_nodes; R_flange_nodes ];

71 end

72

73 if strcmp(meshgen.settings.reinf , 'True')

74 if reinf.absolute.switch == 1

75 % Generating additional z-node locations to account for reinforcement

76 % bar positions

77 kounter = 1;

78 for i = 1: length(slab.locs.additional.z)

79 for j = 1: length(L_flange_side)

80 slab.nodes.additional(kounter ,:) = [0 shell_node_store(L_flange_side(j,1), 2:3) slab.locs.

↪→ additional.z(i)];

81 kounter = kounter + 1;

82 end

83 end

84 shell_node_store = [shell_node_store; slab.nodes.additional ];

85 % shell_node_store = unique(shell_node_store , 'rows ', 'stable ');

86

87 % Considering the effect of the additional rows of nodes on the

88 % element generation algorithm , an additional component needs to

89 % be added so that the correct rows (in the y-axis) are used

90 % during generation

91 additional = length(slab.locs.additional.z);

92 end

93 else

94 additional = 0;

95 end

96

97 shell_node_store (:, 1) = zeros(length(shell_node_store (:, 1)), 1);

98 shell_node_store = unique(round(shell_node_store , log10 (1/ tol)), 'rows', 'stable ');

99

100 % Shell nodes used to generate the slab nodes (ALL of them)

101 % as well as the list of nodes to be appended to the

102 % existing nodes.csv file

103 kounter = 1;

104 for I = 1: length(slab.depths)

105 for J = 1: length(shell_node_store (:, 1))

106 s_node = shell_node_store(J, :);

107 s_nodes(kounter , 1:4) = [0 s_node(1, 2) (s_node(1, 3) + slab.depths(I)) s_node(1, 4)];

108 kounter = kounter + 1;

109 end

110 end

111

112 % Sort the s_nodes matrix to follow the convention

113 % 6-----7

114 % 5-----8 |

115 % | 2|----3

116 % 1-----4

117 [dump , indxs] = sortrows(round(s_nodes , abs(log10(tol))), [3 4 2]);

118 s_nodes = s_nodes(indxs , :);

119 % Rename the newly created slab nodes

120 for I = 1: length(s_nodes(:, 1))

121 s_nodes(I, 1) = beam.nodes.total(end , 1) + 100000 + I;

122 end

123

124 if strcmp(meshgen.settings.contact , 'On/Full')

125 % % Remove the nodes generated for the slab coinciding with the

126 % % top flange nodes (i.e. those within the flange bounds)

127 % [C, ia , ib] = intersect(round(s_nodes(:, 2:4), 6), round(flange.top.nodes.array(:, 2:4), 6), '

↪→ rows ');

128 % % s_nodes(find(s_nodes(:, 3) - max(flange.top.nodes.array(:, 3)) <= tol & abs(s_nodes(:, 4)) -

↪→ max(flange.top.nodes.array(:, 4)) <= tol), :) = [];

129 % s_nodes(ia , :) = [];

130

131 % % Add the top flange nodes in place of the slab nodes

132 % s_nodes = [s_nodes; flange.top.nodes.array ];

133
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134 for I = 1: length(s_nodes(:, 1))

135 [~, indx] = ismember(s_nodes(I, 2:4), flange.top.nodes.array(:, 2:4), 'rows');

136 if indx > 0

137 s_nodes(I, 1) = flange.top.nodes.array(indx , 1);

138 end

139 end

140 % Sort the array to match format requirements

141 [dump , indxs] = sortrows(round(s_nodes , abs(log10(tol))), [3 4 2]);

142 s_nodes = s_nodes(indxs , :);

143 end

144

145 % Add new slab nodes to the global node matrix

146 beam.nodes.total = [beam.nodes.total; s_nodes ];

147 % csvwrite('nodes.csv ', [nodes; s_nodes], 0, 0)

148

149 % Slab node coordinates used to generate the mesh cube -by -cube

150 % A-B-C-D -- E-F-G-H

151

152 % Cycle through all the nodes and try to generate a set

153 % of eight valid nodes for each cube. Skip execution if

154 % this is not possible.

155 s_element_count = 1;

156 unique_count = length(unique(round(s_nodes(:, 4), log10 (1/tol))));

157 stnl = length(unique(round(s_nodes(:, 2), log10 (1/tol))));

158 nodesremove = [];

159 beam.slab.bottom_elements = [];

160 for I = 1: length(s_nodes(:, 1)) - unique_count*stnl % All except the top concrete nodes

161 stud_replaced = 0;

162 if abs(s_nodes(I, 4) - max(s_nodes(:, 4))) >= tol & mod(I, stnl) ~= 0

163 A = s_nodes(I, :);

164 B = s_nodes(I + 1, :);

165 C = s_nodes(I + 1 + stnl , :);

166 D = s_nodes(I + stnl , :);

167 E = s_nodes(I + stnl*unique_count , :);

168 F = s_nodes(I + 1 + stnl*unique_count , :);

169 G = s_nodes(I + 1 + stnl*unique_count + stnl , :);

170 H = s_nodes(I + stnl*unique_count + stnl , :);

171

172 % Check if the slab elements being generated are within

173 % the top flange width and if they share nodes with the

174 % studs.

175 if strcmp(meshgen.settings.studs , 'True')

176 if abs(A(4)) <= flange.top.extents.z(2)

177 % Check if a node should be shared with a beam element node

178 [~, indxA] = ismember(round(A(1 ,2:4), log10 (1/tol)), round(nodes_B31_full (: ,2:4), log10 (1/tol

↪→ )),'rows');

179 [~, indxB] = ismember(round(B(1 ,2:4), log10 (1/tol)), round(nodes_B31_full (: ,2:4), log10 (1/tol

↪→ )),'rows');

180 [~, indxC] = ismember(round(C(1 ,2:4), log10 (1/tol)), round(nodes_B31_full (: ,2:4), log10 (1/tol

↪→ )),'rows');

181 [~, indxD] = ismember(round(D(1 ,2:4), log10 (1/tol)), round(nodes_B31_full (: ,2:4), log10 (1/tol

↪→ )),'rows');

182 [~, indxE] = ismember(round(E(1 ,2:4), log10 (1/tol)), round(nodes_B31_full (: ,2:4), log10 (1/tol

↪→ )),'rows');

183 [~, indxF] = ismember(round(F(1 ,2:4), log10 (1/tol)), round(nodes_B31_full (: ,2:4), log10 (1/tol

↪→ )),'rows');

184 [~, indxG] = ismember(round(G(1 ,2:4), log10 (1/tol)), round(nodes_B31_full (: ,2:4), log10 (1/tol

↪→ )),'rows');

185 [~, indxH] = ismember(round(H(1 ,2:4), log10 (1/tol)), round(nodes_B31_full (: ,2:4), log10 (1/tol

↪→ )),'rows');

186 if indxA > 0

187 A = nodes_B31_full(indxA ,:);

188 % if A(1, 2:4) ~= A_coords

189 % 'Error '

190 % end

191 nodesremove = [nodesremove; I];

192 stud_replaced = 1;

193 end

194 if indxB > 0

195 B = nodes_B31_full(indxB ,:);

196 nodesremove = [nodesremove; I + 1];

197 stud_replaced = 1;

198 end
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199 if indxC > 0

200 C = nodes_B31_full(indxC ,:);

201 nodesremove = [nodesremove; I + 1 + stnl];

202 stud_replaced = 1;

203 end

204 if indxD > 0

205 D = nodes_B31_full(indxD ,:);

206 nodesremove = [nodesremove; I + stnl];

207 stud_replaced = 1;

208 end

209 if indxE > 0

210 E = nodes_B31_full(indxE ,:);

211 nodesremove = [nodesremove; I + stnl*unique_count ];

212 stud_replaced = 1;

213 end

214 if indxF > 0

215 F = nodes_B31_full(indxF ,:);

216 nodesremove = [nodesremove; I + 1 + stnl*unique_count ];

217 stud_replaced = 1;

218 end

219 if indxG > 0

220 G = nodes_B31_full(indxG ,:);

221 nodesremove = [nodesremove; I + 1 + stnl*unique_count + stnl];

222 stud_replaced = 1;

223 end

224 if indxH > 0

225 H = nodes_B31_full(indxH ,:);

226 nodesremove = [nodesremove; I + stnl*unique_count + stnl];

227 stud_replaced = 1;

228 end

229 end

230 sequence(s_element_count ,:) = [s_element_count + elements_B31(end , 1) A(1,1) D(1,1) C(1,1) B

↪→ (1,1) E(1,1) H(1,1) G(1,1) F(1,1)];

231 else

232 sequence(s_element_count ,:) = [s_element_count + 100000 A(1,1) D(1,1) C(1,1) B(1,1) E(1,1) H

↪→ (1,1) G(1,1) F(1,1)];

233 end

234 if I <= unique_count*stnl & stud_replaced == 0

235 beam.slab.bottom_elements = [beam.slab.bottom_elements; sequence(s_element_count , :)];

236 end

237 s_element_count = s_element_count + 1;

238 end

239 end

240

241 nodesremove = unique(nodesremove);

242

243 % Slab nodes with replaced nodes (that should not be used) removed

244 beam.nodes.cleanslab = s_nodes;

245 beam.nodes.cleanslab(nodesremove , :) = [];

246

247 % The slab nodes that were removed

248 beam.nodes.slabremove = s_nodes(nodesremove , :);
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A.1.11 reinf_mesh()

1 function reinf = reinf_mesh(tol , reinf , s_nodes , sequence)

2

3 % Find and store the temporary list of all nodes satisfying the height requirements (i.e. y positions

↪→ )

4 reinf.temp.locs = s_nodes(find(abs(s_nodes(:, 3) - reinf.height.val) <= reinf.height.tol) ,:);

5

6 % The reinf.height.tol is a dynamic tolerance in that it changes value

7 % while searching for an appropriate reinforcement positioning

8 % given the height.

9 % NOTE: A possible error could be caused leading to an endless loop.

10 % This would potentially be due to the initial height set for the

11 % reinforcement location being too near the middle of two possible positions

12 % i.e. the search radius may , in certain cases , only find either 0 or 2 values.

13 while length(unique(reinf.temp.locs(:, 3))) ~= 1

14 if length(unique(reinf.temp.locs(:, 3))) > 1

15 reinf.height.tol = reinf.height.tol - tol;

16 elseif length(unique(reinf.temp.locs(:, 3))) < 1

17 reinf.height.tol = reinf.height.tol + tol;

18 end

19 reinf.temp.locs = s_nodes(find(abs(s_nodes(:, 3) - reinf.height.val) <= reinf.height.tol) ,:);

20 end

21

22 if mod(reinf.bar.count.total , 2) ~= 0 & reinf.bar.count.total > 0 & reinf.absolute.switch == 0

23 % reinf.perm.coords = reinf.temp.locs(find(abs(reinf.temp.locs(:, 4) - tol) <= tol), 4);

24 reinf.perm.coords = 0; % i.e. all the nodes that are at z = 0

25

26 % Find -z reinforcement locations

27 reinf.temp.coords = max(reinf.temp.locs(find(reinf.temp.locs(:, 4) + reinf.bar.spacing <= 0 & reinf

↪→ .temp.locs(:, 4) <= 0), 4));

28 for I = 1:( reinf.bar.count.total - 1)/2

29 reinf.perm.coords = [reinf.perm.coords; reinf.temp.coords ];

30 reinf.temp.coords = max(reinf.temp.locs(find(reinf.temp.locs(:, 4) + reinf.bar.spacing - reinf.

↪→ temp.coords <= 0 & reinf.temp.locs(:, 4) <= 0), 4));

31 end

32

33 % Find +z reinforcement locations

34 reinf.temp.coords = min(reinf.temp.locs(find(reinf.temp.locs(:, 4) - reinf.bar.spacing >= 0 & reinf

↪→ .temp.locs(:, 4) >= 0), 4));

35 for I = 1:( reinf.bar.count.total - 1)/2

36 reinf.perm.coords = [reinf.perm.coords; reinf.temp.coords ];

37 reinf.temp.coords = min(reinf.temp.locs(find(reinf.temp.locs(:, 4) - reinf.bar.spacing - reinf.

↪→ temp.coords >= 0 & reinf.temp.locs(:, 4) >= 0), 4));

38 end

39

40 % Store the reinforcement nodes in an Abaqus compatible format

41 reinf.perm.locs = [];

42 reinf.perm.coords = sort(reinf.perm.coords , 'ascend ');

43 for I = 1: length(reinf.perm.coords)

44 reinf.perm.locs = [reinf.perm.locs; reinf.temp.locs(find(abs(reinf.temp.locs(:, 4) - reinf.perm.

↪→ coords(I, 1)) <= tol), :)];

45 reinf.perm.nodes(:, I) = reinf.temp.locs(find(abs(reinf.temp.locs(:, 4) - reinf.perm.coords(I, 1)

↪→ ) <= tol), 1);

46 end

47

48 % Store the reinforcement elements in an Abaqus compatible format

49 reinf.perm.elements = [];

50 B31_count = sequence(end , 1) + 100000;

51 for I = 1: length(reinf.perm.nodes (1,:))

52 for J = 1: length(reinf.perm.nodes (:,1)) - 1

53 reinf.perm.elements = [reinf.perm.elements; B31_count reinf.perm.nodes(J, I) reinf.perm.nodes(J

↪→ + 1, I)];

54 B31_count = B31_count + 1;

55 end

56 end

57 elseif mod(reinf.bar.count.total , 2) == 0 & reinf.bar.count.total > 0 & reinf.absolute.switch == 0

58 reinf.perm.coords = [];

59

60 % Find -z reinforcement locations

61 reinf.temp.coords = max(reinf.temp.locs(find(reinf.temp.locs(:, 4) + reinf.bar.spacing /2 <= 0 &
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↪→ reinf.temp.locs(:, 4) <= 0), 4));

62 for I = 1:reinf.bar.count.total/2

63 reinf.perm.coords = [reinf.perm.coords; reinf.temp.coords ];

64 reinf.temp.coords = max(reinf.temp.locs(find(reinf.temp.locs(:, 4) + reinf.bar.spacing - reinf.

↪→ temp.coords <= 0 & reinf.temp.locs(:, 4) <= 0), 4));

65 end

66

67 % Find +z reinforcement locations

68 reinf.temp.coords = min(reinf.temp.locs(find(reinf.temp.locs(:, 4) - reinf.bar.spacing /2 >= 0 &

↪→ reinf.temp.locs(:, 4) >= 0), 4));

69 for I = 1:reinf.bar.count.total/2

70 reinf.perm.coords = [reinf.perm.coords; reinf.temp.coords ];

71 reinf.temp.coords = min(reinf.temp.locs(find(reinf.temp.locs(:, 4) - reinf.bar.spacing - reinf.

↪→ temp.coords >= 0 & reinf.temp.locs(:, 4) >= 0), 4));

72 end

73

74 % Store the reinforcement nodes in an Abaqus compatible format

75 reinf.perm.locs = [];

76 reinf.perm.coords = sort(reinf.perm.coords , 'ascend ');

77 for I = 1: length(reinf.perm.coords)

78 reinf.perm.locs = [reinf.perm.locs; reinf.temp.locs(find(abs(reinf.temp.locs(:, 4) - reinf.perm.

↪→ coords(I, 1)) <= tol), :)];

79 reinf.perm.nodes(:, I) = reinf.temp.locs(find(abs(reinf.temp.locs(:, 4) - reinf.perm.coords(I, 1)

↪→ ) <= tol), 1);

80 end

81

82 % Store the reinforcement elements in an Abaqus compatible format

83 reinf.perm.elements = [];

84 B31_count = sequence(end , 1) + 100000;

85 for I = 1: length(reinf.perm.nodes (1,:))

86 for J = 1: length(reinf.perm.nodes (:,1)) - 1

87 reinf.perm.elements = [reinf.perm.elements; B31_count reinf.perm.nodes(J, I) reinf.perm.nodes(J

↪→ + 1, I)];

88 B31_count = B31_count + 1;

89 end

90 end

91 elseif mod(reinf.bar.count.total , 2) ~= 0 & reinf.bar.count.total > 0 & reinf.absolute.switch == 1

92 % reinf.perm.coords = reinf.temp.locs(find(abs(reinf.temp.locs(:, 4) - tol) <= tol), 4);

93 reinf.perm.coords = 0; % i.e. all the nodes that are at z = 0

94

95 % Find -z reinforcement locations

96 reinf.temp.coords = max(reinf.temp.locs(find(abs(reinf.temp.locs(:, 4) + reinf.bar.spacing) <= tol

↪→ & reinf.temp.locs(:, 4) <= 0), 4));

97 for I = 1:( reinf.bar.count.total - 1)/2

98 reinf.perm.coords = [reinf.perm.coords; reinf.temp.coords ];

99 reinf.temp.coords = max(reinf.temp.locs(find(abs(reinf.temp.locs(:, 4) + reinf.bar.spacing -

↪→ reinf.temp.coords) <= tol & reinf.temp.locs(:, 4) <= 0), 4));

100 end

101

102 % Find +z reinforcement locations

103 reinf.temp.coords = min(reinf.temp.locs(find(abs(reinf.temp.locs(:, 4) - reinf.bar.spacing) <= tol

↪→ & reinf.temp.locs(:, 4) >= 0), 4));

104 for I = 1:( reinf.bar.count.total - 1)/2

105 reinf.perm.coords = [reinf.perm.coords; reinf.temp.coords ];

106 reinf.temp.coords = min(reinf.temp.locs(find(abs(reinf.temp.locs(:, 4) - reinf.bar.spacing -

↪→ reinf.temp.coords) <= tol & reinf.temp.locs(:, 4) >= 0), 4));

107 end

108

109 % Store the reinforcement nodes in an Abaqus compatible format

110 reinf.perm.locs = [];

111 reinf.perm.coords = sort(reinf.perm.coords , 'ascend ');

112 for I = 1: length(reinf.perm.coords)

113 reinf.perm.locs = [reinf.perm.locs; reinf.temp.locs(find(abs(reinf.temp.locs(:, 4) - reinf.perm.

↪→ coords(I, 1)) <= tol), :)];

114 reinf.perm.nodes(:, I) = reinf.temp.locs(find(abs(reinf.temp.locs(:, 4) - reinf.perm.coords(I, 1)

↪→ ) <= tol), 1);

115 end

116

117 % Store the reinforcement elements in an Abaqus compatible format

118 reinf.perm.elements = [];

119 B31_count = sequence(end , 1) + 100000;

120 for I = 1: length(reinf.perm.nodes (1,:))

121 for J = 1: length(reinf.perm.nodes (:,1)) - 1
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122 reinf.perm.elements = [reinf.perm.elements; B31_count reinf.perm.nodes(J, I) reinf.perm.nodes(J

↪→ + 1, I)];

123 B31_count = B31_count + 1;

124 end

125 end

126 elseif mod(reinf.bar.count.total , 2) == 0 & reinf.bar.count.total > 0 & reinf.absolute.switch == 1

127 reinf.perm.coords = [];

128

129 % Find -z reinforcement locations

130 reinf.temp.coords = max(reinf.temp.locs(find(abs(reinf.temp.locs(:, 4) + reinf.bar.spacing /2) <=

↪→ tol & reinf.temp.locs(:, 4) <= 0), 4));

131 for I = 1:reinf.bar.count.total/2

132 reinf.perm.coords = [reinf.perm.coords; reinf.temp.coords ];

133 reinf.temp.coords = max(reinf.temp.locs(find(abs(reinf.temp.locs(:, 4) + reinf.bar.spacing -

↪→ reinf.temp.coords) <= tol & reinf.temp.locs(:, 4) <= 0), 4));

134 end

135

136 % Find +z reinforcement locations

137 reinf.temp.coords = min(reinf.temp.locs(find(abs(reinf.temp.locs(:, 4) - reinf.bar.spacing /2) <=

↪→ tol & reinf.temp.locs(:, 4) >= 0), 4));

138 for I = 1:reinf.bar.count.total/2

139 reinf.perm.coords = [reinf.perm.coords; reinf.temp.coords ];

140 reinf.temp.coords = min(reinf.temp.locs(find(abs(reinf.temp.locs(:, 4) - reinf.bar.spacing -

↪→ reinf.temp.coords) <= tol & reinf.temp.locs(:, 4) >= 0), 4));

141 end

142

143 % Store the reinforcement nodes in an Abaqus compatible format

144 reinf.perm.locs = [];

145 reinf.perm.coords = sort(reinf.perm.coords , 'ascend ');

146 for I = 1: length(reinf.perm.coords)

147 reinf.perm.locs = [reinf.perm.locs; reinf.temp.locs(find(abs(reinf.temp.locs(:, 4) - reinf.perm.

↪→ coords(I, 1)) <= tol), :)];

148 reinf.perm.nodes(:, I) = reinf.temp.locs(find(abs(reinf.temp.locs(:, 4) - reinf.perm.coords(I, 1)

↪→ ) <= tol), 1);

149 end

150

151 % Store the reinforcement elements in an Abaqus compatible format

152 reinf.perm.elements = [];

153 B31_count = sequence(end , 1) + 100000;

154 for I = 1: length(reinf.perm.nodes (1,:))

155 for J = 1: length(reinf.perm.nodes (:,1)) - 1

156 reinf.perm.elements = [reinf.perm.elements; B31_count reinf.perm.nodes(J, I) reinf.perm.nodes(J

↪→ + 1, I)];

157 B31_count = B31_count + 1;

158 end

159 end

160 else

161 'Error: Incorrect bar count setting.'

162 end
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A.1.12 reinf_mesh_lat()

1 function reinf = reinf_mesh_lat(tol , reinf , s_nodes , sequence , B31_count)

2

3 % Find and store the temporary list of all nodes satisfying the height requirements (i.e. y positions

↪→ )

4 reinf.lat.temp.locs = s_nodes(find(abs(s_nodes(:, 3) - reinf.lat.height.val) <= reinf.lat.height.tol)

↪→ ,:);

5

6 % Ensure that the reinf.lat.locs are within the extents of the slab

7 reinf.lat.locs = reinf.lat.locs(min(s_nodes(:, 2)) - tol <= reinf.lat.locs & reinf.lat.locs <= max(

↪→ s_nodes(:, 2)) + tol)

8

9 % The reinf.lat.height.tol is a dynamic tolerance in that it changes value

10 % while searching for an appropriate reinforcement positioning

11 % given the height.

12 % NOTE: A possible error could be caused leading to an endless loop.

13 % This would potentially be due to the initial height set for the

14 % reinforcement location being too near the middle of two possible positions

15 % i.e. the search radius may , in certain cases , only find either 0 or 2 values.

16 while length(unique(reinf.lat.temp.locs(:, 3))) ~= 1

17 if length(unique(reinf.lat.temp.locs(:, 3))) > 1

18 reinf.lat.height.tol = reinf.lat.height.tol - tol;

19 elseif length(unique(reinf.lat.temp.locs(:, 3))) < 1

20 reinf.lat.height.tol = reinf.lat.height.tol + tol;

21 end

22 reinf.lat.temp.locs = s_nodes(find(abs(s_nodes(:, 3) - reinf.lat.height.val) <= reinf.lat.height.

↪→ tol) ,:);

23 end

24

25 if reinf.lat.bar.count.total > 0 & reinf.lat.absolute.switch ~= 1

26 % reinf.lat.perm.coords = reinf.lat.temp.locs(find(abs(reinf.lat.temp.locs(:, 2) - tol) <= tol), 2)

↪→ ;

27 reinf.lat.perm.coords = []; % i.e. all the nodes that are at z = 0

28

29 % Find +x reinforcement locations

30 reinf.lat.temp.coords = min(reinf.lat.temp.locs(find(reinf.lat.temp.locs(:, 2) - reinf.lat.bar.

↪→ spacing + tol >= 0), 2));

31 for I = 1:reinf.lat.bar.count.total

32 reinf.lat.perm.coords = [reinf.lat.perm.coords; reinf.lat.temp.coords ];

33 reinf.lat.temp.coords = min(reinf.lat.temp.locs(find(reinf.lat.temp.locs(:, 2) - reinf.lat.bar.

↪→ spacing - reinf.lat.temp.coords + tol >= 0), 2));

34 end

35

36 % Store the reinforcement nodes in an Abaqus compatible format

37 reinf.lat.perm.locs = [];

38 reinf.lat.perm.coords = sort(reinf.lat.perm.coords , 'ascend ');

39 for I = 1: length(reinf.lat.perm.coords)

40 reinf.lat.perm.locs = [reinf.lat.perm.locs; reinf.lat.temp.locs(find(abs(reinf.lat.temp.locs(:,

↪→ 2) - reinf.lat.perm.coords(I, 1)) <= tol), :)];

41 reinf.lat.perm.nodes(:, I) = reinf.lat.temp.locs(find(round(abs(reinf.lat.temp.locs(:, 2) - reinf

↪→ .lat.perm.coords(I, 1)), log10 (1/tol)) <= tol), 1);

42 end

43

44 % Store the reinforcement elements in an Abaqus compatible format

45 reinf.lat.perm.elements = [];

46 % B31_count = sequence(end , 1) + 100000;

47 for I = 1: length(reinf.lat.perm.nodes (1,:))

48 for J = 1: length(reinf.lat.perm.nodes (:,1)) - 1

49 reinf.lat.perm.elements = [reinf.lat.perm.elements; B31_count reinf.lat.perm.nodes(J, I) reinf.

↪→ lat.perm.nodes(J + 1, I)];

50 B31_count = B31_count + 1;

51 end

52 end

53 elseif reinf.lat.bar.count.total > 0 & reinf.lat.absolute.switch == 1

54 % Store the reinforcement nodes in an Abaqus compatible format

55 for I = 1: length(reinf.lat.locs)

56 if isempty(find(round(abs(reinf.lat.temp.locs(:, 2) - reinf.lat.locs(I)), log10 (1/tol)) <= tol))

57 reinf.lat.perm.nodes(:, I) = reinf.lat.temp.locs(find(round(abs(reinf.lat.temp.locs(:, 2) -

↪→ reinf.lat.locs(I)), log10 (1/tol) - 1) <= tol *10), 1);

58 else
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59 reinf.lat.perm.nodes(:, I) = reinf.lat.temp.locs(find(round(abs(reinf.lat.temp.locs(:, 2) -

↪→ reinf.lat.locs(I)), log10 (1/ tol)) <= tol), 1);

60 end

61 end

62

63 % Store the reinforcement elements in an Abaqus compatible format

64 reinf.lat.perm.elements = [];

65 % B31_count = sequence(end , 1) + 100000;

66 for I = 1: length(reinf.lat.perm.nodes (1,:))

67 for J = 1: length(reinf.lat.perm.nodes (:,1)) - 1

68 reinf.lat.perm.elements = [reinf.lat.perm.elements; B31_count reinf.lat.perm.nodes(J, I) reinf.

↪→ lat.perm.nodes(J + 1, I)];

69 B31_count = B31_count + 1;

70 end

71 end

72 else

73 'Error: Incorrect bar count setting.'

74 end

A.2 Sample control file

A.2.1 Fully fixed composite diameter batch control script as examined
in § 4.9

1 % This script is used to produce the batches of the final analyses

2 % for the thesis.

3

4 % GENERAL

5

6 tol = 1e-4;

7 % mesh_test = 1;

8 batchcount = 1;

9 M = csvread('blue_book_b.csv' ,0,2);

10 % names = {'modIPN240 '; 'modIPN260 '; 'modIPN280 '};

11 beam_number = 29;

12

13 % INPUTS

14

15 inp.settings.midspansymmetry = 'Symmetric '; % Symmetric or Unsymmetric

16

17 % ------------------------------------------------------------------

18 % Cell Data

19

20 % Cell diameter

21 diameter = 480/1000;

22 for I = 50:50:300

23 diameter = [diameter; diameter (1) - I/1000];

24 batchcount = batchcount + 1;

25 end

26 % @ centres

27 centres (1: length(diameter), 1) = 400./1000 + diameter (1);

28 % With initial spacing of

29 LHS (1: length(diameter), 1) = 200./1000 + diameter (1)/2;

30 RHS = LHS;

31 % Desired length of beam , m.

32 inp.L(1: length(diameter), 1) = 3.75;

33

34 for I = 1: batchcount

35 [cell_number(I, 1), halfspan(I, 1)] = cell_data(tol , LHS(I), RHS(I), diameter(I), centres(I), inp.L

↪→ (I), inp);

36 span = 2* halfspan;

37 end

38

39 cylinder_strengths = [30e+6];

40 steel_yield = [355e+6 0.00];

41

42 stiff_locs = [0.095 M(1,3) /1000/2;

43 0.095 -M(1,3) /1000/2];

44
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45 loadpos = [0:0.1: span];

46

47 for I = 1: batchcount

48 % ------------------------------------------------------------------

49 % Top Tee

50 top_t_depth = 0.3

51 top_t_thickness = M(beam_number ,4) /1000;

52 top_t_flange = M(beam_number ,3) /1000;

53 top_t_flange_thickness = M(beam_number ,5) /1000;

54 top_t_strength = steel_yield;

55

56 % Bottom Tee

57 bot_t_depth = 0.3

58 bot_t_thickness = M(beam_number ,4) /1000;

59 bot_t_flange = M(beam_number ,3) /1000;

60 bot_t_flange_thickness = M(beam_number ,5) /1000;

61 bot_t_strength = steel_yield;

62

63 % Note that fillets are ignored

64 % ------------------------------------------------------------------

65 % RC Slab

66 % slab_depth = [0.135/3:0.135/3:0.135]; % Obsolete

67 slab.width = 2.4;

68 slab.depths = [0 0.135/3:0.135/3:0.135];

69 if strcmp(inp.settings.midspansymmetry , 'Symmetric ')

70 slab.extents = [0.0 halfspan(I)]; % Slab extents along the beam (i.e. where the slab starts and

↪→ ends)

71 else

72 slab.extents = [0.0 span(I)]; % Slab extents along the beam (i.e. where the slab starts and ends)

73 end

74 cylinder_strength = cylinder_strengths;

75 mesh_area = 0.4/100 * slab.width*slab.depths(end); % Longitudinal mesh area , (m2/m)

76 lat_mesh_area = 0.4/100 * (slab.extents(end) - slab.extents (1))*slab.depths(end); % Lateral mesh

↪→ area , (m2/m)

77 mesh_yield = 500e+6;

78 % ------------------------------------------------------------------

79 % Shear Connectors

80 meshgen.settings.studs = 'True'; % True or False

81 stud_diameter = 0.019;

82 stud_height = 0.095;

83 stud_count_total = 97;

84 stud.count_rows = 2;

85 stud.pitch = 0.150;

86 stud.depths = [0:0.005:0.095];

87 stud.extents = [(slab.extents (1) + stud.pitch) (slab.extents(end) - stud.pitch)];

88 stud.locs = stud.extents (1):stud.pitch:stud.extents(end);
89 % ------------------------------------------------------------------

90 % Endplate

91 meshgen.settings.endplate = 'True'; % True or False

92 endplate.thickness = 0.04;

93 et = endplate.thickness;

94 % ------------------------------------------------------------------

95 % INITIAL

96 initial.node.number.length = 5; % Minimum of 3.

97 % ------------------------------------------------------------------

98 % CELL MESH SETTINGS

99 % Settings ***********************

100 cellremesh.switch = 'coarse ';

101 % Intermediate Nodes

102 intermediate_node_count = 8; % Minimum of 0

103 % Top Tee

104 x_node_count_top = 12; % Minimum of 3

105 y_node_count_top = 8; % Minimum of 2

106

107 % Bottom Tee

108 x_node_count_bot = 12; % Minimum of 3

109 y_node_count_bot = 8; % Minimum of 2

110

111 % % Set cellremesh formats (if applicable , otherwise they 'll be ignored anyway)

112 % cellremesh.format(1, :) = [1 (y_node_count_top) (x_node_count_top) (y_node_count_top) (

↪→ y_node_count_bot) (x_node_count_bot) (y_node_count_bot) (intermediate_node_count) (diameter

↪→ ) (centres) (top_t_depth) (bot_t_depth)];

113 % % if mesh_test == 1
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114 % o = 9; % Chosen mesh settings for this test batch

115 % seed_array = 1: -0.1:0;

116 % output = meshtest(cellremesh.format , cell_number , seed_array);

117 % % end

118

119 % for I = 1: length(output(1, 1, :))

120 % for I = 1: batchcount

121 % Set cellremesh formats (if applicable , otherwise they 'll be ignored anyway)

122 cellremesh.format(1, :) = [1 (y_node_count_top) (x_node_count_top) (y_node_count_top) (

↪→ y_node_count_bot) (x_node_count_bot) (y_node_count_bot) (intermediate_node_count) (

↪→ diameter(I)) (centres(I)) (top_t_depth) (bot_t_depth)];

123 % if mesh_test == 1

124 o = 1; % Chosen mesh settings for this test batch

125 seed_array = 1: -0.1:0;

126 output = meshtest(cellremesh.format , cell_number(I), seed_array);

127 % end

128

129 % Top Flange

130 flange.top.nodecount.width = 11; % Minimum of 3, must be odd.

131

132 % Bottom Flange

133 flange.bot.nodecount.width = 11; % Minimum of 3, must be odd.

134

135 % cellremesh.format(2, :) = [2 4 7 4 4 7 4 6 375/1000 517.241379310345/1000 0.3 0.3];

136 % cellremesh.format(3, :) = [2 4 7 4 4 7 4 4 375/1000 517.241379310345/1000 0.3 0.3];

137 % cellremesh.format(4, :) = [2 2 3 2 2 3 2 0 375/1000 517.241379310345/1000 0.3 0.3];

138 % ------------------------------------------------------------------

139 % ------------------------------------------------------------------

140 % Additional node locations to consider (bolt locations and additional plate nodes)

141 % x - components y - components z - components

142 bolt.locations = [0.0 0.0 0.0];

143 % endplate.additional

144 meshgen.specs.slab.switch = 1; % 1 or 0, to allow generation of the slab (or not)

145 % *********************************

146 % ------------------------------------------------------------------

147 % Stiffeners

148 % Perforation stiffeners not considered at this point

149

150 % Web - Flange stiffeners

151 meshgen.specs.stiffener = 0; % 1 or 0, generate web -flange stiffeners

152 % x - components width

153 stiffener.locations = [0.0 0.0];

154

155 % t E v

156 inp.specs.stiffener.behaviour = [0.012 200e+9 0.3];

157 % fy @ e (strain)

158 inp.specs.stiffener.yield = steel_yield;

159 inp.specs.stiffener.material = 'EPP'; % Currently E or EPP only

160 if meshgen.specs.stiffener == 1

161 endplate.stiffener.locs = [zeros(length(stiffener.locations(:, 1)), 2) stiffener.locations(:,

↪→ 2)];

162 end

163 % ------------------------------------------------------------------

164 % Slab mesh and specs

165 seeding.L = -[.25:.25:1]; % Weights must add up to 1.0 and start from nonzero

166 seeding.R = [.25:.25:1]; % As above

167 slab.flanges = 1; % 0 for no 'flanges ', 1 for 'flanges ' to be created

168 meshgen.settings.contact = 'On/Connector '; % Off or On/Connector for contact simulation between

↪→ the

169 % concrete slab and the steel beam flange or

170 % On/Full for merged nodes between the flange and the slab

171 % ------------------------------------------------------------------

172 % REINFORCEMENT SPECS

173 % Longitudinal reinforcement

174 meshgen.settings.reinf = 'True'; % True or False , whether to have reinforcent in the concrete or

↪→ not

175 inp.specs.reinf.E = 200e+9;

176 inp.specs.reinf.v = 0.3;

177 inp.specs.reinf.density = 7800;

178 reinf.height.tol = 0.005;

179 reinf.height.val = 0.051 + top_t_depth; % Allow one for x and one for y later?

180 % reinf.bar.count = 24;

181 % reinf.bar.count.x = 24; % Should be even for this algorithm

475



182 % reinf.bar.count.y = 12;

183 reinf.bar.spacing = 0.2;

184 % reinf.bar.spacing.x = 0.100;

185 % reinf.bar.spacing.y = 0.200;

186 reinf.area = mesh_area;

187 reinf.bar.count.permetre = (1/ reinf.bar.spacing);

188 reinf.bar.count.total = slab.width*reinf.bar.count.permetre;

189 dsq = reinf.area/(reinf.bar.count.permetre *(pi/4));

190 reinf.bar.diameter = sqrt(dsq);

191 % reinf.bar.diameter.x = 0.008;

192 % reinf.bar.diameter.y = 0.008;

193 reinf.absolute.switch = 1;

194

195 % Lateral reinforcement

196 meshgen.settings.lat_reinf = 'True'; % True or False , whether to have lateral reinforcent in the

↪→ concrete or not

197 reinf.lat.height.tol = 0.005;

198 reinf.lat.height.val = 0.051 + top_t_depth; % Allow one for x and one for y later?

199 % reinf.lat.bar.count = 24;

200 % reinf.lat.bar.count.x = 24; % Should be even for this algorithm

201 % reinf.lat.bar.count.y = 12;

202 reinf.lat.bar.spacing = 0.2;

203 % reinf.lat.bar.spacing.x = 0.100;

204 % reinf.lat.bar.spacing.y = 0.200;

205 reinf.lat.area = lat_mesh_area;

206 reinf.lat.bar.count.permetre = (1/ reinf.lat.bar.spacing);

207 if strcmp(inp.settings.midspansymmetry , 'Unsymmetric ')

208 reinf.lat.bar.count.total = ceil((span(I) - 2*reinf.lat.bar.spacing)/(reinf.lat.bar.spacing)) +

↪→ 1;

209 elseif strcmp(inp.settings.midspansymmetry , 'Symmetric ')

210 reinf.lat.bar.count.total = ceil((span(I)/2 - reinf.lat.bar.spacing)/(reinf.lat.bar.spacing)) +

↪→ 1;

211 end

212 % reinf.lat.bar.diameter.x = 0.008;

213 % reinf.lat.bar.diameter.y = 0.008;

214 reinf.lat.absolute.switch = 1; % 0, 1

215 meshgen.reinf_lat.absolute.switch = reinf.lat.absolute.switch;

216 reinf.lat.locs = reinf.lat.bar.spacing *(1: reinf.lat.bar.count.total);

217 if strcmp(inp.settings.midspansymmetry , 'Unsymmetric ')

218 reinf.lat.locs = reinf.lat.locs(slab.extents (1) - tol <= reinf.lat.locs & reinf.lat.locs <=

↪→ slab.extents(end) + tol);

219 elseif strcmp(inp.settings.midspansymmetry , 'Symmetric ')

220 reinf.lat.locs = reinf.lat.locs(slab.extents (1) - tol <= reinf.lat.locs & reinf.lat.locs <=

↪→ span(I)/2 + tol);

221 end

222 reinf.lat.bar.count.total = length(reinf.lat.locs);

223 dsq_lat = reinf.lat.area/(reinf.lat.bar.count.permetre *(pi/4));

224 reinf.lat.bar.diameter = sqrt(dsq_lat);

225

226 cellremesh.format = output(:, :, o);

227 % % if mesh_test == 1

228 % intermediate_node_count = output(1, 8, o); % Minimum of 0

229 % % Top Tee

230 % x_node_count_top = output(1, 3, o); % Minimum of 3

231 % y_node_count_top = output(1, 2, o); % Minimum of 2

232

233 % % Bottom Tee

234 % x_node_count_bot = output(1, 6, o); % Minimum of 3

235 % y_node_count_bot = output(1, 5, o); % Minimum of 2

236 % % end

237 % slab.nodes.additional.x =

238 slab.locs.additional.z = -(slab.width - reinf.bar.spacing)/2: reinf.bar.spacing :(slab.width -

↪→ reinf.bar.spacing)/2;

239

240 % ------------------------------------------------------------------

241 % Additional locations along the beam

242 % Use this to ensure that specific locations exist in the beam

243 % along it , regardless of mesh or cell settings

244 meshgen.settings.lat.switch = 'True'

245 meshgen.specs.lat.locs = []

246 if meshgen.specs.stiffener == 1

247 meshgen.specs.lat.locs = [meshgen.specs.lat.locs;

248 unique(stiff_locs{I}(:, 1))];
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249 end

250

251 % Add the required lateral reinforcement locations to the specs

252 if strcmp(meshgen.settings.lat_reinf , 'True') & reinf.lat.absolute.switch == 1

253 meshgen.specs.lat.locs = [meshgen.specs.lat.locs ' reinf.lat.locs]';

254 end

255

256 % Add any other desireable lateral locations to the beam here

257 meshgen.specs.lat.locs = [meshgen.specs.lat.locs; span(I)];

258 % Add the stud locations

259 if strcmp(meshgen.settings.studs , 'True')

260 meshgen.specs.lat.locs = [meshgen.specs.lat.locs; loadpos '; stud.locs '];

261 end

262 meshgen.specs.lat.locs = unique(meshgen.specs.lat.locs);

263 meshgen.specs.lat.locs = sort(meshgen.specs.lat.locs);

264

265 % ------------------------------------------------------------------

266 % LHS = LHS(I)

267 % RHS = RHS(I)

268 % diameter = diameter(I)

269 % cell_number

270 % cell_number = cell_number(I)

271 % centres

272 % centres = centres(I)

273 % span = span(I)

274 % intermediate_node_count = output(1, 8, o);

275 % x_node_count_top = output(1, 3, o);

276 % y_node_count_top = output(1, 2, o);

277 % x_node_count_bot = output(1, 6, o);

278 % y_node_count_bot = output(1, 5, o);

279 % ------------------------------------------------------------------

280 [beam , element , elements_B31 , sequence , reinf ,...

281 flange , stiffener, endplate , nodes_B31_partial , s_nodes ,...

282 bolt , midspan] ...

283 = ...

284 mesh_gen(tol , inp , meshgen , LHS(I), RHS(I), diameter(I), cell_number(I

↪→ ), centres(I), span(I) ,...

285 top_t_depth , top_t_thickness , top_t_flange ,...

286 top_t_flange_thickness , top_t_strength ,...

287 bot_t_depth , bot_t_thickness , bot_t_flange ,...

288 bot_t_flange_thickness , bot_t_strength , stiffener ,...

289 slab , cylinder_strength , mesh_area ,...

290 mesh_yield , stud_diameter , stud_height , stud_count_total ,...

291 stud, endplate , initial ,...

292 output(1, 8, o), output(1, 3, o), output(1, 2, o) ,...

293 output(1, 6, o), output(1, 5, o), flange , bolt , seeding , reinf ,

↪→ cellremesh);

294

295 % Save the workspace and mesh for future use

296 variable_examined = 'diameter ';

297 mesh_files = strcat('F:\ Tests\Composite\FixedConcrete\', variable_examined , '\Meshes\');

298 [s,mess ,messid] = mkdir(mesh_files)

299 mesh_name = strcat(mesh_files , num2str(I));

300 save(mesh_name)

301

302 % ------------------------------------------------------------------

303 % for I = 1: length(top_t_thickness)

304 % .inp generator settings

305 inp.specs.job.location = strcat('F:\ Tests\Composite\FixedConcrete\', variable_examined , '\');

306 [s,mess ,messid] = mkdir(inp.specs.job.location)

307 inp.specs.job.name = strcat(num2str(I));

308 inp.specs.model.name = 'placeholder_model_name ';

309 inp.specs.beam.name = 'test_beam ';

310 inp.specs.assembly.name = 'Assembly ';

311 inp.specs.instance.name = 'beam_instance ';

312 inp.specs.analysis.static = [1e-3; 1.; 1e-12; 0.1]; % Initial , total , minimum and max steps

313 inp.specs.analysis.riks = [1e-0; 1e-0; 1e-06; 1e+30; 1; 2; -0.2]; % Initial , estimated , min ,

↪→ max arc length ,

314 % Max load proportionality factor , dof

↪→ monitored ,

315 % value of total displacement before

↪→ analysis termination

316 inp.specs.analysis.explicit = [% Direct user control not implemented yet
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317 10]; % Total time

318 inp.specs.analysis.inc = 10000; % maximum number of increments

319 inp.specs.column.width = 0.4366;

320 inp.specs.steel.E = 200e+9;

321 inp.specs.steel.v = 0.3;

322 inp.specs.steel.density = 7800;

323 inp.specs.steel.material.general = 'EPP'; % E or EPP (elastic , perfectly -plastic)

324 inp.specs.steel.behaviour.general = steel_yield; % [Yield stress , Plastic Strain] format

325 inp.specs.steel.material.web = 'EPP'; % E or EPP (elastic , perfectly -plastic)

326 inp.specs.steel.behaviour.web = steel_yield; % [Yield stress , Plastic Strain] format

327 inp.specs.steel.material.flange = 'EPP'; % E or EPP (elastic , perfectly -plastic)

328 inp.specs.steel.behaviour.flange = steel_yield; % [Yield stress , Plastic Strain] format

329 inp.specs.conc.E = 30.0e+9;

330 inp.specs.conc.v = 0.18;

331 inp.specs.conc.density = 2400;

332

333 inp.specs.conc.material = 'Mohr -Coulomb '; % E, EPP , conc1 , conc2 , M7 , Mohr -Coulomb

334 inp.specs.conc.behaviour = [cylinder_strength , 0.000]; % E and EPP format

335

336 inp.specs.conc.m_c.dilation = [20., 0.0]; % Mohr -Coulomb behaviour , friction and dilation

↪→ angles

337 inp.specs.conc.m_c.hardening = [3e+7, 0.0]; % MC hardening , yield strength

338 inp.specs.conc.m_c.tensioncutoff = [3e+6, 0.0]; % MC tension cutoff behaviour

339

340 inp.specs.conc.M7.mplanes = 37;

341 inp.specs.conc.M7.ks = [120e-6; 110; 30; 95; 4e-2];

342

343 inp.specs.conc.M7.cs = [8.9e-2; 17.6e-2; 1; 50; 3500;

344 20; 1; 8; 1.2e-2; 0.33;

345 0.5; 2.36; 4500; 300; 4000;

346 60; 1.8; 62.5e+6; 1000; 1.8; 250e+6];

347 inp.specs.conc.M7.fcdash = 42e+6;

348 inp.specs.conc.comphard = comphard_def (); % Postpeak compressive behaviour , default

349 % Shared between conc1 and conc2

350 inp.specs.conc.tentype = 'Displacement '; % Strain or Displacement for conc1

351 % Strain , Displacement or GFI for conc2

352 % inp.specs.conc.tenstiff = [1 0;

353 % 0 0.01]; % Tension stiffening , strain , for conc1 , default

354 inp.specs.conc.tenstiff = [0.01]; % Tension stiffening , displacement , for conc1 , default

355 inp.specs.conc.damplast = [30; % Default dilation angle

356 0.1; % Default eccentricity

357 1.16; % Default fb0/fc0

358 2/3; % Default K

359 0] % Default viscosity parameter

360 inp.specs.conc.damtenstiff = [6e+6 0;

361 0 0.001]; % Strain or Displacement

362 inp.specs.conc.gfi = [6e+6 120]; % GFI for conc2 in the format

363 % of [( yield stress) (fracture energy)]

364

365 inp.specs.q = -100000; % Load (either concentrated or UDL , in N or N/m)

366 inp.specs.d = -0.05; % Displacement control amount of displacement in m.

367

368 % Set the 'contact springs ' stiffness to a value

369 % relative to the plain beam axial stiffness

370 A = (( top_t_flange*top_t_flange_thickness + (top_t_depth - top_t_flange_thickness)*

↪→ top_t_thickness) + ...

371 (bot_t_flange*bot_t_flange_thickness + (bot_t_depth - bot_t_flange_thickness)*

↪→ bot_t_thickness));

372 stiff = inp.specs.steel.E*A/(span(I)/2);

373 inp.specs.spring.endplate = [-stiff , -1;

374 0, 0;

375 0, 1e-6;

376 0, 1];

377 inp.specs.spring.contact = [-stiff , -1;

378 0, 0;

379 0, 1e-6;

380 0, 1];

381 inp.specs.errorindex = [0.1]; % Time interval

382

383 inp.settings.loadtype = 'Concentrated/pos'; % UDL or Concentrated or Jack/Mid (without pos

↪→ control)

384 % or Jack/pos or Concentrated/pos (with pos control using

↪→ loadpos)
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385 inp.settings.loadpos = loadpos; % Location of force/s or displacement/s along x

386 inp.settings.supporttype = 'Fully Fixed '; % Simple or Fixed or Simple/Bolts or Simple/CELLBEAM

↪→ or Fully Fixed

387 inp.settings.supportoffset = [0.0 0.0]; % Offset the support location by x m. from the edge (1

↪→ by x or x by 1 vectors only)

388 inp.settings.midlatsupport = 'None'; % Lateral support types , MidBrace or None only

389 inp.settings.inilatsupport = 'None'; % Lateral support at the support locations , Brace or None

390 inp.settings.midspansymmetry % Symmetric or Unsymmetric

391 % inp.settings.beamsymmetry = 'Symmetric '; % Or Unsymmetric

392 inp.settings.concretesymmetry = 'Symmetric '; % Symmetric or Unsymmetric , for the concrete

393 % near the column

394 inp.settings.reinfsymmetry = 'None'; % Reinf/Discontinuous or Reinf/Full or None

395 inp.settings.analysis = 'Static '; % Static , Riks , Buckling , Postbuckling/NR or Postbuckling/

↪→ Riks

396

397 % Buckling settings

398 inp.specs.bucklingsolver = 'subspace '; % lanczos or subspace only

399 % Subspace only

400 inp.specs.bucklingmodes = 10; % Number of requested buckling modes

401 inp.specs.bucklingvecs = min (2* inp.specs.bucklingmodes , inp.specs.bucklingmodes + 8);

402 inp.specs.bucklingiters = 100;

403

404 % Postbuckling settings

405 inp.specs.bucklingfile = strcat(num2str(I), 'b'); % The buckling .fil results to be used as

↪→ imperfections

406 inp.specs.bucklingcombination = [1 (top_t_depth - top_t_flange_thickness)*2/250]; % [(mode #)

↪→ (scale factor)]

407

408 inp.settings.nonlingeo = 'Yes'; % Yes or No for nonlinear geometry

409 inp.settings.zsymmetry = 'Yes'; % Yes or No for z-symmetry in the sample

410 inp.settings.analysistype = 'Implicit '; % Implicit or Explicit

411 % inp.settings.amplitude.behaviour =

412 inp.settings.amplitude.type = 'Smooth '; % Currently only Smooth is available

413 inp.settings.analysiscontrol = 'Load'; % Load or Displacement (control)

414 inp.settings.massscaling = 'Off'; % On or Off

415 inp.settings.errorindex = 'Off'; % On or Off

416

417 % fingerprint(I, :) = top_t_thickness(I);

418

419 inp_gen(tol , inp , meshgen , beam , reinf , element , stud_diameter ,...

420 elements_B31 , sequence , flange, endplate ,...
421 top_t_flange_thickness , top_t_thickness ,...

422 bot_t_flange_thickness , bot_t_thickness ,...

423 nodes_B31_partial , s_nodes , bolt , midspan , span(I), top_t_depth , stiffener , slab);

424 % end

425 % fileID = fopen(strcat(job_location , 'fingerprint.txt '), 'w');

426 % fprintf(fileID , '%.6f\n', fingerprint ');

427 % fclose(fileID)

428 fprintf('Model and inp generation complete\n');

429 inp.specs.job.names{I} = inp.specs.job.name;

430 clear flange bolt

431 clear beam element elements_B31 sequence reinf

432 clear endplate nodes_B31_partial s_nodes midspan

433 clear stiffener

434 endplate.thickness = et;

435 end

436

437 fingerprint(tol , [1: batchcount]', inp.specs.job.location , LHS , RHS ,...

438 centres , diameter , inp.L, cell_number - 2, span , top_t_depth ,...

439 top_t_flange , bot_t_depth , bot_t_flange , slab.width ,...

440 top_t_thickness , top_t_flange_thickness , ...

441 bot_t_thickness , bot_t_flange_thickness);

442 batchwriter(I, inp);
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Appendix B

Input generator

B.1 Source code, inp_gen()

1 function inp_gen(tol , inp , meshgen , beam , reinf , element , stud_diameter ,...

2 elements_B31 , sequence , flange, endplate ,...
3 top_t_flange_thickness , top_t_thickness ,...

4 bot_t_flange_thickness , bot_t_thickness ,...

5 nodes_B31_partial , s_nodes , bolt , midspan , span , top_t_depth , stiffener , slab);

6

7 % Set the explicit analysis dt step when using mass scaling

8 if isfield(inp.specs , 'dt')

9 dt = inp.specs.dt;

10 else

11 dt = 5e-6; % Default value

12 end

13

14 M7_switch = 0;

15

16 % % See if this is a restart analysis

17 % if isfield(inp.specs , 'restart ')

18 % restart = inp.specs.restart;

19 % else

20 % restart = 0;

21 % end

22

23 fileID = fopen(strcat(inp.specs.job.location , inp.specs.job.name , '.inp'), 'w');

24 fprintf(fileID , '*Heading\n** Job name: %s Model name: %s\n** Generated by: mesh_gen.m and inp_gen.m\

↪→ n', inp.specs.job.name , inp.specs.model.name)

25 fprintf(fileID , '\n');

26 fprintf(fileID , '*Preprint , echo=NO , model=NO , history=NO , contact=NO\n\n');

27 % if restart == 1;

28 % fprintf(fileID , '*Restart , read , step =1\n\n');

29 % else

30 fprintf(fileID , '**\n** PARTS\n**\n');

31

32 % Format and write the total node matrix (for the entire beam , including removed sections)

33 fprintf(fileID , '*Part , name=%s\n*Node\n', inp.specs.beam.name);

34 fprintf(fileID , '%d, %.6f, %.6f, %.6f\n', beam.nodes.total (:,:) ');

35

36 % Format and write the total S4 element matrix (NOT including the removed sections)

37 if strcmp(inp.settings.zsymmetry , 'No')

38 fprintf(fileID , '*Element , type=S4\n');

39 fprintf(fileID , '%d, %d, %d, %d, %d\n', element.S4.topology (:,:) ');

40 elseif strcmp(inp.settings.zsymmetry , 'Yes')

41 nodes_temp = beam.nodes.total(find(beam.nodes.total(:, 4) + tol >= 0), :);

42 [symmetricS4 , ~] = extractelements(element.S4.topology , nodes_temp (:, 1));

43 fprintf(fileID , '*Element , type=S4\n');

44 fprintf(fileID , '%d, %d, %d, %d, %d\n', symmetricS4 (:,:) ');

45 % clear symmetricS4

46 end

47
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48 if meshgen.specs.slab.switch == 1

49 if strcmp(inp.settings.zsymmetry , 'No')

50 if strcmp(meshgen.settings.studs , 'True')

51 % Format and write the stud element matrix

52 fprintf(fileID , '*Element , type=B31\n');

53 fprintf(fileID , '%d, %d, %d\n', elements_B31 (:,:) ');

54 end

55

56 % Format and write the slab elements

57 fprintf(fileID , '*Element , type=C3D8\n');

58 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d, %d, %d\n', sequence (:,:) ');

59

60 if strcmp(meshgen.settings.reinf , 'True')

61 % Format and write the reinforcement elements

62 fprintf(fileID , '*Element , type=T3D2\n'); % Change B31 to T3D2

63 fprintf(fileID , '%d, %d, %d\n', reinf.perm.elements (:,:) ');

64

65 % Format and write the reinforcement element list

66 fprintf(fileID , '*Elset , elset=reinforcement , generate\n');

67 fprintf(fileID , '%d, %d, 1\n', reinf.perm.elements(1, 1), reinf.perm.elements(end , 1));

68 end

69

70 if strcmp(meshgen.settings.lat_reinf , 'True')

71 % Format and write the lateral reinforcement elements

72 fprintf(fileID , '*Element , type=T3D2\n'); % Change B31 to T3D2

73 fprintf(fileID , '%d, %d, %d\n', reinf.lat.perm.elements (:,:) ');

74

75 % Format and write the lateral reinforcement element list

76 fprintf(fileID , '*Elset , elset=latreinforcement , generate\n');

77 fprintf(fileID , '%d, %d, 1\n', reinf.lat.perm.elements(1, 1), reinf.lat.perm.elements(end , 1));

78 end

79

80 % One concrete material model is defined

81 if length(inp.specs.conc.material) == 1

82 % Format and write the slab element list

83 fprintf(fileID , '*Elset , elset=slab\n');

84 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', sequence (1:end - mod(length(sequence(:, 1)), 7)

↪→ ,1));

85 fspec = repmat('%d, ', 1, mod(length(sequence(:, 1)), 7) - 1);

86 fspec = [fspec '%d\n'];

87 fprintf(fileID , fspec , sequence(end - mod(length(sequence(:, 1)), 7) + 1:end,1));
88 clear fspec

89 elseif length(inp.specs.conc.material) == 2

90 % Two concrete material models are defined

91 temp = extractelements(elements_B31 , beam.nodes.total(find(beam.nodes.total(:, 2) <= 0.2)), '

↪→ any');

92 nodes_temp2 = unique(temp(:, 2:3));

93 % nodes_temp2 = elements_B31 (:, 2:3); % unique ([ unique(elements_B31 (:, 2:3)); unique(reinf.perm

↪→ .nodes); unique(reinf.lat.perm.nodes)]);

94 [slab_mat2 , slab_mat1] = extractelements(sequence , nodes_temp2 (:, 1), 'any');

95

96 % Format and write the slab element list for the default concrete material

97 fprintf(fileID , '*Elset , elset=slab\n');

98 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', slab_mat1 (1:end - mod(length(slab_mat1(:, 1)),

↪→ 7) ,1));

99 fspec = repmat('%d, ', 1, mod(length(slab_mat1(:, 1)), 7) - 1);

100 fspec = [fspec '%d\n'];

101 fprintf(fileID , fspec , slab_mat1(end - mod(length(slab_mat1(:, 1)), 7) + 1:end,1));
102 clear fspec

103

104 % Format and write the slab element list for the second concrete material

105 fprintf(fileID , '*Elset , elset=slab_mat2\n');

106 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', slab_mat2 (1:end - mod(length(slab_mat2(:, 1)),

↪→ 7) ,1));

107 fspec = repmat('%d, ', 1, mod(length(slab_mat2(:, 1)), 7) - 1);

108 fspec = [fspec '%d\n'];

109 fprintf(fileID , fspec , slab_mat2(end - mod(length(slab_mat2(:, 1)), 7) + 1:end,1));
110 clear fspec

111 end

112

113 if strcmp(meshgen.settings.studs , 'True')

114 % Format and write the stud element list

115 fprintf(fileID , '*Elset , elset=studs , generate\n');
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116 fprintf(fileID , '%d, %d, 1\n', elements_B31 (1, 1), elements_B31(end , 1));

117 end

118 elseif strcmp(inp.settings.zsymmetry , 'Yes')

119 if strcmp(meshgen.settings.studs , 'True')

120 % Format and write the stud element matrix (Z - symmetry)

121 % Note that the section is not yet influenced by the symmetry

122 % and so may be incorrect if the studs are at the plane of

123 % symmetry

124 [symmetricB31 , ~] = extractelements(elements_B31 , nodes_temp (:, 1));

125 fprintf(fileID , '*Element , type=B31\n');

126 fprintf(fileID , '%d, %d, %d\n', symmetricB31 (:,:) ');

127 end

128

129 % Format and write the slab elements

130 [symmetricslab , ~] = extractelements(sequence , nodes_temp (:, 1));

131 fprintf(fileID , '*Element , type=C3D8\n');

132 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d, %d, %d\n', symmetricslab (:,:) ');

133

134 if strcmp(meshgen.settings.reinf , 'True')

135 % Format and write the reinforcement elements

136 [symmetricreinf , ~] = extractelements(reinf.perm.elements , nodes_temp (:, 1));

137 fprintf(fileID , '*Element , type=T3D2\n'); % Change B31 to T3D2

138 fprintf(fileID , '%d, %d, %d\n', symmetricreinf (:,:) ');

139

140 % Format and write the reinforcement element list

141 fprintf(fileID , '*Elset , elset=reinforcement , generate\n');

142 fprintf(fileID , '%d, %d, 1\n', symmetricreinf (1, 1), symmetricreinf(end , 1));

143 end

144

145 if strcmp(meshgen.settings.lat_reinf , 'True')

146 % Format and write the reinforcement elements

147 [latsymmetricreinf , ~] = extractelements(reinf.lat.perm.elements , nodes_temp (:, 1));

148 fprintf(fileID , '*Element , type=T3D2\n'); % Change B31 to T3D2

149 fprintf(fileID , '%d, %d, %d\n', latsymmetricreinf (:,:) ');

150

151 % Format and write the reinforcement element list

152 fprintf(fileID , '*Elset , elset=latreinforcement , generate\n');

153 fprintf(fileID , '%d, %d, 1\n', latsymmetricreinf (1, 1), latsymmetricreinf(end , 1));

154 end

155

156 % One concrete material model is defined

157 if length(inp.specs.conc.material) == 1

158 % Format and write the slab element list

159 fprintf(fileID , '*Elset , elset=slab\n');

160 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', symmetricslab (1:end - mod(length(symmetricslab

↪→ (:, 1)), 7) ,1));

161 fspec = repmat('%d, ', 1, mod(length(symmetricslab (:, 1)), 7) - 1);

162 fspec = [fspec '%d\n'];

163 fprintf(fileID , fspec , symmetricslab(end - mod(length(symmetricslab (:, 1)), 7) + 1:end,1));
164 clear fspec

165 elseif length(inp.specs.conc.material) == 2

166 % Two concrete material models are defined

167 temp = extractelements(elements_B31 , beam.nodes.total(find(beam.nodes.total(:, 2) <= 0.2)), '

↪→ any');

168 nodes_temp2 = unique(temp(:, 2:3));

169 % nodes_temp2 = elements_B31 (:, 2:3); % unique ([ unique(elements_B31 (:, 2:3)); unique(reinf.perm

↪→ .nodes); unique(reinf.lat.perm.nodes)]);

170 % nodes_temp2 = nodes_temp2(ismember(nodes_temp2 , nodes_temp));

171 [slab_mat2 , slab_mat1] = extractelements(symmetricslab , nodes_temp2 (:, 1), 'any');

172

173 % Format and write the slab element list for the default concrete material

174 fprintf(fileID , '*Elset , elset=slab\n');

175 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', slab_mat1 (1:end - mod(length(slab_mat1(:, 1)),

↪→ 7) ,1));

176 fspec = repmat('%d, ', 1, mod(length(slab_mat1(:, 1)), 7) - 1);

177 fspec = [fspec '%d\n'];

178 fprintf(fileID , fspec , slab_mat1(end - mod(length(slab_mat1(:, 1)), 7) + 1:end,1));
179 clear fspec

180

181 % Format and write the slab element list for the second concrete material

182 fprintf(fileID , '*Elset , elset=slab_mat2\n');

183 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', slab_mat2 (1:end - mod(length(slab_mat2(:, 1)),

↪→ 7) ,1));
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184 fspec = repmat('%d, ', 1, mod(length(slab_mat2(:, 1)), 7) - 1);

185 fspec = [fspec '%d\n'];

186 fprintf(fileID , fspec , slab_mat2(end - mod(length(slab_mat2(:, 1)), 7) + 1:end,1));
187 clear fspec

188 end

189

190 if strcmp(meshgen.settings.studs , 'True')

191 % Format and write the stud element list

192 fprintf(fileID , '*Elset , elset=studs , generate\n');

193 fprintf(fileID , '%d, %d, 1\n', symmetricB31 (1, 1), symmetricB31(end , 1));

194 clear symmetricB31

195 end

196 clear symmetricreinf latsymmetricreinf

197 end

198 end

199

200 % Format and write the top flange elements

201 fprintf(fileID , '*Elset , elset=flange_top\n');

202 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', flange.top.elements.S4(1:end - mod(length(flange.top.

↪→ elements.S4(:, 1)), 7) ,1));

203 fspec = repmat('%d, ', 1, mod(length(flange.top.elements.S4(:, 1)), 7) - 1);

204 fspec = [fspec '%d\n'];

205 fprintf(fileID , fspec , flange.top.elements.S4(end - mod(length(flange.top.elements.S4(:, 1)), 7) + 1

↪→ :end,1));
206

207 if strcmp(meshgen.settings.contact , 'On/ABAQUSContact ') == 1

208 % Bottom slab elements used to form a surface

209 fprintf(fileID , '*Elset , elset=slab_elements_bottom\n');

210 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', beam.slab.bottom_elements (1:end - mod(length(beam.

↪→ slab.bottom_elements (:, 1)), 7) ,1));

211 fspec = repmat('%d, ', 1, mod(length(beam.slab.bottom_elements (:, 1)), 7) - 1);

212 fspec = [fspec '%d\n'];

213 fprintf(fileID , fspec , beam.slab.bottom_elements(end - mod(length(beam.slab.bottom_elements (:, 1)),

↪→ 7) + 1:end,1));
214 end

215

216 % Format and write the top web elements

217 fprintf(fileID , '*Elset , elset=perforations_top\n');

218 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', element.S4.web.top(1:end - mod(length(element.S4.web.

↪→ top(:, 1)), 7) ,1));

219 fspec = repmat('%d, ', 1, mod(length(element.S4.web.top(:, 1)), 7) - 1);

220 fspec = [fspec '%d\n'];

221 fprintf(fileID , fspec , element.S4.web.top(end - mod(length(element.S4.web.top(:, 1)), 7) + 1:end,1));
222

223

224 % % Format and write the perforations ' elements (split later into top and bottom)

225 % fprintf(fileID , '*Elset , elset=perforations\n');

226 % fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', element.S4.perforations (1:end - mod(length(element.

↪→ S4.perforations (:, 1)), 7) ,1));

227 % fspec = repmat('%d, ', 1, mod(length(element.S4.perforations (:, 1)), 7) - 1);

228 % fspec = [fspec '%d\n'];

229 % fprintf(fileID , fspec , element.S4.perforations(end - mod(length(element.S4.perforations (:, 1)), 7)

↪→ + 1:end,1));
230

231 % % Format and write the initial elements (split later into top and bottom)

232 % if length(initial.elements.S4(:, 1)) >= 7

233 % fprintf(fileID , '*Elset , elset=initial\n');

234 % fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', initial.elements.S4(1:end - mod(length(initial.

↪→ elements.S4(:, 1)), 7) ,1));

235 % fspec = repmat('%d, ', 1, mod(length(initial.elements.S4(:, 1)), 7) - 1);

236 % fspec = [fspec '%d\n'];

237 % fprintf(fileID , fspec , initial.elements.S4(end - mod(length(initial.elements.S4(:, 1)), 7) + 1

↪→ :end,1));
238 % elseif length(initial.elements.S4(:, 1)) < 7

239 % fprintf(fileID , '*Elset , elset=initial\n');

240 % fspec = repmat('%d, ', 1, mod(length(initial.elements.S4(:, 1)), 7) - 1);

241 % fspec = [fspec '%d\n'];

242 % fprintf(fileID , fspec , initial.elements.S4(end - mod(length(initial.elements.S4(:, 1)), 7) + 1

↪→ :end,1));
243 % end

244

245

246 % Format and write the bottom web elements
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247 fprintf(fileID , '*Elset , elset=perforations_bot\n');

248 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', element.S4.web.bot(1:end - mod(length(element.S4.web.

↪→ bot(:, 1)), 7) ,1));

249 fspec = repmat('%d, ', 1, mod(length(element.S4.web.bot(:, 1)), 7) - 1);

250 fspec = [fspec '%d\n'];

251 fprintf(fileID , fspec , element.S4.web.bot(end - mod(length(element.S4.web.bot(:, 1)), 7) + 1:end,1));
252

253 % Format and write the bottom flange elements

254 fprintf(fileID , '*Elset , elset=flange_bot\n');

255 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', flange.bot.elements.S4(1:end - mod(length(flange.bot.

↪→ elements.S4(:, 1)), 7) ,1));

256 fspec = repmat('%d, ', 1, mod(length(flange.bot.elements.S4(:, 1)), 7) - 1);

257 fspec = [fspec '%d\n'];

258 fprintf(fileID , fspec , flange.bot.elements.S4(end - mod(length(flange.bot.elements.S4(:, 1)), 7) + 1

↪→ :end,1));
259

260 if strcmp(meshgen.settings.endplate , 'True')

261 % Format and write the endplate elements

262 fprintf(fileID , '*Elset , elset=endplate\n');

263 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', endplate.element.matrix (1:end - mod(length(endplate

↪→ .element.matrix(:, 1)), 7) ,1));

264 fspec = repmat('%d, ', 1, mod(length(endplate.element.matrix(:, 1)), 7) - 1);

265 fspec = [fspec '%d\n'];

266 fprintf(fileID , fspec, endplate.element.matrix(end - mod(length(endplate.element.matrix(:, 1)), 7)

↪→ + 1:end,1));
267 end

268

269 if meshgen.specs.stiffener == 1

270 for I = 1: stiffener.count

271 % Format and write the stiffener elements

272 fprintf(fileID , '*Elset , elset=stiffener_%s\n', num2str(I));

273 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', stiffener.element.matrix{I}(1:end - mod(length(

↪→ stiffener.element.matrix{I}(:, 1)), 7) ,1));

274 fspec = repmat('%d, ', 1, mod(length(stiffener.element.matrix{I}(:, 1)), 7) - 1);

275 fspec = [fspec '%d\n'];

276 fprintf(fileID , fspec , stiffener.element.matrix{I}(end - mod(length(stiffener.element.matrix{I

↪→ }(:, 1)), 7) + 1:end,1));
277 end

278 end

279

280 if meshgen.specs.slab.switch == 1

281 if strcmp(meshgen.settings.reinf , 'True')

282 % Assign properties to the reinforcement bars (along the beam , x-axis)

283 fprintf(fileID , '** Section: Reinforcement\n');

284 fprintf(fileID , '*Solid Section , elset=reinforcement , material=Steel_Reinforcement\n');

285 fprintf(fileID , '%i\n', pi*reinf.bar.diameter ^2/4); % change to reinf.bar.diameter.x

286 % fprintf(fileID , '0.,0.,-1.\n');

287

288 % % Assign properties to the reinforcement bars (along the beam , y-axis)

289 % fprintf(fileID , '** Section: Reinforcement\n');

290 % fprintf(fileID , '*Beam Section , elset=reinforcement , material=Steel_Reinforcement , temperature=

↪→ GRADIENTS , section=CIRC\n');

291 % fprintf(fileID , '%i\n', reinf.bar.diameter.y/2);

292 % fprintf(fileID , '0.,0.,-1.\n');

293 end

294

295 if strcmp(meshgen.settings.lat_reinf , 'True')

296 % Assign properties to the lateral reinforcement bars (perpendicular to the beam , z-axis)

297 fprintf(fileID , '** Section: Lateral Reinforcement\n');

298 fprintf(fileID , '*Solid Section , elset=latreinforcement , material=Steel_Reinforcement\n');

299 fprintf(fileID , '%i\n', pi*reinf.lat.bar.diameter ^2/4); % change to reinf.bar.diameter.x

300 % fprintf(fileID , '0.,0.,-1.\n');

301

302 % % Assign properties to the reinforcement bars (along the beam , y-axis)

303 % fprintf(fileID , '** Section: Reinforcement\n');

304 % fprintf(fileID , '*Beam Section , elset=reinforcement , material=Steel_Reinforcement , temperature=

↪→ GRADIENTS , section=CIRC\n');

305 % fprintf(fileID , '%i\n', reinf.bar.diameter.y/2);

306 % fprintf(fileID , '0.,0.,-1.\n');

307 end

308

309 % Assign properties to the slab

310 fprintf(fileID , '** Section: Slab\n');
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311 fprintf(fileID , '*Solid Section , elset=slab , material=Concrete\n');

312

313 if length(inp.specs.conc.material) == 2

314 % Assign properties to the slab with the second material model

315 fprintf(fileID , '** Section: Slab Mat2\n');

316 fprintf(fileID , '*Solid Section , elset=slab_mat2 , material=Concrete_2\n');

317 end

318

319 if strcmp(meshgen.settings.studs , 'True')

320 % Assign properties to the studs

321 fprintf(fileID , '** Section: Studs\n');

322 fprintf(fileID , '*Beam Section , elset=studs , material=Steel , temperature=GRADIENTS , section=CIRC\

↪→ n');

323 fprintf(fileID , '%i\n', stud_diameter /2);

324 fprintf(fileID , '0.,0.,-1.\n');

325 end

326 end

327

328 % Assign properties to the top flange shells

329 fprintf(fileID , '** Section: Top Flange\n');

330 fprintf(fileID , '*Shell Section , elset=flange_top , material=flange_steel , offset=SNEG\n');

331 fprintf(fileID , '%i, 5\n', top_t_flange_thickness);

332

333 if strcmp(inp.settings.zsymmetry , 'Yes')

334 % Assign properties to the top perforation shells

335 fprintf(fileID , '** Section: Perforation Web - Top\n');

336 fprintf(fileID , '*Shell Section , elset=perforations_top , material=web_steel , offset=SNEG\n');

337 if strcmp(inp.settings.zsymmetry , 'No')

338 fprintf(fileID , '%i, 5\n', top_t_thickness);

339 elseif strcmp(inp.settings.zsymmetry , 'Yes')

340 fprintf(fileID , '%i, 5\n', top_t_thickness /2);

341 end

342

343 % Assign properties to the bottom perforation shells

344 fprintf(fileID , '** Section: Perforation Web - Bottom\n');

345 fprintf(fileID , '*Shell Section , elset=perforations_bot , material=web_steel , offset=SNEG\n');

346 if strcmp(inp.settings.zsymmetry , 'No')

347 fprintf(fileID , '%i, 5\n', bot_t_thickness);

348 elseif strcmp(inp.settings.zsymmetry , 'Yes')

349 fprintf(fileID , '%i, 5\n', bot_t_thickness /2);

350 end

351 elseif strcmp(inp.settings.zsymmetry , 'No')

352 % Assign properties to the top perforation shells

353 fprintf(fileID , '** Section: Perforation Web - Top\n');

354 fprintf(fileID , '*Shell Section , elset=perforations_top , material=web_steel\n');

355 if strcmp(inp.settings.zsymmetry , 'No')

356 fprintf(fileID , '%i, 5\n', top_t_thickness);

357 elseif strcmp(inp.settings.zsymmetry , 'Yes')

358 fprintf(fileID , '%i, 5\n', top_t_thickness /2);

359 end

360

361 % Assign properties to the bottom perforation shells

362 fprintf(fileID , '** Section: Perforation Web - Bottom\n');

363 fprintf(fileID , '*Shell Section , elset=perforations_bot , material=web_steel\n');

364 if strcmp(inp.settings.zsymmetry , 'No')

365 fprintf(fileID , '%i, 5\n', bot_t_thickness);

366 elseif strcmp(inp.settings.zsymmetry , 'Yes')

367 fprintf(fileID , '%i, 5\n', bot_t_thickness /2);

368 end

369 end

370

371 % % Assign properties to the initial shells

372 % fprintf(fileID , '** Section: Initial Web\n');

373 % fprintf(fileID , '*Shell Section , elset=initial , material=Steel\n');

374 % fprintf(fileID , '%i, 5\n', web_thickness);

375

376 % Assign properties to the bottom flange shells

377 fprintf(fileID , '** Section: Bottom Flange\n');

378 fprintf(fileID , '*Shell Section , elset=flange_bot , material=flange_steel , offset=SNEG\n');

379 fprintf(fileID , '%i, 5\n', bot_t_flange_thickness);

380

381 if strcmp(meshgen.settings.endplate , 'True')

382 % Assign properties to the endplate shells
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383 fprintf(fileID , '** Section: Endplate\n');

384 fprintf(fileID , '*Shell Section , elset=endplate , material=Steel , offset=SPOS\n');

385 fprintf(fileID , '%i, 5\n', endplate.thickness);
386 end

387

388 % Assign properties to the stiffeners

389 if meshgen.specs.stiffener == 1

390 fprintf(fileID , '** Section: Stiffeners\n');

391 for I = 1: stiffener.count

392 % Assign properties to the endplate shells

393 fprintf(fileID , '*Shell Section , elset=stiffener_%s, material=stiffener\n', num2str(I));

394 fprintf(fileID , '%i, 5\n', inp.specs.stiffener.behaviour (1, 1));

395 end

396 end

397

398 % End part

399 fprintf(fileID , '*End Part\n');

400

401

402 % ASSEMBLY

403 fprintf(fileID , '**\n**\n** ASSEMBLY\n**\n');

404 fprintf(fileID , '*Assembly , name=%s\n', inp.specs.assembly.name);

405 fprintf(fileID , '**\n');

406

407 % Instance

408 fprintf(fileID , '*Instance , name=beam_instance , part=%s\n', inp.specs.beam.name);

409 fprintf(fileID , '*End Instance\n**\n');

410

411 if strcmp(inp.settings.errorindex , 'On')

412 if meshgen.specs.slab.switch == 1 & strcmp(inp.settings.zsymmetry , 'Yes')

413 [symmetricslab , ~] = extractelements(sequence , nodes_temp (:, 1));

414 % Format and write the slab_elements set

415 fprintf(fileID , '*Elset , elset=slab_elements , instance=beam_instance\n');

416 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', symmetricslab (1:end - mod(length(symmetricslab (:,

↪→ 1)), 7) ,1));

417 fspec = repmat('%d, ', 1, mod(length(symmetricslab (:, 1)), 7) - 1);

418 fspec = [fspec '%d\n'];

419 fprintf(fileID , fspec , symmetricslab(end - mod(length(symmetricslab (:, 1)), 7) + 1:end,1));
420 end

421

422 % Format and write the perforation elements

423 element.S4.web.total = [element.S4.web.top; element.S4.web.bot]

424 fprintf(fileID , '*Elset , elset=perforations , instance=beam_instance\n');

425 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', element.S4.web.total(1:end - mod(length(element.S4.

↪→ web.total(:, 1)), 7) ,1));

426 fspec = repmat('%d, ', 1, mod(length(element.S4.web.total(:, 1)), 7) - 1);

427 fspec = [fspec '%d\n'];

428 fprintf(fileID , fspec , element.S4.web.total(end - mod(length(element.S4.web.total(:, 1)), 7) + 1

↪→ :end,1));
429 clear fspec symmetricslab

430 end

431

432 % Format and write the steel nodes (just the beam 's steel nodes excluding studs and reinforcement)

433 fprintf(fileID , '*Nset , nset=steel_nodes , instance=beam_instance\n');

434 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', beam.nodes.steel(1:end - mod(length(beam.nodes.steel

↪→ (:, 1)), 7) ,1));

435 fspec = repmat('%d, ', 1, mod(length(beam.nodes.steel(:, 1)), 7) - 1);

436 fspec = [fspec '%d\n'];

437 fprintf(fileID , fspec , beam.nodes.steel(end - mod(length(beam.nodes.steel(:, 1)), 7) + 1:end,1));
438

439 % Format and write the bottom nodes (i.e. the bot flange nodes)

440 fprintf(fileID , '*Nset , nset=flange_bot_nodes , instance=beam_instance\n');

441 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', flange.bot.nodes.array(1:end - mod(length(flange.bot.

↪→ nodes.array(:, 1)), 7) ,1));

442 fspec = repmat('%d, ', 1, mod(length(flange.bot.nodes.array(:, 1)), 7) - 1);

443 fspec = [fspec '%d\n'];

444 fprintf(fileID , fspec , flange.bot.nodes.array(end - mod(length(flange.bot.nodes.array(:, 1)), 7) + 1

↪→ :end,1));
445

446 % Format and write the top nodes (i.e. the top flange nodes)

447 fprintf(fileID , '*Nset , nset=flange_top_nodes , instance=beam_instance\n');

448 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', flange.top.nodes.array(1:end - mod(length(flange.top.

↪→ nodes.array(:, 1)), 7) ,1));
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449 fspec = repmat('%d, ', 1, mod(length(flange.top.nodes.array(:, 1)), 7) - 1);

450 fspec = [fspec '%d\n'];

451 fprintf(fileID , fspec , flange.top.nodes.array(end - mod(length(flange.top.nodes.array(:, 1)), 7) + 1

↪→ :end,1));
452

453 if meshgen.specs.slab.switch == 1

454 if strcmp(meshgen.settings.studs , 'True')

455 % Format and write the top stud nodes

456 nB31p = nodes_B31_partial(find(nodes_B31_partial (:, 3) == max(nodes_B31_partial (:, 3))), 1);

457 fprintf(fileID , '*Nset , nset=stud_nodes , instance=beam_instance\n');

458 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', nB31p(1:end - mod(length(nB31p(:, 1)), 7) ,1));

459 fspec = repmat('%d, ', 1, mod(length(nB31p(:, 1)), 7) - 1);

460 fspec = [fspec '%d\n'];

461 fprintf(fileID , fspec , nB31p(end - mod(length(nB31p(:, 1)), 7) + 1:end,1));
462 end

463

464 % Format and write the slab nodes

465 fprintf(fileID , '*Nset , nset=slab_nodes , instance=beam_instance\n');

466 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', s_nodes (1:end - mod(length(s_nodes(:, 1)), 7) ,1));

467 fspec = repmat('%d, ', 1, mod(length(s_nodes(:, 1)), 7) - 1);

468 fspec = [fspec '%d\n'];

469 fprintf(fileID , fspec , s_nodes(end - mod(length(s_nodes(:, 1)), 7) + 1:end,1));
470

471 % Format and write the relevant (loaded) slab nodes (top - mid)

472 % Previously was: sn = s_nodes(find(s_nodes(:, 2) <= inp.L + tol & s_nodes(:, 3) == max(s_nodes(:,

↪→ 3)) & s_nodes(:, 4) == 0), 1);

473 sn = s_nodes(find(s_nodes(:, 3) == max(s_nodes(:, 3)) & s_nodes(:, 4) == 0), 1);

474 fprintf(fileID , '*Nset , nset=slab_nodes_top_mid , instance=beam_instance\n')

475 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', sn(1:end - mod(length(sn(:, 1)), 7) ,1));

476 fspec = repmat('%d, ', 1, mod(length(sn(:, 1)), 7) - 1);

477 fspec = [fspec '%d\n'];

478 fprintf(fileID , fspec , sn(end - mod(length(sn(:, 1)), 7) + 1:end,1));
479

480 % Format and write the slab node (top - midspan/end)

481 % Previously was: sn_end_t = s_nodes(find(s_nodes(:, 3) == max(s_nodes(:, 3)) & abs(s_nodes(:, 4)

↪→ - 0) <= tol & s_nodes(:, 2) <= inp.L + tol), :);

482 % and: sn_end = sn_end_t(find(sn_end_t(:, 2) == max(sn_end_t(:, 2))), 1);

483 sn_end = s_nodes(find(s_nodes(:, 2) == max(s_nodes(:, 2)) & s_nodes(:, 3) == max(s_nodes(:, 3)) &

↪→ abs(s_nodes(:, 4) - 0) <= tol), :);

484 fprintf(fileID , '*Nset , nset=slab_nodes_top_midend , instance=beam_instance\n')

485 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', sn_end (1:end - mod(length(sn_end(:, 1)), 7) ,1));

486 fspec = repmat('%d, ', 1, mod(length(sn_end(:, 1)), 7) - 1);

487 fspec = [fspec '%d\n'];

488 fprintf(fileID , fspec , sn_end(end - mod(length(sn_end(:, 1)), 7) + 1:end,1));
489

490 if strcmp(inp.settings.loadtype , 'Concentrated/pos')

491 % Find the nodes specified to be loaded at positions inp.settings.loadpos

492 indxs = [];

493 for I = 1: length(inp.settings.loadpos)

494 indxs = [indxs; find(abs(s_nodes(:, 2) - inp.settings.loadpos(I)) <= tol & abs(s_nodes(:, 3) -

↪→ max(s_nodes(:, 3))) <= tol & abs(s_nodes(:, 4) - 0) <= tol)];

495 end

496 sn_end_pos = s_nodes(unique(indxs), 1);

497 fprintf(fileID , '*Nset , nset=slab_nodes_top_mid_pos , instance=beam_instance\n')

498 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', sn_end_pos (1:end - mod(length(sn_end_pos (:, 1)),

↪→ 7) ,1));

499 fspec = repmat('%d, ', 1, mod(length(sn_end_pos (:, 1)), 7) - 1);

500 fspec = [fspec '%d\n'];

501 fprintf(fileID , fspec , sn_end_pos(end - mod(length(sn_end_pos (:, 1)), 7) + 1:end,1));
502 end

503

504 % Format and write the relevant slab nodes (top - end)

505 % Previously was: sne = s_nodes(find(abs(s_nodes(:, 2) - max(sn_end_t(:, 2))) <= tol & s_nodes(:,

↪→ 3) == max(s_nodes(:, 3))), 1);

506 sne = s_nodes(find(abs(s_nodes(:, 2) - max(s_nodes(:, 2))) <= tol & abs(s_nodes(:, 3) - max(s_nodes

↪→ (:, 3))) <= tol), 1);

507 fprintf(fileID , '*Nset , nset=slab_nodes_top_end , instance=beam_instance\n')

508 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', sne(1:end - mod(length(sne(:, 1)), 7) ,1));

509 fspec = repmat('%d, ', 1, mod(length(sne(:, 1)), 7) - 1);

510 fspec = [fspec '%d\n'];

511 fprintf(fileID , fspec , sne(end - mod(length(sne(:, 1)), 7) + 1:end,1));
512

513 if strcmp(inp.settings.loadtype , 'Jack/pos')

487



514 % Find the nodes specified to be loaded at positions inp.settings.loadpos

515 indxs = [];

516 for I = 1: length(inp.settings.loadpos)

517 dump = beam.nodes.steel(find(abs(beam.nodes.steel(:, 2) - inp.settings.loadpos(I)) < tol & abs(

↪→ beam.nodes.steel(:, 3) - top_t_depth) <= tol), :)

518 extents = [min(dump(:, 4)) max(dump(:, 4))];

519 indxs = [indxs; find(abs(s_nodes(:, 2) - inp.settings.loadpos(I)) <= tol & abs(s_nodes(:, 3) -

↪→ max(s_nodes(:, 3))) <= tol & extents (1) - tol <= s_nodes(:, 4) & s_nodes(:, 4) <=

↪→ extents (2) + tol)];

520 end

521 sn_jm_pos = s_nodes(unique(indxs), 1);

522 fprintf(fileID , '*Nset , nset=slab_nodes_jm_pos , instance=beam_instance\n')

523 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', sn_jm_pos (1:end - mod(length(sn_jm_pos(:, 1)), 7)

↪→ ,1));

524 fspec = repmat('%d, ', 1, mod(length(sn_jm_pos(:, 1)), 7) - 1);

525 fspec = [fspec '%d\n'];

526 fprintf(fileID , fspec , sn_jm_pos(end - mod(length(sn_jm_pos(:, 1)), 7) + 1:end,1));
527 end

528 elseif meshgen.specs.slab.switch == 0

529 % Format and write the relevant (loaded) flange nodes (top - mid)

530 % Previously was: fn = beam.nodes.total(find(beam.nodes.total(:, 1) < beam.nodes.web.top(end , 1) &

↪→ beam.nodes.total(:, 2) <= inp.L & abs(beam.nodes.total(:, 3) - top_t_depth) <= tol & abs(

↪→ beam.nodes.total(:, 4) - 0) <= tol), :);

531 fn = beam.nodes.total(find(beam.nodes.total(:, 1) < beam.nodes.web.top(end , 1) & abs(beam.nodes.

↪→ total(:, 3) - top_t_depth) <= tol & abs(beam.nodes.total(:, 4) - 0) <= tol), :);

532

533 % NOTE: THIS IS A TEMP FIX , THE NUMBER OF NODES FOUND IN fn ABOVE

534 % IS INCORRECT. THESE NODES AREN 'T USED AND SUBSEQUENTLY SHOULDN 'T

535 % CARRY LOAD BUT INCLUDING THEM IN THE COUNT LEADS TO AN INCORRECT

536 % FORCE APPLICATION IN THE UDL CASES!

537 fn_count = length(unique(round(fn(:, 2:end), 6), 'rows'));

538

539 % NOTE: The above also prints one (or more) of the nodes generated during the endplate_mesh and/or

↪→ the

540 % initial_mesh subroutines depending on the settings chosen for the mesh generation.

541 % These nodes are ignored by Abaqus (since it shouldn 't appear in any elements because they are

↪→ duplicate

542 % of the nodes in the intersection between the flange and the web).

543 fprintf(fileID , '*Nset , nset=flange_nodes_top_mid , instance=beam_instance\n')

544 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', fn(1:end - mod(length(fn(:, 1)), 7) ,1));

545 fspec = repmat('%d, ', 1, mod(length(fn(:, 1)), 7) - 1);

546 fspec = [fspec '%d\n'];

547 fprintf(fileID , fspec , fn(end - mod(length(fn(:, 1)), 7) + 1:end,1));
548 end

549

550 if strcmp(inp.settings.loadtype , 'Jack/Mid')

551 % Format and write the flange nodes (top - middle of the beam)

552 jm_nodes = beam.nodes.steel(find(abs(beam.nodes.total(:, 2) - span /2) < tol & abs(beam.nodes.total

↪→ (:, 3) - top_t_depth) <= tol), 1);

553 fprintf(fileID , '*Nset , nset=flange_nodes_jm , instance=beam_instance\n')

554 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', jm_nodes (1:end - mod(length(jm_nodes(:, 1)), 7) ,1))

↪→ ;

555 fspec = repmat('%d, ', 1, mod(length(jm_nodes(:, 1)), 7) - 1);

556 fspec = [fspec '%d\n'];

557 fprintf(fileID , fspec , jm_nodes(end - mod(length(jm_nodes(:, 1)), 7) + 1:end,1));
558 end

559

560 if strcmp(inp.settings.loadtype , 'Jack/pos')

561 % Find the nodes specified to be loaded at positions inp.settings.loadpos

562 indxs = [];

563 for I = 1: length(inp.settings.loadpos)

564 indxs = [indxs; find(abs(beam.nodes.steel(:, 2) - inp.settings.loadpos(I)) < tol & abs(beam.nodes

↪→ .steel(:, 3) - top_t_depth) <= tol)];

565 end

566 jm_nodes_pos = beam.nodes.steel(unique(indxs), 1);

567 fprintf(fileID , '*Nset , nset=flange_nodes_jm_pos , instance=beam_instance\n')

568 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', jm_nodes_pos (1:end - mod(length(jm_nodes_pos (:, 1))

↪→ , 7), 1));

569 fspec = repmat('%d, ', 1, mod(length(jm_nodes_pos (:, 1)), 7) - 1);

570 fspec = [fspec '%d\n'];

571 fprintf(fileID , fspec , jm_nodes_pos(end - mod(length(jm_nodes_pos (:, 1)), 7) + 1:end, 1));

572 end

573
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574 % UNFINISHED

575 % % Format and write the flange nodes (top - end)

576 % fn_end_t = beam.nodes.total(find(beam.nodes.total(:, 2) <= inp.L & abs(beam.nodes.total(:, 3) -

↪→ top_t_depth) <= tol), :);

577 % fn_end = fn_end_t(find(fn_end_t(:, 2) == max(fn_end_t(:, 2))), 1);

578 % fprintf(fileID , '*Nset , nset=flange_nodes_top_end , instance=beam_instance\n')

579 % fprintf(fileID , '%d\n', fn_end);

580

581 % Format and write the bottom nodes at the endplate -flange intersection

582 % primarily for simply supported conditions alternate to using bolt locations

583 fn_bstart = beam.nodes.steel(find(abs(beam.nodes.steel(:, 2) - 0) < tol & beam.nodes.steel(:, 3) +

↪→ top_t_depth <= tol), 1);

584 fprintf(fileID , '*Nset , nset=flange_nodes_bot_start , instance=beam_instance\n')

585 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', fn_bstart (1:end - mod(length(fn_bstart(:, 1)), 7) ,1))

↪→ ;

586 fspec = repmat('%d, ', 1, mod(length(fn_bstart (:, 1)), 7) - 1);

587 fspec = [fspec '%d\n'];

588 fprintf(fileID , fspec , fn_bstart(end - mod(length(fn_bstart(:, 1)), 7) + 1:end,1));
589

590 if strcmp(inp.settings.midspansymmetry , 'Unsymmetric ')

591 % Format and write the bottom nodes at the endplate -flange intersection

592 % primarily for simply supported conditions alternate to using bolt locations

593 fn_bend = beam.nodes.steel(find(abs(beam.nodes.steel(:, 2) - span) < tol & beam.nodes.steel(:, 3) +

↪→ top_t_depth <= tol), 1);

594 fprintf(fileID , '*Nset , nset=flange_nodes_bot_end , instance=beam_instance\n')

595 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', fn_bend (1:end - mod(length(fn_bend(:, 1)), 7) ,1));

596 fspec = repmat('%d, ', 1, mod(length(fn_bend(:, 1)), 7) - 1);

597 fspec = [fspec '%d\n'];

598 fprintf(fileID , fspec , fn_bend(end - mod(length(fn_bend(:, 1)), 7) + 1:end,1));
599 end

600

601 if any(inp.settings.supportoffset >= tol)

602 if inp.settings.supportoffset (1) >= tol

603 fn_boffset_t_LHS = beam.nodes.steel(find(beam.nodes.steel(:, 2) < inp.settings.supportoffset (1) +

↪→ tol & beam.nodes.steel(:, 3) + top_t_depth <= tol), :);

604 fn_boffset_LHS = fn_boffset_t_LHS(find(abs(fn_boffset_t_LHS (:, 2) - max(fn_boffset_t_LHS (:, 2)))

↪→ <= tol), 1);

605 end

606

607 if strcmp(inp.settings.midspansymmetry , 'Unsymmetric ')

608 if inp.settings.supportoffset (2) >= tol

609 fn_boffset_t_RHS = beam.nodes.steel(find(beam.nodes.steel(:, 2) < (span - inp.settings.

↪→ supportoffset (2)) + tol & beam.nodes.steel(:, 3) + top_t_depth <= tol), :);

610 fn_boffset_RHS = fn_boffset_t_RHS(find(abs(fn_boffset_t_RHS (:, 2) - max(fn_boffset_t_RHS (:, 2))

↪→ ) <= tol), 1);

611 fprintf(fileID , '*Nset , nset=fn_boffset_RHS , instance=beam_instance\n')

612 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', fn_boffset_RHS (1:end - mod(length(

↪→ fn_boffset_RHS (:, 1)), 7) ,1));

613 fspec = repmat('%d, ', 1, mod(length(fn_boffset_RHS (:, 1)), 7) - 1);

614 fspec = [fspec '%d\n'];

615 fprintf(fileID , fspec , fn_boffset_RHS(end - mod(length(fn_boffset_RHS (:, 1)), 7) + 1:end,1));
616 end

617 else

618 fn_boffset_RHS = [];

619 end

620 fn_boffset = unique ([ fn_boffset_LHS; fn_boffset_RHS ]);

621 fprintf(fileID , '*Nset , nset=flange_nodes_bot_offset , instance=beam_instance\n')

622 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', fn_boffset (1:end - mod(length(fn_boffset (:, 1)), 7)

↪→ ,1));

623 fspec = repmat('%d, ', 1, mod(length(fn_boffset (:, 1)), 7) - 1);

624 fspec = [fspec '%d\n'];

625 fprintf(fileID , fspec , fn_boffset(end - mod(length(fn_boffset (:, 1)), 7) + 1:end,1));
626 end

627

628 % if strcmp(inp.settings.supporttype , 'Simple/CELLBEAM ')

629 % Format and write the mid nodes at the endplate -flange intersection

630 % primarily for simply supported conditions that match hand calculations in approach

631 wn_mstart = beam.nodes.steel(find(abs(beam.nodes.steel(:, 2) - 0) < tol & abs(beam.nodes.steel(:,

↪→ 3) - 0) <= tol), 1);

632 fprintf(fileID , '*Nset , nset=web_nodes_mid_start , instance=beam_instance\n')

633 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', wn_mstart (1:end - mod(length(wn_mstart(:, 1)), 7)

↪→ ,1));

634 fspec = repmat('%d, ', 1, mod(length(wn_mstart (:, 1)), 7) - 1);
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635 fspec = [fspec '%d\n'];

636 fprintf(fileID , fspec , wn_mstart(end - mod(length(wn_mstart (:, 1)), 7) + 1:end,1));
637 % end

638

639 % Format and write the (last loaded) flange node (top - midspan/end)

640 % Previously was: fn_mend_t = beam.nodes.total(find(beam.nodes.total(:, 1) < flange.top.nodes.array

↪→ (1, 1) & beam.nodes.total(:, 2) <= inp.L + tol & abs(beam.nodes.total(:, 3) - top_t_depth) <=

↪→ tol & abs(beam.nodes.total(:, 4) - 0) <= tol), :);

641 % and: fn_mend = fn_mend_t(find(fn_mend_t (:, 2) == max(fn_mend_t (:, 2))), 1);

642 fn_mend = beam.nodes.steel(find(beam.nodes.steel(:, 1) < flange.top.nodes.array(1, 1) & abs(beam.

↪→ nodes.steel(:, 2) - midspan.length) < tol & abs(beam.nodes.steel(:, 3) - top_t_depth) <= tol

↪→ & abs(beam.nodes.steel(:, 4) - 0) <= tol), 1);

643 fprintf(fileID , '*Nset , nset=flange_nodes_top_midend , instance=beam_instance\n');

644 fprintf(fileID , '%d\n', fn_mend);

645

646 if strcmp(inp.settings.loadtype , 'Concentrated/pos')

647 % Find the nodes specified to be loaded at positions inp.settings.loadpos

648 indxs = [];

649 for I = 1: length(inp.settings.loadpos)

650 indxs = [indxs; find(beam.nodes.steel(:, 1) < flange.top.nodes.array(1, 1) & abs(beam.nodes.steel

↪→ (:, 2) - inp.settings.loadpos(I)) < tol & abs(beam.nodes.steel(:, 3) - top_t_depth) <=

↪→ tol & abs(beam.nodes.steel(:, 4) - 0) <= tol)];

651 end

652 fn_mend_pos = beam.nodes.steel(unique(indxs), 1);

653 fprintf(fileID , '*Nset , nset=flange_nodes_top_mid_pos , instance=beam_instance\n')

654 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', fn_mend_pos (1:end - mod(length(fn_mend_pos (:, 1)),

↪→ 7) ,1));

655 fspec = repmat('%d, ', 1, mod(length(fn_mend_pos (:, 1)), 7) - 1);

656 fspec = [fspec '%d\n'];

657 fprintf(fileID , fspec , fn_mend_pos(end - mod(length(fn_mend_pos (:, 1)), 7) + 1:end,1));
658 end

659

660 % Format and write the stiffener nodes

661 if meshgen.specs.stiffener == 1

662 for I = 1: stiffener.count

663 fprintf(fileID , '*Nset , nset=stiffener_%s\n', num2str(I));

664 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', stiffener.nodes{I}(1:end - mod(length(stiffener.

↪→ nodes{I}(:, 1)), 7) ,1));

665 fspec = repmat('%d, ', 1, mod(length(stiffener.nodes{I}(:, 1)), 7) - 1);

666 fspec = [fspec '%d\n'];

667 fprintf(fileID , fspec , stiffener.nodes{I}(end - mod(length(stiffener.nodes{I}(:, 1)), 7) + 1:end
↪→ ,1));

668 end

669 end

670

671 if (strcmp(inp.settings.supporttype , 'Simple ') | strcmp(inp.settings.supporttype , 'Fixed ')) & strcmp(

↪→ meshgen.settings.endplate , 'True')

672 % Format and write the endplate nodes excluding the bolt nodes

673 fprintf(fileID , '*Nset , nset=endplate_nodes_excludingbolts , instance=beam_instance\n');

674 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', endplate.nodes.excludingbolts (1:end - mod(length(

↪→ endplate.nodes.excludingbolts (:, 1)), 7), 1));

675 fspec = repmat('%d, ', 1, mod(length(endplate.nodes.excludingbolts (:, 1)), 7) - 1);

676 fspec = [fspec '%d\n'];

677 fprintf(fileID , fspec, endplate.nodes.excludingbolts(end - mod(length(endplate.nodes.excludingbolts

↪→ (:, 1)), 7) + 1:end, 1));

678

679 % Format and write the bolt nodes

680 fprintf(fileID , '*Nset , nset=bolt_nodes , instance=beam_instance\n');

681 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', bolt.locations (1:end - mod(length(bolt.locations(:,

↪→ 1)), 7) ,4));

682 fspec = repmat('%d, ', 1, mod(length(bolt.locations(:, 1)), 7) - 1);

683 fspec = [fspec '%d\n'];

684 fprintf(fileID , fspec , bolt.locations(end - mod(length(bolt.locations(:, 1)), 7) + 1:end, 4));

685 elseif strcmp(inp.settings.supporttype , 'Fully Fixed ') & strcmp(meshgen.settings.endplate , 'True')

686 % Format and write the endplate nodes excluding the bolt nodes

687 fprintf(fileID , '*Nset , nset=endplate_nodes , instance=beam_instance\n');

688 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', endplate.nodes.matrix (1:end - mod(length(endplate.

↪→ nodes.matrix(:, 1)), 7), 1));

689 fspec = repmat('%d, ', 1, mod(length(endplate.nodes.matrix(:, 1)), 7) - 1);

690 fspec = [fspec '%d\n'];

691 fprintf(fileID , fspec, endplate.nodes.matrix(end - mod(length(endplate.nodes.matrix(:, 1)), 7) + 1

↪→ :end, 1));

692 end
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693

694

695 if strcmp(inp.settings.midspansymmetry , 'Symmetric ')

696 % Format and write the midspan symmetry nodes for steel

697 midspan_loc = max(beam.nodes.steel(find(beam.nodes.steel(:, 2) <= midspan.length + tol), 2));

698 ss_nodes = beam.nodes.steel(find(abs(round(beam.nodes.steel(:, 2), log10 (1/ tol)) - midspan_loc) <=

↪→ 5*tol), :);

699 fprintf(fileID , '*Nset , nset=midspan_nodes , instance=beam_instance\n');

700 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', ss_nodes (1:end - mod(length(ss_nodes(:, 1)), 7) ,1))

↪→ ;

701 fspec = repmat('%d, ', 1, mod(length(ss_nodes(:, 1)), 7) - 1);

702 fspec = [fspec '%d\n'];

703 fprintf(fileID , fspec , ss_nodes(end - mod(length(ss_nodes(:, 1)), 7) + 1:end,1));
704

705 if meshgen.specs.slab.switch == 1

706 % Find the midspan , mid node on the upper slab surface

707 midspan_node_c = s_nodes(find(abs(round(s_nodes(:, 2), 3) - midspan_loc) <= tol & abs(s_nodes(:,

↪→ 3) - max(s_nodes(:, 3))) <= tol & abs(s_nodes(:, 4) - 0) <= tol), :);

708 fprintf(fileID , '*Nset , nset=midspan_node_c , instance=beam_instance\n');

709 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', midspan_node_c (1:end - mod(length(midspan_node_c

↪→ (:, 1)), 7) ,1));

710 fspec = repmat('%d, ', 1, mod(length(midspan_node_c (:, 1)), 7) - 1);

711 fspec = [fspec '%d\n'];

712 fprintf(fileID , fspec , midspan_node_c(end - mod(length(midspan_node_c (:, 1)), 7) + 1:end,1));
713 end

714 % Find the midspan , mid node on the upper flange

715 midspan_node_s = ss_nodes(find(abs(ss_nodes(:, 3) - max(ss_nodes(:, 3))) <= tol & abs(ss_nodes(:,

↪→ 4) - 0) <= tol), :);

716 fprintf(fileID , '*Nset , nset=midspan_node_s , instance=beam_instance\n');

717 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', midspan_node_s (1:end - mod(length(midspan_node_s (:,

↪→ 1)), 7) ,1));

718 fspec = repmat('%d, ', 1, mod(length(midspan_node_s (:, 1)), 7) - 1);

719 fspec = [fspec '%d\n'];

720 fprintf(fileID , fspec , midspan_node_s(end - mod(length(midspan_node_s (:, 1)), 7) + 1:end,1));
721 elseif strcmp(inp.settings.midspansymmetry , 'Unsymmetric ') % Note that the inp.L

722 % here might need to

723 % be replaced with span/2

724 % depending on the use

725 % Format and write the "end" symmetry nodes for steel

726 % as requested by inp.L. Note that the algorithm had probably generated

727 % additional elements beyond inp.L to avoid errors.

728 % In the case of steel , this algorithm may only catch the flanges and

729 % apply boundary conditions to web nodes so be careful when using.

730 us_nodes_t = beam.nodes.steel(find(round(beam.nodes.steel(:, 2), 3) <= span/2 + tol), :);

731 us_nodes = us_nodes_t(find(abs(us_nodes_t (:, 2) - max(us_nodes_t (:, 2))) <= tol), :);

732 fprintf(fileID , '*Nset , nset=midspan_nodes , instance=beam_instance\n');

733 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', us_nodes (1:end - mod(length(us_nodes(:, 1)), 7) ,1))

↪→ ;

734 fspec = repmat('%d, ', 1, mod(length(us_nodes(:, 1)), 7) - 1);

735 fspec = [fspec '%d\n'];

736 fprintf(fileID , fspec , us_nodes(end - mod(length(us_nodes(:, 1)), 7) + 1:end,1));
737

738 if meshgen.specs.slab.switch == 1

739 % Find the midspan , mid node on the upper slab surface

740 midspan_node_c = s_nodes(find(abs(round(s_nodes(:, 2), 3) - span /2) <= tol & abs(s_nodes(:, 3) -

↪→ max(s_nodes(:, 3))) <= tol & abs(s_nodes(:, 4) - 0) <= tol), :);

741 fprintf(fileID , '*Nset , nset=midspan_node_c , instance=beam_instance\n');

742 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', midspan_node_c (1:end - mod(length(midspan_node_c

↪→ (:, 1)), 7) ,1));

743 fspec = repmat('%d, ', 1, mod(length(midspan_node_c (:, 1)), 7) - 1);

744 fspec = [fspec '%d\n'];

745 fprintf(fileID , fspec , midspan_node_c(end - mod(length(midspan_node_c (:, 1)), 7) + 1:end,1));
746 end

747 % Find the midspan , mid node on the upper flange

748 midspan_node_s = us_nodes(find(abs(us_nodes(:, 3) - max(us_nodes(:, 3))) <= tol & abs(us_nodes(:,

↪→ 4) - 0) <= tol), :);

749 fprintf(fileID , '*Nset , nset=midspan_node_s , instance=beam_instance\n');

750 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', midspan_node_s (1:end - mod(length(midspan_node_s (:,

↪→ 1)), 7) ,1));

751 fspec = repmat('%d, ', 1, mod(length(midspan_node_s (:, 1)), 7) - 1);

752 fspec = [fspec '%d\n'];

753 fprintf(fileID , fspec , midspan_node_s(end - mod(length(midspan_node_s (:, 1)), 7) + 1:end,1));
754 end
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755

756 if strcmp(inp.settings.inilatsupport , 'Brace ')

757 % Simulate a 'brace ' in the support of the beam

758 % preventing it from moving laterally

759 if strcmp(inp.settings.midspansymmetry , 'Symmetric ')

760 ini_brace_nodes = beam.nodes.steel(find(abs(beam.nodes.steel(:, 2) - 0) < tol & abs(beam.nodes.

↪→ steel(:, 4) - 0) <= tol), :);

761 elseif strcmp(inp.settings.midspansymmetry , 'Unsymmetric ')

762 ini_brace_nodes = beam.nodes.steel(find((abs(beam.nodes.steel(:, 2) - 0) < tol | abs(beam.nodes.

↪→ steel(:, 2) - span) < tol) & abs(beam.nodes.steel(:, 4) - 0) <= tol), :);

763 end

764

765 fprintf(fileID , '*Nset , nset=InitialBrace , instance=beam_instance\n');

766 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', ini_brace_nodes (1:end - mod(length(ini_brace_nodes

↪→ (:, 1)), 7) ,1));

767 fspec = repmat('%d, ', 1, mod(length(ini_brace_nodes (:, 1)), 7) - 1);

768 fspec = [fspec '%d\n'];

769 fprintf(fileID , fspec , ini_brace_nodes(end - mod(length(ini_brace_nodes (:, 1)), 7) + 1:end,1));
770 end

771

772 if strcmp(inp.settings.midlatsupport , 'MidBrace ')

773 % Simulate a 'brace ' in the middle of the beam

774 % preventing it from moving laterally

775 mb_nodes = beam.nodes.steel(find(abs(beam.nodes.steel(:, 2) - span /2) < tol & abs(beam.nodes.steel

↪→ (:, 4) - 0) <= tol), :);

776 fprintf(fileID , '*Nset , nset=MidBrace , instance=beam_instance\n');

777 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', mb_nodes (1:end - mod(length(mb_nodes(:, 1)), 7) ,1))

↪→ ;

778 fspec = repmat('%d, ', 1, mod(length(mb_nodes(:, 1)), 7) - 1);

779 fspec = [fspec '%d\n'];

780 fprintf(fileID , fspec , mb_nodes(end - mod(length(mb_nodes(:, 1)), 7) + 1:end,1));
781 end

782

783 if strcmp(inp.settings.midlatsupport , 'MidBrace/Cage')

784 % Simulate a 'brace ' around the middle of the beam , holding the beam

785 % around the flanges and preventing it from moving laterally

786 mbc_nodes = beam.nodes.steel(find(abs(beam.nodes.steel(:, 2) - span /2) < tol & abs(beam.nodes.steel

↪→ (:, 4)) - max(beam.nodes.steel(:, 4)) >= -tol), :);

787 fprintf(fileID , '*Nset , nset=MidBrace/Cage , instance=beam_instance\n');

788 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', mbc_nodes (1:end - mod(length(mbc_nodes(:, 1)), 7)

↪→ ,1));

789 fspec = repmat('%d, ', 1, mod(length(mbc_nodes(:, 1)), 7) - 1);

790 fspec = [fspec '%d\n'];

791 fprintf(fileID , fspec , mbc_nodes(end - mod(length(mbc_nodes (:, 1)), 7) + 1:end,1));
792 end

793

794 if strcmp(inp.settings.midlatsupport , 'Brace/Floor ')

795 if meshgen.specs.slab.switch == 1

796 % Simulate a 'floor ' preventing the slab from moving laterally

797 bf_snodes = s_nodes(find(abs(abs(s_nodes(:, 4)) - max(s_nodes(:, 4))) <= tol), :);

798 fprintf(fileID , '*Nset , nset=Brace/Floor , instance=beam_instance\n');

799 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', bf_snodes (1:end - mod(length(bf_snodes(:, 1)), 7)

↪→ ,1));

800 fspec = repmat('%d, ', 1, mod(length(bf_snodes(:, 1)), 7) - 1);

801 fspec = [fspec '%d\n'];

802 fprintf(fileID , fspec , bf_snodes(end - mod(length(bf_snodes(:, 1)), 7) + 1:end,1));
803 end

804 end

805

806 if strcmp(inp.settings.zsymmetry , 'Yes')

807 % Format and write the z-symmetry nodes for the steel

808 zss_nodes = beam.nodes.steel(find(abs(beam.nodes.steel(:, 4) - 0) <= tol), :);

809 fprintf(fileID , '*Nset , nset=z_symmetry_steel , instance=beam_instance\n');

810 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', zss_nodes (1:end - mod(length(zss_nodes(:, 1)), 7)

↪→ ,1));

811 fspec = repmat('%d, ', 1, mod(length(zss_nodes(:, 1)), 7) - 1);

812 fspec = [fspec '%d\n'];

813 fprintf(fileID , fspec , zss_nodes(end - mod(length(zss_nodes (:, 1)), 7) + 1:end,1));
814

815 if meshgen.specs.slab.switch == 1

816 % Format and write the z-symmetry nodes for the concrete

817 zssl_nodes = s_nodes(find(abs(s_nodes(:, 4) - 0) <= tol), :);

818 fprintf(fileID , '*Nset , nset=z_symmetry_slab , instance=beam_instance\n');
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819 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', zssl_nodes (1:end - mod(length(zssl_nodes (:, 1)),

↪→ 7) ,1));

820 fspec = repmat('%d, ', 1, mod(length(zssl_nodes (:, 1)), 7) - 1);

821 fspec = [fspec '%d\n'];

822 fprintf(fileID , fspec , zssl_nodes(end - mod(length(zssl_nodes (:, 1)), 7) + 1:end,1));
823 end

824 end

825

826 if meshgen.specs.slab.switch == 1

827 if strcmp(inp.settings.midspansymmetry , 'Symmetric ')

828 % Format and write the midspan symmetry nodes for concrete

829 midspan_loc_c = max(s_nodes(find(s_nodes(:, 2) <= midspan.length + tol), 2));

830 sc_nodes = s_nodes(find(abs(s_nodes(:, 2) - midspan_loc_c) < tol), :);

831 fprintf(fileID , '*Nset , nset=symmetry_concrete , instance=beam_instance\n');

832 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', sc_nodes (1:end - mod(length(sc_nodes(:, 1)), 7)

↪→ ,1));

833 fspec = repmat('%d, ', 1, mod(length(sc_nodes(:, 1)), 7) - 1);

834 fspec = [fspec '%d\n'];

835 fprintf(fileID , fspec , sc_nodes(end - mod(length(sc_nodes(:, 1)), 7) + 1:end,1));
836 elseif strcmp(inp.settings.midspansymmetry , 'Unsymmetric ') % Note that the inp.L

837 % here might need to

838 % be replaced with span/2

839 % depending on the use

840 % Format and write the "end" symmetry nodes for steel

841 % as requested by inp.L. Note that the algorithm had probably generated

842 % additional elements beyond inp.L to avoid errors.

843 uc_nodes_t = s_nodes(find(s_nodes(:, 2) <= span), :);

844 uc_nodes = uc_nodes_t(find(uc_nodes_t (:, 2) == max(uc_nodes_t (:, 2))), :);

845 fprintf(fileID , '*Nset , nset=unsymmetry_concrete , instance=beam_instance\n');

846 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', uc_nodes (1:end - mod(length(uc_nodes(:, 1)), 7)

↪→ ,1));

847 fspec = repmat('%d, ', 1, mod(length(uc_nodes(:, 1)), 7) - 1);

848 fspec = [fspec '%d\n'];

849 fprintf(fileID , fspec , uc_nodes(end - mod(length(uc_nodes(:, 1)), 7) + 1:end,1));
850 end

851

852 % Format and write the initial symmetry nodes for concrete

853 if strcmp(inp.settings.reinfsymmetry , 'Reinf/Full') | strcmp(inp.settings.reinfsymmetry , 'None')

854 ini_sc_nodes = s_nodes(find(abs(s_nodes(:, 2) - 0) <= tol), :);

855 fprintf(fileID , '*Nset , nset=initial_symmetry_concrete , instance=beam_instance\n');

856 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', ini_sc_nodes (1:end - mod(length(ini_sc_nodes (:,

↪→ 1)), 7) ,1));

857 fspec = repmat('%d, ', 1, mod(length(ini_sc_nodes (:, 1)), 7) - 1);

858 fspec = [fspec '%d\n'];

859 fprintf(fileID , fspec , ini_sc_nodes(end - mod(length(ini_sc_nodes (:, 1)), 7) + 1:end,1));
860 elseif strcmp(inp.settings.reinfsymmetry , 'Reinf/Discontinuous ')

861 ini_sc_nodes = s_nodes(find(abs(s_nodes(:, 2) - 0) <= tol & abs(s_nodes(:, 4)) >= inp.specs.

↪→ column.width /2), :);

862 fprintf(fileID , '*Nset , nset=initial_symmetry_concrete , instance=beam_instance\n');

863 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', ini_sc_nodes (1:end - mod(length(ini_sc_nodes (:,

↪→ 1)), 7) ,1));

864 fspec = repmat('%d, ', 1, mod(length(ini_sc_nodes (:, 1)), 7) - 1);

865 fspec = [fspec '%d\n'];

866 fprintf(fileID , fspec , ini_sc_nodes(end - mod(length(ini_sc_nodes (:, 1)), 7) + 1:end,1));
867 end

868

869 % Format and write the initial symmetry nodes for the reinforcement

870 if strcmp(meshgen.settings.reinf , 'True')

871 if strcmp(inp.settings.reinfsymmetry , 'Reinf/Full')

872 % Format and write the initial reinforcement symmetry nodes (no column discontinuity)

873 ini_rein_nodes = reinf.perm.locs(find(abs(reinf.perm.locs(:, 2) - 0) <= tol), :);

874 fprintf(fileID , '*Nset , nset=initial_symmetry_reinforcement , instance=beam_instance\n');

875 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', ini_rein_nodes (1:end - mod(length(

↪→ ini_rein_nodes (:, 1)), 7) ,1));

876 fspec = repmat('%d, ', 1, mod(length(ini_rein_nodes (:, 1)), 7) - 1);

877 fspec = [fspec '%d\n'];

878 fprintf(fileID , fspec , ini_rein_nodes(end - mod(length(ini_rein_nodes (:, 1)), 7) + 1:end,1));
879 elseif strcmp(inp.settings.reinfsymmetry , 'Reinf/Discontinuous ')

880 % Format and write the initial reinforcement symmetry nodes (including column discontinuity)

881 ini_rein_nodes = reinf.perm.locs(find(abs(reinf.perm.locs(:, 2) - 0) <= tol & abs(reinf.perm.

↪→ locs(:, 4)) >= inp.specs.column.width /2), :);

882 fprintf(fileID , '*Nset , nset=initial_symmetry_reinforcement , instance=beam_instance\n');

883 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', ini_rein_nodes (1:end - mod(length(
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↪→ ini_rein_nodes (:, 1)), 7) ,1));

884 fspec = repmat('%d, ', 1, mod(length(ini_rein_nodes (:, 1)), 7) - 1);

885 fspec = [fspec '%d\n'];

886 fprintf(fileID , fspec , ini_rein_nodes(end - mod(length(ini_rein_nodes (:, 1)), 7) + 1:end,1));
887 end

888 end

889

890 % Format and write the lateral symmetry nodes for concrete (make OPTIONAL)

891 lat_sc_nodes_minz = s_nodes(find(abs(s_nodes(:, 4) - min(s_nodes(:, 4))) <= tol), :);

892 lat_sc_nodes_maxz = s_nodes(find(abs(s_nodes(:, 4) - max(s_nodes(:, 4))) <= tol), :);

893 lat_sc_nodes = [lat_sc_nodes_minz; lat_sc_nodes_maxz ];

894 fprintf(fileID , '*Nset , nset=lateral_symmetry_concrete , instance=beam_instance\n');

895 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', lat_sc_nodes (1:end - mod(length(lat_sc_nodes (:, 1))

↪→ , 7) ,1));

896 fspec = repmat('%d, ', 1, mod(length(lat_sc_nodes (:, 1)), 7) - 1);

897 fspec = [fspec '%d\n'];

898 fprintf(fileID , fspec , lat_sc_nodes(end - mod(length(lat_sc_nodes (:, 1)), 7) + 1:end,1));
899 end

900

901 % Write the symmetry nodes to a set so that they can be used to output data efficiently

902 if meshgen.specs.slab.switch == 1 & strcmp(inp.settings.midspansymmetry , 'Symmetric ')

903 x_symmetry_nodes = [ss_nodes; sc_nodes ];

904 fprintf(fileID , '*Nset , nset=x_symmetry_nodes , instance=beam_instance\n');

905 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', x_symmetry_nodes (1:end - mod(length(

↪→ x_symmetry_nodes (:, 1)), 7) ,1));

906 fspec = repmat('%d, ', 1, mod(length(x_symmetry_nodes (:, 1)), 7) - 1);

907 fspec = [fspec '%d\n'];

908 fprintf(fileID , fspec , x_symmetry_nodes(end - mod(length(x_symmetry_nodes (:, 1)), 7) + 1:end,1));
909 elseif meshgen.specs.slab.switch == 0 & strcmp(inp.settings.midspansymmetry , 'Symmetric ')

910 x_symmetry_nodes = [ss_nodes ];

911 fprintf(fileID , '*Nset , nset=x_symmetry_nodes , instance=beam_instance\n');

912 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', x_symmetry_nodes (1:end - mod(length(

↪→ x_symmetry_nodes (:, 1)), 7) ,1));

913 fspec = repmat('%d, ', 1, mod(length(x_symmetry_nodes (:, 1)), 7) - 1);

914 fspec = [fspec '%d\n'];

915 fprintf(fileID , fspec , x_symmetry_nodes(end - mod(length(x_symmetry_nodes (:, 1)), 7) + 1:end,1));
916 end

917

918 if strcmp(inp.settings.analysistype , 'Implicit ') & strcmp(meshgen.settings.endplate , 'True')

919 if strcmp(inp.settings.supporttype , 'Fixed ')

920 % Format and write the spring elements

921 fprintf(fileID , '*Spring , elset=Springs_endplate , nonlinear\n');

922 fprintf(fileID , '%d\n', 1);

923 fprintf(fileID , '%.4e, %.4e\n', inp.specs.spring.endplate ');

924 fprintf(fileID , '*Element , type=Spring1 , elset=Springs_endplate\n');

925 fprintf(fileID , '%d, beam_instance .%d\n', [1: length(endplate.nodes.excludingbolts); endplate.

↪→ nodes.excludingbolts (:, 1) ']);

926 end

927 end

928

929 % Add contact simulating connectors between the steel flange and the concrete slab

930 if meshgen.specs.slab.switch == 1

931 if strcmp(meshgen.settings.contact , 'On/Connector ') == 1

932

933 if strcmp(inp.settings.zsymmetry , 'Yes')

934 % Top flange nodes selected as nodeset1

935 [nodeset1 , ~] = findcontact(tol , flange.top.nodes.array , nodes_temp);

936

937 % Bottom slab nodes selected as nodeset2

938 [nodeset2 , ~] = findcontact(tol , beam.nodes.cleanslab , nodes_temp);

939

940 if strcmp(meshgen.settings.studs , 'True')

941 % Stud nodes will not be included in the elset for contact simulation

942 nodesremove = nodes_B31_partial(find(nodes_B31_partial (:, 3) == min(nodes_B31_partial (:, 3)))

↪→ , :);

943 % % Slab nodes replaced by stud nodes will also not be included

944 % nodesremove = [nodesremove; beam.nodes.slabremove ];

945 end

946 else

947 % Top flange nodes selected as nodeset1

948 nodeset1 = flange.top.nodes.array;

949

950 % Bottom slab nodes selected as nodeset2
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951 nodeset2 = s_nodes(find(abs(s_nodes(:, 3) - min(s_nodes(:, 3))) <= tol), :);

952

953 if strcmp(meshgen.settings.studs , 'True')

954 % Stud nodes will not be included in the elset for contact simulation

955 nodesremove = nodes_B31_partial(find(nodes_B31_partial (:, 3) == min(nodes_B31_partial (:, 3)))

↪→ , :);

956 % % Slab nodes replaced by stud nodes will also not be included

957 % nodesremove = [nodesremove; beam.nodes.slabremove ];

958 end

959 end

960

961 % Remove the y difference between the bottom of the slab and the top flange

962 % to ensure that suitable connector locations are found

963 nodeset2(:, 3) = nodeset2(:, 3) - min(slab.depths);

964 if strcmp(meshgen.settings.studs , 'True')

965 nodesremove (:, 3) = nodesremove (:, 3) - min(slab.depths);

966 end

967

968 % Generate the appropriate lists using the findcontact function.

969 % nodes_1 and nodes_2 have a 1-1 relation between the nodes (i.e. the node

970 % stored in a given row in nodes_1 corresponds to the node in the same row

971 % in nodes_2 and vice versa).

972 % NOTE: This part of the code has not been updated to deal with a switched off

973 % endplate

974 if strcmp(meshgen.settings.studs , 'True')

975 [nodes_1 , nodes_2] = findcontact(tol , nodeset1 , nodeset2 , nodesremove);

976 else

977 [nodes_1 , nodes_2] = findcontact(tol , nodeset1 , nodeset2);

978 end

979 if strcmp(inp.settings.supporttype , 'Fixed ') == 0

980 connlist = [1: length(nodes_1)];

981 else

982 connlist = [1: length(nodes_1)] + length(endplate.nodes.excludingbolts);

983 end

984 if strcmp(meshgen.settings.contact , 'On/Connector ')

985 % Format and write the connector elements

986 fprintf(fileID , '*Element , type=CONN3D2\n');

987 fprintf(fileID , '%d, beam_instance .%d, beam_instance .%d\n', [connlist ' nodes_1(:, 1) nodes_2(:,

↪→ 1)]');

988

989 % Connector behaviour assignment

990 fprintf(fileID , '*Connector Section , elset=wirename , behavior=connsection\n');

991 fprintf(fileID , 'Axial ,\n');

992 fprintf(fileID , '"CSYS_connectors ",\n');

993

994 % Format and write the nodes_1 node labels

995 fprintf(fileID , '*Nset , nset=wire_nodes_1 , instance=beam_instance\n');

996 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', nodes_1 (1:end - mod(length(nodes_1(:, 1)), 7)

↪→ ,1));

997 fspec = repmat('%d, ', 1, mod(length(nodes_1(:, 1)), 7) - 1);

998 fspec = [fspec '%d\n'];

999 fprintf(fileID , fspec , nodes_1(end - mod(length(nodes_1(:, 1)), 7) + 1:end,1));
1000

1001 % Format and write the nodes_2 node labels

1002 fprintf(fileID , '*Nset , nset=wire_nodes_2 , instance=beam_instance\n');

1003 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', nodes_2 (1:end - mod(length(nodes_2(:, 1)), 7)

↪→ ,1));

1004 fspec = repmat('%d, ', 1, mod(length(nodes_2(:, 1)), 7) - 1);

1005 fspec = [fspec '%d\n'];

1006 fprintf(fileID , fspec , nodes_2(end - mod(length(nodes_2(:, 1)), 7) + 1:end,1));
1007

1008 % Format and write the wire element labels

1009 fprintf(fileID , '*Elset , elset=wirename , generate\n');

1010 fprintf(fileID , '%d, %d, 1\n', connlist (1), connlist(end));
1011

1012 % Write the CSYS to appropriately orientate the local coordinate

1013 % system for the connector elements

1014 fprintf(fileID , '*Orientation , name=" CSYS_connectors "\n');

1015 fprintf(fileID , '0., 1., 0., -1., 0., 0.,\n'); % For the connectors , Y is X

1016 % The same could be achieved by defining the same CSYS as the global and

1017 % rotating about Z by +90 degrees using the RHR.

1018 end

1019 elseif strcmp(meshgen.settings.contact , 'On/ABAQUSContact ') == 1
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1020

1021 % Bottom slab elements used to form a surface

1022 master = beam.slab.bottom_elements;

1023 fprintf(fileID , '*Elset , elset=slab_elements_bottom_con , internal , instance=beam_instance\n');

1024 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', master (1:end - mod(length(master(:, 1)), 7) ,1));

1025 fspec = repmat('%d, ', 1, mod(length(master(:, 1)), 7) - 1);

1026 fspec = [fspec '%d\n'];

1027 fprintf(fileID , fspec , master(end - mod(length(master(:, 1)), 7) + 1:end,1));
1028

1029 % Format and write the top flange elements

1030 slave = flange.top.elements.S4;

1031 fprintf(fileID , '*Elset , elset=flange_top_con , internal , instance=beam_instance\n');

1032 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d\n', slave (1:end - mod(length(slave(:, 1)), 7) ,1));

1033 fspec = repmat('%d, ', 1, mod(length(slave(:, 1)), 7) - 1);

1034 fspec = [fspec '%d\n'];

1035 fprintf(fileID , fspec , slave(end - mod(length(slave(:, 1)), 7) + 1:end,1));
1036

1037 % Define the contact pairs ' surfaces to be used for surface -surface

1038 % contact definitions

1039 fprintf(fileID , '*Surface , type=ELEMENT , name=flange_top_surf\n');

1040 fprintf(fileID , 'flange_top_con , \n'); % Note that a surface face identifier

1041 % was not defined

1042

1043 fprintf(fileID , '*Surface , type=ELEMENT , name=slab_bot_surf\n');

1044 fprintf(fileID , 'slab_elements_bottom_con ,\n');

1045 end

1046 end

1047

1048 % ASSEMBLY END

1049 fprintf(fileID , '*End Assembly\n');

1050

1051 % CONTACT DEFINITIONS

1052 if strcmp(meshgen.settings.contact , 'On/ABAQUSContact ') == 1

1053 % Define the surface interaction property

1054 fprintf(fileID , '*Surface Interaction , name=IntProp -1\n');

1055 fprintf(fileID , '1.,\n');

1056 fprintf(fileID , '*Surface Behavior , pressure -overclosure=HARD\n');

1057

1058 % Define the surface interaction

1059 fprintf(fileID , '*Contact Pair , interaction=IntProp -1, type=SURFACE TO SURFACE , adjust =0.0\n');

1060 fprintf(fileID , 'flange_top_surf , slab_bot_surf\n');

1061 end

1062

1063 % AMPLITUDE DEFINITION

1064 if strcmp(inp.settings.analysistype , 'Explicit ')

1065 fprintf(fileID , '*Amplitude , name=%s, definition =%s\n', 'Amp -1', inp.settings.amplitude.type);

1066 fprintf(fileID , '%d, %d, %d, %d\n**\n', [0 0 inp.specs.analysis.explicit 1])

1067 end

1068

1069 % CONNECTOR SPECS

1070 if meshgen.specs.slab.switch == 1

1071 if strcmp(meshgen.settings.contact , 'On/Connector ')

1072 % Print the connector behaviour here (after ASSEMBLY)

1073 fprintf(fileID , '*Connector Behavior , name=connsection , extrapolation=LINEAR\n');

1074 fprintf(fileID , '*Connector Stop , component =1\n');

1075 fprintf(fileID , '%.6e,\n', min(slab.depths));

1076 end

1077 end

1078

1079

1080 % MATERIALS

1081 fprintf(fileID , '**\n** MATERIALS\n**\n');

1082

1083 % General steel definition , for general steel (studs, endplate , others)

1084 if strcmp(inp.specs.steel.material.general , 'E') % ELASTIC

1085 fprintf(fileID , '*Material , name=Steel\n');

1086 if strcmp(inp.settings.analysistype , 'Explicit ') | strcmp(inp.settings.analysis , 'Dynamic ')

1087 fprintf(fileID , '*density\n');

1088 fprintf(fileID , '%d\n', inp.specs.steel.density);

1089 end

1090 fprintf(fileID , '*Elastic\n');

1091 fprintf(fileID , ' %.6e, %.6e\n**\n', inp.specs.steel.E, inp.specs.steel.v);

1092 elseif strcmp(inp.specs.steel.material.general , 'EPP') % PERFECTLY PLASTIC
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1093 fprintf(fileID , '*Material , name=Steel\n');

1094 if strcmp(inp.settings.analysistype , 'Explicit ') | strcmp(inp.settings.analysis , 'Dynamic ')

1095 fprintf(fileID , '*density\n');

1096 fprintf(fileID , '%d\n', inp.specs.steel.density);

1097 end

1098 fprintf(fileID , '*Elastic\n');

1099 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.steel.E, inp.specs.steel.v);

1100 fprintf(fileID , '*Plastic\n');

1101 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.steel.behaviour.general ');

1102 fprintf(fileID , '**\n');

1103 % elseif condition % Add hardening? Different types of hardening as well?

1104 end

1105

1106 % General steel definition , for steel beam web

1107 if strcmp(inp.specs.steel.material.web , 'E') % ELASTIC

1108 fprintf(fileID , '*Material , name=web_steel\n');

1109 if strcmp(inp.settings.analysistype , 'Explicit ') | strcmp(inp.settings.analysis , 'Dynamic ')

1110 fprintf(fileID , '*density\n');

1111 fprintf(fileID , '%d\n', inp.specs.steel.density);

1112 end

1113 fprintf(fileID , '*Elastic\n');

1114 fprintf(fileID , ' %.6e, %.6e\n**\n', inp.specs.steel.E, inp.specs.steel.v);

1115 elseif strcmp(inp.specs.steel.material.web , 'EPP') % PERFECTLY PLASTIC

1116 fprintf(fileID , '*Material , name=web_steel\n');

1117 if strcmp(inp.settings.analysistype , 'Explicit ') | strcmp(inp.settings.analysis , 'Dynamic ')

1118 fprintf(fileID , '*density\n');

1119 fprintf(fileID , '%d\n', inp.specs.steel.density);

1120 end

1121 fprintf(fileID , '*Elastic\n');

1122 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.steel.E, inp.specs.steel.v);

1123 fprintf(fileID , '*Plastic\n');

1124 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.steel.behaviour.web ');

1125 fprintf(fileID , '**\n');

1126 % elseif condition % Add hardening? Different types of hardening as well?

1127 end

1128

1129 % General steel definition , for steel beam flange

1130 if strcmp(inp.specs.steel.material.flange , 'E') % ELASTIC

1131 fprintf(fileID , '*Material , name=flange_steel\n');

1132 if strcmp(inp.settings.analysistype , 'Explicit ') | strcmp(inp.settings.analysis , 'Dynamic ')

1133 fprintf(fileID , '*density\n');

1134 fprintf(fileID , '%d\n', inp.specs.steel.density);

1135 end

1136 fprintf(fileID , '*Elastic\n');

1137 fprintf(fileID , ' %.6e, %.6e\n**\n', inp.specs.steel.E, inp.specs.steel.v);

1138 elseif strcmp(inp.specs.steel.material.flange , 'EPP') % PERFECTLY PLASTIC

1139 fprintf(fileID , '*Material , name=flange_steel\n');

1140 if strcmp(inp.settings.analysistype , 'Explicit ') | strcmp(inp.settings.analysis , 'Dynamic ')

1141 fprintf(fileID , '*density\n');

1142 fprintf(fileID , '%d\n', inp.specs.steel.density);

1143 end

1144 fprintf(fileID , '*Elastic\n');

1145 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.steel.E, inp.specs.steel.v);

1146 fprintf(fileID , '*Plastic\n');

1147 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.steel.behaviour.flange ');

1148 fprintf(fileID , '**\n');

1149 % elseif condition % Add hardening? Different types of hardening as well?

1150 end

1151

1152 % Steel definition , for all the stiffeners (only add capabilities

1153 % to generate material behaviour for different stiffeners IF required)

1154 % General steel definition , for steel beam

1155 if strcmp(inp.specs.stiffener.material , 'E') % ELASTIC

1156 fprintf(fileID , '*Material , name=stiffener\n');

1157 if strcmp(inp.settings.analysistype , 'Explicit ') | strcmp(inp.settings.analysis , 'Dynamic ')

1158 fprintf(fileID , '*density\n');

1159 fprintf(fileID , '%d\n', inp.specs.steel.density); % Default steel density

1160 end

1161 fprintf(fileID , '*Elastic\n');

1162 fprintf(fileID , ' %.6e, %.6e\n**\n', inp.specs.stiffener.behaviour(1, 2:3));

1163 elseif strcmp(inp.specs.stiffener.material , 'EPP') % PERFECTLY PLASTIC

1164 fprintf(fileID , '*Material , name=stiffener\n');

1165 if strcmp(inp.settings.analysistype , 'Explicit ') | strcmp(inp.settings.analysis , 'Dynamic ')
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1166 fprintf(fileID , '*density\n');

1167 fprintf(fileID , '%d\n', inp.specs.steel.density); % Default steel density

1168 end

1169 fprintf(fileID , '*Elastic\n');

1170 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.stiffener.behaviour(1, 2:3));

1171 fprintf(fileID , '*Plastic\n');

1172 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.stiffener.yield ');

1173 fprintf(fileID , '**\n');

1174 % elseif condition % Add hardening? Different types of hardening as well?

1175 end

1176

1177 if strcmp(meshgen.settings.reinf , 'True') | strcmp(meshgen.settings.lat_reinf , 'True')

1178 % Reinforcement steel definition

1179 fprintf(fileID , '*Material , name=Steel_Reinforcement\n');

1180 if strcmp(inp.settings.analysistype , 'Explicit ') | strcmp(inp.settings.analysis , 'Dynamic ')

1181 fprintf(fileID , '*density\n');

1182 fprintf(fileID , '%d\n', inp.specs.reinf.density);

1183 end

1184 fprintf(fileID , '*Elastic\n');

1185 fprintf(fileID , ' %.6e, %.6e\n**\n', inp.specs.reinf.E, inp.specs.reinf.v);

1186 end

1187

1188 if length(inp.specs.conc.material) == 1

1189 conc_1 = inp.specs.conc.material {1};

1190 elseif length(inp.specs.conc.material) == 2

1191 conc_1 = inp.specs.conc.material {1};

1192 conc_2 = inp.specs.conc.material {2};

1193 end

1194

1195 % Concrete definition

1196 fprintf(fileID , '*Material , name=Concrete\n');

1197 if strcmp(inp.settings.analysistype , 'Explicit ') | strcmp(inp.settings.analysis , 'Dynamic ')

1198 fprintf(fileID , '*density\n');

1199 fprintf(fileID , '%d\n', inp.specs.conc.density);

1200 end

1201 if ~strcmp(conc_1 , 'M7')

1202 fprintf(fileID , '*Elastic\n');

1203 fprintf(fileID , ' %.6e, %.6e\n**\n', inp.specs.conc.E, inp.specs.conc.v);

1204 end

1205 if strcmp(conc_1 , 'EPP')

1206 fprintf(fileID , '*Plastic\n');

1207 fprintf(fileID , ' %.6e, %.6e\n**\n', inp.specs.conc.behaviour ')

1208 elseif strcmp(conc_1 , 'Mohr -Coulomb ')

1209 fprintf(fileID , '*Mohr Coulomb\n');

1210 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.conc.m_c.dilation ');

1211 fprintf(fileID , '*Mohr Coulomb Hardening\n');

1212 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.conc.m_c.hardening ');

1213 fprintf(fileID , '*Tension Cutoff\n');

1214 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.conc.m_c.tensioncutoff ');

1215 elseif strcmp(conc_1 , 'conc1 ')

1216 fprintf(fileID , '*Concrete\n');

1217 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.conc.comphard ');

1218 if strcmp(inp.specs.conc.tentype , 'Strain ')

1219 fprintf(fileID , '*Tension Stiffening\n');

1220 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.conc.tenstiff ');

1221 elseif strcmp(inp.specs.conc.tentype , 'Displacement ')

1222 fprintf(fileID , '*Tension Stiffening , type=displacement\n');

1223 fprintf(fileID , ' %.6e\n', inp.specs.conc.tenstiff ');

1224 end

1225 elseif strcmp(conc_1 , 'conc2 ') % COMPLETE , TEST PENDING

1226 fprintf(fileID , '*Concrete Damaged Plasticity\n');

1227 fprintf(fileID , ' %.6e, %.6e, %.6e, %.6e, %.6e\n', inp.specs.conc.damplast ');

1228 fprintf(fileID , '*Concrete Compression Hardening\n');

1229 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.conc.comphard ');

1230 if strcmp(inp.specs.conc.tentype , 'Strain ')

1231 fprintf(fileID , '*Concrete Tension Stiffening\n');

1232 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.conc.damtenstiff ');

1233 elseif strcmp(inp.specs.conc.tentype , 'Displacement ')

1234 fprintf(fileID , '*Concrete Tension Stiffening\n');

1235 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.conc.damtenstiff ');

1236 elseif strcmp(inp.specs.conc.tentype , 'GFI')

1237 fprintf(fileID , '*Concrete Tension Stiffening\n');

1238 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.conc.gfi ');
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1239 end

1240 elseif strcmp(conc_1 , 'M7') % COMPLETE , TEST PENDING

1241 M7_switch = 1;

1242 consts = [inp.specs.conc.M7.ks; inp.specs.conc.M7.cs; inp.specs.conc.E; inp.specs.conc.v; inp.specs

↪→ .conc.M7.fcdash ];

1243 % fprintf(fileID , '*Material , name=Concrete\n');

1244 % if strcmp(inp.settings.analysistype , 'Explicit ') | strcmp(inp.settings.analysis , 'Dynamic ')

1245 % fprintf(fileID , '*density\n');

1246 % fprintf(fileID , '%d\n', inp.specs.conc.density);

1247 % end

1248 fprintf(fileID , '*Depvar\n');

1249 fprintf(fileID , '%i\n', inp.specs.conc.M7.mplanes *5 + 2 + 6)

1250 fprintf(fileID , '*User Material , constants =%i\n', length(inp.specs.conc.M7.ks) + length(inp.specs.

↪→ conc.M7.cs) + 3)

1251 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d, %d\n', consts (1:end - mod(length(consts(:, 1)), 7) ,1))

↪→ ;

1252 fspec = repmat('%d, ', 1, mod(length(consts(:, 1)), 8) - 1);

1253 fspec = [fspec '%d\n'];

1254 fprintf(fileID , fspec , consts(end - mod(length(consts(:, 1)), 8) + 1:end,1));
1255 end

1256

1257 if length(inp.specs.conc.material) == 2

1258 % Concrete_2 definition

1259 fprintf(fileID , '*Material , name=Concrete_2\n');

1260 if strcmp(inp.settings.analysistype , 'Explicit ') | strcmp(inp.settings.analysis , 'Dynamic ')

1261 fprintf(fileID , '*density\n');

1262 fprintf(fileID , '%d\n', inp.specs.conc.density);

1263 end

1264 if ~strcmp(conc_2 , 'M7')

1265 fprintf(fileID , '*Elastic\n');

1266 fprintf(fileID , ' %.6e, %.6e\n**\n', inp.specs.conc.E, inp.specs.conc.v);

1267 end

1268 if strcmp(conc_2 , 'EPP')

1269 fprintf(fileID , '*Plastic\n');

1270 fprintf(fileID , ' %.6e, %.6e\n**\n', inp.specs.conc.behaviour ')

1271 elseif strcmp(conc_2 , 'Mohr -Coulomb ')

1272 fprintf(fileID , '*Mohr Coulomb\n');

1273 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.conc.m_c.dilation ');

1274 fprintf(fileID , '*Mohr Coulomb Hardening\n');

1275 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.conc.m_c.hardening ');

1276 fprintf(fileID , '*Tension Cutoff\n');

1277 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.conc.m_c.tensioncutoff ');

1278 elseif strcmp(conc_2 , 'conc1 ')

1279 fprintf(fileID , '*Concrete\n');

1280 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.conc.comphard ');

1281 if strcmp(inp.specs.conc.tentype , 'Strain ')

1282 fprintf(fileID , '*Tension Stiffening\n');

1283 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.conc.tenstiff ');

1284 elseif strcmp(inp.specs.conc.tentype , 'Displacement ')

1285 fprintf(fileID , '*Tension Stiffening , type=displacement\n');

1286 fprintf(fileID , ' %.6e\n', inp.specs.conc.tenstiff ');

1287 end

1288 elseif strcmp(conc_2 , 'conc2 ') % COMPLETE , TEST PENDING

1289 fprintf(fileID , '*Concrete Damaged Plasticity\n');

1290 fprintf(fileID , ' %.6e, %.6e, %.6e, %.6e, %.6e\n', inp.specs.conc.damplast ');

1291 fprintf(fileID , '*Concrete Compression Hardening\n');

1292 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.conc.comphard ');

1293 if strcmp(inp.specs.conc.tentype , 'Strain ')

1294 fprintf(fileID , '*Concrete Tension Stiffening\n');

1295 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.conc.damtenstiff ');

1296 elseif strcmp(inp.specs.conc.tentype , 'Displacement ')

1297 fprintf(fileID , '*Concrete Tension Stiffening\n');

1298 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.conc.damtenstiff ');

1299 elseif strcmp(inp.specs.conc.tentype , 'GFI')

1300 fprintf(fileID , '*Concrete Tension Stiffening\n');

1301 fprintf(fileID , ' %.6e, %.6e\n', inp.specs.conc.gfi ');

1302 end

1303 elseif strcmp(conc_2 , 'M7') % COMPLETE , TEST PENDING

1304 M7_switch = 1;

1305 consts = [inp.specs.conc.M7.ks; inp.specs.conc.M7.cs; inp.specs.conc.E; inp.specs.conc.v; inp.

↪→ specs.conc.M7.fcdash ];

1306 % fprintf(fileID , '*Material , name=Concrete\n');

1307 % if strcmp(inp.settings.analysistype , 'Explicit ') | strcmp(inp.settings.analysis , 'Dynamic ')
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1308 % fprintf(fileID , '*density\n');

1309 % fprintf(fileID , '%d\n', inp.specs.conc.density);

1310 % end

1311 fprintf(fileID , '*Depvar\n');

1312 fprintf(fileID , '%i\n', inp.specs.conc.M7.mplanes *5 + 2 + 6)

1313 fprintf(fileID , '*User Material , constants =%i\n', length(inp.specs.conc.M7.ks) + length(inp.specs

↪→ .conc.M7.cs) + 3)

1314 fprintf(fileID , '%d, %d, %d, %d, %d, %d, %d, %d\n', consts (1:end - mod(length(consts(:, 1)), 7)

↪→ ,1));

1315 fspec = repmat('%d, ', 1, mod(length(consts(:, 1)), 8) - 1);

1316 fspec = [fspec '%d\n'];

1317 fprintf(fileID , fspec , consts(end - mod(length(consts(:, 1)), 8) + 1:end,1));
1318 end

1319 end

1320

1321 % BOUNDARY CONDITIONS

1322

1323 if strcmp(inp.settings.supporttype , 'Fixed ')

1324 % Bolts

1325 fprintf(fileID , '**\n** BOUNDARY CONDITIONS\n**\n** Name: Bolt BCs Type: Displacement/Rotation\n*

↪→ Boundary\n');

1326 fprintf(fileID , 'bolt_nodes , 1, 1\n');

1327 fprintf(fileID , 'bolt_nodes , 2, 2\n');

1328 fprintf(fileID , 'bolt_nodes , 3, 3\n');

1329 % fprintf(fileID , 'bolt_nodes , 4, 4\n');

1330 % fprintf(fileID , 'bolt_nodes , 5, 5\n');

1331 % fprintf(fileID , 'bolt_nodes , 6, 6\n');

1332 elseif strcmp(inp.settings.supporttype , 'Simple/Bolts ')

1333 % Bolts

1334 fprintf(fileID , '**\n** BOUNDARY CONDITIONS\n**\n** Name: Bolt BCs Type: Displacement/Rotation\n*

↪→ Boundary\n');

1335 % fprintf(fileID , 'bolt_nodes , 1, 1\n');

1336 fprintf(fileID , 'bolt_nodes , 2, 2\n');

1337 fprintf(fileID , 'bolt_nodes , 3, 3\n');

1338 % fprintf(fileID , 'bolt_nodes , 4, 4\n');

1339 % fprintf(fileID , 'bolt_nodes , 5, 5\n');

1340 % fprintf(fileID , 'bolt_nodes , 6, 6\n');

1341 elseif strcmp(inp.settings.supporttype , 'Simple ') & all(inp.settings.supportoffset < tol) & strcmp(

↪→ inp.settings.midspansymmetry , 'Symmetric ')

1342 % Simple Support at the bottom of the beam , similar to theory

1343 fprintf(fileID , '**\n** BOUNDARY CONDITIONS\n**\n** Name: Bolt BCs Type: Displacement/Rotation\n*

↪→ Boundary\n');

1344 % fprintf(fileID , 'flange_nodes_bot_start , 1, 1\n');

1345 fprintf(fileID , 'flange_nodes_bot_start , 2, 2\n');

1346 fprintf(fileID , 'flange_nodes_bot_start , 3, 3\n');

1347 % fprintf(fileID , 'flange_nodes_bot_start , 4, 4\n');

1348 % fprintf(fileID , 'flange_nodes_bot_start , 5, 5\n');

1349 % fprintf(fileID , 'flange_nodes_bot_start , 6, 6\n');

1350 elseif strcmp(inp.settings.supporttype , 'Simple ') & all(inp.settings.supportoffset < tol) & strcmp(

↪→ inp.settings.midspansymmetry , 'Unsymmetric ')

1351 % Simple Support at the bottom of the beam , similar to theory

1352 fprintf(fileID , '**\n** BOUNDARY CONDITIONS\n**\n** Name: Bolt BCs Type: Displacement/Rotation\n*

↪→ Boundary\n');

1353 % fprintf(fileID , 'flange_nodes_bot_start , 1, 1\n');

1354 fprintf(fileID , 'flange_nodes_bot_start , 2, 2\n');

1355 fprintf(fileID , 'flange_nodes_bot_start , 3, 3\n');

1356 % fprintf(fileID , 'flange_nodes_bot_start , 4, 4\n');

1357 % fprintf(fileID , 'flange_nodes_bot_start , 5, 5\n');

1358 % fprintf(fileID , 'flange_nodes_bot_start , 6, 6\n');

1359 fprintf(fileID , '**\n** BOUNDARY CONDITIONS\n**\n** Name: Bolt BCs Type: Displacement/Rotation\n*

↪→ Boundary\n');

1360 fprintf(fileID , 'flange_nodes_bot_end , 1, 1\n');

1361 fprintf(fileID , 'flange_nodes_bot_end , 2, 2\n');

1362 fprintf(fileID , 'flange_nodes_bot_end , 3, 3\n');

1363 % fprintf(fileID , 'flange_nodes_bot_end , 4, 4\n');

1364 % fprintf(fileID , 'flange_nodes_bot_end , 5, 5\n');

1365 % fprintf(fileID , 'flange_nodes_bot_end , 6, 6\n');

1366 elseif strcmp(inp.settings.supporttype , 'Simple ') & any(inp.settings.supportoffset > tol)

1367 % Vertical Support at the bottom of the beam , offset by inp.settings.supportoffset , similar to

↪→ theory

1368 fprintf(fileID , '**\n** BOUNDARY CONDITIONS\n**\n** Name: Bolt BCs Type: Displacement/Rotation\n*

↪→ Boundary\n');

1369 % fprintf(fileID , 'flange_nodes_bot_offset , 1, 1\n');
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1370 fprintf(fileID , 'flange_nodes_bot_offset , 2, 2\n');

1371 fprintf(fileID , 'flange_nodes_bot_offset , 3, 3\n');

1372 % fprintf(fileID , 'flange_nodes_bot_offset , 4, 4\n');

1373 % fprintf(fileID , 'flange_nodes_bot_offset , 5, 5\n');

1374 % fprintf(fileID , 'flange_nodes_bot_offset , 6, 6\n');

1375 if strcmp(inp.settings.midspansymmetry , 'Unsymmetric ')

1376 % Horizontal Support at the bottom of the beam 's RHS , offset by inp.settings.supportoffset ,

↪→ similar to theory

1377 fprintf(fileID , '**\n** BOUNDARY CONDITIONS\n**\n** Name: Bolt BCs Type: Displacement/Rotation\n*

↪→ Boundary\n');

1378 fprintf(fileID , 'fn_boffset_RHS , 1, 1\n');

1379 % fprintf(fileID , 'fn_boffset_RHS , 2, 2\n');

1380 % fprintf(fileID , 'fn_boffset_RHS , 3, 3\n');

1381 % fprintf(fileID , 'fn_boffset_RHS , 4, 4\n');

1382 % fprintf(fileID , 'fn_boffset_RHS , 5, 5\n');

1383 % fprintf(fileID , 'fn_boffset_RHS , 6, 6\n');

1384 end

1385 elseif strcmp(inp.settings.supporttype , 'Simple/CELLBEAM ')

1386 % Simple Support at the bottom of the beam , similar to theory

1387 fprintf(fileID , '**\n** BOUNDARY CONDITIONS\n**\n** Name: Bolt BCs Type: Displacement/Rotation\n*

↪→ Boundary\n');

1388 % fprintf(fileID , 'web_nodes_mid_start , 1, 1\n');

1389 fprintf(fileID , 'web_nodes_mid_start , 2, 2\n');

1390 fprintf(fileID , 'web_nodes_mid_start , 3, 3\n');

1391 % fprintf(fileID , 'web_nodes_mid_start , 4, 4\n');

1392 % fprintf(fileID , 'web_nodes_mid_start , 5, 5\n');

1393 % fprintf(fileID , 'web_nodes_mid_start , 6, 6\n');

1394 elseif strcmp(inp.settings.supporttype , 'Fully Fixed ')

1395 fprintf(fileID , '**\n** BOUNDARY CONDITIONS\n**\n** Name: Endplate BC Type: Displacement/Rotation\n

↪→ *Boundary\n');

1396 fprintf(fileID , 'endplate_nodes , 1, 1\n');

1397 fprintf(fileID , 'endplate_nodes , 2, 2\n');

1398 fprintf(fileID , 'endplate_nodes , 3, 3\n');

1399 fprintf(fileID , 'endplate_nodes , 4, 4\n');

1400 fprintf(fileID , 'endplate_nodes , 5, 5\n');

1401 fprintf(fileID , 'endplate_nodes , 6, 6\n');

1402 end

1403

1404 if strcmp(inp.settings.midspansymmetry , 'Symmetric ') % Midspan symmetry

1405 % Symmetry in the steel

1406 fprintf(fileID , '** Name: Steel Beam Symmetry Type: Displacement/Rotation\n*Boundary\n');

1407 fprintf(fileID , 'midspan_nodes , 1, 1\n');

1408 fprintf(fileID , 'midspan_nodes , 5, 5\n');

1409 fprintf(fileID , 'midspan_nodes , 6, 6\n');

1410

1411 if meshgen.specs.slab.switch == 1

1412 % Symmetry in the concrete

1413 fprintf(fileID , '** Name: Concrete Slab Symmetry Type: Displacement/Rotation\n*Boundary\n');

1414 fprintf(fileID , 'symmetry_concrete , 1, 1\n');

1415 end

1416 end

1417

1418 if strcmp(inp.settings.midlatsupport , 'MidBrace ')

1419 fprintf(fileID , '** Simulate a brace in the middle of the beam\n*Boundary\n');

1420 fprintf(fileID , 'MidBrace , 3, 3\n');

1421 end

1422

1423 if strcmp(inp.settings.midlatsupport , 'MidBrace/Cage')

1424 fprintf(fileID , '** Simulate a brace in the middle of the beam\n*Boundary\n');

1425 fprintf(fileID , 'MidBrace/Cage , 3, 3\n');

1426 end

1427

1428 if strcmp(inp.settings.inilatsupport , 'Brace ')

1429 fprintf(fileID , '** Simulate a brace at the supports of the beam\n*Boundary\n');

1430 fprintf(fileID , 'InitialBrace , 3, 3\n');

1431 end

1432

1433 if strcmp(inp.settings.midlatsupport , 'Brace/Floor ')

1434 fprintf(fileID , '** Simulate a floor bracing the slab laterally\n*Boundary\n');

1435 fprintf(fileID , 'Brace/Floor , 3, 3\n');

1436 end

1437

1438 if strcmp(inp.settings.zsymmetry , 'Yes') % z-axis symmetry
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1439 % Symmetry in the steel

1440 fprintf(fileID , '** Name: Steel Beam Z-Symmetry Type: Displacement/Rotation\n*Boundary\n');

1441 fprintf(fileID , 'z_symmetry_steel , 3, 3\n');

1442 fprintf(fileID , 'z_symmetry_steel , 4, 4\n');

1443 fprintf(fileID , 'z_symmetry_steel , 5, 5\n');

1444

1445 if meshgen.specs.slab.switch == 1

1446 % Symmetry in the concrete

1447 fprintf(fileID , '** Name: Concrete Slab Z-Symmetry Type: Displacement/Rotation\n*Boundary\n');

1448 fprintf(fileID , 'z_symmetry_slab , 3, 3\n');

1449 end

1450 end

1451

1452 if meshgen.specs.slab.switch == 1 & strcmp(meshgen.settings.reinf , 'True')

1453 if strcmp(inp.settings.concretesymmetry , 'Symmetric ')

1454 % Symmetry in the initial concrete face

1455 fprintf(fileID , '** Name: Concrete Slab Initial Symmetry Type: Displacement/Rotation\n*Boundary\n

↪→ ');

1456 fprintf(fileID , 'initial_symmetry_concrete , 1, 1\n');

1457 end

1458 if strcmp(inp.settings.reinfsymmetry , 'Reinf/Discontinuous ') | strcmp(inp.settings.reinfsymmetry , '

↪→ Reinf/Full')

1459 % Symmetry in the initial reinforcement nodes

1460 fprintf(fileID , '** Name: Reinforcement Initial Symmetry Type: Displacement/Rotation\n*Boundary\n

↪→ ');

1461 fprintf(fileID , 'initial_symmetry_reinforcement , 1, 1\n');

1462 fprintf(fileID , 'initial_symmetry_reinforcement , 4, 4\n'); % Is this necessary?

1463 fprintf(fileID , 'initial_symmetry_reinforcement , 5, 5\n');

1464 fprintf(fileID , 'initial_symmetry_reinforcement , 6, 6\n');

1465 end

1466 elseif meshgen.specs.slab.switch == 1 & strcmp(inp.settings.reinfsymmetry , 'Reinf/Full') & strcmp(

↪→ meshgen.settings.reinf , 'False ')

1467 if strcmp(inp.settings.concretesymmetry , 'Symmetric ')

1468 % Symmetry in the initial concrete face

1469 fprintf(fileID , '** Name: Concrete Slab Initial Symmetry Type: Displacement/Rotation\n*Boundary\n

↪→ ');

1470 fprintf(fileID , 'initial_symmetry_concrete , 1, 1\n');

1471 end

1472 elseif meshgen.specs.slab.switch == 1 & strcmp(inp.settings.concretesymmetry , 'Symmetric ')

1473 % Symmetry in the initial concrete face

1474 fprintf(fileID , '** Name: Concrete Slab Initial Symmetry Type: Displacement/Rotation\n*Boundary\n')

↪→ ;

1475 fprintf(fileID , 'initial_symmetry_concrete , 1, 1\n');

1476 end

1477

1478 % % Symmetry in the lateral concrete faces (make OPTIONAL)

1479 % fprintf(fileID , '** Name: Concrete Slab Lateral Symmetry Type: Displacement/Rotation\n*Boundary\n')

↪→ ;

1480 % fprintf(fileID , 'lateral_symmetry_concrete , 3, 3\n');

1481

1482 if strcmp(inp.settings.analysistype , 'Explicit ')

1483 inp.specs.analysis.keyword = '*Dynamic , Explicit ';

1484 inp.specs.analysis.vals = inp.specs.analysis.explicit;

1485 else

1486 if strcmp(inp.settings.analysis , 'Static ') | strcmp(inp.settings.analysis , 'Postbuckling/NR')

1487 inp.specs.analysis.keyword = '*Static ';

1488 inp.specs.analysis.vals = inp.specs.analysis.static;

1489 elseif strcmp(inp.settings.analysis , 'Riks') | strcmp(inp.settings.analysis , 'Postbuckling/Riks')

1490 inp.specs.analysis.keyword = '*Static , Riks';

1491 inp.specs.analysis.vals = inp.specs.analysis.riks;

1492 elseif strcmp(inp.settings.analysis , 'Dynamic ')

1493 inp.specs.analysis.keyword = '*Dynamic , application=QUASI -STATIC , initial=NO';

1494 inp.specs.analysis.vals = inp.specs.analysis.static; % They use the same format

1495 end

1496 end

1497

1498 if strcmp(inp.settings.analysistype , 'Implicit ')

1499 if strcmp(inp.settings.analysiscontrol , 'Load')

1500 if strcmp(inp.settings.loadtype , 'UDL')

1501 % Step - UDL

1502 fprintf(fileID , '** ----------------------------------------------------------------\n');

1503 fprintf(fileID , '**\n** STEP: Line UDL\n**\n');

1504
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1505 if strcmp(inp.settings.analysis , 'Buckling ')

1506 fprintf(fileID , '*Step , name=line_udl , nlgeom=no , perturbation\n', inp.settings.nonlingeo ,

↪→ inp.specs.analysis.inc);

1507 fprintf(fileID , '*buckle ,eigensolver =%s\n', inp.specs.bucklingsolver);

1508 if strcmp(inp.specs.bucklingsolver , 'lanczos ')

1509 fprintf(fileID , '%i, , , , \n', inp.specs.bucklingmodes);

1510 elseif strcmp(inp.specs.bucklingsolver , 'subspace ')

1511 fprintf(fileID , '%i, , %i, %i\n', inp.specs.bucklingmodes , inp.specs.bucklingvecs , inp.

↪→ specs.bucklingiters);

1512 end

1513 else

1514 if strcmp(inp.settings.analysis , 'Postbuckling/NR') | strcmp(inp.settings.analysis , '

↪→ Postbuckling/Riks')

1515 fprintf(fileID , '*Imperfection , file=%s, step =1\n', inp.specs.bucklingfile);

1516 fprintf(fileID , '%i, %.6e\n', inp.specs.bucklingcombination ');

1517 end

1518 fprintf(fileID , '*Step , name=line_udl , nlgeom =%s, inc=%i\n', inp.settings.nonlingeo , inp.

↪→ specs.analysis.inc);

1519 fprintf(fileID , '%s\n', inp.specs.analysis.keyword);

1520 if strcmp(inp.settings.analysis , 'Static ') | strcmp(inp.settings.analysis , 'Postbuckling/NR')

↪→ | strcmp(inp.settings.analysis , 'Dynamic ')

1521 fprintf(fileID , '%.6e, %.6e, %.6e, %.6e\n', inp.specs.analysis.vals ');

1522 elseif strcmp(inp.settings.analysis , 'Riks') | strcmp(inp.settings.analysis , 'Postbuckling/

↪→ Riks')

1523 fprintf(fileID , '%.6e, %.6e, %.6e, %.6e, %.6e, flange_nodes_top_mid , %d, %.6e\n', inp.specs

↪→ .analysis.vals ');

1524 end

1525 end

1526 fprintf(fileID , '** Name: Line UDL on slab Type: Concentrated Force\n');

1527 fprintf(fileID , '*Cload\n');

1528 if meshgen.specs.slab.switch == 1

1529 % Load is on the slab surface

1530 fprintf(fileID , 'slab_nodes_top_mid , 2, %.6f\n', inp.specs.q*(span)/length(sn));

1531 % fprintf(fileID , '*Boundary\nslab_nodes_top , 2, 2, 1\n**\n');

1532 elseif meshgen.specs.slab.switch == 0

1533 % Load is on the flange surface

1534 fprintf(fileID , 'flange_nodes_top_mid , 2, %.6f\n', inp.specs.q*(span)/fn_count);

1535 % fprintf(fileID , '*Boundary\nslab_nodes_top , 2, 2, 1\n**\n');

1536 end

1537 elseif strcmp(inp.settings.loadtype , 'Concentrated ')

1538 % Step - Concentrated

1539 fprintf(fileID , '** ----------------------------------------------------------------\n');

1540 fprintf(fileID , '**\n** STEP: Concentrated Load\n**\n');

1541 if strcmp(inp.settings.analysis , 'Buckling ')

1542 fprintf(fileID , '*Step , name=load , nlgeom=no , perturbation\n', inp.settings.nonlingeo , inp.

↪→ specs.analysis.inc);

1543 fprintf(fileID , '*buckle ,eigensolver =%s\n', inp.specs.bucklingsolver);

1544 if strcmp(inp.specs.bucklingsolver , 'lanczos ')

1545 fprintf(fileID , '%i, , , , \n', inp.specs.bucklingmodes);

1546 elseif strcmp(inp.specs.bucklingsolver , 'subspace ')

1547 fprintf(fileID , '%i, , %i, %i\n', inp.specs.bucklingmodes , inp.specs.bucklingvecs , inp.

↪→ specs.bucklingiters);

1548 end

1549 else

1550 if strcmp(inp.settings.analysis , 'Postbuckling/NR') | strcmp(inp.settings.analysis , '

↪→ Postbuckling/Riks')

1551 fprintf(fileID , '*Imperfection , file=%s, step =1\n', inp.specs.bucklingfile);

1552 fprintf(fileID , '%i, %.6e\n', inp.specs.bucklingcombination ');

1553 end

1554 fprintf(fileID , '*Step , name=load , nlgeom =%s, inc=%i\n', inp.settings.nonlingeo , inp.specs.

↪→ analysis.inc);

1555 fprintf(fileID , '%s\n', inp.specs.analysis.keyword);

1556 if strcmp(inp.settings.analysis , 'Static ') | strcmp(inp.settings.analysis , 'Postbuckling/NR')

↪→ | strcmp(inp.settings.analysis , 'Dynamic ')

1557 fprintf(fileID , '%.6e, %.6e, %.6e, %.6e\n', inp.specs.analysis.vals ');

1558 elseif strcmp(inp.settings.analysis , 'Riks') | strcmp(inp.settings.analysis , 'Postbuckling/

↪→ Riks')

1559 fprintf(fileID , '%.6e, %.6e, %.6e, %.6e, %.6e, flange_nodes_top_midend , %d, %.6e\n', inp.

↪→ specs.analysis.vals ');

1560 end

1561 end

1562 fprintf(fileID , '** Name: Concentrated Load on slab Type: Concentrated Force\n');

1563 fprintf(fileID , '*Cload\n');
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1564 if meshgen.specs.slab.switch == 1

1565 % Load is on the slab surface

1566 fprintf(fileID , 'slab_nodes_top_midend , 2, %.6f\n', inp.specs.q);

1567 elseif meshgen.specs.slab.switch == 0

1568 % Load is on the flange surface

1569 fprintf(fileID , 'flange_nodes_top_midend , 2, %.6f\n', inp.specs.q);

1570 end

1571 elseif strcmp(inp.settings.loadtype , 'Jack/Mid')

1572 % Step - Simulated Roller Jack in the middle (or end) of the beam

1573 fprintf(fileID , '** ----------------------------------------------------------------\n');

1574 fprintf(fileID , '**\n** STEP: Load using Jack\n**\n');

1575 if strcmp(inp.settings.analysis , 'Buckling ')

1576 fprintf(fileID , '*Step , name=load , nlgeom=no , perturbation\n', inp.settings.nonlingeo , inp.

↪→ specs.analysis.inc);

1577 fprintf(fileID , '*buckle ,eigensolver =%s\n', inp.specs.bucklingsolver);

1578 if strcmp(inp.specs.bucklingsolver , 'lanczos ')

1579 fprintf(fileID , '%i, , , , \n', inp.specs.bucklingmodes);

1580 elseif strcmp(inp.specs.bucklingsolver , 'subspace ')

1581 fprintf(fileID , '%i, , %i, %i\n', inp.specs.bucklingmodes , inp.specs.bucklingvecs , inp.

↪→ specs.bucklingiters);

1582 end

1583 else

1584 if strcmp(inp.settings.analysis , 'Postbuckling/NR') | strcmp(inp.settings.analysis , '

↪→ Postbuckling/Riks')

1585 fprintf(fileID , '*Imperfection , file=%s, step =1\n', inp.specs.bucklingfile);

1586 fprintf(fileID , '%i, %.6e\n', inp.specs.bucklingcombination ');

1587 end

1588 fprintf(fileID , '*Step , name=load , nlgeom =%s, inc=%i\n', inp.settings.nonlingeo , inp.specs.

↪→ analysis.inc);

1589 fprintf(fileID , '%s\n', inp.specs.analysis.keyword);

1590 if strcmp(inp.settings.analysis , 'Static ') | strcmp(inp.settings.analysis , 'Postbuckling/NR')

↪→ | strcmp(inp.settings.analysis , 'Dynamic ')

1591 fprintf(fileID , '%.6e, %.6e, %.6e, %.6e\n', inp.specs.analysis.vals ');

1592 elseif strcmp(inp.settings.analysis , 'Riks') | strcmp(inp.settings.analysis , 'Postbuckling/

↪→ Riks')

1593 fprintf(fileID , '%.6e, %.6e, %.6e, %.6e, %.6e, flange_nodes_jm , %d, %.6e\n', inp.specs.

↪→ analysis.vals ');

1594 end

1595 end

1596 fprintf(fileID , '** Name: Jack loading the beam Type: Concentrated Force\n');

1597 fprintf(fileID , '*Cload\n');

1598 % if meshgen.specs.slab.switch == 1

1599 % % Load is on the slab surface

1600 % fprintf(fileID , 'slab_nodes_top_end , 2, %.6f\n', inp.specs.q);

1601 % elseif meshgen.specs.slab.switch == 0

1602 % % Load is on the flange surface

1603 fprintf(fileID , 'flange_nodes_jm , 2, %.6f\n', inp.specs.q/length(jm_nodes));

1604 % end

1605 elseif strcmp(inp.settings.loadtype , 'Concentrated/pos')

1606 % Step - Concentrated

1607 fprintf(fileID , '** ----------------------------------------------------------------\n');

1608 fprintf(fileID , '**\n** STEP: Concentrated Load\n**\n');

1609 if strcmp(inp.settings.analysis , 'Buckling ')

1610 fprintf(fileID , '*Step , name=load , nlgeom=no , perturbation\n', inp.settings.nonlingeo , inp.

↪→ specs.analysis.inc);

1611 fprintf(fileID , '*buckle ,eigensolver =%s\n', inp.specs.bucklingsolver);

1612 if strcmp(inp.specs.bucklingsolver , 'lanczos ')

1613 fprintf(fileID , '%i, , , , \n', inp.specs.bucklingmodes);

1614 elseif strcmp(inp.specs.bucklingsolver , 'subspace ')

1615 fprintf(fileID , '%i, , %i, %i\n', inp.specs.bucklingmodes , inp.specs.bucklingvecs , inp.

↪→ specs.bucklingiters);

1616 end

1617 else

1618 if strcmp(inp.settings.analysis , 'Postbuckling/NR') | strcmp(inp.settings.analysis , '

↪→ Postbuckling/Riks')

1619 fprintf(fileID , '*Imperfection , file=%s, step =1\n', inp.specs.bucklingfile);

1620 fprintf(fileID , '%i, %.6e\n', inp.specs.bucklingcombination ');

1621 end

1622 fprintf(fileID , '*Step , name=load , nlgeom =%s, inc=%i\n', inp.settings.nonlingeo , inp.specs.

↪→ analysis.inc);

1623 fprintf(fileID , '%s\n', inp.specs.analysis.keyword);

1624 if strcmp(inp.settings.analysis , 'Static ') | strcmp(inp.settings.analysis , 'Postbuckling/NR')

↪→ | strcmp(inp.settings.analysis , 'Dynamic ')
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1625 fprintf(fileID , '%.6e, %.6e, %.6e, %.6e\n', inp.specs.analysis.vals ');

1626 elseif strcmp(inp.settings.analysis , 'Riks') | strcmp(inp.settings.analysis , 'Postbuckling/

↪→ Riks')

1627 fprintf(fileID , '%.6e, %.6e, %.6e, %.6e, %.6e, flange_nodes_top_mid_pos , %d, %.6e\n', inp.

↪→ specs.analysis.vals ');

1628 end

1629 end

1630 fprintf(fileID , '** Name: Concentrated Load on slab Type: Concentrated Force\n');

1631 fprintf(fileID , '*Cload\n');

1632 if meshgen.specs.slab.switch == 1

1633 % Load is on the slab surface

1634 fprintf(fileID , 'slab_nodes_top_mid_pos , 2, %.6f\n', inp.specs.q);

1635 elseif meshgen.specs.slab.switch == 0

1636 % Load is on the flange surface

1637 fprintf(fileID , 'flange_nodes_top_mid_pos , 2, %.6f\n', inp.specs.q);

1638 end

1639 elseif strcmp(inp.settings.loadtype , 'Jack/pos')

1640 % Step - Simulated Roller Jack in the middle (or end) of the beam

1641 fprintf(fileID , '** ----------------------------------------------------------------\n');

1642 fprintf(fileID , '**\n** STEP: Load using Jack\n**\n');

1643 if strcmp(inp.settings.analysis , 'Buckling ')

1644 fprintf(fileID , '*Step , name=load , nlgeom=no , perturbation\n', inp.settings.nonlingeo , inp.

↪→ specs.analysis.inc);

1645 fprintf(fileID , '*buckle ,eigensolver =%s\n', inp.specs.bucklingsolver);

1646 if strcmp(inp.specs.bucklingsolver , 'lanczos ')

1647 fprintf(fileID , '%i, , , , \n', inp.specs.bucklingmodes);

1648 elseif strcmp(inp.specs.bucklingsolver , 'subspace ')

1649 fprintf(fileID , '%i, , %i, %i\n', inp.specs.bucklingmodes , inp.specs.bucklingvecs , inp.

↪→ specs.bucklingiters);

1650 end

1651 else

1652 if strcmp(inp.settings.analysis , 'Postbuckling/NR') | strcmp(inp.settings.analysis , '

↪→ Postbuckling/Riks')

1653 fprintf(fileID , '*Imperfection , file=%s, step =1\n', inp.specs.bucklingfile);

1654 fprintf(fileID , '%i, %.6e\n', inp.specs.bucklingcombination ');

1655 end

1656 fprintf(fileID , '*Step , name=load , nlgeom =%s, inc=%i\n', inp.settings.nonlingeo , inp.specs.

↪→ analysis.inc);

1657 fprintf(fileID , '%s\n', inp.specs.analysis.keyword);

1658 if strcmp(inp.settings.analysis , 'Static ') | strcmp(inp.settings.analysis , 'Postbuckling/NR')

↪→ | strcmp(inp.settings.analysis , 'Dynamic ')

1659 fprintf(fileID , '%.6e, %.6e, %.6e, %.6e\n', inp.specs.analysis.vals ');

1660 elseif strcmp(inp.settings.analysis , 'Riks') | strcmp(inp.settings.analysis , 'Postbuckling/

↪→ Riks')

1661 fprintf(fileID , '%.6e, %.6e, %.6e, %.6e, %.6e, flange_nodes_jm_pos , %d, %.6e\n', inp.specs.

↪→ analysis.vals ');

1662 end

1663 end

1664 fprintf(fileID , '** Name: Jack loading the beam Type: Concentrated Force\n');

1665 fprintf(fileID , '*Cload\n');

1666 if meshgen.specs.slab.switch == 1

1667 % Load is on the slab surface

1668 fprintf(fileID , 'slab_nodes_jm_pos , 2, %.6f\n', inp.specs.q);

1669 elseif meshgen.specs.slab.switch == 0

1670 % Load is on the flange surface

1671 fprintf(fileID , 'flange_nodes_jm_pos , 2, %.6f\n', inp.specs.q/length(jm_nodes_pos));

1672 end

1673 end

1674 elseif strcmp(inp.settings.analysiscontrol , 'Displacement ')

1675 if strcmp(inp.settings.loadtype , 'Concentrated ')

1676 % Step - Concentrated displacement control near location (inp.L) of beam

1677 fprintf(fileID , '** ----------------------------------------------------------------\n');

1678 fprintf(fileID , '**\n** STEP: Displacement Application\n**\n');

1679 if strcmp(inp.settings.analysis , 'Buckling ')

1680 fprintf(fileID , '*Step , name=displacement , nlgeom=no , perturbation\n', inp.settings.nonlingeo

↪→ , inp.specs.analysis.inc);

1681 fprintf(fileID , '*buckle ,eigensolver =%s\n', inp.specs.bucklingsolver);

1682 if strcmp(inp.specs.bucklingsolver , 'lanczos ')

1683 fprintf(fileID , '%i, , , , \n', inp.specs.bucklingmodes);

1684 elseif strcmp(inp.specs.bucklingsolver , 'subspace ')

1685 fprintf(fileID , '%i, , %i, %i\n', inp.specs.bucklingmodes , inp.specs.bucklingvecs , inp.

↪→ specs.bucklingiters);

1686 end
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1687 else

1688 if strcmp(inp.settings.analysis , 'Postbuckling/NR') | strcmp(inp.settings.analysis , '

↪→ Postbuckling/Riks')

1689 fprintf(fileID , '*Imperfection , file=%s, step =1\n', inp.specs.bucklingfile);

1690 fprintf(fileID , '%i, %.6e\n', inp.specs.bucklingcombination ');

1691 end

1692 fprintf(fileID , '*Step , name=displacement , nlgeom =%s, inc=%i\n', inp.settings.nonlingeo , inp.

↪→ specs.analysis.inc);

1693 fprintf(fileID , '%s\n', inp.specs.analysis.keyword);

1694 if strcmp(inp.settings.analysis , 'Static ') | strcmp(inp.settings.analysis , 'Postbuckling/NR')

↪→ | strcmp(inp.settings.analysis , 'Dynamic ')

1695 fprintf(fileID , '%.6e, %.6e, %.6e, %.6e\n', inp.specs.analysis.vals ');

1696 elseif strcmp(inp.settings.analysis , 'Riks') | strcmp(inp.settings.analysis , 'Postbuckling/

↪→ Riks')

1697 fprintf(fileID , '%.6e, %.6e, %.6e, %.6e, %.6e, flange_nodes_top_midend , %d, %.6e\n', inp.

↪→ specs.analysis.vals ');

1698 end

1699 end

1700 fprintf(fileID , '** Name: Displacement Control on slab Type: Concentrated Displacement\n');

1701 fprintf(fileID , '*Boundary\n');

1702 if meshgen.specs.slab.switch == 1

1703 % Load is on the slab surface

1704 fprintf(fileID , 'slab_nodes_top_midend , 2, 2, %.6f\n', inp.specs.d);

1705 elseif meshgen.specs.slab.switch == 0

1706 % Load is on the flange surface

1707 fprintf(fileID , 'flange_nodes_top_midend , 2, 2, %.6f\n', inp.specs.d);

1708 end

1709 elseif strcmp(inp.settings.loadtype , 'Concentrated/pos')

1710 % Step - Concentrated displacement control near specified location (inp.settings.loadpos) of

↪→ beam

1711 fprintf(fileID , '** ----------------------------------------------------------------\n');

1712 fprintf(fileID , '**\n** STEP: Displacement Application\n**\n');

1713 if strcmp(inp.settings.analysis , 'Buckling ')

1714 fprintf(fileID , '*Step , name=displacement , nlgeom=no , perturbation\n', inp.settings.nonlingeo

↪→ , inp.specs.analysis.inc);

1715 fprintf(fileID , '*buckle ,eigensolver =%s\n', inp.specs.bucklingsolver);

1716 if strcmp(inp.specs.bucklingsolver , 'lanczos ')

1717 fprintf(fileID , '%i, , , , \n', inp.specs.bucklingmodes);

1718 elseif strcmp(inp.specs.bucklingsolver , 'subspace ')

1719 fprintf(fileID , '%i, , %i, %i\n', inp.specs.bucklingmodes , inp.specs.bucklingvecs , inp.

↪→ specs.bucklingiters);

1720 end

1721 else

1722 if strcmp(inp.settings.analysis , 'Postbuckling/NR') | strcmp(inp.settings.analysis , '

↪→ Postbuckling/Riks')

1723 fprintf(fileID , '*Imperfection , file=%s, step =1\n', inp.specs.bucklingfile);

1724 fprintf(fileID , '%i, %.6e\n', inp.specs.bucklingcombination ');

1725 end

1726 fprintf(fileID , '*Step , name=displacement , nlgeom =%s, inc=%i\n', inp.settings.nonlingeo , inp.

↪→ specs.analysis.inc);

1727 fprintf(fileID , '%s\n', inp.specs.analysis.keyword);

1728 if strcmp(inp.settings.analysis , 'Static ') | strcmp(inp.settings.analysis , 'Postbuckling/NR')

↪→ | strcmp(inp.settings.analysis , 'Dynamic ')

1729 fprintf(fileID , '%.6e, %.6e, %.6e, %.6e\n', inp.specs.analysis.vals ');

1730 elseif strcmp(inp.settings.analysis , 'Riks') | strcmp(inp.settings.analysis , 'Postbuckling/

↪→ Riks')

1731 fprintf(fileID , '%.6e, %.6e, %.6e, %.6e, %.6e, flange_nodes_top_mid_pos , %d, %.6e\n', inp.

↪→ specs.analysis.vals ');

1732 end

1733 end

1734 fprintf(fileID , '** Name: Displacement Control on slab Type: Concentrated Displacement\n');

1735 fprintf(fileID , '*Boundary\n');

1736 if meshgen.specs.slab.switch == 1

1737 % Load is on the slab surface

1738 fprintf(fileID , 'slab_nodes_top_mid_pos , 2, 2, %.6f\n', inp.specs.d);

1739 elseif meshgen.specs.slab.switch == 0

1740 % Load is on the flange surface

1741 fprintf(fileID , 'flange_nodes_top_mid_pos , 2, 2, %.6f\n', inp.specs.d);

1742 end

1743 elseif strcmp(inp.settings.loadtype , 'UDL') | strcmp(inp.settings.loadtype , 'Jack/Mid')

1744 % Step - Distributed displacement control near specified location (inp.L) of beam

1745 fprintf(fileID , '** ----------------------------------------------------------------\n');

1746 fprintf(fileID , '**\n** STEP: Displacement Application\n**\n');
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1747 if strcmp(inp.settings.analysis , 'Buckling ')

1748 fprintf(fileID , '*Step , name=displacement , nlgeom=no , perturbation\n', inp.settings.nonlingeo

↪→ , inp.specs.analysis.inc);

1749 fprintf(fileID , '*buckle ,eigensolver =%s\n', inp.specs.bucklingsolver);

1750 if strcmp(inp.specs.bucklingsolver , 'lanczos ')

1751 fprintf(fileID , '%i, , , , \n', inp.specs.bucklingmodes);

1752 elseif strcmp(inp.specs.bucklingsolver , 'subspace ')

1753 fprintf(fileID , '%i, , %i, %i\n', inp.specs.bucklingmodes , inp.specs.bucklingvecs , inp.

↪→ specs.bucklingiters);

1754 end

1755 else

1756 if strcmp(inp.settings.analysis , 'Postbuckling/NR') | strcmp(inp.settings.analysis , '

↪→ Postbuckling/Riks')

1757 fprintf(fileID , '*Imperfection , file=%s, step =1\n', inp.specs.bucklingfile);

1758 fprintf(fileID , '%i, %.6e\n', inp.specs.bucklingcombination ');

1759 end

1760 fprintf(fileID , '*Step , name=displacement , nlgeom =%s, inc=%i\n', inp.settings.nonlingeo , inp.

↪→ specs.analysis.inc);

1761 fprintf(fileID , '%s\n', inp.specs.analysis.keyword);

1762 if strcmp(inp.settings.analysis , 'Static ') | strcmp(inp.settings.analysis , 'Postbuckling/NR')

↪→ | strcmp(inp.settings.analysis , 'Dynamic ')

1763 fprintf(fileID , '%.6e, %.6e, %.6e, %.6e\n', inp.specs.analysis.vals ');

1764 elseif strcmp(inp.settings.analysis , 'Riks') | strcmp(inp.settings.analysis , 'Postbuckling/

↪→ Riks')

1765 fprintf(fileID , '%.6e, %.6e, %.6e, %.6e, %.6e, flange_nodes_jm , %d, %.6e\n', inp.specs.

↪→ analysis.vals ');

1766 end

1767 end

1768 fprintf(fileID , '** Name: Displacement Control on slab Type: Concentrated Displacement\n');

1769 fprintf(fileID , '*Boundary\n');

1770 if meshgen.specs.slab.switch == 1

1771 % Load is on the slab surface

1772 fprintf(fileID , 'slab_nodes_top_end , 2, 2, %.6f\n', inp.specs.d);

1773 elseif meshgen.specs.slab.switch == 0

1774 % Load is on the flange surface

1775 fprintf(fileID , 'flange_nodes_jm , 2, 2, %.6f\n', inp.specs.d);

1776 % error('flange_nodes_top_end is UNFINISHED , find it by using UNFINISHED in search and test

↪→ the code. It mistakenly introduces certain nodes in the boundary conditions that it

↪→ shouldn ''t and hasn ''t been properly tested.')

1777 end

1778 elseif strcmp(inp.settings.loadtype , 'Jack/pos')

1779 % Step - Distributed displacement control near specified location (inp.L) of beam

1780 fprintf(fileID , '** ----------------------------------------------------------------\n');

1781 fprintf(fileID , '**\n** STEP: Displacement Application\n**\n');

1782 if strcmp(inp.settings.analysis , 'Buckling ')

1783 fprintf(fileID , '*Step , name=displacement , nlgeom=no , perturbation\n', inp.settings.nonlingeo

↪→ , inp.specs.analysis.inc);

1784 fprintf(fileID , '*buckle ,eigensolver =%s\n', inp.specs.bucklingsolver);

1785 if strcmp(inp.specs.bucklingsolver , 'lanczos ')

1786 fprintf(fileID , '%i, , , , \n', inp.specs.bucklingmodes);

1787 elseif strcmp(inp.specs.bucklingsolver , 'subspace ')

1788 fprintf(fileID , '%i, , %i, %i\n', inp.specs.bucklingmodes , inp.specs.bucklingvecs , inp.

↪→ specs.bucklingiters);

1789 end

1790 else

1791 if strcmp(inp.settings.analysis , 'Postbuckling/NR') | strcmp(inp.settings.analysis , '

↪→ Postbuckling/Riks')

1792 fprintf(fileID , '*Imperfection , file=%s, step =1\n', inp.specs.bucklingfile);

1793 fprintf(fileID , '%i, %.6e\n', inp.specs.bucklingcombination ');

1794 end

1795 fprintf(fileID , '*Step , name=displacement , nlgeom =%s, inc=%i\n', inp.settings.nonlingeo , inp.

↪→ specs.analysis.inc);

1796 fprintf(fileID , '%s\n', inp.specs.analysis.keyword);

1797 if strcmp(inp.settings.analysis , 'Static ') | strcmp(inp.settings.analysis , 'Postbuckling/NR')

↪→ | strcmp(inp.settings.analysis , 'Dynamic ')

1798 fprintf(fileID , '%.6e, %.6e, %.6e, %.6e\n', inp.specs.analysis.vals ');

1799 elseif strcmp(inp.settings.analysis , 'Riks') | strcmp(inp.settings.analysis , 'Postbuckling/

↪→ Riks')

1800 fprintf(fileID , '%.6e, %.6e, %.6e, %.6e, %.6e, flange_nodes_jm_pos , %d, %.6e\n', inp.specs.

↪→ analysis.vals ');

1801 end

1802 end

1803 fprintf(fileID , '** Name: Displacement Control on slab Type: Concentrated Displacement\n');
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1804 fprintf(fileID , '*Boundary\n');

1805 if meshgen.specs.slab.switch == 1

1806 % Load is on the slab surface

1807 fprintf(fileID , 'slab_nodes_jm_pos , 2, 2, %.6f\n', inp.specs.d);

1808 elseif meshgen.specs.slab.switch == 0

1809 % Load is on the flange surface

1810 fprintf(fileID , 'flange_nodes_jm_pos , 2, 2, %.6f\n', inp.specs.d);

1811 % error('flange_nodes_top_end is UNFINISHED , find it by using UNFINISHED in search and test

↪→ the code. It mistakenly introduces certain nodes in the boundary conditions that it

↪→ shouldn ''t and hasn ''t been properly tested.')

1812 end

1813 end

1814 end

1815 elseif strcmp(inp.settings.analysistype , 'Explicit ')

1816 if strcmp(inp.settings.analysiscontrol , 'Load')

1817 if strcmp(inp.settings.loadtype , 'UDL')

1818 % Step - UDL

1819 fprintf(fileID , '** ----------------------------------------------------------------\n');

1820 fprintf(fileID , '**\n** STEP: Line UDL\n**\n');

1821 fprintf(fileID , '*Step , name=explicit_line_udl , nlgeom =%s\n', inp.settings.nonlingeo);

1822 fprintf(fileID , '%s\n', inp.specs.analysis.keyword);

1823 fprintf(fileID , ', %.6e\n', inp.specs.analysis.vals ');

1824 fprintf(fileID , '*Bulk Viscosity\n');

1825 fprintf(fileID , '0.06, 1.2\n');

1826 if strcmp(inp.settings.massscaling , 'On')

1827 fprintf(fileID , '*Variable Mass Scaling , type=uniform , frequency =100, dt=%.6e\n', dt);

1828 end

1829 fprintf(fileID , '** Name: Line UDL on slab Type: Concentrated Force\n');

1830 fprintf(fileID , '*Cload , amplitude=Amp -1\n');

1831 if meshgen.specs.slab.switch == 1

1832 % Load is on the slab surface

1833 fprintf(fileID , 'slab_nodes_top_mid , 2, %.6f\n', inp.specs.q*(span)/length(sn));

1834 % fprintf(fileID , '*Boundary\nslab_nodes_top , 2, 2, 1\n**\n');

1835 elseif meshgen.specs.slab.switch == 0

1836 % Load is on the flange surface

1837 fprintf(fileID , 'flange_nodes_top_mid , 2, %.6f\n', inp.specs.q*(span)/fn_count);

1838 % fprintf(fileID , '*Boundary\nslab_nodes_top , 2, 2, 1\n**\n');

1839 end

1840 elseif strcmp(inp.settings.loadtype , 'Concentrated ')

1841 % Step - Concentrated

1842 fprintf(fileID , '** ----------------------------------------------------------------\n');

1843 fprintf(fileID , '**\n** STEP: Concentrated Load\n**\n');

1844 fprintf(fileID , '*Step , name=explicit_line_udl , nlgeom =%s\n', inp.settings.nonlingeo);

1845 fprintf(fileID , '%s\n', inp.specs.analysis.keyword);

1846 fprintf(fileID , ', %.6e\n', inp.specs.analysis.vals ');

1847 fprintf(fileID , '*Bulk Viscosity\n');

1848 fprintf(fileID , '0.06, 1.2\n');

1849 if strcmp(inp.settings.massscaling , 'On')

1850 fprintf(fileID , '*Variable Mass Scaling , type=uniform , frequency =100, dt=%.6e\n', dt);

1851 end

1852 fprintf(fileID , '** Name: Concentrated Load on slab Type: Concentrated Force\n');

1853 fprintf(fileID , '*Cload , amplitude=Amp -1\n');

1854 if meshgen.specs.slab.switch == 1

1855 % Load is on the slab surface

1856 fprintf(fileID , 'slab_nodes_top_midend , 2, %.6f\n', inp.specs.q);

1857 elseif meshgen.specs.slab.switch == 0

1858 % Load is on the flange surface

1859 fprintf(fileID , 'flange_nodes_top_midend , 2, %.6f\n', inp.specs.q);

1860 end

1861 elseif strcmp(inp.settings.loadtype , 'Concentrated/pos')

1862 % Step - Concentrated

1863 fprintf(fileID , '** ----------------------------------------------------------------\n');

1864 fprintf(fileID , '**\n** STEP: Concentrated Load\n**\n');

1865 fprintf(fileID , '*Step , name=explicit_line_udl , nlgeom =%s\n', inp.settings.nonlingeo);

1866 fprintf(fileID , '%s\n', inp.specs.analysis.keyword);

1867 fprintf(fileID , ', %.6e\n', inp.specs.analysis.vals ');

1868 fprintf(fileID , '*Bulk Viscosity\n');

1869 fprintf(fileID , '0.06, 1.2\n');

1870 if strcmp(inp.settings.massscaling , 'On')

1871 fprintf(fileID , '*Variable Mass Scaling , type=uniform , frequency =100, dt=%.6e\n', dt);

1872 end

1873 fprintf(fileID , '** Name: Concentrated Load on slab Type: Concentrated Force\n');

1874 fprintf(fileID , '*Cload , amplitude=Amp -1\n');
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1875 if meshgen.specs.slab.switch == 1

1876 % Load is on the slab surface

1877 fprintf(fileID , 'slab_nodes_top_mid_pos , 2, %.6f\n', inp.specs.q);

1878 elseif meshgen.specs.slab.switch == 0

1879 % Load is on the flange surface

1880 fprintf(fileID , 'flange_nodes_top_mid_pos , 2, %.6f\n', inp.specs.q);

1881 end

1882 end

1883 elseif strcmp(inp.settings.analysiscontrol , 'Displacement ')

1884 % Step - Displacement control at end of beam

1885 fprintf(fileID , '** ----------------------------------------------------------------\n');

1886 fprintf(fileID , '**\n** STEP: Displacement Application\n**\n');

1887 fprintf(fileID , '*Step , name=explicit_displacement , nlgeom =%s\n', inp.settings.nonlingeo);

1888 fprintf(fileID , '%s\n', inp.specs.analysis.keyword);

1889 fprintf(fileID , ', %.6e\n', inp.specs.analysis.vals ');

1890 fprintf(fileID , '*Bulk Viscosity\n');

1891 fprintf(fileID , '0.06, 1.2\n');

1892 if strcmp(inp.settings.massscaling , 'On')

1893 fprintf(fileID , '*Variable Mass Scaling , type=uniform , frequency =100, dt=%.6e\n', dt);

1894 end

1895 fprintf(fileID , '** Name: Displacement Control on slab Type: Concentrated Displacement\n');

1896 fprintf(fileID , '*Boundary , amplitude=Amp -1\n');

1897 if meshgen.specs.slab.switch == 1

1898 % Load is on the slab surface

1899 fprintf(fileID , 'slab_nodes_top_end , 2, 2, %.6f\n', inp.specs.d);

1900 elseif meshgen.specs.slab.switch == 0

1901 % Load is on the flange surface

1902 fprintf(fileID , 'flange_nodes_top_end , 2, 2, %.6f\n', inp.specs.d);

1903 error('flange_nodes_top_end is UNFINISHED , find it by using UNFINISHED in search and test the

↪→ code. It mistakenly introduces certain nodes in the boundary conditions that it shouldn

↪→ ''t and hasn''t been properly tested.')

1904 end

1905 end

1906 end

1907

1908 % Solver controls and tolerances redefined

1909 if M7_switch == 1 % | strcmp(inp.settings.analysis , 'Riks ')

1910 fprintf(fileID , '**\n** CONTROLS\n**\n');

1911 fprintf(fileID , '*Controls , reset\n');

1912 fprintf(fileID , '*Controls , parameters=time incrementation\n');

1913 fprintf(fileID , '500, 500, , 500, , , , , , , \n');

1914 fprintf(fileID , '**\n** SOLVER CONTROLS\n**\n');

1915 fprintf(fileID , '*Solver Controls , reset\n');

1916 fprintf(fileID , '*Solver Controls\n');

1917 fprintf(fileID , ', 500\n**\n');

1918 end

1919

1920 % Step output requests

1921 if strcmp(inp.settings.analysis , 'Buckling ')

1922 fprintf(fileID , '*Output , field\n');

1923 fprintf(fileID , '*Node Output\n');

1924 fprintf(fileID , 'U,\n');

1925 fprintf(fileID , '*Node File\n');

1926 fprintf(fileID , 'U,\n*End Step');

1927 elseif strcmp(inp.settings.analysistype , 'Implicit ')

1928 fprintf(fileID , '** OUTPUT REQUESTS\n**\n');

1929 fprintf(fileID , '*Restart , write , frequency =0\n**\n');

1930 fprintf(fileID , '** FIELD OUTPUT: f_output_placeholder\n**\n');

1931 if strcmp(inp.settings.analysis , 'Static ') | strcmp(inp.settings.analysis , 'Postbuckling/NR') |

↪→ strcmp(inp.settings.analysis , 'Dynamic ')

1932 if isfield(inp.specs , 'timereqs ')

1933 fprintf(fileID , '*Output , field , time interval =%.2f\n**\n', inp.specs.timereqs);

1934 else

1935 fprintf(fileID , '*Output , field , time interval =0.01\n**\n');

1936 end

1937 fprintf(fileID , '*Node Output\n');

1938 fprintf(fileID , 'CF , RF , U\n');

1939 fprintf(fileID , '*Element Output\n');

1940 fprintf(fileID , 'NFORC , S, E, EE\n');

1941 elseif strcmp(inp.settings.analysis , 'Riks') | strcmp(inp.settings.analysis , 'Postbuckling/Riks')

1942 % fprintf(fileID , '*Output , field , time marks=NO , variable=PRESELECT\n**\n');

1943 fprintf(fileID , '*Output , field\n**\n');

1944 fprintf(fileID , '*Node Output\n');
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1945 fprintf(fileID , 'CF , RF , U\n');

1946 fprintf(fileID , '*Element Output\n');

1947 fprintf(fileID , 'S, E, EE\n');

1948 end

1949 if strcmp(inp.settings.errorindex , 'On')

1950 fprintf(fileID , '** FIELD OUTPUT: error_indices - perforations\n**\n');

1951 fprintf(fileID , '*Output , field , time interval =%.2f\n', inp.specs.errorindex (1));

1952 fprintf(fileID , '*Element Output , elset=perforations , directions=YES\n');

1953 fprintf(fileID , 'MISESAVG , MISESERI , ENDEN , ENDENERI , PEAVG , PEEQAVG , PEEQERI , PEERI\n');

1954 fprintf(fileID , '** FIELD OUTPUT: error_indices - slab elements\n**\n');

1955 fprintf(fileID , '*Output , field , time interval =%.2f\n', inp.specs.errorindex (1));

1956 if meshgen.specs.slab.switch == 1

1957 fprintf(fileID , '*Element Output , elset=slab_elements , directions=YES\n');

1958 fprintf(fileID , 'NFORC , ENDEN , ENDENERI , PEAVG , PEEQAVG , PEEQERI , PEERI\n');

1959 end

1960 end

1961 fprintf(fileID , '** HISTORY OUTPUT: H-Output -1\n**\n');

1962 fprintf(fileID , '*Output , history , variable=PRESELECT\n*End Step')

1963 elseif strcmp(inp.settings.analysistype , 'Explicit ')

1964 fprintf(fileID , '** OUTPUT REQUESTS\n**\n');

1965 fprintf(fileID , '*Restart , write\n**\n');

1966 fprintf(fileID , '**\n');

1967 fprintf(fileID , '** FIELD OUTPUT: f_output_placeholder\n**\n');

1968 fprintf(fileID , '*Output , field , time interval =0.1\n');

1969 fprintf(fileID , '*Node Output\n');

1970 fprintf(fileID , 'CF , RF , U\n');

1971 fprintf(fileID , '*Element Output , directions=yes\n');

1972 fprintf(fileID , 'NFORC , S, E\n');

1973 fprintf(fileID , '** HISTORY OUTPUT: H-Output -1\n**\n');

1974 fprintf(fileID , '*Output , history , variable=PRESELECT\n*End Step')

1975 end

1976 fclose(fileID);
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Appendix C

Data extraction

C.1 Displacement and other metrics, U.py

1 from abaqus import *

2 from abaqusConstants import *

3 from viewerModules import *

4 from driverUtils import executeOnCaeStartup

5 from odbAccess import *

6 import glob

7 import csv

8 import sys

9 sys.path.insert(0, 'F:\ Tests\python ')

10 import utilities

11 # import time

12 executeOnCaeStartup ()

13 # start = time.time()

14

15 fingerprint = []

16 with open('fingerprint.csv', 'r') as r_fingerprint:

17 reader = csv.reader(r_fingerprint , delimiter=',')

18 for row in reader:

19 fingerprint.append(row)

20

21 Is = []

22 databs = glob.glob('./*. odb')

23 for index , string in enumerate(databs):

24 Is.extend ([int(string [2: -4])])

25

26 eleCount = []

27 nodeCount = []

28 path = './'

29 # forcetype = 'Concentrated/pos' # options are UDL , Concentrated , Jack/Mid , Concentrated/pos and Jack

↪→ /pos

30 for I in Is:

31

32 LHS = float(fingerprint[I - 1][1])

33 centres = float(fingerprint[I - 1][3])

34 diameter = float(fingerprint[I - 1][4])

35 inp_L = float(fingerprint[I - 1][5])

36 cell_number = float(fingerprint[I - 1][6])

37 t_depths = [float(fingerprint[I - 1][8]) , float(fingerprint[I - 1][10])]

38

39 o2 = session.openOdb(name=str(I) + '.odb')

40 odb = session.odbs[str(I) + '.odb']

41 session.viewports['Viewport: 1']. setValues(displayedObject=odb)

42 session.viewports['Viewport: 1']. odbDisplay.basicOptions.setValues(

43 averageElementOutput=False) # No averaging

44 # session.viewports['Viewport: 1']. odbDisplay.basicOptions.setValues(

45 # averagingThreshold =100) # Percentage averaging from 0-100, currently 100% here

46 # session.viewports['Viewport: 1']. odbDisplay.basicOptions.setValues(

47 # computeOrder=EXTRAPOLATE_AVERAGE_COMPUTE) # Complete averaging?

511



48

49 # session.xyDataListFromField(odb=odb , outputPosition=NODAL , variable =(('S', INTEGRATION_POINT , ((

↪→ COMPONENT , 'S11 ') ,)) ,),

50 # nodeSets=(' STEEL_NODES ', ))

51

52 # session.xyDataListFromField(odb=odb , outputPosition=NODAL , variable =(('S', INTEGRATION_POINT , ((

↪→ COMPONENT , 'S11 '), (COMPONENT , 'S22 ') ,)),),

53 # nodeSets=(' STEEL_NODES ', ))

54 # session.xyDataListFromField(odb=odb , outputPosition=NODAL , variable =(('E', INTEGRATION_POINT , ((

↪→ COMPONENT , 'E11 '), (COMPONENT , 'E22 ') ,)),),

55 # nodeSets=(' STEEL_NODES ', ))

56 if any(['SLAB_NODES ' in key for key in odb.rootAssembly.nodeSets.keys()]):

57 session.xyDataListFromField(odb=odb , outputPosition=NODAL , variable =(('U', NODAL , ((COMPONENT , '

↪→ U1'), )),

58 ('U', NODAL , ((COMPONENT , '

↪→ U2'), )),

59 ('U', NODAL , ((COMPONENT , '

↪→ U3'), )), ),

60 nodeSets =('SLAB_NODES_TOP_MID ', ))

61 if any(['SLAB_NODES_TOP_MID_POS ' in key for key in odb.rootAssembly.nodeSets.keys()]):

62 session.xyDataListFromField(odb=odb , outputPosition=NODAL , variable =(('CF', NODAL , ((COMPONENT ,

↪→ 'CF2'), )), ),

63 nodeSets =('SLAB_NODES_TOP_MID_POS ',

↪→ ))

64 else:

65 session.xyDataListFromField(odb=odb , outputPosition=NODAL , variable =(('CF', NODAL , ((COMPONENT ,

↪→ 'CF2'), )), ),

66 nodeSets =('SLAB_NODES_TOP_MID ', ))

67 else:

68 session.xyDataListFromField(odb=odb , outputPosition=NODAL , variable =(('U', NODAL , ((COMPONENT , '

↪→ U1'), )),

69 ('U', NODAL , ((COMPONENT , '

↪→ U2'), )),

70 ('U', NODAL , ((COMPONENT , '

↪→ U3'), )), ),

71 nodeSets =('FLANGE_NODES_TOP_MID ', ))

72 if any(['FLANGE_NODES_TOP_MID_POS ' in key for key in odb.rootAssembly.nodeSets.keys()]):

73 session.xyDataListFromField(odb=odb , outputPosition=NODAL , variable =(('CF', NODAL , ((COMPONENT ,

↪→ 'CF2'), )), ),

74 nodeSets =('FLANGE_NODES_TOP_MID_POS '

↪→ , ))

75 else:

76 session.xyDataListFromField(odb=odb , outputPosition=NODAL , variable =(('CF', NODAL , ((COMPONENT ,

↪→ 'CF2'), )), ),

77 nodeSets =('FLANGE_NODES_TOP_MID ', ))

78

79 session.xyDataListFromField(odb=odb , outputPosition=NODAL , variable =(('U', NODAL , ((COMPONENT , 'U2'

↪→ ), )), ),

80 nodeSets =('MIDSPAN_NODE_S ', ))

81 # session.xyDataListFromField(odb=odb , outputPosition=NODAL , variable =(('RF', NODAL , ((COMPONENT , '

↪→ RF2 '), )), ),

82 # nodeSets=(' ENDPLATE_NODES ', ))

83

84 # listing = odb.rootAssembly.nodeSets['STEEL_NODES '].nodes

85 if any(['SLAB_NODES ' in key for key in odb.rootAssembly.nodeSets.keys()]):

86 if any(['SLAB_NODES_TOP_MID_POS ' in key for key in odb.rootAssembly.nodeSets.keys()]):

87 tm = odb.rootAssembly.nodeSets['SLAB_NODES_TOP_MID_POS ']. nodes

88 tm_nodes = [node.label for node in tm[0]]

89 else:

90 tm = odb.rootAssembly.nodeSets['SLAB_NODES_TOP_MID ']. nodes

91 tm_nodes = [node.label for node in tm[0]]

92 else:

93 if any(['FLANGE_NODES_TOP_MID_POS ' in key for key in odb.rootAssembly.nodeSets.keys()]):

94 tm = odb.rootAssembly.nodeSets['FLANGE_NODES_TOP_MID_POS '].nodes

95 tm_nodes = [node.label for node in tm[0]]

96 else:

97 tm = odb.rootAssembly.nodeSets['FLANGE_NODES_TOP_MID ']. nodes

98 tm_nodes = [node.label for node in tm[0]]

99

100 mns = odb.rootAssembly.nodeSets['MIDSPAN_NODE_S '].nodes

101 mns_node = [node.label for node in mns [0]]

102 # rf = odb.rootAssembly.nodeSets['ENDPLATE_NODES '].nodes

103 # rf_nodes = [node.label for node in rf[0]]
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104

105 nodeCount.append(utilities.nodeCount(odb.rootAssembly.nodeSets , printpath =[path , I]))

106 eleCount.append(utilities.elementCount(odb.rootAssembly.instances['BEAM_INSTANCE ']. elementSets ,

107 odb.rootAssembly.instances['BEAM_INSTANCE '].elements ,

108 printpath =[path , I]))

109

110 # stressnodes , stresscoords = utilities.findStandardNodes(LHS , diameter , cell_number , centres ,

↪→ listing , 1)

111 # forcenodes , forcecoords = utilities.findStandardNodes(LHS , diameter , cell_number , centres , midend

↪→ ) % SUPERCEDED

112 forcenodes = []

113 forceCoords = []

114 # if forcetype in ['UDL ', 'Concentrated ']:

115 # for node in midend [0]:

116 # forcenodes.append(node.label)

117 # forcecoords.append(node.coordinates)

118 # elif forcetype == 'Jack/Mid ':

119 # for node in jackmid [0]:

120 # forcenodes.append(node.label)

121 # forcecoords.append(node.coordinates)

122 for node in tm[0]:

123 forcenodes.append(node.label)

124 temp = []

125 temp.append(node.label)

126 temp.extend(node.coordinates)

127 forceCoords.append(temp)

128

129 # Print the nodes carrying a force and their coordinates

130 with open(path + 'Postprocessing/' + str(I) + '/forceCoords.csv', 'wb') as ofile:

131 writer = csv.writer(ofile , delimiter=',')

132 for forceCoord in forceCoords:

133 writer.writerow(forceCoord)

134

135 # locs = []

136 # for k in range(len(placeholder)):

137 # locs.extend ([ placeholder[k]. coordinates ])

138

139 # s11_sp1 , s11_sp5 = utilities.extractStandardStressStrain('S11 ', session.xyDataObjects.keys(),

↪→ stressnodes)

140 # s22_sp1 , s22_sp5 = utilities.extractStandardStressStrain('S22 ', session.xyDataObjects.keys(),

↪→ stressnodes)

141 # e11_sp1 , e11_sp5 = utilities.extractStandardStressStrain('E11 ', session.xyDataObjects.keys(),

↪→ stressnodes)

142 # e22_sp1 , e22_sp5 = utilities.extractStandardStressStrain('E22 ', session.xyDataObjects.keys(),

↪→ stressnodes)

143 force , forcesum = utilities.extractStandardForce('CF:CF2 PI: BEAM_INSTANCE N: ', forcenodes)

144 # if forcetype == 'UDL ':

145 # forcesum = [i*len(mid [0])/inp_L for i in forcesum]

146

147 U1 = utilities.extractExpandedDisplacement('U1', session.xyDataObjects.keys(), tm_nodes)

148 U2 = utilities.extractExpandedDisplacement('U2', session.xyDataObjects.keys(), tm_nodes)

149 U3 = utilities.extractExpandedDisplacement('U3', session.xyDataObjects.keys(), tm_nodes)

150 # u1 = utilities.extractStandardDisplacement('U:U1 PI: BEAM_INSTANCE N: ', str(tm [0][0]. label))

151 u2 = utilities.extractStandardDisplacement('U:U2 PI: BEAM_INSTANCE N: ', str(mns [0][0]. label))

152 # u3 = utilities.extractStandardDisplacement('U:U3 PI: BEAM_INSTANCE N: ', str(tm [0][0]. label))

153 # u = [[] for i in range(len(u1))]

154 # for i in range(len(u1)):

155 # u[i] = [[u1[i][0], u1[i][1], u2[i][1], u3[i][1]]]

156

157

158 # s11 = {'sp1 ':s11_sp1 , 'sp5 ':s11_sp5}

159 # s22 = {'sp1 ':s22_sp1 , 'sp5 ':s22_sp5}

160 # e11 = {'sp1 ':e11_sp1 , 'sp5 ':e11_sp5}

161 # e22 = {'sp1 ':e22_sp1 , 'sp5 ':e22_sp5}

162 # s = {'S11 ':s11 , 'S22 ':s22}

163 # e = {'E11 ':e11 , 'E22 ':e22}

164 forces = {'F':force , 'FSUM':forcesum}

165 Us = {'U': {'U1':U1 , 'U2':U2, 'U3':U3}}

166

167 # utilities.writeCoordsToCSV(path , I, stressnodes , stresscoords)

168 utilities.writeUToCSV(path , I, u2)

169 utilities.writeDataToCSV(path , I, Us)

170 utilities.writeDataToCSV(path , I, forces)
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171 # utilities.writeDataToCSV(path , I, forces)

172 # utilities.writeDataToCSV(path , I, s)

173 # utilities.writeDataToCSV(path , I, e)

174

175 # For use during postprocessing

176 if any(['SLAB_NODES ' in key for key in odb.rootAssembly.nodeSets.keys()]):

177 sn = odb.rootAssembly.nodeSets['SLAB_NODES ']. nodes

178 sn_nodes = [[node.label] for node in sn[0]]

179 with open(path + 'Postprocessing/' + str(I) + '/' + 'sn.csv', 'wb') as sn_file:

180 writer = csv.writer(sn_file , delimiter=',')

181 for sn_node in sn_nodes:

182 writer.writerow(sn_node)

183

184 # NON FUNCTIONAL --------------------------------------------------------------------

185 # if any([' REINFORCEMENT ' in key for key in odb.rootAssembly.instances['BEAM_INSTANCE ']. elementSets

↪→ .keys()]):

186 # rn = odb.rootAssembly.nodeSets['REINFORCEMENT '].nodes

187 # rn_nodes = [[node.label] for node in rn[0]]

188 # with open(path + 'Postprocessing/' + str(I) + '/' + 'rn.csv ', 'wb ') as rn_file:

189 # writer = csv.writer(rn_file , delimiter=',')

190 # for rn_node in rn_nodes:

191 # writer.writerow(rn_node)

192

193 # if any([' LATREINFORCEMENT ' in key for key in odb.rootAssembly.instances['BEAM_INSTANCE '].

↪→ elementSets.keys()]):

194 # rn_lat = odb.rootAssembly.nodeSets['LATREINFORCEMENT '].nodes

195 # rn_lat_nodes = [[node.label] for node in rn_lat [0]]

196 # with open(path + 'Postprocessing/' + str(I) + '/' + 'rn_lat.csv ', 'wb ') as rn_lat_file:

197 # writer = csv.writer(rn_lat_file , delimiter=',')

198 # for rn_lat_node in rn_lat_nodes:

199 # writer.writerow(rn_lat_node)

200 # -----------------------------------------------------------------------------------

201

202 for key in session.xyDataObjects.keys():

203 del session.xyDataObjects[key]

204

205

206

207 # del listing , midend , eleCount , stressnodes , stresscoords , forcenodes , forcenodes

208 # del s11_sp1 , s11_sp5 , s22_sp1 , s22_sp5 , e11_sp1 , e11_sp5 , e22_sp1 , e22_sp5

209 # del force , forcesum , u, s11 , s22 , e11 , e22 , s, e, forces

210 odb.close()

211

212 # end = time.time()

213 # print "Time Elapsed :", end-start
214

215 # Print the number of elements on a file

216 with open(path + 'Postprocessing/eleCount.csv', 'wb') as ofile:

217 writer = csv.writer(ofile , delimiter=',')

218 for index , I in enumerate(Is):

219 writer.writerow ([I, eleCount[index ]])

220

221 # Print the number of nodes on a file

222 with open(path + 'Postprocessing/nodeCount.csv', 'wb') as ofile:

223 writer = csv.writer(ofile , delimiter=',')

224 for index , I in enumerate(Is):

225 writer.writerow ([I, nodeCount[index ]])

226

227 utilities.timeCount(path , Is)
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C.2 Nodal force extraction, force.py

1 from odbAccess import *

2 from abaqusConstants import *

3 # from odbMaterial import *

4 # from odbSection import *

5 import glob

6 import csv

7 import sys

8 sys.path.insert(0, 'F:\ Tests\python ')

9 import utilities

10 import time

11 tic = time.time()

12

13 fingerprint = []

14 with open('fingerprint.csv', 'r') as r_fingerprint:

15 reader = csv.reader(r_fingerprint , delimiter=',')

16 for row in reader:

17 fingerprint.append(row)

18

19 extractmode = 4

20 eleCount = []

21 nodeCount = []

22 path = './'

23

24 # Parser example code in plain_dataextract_Mises.py

25 Is = []

26 if len(sys.argv) == 1 + 10:

27 Is = [int(sys.argv [10])]

28 utilities.log('Now processing job %d' % Is[0])

29 elif len(sys.argv) == 2 + 10:

30 if sys.argv [10] <= sys.argv [11]:

31 start = int(sys.argv [10]); end = int(sys.argv [11])

32 Is = range(start, end + 1)

33 utilities.log('Now processing jobs %d-%d' % (start, end))
34 else:

35 start = int(sys.argv [10]); end = int(sys.argv [11])

36 Is = range(start, end - 1, -1)

37 utilities.log('Now processing jobs %d-%d' % (start, end))
38 else:

39 # number_of_odbs = len(glob.glob ( './*. odb '))

40 # Is = range(number_of_odbs , 0, -1)

41

42 # utilities.log('Now processing jobs %d-%d' % (Is[0], Is[-1]))

43

44 databs = glob.glob('./*. odb')

45 for index , string in enumerate(databs):

46 Is.extend ([int(string [2: -4])])

47

48 for I in Is:

49 nforc = {}

50 nforc_k = {}

51

52 LHS = float(fingerprint[I - 1][1])

53 centres = float(fingerprint[I - 1][3])

54 diameter = float(fingerprint[I - 1][4])

55 cell_number = float(fingerprint[I - 1][6])

56 t_depths = [float(fingerprint[I - 1][8]) , float(fingerprint[I - 1][10])]

57

58

59 odb = openOdb(path=str(I) + '.odb')

60

61 myAssembly = odb.rootAssembly

62

63 # instances = []

64 # for instanceName in odb.rootAssembly.instances.keys():

65 # if 'MESH COMPONENT ' not in instanceName:

66 # instances.append(instanceName)

67

68 # nodesets = []
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69 # for nodeSet in odb.rootAssembly.nodeSets.keys():

70 # if 'MESH COMPONENT ' not in nodeSet:

71 # nodesets.append(nodeSet)

72

73 # elementsets = []

74 # for elementSet in odb.rootAssembly.elementSets.keys():

75 # if 'MESH COMPONENT ' not in elementSet:

76 # elementsets.append(elementSet)

77

78 # listing = odb.rootAssembly.nodeSets['STEEL_NODES '].nodes

79 # stressnodes , stresscoords = utilities.findStandardNodes(LHS , diameter , cell_number , centres ,

↪→ listing , top=t_depths [0], bot=t_depths [1], extractmode=extractmode)

80 # noderequest = stressnodes

81 # utilities.writeCoordsToCSV(path , I, stressnodes , stresscoords , 'nf_coords ')

82

83 # fields = ['NFORC1 ', 'S11 ']

84

85 # tic = time.time()

86 if any(['SLAB_NODES ' in key for key in odb.rootAssembly.nodeSets.keys()]):

87 nforc_s = {}

88 nforc_s_k = {}

89 valstore , fieldstore , f_xx_s , f_xx_s_k = utilities.odbExtract('NFORC1 ', odb , 'C3D8')

90 valstore , fieldstore , f_yy_s , f_yy_s_k = utilities.odbExtract('NFORC2 ', odb , 'C3D8')

91 valstore , fieldstore , f_zz_s , f_zz_s_k = utilities.odbExtract('NFORC3 ', odb , 'C3D8')

92 f_s = {'fxx_s ': f_xx_s , 'fyy_s ': f_yy_s , 'fzz_s ': f_zz_s}

93 nforc_s['f_s'] = f_s; nforc_s_k['f_s'] = {'fxx_s ': f_xx_s_k}

94 utilities.writeDataToCSV(path , I, nforc_s)

95 utilities.fieldkeyPrint(path , I, nforc_s_k)

96 # valstore , fieldstore , m_xx , m_xx_k = utilities.odbExtract('NFORC4 ', odb)

97 # valstore , fieldstore , m_yy , m_yy_k = utilities.odbExtract('NFORC5 ', odb)

98 # valstore , fieldstore , m_zz , m_zz_k = utilities.odbExtract('NFORC6 ', odb)

99

100 # valstore , fieldstore , s_xx , s_xx_k = utilities.odbExtract('S11 ', odb)

101 # valstore , fieldstore , s_yy , s_yy_k = utilities.odbExtract('S22 ', odb)

102 # valstore , fieldstore , s_zz , s_zz_k = utilities.odbExtract('S33 ', odb)

103 # valstore , fieldstore , s_xy , s_xy_k = utilities.odbExtract('S12 ', odb)

104

105 # valstore , fieldstore , e_xx , e_xx_k = utilities.odbExtract('E11 ', odb)

106 # valstore , fieldstore , e_yy , e_yy_k = utilities.odbExtract('E22 ', odb)

107 # valstore , fieldstore , e_zz , e_zz_k = utilities.odbExtract('E33 ', odb)

108 # valstore , fieldstore , e_xy , e_xy_k = utilities.odbExtract('E12 ', odb)

109

110 if any(['REINFORCEMENT ' in key for key in odb.rootAssembly.instances['BEAM_INSTANCE ']. elementSets.

↪→ keys()]):

111 nforc_r = {}

112 nforc_r_k = {}

113 region = odb.rootAssembly.instances['BEAM_INSTANCE ']. elementSets['REINFORCEMENT ']

114 valstore , fieldstore , f_xx_r , f_xx_r_k = utilities.odbExtract('NFORC1 ', odb , 'T3D2', region=

↪→ region)

115 valstore , fieldstore , f_yy_r , f_yy_r_k = utilities.odbExtract('NFORC2 ', odb , 'T3D2', region=

↪→ region)

116 valstore , fieldstore , f_zz_r , f_zz_r_k = utilities.odbExtract('NFORC3 ', odb , 'T3D2', region=

↪→ region)

117 f_r = {'fxx_r ': f_xx_r , 'fyy_r ': f_yy_r , 'fzz_r ': f_zz_r}

118 nforc_r['f_r'] = f_r; nforc_r_k['f_r'] = {'fxx_r ': f_xx_r_k}

119 utilities.writeDataToCSV(path , I, nforc_r)

120 utilities.fieldkeyPrint(path , I, nforc_r_k)

121 # valstore , fieldstore , m_xx , m_xx_k = utilities.odbExtract('NFORC4 ', odb)

122 # valstore , fieldstore , m_yy , m_yy_k = utilities.odbExtract('NFORC5 ', odb)

123 # valstore , fieldstore , m_zz , m_zz_k = utilities.odbExtract('NFORC6 ', odb)

124

125 # valstore , fieldstore , s_xx , s_xx_k = utilities.odbExtract('S11 ', odb)

126 # valstore , fieldstore , s_yy , s_yy_k = utilities.odbExtract('S22 ', odb)

127 # valstore , fieldstore , s_zz , s_zz_k = utilities.odbExtract('S33 ', odb)

128 # valstore , fieldstore , s_xy , s_xy_k = utilities.odbExtract('S12 ', odb)

129

130 # valstore , fieldstore , e_xx , e_xx_k = utilities.odbExtract('E11 ', odb)

131 # valstore , fieldstore , e_yy , e_yy_k = utilities.odbExtract('E22 ', odb)

132 # valstore , fieldstore , e_zz , e_zz_k = utilities.odbExtract('E33 ', odb)

133 # valstore , fieldstore , e_xy , e_xy_k = utilities.odbExtract('E12 ', odb)

134

135 if any(['LATREINFORCEMENT ' in key for key in odb.rootAssembly.instances['BEAM_INSTANCE '].

↪→ elementSets.keys()]):
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136 nforc_lr = {}

137 nforc_lr_k = {}

138 region = odb.rootAssembly.instances['BEAM_INSTANCE ']. elementSets['LATREINFORCEMENT ']

139 valstore , fieldstore , f_xx_lr , f_xx_lr_k = utilities.odbExtract('NFORC1 ', odb , 'T3D2', region=

↪→ region)

140 valstore , fieldstore , f_yy_lr , f_yy_lr_k = utilities.odbExtract('NFORC2 ', odb , 'T3D2', region=

↪→ region)

141 valstore , fieldstore , f_zz_lr , f_zz_lr_k = utilities.odbExtract('NFORC3 ', odb , 'T3D2', region=

↪→ region)

142 f_lr = {'fxx_lr ': f_xx_lr , 'fyy_lr ': f_yy_lr , 'fzz_lr ': f_zz_lr}

143 nforc_lr['f_lr'] = f_lr; nforc_lr_k['f_lr'] = {'fxx_lr ': f_xx_lr_k}

144 utilities.writeDataToCSV(path , I, nforc_lr)

145 utilities.fieldkeyPrint(path , I, nforc_lr_k)

146

147

148 valstore , fieldstore , f_xx , f_xx_k = utilities.odbExtract('NFORC1 ', odb)

149 valstore , fieldstore , f_yy , f_yy_k = utilities.odbExtract('NFORC2 ', odb)

150 valstore , fieldstore , f_zz , f_zz_k = utilities.odbExtract('NFORC3 ', odb)

151

152 toc = time.time()

153 utilities.log(toc - tic)

154

155 f = {'fxx': f_xx , 'fyy': f_yy , 'fzz': f_zz}

156 # m = {'mxx ': m_xx , 'myy ': m_yy , 'mzz ': m_zz}

157 # s = {'sxx ': s_xx , 'syy ': s_yy , 'szz ': s_zz , 'sxy ': s_xy}

158 # e = {'exx ': e_xx , 'eyy ': e_yy , 'ezz ': e_zz , 'exy ': e_xy}

159 nforc['f'] = f; nforc_k['f'] = {'fxx': f_xx_k}

160 # nforc = {'m ': m}; nforc_k = {'m ': {'mxx ': m_xx_k , 'myy ': m_yy_k , 'mzz ': m_zz_k }}

161 # nforc = {'m ': m}; nforc_k = {'m ': {'mzz ': m_zz_k }} % We know that mxx and myy would be zero

162 # stress = {'s ': s}

163 # strain = {'e ': e}

164

165 # nodeCount.append(utilities.nodeCount(odb.rootAssembly.nodeSets , printpath =[path , I]))

166 # eleCount.append(utilities.elementCount(odb.rootAssembly.instances['BEAM_INSTANCE '].elementSets ,

167 # odb.rootAssembly.instances['BEAM_INSTANCE '].elements ,

168 # printpath =[path , I]))

169

170 utilities.writeDataToCSV(path , I, nforc)

171 utilities.fieldkeyPrint(path , I, nforc_k)

172

173 toc = time.time()

174 utilities.log(toc - tic)

175

176 odb.close()

177

178 # utilities.writeDataToCSV(path , I, stress)

179 # utilities.writeDataToCSV(path , I, strain)

180

181 # for node in listing:

182 # topology{str(node)} = []

183 # for key in valstore.keys():

184 # if node == key [0]:

185 # topology{str(node)}. append
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C.3 Nodal moment extraction, moment.py

1 from odbAccess import *

2 from abaqusConstants import *

3 # from odbMaterial import *

4 # from odbSection import *

5 import glob

6 import csv

7 import sys

8 sys.path.insert(0, 'F:\ Tests\python ')

9 import utilities

10 import time

11 tic = time.time()

12

13 fingerprint = []

14 with open('fingerprint.csv', 'r') as r_fingerprint:

15 reader = csv.reader(r_fingerprint , delimiter=',')

16 for row in reader:

17 fingerprint.append(row)

18

19 extractmode = 4

20 eleCount = []

21 nodeCount = []

22 path = './'

23

24 # Parser example code in plain_dataextract_Mises.py

25 Is = []

26 if len(sys.argv) == 1 + 10:

27 Is = [int(sys.argv [10])]

28 utilities.log('Now processing job %d' % Is[0])

29 elif len(sys.argv) == 2 + 10:

30 if sys.argv [10] <= sys.argv [11]:

31 start = int(sys.argv [10]); end = int(sys.argv [11])

32 Is = range(start, end + 1)

33 utilities.log('Now processing jobs %d-%d' % (start, end))
34 else:

35 start = int(sys.argv [10]); end = int(sys.argv [11])

36 Is = range(start, end - 1, -1)

37 utilities.log('Now processing jobs %d-%d' % (start, end))
38 else:

39 # number_of_odbs = len(glob.glob ( './*. odb '))

40 # Is = range(number_of_odbs , 0, -1)

41

42 # utilities.log('Now processing jobs %d-%d' % (Is[0], Is[-1]))

43

44 databs = glob.glob('./*. odb')

45 for index , string in enumerate(databs):

46 Is.extend ([int(string [2: -4])])

47

48 for I in Is:

49 nforc = {}

50 nforc_k = {}

51 LHS = float(fingerprint[I - 1][1])

52 centres = float(fingerprint[I - 1][3])

53 diameter = float(fingerprint[I - 1][4])

54 cell_number = float(fingerprint[I - 1][6])

55 t_depths = [float(fingerprint[I - 1][8]) , float(fingerprint[I - 1][10])]

56

57

58 odb = openOdb(path=str(I) + '.odb')

59

60 myAssembly = odb.rootAssembly

61

62 # instances = []

63 # for instanceName in odb.rootAssembly.instances.keys():

64 # if 'MESH COMPONENT ' not in instanceName:

65 # instances.append(instanceName)

66

67 # nodesets = []

68 # for nodeSet in odb.rootAssembly.nodeSets.keys():
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69 # if 'MESH COMPONENT ' not in nodeSet:

70 # nodesets.append(nodeSet)

71

72 # elementsets = []

73 # for elementSet in odb.rootAssembly.elementSets.keys():

74 # if 'MESH COMPONENT ' not in elementSet:

75 # elementsets.append(elementSet)

76

77 # listing = odb.rootAssembly.nodeSets['STEEL_NODES '].nodes

78 # stressnodes , stresscoords = utilities.findStandardNodes(LHS , diameter , cell_number , centres ,

↪→ listing , top=t_depths [0], bot=t_depths [1], extractmode=extractmode)

79 # noderequest = stressnodes

80 # utilities.writeCoordsToCSV(path , I, stressnodes , stresscoords , 'nf_coords ')

81

82 # fields = ['NFORC1 ', 'S11 ']

83

84 # tic = time.time()

85 # valstore , fieldstore , f_xx , f_xx_k = utilities.odbExtract('NFORC1 ', odb)

86 # valstore , fieldstore , f_yy , f_yy_k = utilities.odbExtract('NFORC2 ', odb)

87 # valstore , fieldstore , f_zz , f_zz_k = utilities.odbExtract('NFORC3 ', odb)

88 valstore , fieldstore , m_xx , m_xx_k = utilities.odbExtract('NFORC4 ', odb)

89 valstore , fieldstore , m_yy , m_yy_k = utilities.odbExtract('NFORC5 ', odb)

90 valstore , fieldstore , m_zz , m_zz_k = utilities.odbExtract('NFORC6 ', odb)

91

92 # valstore , fieldstore , s_xx , s_xx_k = utilities.odbExtract('S11 ', odb)

93 # valstore , fieldstore , s_yy , s_yy_k = utilities.odbExtract('S22 ', odb)

94 # valstore , fieldstore , s_zz , s_zz_k = utilities.odbExtract('S33 ', odb)

95 # valstore , fieldstore , s_xy , s_xy_k = utilities.odbExtract('S12 ', odb)

96

97 # valstore , fieldstore , e_xx , e_xx_k = utilities.odbExtract('E11 ', odb)

98 # valstore , fieldstore , e_yy , e_yy_k = utilities.odbExtract('E22 ', odb)

99 # valstore , fieldstore , e_zz , e_zz_k = utilities.odbExtract('E33 ', odb)

100 # valstore , fieldstore , e_xy , e_xy_k = utilities.odbExtract('E12 ', odb)

101 toc = time.time()

102 utilities.log(toc - tic)

103

104 # f = {'fxx ': f_xx , 'fyy ': f_yy , 'fzz ': f_zz}

105 m = {'mxx': m_xx , 'myy': m_yy , 'mzz': m_zz}

106 # s = {'sxx ': s_xx , 'syy ': s_yy , 'szz ': s_zz , 'sxy ': s_xy}

107 # e = {'exx ': e_xx , 'eyy ': e_yy , 'ezz ': e_zz , 'exy ': e_xy}

108 # nforc['f '] = f; nforc_k['f '] = {'fxx ': f_xx_k , 'fyy ': f_yy_k , 'fzz ': f_zz_k}

109 nforc['m'] = m; nforc_k['m'] = {'mxx': m_xx_k , 'myy': m_yy_k , 'mzz': m_zz_k}

110 # nforc = {'m ': m}; nforc_k = {'m ': {'mzz ': m_zz_k }} % We know that mxx and myy would be zero

111 # stress = {'s ': s}

112 # strain = {'e ': e}

113

114 # nodeCount.append(utilities.nodeCount(odb.rootAssembly.nodeSets , printpath =[path , I]))

115 # eleCount.append(utilities.elementCount(odb.rootAssembly.instances['BEAM_INSTANCE '].elementSets ,

116 # odb.rootAssembly.instances['BEAM_INSTANCE '].elements ,

117 # printpath =[path , I]))

118

119 utilities.writeDataToCSV(path , I, nforc)

120 # utilities.fieldkeyPrint(path , I, nforc_k)

121 # utilities.writeDataToCSV(path , I, stress)

122 # utilities.writeDataToCSV(path , I, strain)

123

124 # for node in listing:

125 # topology{str(node)} = []

126 # for key in valstore.keys():

127 # if node == key [0]:

128 # topology{str(node)}. append

129

130 odb.close()
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C.4 Stress extraction at the nodes, stress.py

1 from odbAccess import *

2 from abaqusConstants import *

3 # from odbMaterial import *

4 # from odbSection import *

5 import glob

6 import csv

7 import sys

8 sys.path.insert(0, 'F:\ Tests\python ')

9 import utilities

10 import time

11 tic = time.time()

12

13 fingerprint = []

14 with open('fingerprint.csv', 'r') as r_fingerprint:

15 reader = csv.reader(r_fingerprint , delimiter=',')

16 for row in reader:

17 fingerprint.append(row)

18

19 extractmode = 4

20 eleCount = []

21 nodeCount = []

22 path = './'

23

24 # Parser example code in plain_dataextract_Mises.py

25 Is = []

26 if len(sys.argv) == 1 + 10:

27 Is = [int(sys.argv [10])]

28 utilities.log('Now processing job %d' % Is[0])

29 elif len(sys.argv) == 2 + 10:

30 if sys.argv [10] <= sys.argv [11]:

31 start = int(sys.argv [10]); end = int(sys.argv [11])

32 Is = range(start, end + 1)

33 utilities.log('Now processing jobs %d-%d' % (start, end))
34 else:

35 start = int(sys.argv [10]); end = int(sys.argv [11])

36 Is = range(start, end - 1, -1)

37 utilities.log('Now processing jobs %d-%d' % (start, end))
38 else:

39 # number_of_odbs = len(glob.glob ( './*. odb '))

40 # Is = range(number_of_odbs , 0, -1)

41

42 # utilities.log('Now processing jobs %d-%d' % (Is[0], Is[-1]))

43

44 databs = glob.glob('./*. odb')

45 for index , string in enumerate(databs):

46 Is.extend ([int(string [2: -4])])

47

48 for I in Is:

49 LHS = float(fingerprint[I - 1][1])

50 centres = float(fingerprint[I - 1][3])

51 diameter = float(fingerprint[I - 1][4])

52 cell_number = float(fingerprint[I - 1][6])

53 t_depths = [float(fingerprint[I - 1][8]) , float(fingerprint[I - 1][10])]

54

55

56 odb = openOdb(path=str(I) + '.odb')

57

58 myAssembly = odb.rootAssembly

59

60 # instances = []

61 # for instanceName in odb.rootAssembly.instances.keys():

62 # if 'MESH COMPONENT ' not in instanceName:

63 # instances.append(instanceName)

64

65 # nodesets = []

66 # for nodeSet in odb.rootAssembly.nodeSets.keys():

67 # if 'MESH COMPONENT ' not in nodeSet:

68 # nodesets.append(nodeSet)
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69

70 # elementsets = []

71 # for elementSet in odb.rootAssembly.elementSets.keys():

72 # if 'MESH COMPONENT ' not in elementSet:

73 # elementsets.append(elementSet)

74

75 # listing = odb.rootAssembly.nodeSets['STEEL_NODES '].nodes

76 # stressnodes , stresscoords = utilities.findStandardNodes(LHS , diameter , cell_number , centres ,

↪→ listing , top=t_depths [0], bot=t_depths [1], extractmode=extractmode)

77 # noderequest = stressnodes

78 # utilities.writeCoordsToCSV(path , I, stressnodes , stresscoords , 'nf_coords ')

79

80 # fields = ['NFORC1 ', 'S11 ']

81

82 # tic = time.time()

83 # valstore , fieldstore , f_xx , f_xx_k = utilities.odbExtract('NFORC1 ', odb)

84 # valstore , fieldstore , f_yy , f_yy_k = utilities.odbExtract('NFORC2 ', odb)

85 # valstore , fieldstore , f_zz , f_zz_k = utilities.odbExtract('NFORC3 ', odb)

86 # valstore , fieldstore , m_xx , m_xx_k = utilities.odbExtract('NFORC4 ', odb)

87 # valstore , fieldstore , m_yy , m_yy_k = utilities.odbExtract('NFORC5 ', odb)

88 # valstore , fieldstore , m_zz , m_zz_k = utilities.odbExtract('NFORC6 ', odb)

89

90 if any(['SLAB_NODES ' in key for key in odb.rootAssembly.nodeSets.keys()]):

91 valstore , fieldstore , s_xx_s , s_xx_s_k = utilities.odbExtract('S11', odb , 'C3D8')

92 valstore , fieldstore , s_yy_s , s_yy_s_k = utilities.odbExtract('S22', odb , 'C3D8')

93 valstore , fieldstore , s_zz_s , s_zz_s_k = utilities.odbExtract('S33', odb , 'C3D8')

94 s_s = {'s_xx_s ': s_xx_s , 's_yy_s ': s_yy_s , 's_zz_s ': s_zz_s}

95 stress_s = {'s_s': s_s}

96 utilities.writeDataToCSV(path , I, stress_s)

97

98 valstore , fieldstore , s_xx_sp1 , s_xx_k_sp1 = utilities.odbExtract('S11', odb)

99 valstore , fieldstore , s_xx_sp5 , s_xx_k_sp5 = utilities.odbExtract('S11', odb , sectionPoint =5)

100 valstore , fieldstore , s_yy_sp1 , s_yy_k_sp1 = utilities.odbExtract('S22', odb)

101 valstore , fieldstore , s_yy_sp5 , s_yy_k_sp5 = utilities.odbExtract('S22', odb , sectionPoint =5)

102 valstore , fieldstore , s_zz_sp1 , s_zz_k_sp1 = utilities.odbExtract('S33', odb)

103 valstore , fieldstore , s_zz_sp5 , s_zz_k_sp5 = utilities.odbExtract('S33', odb , sectionPoint =5)

104 valstore , fieldstore , s_xy_sp1 , s_xy_k_sp1 = utilities.odbExtract('S12', odb)

105 valstore , fieldstore , s_xy_sp5 , s_xy_k_sp5 = utilities.odbExtract('S12', odb , sectionPoint =5)

106 # valstore , fieldstore , e_xx , e_xx_k = utilities.odbExtract('E11 ', odb)

107 # valstore , fieldstore , e_yy , e_yy_k = utilities.odbExtract('E22 ', odb)

108 # valstore , fieldstore , e_zz , e_zz_k = utilities.odbExtract('E33 ', odb)

109 # valstore , fieldstore , e_xy , e_xy_k = utilities.odbExtract('E12 ', odb)

110 toc = time.time()

111 utilities.log(toc - tic)

112

113 # f = {'fxx ': f_xx , 'fyy ': f_yy , 'fzz ': f_zz}; m = {'mxx ': m_xx , 'myy ': m_yy , 'mzz ': m_zz}

114 s = {'sxx_sp1 ': s_xx_sp1 , 'syy_sp1 ': s_yy_sp1 , 'szz_sp1 ': s_zz_sp1 , 'sxy_sp1 ': s_xy_sp1 ,

115 'sxx_sp5 ': s_xx_sp5 , 'syy_sp5 ': s_yy_sp5 , 'szz_sp5 ': s_zz_sp5 , 'sxy_sp5 ': s_xy_sp5}

116 # e = {'exx ': e_xx , 'eyy ': e_yy , 'ezz ': e_zz , 'exy ': e_xy}

117 # nforc = {'f ': f, 'm ': m}; nforc_k = {'f ': {'fxx ':f_xx_k , 'fyy ':f_yy_k , 'fzz ': f_zz_k}, 'm': {'mzz

↪→ ': m_zz_k }}

118 stress = {'s': s}

119 # strain = {'e ': e}

120

121 # nodeCount.append(utilities.nodeCount(odb.rootAssembly.nodeSets , printpath =[path , I]))

122 # eleCount.append(utilities.elementCount(odb.rootAssembly.instances['BEAM_INSTANCE '].elementSets ,

123 # odb.rootAssembly.instances['BEAM_INSTANCE '].elements ,

124 # printpath =[path , I]))

125

126 # utilities.writeDataToCSV(path , I, nforc)

127 # utilities.fieldkeyPrint(path , I, nforc_k)

128 utilities.writeDataToCSV(path , I, stress)

129 # utilities.writeDataToCSV(path , I, strain)

130

131 # for node in listing:

132 # topology{str(node)} = []

133 # for key in valstore.keys():

134 # if node == key [0]:

135 # topology{str(node)}. append

136

137 odb.close()
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C.5 Strain extraction at the nodes, strain.py

1 from odbAccess import *

2 from abaqusConstants import *

3 # from odbMaterial import *

4 # from odbSection import *

5 import glob

6 import csv

7 import sys

8 sys.path.insert(0, 'F:\ Tests\python ')

9 import utilities

10 import time

11 tic = time.time()

12

13 fingerprint = []

14 with open('fingerprint.csv', 'r') as r_fingerprint:

15 reader = csv.reader(r_fingerprint , delimiter=',')

16 for row in reader:

17 fingerprint.append(row)

18

19 extractmode = 4

20 eleCount = []

21 nodeCount = []

22 path = './'

23

24 # Parser example code in plain_dataextract_Mises.py

25 Is = []

26 if len(sys.argv) == 1 + 10:

27 Is = [int(sys.argv [10])]

28 utilities.log('Now processing job %d' % Is[0])

29 elif len(sys.argv) == 2 + 10:

30 if sys.argv [10] <= sys.argv [11]:

31 start = int(sys.argv [10]); end = int(sys.argv [11])

32 Is = range(start, end + 1)

33 utilities.log('Now processing jobs %d-%d' % (start, end))
34 else:

35 start = int(sys.argv [10]); end = int(sys.argv [11])

36 Is = range(start, end - 1, -1)

37 utilities.log('Now processing jobs %d-%d' % (start, end))
38 else:

39 # number_of_odbs = len(glob.glob ( './*. odb '))

40 # Is = range(number_of_odbs , 0, -1)

41

42 # utilities.log('Now processing jobs %d-%d' % (Is[0], Is[-1]))

43

44 databs = glob.glob('./*. odb')

45 for index , string in enumerate(databs):

46 Is.extend ([int(string [2: -4])])

47

48 for I in Is:

49 LHS = float(fingerprint[I - 1][1])

50 centres = float(fingerprint[I - 1][3])

51 diameter = float(fingerprint[I - 1][4])

52 cell_number = float(fingerprint[I - 1][6])

53 t_depths = [float(fingerprint[I - 1][8]) , float(fingerprint[I - 1][10])]

54

55

56 odb = openOdb(path=str(I) + '.odb')

57

58 myAssembly = odb.rootAssembly

59

60 # instances = []

61 # for instanceName in odb.rootAssembly.instances.keys():

62 # if 'MESH COMPONENT ' not in instanceName:

63 # instances.append(instanceName)

64

65 # nodesets = []

66 # for nodeSet in odb.rootAssembly.nodeSets.keys():

67 # if 'MESH COMPONENT ' not in nodeSet:

68 # nodesets.append(nodeSet)
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69

70 # elementsets = []

71 # for elementSet in odb.rootAssembly.elementSets.keys():

72 # if 'MESH COMPONENT ' not in elementSet:

73 # elementsets.append(elementSet)

74

75 # listing = odb.rootAssembly.nodeSets['STEEL_NODES '].nodes

76 # stressnodes , stresscoords = utilities.findStandardNodes(LHS , diameter , cell_number , centres ,

↪→ listing , top=t_depths [0], bot=t_depths [1], extractmode=extractmode)

77 # noderequest = stressnodes

78 # utilities.writeCoordsToCSV(path , I, stressnodes , stresscoords , 'nf_coords ')

79

80 # fields = ['NFORC1 ', 'S11 ']

81

82 # tic = time.time()

83 # valstore , fieldstore , f_xx , f_xx_k = utilities.odbExtract('NFORC1 ', odb)

84 # valstore , fieldstore , f_yy , f_yy_k = utilities.odbExtract('NFORC2 ', odb)

85 # valstore , fieldstore , f_zz , f_zz_k = utilities.odbExtract('NFORC3 ', odb)

86 # valstore , fieldstore , m_xx , m_xx_k = utilities.odbExtract('NFORC4 ', odb)

87 # valstore , fieldstore , m_yy , m_yy_k = utilities.odbExtract('NFORC5 ', odb)

88 # valstore , fieldstore , m_zz , m_zz_k = utilities.odbExtract('NFORC6 ', odb)

89

90 # valstore , fieldstore , s_xx , s_xx_k = utilities.odbExtract('S11 ', odb)

91 # valstore , fieldstore , s_yy , s_yy_k = utilities.odbExtract('S22 ', odb)

92 # valstore , fieldstore , s_zz , s_zz_k = utilities.odbExtract('S33 ', odb)

93 # valstore , fieldstore , s_xy , s_xy_k = utilities.odbExtract('S12 ', odb)

94

95 valstore , fieldstore , e_xx , e_xx_k = utilities.odbExtract('E11', odb)

96 valstore , fieldstore , e_yy , e_yy_k = utilities.odbExtract('E22', odb)

97 valstore , fieldstore , e_zz , e_zz_k = utilities.odbExtract('E33', odb)

98 valstore , fieldstore , e_xy , e_xy_k = utilities.odbExtract('E12', odb)

99 toc = time.time()

100 utilities.log(toc - tic)

101

102 # f = {'fxx ': f_xx , 'fyy ': f_yy , 'fzz ': f_zz}; m = {'mxx ': m_xx , 'myy ': m_yy , 'mzz ': m_zz}

103 # s = {'sxx ': s_xx , 'syy ': s_yy , 'szz ': s_zz , 'sxy ': s_xy}

104 e = {'exx': e_xx , 'eyy': e_yy , 'ezz': e_zz , 'exy': e_xy}

105 # nforc = {'f ': f, 'm ': m}; nforc_k = {'f ': {'fxx ':f_xx_k , 'fyy ':f_yy_k , 'fzz ': f_zz_k}, 'm': {'mzz

↪→ ': m_zz_k }}

106 # stress = {'s ': s}

107 strain = {'e': e}

108

109 # nodeCount.append(utilities.nodeCount(odb.rootAssembly.nodeSets , printpath =[path , I]))

110 # eleCount.append(utilities.elementCount(odb.rootAssembly.instances['BEAM_INSTANCE '].elementSets ,

111 # odb.rootAssembly.instances['BEAM_INSTANCE '].elements ,

112 # printpath =[path , I]))

113

114 # utilities.writeDataToCSV(path , I, nforc)

115 # utilities.fieldkeyPrint(path , I, nforc_k)

116 # utilities.writeDataToCSV(path , I, stress)

117 utilities.writeDataToCSV(path , I, strain)

118

119 # for node in listing:

120 # topology{str(node)} = []

121 # for key in valstore.keys():

122 # if node == key [0]:

123 # topology{str(node)}. append

124

125 odb.close()
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C.6 utilities module

1 def findStandardNodes(LHS , diameter , cell_number , centres , abaqus_set , ** kwargs):

2 tol = 1e-4

3 placeholder = []

4 placeholder.extend(abaqus_set [0])

5 RHS = LHS; span = (LHS + (cell_number - 1)*centres + RHS)

6 xlocationlist = []

7 xlocationlist.append (0)

8 # Get the data from these x locations (i.e. from the nodes

9 # which will have these x-components , regardless of y and z

10 # coordinates)

11 for I in range(0, cell_number):

12 xlocationlist.append(I*centres /2. + (LHS - centres /2))

13

14 ylocationlist = []

15 ylocationlist.append (0)

16 # For now , only the nodes at the interface between

17 # the beam tees are of interest

18 # for I in range(cell_number):

19 # ylocationlist.append ()

20 # if mode == 1:

21 nodes = []

22 coords = []

23 if 'extractmode ' in kwargs:

24 # if kwargs['extractmode '] == 1:

25 ylocationlist.append(kwargs['top'])

26 ylocationlist.append(-kwargs['bot'])

27 ylocationlist.append(diameter /2)

28 ylocationlist.append(-diameter /2)

29 ylocationlist = sorted(ylocationlist)

30 for k in placeholder:

31 for x_loc in xlocationlist:

32 for y_loc in ylocationlist:

33 if ((( abs(k.coordinates [0] - x_loc) <= tol and

34 abs(k.coordinates [1] - y_loc) <= tol) and

35 #abs(k.coordinates [2]) <= tol) and

36 k.label not in nodes)):

37 nodes.extend ([k.label])

38 coords.extend ([k.coordinates ])

39 else:

40 for k in placeholder:

41 for x_loc in xlocationlist:

42 for y_loc in ylocationlist:

43 if ((( abs(k.coordinates [0] - x_loc) <= tol or

44 abs(k.coordinates [1] - y_loc) <= tol) and

45 #abs(k.coordinates [2]) <= tol) and

46 k.label not in nodes)):

47 nodes.extend ([k.label])

48 coords.extend ([k.coordinates ])

49 # else:

50 # data = []

51 # for name , instance in placeholder:

52 # for node in instance.nodes:

53 # for x_loc in xlocationlist:

54 # for y_loc in ylocationlist:

55 # # print [node.label , node.coordinates]

56 # if (abs(node.coordinates [0] - x_loc) <= 1e-6 or abs(node.coordinates [1] - y_loc) <= 1e

↪→ -6) and node.label not in data:

57 # data.append ([node.label , node.coordinates ])

58

59 # Extract the data for the diagonals of the top

60 # half of the perforated web

61 if 'extractmode ' in kwargs:

62 if kwargs['extractmode '] >= 2:

63 if 'top' in kwargs:

64

65 # This bit of the code isn't fully tested -----

66 total_endspace = LHS - diameter /2

67 cell_side = (centres - diameter)/2
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68 if (total_endspace - cell_side) >= 0.050:

69 alphaini = kwargs['top']/(LHS - (total_endspace - cell_side))

70 else:

71 alphaini = kwargs['top']/( centres /2)

72 # ---------------------------------------------

73

74 alpha = kwargs['top']/( centres /2)

75 for I in range(cell_number):

76 for k in placeholder:

77 # First perforation , left side

78 if ((k.coordinates [0] >= 0 and k.coordinates [0] < LHS)

79 and k.label not in nodes):

80 if abs(abs(k.coordinates [1]/(k.coordinates [0] - LHS)) - alphaini) <= tol:

81 nodes.extend ([k.label ])

82 coords.extend ([k.coordinates ])

83

84 # First perforation , right side and subsequent perforations

85 elif ((k.coordinates [0] >= LHS + I*centres - tol and

86 k.coordinates [0] < LHS + centres /2 + I*centres + tol)

87 and k.label not in nodes):

88 if abs(abs(k.coordinates [1]/(k.coordinates [0] - LHS - I*centres)) - alpha) <= tol:

89 nodes.extend ([k.label ])

90 coords.extend ([k.coordinates ])

91

92 # Second perforation , left side and subsequent perforations

93 elif ((k.coordinates [0] >= LHS + centres /2 + I*centres - tol and

94 k.coordinates [0] < LHS + (I + 1)*centres) + tol

95 and k.label not in nodes):

96 if abs(abs(k.coordinates [1]/(k.coordinates [0] - (LHS + (I + 1)*centres))) - alpha) <=

↪→ tol:

97 nodes.extend ([k.label ])

98 coords.extend ([k.coordinates ])

99

100 # elif ((k.coordinates [0] >= max(I - 0.5, 0)*centres and k.coordinates [0] < LHS + I*

↪→ centres) or

101 # (k.coordinates [0] >= LHS + I*centres and k.coordinates [0] < LHS + (I + 0.5)*centres

↪→ )

102 # and k.coordinates [2] >= 0)

103 # and k.label not in nodes:

104

105 # Extract the data for the diagonals of the bottom

106 # half of the perforated web

107 if 'extractmode ' in kwargs:

108 if kwargs['extractmode '] >= 2:

109 if 'bot' in kwargs and kwargs['bot'] != kwargs['top']:

110

111 # This bit of the code isn't fully tested -----

112 total_endspace = LHS - diameter /2

113 cell_side = (centres - diameter)/2

114 if (total_endspace - cell_side) >= 0.050:

115 alphaini = kwargs['bot']/(LHS - (total_endspace - cell_side))

116 else:

117 alphaini = kwargs['bot']/( centres /2)

118 # ---------------------------------------------

119

120 alpha = kwargs['bot']/( centres /2)

121 for I in range(cell_number):

122 for k in placeholder:

123 # First perforation , left side

124 if ((k.coordinates [0] >= 0 and k.coordinates [0] < LHS)

125 and k.label not in nodes):

126 if abs(abs(k.coordinates [1]/(k.coordinates [0] - LHS)) - alphaini) <= tol:

127 nodes.extend ([k.label ])

128 coords.extend ([k.coordinates ])

129

130 # First perforation , right side and subsequent perforations

131 elif ((k.coordinates [0] >= LHS + I*centres - tol and

132 k.coordinates [0] < LHS + centres /2 + I*centres + tol)

133 and k.label not in nodes):

134 if abs(abs(k.coordinates [1]/(k.coordinates [0] - LHS - I*centres)) - alpha) <= tol:

135 nodes.extend ([k.label ])

136 coords.extend ([k.coordinates ])

137
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138 # Second perforation , left side and subsequent perforations

139 elif ((k.coordinates [0] >= LHS + centres /2 + I*centres - tol and

140 k.coordinates [0] < LHS + (I + 1)*centres) + tol

141 and k.label not in nodes):

142 if abs(abs(k.coordinates [1]/(k.coordinates [0] - (LHS + (I + 1)*centres))) - alpha) <=

↪→ tol:

143 nodes.extend ([k.label])

144 coords.extend ([k.coordinates ])

145

146 # Caution , partly untested but probably functional

147 if 'extractmode ' in kwargs:

148 if kwargs['extractmode '] > 2:

149 for I in range(0, cell_number):

150 for k in placeholder:

151 # Nodes at the x locations in the web (with any y component)

152 # and at y = 0 (i.e. the weld location of the steel beam top and bot)

153 if ((( abs(k.coordinates [0] - (I*centres /2. + (LHS - centres /2))) <= tol or

154 abs(k.coordinates [1] - 0) <= tol) and

155 k.label not in nodes)):

156 nodes.extend ([k.label])

157 coords.extend ([k.coordinates ])

158

159 # Extract the nodes that lie in the first two

160 # perforations in addition to the nodes above

161 desired_cell = 2

162 desired_x = (LHS + (desired_cell *2 - 1))*centres /2

163 if 'extractmode ' in kwargs:

164 if kwargs['extractmode '] > 3:

165 for k in placeholder:

166 # Nodes at the x locations in the web (with any y component)

167 # and at y = 0 (i.e. the weld location of the steel beam top and bot)

168 if (((k.coordinates [0] - tol <= desired_x) and

169 k.label not in nodes)):

170 nodes.extend ([k.label])

171 coords.extend ([k.coordinates ])

172

173 return nodes , coords

174

175 def extractStandardStressStrain(string , xyDataKeys , nodes):

176 from abaqus import *

177 from abaqusConstants import *

178 from viewerModules import *

179 import re

180

181 # tmpnodes_1 = []

182 # tmpnodes_1.extend(nodes)

183 # tmpnodes_2 = []

184 # tmpnodes_2.extend(nodes)

185 # tmpnodes_3 = []

186 # tmpnodes_3.extend(nodes)

187 var_1 = {}

188 var_2 = {}

189 var_3 = {}

190 var_4 = {}

191

192 # Consider implementing a field of fields so that the

193 # output can also have a series of tags automatically

194 # assigned during the extraction process:

195 #

196 # i.e. s11 = {'sp1 ':s11_sp1 , 'sp5 ':s11_sp5}

197 # where s11_sp1 = { '800081 ':[[0 , 0], [0.1, 1]]} etc.

198

199 for key in xyDataKeys:

200 if string in key and 'SP:1' in key:

201 for node in nodes:

202 if re.search(r'\bN: ' + str(node) + r'\b', key):

203 var_1[str(node)] = session.xyDataObjects[key].data

204 # del tmpnodes_1[tmpnodes_1.index(node)]

205 elif string in key and 'SP:5' in key:

206 for node in nodes:

207 if re.search(r'\bN: ' + str(node) + r'\b', key):

208 var_2[str(node)] = session.xyDataObjects[key].data

209 # del tmpnodes_2[tmpnodes_2.index(node)] # This wasn't commented out
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210 # before and may have been causing issues.

211 elif string in key and '(Not averaged)' in key:

212 for node in nodes:

213 if re.search(r'\bN: ' + str(node) + r'\b', key):

214 var_3[str(node)] = session.xyDataObjects[key].data

215 # del tmpnodes_2[tmpnodes_2.index(node)]

216 else:

217 for node in nodes:

218 if re.search(r'\bN: ' + str(node) + r'\b', key):

219 var_4[str(node)] = session.xyDataObjects[key].data

220

221 # var_1['field '] = string

222 # var_2['field '] = string

223 return var_1 , var_2 , var_3 , var_4

224

225 def extractStandardForce(string , nodes):

226 from abaqus import *

227 from abaqusConstants import *

228 from viewerModules import *

229

230 tmp = session.xyDataObjects[string + str(nodes [0])]

231 datapointlist = range(len(tmp))

232 var = [['Null' for x in datapointlist] for y in range(len(nodes) + 1)]

233 if string in ['RF:RF2 PI: BEAM_INSTANCE N: ', 'CF:CF2 PI: BEAM_INSTANCE N: ']:

234 # Update the stored data TIME component as given in Abaqus common to all

235 # data points

236 for l in datapointlist:

237 var [0][l] = session.xyDataObjects[string + str(nodes [0])][l][0]

238

239 # Store the forces corresponding to each node (column -wise) and to each

240 # time point (row -wise)

241 for k in range(len(nodes)):

242 for l in datapointlist:

243 var[k + 1][l] = session.xyDataObjects[string + str(nodes[k])][l][1]

244

245 # Add all the components to a new entity

246 forcesum = [0 for x in range(len(var [1][:]))]

247 for k in range(1, len(var)):

248 for l in range(len(var [0])):

249 forcesum[l] += var[k][l]

250

251 return var , forcesum

252

253 def extractStandardDisplacement(string , nodelabel):

254 # This function will extract the displacement of the node

255 # at the midpoint of the end section of the beam

256 # and return it , including the time steps (i.e. for

257 # the entire step history).

258 from abaqus import *

259 x0 = session.xyDataObjects[string + nodelabel]

260 u = []

261 for x, y in x0:

262 u.append ([x, y])

263

264 return u

265

266 def extractExpandedDisplacement(string , xyDataKeys , nodes):

267 # This code is based on the extractStandardStressStrain code

268 # and is used to extract the displacement field data from

269 # multiple nodes , alongside their node number

270 from abaqus import *

271 from abaqusConstants import *

272 from viewerModules import *

273 import re

274

275 var_1 = {}

276

277 for key in xyDataKeys:

278 if string in key:

279 for node in nodes:

280 if re.search(r'\bN: ' + str(node) + r'\b', key):

281 var_1[str(node)] = session.xyDataObjects[key].data

282
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283 return var_1

284

285 def writeUToCSV(folderpath , I, displacement):

286 import csv

287

288 # Define the postprocessing folder path

289 newpath = folderpath + 'Postprocessing/' + str(I) + '/'

290

291 # Ensure that the postprocessing folder exists

292 ensure_dir(newpath)

293

294 # Write the standard time - displacement data to a .csv file

295 with open(newpath + 'u.csv', 'wb') as ofile:

296 writer = csv.writer(ofile , delimiter=',')

297 for d in displacement:

298 # if isinstance(d, list):

299 # writer.writerow(d[0])

300 # else:

301 writer.writerow(d)

302

303 def writeDataToCSV(folderpath , I, data):

304 import csv

305

306 # Define the postprocessing folder path

307 newpath = folderpath + 'Postprocessing/' + str(I) + '/'

308

309 # Ensure that the postprocessing folder exists

310 ensure_dir(newpath)

311

312 for key1 in data:

313 if key1 in ['S11', 'E11', 'S22', 'E22', 'S33', 'E33', 'Mises ',

314 'cS11', 'cE11', 'cS22', 'cE22', 'cS33', 'cE33',

315 'cS12', 'cS23', 'cS31',

316 'f', 'f_s', 'f_r', 'f_lr', 'm', 'm_r', 's', 's_s', 'e', 'ee', 'U']:

317 for key2 in data[key1]:

318 for nodekey in data[key1][key2]:

319 # Producing reshaped list of the input data

320 # which was row based to column based

321 # so that the duplicate elements can be counted

322 atad = [[] for i in range(len(data[key1][key2][ nodekey ][0]))]

323 for d in data[key1][key2][ nodekey ]:

324 for i, item in enumerate(d):

325 atad[i]. append(item)

326 # Find the indices of the duplicates

327 index = [i for i, item in enumerate(atad [0]) if item == atad [0][1]]

328 # Count the number of duplicates

329 dupes = len(index)

330 # Depending on the number of node contributions from the

331 # adjoining elements , write the csv file accordingly

332 if dupes == 1:

333 ensure_dir(newpath + key1 + '/' + key2 + '/' + nodekey + '.csv')

334 with open(newpath + key1 + '/' + key2 + '/' + nodekey + '.csv', 'wb') as ofile:

335 writer = csv.writer(ofile , delimiter=',')

336 for d in data[key1][key2][ nodekey ]:

337 writer.writerow(d)

338 elif dupes > 1:

339 var = []

340 var.append(list(data[key1][key2][ nodekey ][0]))

341 for j in range(1, len(data[key1][key2][ nodekey ]), dupes):

342 var.append(list(data[key1][key2][ nodekey ][j]))

343 for i in range(1, dupes):

344 var [0]. append(data[key1][key2][ nodekey ][0][1])

345 for j, k in enumerate(range(i + 1, len(data[key1][key2][ nodekey ]), dupes)):

346 var[j + 1]. append(data[key1][key2][ nodekey ][k][1])

347 ensure_dir(newpath + key1 + '/' + key2 + '/' + nodekey + '.csv')

348 with open(newpath + key1 + '/' + key2 + '/' + nodekey + '.csv', 'wb') as ofile:

349 writer = csv.writer(ofile , delimiter=',')

350 for i, v in enumerate(var):

351 writer.writerow(v)

352 elif key1 in ['U1', 'U2', 'U3']:

353 for nodekey in data[key1]:

354 # Producing reshaped list of the input data

355 # which was row based to column based
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356 # so that the duplicate elements can be counted

357 atad = [[] for i in range(len(data[key1][ nodekey ][0]))]

358 for d in data[key1][ nodekey ]:

359 for i, item in enumerate(d):

360 atad[i]. append(item)

361 # Find the indices of the duplicates

362 index = [i for i, item in enumerate(atad [0]) if item == atad [0][1]]

363 # Count the number of duplicates

364 dupes = len(index)

365 # Depending on the number of node contributions from the

366 # adjoining elements , write the csv file accordingly

367 if dupes == 1:

368 ensure_dir(newpath + key1 + '/' + nodekey + '.csv')

369 with open(newpath + key1 + '/' + nodekey + '.csv', 'wb') as ofile:

370 writer = csv.writer(ofile , delimiter=',')

371 for d in data[key1][ nodekey ]:

372 writer.writerow(d)

373 elif dupes > 1:

374 var = []

375 var.append(list(data[key1][ nodekey ][0]))

376 for j in range(1, len(data[key1][ nodekey ]), dupes):

377 var.append(list(data[key1][ nodekey ][j]))

378 for i in range(1, dupes):

379 var [0]. append(data[key1][ nodekey ][0][1])

380 for j, k in enumerate(range(i + 1, len(data[key1][ nodekey ]), dupes)):

381 var[j + 1]. append(data[key1][ nodekey ][k][1])

382 ensure_dir(newpath + key1 + '/' + nodekey + '.csv')

383 with open(newpath + key1 + '/' + nodekey + '.csv', 'wb') as ofile:

384 writer = csv.writer(ofile , delimiter=',')

385 for i, v in enumerate(var):

386 writer.writerow(v)

387 elif 'FSUM' in key1:

388 # Write the standard time - displacement data to a .csv file

389 with open(newpath + 'f.csv', 'wb') as ofile:

390 writer = csv.writer(ofile , delimiter=',')

391 for d in data[key1]:

392 writer.writerow ([d])

393

394 def writeCoordsToCSV(folderpath , I, nodes , coordinates , *args):

395 import csv

396 # Define the postprocessing folder path

397 newpath = folderpath + 'Postprocessing/' + str(I) + '/'

398 # Ensure that the postprocessing folder exists

399 ensure_dir(newpath)

400 # Define the correct filename for either noncomposite

401 # or composite cases.

402 if len(args) == 1:

403 if type(args [0]) is str:

404 coordname = args [0]

405 else:

406 log('Incorrect argument type , must be string ')

407 else:

408 coordname = 'coords_s '

409

410 if len(nodes) == len(coordinates):

411 rows = []

412 # Combine the nodes with their respective coordinates

413 for index , node in enumerate(nodes):

414 rows.append ([node])

415 rows [-1]. extend(list(coordinates[index ]))

416 with open(newpath + coordname + '.csv', 'wb') as ofile:

417 writer = csv.writer(ofile , delimiter=',')

418 for row in rows:

419 writer.writerow(row)

420 else:

421 log("Error: The number of nodes doesn 't match the number of coordinates")

422

423 def elementCount(elementSets , elements , ** kwargs):

424 import csv

425

426 var = 0

427 keys = elementSets.keys()

428 for key in keys:
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429 var += len(elementSets[key]. elements)

430

431 # len(odb.rootAssembly.instances['BEAM_INSTANCE '].elements) # Alternative to above

432

433 if 'printpath ' in kwargs:

434 path = kwargs['printpath '][0]

435 j = kwargs['printpath '][1]

436 ensure_dir(path + 'Postprocessing/' + str(j) + '/')

437 with open(path + 'Postprocessing/' + str(j) + '/elements.csv', 'wb') as ofile:

438 writer = csv.writer(ofile , delimiter=',')

439 for indx , element in enumerate(elements):

440 holder = [element.label]

441 elementConnectivity = [conn for conn in element.connectivity]

442 holder.extend(elementConnectivity)

443 writer.writerow(holder)

444

445 return var

446

447 def nodeCount(nodeSets , ** kwargs):

448 import csv

449

450 keys = nodeSets.keys()

451 index = [i for i, key in enumerate(keys) if 'ALL NODES ' in key]

452 nodes = nodeSets[keys[index [0]]]. nodes [0]

453 count1 = len(nodes)

454

455 # count2 = len(odb.rootAssembly.instances['BEAM_INSTANCE '].nodes)

456

457 if 'printpath ' in kwargs:

458 path = kwargs['printpath '][0]

459 j = kwargs['printpath '][1]

460 ensure_dir(path + 'Postprocessing/' + str(j) + '/')

461 with open(path + 'Postprocessing/' + str(j) + '/nodes.csv', 'wb') as ofile:

462 writer = csv.writer(ofile , delimiter=',')

463 for indx , node in enumerate(nodes):

464 holder = [node.label]

465 nodeCoords = [coord for coord in node.coordinates]

466 holder.extend(nodeCoords)

467 writer.writerow(holder)

468

469 return count1

470

471 def timeCount(path , odbNum):

472 import csv

473

474 ensure_dir(path + 'Postprocessing/')

475

476 timings = []

477 for num in odbNum:

478 pos = len("WALLCLOCK TIME (SEC) =")

479 f = open(str(num) + '.msg')

480 nex = f.readline ().strip ()

481

482 while "WALLCLOCK TIME (SEC) =" not in nex or "ELAPSED" in nex:

483 nex = f.readline ().strip()

484

485 timings.append(float(nex[pos :]))

486

487 with open(path + 'Postprocessing/times.csv', 'wb') as ofile:

488 writer = csv.writer(ofile , delimiter=',')

489 for indx , time in enumerate(timings):

490 writer.writerow ([ odbNum[indx], time])

491

492

493 def ensure_dir(file_path):

494 import os

495 directory = os.path.dirname(file_path)

496 if not os.path.exists(directory):

497 os.makedirs(directory)

498

499 def parseNumList(string):

500 # Function used from http :// bit.ly/2 naYiwM

501 import re
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502 m = re.match(r'(\d+)(?:-(\d+))?$', string)

503 # ^ (or use .split('-'). anyway you like.)

504 if not m:

505 raise ArgumentTypeError("'" + string + "' is not a range of number. Expected forms like '0-5' or

↪→ '2'.")

506 start = m.group (1)

507 end = m.group (2) or start

508 return list(range(int(start ,10), int(end ,10) +1))

509

510 def log(string):

511 # Function based on top answer from http :// bit.ly/2 nXezbC

512 import sys

513

514 print >> sys.__stdout__ , string

515

516 def returnNodes(abaqus_set):

517

518 placeholder = []

519 placeholder.extend(abaqus_set)

520 nodes = []

521 coords = []

522 for k in placeholder:

523 nodes.extend ([k.label])

524 coords.extend ([k.coordinates ])

525

526 return nodes , coords

527

528 def odbExtract(field , odb , *args , ** kwargs):

529 # Currently only meant for

530 # single -step tests but could be extended

531 # if necessary

532 from odbAccess import *

533 from abaqusConstants import *

534

535 if len(args) == 1:

536 if type(args [0]) is str:

537 elementType = args [0]

538 else:

539 log('Incorrect argument type , must be string and either S4 or C3D8')

540 else:

541 elementType = 'S4'

542

543 if 'sectionPoint ' in kwargs:

544 sectionPoint = kwargs['sectionPoint ']

545 else:

546 sectionPoint = 1

547

548 # Not sure if this code would store the

549 # steps chronologically (or sequentially

550 # in the correct order)

551 steps = []

552 for stepName in odb.steps.keys():

553 steps.append(stepName)

554

555 # fieldstore = {}

556 for step in steps:

557 valstore = {}

558 frames = odb.steps[step]. frames

559 frameVals = [frame.frameValue for frame in frames]

560 frameCount = len(frames)

561 for index , frame in enumerate(frames):

562 fields = ['S', 'E']

563 if verify(field , fields):

564 if 'region ' in kwargs:

565 variable = frame.fieldOutputs[str(field.upper())]. getSubset(position=ELEMENT_NODAL ,

↪→ elementType=elementType , region=kwargs['region '])

566 else:

567 variable = frame.fieldOutputs[field [0]. upper()]. getSubset(position=ELEMENT_NODAL ,

↪→ elementType=elementType)

568

569 values = variable.values

570 for value in values:

571 # value.sectionPoint == None should be the case for non -shell elements
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572 if value.sectionPoint == None or value.sectionPoint.number == sectionPoint:

573 # if value.baseElementType == 'S4 ':

574 # If stresses are being extracted. This should also work for strains

575 comp = field.upper()

576 if verify(comp , ['S11', 'E11']):

577 comploc = 0

578 elif verify(comp , ['S22', 'E22']):

579 comploc = 1

580 elif verify(comp , ['S33', 'E33']):

581 comploc = 2

582 elif verify(comp , ['S12', 'E12']):

583 comploc = 3

584 # elif comp == 'S13 ':

585 # comploc = 4

586 # elif comp == 'S23 ':

587 # comploc = 5

588

589 if (str(value.nodeLabel), str(value.elementLabel)) in valstore:

590 val = value.data[comploc]

591 valstore [(str(value.nodeLabel), str(value.elementLabel))][index] = [val]

592 else:

593 # Assuming that the frame values are the same for all the nodes

594 valstore [(str(value.nodeLabel), str(value.elementLabel))] = [[] for i in range(

↪→ frameCount)]

595 valstore [(str(value.nodeLabel), str(value.elementLabel))][0]. append(value.data[comploc

↪→ ])

596 elif 'NFORC ' in field.upper():

597 if 'region ' in kwargs:

598 variable = frame.fieldOutputs[str(field.upper ())]. getSubset(elementType=elementType , region

↪→ =kwargs['region '])

599 else:

600 variable = frame.fieldOutputs[str(field.upper ())]. getSubset(elementType=elementType)

601 # subset_variable = variable.getSubset(region=subset)

602 values = variable.values

603 for value in values:

604 # if value.baseElementType == 'S4 ':

605 if (str(value.nodeLabel), str(value.elementLabel)) in valstore:

606 val = value.data

607 valstore [(str(value.nodeLabel), str(value.elementLabel))]. append ([val])

608 # valstore[str(value.nodeLabel)]. append ([ frame.frameValue , value.data])

609 # elif str(value.nodeLabel) in valstore and str(value.elementLabel) not in valstore[str(

↪→ value.nodeLabel)][0]:

610 # valstore[str(value.nodeLabel)][0]. extend ([ value.elementLabel ])

611 else:

612 # valstore [(str(value.nodeLabel), str(value.elementLabel))] = [[ frame.frameValue , value.

↪→ data]]

613 # Assuming that the frame values are the same for all the nodes

614 valstore [(str(value.nodeLabel), str(value.elementLabel))] = []

615 val = value.data

616 valstore [(str(value.nodeLabel), str(value.elementLabel))]. append ([val])

617 # valstore[str(value.nodeLabel)][0]. extend ([ value.elementLabel ])

618 # valstore[str(value.nodeLabel)]. append ([ value.data])

619

620

621

622 # fieldstore[str(field)] = valstore

623

624 fieldstore = {}

625 for key in valstore.keys():

626 if key[0] not in fieldstore:

627 val = [[v[0]] for v in valstore[key]]

628 fieldstore[key [0]] = [[key[1]], val]

629 else:

630 fieldstore[key [0]][0]. extend ([key [1]])

631 for index , val in enumerate(valstore[key]):

632 fieldstore[key [0]][1][ index]. extend ([val [0]])

633

634 fieldstore_c = {}

635 fieldKeys = []

636 for key in fieldstore.keys():

637 holder = [int(key)]

638 holder.extend ([int(f) for f in fieldstore[key ][0]])

639 fieldKeys.append(holder)
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640 templist = [[] for k in fieldstore[key ][1]] # Make enough room for the

641 # frames in the step for the field

642 for index , row in enumerate(fieldstore[key ][1]):

643 templist[index]. append(frameVals[index ])

644 for val in row:

645 templist[index]. append(val)

646

647 # fieldstore_c[key] = fieldstore[key ][1]

648 fieldstore_c[key] = templist

649

650 return valstore , fieldstore , fieldstore_c , fieldKeys

651

652 def verify(field , fields):

653 if any(f in field.upper() for f in fields):

654 return True

655 return False

656

657 def fieldkeyPrint(path , I, fieldKeys):

658 import csv

659

660 # Define the postprocessing folder path

661 newpath = path + 'Postprocessing/' + str(I) + '/'

662

663 # Ensure that the postprocessing folder exists

664 ensure_dir(newpath)

665

666 for key1 in fieldKeys.keys():

667 for key2 in fieldKeys[key1].keys():

668 ensure_dir(newpath + key1 + '/' + key2 + '/' + 'fieldKeys/' + 'fieldKeys.csv')

669 for row in fieldKeys[key1][key2]:

670 with open(newpath + key1 + '/' + key2 + '/' + 'fieldKeys/' + 'fieldKeys.csv', 'wb') as ofile:

671 writer = csv.writer(ofile , delimiter=',')

672 for row in fieldKeys[key1][key2]:

673 writer.writerow(row)
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Appendix D

Data processing

D.1 postProcess()

1 function postProcess(dataPath , varargin)

2

3 if exist(dataPath) == 7

4 if nargin == 1 | all(nargin == 2 & strcmp(varargin {1}, 'process_only '))

5 tic

6 addpath('F:\ Tests\matlab\');

7 testlist_temp = ls(strcat(dataPath , '/*. odb'));

8 testlist = {};

9 for l = 1: length(testlist_temp (:, 1))

10 testlist{l} = testlist_temp(l, 1: strfind(testlist_temp(l, :), '.odb') - 1);

11 test(l) = str2num(testlist{l});

12 end

13 % testcount = length(testlist);

14

15 fingerprint = csvread(strcat(dataPath , '/fingerprint.csv'));

16

17 test_number = length(fingerprint (:, 1));

18 LHS = fingerprint (:, 2);

19 RHS = fingerprint (:, 3);

20 centres = fingerprint (:, 4);

21 diameter = fingerprint (:, 5);

22 inp.L = fingerprint (:, 6);

23 cell_number = fingerprint (:, 7) + 1;

24 top_t_depth = fingerprint (:, 9);

25 top_t_flange = fingerprint (:, 10);

26 bot_t_depth = fingerprint (:, 11);

27 bot_t_flange = fingerprint (:, 12);

28 slab_width = fingerprint (:, 13);

29

30 % % Choose node locations to examine in greater detail

31 % for I = 1: length(LHS(:, 1))

32 % nodelocs(:, :, I) = [0 0 0; % 1st , mid

33 % 0 0.3 0; % 1st , top

34 % 0 -0.3 0; % 1st , bot

35 % LHS(I) 0.3 0; % 2nd , top

36 % LHS(I) -0.3 0; % 2nd , bot

37 % LHS(I) + centres(I)/2 0.3 0; % 3rd , top

38 % LHS(I) + centres(I)/2 0.0 0; % 3rd , mid

39 % LHS(I) + centres(I)/2 -0.3 0; % 3rd , bot

40 % LHS(I) + centres(I) 0.3 0; % 4th , top

41 % LHS(I) + centres(I) -0.3 0; % 4th , bot

42 % LHS(I) + 3* centres(I)/2 0.3 0; % 5th , top

43 % LHS(I) + 3* centres(I)/2 0.0 0; % 5th , mid

44 % LHS(I) + 3* centres(I)/2 -0.3 0; % 5th , bot

45 % LHS(I) + 2* centres(I) 0.3 0; % 6th , top

46 % LHS(I) + 2* centres(I) -0.3 0; % 6th , bot

47 % LHS(I) + 5* centres(I)/2 0.3 0; % 7th , top

48 % LHS(I) + 5* centres(I)/2 0.0 0; % 7th , mid
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49 % LHS(I) + 5* centres(I)/2 -0.3 0]; % 7th , bot

50 % end

51

52 % toc

53 % folds = {'S11 '; 'S22 '};

54 % subfolds = {'sp1 '; 'sp5 '};

55 folds = {'f', 'f_s', 'f_r', 'f_lr', 'm', 'e', 's', 's_s', 'ee'};

56 subfolds = {'fxx', 'fyy', 'fzz', 'fxx_s ', 'fyy_s ', 'fzz_s ', 'fxx_r ', 'fyy_r ', 'fzz_r ', 'fxx_lr ',

↪→ 'fyy_lr ', 'fzz_lr ', 'mxx', 'myy', 'mzz', 'exx', 'eyy', 'ezz', 'exy', 'sxx_sp1 ', 'syy_sp1 '

↪→ , 'szz_sp1 ', 'sxy_sp1 ', 'sxx_sp5 ', 'syy_sp5 ', 'szz_sp5 ', 'sxy_sp5 ', 's_xx_s ', 's_yy_s ', '

↪→ s_zz_s '};

57 % hold on

58

59 if exist(strcat(dataPath , '/Postprocessing/eleCount.csv')) == 7

60 eleCount = csvread(strcat(dataPath , '/Postprocessing/eleCount.csv'));

61 end

62 if exist(strcat(dataPath , '/Postprocessing/nodeCount.csv')) == 7

63 nodeCount = csvread(strcat(dataPath , '/Postprocessing/nodeCount.csv'));

64 end

65 if exist(strcat(dataPath , '/Postprocessing/times.csv')) == 7

66 timeCount = csvread(strcat(dataPath , '/Postprocessing/times.csv'));

67 end

68

69 for i = test

70 u{i} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/u.csv', i)));

71 coords{:, :, i} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/nodes.csv', i)));

72 elements{:, :, i} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/elements.csv', i)));

73 F{i} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/f.csv', i)));

74 if exist(strcat(dataPath , sprintf('/Postprocessing /%d/forceCoords.csv', i))) == 2

75 forceCoords{i} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/forceCoords.csv', i)));

76 end

77 % U = csvread(strcat(dataPath , sprintf('/ Postprocessing /%d/u.csv ', i)));

78 % F = csvread(strcat(dataPath , sprintf('/ Postprocessing /%d/f.csv ', i)));

79 % plot(U(:, 2), F(:, 1))

80 % endF(i, 1) = F(end , 1);

81

82 for j = 1: length(folds) % folder or folds

83 for k = 1: length(subfolds) % subfolders or subfolds

84 % csvstruct = dir(strcat(dataPath , sprintf('/ Postprocessing /%d/%s/%s/*.csv ', i, folds{j},

↪→ subfolds{k})));

85

86 if exist(strcat(dataPath , sprintf('/Postprocessing /%d/%s/%s/', i, folds{j}, subfolds{k})))

↪→ == 7

87 % List and store all the names of the csv files in the

88 % relevant folder

89 csvlisttemp = ls(strcat(dataPath , sprintf('/Postprocessing /%d/%s/%s/*. csv', i, folds{j},

↪→ subfolds{k})));

90 % Store the names of the csv files as a sequence of strings

91 % as opposed to single characters (i.e. each entry as a seperate

92 % name instead of a character , 1.csv instead of 1,.,c,s,v)

93 csvlist = {};

94 for l = 1: length(csvlisttemp (:, 1))

95 csvlist{l} = csvlisttemp(l, 1: strfind(csvlisttemp(l, :), '.csv') - 1);

96 end

97 % Count the number of .csv files in the selected folder

98 csvnum(i, j, k) = length(csvlist);

99

100 for l = 1: csvnum(i, j, k)

101 switch folds{j}

102 % case 'S11 '

103 % switch subfolds{k}

104 % case subfolds {1}

105 % s.s11.sp1list{i} = csvlist;

106 % s.s11.sp1{i}{l} = csvread(strcat(dataPath , sprintf('/ Postprocessing /%d/S11/

↪→ sp1/', i), csvlist{l}, '.csv '));

107 % case subfolds {2}

108 % s.s11.sp5list{i} = csvlist;

109 % s.s11.sp5{i}{l} = csvread(strcat(dataPath , sprintf('/ Postprocessing /%d/S11/

↪→ sp5/', i), csvlist{l}, '.csv '));

110 % end

111 % case 'S22 '

112 % switch subfolds{k}

113 % case subfolds {1}
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114 % s.s22.sp1list{i} = csvlist;

115 % s.s22.sp1{i}{l} = csvread(strcat(dataPath , sprintf('/ Postprocessing /%d/S22/

↪→ sp1/', i), csvlist{l}, '.csv '));

116 % case subfolds {2}

117 % s.s22.sp5list{i} = csvlist;

118 % s.s22.sp5{i}{l} = csvread(strcat(dataPath , sprintf('/ Postprocessing /%d/S22/

↪→ sp5/', i), csvlist{l}, '.csv '));

119 % end

120 % case 'S22 '

121 % switch subfolds{k}

122 % case subfolds {1}

123 % s.s22.sp1list{i} = csvlist;

124 % s.s22.sp1{i}{l} = csvread(strcat(dataPath , sprintf('/ Postprocessing /%d/S22/

↪→ sp1/', i), csvlist{l}, '.csv '));

125 % case subfolds {2}

126 % s.s22.sp5list{i} = csvlist;

127 % s.s22.sp5{i}{l} = csvread(strcat(dataPath , sprintf('/ Postprocessing /%d/S22/

↪→ sp5/', i), csvlist{l}, '.csv '));

128 % end

129 % case 'Mises '

130 % switch subfolds{k}

131 % case subfolds {1}

132 % s.mises.sp1list{i} = csvlist;

133 % s.mises.sp1{i}{l} = csvread(strcat(dataPath , sprintf('/ Postprocessing /%d/

↪→ mises/sp1/', i), csvlist{l}, '.csv '));

134 % case subfolds {2}

135 % s.mises.sp5list{i} = csvlist;

136 % s.mises.sp5{i}{l} = csvread(strcat(dataPath , sprintf('/ Postprocessing /%d/

↪→ mises/sp5/', i), csvlist{l}, '.csv '));

137 % end

138 case 's'

139 switch subfolds{k}

140 case 'sxx'

141 s.sxx.list{i} = csvlist;

142 s.sxx.vals{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/s/sxx/'

↪→ , i), csvlist{l}, '.csv'));

143 case 'syy'

144 s.syy.list{i} = csvlist;

145 s.syy.vals{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/s/syy/'

↪→ , i), csvlist{l}, '.csv'));

146 case 'szz'

147 s.szz.list{i} = csvlist;

148 s.szz.vals{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/s/szz/'

↪→ , i), csvlist{l}, '.csv'));

149 case 'sxy'

150 s.sxy.list{i} = csvlist;

151 s.sxy.vals{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/s/sxy/'

↪→ , i), csvlist{l}, '.csv'));

152 case 'sxx_sp1 '

153 s.sxx.sp1list{i} = csvlist;

154 s.sxx.sp1{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/s/

↪→ sxx_sp1/', i), csvlist{l}, '.csv'));

155 case 'syy_sp1 '

156 s.syy.sp1list{i} = csvlist;

157 s.syy.sp1{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/s/

↪→ syy_sp1/', i), csvlist{l}, '.csv'));

158 case 'szz_sp1 '

159 s.szz.sp1list{i} = csvlist;

160 s.szz.sp1{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/s/

↪→ szz_sp1/', i), csvlist{l}, '.csv'));

161 case 'sxy_sp1 '

162 s.sxy.sp1list{i} = csvlist;

163 s.sxy.sp1{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/s/

↪→ sxy_sp1/', i), csvlist{l}, '.csv'));

164 case 'sxx_sp5 '

165 s.sxx.sp5list{i} = csvlist;

166 s.sxx.sp5{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/s/

↪→ sxx_sp5/', i), csvlist{l}, '.csv'));

167 case 'syy_sp5 '

168 s.syy.sp5list{i} = csvlist;

169 s.syy.sp5{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/s/

↪→ syy_sp5/', i), csvlist{l}, '.csv'));

170 case 'szz_sp5 '
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171 s.szz.sp5list{i} = csvlist;

172 s.szz.sp5{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/s/

↪→ szz_sp5/', i), csvlist{l}, '.csv'));

173 case 'sxy_sp5 '

174 s.sxy.sp5list{i} = csvlist;

175 s.sxy.sp5{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/s/

↪→ sxy_sp5/', i), csvlist{l}, '.csv'));

176 end

177 case 's_s'

178 switch subfolds{k}

179 case 's_xx_s '

180 s.s_xx_s.list{i} = csvlist;

181 s.s_xx_s.vals{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/s_s/

↪→ s_xx_s/', i), csvlist{l}, '.csv'));

182 case 's_yy_s '

183 s.s_yy_s.list{i} = csvlist;

184 s.s_yy_s.vals{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/s_s/

↪→ s_yy_s/', i), csvlist{l}, '.csv'));

185 case 's_zz_s '

186 s.s_zz_s.list{i} = csvlist;

187 s.s_zz_s.vals{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/s_s/

↪→ s_zz_s/', i), csvlist{l}, '.csv'));

188 end

189 case 'e'

190 switch subfolds{k}

191 % Note that the previous code considered the section points

192 % within a given shell element but this changed when the extraction

193 % was done directly from the .odb

194 case 'exx'

195 e.exx.sp1list{i} = csvlist;

196 e.exx.sp1{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/e/exx/',

↪→ i), csvlist{l}, '.csv'));

197 % case 'exx '

198 % e.e11.sp5list{i} = csvlist;

199 % e.e11.sp5{i}{l} = csvread(strcat(dataPath , sprintf('/ Postprocessing /%d/E11/

↪→ sp5/', i), csvlist{l}, '.csv '));

200 case 'eyy'

201 e.eyy.sp1list{i} = csvlist;

202 e.eyy.sp1{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/e/eyy/',

↪→ i), csvlist{l}, '.csv'));

203 % case 'eyy '

204 % e.e22.sp5list{i} = csvlist;

205 % e.e22.sp5{i}{l} = csvread(strcat(dataPath , sprintf('/ Postprocessing /%d/E22/

↪→ sp5/', i), csvlist{l}, '.csv '));

206 case 'ezz'

207 e.ezz.sp1list{i} = csvlist;

208 e.ezz.sp1{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/e/ezz/',

↪→ i), csvlist{l}, '.csv'));

209 % case 'ezz '

210 % e.e22.sp5list{i} = csvlist;

211 % e.e22.sp5{i}{l} = csvread(strcat(dataPath , sprintf('/ Postprocessing /%d/E22/

↪→ sp5/', i), csvlist{l}, '.csv '));

212 case 'exy'

213 e.exy.sp1list{i} = csvlist;

214 e.exy.sp1{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/e/exy/',

↪→ i), csvlist{l}, '.csv'));

215 % case 'ezz '

216 % e.e22.sp5list{i} = csvlist;

217 % e.e22.sp5{i}{l} = csvread(strcat(dataPath , sprintf('/ Postprocessing /%d/E22/

↪→ sp5/', i), csvlist{l}, '.csv '));

218 end

219 case 'ee'

220 switch subfolds{k}

221 % Note that the previous code considered the section points

222 % within a given shell element but this changed when the extraction

223 % was done directly from the .odb

224 case 'exx'

225 ee.exx.sp1list{i} = csvlist;

226 ee.exx.sp1{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/ee/exx/

↪→ ', i), csvlist{l}, '.csv'));

227 % case 'exx '

228 % e.e11.sp5list{i} = csvlist;

229 % e.e11.sp5{i}{l} = csvread(strcat(dataPath , sprintf('/ Postprocessing /%d/E11/
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↪→ sp5/', i), csvlist{l}, '.csv '));

230 case 'eyy'

231 ee.eyy.sp1list{i} = csvlist;

232 ee.eyy.sp1{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/ee/eyy/

↪→ ', i), csvlist{l}, '.csv'));

233 % case 'eyy '

234 % e.e22.sp5list{i} = csvlist;

235 % e.e22.sp5{i}{l} = csvread(strcat(dataPath , sprintf('/ Postprocessing /%d/E22/

↪→ sp5/', i), csvlist{l}, '.csv '));

236 case 'exy'

237 ee.exy.sp1list{i} = csvlist;

238 ee.exy.sp1{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/ee/exy/

↪→ ', i), csvlist{l}, '.csv'));

239 % case 'ezz '

240 % e.e22.sp5list{i} = csvlist;

241 % e.e22.sp5{i}{l} = csvread(strcat(dataPath , sprintf('/ Postprocessing /%d/E22/

↪→ sp5/', i), csvlist{l}, '.csv '));

242 end

243 case 'f'

244 switch subfolds{k}

245 case 'fxx'

246 f.fxx.list{i} = csvlist;

247 f.fxx.vals{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/f/fxx/'

↪→ , i), csvlist{l}, '.csv'));

248 case 'fyy'

249 f.fyy.list{i} = csvlist;

250 f.fyy.vals{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/f/fyy/'

↪→ , i), csvlist{l}, '.csv'));

251 case 'fzz'

252 f.fzz.list{i} = csvlist;

253 f.fzz.vals{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/f/fzz/'

↪→ , i), csvlist{l}, '.csv'));

254 end

255 case 'f_s' % SLAB NODES

256 switch subfolds{k}

257 case 'fxx_s '

258 f.fxx_s.list{i} = csvlist;

259 f.fxx_s.vals{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/f_s/

↪→ fxx_s/', i), csvlist{l}, '.csv'));

260 case 'fyy_s '

261 f.fyy_s.list{i} = csvlist;

262 f.fyy_s.vals{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/f_s/

↪→ fyy_s/', i), csvlist{l}, '.csv'));

263 case 'fzz_s '

264 f.fzz_s.list{i} = csvlist;

265 f.fzz_s.vals{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/f_s/

↪→ fzz_s/', i), csvlist{l}, '.csv'));

266 end

267 case 'f_r' % REINFORCEMENT NODES

268 switch subfolds{k}

269 case 'fxx_r '

270 f.fxx_r.list{i} = csvlist;

271 f.fxx_r.vals{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/f_r/

↪→ fxx_r/', i), csvlist{l}, '.csv'));

272 case 'fyy_r '

273 f.fyy_r.list{i} = csvlist;

274 f.fyy_r.vals{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/f_r/

↪→ fyy_r/', i), csvlist{l}, '.csv'));

275 case 'fzz_r '

276 f.fzz_r.list{i} = csvlist;

277 f.fzz_r.vals{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/f_r/

↪→ fzz_r/', i), csvlist{l}, '.csv'));

278 end

279 case 'f_lr' % REINFORCEMENT NODES

280 switch subfolds{k}

281 case 'fxx_lr '

282 f.fxx_lr.list{i} = csvlist;

283 f.fxx_lr.vals{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/f_lr

↪→ /fxx_lr/', i), csvlist{l}, '.csv'));

284 case 'fyy_lr '

285 f.fyy_lr.list{i} = csvlist;

286 f.fyy_lr.vals{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/f_lr

↪→ /fyy_lr/', i), csvlist{l}, '.csv'));
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287 case 'fzz_lr '

288 f.fzz_lr.list{i} = csvlist;

289 f.fzz_lr.vals{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/f_lr

↪→ /fzz_lr/', i), csvlist{l}, '.csv'));

290 end

291 case 'm'

292 switch subfolds{k}

293 case 'mxx'

294 m.mxx.list{i} = csvlist;

295 m.mxx.vals{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/m/mxx/'

↪→ , i), csvlist{l}, '.csv'));

296 case 'myy'

297 m.myy.list{i} = csvlist;

298 m.myy.vals{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/m/myy/'

↪→ , i), csvlist{l}, '.csv'));

299 case 'mzz'

300 m.mzz.list{i} = csvlist;

301 m.mzz.vals{i}{l} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/m/mzz/'

↪→ , i), csvlist{l}, '.csv'));

302 end

303 end

304 end

305 end

306 end

307 end

308 end

309 save(strcat(dataPath , num2str('/Postprocessing/processed ')));

310 toc

311 end

312 % hold off

313 if nargin == 1 | all(nargin == 2 & strcmp(varargin {1}, 'postprocess_only '))

314 if all(nargin == 2)

315 load(strcat(dataPath , num2str('/Postprocessing/processed ')));

316 end

317

318 testlist_temp = ls(strcat(dataPath , '/*. odb'));

319 testlist = {};

320 for l = 1: length(testlist_temp (:, 1))

321 testlist{l} = testlist_temp(l, 1: strfind(testlist_temp(l, :), '.odb') - 1);

322 test(l) = str2num(testlist{l});

323 end

324

325 tic

326 % csvwrite('test.csv ', [endF endF/endF (1)], 0, 0)

327 % mises.sp1.ave = []; mises.sp5.ave = [];

328 k = 1;

329 for i = test

330 if exist(strcat(dataPath , sprintf('/Postprocessing /%d/sn.csv', i))) == 2

331 slab_nodes = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/sn.csv', i)));

332 coords_c{i} = coords{i}(find(coords{i}(:, 1) >= min(slab_nodes (:, 1))), :);

333 coords_s{i} = coords{i}(find(coords{i}(:, 1) < min(slab_nodes (:, 1)) & coords{i}(:, 3) <=

↪→ top_t_depth(i)), :);

334 else

335 coords_s{i} = coords{i}(find(coords{i}(:, 3) <= top_t_depth(i)), :);

336 end

337

338 % standardS11.sp5.av = []; standardS11.sp5.diff = [];

339

340 % Use the following line to extract from nodes up to a certain length of beam

341 % nodelabels = [coords_s{i}(find(coords_s{i}(:, 1) <= 300000 & coords_s{i}(:, 2) <= nodelocs(1,

↪→ 1) + 1e-5), :)];

342

343 % Find the nodes at the chosen locations based on nodelocs defined above

344 % for j = 1: length(nodelocs(:, 1))

345 % nodelabels = [nodelabels; coords_s{i}(find(abs(coords_s{i}(:, 2) - nodelocs(j, 1, i)) < 1e

↪→ -5 & abs(coords_s{i}(:, 4) - nodelocs(j, 3, i)) < 1e-5, 1), :)];

346 % end

347 % figure

348 % subplot(2, 1, k)

349 % hold on

350 for J = 1: cell_number(i) % Perforations (including the initial)

351 % % Go through the desired locations and find the node labels

352 % % that match them
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353 % nodelabels = [];

354

355 % nodelabels = coords_s{i}(find(abs(coords_s{i}(:, 2) - (LHS(i) - centres(i)/2 + J*centres(i)

↪→ /2)) < 1e-5 & abs(coords_s{i}(:, 4) - 0) < 1e-5), :);

356

357 % % Use only the nodelabels that have output (i.e. remove unconnected

358 % % nodes from the requested node list , nodelabels)

359 % indexstore = [];

360 % for index = 1: length(f.fxx.list {1})

361 % if ~isempty(find(nodelabels (:, 1) == str2num(f.fxx.list {1}{ index })))

362 % indexstore = [indexstore; find(nodelabels (:, 1) == str2num(f.fxx.list {1}{ index }))];

363 % end

364 % end

365 % nodelabels = nodelabels(sort(indexstore), :);

366

367 % All elements

368 elementlabels{i} = elements{:, :, i};

369

370 % % Find associated elements from the list of elements

371 % % This can be done using matlab as shown below:

372

373 % for k = 1: length(nodelabels (:, 1))

374 % holder{k} = nodelabels(k, 1);

375 % for col = 2: length(elementlabels (1, :))

376 % if ~isempty(find(elementlabels (:, col) == nodelabels(k, 1)))

377 % labelholder = elementlabels(find(elementlabels (:, col) == nodelabels(k, 1)), 1);

378 % holder{k} = [holder{k} labelholder '];

379 % end

380 % end

381 % end

382

383 % % Or we can use the list generated using python directly from ABAQUS:

384 fieldKeys{i}{J} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/%s/%s/fieldKeys/

↪→ fieldKeys.csv', i, folds{1}, subfolds {1})));

385

386 % Using fieldKeys , or holder , from above , the elements can be classified

387 % Firstly , group the nodes based along with their corresponding angles

388 % for a requested perforation , J

389 slices{i}{J} = findSectionAngles (1e-3, i, coords_s , J, fingerprint);

390 % Note that a slice , S, is thus found in: slices{i}{J}. nodes{S}

391 % (where i and J are the test and perforation number respectively)

392 % and the associated angle , from the vertical , for that slice is:

393 % slices{i}{J}. thetas(S).

394 for S = 1: length(slices{i}{J}. thetas)

395 % Then , add the elemental contributions at each 'slice ' from the

396 % negative and positive side of each slice (negative being the preceding

397 % and positive the succeeding slice respectively). For nodal forces:

398 forces.xx{i}{J}{S} = addSliceContributions(slices{i}{J}.x, coords_s{i}, slices{i}{J}.

↪→ ordered_nodes , S, elementlabels{i}, fieldKeys{i}{J}, f.fxx.vals{i}, f.fxx.list{i});

399 forces.yy{i}{J}{S} = addSliceContributions(slices{i}{J}.x, coords_s{i}, slices{i}{J}.

↪→ ordered_nodes , S, elementlabels{i}, fieldKeys{i}{J}, f.fyy.vals{i}, f.fyy.list{i});

400 forces.zz{i}{J}{S} = addSliceContributions(slices{i}{J}.x, coords_s{i}, slices{i}{J}.

↪→ ordered_nodes , S, elementlabels{i}, fieldKeys{i}{J}, f.fzz.vals{i}, f.fzz.list{i});

401 % and for the nodal moments:

402 moments.xx{i}{J}{S} = addSliceContributions(slices{i}{J}.x, coords_s{i}, slices{i}{J}.

↪→ ordered_nodes , S, elementlabels{i}, fieldKeys{i}{J}, m.mxx.vals{i}, m.mxx.list{i});

403 moments.yy{i}{J}{S} = addSliceContributions(slices{i}{J}.x, coords_s{i}, slices{i}{J}.

↪→ ordered_nodes , S, elementlabels{i}, fieldKeys{i}{J}, m.myy.vals{i}, m.myy.list{i});

404 moments.zz{i}{J}{S} = addSliceContributions(slices{i}{J}.x, coords_s{i}, slices{i}{J}.

↪→ ordered_nodes , S, elementlabels{i}, fieldKeys{i}{J}, m.mzz.vals{i}, m.mzz.list{i});

405 % % and for the strain:

406 % strain.xx.ave{i}{J}{S} = addSliceContributions(slices{i}{J}. ordered_nodes , S,

↪→ elementlabels{i}, fieldKeys{i}{J}, e.exx.sp1 , e.exx.sp1list{i}, 'average ');

407 % strain.yy.ave{i}{J}{S} = addSliceContributions(slices{i}{J}. ordered_nodes , S,

↪→ elementlabels{i}, fieldKeys{i}{J}, e.eyy.sp1 , e.eyy.sp1list{i}, 'average ');

408 % strain.zz.ave{i}{J}{S} = addSliceContributions(slices{i}{J}. ordered_nodes , S,

↪→ elementlabels{i}, fieldKeys{i}{J}, e.ezz.sp1 , e.ezz.sp1list{i}, 'average ');

409 % strain.xy.ave{i}{J}{S} = addSliceContributions(slices{i}{J}. ordered_nodes , S,

↪→ elementlabels{i}, fieldKeys{i}{J}, e.exy.sp1 , e.exy.sp1list{i}, 'average ');

410 % % and for the stress:

411 % [stats , stress.xx.ave{i}{J}{S}, diffratio] = aveList(s.syy.sp1list{i}, coords_s{i}, s.sxx

↪→ .sp1{i}, 0);

412 % stress.xx.ave{i}{J}{S} = addSliceContributions(slices{i}{J}.x, coords_s{i}, slices{i}{J}.
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↪→ ordered_nodes , S, elementlabels{i}, fieldKeys{i}{J}, s.sxx.sp1{i}, s.sxx.sp1list{i

↪→ }, 'average ');

413 % stress.yy.ave{i}{J}{S} = addSliceContributions(slices{i}{J}.x, coords_s{i}, slices{i}{J}.

↪→ ordered_nodes , S, elementlabels{i}, fieldKeys{i}{J}, s.syy.sp1{i}, s.syy.sp1list{i

↪→ }, 'average ');

414 % stress.zz.ave{i}{J}{S} = addSliceContributions(slices{i}{J}.x, coords_s{i}, slices{i}{J}.

↪→ ordered_nodes , S, elementlabels{i}, fieldKeys{i}{J}, s.szz.sp1{i}, s.szz.sp1list{i

↪→ }, 'average ');

415 % stress.xy.ave{i}{J}{S} = addSliceContributions(slices{i}{J}.x, coords_s{i}, slices{i}{J}.

↪→ ordered_nodes , S, elementlabels{i}, fieldKeys{i}{J}, s.sxy.sp1{i}, s.sxy.sp1list{i

↪→ }, 'average ');

416

417 % Thus for a test , i, and perforation , J, in that test the results

418 % for each slice , S, are stored in the above cell arrays. If a specific

419 % node , n, is required then the coordinates and results for that node

420 % are stored in slices{i}{J}. nodes{S}(n, :) and e.g.

421 % moments.zz{i}{J}{S}. nodeVals.nve{n} respectively.

422 % Note that moments.zz{i}{J}{S}. nodeVals.nve{n} contains

423 % the results at a node with the contributions from the

424 % elements related (moments.zz{i}{J}{S}. contributingElements.nve{n})

425 % either from the 'negative ', nve , or from the positive , pve ,

426 % for all the equilibrated increments in a test (i.e. the entire

427 % history of that node).

428 % Thus at time t (an abaqus 'frame ' as it 'S called)

429 % in a step during the analysis , the result for that node

430 % with the requested direction (nve or pve) can be found

431 % in e.g. moments.zz{i}{J}{S}. nodeVals.pve{n}(t)

432 % (where t = frame + 1 since frame = 0 is stored in t = 1).

433 end

434

435 % % Find the angles/slices that are within the top or bottom 'Tee ' part

436 % % rather than the web

437 % find(abs(slices{i}{J}. thetas) - atand(LHS(J)/top_t_depth(J)) <= 1e-3)

438 % slices{i}{J}. thetas(abs(slices{i}{J}. thetas) - atand(LHS(J)/top_t_depth(J)) <= 1e-3)

439

440 % % From all the angles calculated in data , only the angles

441 % % between 45 - 135 and 225 - 315 degrees are relevant for the Tee

442 % % calculations.

443 % data.thetas(find((data.thetas >= 45 & data.thetas <= 135) | (data.thetas >= 225 & data.

↪→ thetas <= 315)), :);

444

445 % [stats , f.fxx.ave , f.fxx.diff] = aveList(f.fxx.list{i}, nodelabels , f.fxx.vals(i, :));

446 % [stats , s22.sp1.ave , s22.sp1.diff] = aveList(S.s22.sp1list{i}, nodelabels , S.s22.sp1(i, :))

↪→ ;

447

448 % q = quiver(stats.nodes(:, 2), stats.nodes(:, 3), f.fxx.ave , zeros(length(f.fxx.ave(:, 1)),

↪→ 1), 'r');

449 % q.ShowArrowHead = 'off '

450 end

451

452 if exist(strcat(dataPath , sprintf('/Postprocessing /%d/sn.csv', i))) == 2

453 fieldKeys_c{i}{J} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/%s/%s/fieldKeys/

↪→ fieldKeys.csv', i, folds {2}, subfolds {4})));

454

455 slabSlices{i} = sortSlabNodes (1e-6, i, coords_c);

456

457 forces.xx_s{i} = addSlabContributions(coords_c{i}, slabSlices{i}. ordered_nodes , elementlabels

↪→ {i}, fieldKeys_c{i}{J}, f.fxx_s.vals{i}, f.fxx_s.list{i});

458 forces.yy_s{i} = addSlabContributions(coords_c{i}, slabSlices{i}. ordered_nodes , elementlabels

↪→ {i}, fieldKeys_c{i}{J}, f.fyy_s.vals{i}, f.fyy_s.list{i});

459 forces.zz_s{i} = addSlabContributions(coords_c{i}, slabSlices{i}. ordered_nodes , elementlabels

↪→ {i}, fieldKeys_c{i}{J}, f.fzz_s.vals{i}, f.fzz_s.list{i});

460

461 % stress.xx_s.ave{i} = addSlabContributions(coords_c{i}, slabSlices{i}. ordered_nodes ,

↪→ elementlabels{i}, fieldKeys_c{i}{J}, s.s_xx_s.vals{i}, s.s_xx_s.list{i}, 'average ');

462 % stress.yy_s.ave{i} = addSlabContributions(coords_c{i}, slabSlices{i}. ordered_nodes ,

↪→ elementlabels{i}, fieldKeys_c{i}{J}, s.s_yy_s.vals{i}, s.s_yy_s.list{i}, 'average ');

463 % stress.zz_s.ave{i} = addSlabContributions(coords_c{i}, slabSlices{i}. ordered_nodes ,

↪→ elementlabels{i}, fieldKeys_c{i}{J}, s.s_zz_s.vals{i}, s.s_zz_s.list{i}, 'average ');

464 end

465

466 if exist(strcat(dataPath , sprintf('/Postprocessing /%d/f_r', i))) == 7

467 fieldKeys_r{i}{J} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/%s/%s/fieldKeys/
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↪→ fieldKeys.csv', i, folds{3}, subfolds {7})));

468

469 [~, reinfindxs] = ismember(fieldKeys_r{i}{J}(:, 1), coords{i}(:, 1));

470 coords_r{i} = coords{i}(sort(reinfindxs), :);

471

472 reinfSlices{i} = sortSlabNodes (1e-6, i, coords_r);

473

474 forces.xx_r{i} = addSlabContributions(coords_r{i}, reinfSlices{i}. ordered_nodes ,

↪→ elementlabels{i}, fieldKeys_r{i}{J}, f.fxx_r.vals{i}, f.fxx_r.list{i});

475 forces.yy_r{i} = addSlabContributions(coords_r{i}, reinfSlices{i}. ordered_nodes ,

↪→ elementlabels{i}, fieldKeys_r{i}{J}, f.fyy_r.vals{i}, f.fyy_r.list{i});

476 forces.zz_r{i} = addSlabContributions(coords_r{i}, reinfSlices{i}. ordered_nodes ,

↪→ elementlabels{i}, fieldKeys_r{i}{J}, f.fzz_r.vals{i}, f.fzz_r.list{i});

477 end

478

479 if exist(strcat(dataPath , sprintf('/Postprocessing /%d/f_lr', i))) == 7

480 fieldKeys_lr{i}{J} = csvread(strcat(dataPath , sprintf('/Postprocessing /%d/%s/%s/fieldKeys/

↪→ fieldKeys.csv', i, folds{4}, subfolds {10})));

481

482 [~, reinfindxs] = ismember(fieldKeys_lr{i}{J}(:, 1), coords{i}(:, 1));

483 coords_lr{i} = coords{i}(sort(reinfindxs), :);

484

485 reinfSlicesLat{i} = sortSlabNodes (1e-6, i, coords_lr);

486

487 forces.xx_lr{i} = addSlabContributions(coords_lr{i}, reinfSlicesLat{i}. ordered_nodes ,

↪→ elementlabels{i}, fieldKeys_lr{i}{J}, f.fxx_lr.vals{i}, f.fxx_lr.list{i});

488 forces.yy_lr{i} = addSlabContributions(coords_lr{i}, reinfSlicesLat{i}. ordered_nodes ,

↪→ elementlabels{i}, fieldKeys_lr{i}{J}, f.fyy_lr.vals{i}, f.fyy_lr.list{i});

489 forces.zz_lr{i} = addSlabContributions(coords_lr{i}, reinfSlicesLat{i}. ordered_nodes ,

↪→ elementlabels{i}, fieldKeys_lr{i}{J}, f.fzz_lr.vals{i}, f.fzz_lr.list{i});

490 end

491

492 % axis equal

493 % hold off

494 k = k + 1;

495 % figure

496 % locs_pos = find(s11.sp1.ave >= 0);

497 % locs_neg = find(s11.sp1.ave < 0);

498 % hold on

499 % q(1) = quiver(stats.nodes(locs_pos , 2), stats.nodes(locs_pos , 3), s11.sp1.ave(locs_pos , :)/

↪→ max(abs(s11.sp1.ave)), zeros(length(s11.sp1.ave(locs_pos , 1)), 1), 0, 'r');

500 % xs = stats.nodes(locs_neg , 2) + abs(s11.sp1.ave(locs_neg , :)/max(abs(s11.sp1.ave)))

501 % q(2) = quiver(xs , stats.nodes(locs_neg , 3), s11.sp1.ave(locs_neg , :)/max(abs(s11.sp1.ave)),

↪→ zeros(length(s11.sp1.ave(locs_neg , 1)), 1), 0, 'b');

502 % hold off

503 end

504 toc

505 save(strcat(dataPath , '/Postprocessing/postprocessed '))

506 end

507 end
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D.2 postProcess_NA()

1 function postProcess_NA(dataPath)

2

3 tic

4 addpath('F:\ Tests\matlab\');

5

6 load(strcat(dataPath , num2str('/Postprocessing/postprocessed ')));

7 fingerprint = csvread(strcat(dataPath , '/fingerprint.csv'));

8

9 test_number = length(fingerprint (:, 1));

10 LHS = fingerprint (:, 2);

11 RHS = fingerprint (:, 3);

12 centres = fingerprint (:, 4);

13 diameter = fingerprint (:, 5);

14 inp.L = fingerprint (:, 6);

15 cell_number = fingerprint (:, 7) + 1;

16 top_t_depth = fingerprint (:, 9);

17 top_t_flange = fingerprint (:, 10);

18 bot_t_depth = fingerprint (:, 11);

19 bot_t_flange = fingerprint (:, 12);

20 slab_width = fingerprint (:, 13);

21

22 for i = 1: test_number

23 for J = 1: cell_number(i)

24 if exist(strcat(dataPath , sprintf('/Postprocessing /%d/s/', i))) == 7

25 % % Fix fieldKeys for cases with changing meshes

26 % folds = {'f', 'f_s ', 'f_r ', 'f_lr ', 'm', 'e', 's', 's_s ', 'ee '};

27 % subfolds = {'fxx ', 'fyy ', 'fzz ', 'fxx_s ', 'fyy_s ', 'fzz_s ', 'fxx_r ', 'fyy_r ', 'fzz_r ', '

↪→ fxx_lr ', 'fyy_lr ', 'fzz_lr ', 'mxx ', 'myy ', 'mzz ', 'exx ', 'eyy ', 'ezz ', 'exy ', 'sxx_sp1

↪→ ', 'syy_sp1 ', 'szz_sp1 ', 'sxy_sp1 ', 'sxx_sp5 ', 'syy_sp5 ', 'szz_sp5 ', 'sxy_sp5 ', 's_xx_s

↪→ ', 's_yy_s ', 's_zz_s '};

28 % fieldKeys{i}{J} = csvread(strcat(dataPath , sprintf('/ Postprocessing /%d/%s/%s/fieldKeys/

↪→ fieldKeys.csv ', i, folds {1}, subfolds {1})));

29

30 for S = 1: length(slices{i}{J}. thetas)%indx

31 % For the NA estimate using the stresses

32 % Adapted from findSliceEquilibrium.m & calcSectionNA.m

33 stress.xx.sp1{i}{J}{S} = addSliceContributions(slices{i}{J}.x, coords_s{i}, slices{i}{J}.

↪→ ordered_nodes , S, elementlabels{i}, fieldKeys{i}{J}, s.sxx.sp1{i}, s.sxx.sp1list{i},

↪→ 'average ');

34 stress.yy.sp1{i}{J}{S} = addSliceContributions(slices{i}{J}.x, coords_s{i}, slices{i}{J}.

↪→ ordered_nodes , S, elementlabels{i}, fieldKeys{i}{J}, s.syy.sp1{i}, s.syy.sp1list{i},

↪→ 'average ');

35 stress.zz.sp1{i}{J}{S} = addSliceContributions(slices{i}{J}.x, coords_s{i}, slices{i}{J}.

↪→ ordered_nodes , S, elementlabels{i}, fieldKeys{i}{J}, s.szz.sp1{i}, s.szz.sp1list{i},

↪→ 'average ');

36 stress.xy.sp1{i}{J}{S} = addSliceContributions(slices{i}{J}.x, coords_s{i}, slices{i}{J}.

↪→ ordered_nodes , S, elementlabels{i}, fieldKeys{i}{J}, s.sxy.sp1{i}, s.sxy.sp1list{i},

↪→ 'average ');

37

38 stress.xx.sp5{i}{J}{S} = addSliceContributions(slices{i}{J}.x, coords_s{i}, slices{i}{J}.

↪→ ordered_nodes , S, elementlabels{i}, fieldKeys{i}{J}, s.sxx.sp5{i}, s.sxx.sp5list{i},

↪→ 'average ');

39 stress.yy.sp5{i}{J}{S} = addSliceContributions(slices{i}{J}.x, coords_s{i}, slices{i}{J}.

↪→ ordered_nodes , S, elementlabels{i}, fieldKeys{i}{J}, s.syy.sp5{i}, s.syy.sp5list{i},

↪→ 'average ');

40 stress.zz.sp5{i}{J}{S} = addSliceContributions(slices{i}{J}.x, coords_s{i}, slices{i}{J}.

↪→ ordered_nodes , S, elementlabels{i}, fieldKeys{i}{J}, s.szz.sp5{i}, s.szz.sp5list{i},

↪→ 'average ');

41 stress.xy.sp5{i}{J}{S} = addSliceContributions(slices{i}{J}.x, coords_s{i}, slices{i}{J}.

↪→ ordered_nodes , S, elementlabels{i}, fieldKeys{i}{J}, s.sxy.sp5{i}, s.sxy.sp5list{i},

↪→ 'average ');

42

43

44 phi = slices{i}{J}.phis(S);

45 % if 0 < phi & phi <= 90

46 % theta = -(90 - phi);

47 % elseif 90 < phi & phi <= 180

48 % theta = phi - 90;
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49 % elseif 180 < phi & phi <= 270

50 % theta = -(270 - phi);

51 % elseif 270 < phi & phi <= 360

52 % theta = phi - 270;

53 % end

54 theta = slices{i}{J}. thetas(S);

55

56 % Rotation matrices. Note that they are constructed so that

57 % +ve theta is COUNTER -clockwise

58 R = [cosd(theta) sind(theta); -sind(theta) cosd(theta)];

59 Rz = [ cosd(theta) sind(theta) 0;

60 -sind(theta) cosd(theta) 0;

61 0 0 1];

62

63 % Preliminaries and error checking

64 if length(stress.xx.sp1{i}{J}{S}. nodeVals.nve) ~= length(stress.xx.sp1{i}{J}{S}. nodeVals.pve)

65 error('The number of nodes between the +ve and -ve contributions not consistent.')

66 else

67 nodeCount = length(stress.xx.sp1{i}{J}{S}. nodeVals.nve);

68 timeCount = length(stress.xx.sp1{i}{1}{1}. nodeVals.nve {1});

69 end

70 for n = 1: nodeCount

71 % averaged stress field transformation

72 if (abs(slices{i}{J}. ordered_nodes{S}(n, 3) - fingerprint(i, 9)) <= 1e-3 | ...

73 abs(slices{i}{J}. ordered_nodes{S}(n, 3) - fingerprint(i, 9)) <= 1e-3) & ...

74 abs(slices{i}{J}. ordered_nodes{S}(n, 4)) > 1e-3

75 % if the node is in the flange , xx is the same , yy = zz and zz = yy and xz = xy and xy =

↪→ xz

76 stressstore.xx.sp1 = stress.xx.sp1{i}{J}{S}. nodeVals.averaged{n};

77 stressstore.yy.sp1 = stress.zz.sp1{i}{J}{S}. nodeVals.averaged{n};

78 stressstore.zz.sp1 = stress.yy.sp1{i}{J}{S}. nodeVals.averaged{n};

79 stressstore.xy.sp1 = zeros(length(stress.xx.sp1{i}{J}{S}. nodeVals.averaged{n}), 1);

80 stressstore.xz.sp1 = stress.xy.sp1{i}{J}{S}. nodeVals.averaged{n};

81

82 stressstore.xx.sp5 = stress.xx.sp5{i}{J}{S}. nodeVals.averaged{n};

83 stressstore.yy.sp5 = stress.zz.sp5{i}{J}{S}. nodeVals.averaged{n};

84 stressstore.zz.sp5 = stress.yy.sp5{i}{J}{S}. nodeVals.averaged{n};

85 stressstore.xy.sp5 = zeros(length(stress.xx.sp5{i}{J}{S}. nodeVals.averaged{n}), 1);

86 stressstore.xz.sp5 = stress.xy.sp5{i}{J}{S}. nodeVals.averaged{n};

87 else

88 stressstore.xx.sp1 = stress.xx.sp1{i}{J}{S}. nodeVals.averaged{n};

89 stressstore.yy.sp1 = stress.yy.sp1{i}{J}{S}. nodeVals.averaged{n};

90 stressstore.zz.sp1 = stress.zz.sp1{i}{J}{S}. nodeVals.averaged{n};

91 stressstore.xy.sp1 = stress.xy.sp1{i}{J}{S}. nodeVals.averaged{n};

92 stressstore.xz.sp1 = zeros(length(stress.xx.sp1{i}{J}{S}. nodeVals.averaged{n}), 1);

93

94 stressstore.xx.sp5 = stress.xx.sp5{i}{J}{S}. nodeVals.averaged{n};

95 stressstore.yy.sp5 = stress.yy.sp5{i}{J}{S}. nodeVals.averaged{n};

96 stressstore.zz.sp5 = stress.zz.sp5{i}{J}{S}. nodeVals.averaged{n};

97 stressstore.xy.sp5 = stress.xy.sp5{i}{J}{S}. nodeVals.averaged{n};

98 stressstore.xz.sp5 = zeros(length(stress.xx.sp5{i}{J}{S}. nodeVals.averaged{n}), 1);

99 end

100

101 for t = 1: length(stressstore.xx.sp1)

102 svec = [stressstore.xx.sp1(t);

103 stressstore.yy.sp1(t);

104 stressstore.zz.sp1(t);

105 stressstore.xy.sp1(t)/2;

106 0;

107 stressstore.xz.sp1(t)/2;];

108 stressmat = v2m(svec);

109 % s.ave.global(n, :) = svec ';

110 stressmat_t = Rz*stressmat*Rz ';

111

112 stress.x.sp1{i}{J}{S}. nodeVals.averaged{n}(t, 1) = stressmat_t (1, 1);

113 stress.x.NA_sp1{i}{J}{S}(t, n) = stressmat_t (1, 1); % Suitable for use with estimateNA ()

114

115 stress.y.sp1{i}{J}{S}. nodeVals.averaged{n}(t, 1) = stressmat_t (2, 2);

116 stress.y.NA_sp1{i}{J}{S}(t, n) = stressmat_t (2, 2); % Suitable for use with estimateNA ()

117

118 stress.z.sp1{i}{J}{S}. nodeVals.averaged{n}(t, 1) = stressmat_t (3, 3);

119 stress.z.NA_sp1{i}{J}{S}(t, n) = stressmat_t (3, 3); % Suitable for use with estimateNA ()

120
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121 stress.x_y.sp1{i}{J}{S}. nodeVals.averaged{n}(t, 1) = 2* stressmat_t (1, 2);

122 stress.x_y.NA_sp1{i}{J}{S}(t, n) = 2* stressmat_t (1, 2); % Suitable for use with

↪→ estimateNA ()

123

124 svec = [stressstore.xx.sp5(t);

125 stressstore.yy.sp5(t);

126 stressstore.zz.sp5(t);

127 stressstore.xy.sp5(t)/2;

128 0;

129 stressstore.xz.sp5(t)/2];

130 stressmat = v2m(svec);

131 % s.ave.global(n, :) = svec ';

132 stressmat_t = Rz*stressmat*Rz ';

133

134 stress.x.sp5{i}{J}{S}. nodeVals.averaged{n}(t, 1) = stressmat_t (1, 1);

135 stress.x.NA_sp5{i}{J}{S}(t, n) = stressmat_t (1, 1); % Suitable for use with estimateNA ()

136

137 stress.y.sp5{i}{J}{S}. nodeVals.averaged{n}(t, 1) = stressmat_t (2, 2);

138 stress.y.NA_sp5{i}{J}{S}(t, n) = stressmat_t (2, 2); % Suitable for use with estimateNA ()

139

140 stress.z.sp5{i}{J}{S}. nodeVals.averaged{n}(t, 1) = stressmat_t (3, 3);

141 stress.z.NA_sp5{i}{J}{S}(t, n) = stressmat_t (3, 3); % Suitable for use with estimateNA ()

142

143 stress.x_y.sp5{i}{J}{S}. nodeVals.averaged{n}(t, 1) = 2* stressmat_t (1, 2);

144 stress.x_y.NA_sp5{i}{J}{S}(t, n) = 2* stressmat_t (1, 2); % Suitable for use with

↪→ estimateNA ()

145 end

146

147 % % Plotting components

148 % s.ave.plotx(n, :) = (R'*[s.ave.local(n, 1); 0]) '; % x-comp and y-comp of the

↪→ transformed strain (exx)'

149 % s.ave.ploty(n, :) = (R '*[0; s.ave.local(n, 2)]) '; % x-comp and y-comp of the

↪→ transformed strain (eyy)'

150 end

151

152 % OLD

153 % for t = 1: length(s.sxx.sp1{i}{J}(:, 1))

154 % [stats , output , diffratio] = aveList(s.sxx.sp1list{i}, slices{i}{J}. ordered_nodes{S}(:,

↪→ 1), s.sxx.sp1{i}, 0, t);

155 % stress.xx.sp1{i}{J}{S}(t, :) = output ';

156 % [stats , output , diffratio] = aveList(s.sxx.sp5list{i}, slices{i}{J}. ordered_nodes{S}(:,

↪→ 1), s.sxx.sp5{i}, 0, t);

157 % stress.xx.sp5{i}{J}{S}(t, :) = output ';

158 % end

159 end

160 end

161 end

162 end

163

164 save(strcat(dataPath , num2str('/Postprocessing/postprocessed ')));

165 toc
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D.3 findSectionAngles()

1 function slice = findSectionAngles(tol , I, coords , perf_number , fingerprint)

2 % Use this function to find the nodes within a perforation

3 % defined by its number , perf_number , (including the first)

4 % coords is the array of coordinates for the entire test sample , I.

5 % fingerprint.csv is required for this function to work.

6 % slice.nodes will return the nodes that are relevant for that perforation

7 % (including the top and bottom Tees and adjacent webs) and

8 % slice.thetas will return the angles (from the vertical , clockwise positive

9 % for the top , counter -clockwise for the bottom)

10 % that correspond to a 'slice '.

11 % Note that eccentricities are not considered yet.

12

13

14 perf_number = floor(perf_number);

15

16 % if nargin == 5

17 % dataPath = varargin {1}

18 % fingerprint = csvread ('./ fingerprint.csv ');

19 % else

20 % fingerprint = csvread ('../ fingerprint.csv ');

21 % end

22

23 LHS = fingerprint (:, 2);

24 RHS = fingerprint (:, 3);

25 centres = fingerprint (:, 4);

26 diameter = fingerprint (:, 5);

27 inp.L = fingerprint (:, 6);

28 cell_number = fingerprint (:, 7);

29 top_t_depth = fingerprint (:, 9);

30 top_t_flange = fingerprint (:, 10);

31 bot_t_depth = fingerprint (:, 11);

32 bot_t_flange = fingerprint (:, 12);

33 slab_width = fingerprint (:, 13);

34

35 % x is the distance to the requested perforation

36 % and must be >= 1

37 if perf_number == 0

38 error('The requested perforation number cannot be less than 1')

39 else

40 x = LHS(I) + (perf_number - 1)*centres(I);

41 slice.x = x;

42 end

43

44 % Find the nodes that are relevant for this perforation. Note that the minimum

45 % perf_number is 1.

46 % OLD/UNUSED: extents = [min(max(perf_number - 1, 0), 1)*LHS(I) + (perf_number - 1)*centres(I) LHS(I)

↪→ + (perf_number - 1)*centres(I) + centres(I)/2];

47 total_endspace = LHS(I) - diameter(I)/2;

48 cell_side = (centres(I) - diameter(I))/2;

49 if (total_endspace - cell_side) >= tol

50 initial.length = (total_endspace - cell_side);

51 initial.LHS = LHS - initial.length;

52 else

53 initial.length = 0;

54 initial.LHS = LHS;

55 end

56 if perf_number == 1

57 % extents = [0 LHS(I) + centres(I)/2];

58 extents = [initial.length LHS(I) + centres(I)/2];

59 elseif perf_number > 1

60 extents = [LHS(I) + centres(I)/2 + (perf_number - 2)*centres(I) ...

61 LHS(I) + centres(I)/2 + (perf_number - 1)*centres(I)];

62 end

63

64 % Find the collection of nodes that lie within a perforation

65 slice.perf.total.nodes = coords{I}(find(extents (1) - tol <= coords{I}(:, 2) & coords{I}(:, 2) <=

↪→ extents (2) + tol), :);

66
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67 % Find the nodes lying exactly on the perforation edge. These will be used to

68 % find the angles at which sections can be considered

69 slice.perf.edge.nodes = coords{I}(find(sqrt(( coords{I}(:, 2) - x).^2 + coords{I}(:, 3).^2) - diameter

↪→ (I)/2 <= tol), :);

70

71 for i = 1: length(slice.perf.edge.nodes(:, 1))

72 if (slice.perf.edge.nodes(i, 2) - x) >= 0 & slice.perf.edge.nodes(i, 3) >= 0

73 slice.thetas(i, 1) = atand(slice.perf.edge.nodes(i, 3)/( slice.perf.edge.nodes(i, 2) - x)) - 90;

74 slice.phis(i, 1) = atand(slice.perf.edge.nodes(i, 3)/( slice.perf.edge.nodes(i, 2) - x));

75 elseif (slice.perf.edge.nodes(i, 2) - x) < 0 & slice.perf.edge.nodes(i, 3) >= 0

76 slice.thetas(i, 1) = 90 - abs(atand(slice.perf.edge.nodes(i, 3)/( slice.perf.edge.nodes(i, 2) - x)

↪→ ));

77 slice.phis(i, 1) = 180 - abs(atand(slice.perf.edge.nodes(i, 3)/( slice.perf.edge.nodes(i, 2) - x))

↪→ );

78 elseif (slice.perf.edge.nodes(i, 2) - x) < 0 & slice.perf.edge.nodes(i, 3) < 0

79 slice.thetas(i, 1) = atand(slice.perf.edge.nodes(i, 3)/( slice.perf.edge.nodes(i, 2) - x)) - 90;

80 slice.phis(i, 1) = atand(slice.perf.edge.nodes(i, 3)/( slice.perf.edge.nodes(i, 2) - x)) + 180;

81 elseif (slice.perf.edge.nodes(i, 2) - x) >= 0 & slice.perf.edge.nodes(i, 3) < 0

82 slice.thetas(i, 1) = 90 - abs(atand(slice.perf.edge.nodes(i, 3)/( slice.perf.edge.nodes(i, 2) - x)

↪→ ));

83 slice.phis(i, 1) = 360 - abs(atand(slice.perf.edge.nodes(i, 3)/( slice.perf.edge.nodes(i, 2) - x))

↪→ );

84 end

85 end

86

87 % Find the section nodes at a given angle and store them

88 for i = 1: length(slice.perf.edge.nodes) % note that slice.perf.edge.nodes corresponds

89 % exactly to slice.thetas and thus how

90 % many slices there are

91 % Note that sign() returns -1 for -ve , 1 for +ve and 0 for 0 so therefore it

92 % actually helps in returning one of eight 'zones ' when used as below

93 % i.e. the nodes at -x, y = 0

94 % the nodes in -x, +y

95 % the nodes at x = 0, +y

96 % the nodes in +x, +y

97 % the nodes at +x, y = 0

98 % the nodes in +x, -y

99 % the nodes at x = 0, -y

100 % and the nodes in -x, -y

101 % NOTE THAT IN THE ABOVE DESCRIPTION , x is slice.perf.total.nodes(:, 2) - x

102 placeholder = slice.perf.total.nodes(find((sign(slice.perf.total.nodes(:, 2) - x) == sign(slice.

↪→ perf.edge.nodes(i, 2) - x)) & ...

103 (sign(slice.perf.total.nodes(:, 3)) == sign(slice.perf.

↪→ edge.nodes(i, 3)))), :);

104 ratio = slice.perf.edge.nodes(i, 3)/( slice.perf.edge.nodes(i, 2) - x);

105 if all(abs(placeholder (:, 2) - x) <= tol)

106 nodes{i} = placeholder;

107 elseif abs(slice.perf.edge.nodes(i, 2) - x) <= tol

108 nodes{i} = placeholder(find(abs(placeholder (:, 2) - x) <= tol), :);

109 else

110 % Note that when y = 0, nodes = placeholder mathematically due to the ratio

111 told = 0.1; % Degree tolerance

112 nodes{i} = placeholder(find(abs(atand(placeholder (:, 3)./( placeholder (:, 2) - x)) - atand(ratio))

↪→ <= told), :);

113 end

114 [~, index{i}] = sort(sqrt(( round(nodes{i}(:, 2), log10 (1/tol)) - x).^2 + round(nodes{i}(:, 3),

↪→ log10 (1/ tol)).^2));

115 ordered_nodes{i} = nodes{i}(index{i}, :);

116 % From the bottom of each slice:

117 slice_length{i} = sqrt(( ordered_nodes{i}(end , 2) - x).^2 + ordered_nodes{i}(end , 3).^2) - diameter(

↪→ I)/2;

118 nodes_ys{i} = sqrt(( ordered_nodes{i}(:, 2) - x).^2 + ordered_nodes{i}(:, 3).^2) - diameter(I)/2;

119 ordered_node_positions{i} = sqrt(( ordered_nodes{i}(:, 2) - x).^2 + ...

120 ordered_nodes{i}(:, 3).^2) - diameter(I)/2;

121 end

122

123 % Store the nodes that are in the same 'radial ' location from the

124 % perforation centre

125 % Note that each node in a radial node sequence slice.radial_nodes{r}

126 % corresponds directly to both slice.thetas and slice.phis.

127 % Thus slice.radial_nodes {1} is at angle slice.thetas (1) and

128 % slice.phis (1)

129 [val , indx] = min(abs(slice.phis - 90));
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130 kount = length(find(abs(ordered_nodes{indx}(:, 4) - 0) <= tol));

131 for ii = 1:kount

132 placeholder = [];

133 for jj = 1: length(ordered_nodes)

134 placeholder = [placeholder; ordered_nodes{jj}(ii , :)];

135 end

136 radial_nodes{ii} = placeholder;

137 end

138

139 slice.nodes = nodes;

140 slice.ordered_nodes = ordered_nodes;

141 slice.index = index;

142 slice.length = slice_length;

143 slice.nodes_ys = nodes_ys;

144 slice.onp = ordered_node_positions;

145 slice.radial_nodes = radial_nodes;

146

147 % % From all the angles calculated in slice , only the angles

148 % % between 45 - 135 and 225 - 315 degrees are relevant for the Tee

149 % % calculations.

150 % angles = slice.thetas(find(( slice.thetas >= 45 & slice.thetas <= 135) | (slice.thetas >= 225 &

↪→ slice.thetas <= 315)), :);
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D.4 addSliceContributions()

1 function data = addSliceContributions(x, nodeCoords , sliceNodes , sliceNumber , elementlabels ,

↪→ fieldKeys , field , fieldlist , varargin)

2

3 % % Debugging ----------------------------

4 % i = 1

5 % J = 1

6 % nodeCoords = coords{i}

7 % sliceNodes = slices{i}{J}. ordered_nodes

8 % % S = 23

9 % sliceNumber = S

10 % field = f.fxx.vals

11 % fieldlist = f.fxx.list{i}

12 % n

13 % i = n

14 % j = 1

15 % % ----------------------------------------

16

17 tol = 1e-3;

18

19 data.contributingElements.nve{1} = [];

20 data.contributingElements.pve{1} = [];

21 data.nodeVals.nve{1} = [];

22 data.nodeVals.pve{1} = [];

23

24 % For each node in a chosen slice , look at the

25 % associated elements , classify them based on position

26 % and add the relevant contributions at the node

27 for i = 1: length(sliceNodes{sliceNumber })

28 % The node being examined at a slice

29 node = sliceNodes{sliceNumber }(i, 1);

30

31 v1 = [sliceNodes{sliceNumber }(i, 2:3) 0] - [x 0 0]; % Ignoring the z-component

32

33 % The elements associated with that node (excluding the node label)

34 els = fieldKeys(find(fieldKeys(:, 1) == node), 2:end);
35

36 % Removing any existing zeroes as a result of importing from a .csv

37 els = els(find(els > 0));

38

39 % Find the other nodes associated with the elements and use to classify

40 % those elements as -ve or +ve circumferentially

41 for j = 1: length(els)

42 % Store the element and associated nodes temporarily

43 eleLabel = elementlabels(find(elementlabels (:, 1) == els(j)), :);

44 % Remove zero entries

45 eleLabel = eleLabel(1, eleLabel(1, :) > 0);

46

47 % Find out whether the element has nodes in the previous or subsequent slices

48 % This would mean that it should not be considered using the cross vector since

49 % that might mistakenly classify it

50 verifyElement = [];

51 for ii = 1: length(find(eleLabel (2:end) > 0))

52 if sliceNumber == 1

53 verifyElement(ii) = any(eleLabel(ii + 1) == sliceNodes{end}(:, 1)) | ...

54 any(eleLabel(ii + 1) == sliceNodes{sliceNumber +1}(:, 1));

55 elseif sliceNumber == length(sliceNodes)

56 verifyElement(ii) = any(eleLabel(ii + 1) == sliceNodes{sliceNumber -1}(:, 1)) | ...

57 any(eleLabel(ii + 1) == sliceNodes {1}(:, 1));

58 else

59 verifyElement(ii) = any(eleLabel(ii + 1) == sliceNodes{sliceNumber -1}(:, 1)) | ...

60 any(eleLabel(ii + 1) == sliceNodes{sliceNumber +1}(:, 1));

61 end

62 end

63

64 % Find the cross product (to calculate the element normal)

65 dirnodes = [];

66 for ii = 2: length(eleLabel)

67 dirnodes = [dirnodes; nodeCoords(find(nodeCoords (:, 1) == eleLabel(ii)), :)];
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68 end

69 % tempnodes (1) = dirnodes(find(dirnodes(:, 1) == min(dirnodes(:, 1))), 1);

70 % tempnodes (2) = min(dirnodes(find(dirnodes(:, 1) > tempnodes (1))));

71 % tempnodes (3) = min(dirnodes(find(dirnodes(:, 1) > tempnodes (2))));

72 % tempnodes (4) = min(dirnodes(find(dirnodes(:, 1) > tempnodes (3))));

73 % vec1 = dirnodes(find(dirnodes(:, 1) == tempnodes (2)), 2:end) - dirnodes(find(dirnodes(:, 1) ==

↪→ tempnodes (1)), 2:end);
74 % vec2 = dirnodes(find(dirnodes(:, 1) == tempnodes (3)), 2:end) - dirnodes(find(dirnodes(:, 1) ==

↪→ tempnodes (1)), 2:end);
75 vec1 = dirnodes(2, 2:end) - dirnodes(1, 2:end);
76 vec2 = dirnodes(3, 2:end) - dirnodes(1, 2:end);
77 vec3 = cross(vec1 , vec2);

78 eleNorm = vec3/sqrt(vec3 (1)^2 + vec3 (2)^2 + vec3 (3)^2);

79

80 eleIndex = 2; % Exclude the element label

81 while eleIndex <= length(eleLabel (2:end)) % Once the element has been

82 % classified , adjust the value

83 % of eleIndex to exit the loop

84 eleNode = eleLabel(eleIndex);

85

86 v2 = [nodeCoords(find(nodeCoords (:, 1) == eleNode), 2:3) 0] - [x 0 0]; % Ignoring the z-

↪→ component

87 v3 = round(cross(v1 , v2), log10 (1/tol));

88 eleNodeNorm = v3/sqrt(v3(1)^2 + v3(2)^2 + v3(3)^2);

89

90 % If it 's the first 'slice ' (i.e. at 0 degrees) compare with the last nodes

91 % stored (i.e. the final 'slice ' nodes) and the second 'slice '. Note that

92 % 'slice ' here is the notional cut from the edge of the perforation to

93 % the edge of the beam itself (in the same way there would be Tee 'slices ')

94 if length(data.contributingElements.pve) < i

95 data.contributingElements.pve{i} = [];

96 data.nodeVals.pve{i} = [];

97 end

98 if length(data.contributingElements.nve) < i

99 data.contributingElements.nve{i} = [];

100 data.nodeVals.nve{i} = [];

101 end

102 if sliceNumber == 1

103 if any(find(sliceNodes{end} == eleNode , 1)) & ~any(find(data.contributingElements.nve{i} ==

↪→ eleLabel (1), 1))

104 % The element contribution is from the 'negative ' or in this case the

105 % last slice in the perforation

106

107 % Find the contributing elements for the chosen 'side '

108 data.contributingElements.nve{i} = [data.contributingElements.nve{i}; eleLabel (1)];

109

110 % Find the contribution location within the stored list from the .csv files

111 indx = find(strcmp(fieldlist , num2str(node)));

112

113 % Add the contributions to the node from the relevant elements

114 if isempty(data.nodeVals.nve{i})

115 data.nodeVals.nve{i} = field{indx}(:, j + 1);

116 else

117 data.nodeVals.nve{i} = data.nodeVals.nve{i} + field{indx}(:, j + 1);

118 end

119 eleIndex = 999; % The element has been classified , exit the while loop

120 elseif any(find(sliceNodes{sliceNumber + 1} == eleNode , 1)) & ~any(find(data.

↪→ contributingElements.pve{i} == eleLabel (1), 1))

121 % Find the contributing elements for the chosen 'side '

122 data.contributingElements.pve{i} = [data.contributingElements.pve{i}; eleLabel (1)];

123

124 % Find the contribution location within the stored list from the .csv files

125 indx = find(strcmp(fieldlist , num2str(node)));

126

127 % Add the contributions to the node from the relevant elements

128 if isempty(data.nodeVals.pve{i})

129 data.nodeVals.pve{i} = field{indx}(:, j + 1);

130 else

131 data.nodeVals.pve{i} = data.nodeVals.pve{i} + field{indx}(:, j + 1);

132 end

133 eleIndex = 999; % The element has been classified , exit the while loop

134 else

135 eleIndex = eleIndex + 1;
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136 end

137 elseif sliceNumber == length(sliceNodes)

138 if any(find(sliceNodes{sliceNumber - 1} == eleNode , 1)) & ~any(find(data.contributingElements

↪→ .nve{i} == eleLabel (1), 1))

139 % The element contribution is from the 'negative ' or in this case the

140 % penultimate slice in the perforation

141

142 % Find the contributing elements for the chosen 'side '

143 data.contributingElements.nve{i} = [data.contributingElements.nve{i}; eleLabel (1)];

144

145 % Find the contribution location within the stored list from the .csv files

146 indx = find(strcmp(fieldlist , num2str(node)));

147

148 % Add the contributions to the node from the relevant elements

149 if isempty(data.nodeVals.nve{i})

150 data.nodeVals.nve{i} = field{indx}(:, j + 1);

151 else

152 data.nodeVals.nve{i} = data.nodeVals.nve{i} + field{indx}(:, j + 1);

153 end

154 eleIndex = 999; % The element has been classified , exit the while loop

155 elseif any(find(sliceNodes {1} == eleNode , 1)) & ~any(find(data.contributingElements.pve{i} ==

↪→ eleLabel (1), 1))

156 % Find the contributing elements for the chosen 'side '

157 data.contributingElements.pve{i} = [data.contributingElements.pve{i}; eleLabel (1)];

158

159 % Find the contribution location within the stored list from the .csv files

160 indx = find(strcmp(fieldlist , num2str(node)));

161

162 % Add the contributions to the node from the relevant elements

163 if isempty(data.nodeVals.pve{i})

164 data.nodeVals.pve{i} = field{indx}(:, j + 1);

165 else

166 data.nodeVals.pve{i} = data.nodeVals.pve{i} + field{indx}(:, j + 1);

167 end

168 eleIndex = 999; % The element has been classified , exit the while loop

169 else

170 eleIndex = eleIndex + 1;

171 end

172 elseif (any(find(sliceNodes{sliceNumber - 1} == eleNode , 1)) | (all(eleNodeNorm == [0 0 1]) & ~

↪→ any(verifyElement))) ... % | (any(find(eleLabel ([3 4 7 8]) == node)) & all(eleNorm ==

↪→ [0 -1 0])) | (any(find(eleLabel ([2 3 6 7]) == node)) & all(eleNorm == [0 1 0])) | (any(

↪→ find(eleLabel ([2 3 6 7]) == node)) & all(eleNorm == [1 0 0]))) ...

173 & ~any(find(data.contributingElements.nve{i} == eleLabel (1), 1))

174 % If the element is in the previous slice OR the cross product/mangitude

↪→ between the node being examined and the

175 % element node under examination

↪→ is [0 0 1] (and the element doesn 't contain

176 % any nodes in adjoining slices

↪→ using verifyElement)

177

178 % OLD:

179 % If the element node lies in the 'previous ' slice OR

180 % OR it is found in the x +ve nodes of the element (stored in the [3 4 7 8] locations in

↪→ eleLabel) but the element normal is not in x

181 % OR

182 % the element normal is in x and

↪→ the node being examined (NOT THE ELEMENT NODE) lies in the [2 3 6 7] endplate/

↪→ stiffener element node positions

183 % AND it isn 't already stored in the existing contribution array

184 % The second condition covers the endplate (in some cases not covered by the first condition)

↪→ and should cover stiffeners as well which have a reverse numerical naming convention

185 % to that of the web and flange shells

186

187 % Find the contributing elements for the chosen 'side '

188 data.contributingElements.nve{i} = [data.contributingElements.nve{i}; eleLabel (1)];

189

190 % Find the contribution location within the stored list from the .csv files

191 indx = find(strcmp(fieldlist , num2str(node)));

192

193 % Add the contributions to the node from the relevant elements

194 if isempty(data.nodeVals.nve{i})

195 data.nodeVals.nve{i} = field{indx}(:, j + 1);

196 else
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197 data.nodeVals.nve{i} = data.nodeVals.nve{i} + field{indx}(:, j + 1);

198 end

199 eleIndex = 999; % The element has been classified , exit the while loop

200 elseif (any(find(sliceNodes{sliceNumber + 1} == eleNode , 1)) | (all(eleNodeNorm == [0 0 -1]) &

↪→ ~any(verifyElement))) ... % | (any(find(eleLabel ([2 5 6 9]) == node)) & all(eleNorm ==

↪→ [0 -1 0])) | (any(find(eleLabel ([4 5 8 9]) == node)) & all(eleNorm == [0 1 0])) | (any(

↪→ find(eleLabel ([4 5 8 9]) == node)) & all(eleNorm == [1 0 0]))) ...

201 & ~any(find(data.contributingElements.pve{i} == eleLabel (1), 1))

202 % If the element is in the following slice OR the cross product/mangitude

↪→ between the node being examined and the

203 % element node under examination

↪→ is [0 0 -1] (and the element doesn 't contain

204 % any nodes in adjoining slices

↪→ using verifyElement)

205

206 % OLD

207 % If the element node lies in the 'following ' slice OR

208 % OR it is found in the x -ve nodes of the element (stored in the [2 5 6 9] locations in

↪→ eleLabel) but the element normal is not in x

209 % OR

210 % the element normal is in x and

↪→ the node being examined (NOT THE ELEMENT NODE) lies in the [4 5 8 9] endplate/

↪→ stiffener element node positions

211 % AND it isn 't already stored in the existing contribution array

212 % The second condition covers the endplate (in some cases not covered by the first condition)

↪→ and should cover stiffeners as well which have a reverse numerical naming convention

213 % to that of the web and flange shells

214

215 % Find the contributing elements for the chosen 'side '

216 data.contributingElements.pve{i} = [data.contributingElements.pve{i}; eleLabel (1)];

217

218 % Find the contribution location within the stored list from the .csv files

219 indx = find(strcmp(fieldlist , num2str(node)));

220

221 % Add the contributions to the node from the relevant elements

222 if isempty(data.nodeVals.pve{i})

223 data.nodeVals.pve{i} = field{indx}(:, j + 1);

224 else

225 data.nodeVals.pve{i} = data.nodeVals.pve{i} + field{indx}(:, j + 1);

226 end

227 eleIndex = 999; % The element has been classified , exit the while loop

228 else

229 eleIndex = eleIndex + 1;

230 end

231 end

232 end

233 data.nodeVals.averaged{i} = (counterEmpty ([ length(data.nodeVals.pve{i}) 1], data.nodeVals.nve{i}) +

↪→ ...

234 counterEmpty ([ length(data.nodeVals.nve{i}) 1], data.nodeVals.pve{i}))

↪→ /...

235 (length(data.contributingElements.nve{i}) + ...

236 length(data.contributingElements.pve{i}));

237 if nargin == 9 & strcmp(varargin {1}, 'average ')

238 % If this option is defined , average the contributions at a node

239 % from the nve or pve elements.

240 data.nodeVals.nve{i} = data.nodeVals.nve{i}/ length(data.contributingElements.nve{i});

241 data.nodeVals.pve{i} = data.nodeVals.pve{i}/ length(data.contributingElements.pve{i});

242 end

243 end
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D.5 addSlabContributions()

1 function data = addSlabContributions(nodeCoords , sliceNodes , elementlabels , fieldKeys_c , field ,

↪→ fieldlist , varargin)

2

3 % % Debugging ----------------------------

4 % i = 1

5 % J = 1

6 % nodeCoords = coords_c{i}

7 % sliceNodes = slabSlices{i}. ordered_nodes

8 % field = f.fxx_s.vals

9 % fieldlist = f.fxx_s.list{i}

10 % % ----------------------------------------

11

12 tol = 1e-3;

13

14 % For each node , n, in a chosen slice , S, look at the

15 % associated elements , classify them based on position

16 % and add the relevant contributions at the node

17 for S = 1: length(sliceNodes) % For each slab slice

18

19 data{S}. contributingElements.nve{1} = [];

20 data{S}. contributingElements.pve{1} = [];

21 data{S}. nodeVals.nve{1} = [];

22 data{S}. nodeVals.pve{1} = [];

23

24 for n = 1: length(sliceNodes{S}) % For each node in that slice

25 % The node being examined at a slice

26 node = sliceNodes{S}(n, 1);

27

28 % The elements associated with that node (excluding the node label)

29 els = fieldKeys_c(find(fieldKeys_c (:, 1) == node), 2:end);
30

31 % Removing any existing zeroes as a result of importing from a .csv

32 els = els(find(els > 0));

33

34 % Find the other nodes associated with the elements and use to classify

35 % those elements as -ve or +ve along the x axis

36 for j = 1: length(els)

37 % Store the element and associated nodes temporarily

38 eleLabel = elementlabels(find(elementlabels (:, 1) == els(j)), :);

39

40 % % Find out whether the element has nodes in the previous or subsequent slices

41 % verifyElement = [];

42 % for ii = 1: length(find(eleLabel (2:end) > 0))

43 % if i == 1

44 % verifyElement(ii) = any(eleLabel(ii + 1) == sliceNodes{end}(:, 1)) | ...

45 % any(eleLabel(ii + 1) == sliceNodes{i+1}(: , 1));

46 % elseif i == length(sliceNodes)

47 % verifyElement(ii) = any(eleLabel(ii + 1) == sliceNodes{i-1}(: , 1)) | ...

48 % any(eleLabel(ii + 1) == sliceNodes {1}(:, 1));

49 % else

50 % verifyElement(ii) = any(eleLabel(ii + 1) == sliceNodes{i-1}(: , 1)) | ...

51 % any(eleLabel(ii + 1) == sliceNodes{i+1}(: , 1));

52 % end

53 % end

54

55 eleIndex = 2; % Exclude the element label

56 while eleIndex <= length(eleLabel (2:end)) % Once the element has been

57 % classified , adjust the value

58 % of eleIndex to exit the loop

59 eleNode = eleLabel(eleIndex);

60

61 % If it 's the first 'slice ' (i.e. at 0 degrees) compare with the last nodes

62 % stored (i.e. the final 'slice ' nodes) and the second 'slice '. Note that

63 % 'slice ' here is the notional cut from the edge of the perforation to

64 % the edge of the beam itself (in the same way there would be Tee 'slices ')

65 if length(data{S}. contributingElements.pve) < n

66 data{S}. contributingElements.pve{n} = [];

67 data{S}. nodeVals.pve{n} = [];
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68 end

69 if length(data{S}. contributingElements.nve) < n

70 data{S}. contributingElements.nve{n} = [];

71 data{S}. nodeVals.nve{n} = [];

72 end

73 if S == 1

74 data{S}. contributingElements.pve{n} = [data{S}. contributingElements.pve{n}; eleLabel (1)];

75

76 % Find the contribution location within the stored list from the .csv files

77 indx = find(strcmp(fieldlist , num2str(node)));

78

79 % Add the contributions to the node from the relevant elements

80 if isempty(data{S}. nodeVals.pve{n})

81 data{S}. nodeVals.pve{n} = field{indx}(:, j + 1);

82 else

83 data{S}. nodeVals.pve{n} = data{S}. nodeVals.pve{n} + field{indx}(:, j + 1);

84 end

85 eleIndex = 999; % The element has been classified , exit the while loop

86 elseif S == length(sliceNodes)

87 data{S}. contributingElements.nve{n} = [data{S}. contributingElements.nve{n}; eleLabel (1)];

88

89 % Find the contribution location within the stored list from the .csv files

90 indx = find(strcmp(fieldlist , num2str(node)));

91

92 % Add the contributions to the node from the relevant elements

93 if isempty(data{S}. nodeVals.nve{n})

94 data{S}. nodeVals.nve{n} = field{indx}(:, j + 1);

95 else

96 data{S}. nodeVals.nve{n} = data{S}. nodeVals.nve{n} + field{indx}(:, j + 1);

97 end

98 eleIndex = 999; % The element has been classified , exit the while loop

99 elseif any(find(sliceNodes{S - 1} == eleNode , 1)) & ~any(find(data{S}. contributingElements.

↪→ nve{n} == eleLabel (1), 1))

100 % If the element is in the previous slice OR AND it isn 't already stored in the

↪→ existing contribution array

101

102 % Find the contributing elements for the chosen 'side '

103 data{S}. contributingElements.nve{n} = [data{S}. contributingElements.nve{n}; eleLabel (1)];

104

105 % Find the contribution location within the stored list from the .csv files

106 indx = find(strcmp(fieldlist , num2str(node)));

107

108 % Add the contributions to the node from the relevant elements

109 if isempty(data{S}. nodeVals.nve{n})

110 data{S}. nodeVals.nve{n} = field{indx}(:, j + 1);

111 else

112 data{S}. nodeVals.nve{n} = data{S}. nodeVals.nve{n} + field{indx}(:, j + 1);

113 end

114 eleIndex = 999; % The element has been classified , exit the while loop

115 elseif any(find(sliceNodes{S + 1} == eleNode , 1)) & ~any(find(data{S}. contributingElements.

↪→ pve{n} == eleLabel (1), 1))

116 % If the element is in the following slice AND it isn 't already stored in the existing

↪→ contribution array

117

118 % Find the contributing elements for the chosen 'side '

119 data{S}. contributingElements.pve{n} = [data{S}. contributingElements.pve{n}; eleLabel (1)];

120

121 % Find the contribution location within the stored list from the .csv files

122 indx = find(strcmp(fieldlist , num2str(node)));

123

124 % Add the contributions to the node from the relevant elements

125 if isempty(data{S}. nodeVals.pve{n})

126 data{S}. nodeVals.pve{n} = field{indx}(:, j + 1);

127 else

128 data{S}. nodeVals.pve{n} = data{S}. nodeVals.pve{n} + field{indx}(:, j + 1);

129 end

130 eleIndex = 999; % The element has been classified , exit the while loop

131 else

132 eleIndex = eleIndex + 1;

133 end

134 end

135 end

136 if nargin == 7 & strcmp(varargin {1}, 'average ') & ~isempty(els)
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137 % If this option is defined , average the contributions at a node

138 % from the nve or pve elements.

139 data{S}. nodeVals.nve{n} = data{S}. nodeVals.nve{n}/ length(data{S}. contributingElements.nve{n});

140 data{S}. nodeVals.pve{n} = data{S}. nodeVals.pve{n}/ length(data{S}. contributingElements.pve{n});

141 end

142 end

143 end
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D.6 estimateNA()

1 function [NA_estimate , simplified_field , unique_pos] = estimateNA(field , pos , varargin)

2

3 % field = [6950.62 (6230.13 + 3041.68) (1305.09 - 625.197) ( -3113.72 - 4837.28) -9103.93];

4 % pos = [0.5; 0.25; 0; -0.25; -0.5];

5 % field = [-3 -2 -1 0 1 2 3 -4 -5 -6];

6 % pos = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10];

7

8 % Simplify field from 2D to 1D by adding the values at identical locations

9 unique_pos = unique(pos);

10 for indx = 1: length(unique_pos)

11 indices = find(abs(pos - unique_pos(indx)) <= 1e-4);

12 if length(indices) >= 2

13 if nargin >= 3

14 if strcmp(varargin {1}, 'average ')

15 denom = length(indices);

16 end

17 else

18 denom = 1;

19 end

20 simplified_field (:, indx) = sum(field(:, indices) ') '/denom;

21 else

22 simplified_field (:, indx) = field(:, indices);

23 end

24 end

25

26 for row = 1: length(simplified_field (:, 1))

27 signchange = signChange(simplified_field(row , :));

28 % for signloc = 1: length(signchange.sign)

29 if abs(sum(simplified_field(row , :)) - 0) <= 1e-3 | length(signchange.sign) >= 2

30 NA_estimate(row , 1) = NaN;

31 elseif all(simplified_field(row , :) >= 0) | ...

32 all(simplified_field(row , :) < 0)

33 NA_estimate(row , 1) = NaN;

34 else

35 % [Y, I] = sort(simplified_field(row , :));

36 % pos_sorted = unique_pos(I);

37 % field_sorted = simplified_field(row , I);

38 signindex = signchange.sign;

39 NA_estimate(row , 1) = interpn(simplified_field(row , signindex:signindex +1), unique_pos(

↪→ signindex:signindex +1), 0);

40 if NA_estimate(row , 1) ~= NaN

41 NA_estimate(row , 1) = interp1(simplified_field(row , signindex:signindex +1), unique_pos(

↪→ signindex:signindex +1), 0, 'linear ', 'extrap ');

42 end

43 end

44 % end

45 end
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D.7 findSliceEquilibrium()

1 function [eqForce , eqMoment , forcestore , momentstore] = findSliceEquilibrium(i, J, S, forces , moments

↪→ , slices , ybar)

2 % For a test case i, and a selected slice S in perforation number J,

3 % calculate the equilibrium slice forces and moments given the nodal

4 % forces and moments at a chosen time t.

5

6 % if nargin == 7

7 % t = varargin {1};

8 % elseif nargin == 6 % Use the default time in aveList.m (the max time)

9 % t = -1;

10 % end

11

12 fingerprint = csvread('../ fingerprint.csv');

13

14 LHS = fingerprint (:, 2);

15 RHS = fingerprint (:, 3);

16 centres = fingerprint (:, 4);

17 diameter = fingerprint (:, 5);

18 inp.L = fingerprint (:, 6);

19 cell_number = fingerprint (:, 7);

20 top_t_depth = fingerprint (:, 9);

21 top_t_flange = fingerprint (:, 10);

22 bot_t_depth = fingerprint (:, 11);

23 bot_t_flange = fingerprint (:, 12);

24 slab_width = fingerprint (:, 13);

25 top_t_thickness = fingerprint (:, 14);

26 top_t_flange_thickness = fingerprint (:, 15);

27 bot_t_thickness = fingerprint (:, 16);

28 bot_t_flange_thickness = fingerprint (:, 17);

29

30 phi = slices{i}{J}.phis(S);

31 % if 0 < phi & phi <= 90

32 % theta = -(90 - phi);

33 % elseif 90 < phi & phi <= 180

34 % theta = phi - 90;

35 % elseif 180 < phi & phi <= 270

36 % theta = -(270 - phi);

37 % elseif 270 < phi & phi <= 360

38 % theta = phi - 270;

39 % end

40 theta = slices{i}{J}. thetas(S);

41

42 % Rotation matrices. Note that they are constructed so that

43 % +ve theta is COUNTER -clockwise

44 R = [cosd(theta) sind(theta); -sind(theta) cosd(theta)];

45 Rz = [ cosd(theta) sind(theta) 0;

46 -sind(theta) cosd(theta) 0;

47 0 0 1];

48

49 % Preliminaries and error checking

50 if length(forces.xx{i}{J}{S}. nodeVals.nve) ~= length(forces.xx{i}{J}{S}. nodeVals.pve)

51 error('The number of nodes between the +ve and -ve contributions not consistent.')

52 else

53 nodeCount = length(forces.xx{i}{J}{S}. nodeVals.nve);

54 timeCount = length(forces.xx{i}{1}{1}. nodeVals.nve {1});

55 end

56

57 % Place the data in an easier to use form and transform to match

58 % the orientation of the slice being examined. This stores them on a

59 % per -node basis

60 eqForce.nve = zeros(timeCount , 2); eqForce.pve = zeros(timeCount , 2);

61 for n = 1: nodeCount

62 % Store node history for the slice from the nve and pve sides

63 forcestore.nve.global(:, 1, n) = counterEmpty ([ timeCount 1], forces.xx{i}{J}{S}. nodeVals.nve{n});

64 forcestore.pve.global(:, 1, n) = counterEmpty ([ timeCount 1], forces.xx{i}{J}{S}. nodeVals.pve{n});

65

66 forcestore.nve.global(:, 2, n) = counterEmpty ([ timeCount 1], forces.yy{i}{J}{S}. nodeVals.nve{n});

67 forcestore.pve.global(:, 2, n) = counterEmpty ([ timeCount 1], forces.yy{i}{J}{S}. nodeVals.pve{n});
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68

69 momentstore.nve.global(:, 1, n) = counterEmpty ([ timeCount 1], moments.xx{i}{J}{S}. nodeVals.nve{n});

70 momentstore.pve.global(:, 1, n) = counterEmpty ([ timeCount 1], moments.xx{i}{J}{S}. nodeVals.pve{n});

71

72 momentstore.nve.global(:, 2, n) = counterEmpty ([ timeCount 1], moments.yy{i}{J}{S}. nodeVals.nve{n});

73 momentstore.pve.global(:, 2, n) = counterEmpty ([ timeCount 1], moments.yy{i}{J}{S}. nodeVals.pve{n});

74

75 momentstore.nve.global(:, 3, n) = counterEmpty ([ timeCount 1], moments.zz{i}{J}{S}. nodeVals.nve{n});

76 momentstore.pve.global(:, 3, n) = counterEmpty ([ timeCount 1], moments.zz{i}{J}{S}. nodeVals.pve{n});

77

78 % forcestore.nve.x(:, n) = forces.xx{i}{J}{S}. nodeVals.nve{n}; % Store node history

79 % forcestore.pve.x(:, n) = forces.xx{i}{J}{S}. nodeVals.pve{n}; % for the slice from

80 % % the nve and pve sides

81 % forcestore.nve.y(:, n) = forces.yy{i}{J}{S}. nodeVals.nve{n}; % This stores them on

82 % forcestore.pve.y(:, n) = forces.yy{i}{J}{S}. nodeVals.pve{n}; % a node basis but

83 % % also considering the

84 % % time step

85

86 % Project the components to the slice 's local axes

87 % (e.g. x' and y')

88 forcestore.nve.local(:, :, n) = (R*forcestore.nve.global(:, :, n) ')';

89 forcestore.pve.local(:, :, n) = (R*forcestore.pve.global(:, :, n) ')';

90

91 forcestore.nve.localx(:, n) = forcestore.nve.local(:, 1, n); % Store LOCAL node history

92 forcestore.pve.localx(:, n) = forcestore.pve.local(:, 1, n); % for the slice from

93 % the nve and pve sides

94 forcestore.nve.localy(:, n) = forcestore.nve.local(:, 2, n); % This stores them on

95 forcestore.pve.localy(:, n) = forcestore.pve.local(:, 2, n); % a node basis but

96 % also considering the

97 % time step

98

99 % Calculate the equilibrium force for the slice for all the time steps

100 eqForce.nve(:, 1) = eqForce.nve(:, 1) + forcestore.nve.local(:, 1, n);

101 eqForce.nve(:, 2) = eqForce.nve(:, 2) + forcestore.nve.local(:, 2, n);

102 eqForce.pve(:, 1) = eqForce.pve(:, 1) + forcestore.pve.local(:, 1, n);

103 eqForce.pve(:, 2) = eqForce.pve(:, 2) + forcestore.pve.local(:, 2, n);

104 end

105

106 % Not needed since the fields were generated using slices{i}{J}. ordered_nodes

107 % % Sort the components to match the ordered_nodes of the slices

108 % forcestore.nve = forcestore.nve(:, :, slices{i}{J}. index{S});

109 % forcestore.pve = forcestore.pve(:, :, slices{i}{J}. index{S});

110 % fstore.nve.x = fstore.nve.x(:, slices{i}{J}. index{S});

111 % fstore.pve.x = fstore.pve.x(:, slices{i}{J}. index{S});

112 % fstore.nve.y = fstore.nve.y(:, slices{i}{J}. index{S});

113 % fstore.pve.y = fstore.pve.y(:, slices{i}{J}. index{S});

114 % fstore.nve.x_transf.local_x = fstore.nve.x_transf.local_x(:, slices{i}{J}. index{S});

115 % fstore.nve.x_transf.local_y = fstore.nve.x_transf.local_y(:, slices{i}{J}. index{S});

116 % fstore.nve.y_transf.local_x = fstore.nve.y_transf.local_x(:, slices{i}{J}. index{S});

117 % fstore.nve.y_transf.local_y = fstore.nve.y_transf.local_y(:, slices{i}{J}. index{S});

118

119

120 % slices{i}{J}. ordered_nodes{S}

121 % slices{i}{J}. index{S}

122 % x = slices{i}{J}.x;

123 % hold on

124 % % Plot the output from abaqus without having transformed the vectors

125 % quiver(slices{i}{J}. ordered_nodes{S}(:, 2), slices{i}{J}. ordered_nodes{S}(:, 3), fstore.nve.x(t, :)

↪→ ', fstore.nve.y(t, :) ')

126 % % Plotting the (transformed) local -x components

127 % quiver(slices{i}{J}. ordered_nodes{S}(:, 2), slices{i}{J}. ordered_nodes{S}(:, 3), fstore.nve.

↪→ x_transf.local_x(end , :)', fstore.nve.x_transf.local_y(end , :) ')

128 % % Plotting the (transformed) local -y components

129 % quiver(slices{i}{J}. ordered_nodes{S}(:, 2), slices{i}{J}. ordered_nodes{S}(:, 3), fstore.nve.

↪→ y_transf.local_x(end , :)', fstore.nve.y_transf.local_y(end , :) ')

130 % hold off

131

132 % force.nve = forcestore.nve.localx - eqForce.nve(:, 1)/nodeCount*ones(1, nodeCount);

133 % force.pve = forcestore.pve.localx - eqForce.pve(:, 1)/nodeCount*ones(1, nodeCount);

134

135 moment = calcSectionMoment(i, J, S, slices , forcestore , ybar);

136 % moment = calcSectionMoment(i, J, S, slices , NA.centroid.topT , forcestore);

137
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138 eqMoment.nve = 0; eqMoment.pve = 0;

139 for n = 1: nodeCount

140 eqMoment.nve = eqMoment.nve + counterEmpty ([ timeCount 1], moments.zz{i}{J}{S}. nodeVals.nve{n});

141 eqMoment.pve = eqMoment.pve + counterEmpty ([ timeCount 1], moments.zz{i}{J}{S}. nodeVals.pve{n});

142 end

143 eqMoment.nve = counterEmpty ([ timeCount 1], eqMoment.nve) + moment.nve;

144 eqMoment.pve = counterEmpty ([ timeCount 1], eqMoment.pve) + moment.pve;

145

146 % min(abs(forcestore.nve(1, slices{i}{J}. index{S})))

147

148 % if any(any(forcestore.nve + forcestore.pve > 1e+3))

149 % error('The nodal force history is not in equilibrium .');

150 % end

151 % for t = 1: length(forcestore.nve)

152

153 % end
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D.8 findSlabEquiliubrium()

1 function [eqForce , eqMoment , forcestore] = findSlabEquilibrium(i, S, forces , moments , slabSlices ,

↪→ ybar , varargin)

2 % For use with sortSlabNodes , this script finds the equilibrium forces

3 % at the input slabSlices{i}. ordered_nodes{S} nodes

4

5 % No transformation necessary

6 R = eye (2);

7 Rz = eye (3);

8

9 % Preliminaries and error checking

10 if length(forces.xx_s{i}{S}. nodeVals.nve) ~= length(forces.xx_s{i}{S}. nodeVals.pve)

11 error('The number of nodes between the +ve and -ve contributions not consistent.')

12 else

13 nodeCount = length(forces.xx_s{i}{S}. nodeVals.pve);

14 timeCount = length(forces.xx_s{i}{1}. nodeVals.pve {1});

15 end

16

17 eqForce.nve = zeros(timeCount , 2); eqForce.pve = zeros(timeCount , 2);

18 for n = 1: nodeCount

19 % Store node history for the slice from the nve and pve sides

20 forcestore.nve.global(:, 1, n) = counterEmpty ([ timeCount 1], forces.xx_s{i}{S}. nodeVals.nve{n});

21 forcestore.pve.global(:, 1, n) = counterEmpty ([ timeCount 1], forces.xx_s{i}{S}. nodeVals.pve{n});

22

23 forcestore.nve.global(:, 2, n) = counterEmpty ([ timeCount 1], forces.yy_s{i}{S}. nodeVals.nve{n});

24 forcestore.pve.global(:, 2, n) = counterEmpty ([ timeCount 1], forces.yy_s{i}{S}. nodeVals.pve{n});

25

26 % momentstore.nve.global(:, 1, n) = counterEmpty ([ timeCount 1], moments.xx_s{i}{S}. nodeVals.nve{n})

↪→ ;

27 % momentstore.pve.global(:, 1, n) = counterEmpty ([ timeCount 1], moments.xx_s{i}{S}. nodeVals.pve{n})

↪→ ;

28

29 % momentstore.nve.global(:, 2, n) = counterEmpty ([ timeCount 1], moments.yy_s{i}{S}. nodeVals.nve{n})

↪→ ;

30 % momentstore.pve.global(:, 2, n) = counterEmpty ([ timeCount 1], moments.yy_s{i}{S}. nodeVals.pve{n})

↪→ ;

31

32 % momentstore.nve.global(:, 3, n) = counterEmpty ([ timeCount 1], moments.zz_s{i}{S}. nodeVals.nve{n})

↪→ ;

33 % momentstore.pve.global(:, 3, n) = counterEmpty ([ timeCount 1], moments.zz_s{i}{S}. nodeVals.pve{n})

↪→ ;

34

35 % forcestore.nve.x(:, n) = forces.xx_s{i}{S}. nodeVals.nve{n}; % Store node history

36 % forcestore.pve.x(:, n) = forces.xx_s{i}{S}. nodeVals.pve{n}; % for the slice from

37 % % the nve and pve sides

38 % forcestore.nve.y(:, n) = forces.yy_s{i}{S}. nodeVals.nve{n}; % This stores them on

39 % forcestore.pve.y(:, n) = forces.yy_s{i}{S}. nodeVals.pve{n}; % a node basis but

40 % % also considering the

41 % % time step

42

43 % Project the components to the slice 's local axes

44 % (e.g. x' and y')

45 forcestore.nve.local(:, :, n) = (R*forcestore.nve.global(:, :, n) ')';

46 forcestore.pve.local(:, :, n) = (R*forcestore.pve.global(:, :, n) ')';

47

48 forcestore.nve.localx(:, n) = forcestore.nve.local(:, 1, n); % Store LOCAL node history

49 forcestore.pve.localx(:, n) = forcestore.pve.local(:, 1, n); % for the slice from

50 % the nve and pve sides

51 forcestore.nve.localy(:, n) = forcestore.nve.local(:, 2, n); % This stores them on

52 forcestore.pve.localy(:, n) = forcestore.pve.local(:, 2, n); % a node basis but

53 % also considering the

54 % time step

55 end

56

57 if nargin == 7

58 for v = 1: length(varargin {1})

59 sub_slabSlice (1, v) = varargin {1}(v);

60 end

61 moment = calcSlabSectionMoment(i, S, slabSlices , forcestore , ybar , sub_slabSlice);
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62 for n = sub_slabSlice

63 % Calculate the equilibrium force for the slice for all the time steps

64 eqForce.nve(:, 1) = eqForce.nve(:, 1) + forcestore.nve.local(:, 1, n);

65 eqForce.nve(:, 2) = eqForce.nve(:, 2) + forcestore.nve.local(:, 2, n);

66 eqForce.pve(:, 1) = eqForce.pve(:, 1) + forcestore.pve.local(:, 1, n);

67 eqForce.pve(:, 2) = eqForce.pve(:, 2) + forcestore.pve.local(:, 2, n);

68 end

69 else

70 moment = calcSlabSectionMoment(i, S, slabSlices , forcestore , ybar);

71 for n = 1: nodeCount

72 % Calculate the equilibrium force for the slice for all the time steps

73 eqForce.nve(:, 1) = eqForce.nve(:, 1) + forcestore.nve.local(:, 1, n);

74 eqForce.nve(:, 2) = eqForce.nve(:, 2) + forcestore.nve.local(:, 2, n);

75 eqForce.pve(:, 1) = eqForce.pve(:, 1) + forcestore.pve.local(:, 1, n);

76 eqForce.pve(:, 2) = eqForce.pve(:, 2) + forcestore.pve.local(:, 2, n);

77 end

78 end

79 % force.nve = forcestore.nve.localx - eqForce.nve(:, 1)/nodeCount*ones(1, nodeCount);

80 % force.pve = forcestore.pve.localx - eqForce.pve(:, 1)/nodeCount*ones(1, nodeCount);

81

82 eqMoment.nve = 0; eqMoment.pve = 0;

83 % for n = 1: nodeCount

84 % eqMoment.nve = eqMoment.nve + counterEmpty ([ timeCount 1], moments.zz_s{i}{S}. nodeVals.nve{n});

85 % eqMoment.pve = eqMoment.pve + counterEmpty ([ timeCount 1], moments.zz_s{i}{S}. nodeVals.pve{n});

86 % end

87 % eqMoment.nve = counterEmpty ([ timeCount 1], eqMoment.nve) + moment.nve;

88 % eqMoment.pve = counterEmpty ([ timeCount 1], eqMoment.pve) + moment.pve;

89

90 eqMoment.nve = moment.nve;

91 eqMoment.pve = moment.pve;
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D.9 findReinfEquiliubrium()

1 function [eqForce , eqMoment , forcestore] = findReinfEquilibrium(i, S, forces , moments , slabSlices ,

↪→ ybar , varargin)

2 % For use with sortSlabNodes , this script finds the equilibrium forces

3 % at the input slabSlices{i}. ordered_nodes{S} nodes

4

5 % No transformation necessary

6 R = eye (2);

7 Rz = eye (3);

8

9 % Preliminaries and error checking

10 if length(forces.xx_r{i}{S}. nodeVals.nve) ~= length(forces.xx_r{i}{S}. nodeVals.pve)

11 error('The number of nodes between the +ve and -ve contributions not consistent.')

12 else

13 nodeCount = length(forces.xx_r{i}{S}. nodeVals.pve);

14 timeCount = length(forces.xx_r{i}{1}. nodeVals.pve {1});

15 end

16

17 eqForce.nve = zeros(timeCount , 2); eqForce.pve = zeros(timeCount , 2);

18 for n = 1: nodeCount

19 % Store node history for the slice from the nve and pve sides

20 forcestore.nve.global(:, 1, n) = counterEmpty ([ timeCount 1], forces.xx_r{i}{S}. nodeVals.nve{n});

21 forcestore.pve.global(:, 1, n) = counterEmpty ([ timeCount 1], forces.xx_r{i}{S}. nodeVals.pve{n});

22

23 forcestore.nve.global(:, 2, n) = counterEmpty ([ timeCount 1], forces.yy_r{i}{S}. nodeVals.nve{n});

24 forcestore.pve.global(:, 2, n) = counterEmpty ([ timeCount 1], forces.yy_r{i}{S}. nodeVals.pve{n});

25

26 % momentstore.nve.global(:, 1, n) = counterEmpty ([ timeCount 1], moments.xx_r{i}{S}. nodeVals.nve{n})

↪→ ;

27 % momentstore.pve.global(:, 1, n) = counterEmpty ([ timeCount 1], moments.xx_r{i}{S}. nodeVals.pve{n})

↪→ ;

28

29 % momentstore.nve.global(:, 2, n) = counterEmpty ([ timeCount 1], moments.yy_r{i}{S}. nodeVals.nve{n})

↪→ ;

30 % momentstore.pve.global(:, 2, n) = counterEmpty ([ timeCount 1], moments.yy_r{i}{S}. nodeVals.pve{n})

↪→ ;

31

32 % momentstore.nve.global(:, 3, n) = counterEmpty ([ timeCount 1], moments.zz_r{i}{S}. nodeVals.nve{n})

↪→ ;

33 % momentstore.pve.global(:, 3, n) = counterEmpty ([ timeCount 1], moments.zz_r{i}{S}. nodeVals.pve{n})

↪→ ;

34

35 % forcestore.nve.x(:, n) = forces.xx_r{i}{S}. nodeVals.nve{n}; % Store node history

36 % forcestore.pve.x(:, n) = forces.xx_r{i}{S}. nodeVals.pve{n}; % for the slice from

37 % % the nve and pve sides

38 % forcestore.nve.y(:, n) = forces.yy_r{i}{S}. nodeVals.nve{n}; % This stores them on

39 % forcestore.pve.y(:, n) = forces.yy_r{i}{S}. nodeVals.pve{n}; % a node basis but

40 % % also considering the

41 % % time step

42

43 % Project the components to the slice 's local axes

44 % (e.g. x' and y')

45 forcestore.nve.local(:, :, n) = (R*forcestore.nve.global(:, :, n) ')';

46 forcestore.pve.local(:, :, n) = (R*forcestore.pve.global(:, :, n) ')';

47

48 forcestore.nve.localx(:, n) = forcestore.nve.local(:, 1, n); % Store LOCAL node history

49 forcestore.pve.localx(:, n) = forcestore.pve.local(:, 1, n); % for the slice from

50 % the nve and pve sides

51 forcestore.nve.localy(:, n) = forcestore.nve.local(:, 2, n); % This stores them on

52 forcestore.pve.localy(:, n) = forcestore.pve.local(:, 2, n); % a node basis but

53 % also considering the

54 % time step

55 end

56

57 if nargin == 7

58 for v = 1: length(varargin {1})

59 sub_slabSlice (1, v) = varargin {1}(v);

60 end

61 moment = calcSlabSectionMoment(i, S, slabSlices , forcestore , ybar , sub_slabSlice);
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62 for n = sub_slabSlice

63 % Calculate the equilibrium force for the slice for all the time steps

64 eqForce.nve(:, 1) = eqForce.nve(:, 1) + forcestore.nve.local(:, 1, n);

65 eqForce.nve(:, 2) = eqForce.nve(:, 2) + forcestore.nve.local(:, 2, n);

66 eqForce.pve(:, 1) = eqForce.pve(:, 1) + forcestore.pve.local(:, 1, n);

67 eqForce.pve(:, 2) = eqForce.pve(:, 2) + forcestore.pve.local(:, 2, n);

68 end

69 else

70 moment = calcSlabSectionMoment(i, S, slabSlices , forcestore , ybar);

71 for n = 1: nodeCount

72 % Calculate the equilibrium force for the slice for all the time steps

73 eqForce.nve(:, 1) = eqForce.nve(:, 1) + forcestore.nve.local(:, 1, n);

74 eqForce.nve(:, 2) = eqForce.nve(:, 2) + forcestore.nve.local(:, 2, n);

75 eqForce.pve(:, 1) = eqForce.pve(:, 1) + forcestore.pve.local(:, 1, n);

76 eqForce.pve(:, 2) = eqForce.pve(:, 2) + forcestore.pve.local(:, 2, n);

77 end

78 end

79 % force.nve = forcestore.nve.localx - eqForce.nve(:, 1)/nodeCount*ones(1, nodeCount);

80 % force.pve = forcestore.pve.localx - eqForce.pve(:, 1)/nodeCount*ones(1, nodeCount);

81

82 eqMoment.nve = 0; eqMoment.pve = 0;

83 % for n = 1: nodeCount

84 % eqMoment.nve = eqMoment.nve + counterEmpty ([ timeCount 1], moments.zz_s{i}{S}. nodeVals.nve{n});

85 % eqMoment.pve = eqMoment.pve + counterEmpty ([ timeCount 1], moments.zz_s{i}{S}. nodeVals.pve{n});

86 % end

87 % eqMoment.nve = counterEmpty ([ timeCount 1], eqMoment.nve) + moment.nve;

88 % eqMoment.pve = counterEmpty ([ timeCount 1], eqMoment.pve) + moment.pve;

89

90 eqMoment.nve = moment.nve;

91 eqMoment.pve = moment.pve;
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D.10 findLatReinfEquilibrium()

1 function [eqForce , eqMoment , forcestore] = findLatReinfEquilibrium(i, S, forces , moments , slabSlices ,

↪→ ybar , varargin)

2 % For use with sortSlabNodes , this script finds the equilibrium forces

3 % at the input slabSlices{i}. ordered_nodes{S} nodes

4

5 % No transformation necessary

6 R = eye (2);

7 Rz = eye (3);

8

9 % Preliminaries and error checking

10 if length(forces.xx_lr{i}{S}. nodeVals.nve) ~= length(forces.xx_lr{i}{S}. nodeVals.pve)

11 error('The number of nodes between the +ve and -ve contributions not consistent.')

12 else

13 nodeCount = length(forces.xx_lr{i}{S}. nodeVals.pve);

14 timeCount = length(forces.xx_lr{i}{1}. nodeVals.pve {1});

15 end

16

17 eqForce.nve = zeros(timeCount , 2); eqForce.pve = zeros(timeCount , 2);

18 for n = 1: nodeCount

19 % Store node history for the slice from the nve and pve sides

20 forcestore.nve.global(:, 1, n) = counterEmpty ([ timeCount 1], forces.xx_lr{i}{S}. nodeVals.nve{n});

21 forcestore.pve.global(:, 1, n) = counterEmpty ([ timeCount 1], forces.xx_lr{i}{S}. nodeVals.pve{n});

22

23 forcestore.nve.global(:, 2, n) = counterEmpty ([ timeCount 1], forces.yy_lr{i}{S}. nodeVals.nve{n});

24 forcestore.pve.global(:, 2, n) = counterEmpty ([ timeCount 1], forces.yy_lr{i}{S}. nodeVals.pve{n});

25

26 % momentstore.nve.global(:, 1, n) = counterEmpty ([ timeCount 1], moments.xx_lr{i}{S}. nodeVals.nve{n

↪→ });

27 % momentstore.pve.global(:, 1, n) = counterEmpty ([ timeCount 1], moments.xx_lr{i}{S}. nodeVals.pve{n

↪→ });

28

29 % momentstore.nve.global(:, 2, n) = counterEmpty ([ timeCount 1], moments.yy_lr{i}{S}. nodeVals.nve{n

↪→ });

30 % momentstore.pve.global(:, 2, n) = counterEmpty ([ timeCount 1], moments.yy_lr{i}{S}. nodeVals.pve{n

↪→ });

31

32 % momentstore.nve.global(:, 3, n) = counterEmpty ([ timeCount 1], moments.zz_lr{i}{S}. nodeVals.nve{n

↪→ });

33 % momentstore.pve.global(:, 3, n) = counterEmpty ([ timeCount 1], moments.zz_lr{i}{S}. nodeVals.pve{n

↪→ });

34

35 % forcestore.nve.x(:, n) = forces.xx_lr{i}{S}. nodeVals.nve{n}; % Store node history

36 % forcestore.pve.x(:, n) = forces.xx_lr{i}{S}. nodeVals.pve{n}; % for the slice from

37 % % the nve and pve sides

38 % forcestore.nve.y(:, n) = forces.yy_lr{i}{S}. nodeVals.nve{n}; % This stores them on

39 % forcestore.pve.y(:, n) = forces.yy_lr{i}{S}. nodeVals.pve{n}; % a node basis but

40 % % also considering the

41 % % time step

42

43 % Project the components to the slice 's local axes

44 % (e.g. x' and y')

45 forcestore.nve.local(:, :, n) = (R*forcestore.nve.global(:, :, n) ')';

46 forcestore.pve.local(:, :, n) = (R*forcestore.pve.global(:, :, n) ')';

47

48 forcestore.nve.localx(:, n) = forcestore.nve.local(:, 1, n); % Store LOCAL node history

49 forcestore.pve.localx(:, n) = forcestore.pve.local(:, 1, n); % for the slice from

50 % the nve and pve sides

51 forcestore.nve.localy(:, n) = forcestore.nve.local(:, 2, n); % This stores them on

52 forcestore.pve.localy(:, n) = forcestore.pve.local(:, 2, n); % a node basis but

53 % also considering the

54 % time step

55 end

56

57 if nargin == 7

58 for v = 1: length(varargin {1})

59 sub_slabSlice (1, v) = varargin {1}(v);

60 end

61 moment = calcSlabSectionMoment(i, S, slabSlices , forcestore , ybar , sub_slabSlice);

564



62 for n = sub_slabSlice

63 % Calculate the equilibrium force for the slice for all the time steps

64 eqForce.nve(:, 1) = eqForce.nve(:, 1) + forcestore.nve.local(:, 1, n);

65 eqForce.nve(:, 2) = eqForce.nve(:, 2) + forcestore.nve.local(:, 2, n);

66 eqForce.pve(:, 1) = eqForce.pve(:, 1) + forcestore.pve.local(:, 1, n);

67 eqForce.pve(:, 2) = eqForce.pve(:, 2) + forcestore.pve.local(:, 2, n);

68 end

69 else

70 moment = calcSlabSectionMoment(i, S, slabSlices , forcestore , ybar);

71 for n = 1: nodeCount

72 % Calculate the equilibrium force for the slice for all the time steps

73 eqForce.nve(:, 1) = eqForce.nve(:, 1) + forcestore.nve.local(:, 1, n);

74 eqForce.nve(:, 2) = eqForce.nve(:, 2) + forcestore.nve.local(:, 2, n);

75 eqForce.pve(:, 1) = eqForce.pve(:, 1) + forcestore.pve.local(:, 1, n);

76 eqForce.pve(:, 2) = eqForce.pve(:, 2) + forcestore.pve.local(:, 2, n);

77 end

78 end

79 % force.nve = forcestore.nve.localx - eqForce.nve(:, 1)/nodeCount*ones(1, nodeCount);

80 % force.pve = forcestore.pve.localx - eqForce.pve(:, 1)/nodeCount*ones(1, nodeCount);

81

82 eqMoment.nve = 0; eqMoment.pve = 0;

83 % for n = 1: nodeCount

84 % eqMoment.nve = eqMoment.nve + counterEmpty ([ timeCount 1], moments.zz_s{i}{S}. nodeVals.nve{n});

85 % eqMoment.pve = eqMoment.pve + counterEmpty ([ timeCount 1], moments.zz_s{i}{S}. nodeVals.pve{n});

86 % end

87 % eqMoment.nve = counterEmpty ([ timeCount 1], eqMoment.nve) + moment.nve;

88 % eqMoment.pve = counterEmpty ([ timeCount 1], eqMoment.pve) + moment.pve;

89

90 eqMoment.nve = moment.nve;

91 eqMoment.pve = moment.pve;
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Appendix E

M7

E.1 Matlab implementation

The source code is listed here for those interested in either using it directly in Matlab or adapting
it for use in another language. It is placed here to prevent any ambiguity with the numerical
implementation and can be referred to in order to solve any questions arising from the preceding
algebraic representation in Section 3.1 regarding their numerical implementation.

The names chosen for the variables were done in order to be easily identifiable using the algebra
from Caner and Bazant (2013a) and follow the convention of reading the variables using the order:
variable, subscript, superscript, accent. Hence, σ̂0

N is read sigma, n, 0, hat. This was to prevent
confusion during discussions of the algorithm.

The header to the function is presented first, separately, since it is essentially preparatory work
and more part of the code than the algorithm. The algorithm then follows in source form and is
intended to resemble the algebra as closely as possible. As mentioned previously, the user has to
make use of 30 variables. Of these, the 5 k variables are defined after calibration using concrete
test data. k3 and k4 are adjusted using available hydrostatic compression data, k1 is adjusted
by fitting the, preferably complete with postpeak, uniaxial compression curve, k2 is adjusted by
making use of a sufficiently confined triaxial compression curve while k5 is adjusted using data from
uniaxial, biaxial and triaxial compression for low hydrostatic pressures. If data is not available or
is incomplete, the default values given by Caner and Bazant (2013b) are used.

Finally, it should be noted that the implementation shown here was only examined under single
Gauss point or material point simulations. This means that the behaviour of the constitutive model
was examined directly.

566



E.1.0.1 Matlab source code

1 function [epsij , sigij , sigNo , sigLo , zeta , sigMo , sigVo , epsN0plus , epsN0minus] = ...

2 M7(epsij , epsN0plus , epsN0minus , depsi ,...

3 sigNo , sigLo , sigMo , sigVo , i, Nm , zeta , Nij , Lij , Mij , wmui , ks, cs, fcdash , v, E)

4

5 k1 = ks(1,1); k2 = ks(2,1); k3 = ks(3,1); k4 = ks(4,1); k5 = ks(5,1); %

6 %

7 c1 = cs(1,1); c2 = cs(2,1); c3 = cs(3,1); c4 = cs(4,1); c5 = cs(5,1); %

8 c6 = cs(6,1); c7 = cs(7,1); c8 = cs(8,1); c9 = cs(9,1); c10 = cs(10,1); % Step 1

9 c11 = cs(11,1); c12 = cs(12,1); c13 = cs(13,1); c14 = cs(14,1); c15 = cs(15,1); %

10 c16 = cs(16,1); c17 = cs(17,1); c18 = cs(18,1); c19 = cs(19,1); c20 = cs(20,1); %

11 %

12 fc0dash = 15.08e+6; E0 = 20e+9; %

13

14 EN0 = E/(1 - 2*v); gamma0 = fc0dash/E0 - fcdash/E; %

15 ET = (E*(1-4*v))/((1 -2*v)*(1+v)); sigij = zeros (3); % Step 2

16 sigV = 0; %
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1 epsVo = (epsij (1,1) + epsij (2,2) + epsij (3,3))/3; %

2 depsV = (depsi (1,1) + depsi (2,1) + depsi (3,1))/3; % Step 3.

3 epsV = epsVo + depsV; %

4

5 epse = max(-sigVo/EN0 ,0); [V,D] = eig(epsij); %

6 epsIo = max(D(1,1), max(D(2,2), D(3,3))); epsIIIo = min(D(1,1), min(D(2,2), D(3,3))); % Step 4.

7 alpha = (k5/(1+ epse))*(( epsIo - epsIIIo)/k1)^(c20) + k4; %

8 sigVb = -E*k1*k3*exp(-epsV/(k1*alpha)); %

9

10 gamma1 = exp(gamma0)*tanh(c9*max(-epsV ,0)/k1); beta2 = c5*gamma1 + c7; beta3 = c6*gamma1 + c8; % Step

↪→ 5.

11

12 zeta(i+1,1) = zeta(i,1) + max(depsV ,0); % Step 6.

13

14 for mew = 1:Nm

15 epsN = ijij(Nij(:,:,mew), epsij); epsL = ijij(Lij(:,:,mew), epsij); %

16 epsM = ijij(Mij(:,:,mew), epsij); % Step 7.

17 depsN = ijij(Nij(:,:,mew), v2m(depsi)); depsL = ijij(Lij(:,:,mew), v2m(depsi)); %

18 depsM = ijij(Mij(:,:,mew), v2m(depsi)); %

19

20 depsD = depsN - depsV; epsDo = epsN - epsVo; epsD = epsDo + depsD; % Step 8.

21 sigDb = - (E*k1*beta3)/(1 + (max(-epsD ,0)/(k1*beta2))^2); %

22

23 epsN = epsV + epsD; %

24 if sigNo(mew ,1) >= 0 %

25 EN = EN0*exp(-c13*epsN0plus(mew ,1))/(1 + 0.1* zeta(i,1)^2); %

26 if sigNo(mew ,1) > EN0*epsN & sigNo(mew ,1)*depsN < 0 %

27 EN = EN0; %

28 end % Step 9.

29 elseif sigNo(mew ,1) < 0 %

30 EN = EN0*(exp(-c14*abs(epsN0minus(mew ,1))/(1 + c15*epse)) + c16*epse); %

31 end %

32 sigNe = sigNo(mew ,1) + EN*depsN; %

33

34 beta1 = -c1 + c17*exp(-c19*max(epse - c18 ,0)); %

35 p1 = -max(epsN - beta1*c2*k1 ,0); p2 = (-c4*epse*sign(epse) + k1*c3); %

36 sigNb = E*k1*beta1*exp(p1/p2); %

37 if sigNb > 0 % Step 10.

38 sigNb = sigNb; %

39 else %

40 sigNb = 0; %

41 end %

42

43 sigN = max(min(sigNe ,sigNb), sigVb + sigDb); % Step 11.

44

45 if abs(sigN) - abs(sigNe) < 1 %

46 epsN0plus(mew ,1) = max(epsN ,epsN0plus(mew ,1)); %

47 epsN0minus(mew ,1)= min(epsN ,epsN0minus(mew ,1)); % Step 12.

48 end %

49

50 sigV = sigV + (1/(2* pi))*wmui(:,mew)*sigN; % Step 13.

51

52 sigNohat = max(ET*k1*c11 - c12*max(epsV , 0), 0); %

53 if sigN <= 0 %

54 sigtaub = ((c10*max(sigNohat - sigN ,0))^(-1) + (ET*k1*k2)^(-1))^(-1); %

55 else % Step 14.

56 sigtaub = ((c10*sigNohat)^(-1) + (ET*k1*k2)^(-1))^(-1); %

57 end %

58

59 sigtaue = sqrt((sigLo(mew ,1) + ET*depsL)^(2) + (sigMo(mew ,1) + ET*depsM)^(2));

↪→ %

60 sigtau = min(sigtaub , abs(sigtaue));

↪→ %

61 if sigtaue == 0

↪→ %

62 sigL = (sigLo(mew ,1) + ET*depsL); sigM = (sigMo(mew ,1) + ET*depsM);

↪→ % Step 15.

63 else

↪→ %

64 sigL = (sigLo(mew ,1) + ET*depsL)*sigtau/sigtaue; sigM = (sigMo(mew ,1) + ET*depsM)*sigtau/sigtaue;

↪→ %

65 end

↪→ %
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66

67 sij = sigN*Nij(:,:,mew) + sigL*Lij(:,:,mew) + sigM*Mij(:,:,mew); %

68 sigij = sigij + 6*wmui(:,mew)*sij; % Step 16

69 sigNo(mew ,1) = sigN; sigLo(mew ,1) = sigL; sigMo(mew ,1) = sigM; %

70 end

71 sigVo = sigV; % Step 17

72 epsij = epsij + v2m(depsi); %

E.2 Notes on Validation

An ambiguity was identified in eq. (3.28) where the origin of EN is unclearly defined. It would
be implied that EN would have the value derived from one of the conditions given in eqs. (3.25) -
(3.27).

In Caner and Bazant (2013a), it is stated however that

“Within the boundaries, the response is elastic, with constant microplane elastic stiff-
ness EN and ET ".

This additionally raises the question of what purpose eqs. (3.25) - (3.27) serve and how they are
used. Since no other mention was made, it would appear that there is some missing information
regarding its implementation since these conditions, except for eq. (3.26), are showing that EN is
actually nonlinear in nature.

As a result, a numerical trial was done whereby the damaged value was used with the boundary
such that

σb
N = ENk1β1 exp

(
− ⟨ϵN − β1c2k1⟩

−c4ϵesignϵe + k1c3

)
(E.1)

while

σe
N = σo

N + EN0∆ϵN . (E.2)

This led to the simulation exhibiting a very similar qualitative behaviour, figures E.1b and
E.1d, to that presented by Caner and Bazant (2013b). This interpetation will be referred to as
M7_B.m.
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Figure E.1: Uniaxial Tension simulations using the data from Petersson (1981) plotted alongside
the results from Caner and Bazant (2013b)
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Appendix F

Point simulation algorithm

F.1 Modified Newton-Raphson scheme for mixed control

M7 is strain controlled, meaning that it requires input in the form of a strain increment. This
strain increment is defined by the user in the form of a 6x1 vector such that

∆ϵi =
{

∆ϵ1 ∆ϵ2 ∆ϵ3 ∆ϵ12 ∆ϵ23 ∆ϵ31

}T

(F.1)

The strain increment ∆ϵi is known for some types of simulation. In the case of hydrostatic
compression where σ1 = σ2 = σ3 and thus ϵ1 = ϵ2 = ϵ3,

∆ϵi =
{

∆ϵ1 ∆ϵ1 ∆ϵ1 0 0 0
}T

(F.2)

while in the case of compression confined on the 2 and 3 axes such that ϵ2 = ϵ3 = 0,

∆ϵi =
{

∆ϵ1 0 0 0 0 0
}T

(F.3)

In both these cases, the value of ∆ϵ1 is set by the user. In addition, the user may want to define
a strain increment of the form given in (F.1) with specific values for each of the components. Thus
in all these cases, the boundary conditions depend on the strain state and can be fully defined by
the user.

This is not true for cases such as uniaxial compression however, where the boundary conditions
require that σ2 = σ3 = 0. Since M7 is strain controlled and the required strain increments are
unknown, it is not possible to set the correct strain increment ∆ϵi which satisfies the boundary
conditions without making use of an iterative procedure. Since these boundary conditions contain
a mix of known strains and stresses (in the case of uniaxial compression or tension, ∆ϵ1 is set by
the user and σ2 = σ3 = 0), they are mixed boundary conditions.

In order to therefore accommodate these mixed boundary conditions, the Newton-Raphson,
NR, iteration scheme was adopted initially, and eventually gave way to the Modified NR scheme
or MNR in order to reduce the total computation time needed since the tangent stiffness does not
need to be recalculated at the end of every converged increment.

The procedure relies on rearranging the known variables, and the stiffness matrix, such that it
can be used to estimate the strain increment.

The stiffness matrix Dij is defined first along with the known stress state components in a
vector form as σwant

i . A starting value of the strain increment ∆ϵi is then defined. This is the
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equivalent to the starting estimate in the scalar application of the MNR scheme.
The initial guess ∆ϵi is then used in M7 to obtain σgot

ij and ϵgot
ij . Since these are output in

the form of 3 × 3 matrices, they need to be placed in the form of 6 × 1 vector form. The stiffness
matrix is then rearranged so that1

σi = Dijϵj (F.4)

becomes

{
σ1 ϵ2 ϵ3 σ4 σ5 σ6

}T

= Yij

{
ϵ1 σ2 σ3 ϵ4 ϵ5 ϵ6

}T

(F.5)

The right side of (F.5) can now contain only known variables. Thus, the form of the result that
is wanted is

want = wi =
{
ϵwant

1 σwant
2 σwant

3 ϵwant
4 ϵwant

5 ϵwant
6

}T

(F.6)

while the result that is given by M7 is

got = gi =
{
ϵgot

1 σgot
2 σgot

3 ϵgot
4 ϵgot

5 ϵgot
6

}T

(F.7)

Now the NR relationship can be used as

mixed = mi =



σ1

ϵ2

ϵ3

σ4

σ5

σ6


=



σ1

ϵ2

ϵ3

σ4

σ5

σ6



previous

+ Yij





ϵwant
1

σwant
2

σwant
3

ϵwant
4

ϵwant
5

ϵwant
6


−



ϵgot
1

σgot
2

σgot
3

ϵgot
4

ϵgot
5

ϵgot
6




(F.8)

thereby giving values for ϵ2 and ϵ3. Thus the new estimate for the strain increment is

∆ϵi =



ϵwant
1

mwant
2

mwant
3

ϵwant
4

ϵwant
5

ϵwant
6


− ϵi (F.9)

where ϵi is the strain state, converted from matrix to vector form, from the previous increment.
The newly found strain increment estimate is then used again in M7 and then procedure

continues until a solution which satisfies the conditions is found. Generally, the number of iterations
prepeak is below 100 and slightly over 2000 postpeak to converge within an increment. The stress
tolerance is set to 1 Pa.2.

1The stiffness matrix makes use of tensorial shear but it should be noted that the one that can be derived from
M7 makes use of engineering shear strains.

2The MNR scheme was verified by using trial curves of known equations prior to using it in M7.
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Initially define Dij and σwant
i and a starting value for ∆ϵi

��
Step 1. ϵwant

i = (ϵwant
i )prev. + ∆ϵi

��
Step 2. Call M7.m using ∆ϵi

if > tolerance
��

if < tolerance // Go to Step 1.

Step 3. Rearrange resulting σgot
ij and ϵgot

ij to σgot
i and ϵgot

i

��
Step 4. Rearrange Dij to Yij

��
Step 5. Assemble wi, gi

��
Step 6. Calculate ni

��
Step 7. Assemble new estimate of ∆ϵi

��
Go to Step 2.

To give a demonstration of the matlab implementation, a code snippets will now be presented.
The MNR scheme was not used as a subroutine per se but as part of the script generating a
simulation. Therefore, the script made use of the MNR scheme as one of its components while the
M7 was used as a subroutine within the script. Of particular interest might be the code within
the loop from Step 2-7.
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1 while abs(epswant (1,1)) <= 0.01

2 epswant = epswant + step; % Step 1.

3 while epswant (1,1) == 0 || abs(siggot (2,2)) > tolerance && ...

4 abs(siggot (3,3)) > tolerance || siggot (1,1) == 0 || abs(epsgot (1,1)) < abs(epswant (1,1))

5 % Step 2 & 3 ------------------------------------------------------------------------------

6 [epsgot , siggot , dump2 , dump3 , dump4 , dump5 , dump6 , dump7 , dump8] = ...

7 M7(epsij , epsN0plus , epsN0minus , depsij ,...

8 sigNo , sigLo , sigMo , sigVo , m, Nm, zeta , Nij , Lij , Mij , wmui , ks , cs, fcdash , v, E);

9 % -----------------------------------------------------------------------------------------

10

11 Y = UniaxialY(tanstiff); % Step 4.

12 want = [epswant (1,1); sigwant (2,1); sigwant (3,1); epswant (4:6 ,1)]; %

↪→ Step 5.

13 got = [epsgot (1,1); siggot (2,2); siggot (3,3); epsgot (1,2); epsgot (2,3); epsgot (3,1)]; %

14 mixed = mixed + Y*(want - got); % Step 6.

15 depsij = [epswant (1,1); mixed (2,1); mixed (3,1); epswant (4:6 ,1)] - m2v(epsij); % Step 7.

16 iter(m) = iter(m) + 1;

17 end

18 m = m + 1; iter(m) = 0;

19 epstore (:,:,m) = epsgot; sigstore (:,:,m) = siggot;

20 sigNo = dump2; sigLo = dump3; zeta = dump4; sigMo = dump5; sigVo = dump6;

21 epsij = epsgot; epsN0plus = dump7; epsN0minus = dump8; % Updating the memory variables

22 epsgot ,siggot

23 end

This snippet represents the vast bulk of calculations and this part of a script contains both the
M7 subroutine and the MNR iteration but excludes the generation of the constant stiffness matrix
Dij as well as the definitions of some variables as zero in order to allow the code to run.

Note that Yij for uniaxial compression/tension along the 1-axis has the form

1 p1 = D(2,2)*D(3,3) - D(2,3)*D(3,2);

2 Y(1,1) = D(1,1) + (D(1,2)*(D(2,3)*D(3,1) - D(2,1)*D(3,3)) + D(1,3)*(D(2,1)*D(3,2) - D(3,1)*D(2,2)))/

↪→ p1;

3 Y(1,2) = (D(1,2)*D(3,3) - D(1,3)*D(3,2))/p1;

4 Y(1,3) = (D(1,3)*D(2,2) - D(1,2)*D(2,3))/p1;

5 Y(1,4) = D(1,4) + (D(1,2)*(D(2,3)*D(3,4) - D(2,4)*D(3,3)) + D(1,3)*(D(2,4)*D(3,2) - D(2,2)*D(3,4)))/

↪→ p1;

6 Y(1,5) = D(1,5) + (D(1,2)*(D(2,3)*D(3,5) - D(2,5)*D(3,3)) + D(1,3)*(D(2,5)*D(3,2) - D(2,2)*D(3,5)))/

↪→ p1;

7 Y(1,6) = D(1,6) + (D(1,2)*(D(2,3)*D(3,6) - D(2,6)*D(3,3)) + D(1,3)*(D(2,6)*D(3,2) - D(2,2)*D(3,6)))/

↪→ p1;

8 Y(2,1) = (D(2,3)*D(3,1) - D(2,1)*D(3,3))/p1;

9 Y(2,2) = D(3,3)/p1;

10 Y(2,3) = -D(2,3)/p1;

11 Y(2,4) = (D(2,3)*D(3,4) - D(2,4)*D(3,3))/p1;

12 Y(2,5) = (D(2,3)*D(3,5) - D(2,5)*D(3,3))/p1;

13 Y(2,6) = (D(2,3)*D(3,6) - D(2,6)*D(3,3))/p1;

14 Y(3,1) = (D(2,1)*D(3,2) - D(2,2)*D(3,1))/p1;

15 Y(3,2) = -D(3,2)/p1;

16 Y(3,3) = D(2,2)/p1;

17 Y(3,4) = (D(2,4)*D(3,2) - D(2,2)*D(3,4))/p1;

18 Y(3,5) = (D(2,5)*D(3,2) - D(2,2)*D(3,5))/p1;

19 Y(3,6) = (D(2,6)*D(3,2) - D(2,2)*D(3,6))/p1;

20 Y(4,1) = D(4,1) + (D(4,2)*(D(2,3)*D(3,1) - D(2,1)*D(3,3)) + D(4,3)*(D(2,1)*D(3,2) - D(2,2)*D(3,1)))/

↪→ p1;

21 Y(4,2) = (D(4,2)*D(3,3) - D(4,3)*D(3,2))/p1;

22 Y(4,3) = (D(2,2)*D(4,3) - D(2,3)*D(4,2))/p1;

23 Y(4,4) = D(4,4) + (D(4,2)*(D(2,3)*D(3,4) - D(2,4)*D(3,3) + D(4,3)*(D(2,4)*D(3,2) - D(2,2)*D(3,4))))/

↪→ p1;

24 Y(4,5) = D(4,5) + (D(4,2)*(D(2,3)*D(3,5) - D(2,5)*D(3,3) + D(4,3)*(D(2,5)*D(3,2) - D(2,2)*D(3,5))))/

↪→ p1;

25 Y(4,6) = D(4,6) + (D(4,2)*(D(2,3)*D(3,6) - D(2,6)*D(3,3) + D(4,3)*(D(2,6)*D(3,2) - D(2,2)*D(3,6))))/

↪→ p1;

26 Y(5,1) = D(5,1) + (D(5,2)*(D(2,3)*D(3,1) - D(2,1)*D(3,3)) + D(5,3)*(D(2,1)*D(3,2) - D(2,2)*D(3,1)))/

↪→ p1;

27 Y(5,2) = (D(5,2)*D(3,3) - D(5,3)*D(3,2))/p1;

28 Y(5,3) = (D(2,2)*D(5,3) - D(2,3)*D(5,2))/p1;

29 Y(5,4) = D(5,4) + (D(5,2)*(D(2,3)*D(3,4) - D(2,4)*D(3,3) + D(5,3)*(D(2,4)*D(3,2) - D(2,2)*D(3,4))))/

↪→ p1;

30 Y(5,5) = D(5,5) + (D(5,2)*(D(2,3)*D(3,5) - D(2,5)*D(3,3) + D(5,3)*(D(2,5)*D(3,2) - D(2,2)*D(3,5))))/
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↪→ p1;

31 Y(5,6) = D(5,6) + (D(5,2)*(D(2,3)*D(3,6) - D(2,6)*D(3,3) + D(5,3)*(D(2,6)*D(3,2) - D(2,2)*D(3,6))))/

↪→ p1;

32 Y(6,1) = D(6,1) + (D(6,2)*(D(2,3)*D(3,1) - D(2,1)*D(3,3)) + D(6,3)*(D(2,1)*D(3,2) - D(2,2)*D(3,1)))/

↪→ p1;

33 Y(6,2) = (D(6,2)*D(3,3) - D(6,3)*D(3,2))/p1;

34 Y(6,3) = (D(2,2)*D(6,3) - D(2,3)*D(6,2))/p1;

35 Y(6,4) = D(6,4) + (D(6,2)*(D(2,3)*D(3,4) - D(2,4)*D(3,3) + D(6,3)*(D(2,4)*D(3,2) - D(2,2)*D(3,4))))/

↪→ p1;

36 Y(6,5) = D(6,5) + (D(6,2)*(D(2,3)*D(3,5) - D(2,5)*D(3,3) + D(6,3)*(D(2,5)*D(3,2) - D(2,2)*D(3,5))))/

↪→ p1;

37 Y(6,6) = D(6,6) + (D(6,2)*(D(2,3)*D(3,6) - D(2,6)*D(3,3) + D(6,3)*(D(2,6)*D(3,2) - D(2,2)*D(3,6))))/

↪→ p1;
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Appendix G

M7 UMAT for ABAQUS v6.13

1 subroutine UMAT(stress , statev , ddsdde , sse , spd , scd , &

2 rpl , ddsddt , drplde , drpldt , stran , dstran , &

3 time , dtime , temp , dtemp , predef , dpred , materl , ndi , nshr , ntens , &

4 nstatv , props , nprops , coords , drot , pnewdt , celent , &

5 dfgrd0 , dfgrd1 , noel , npt , kslay , kspt , kstep , kinc)

6

7 ! implicit none ! do not use; causes error in UMAT

8

9 include 'ABA_PARAM.inc'

10

11 real*8 :: stress(ntens), ddsdde(ntens , ntens), stran(ntens), dstran(ntens), props(nprops)

12 real*8 :: time (2), statev (5*37 + 2 + 6), strantemp(ntens)

13 integer :: I, J, Nm

14

15 ! RevM7_C related

16 real*8 :: ks(5), cs(21), E, v, fcdash

17

18 real*8 :: stran3x3 (3,3), sigij (3,3)

19

20 real*8 :: epsN0plus (37), epsN0minus (37)!, zeta (:), zeta_temp (:)

21 real*8 :: sigNo (37), sigMo (37), sigLo (37)

22 real*8 :: zeta (2), sigVo

23

24 ks(1:5) = props (1:5)

25 cs (1:21) = props (6:26)

26 E = props (27)

27 v = props (28)

28 fcdash = props (29)

29 Nm = 37 ! For now , this won 't change

30

31 ! Therefore , depvar = 5*37 + 2 = 188

32 if (time (2) .eq. 0.0d+0) then

33 do I = 1, (5*37 + 2 + 6)

34 statev(I) = 0.0d+0

35 end do

36 zeta (1) = 0.0d+0

37 zeta (2) = 0.0d+0

38 end if

39

40 epsN0plus (1:Nm) = statev (1:Nm)

41 epsN0minus (1:Nm) = statev ((Nm + 1):(2*Nm))

42 sigNo (1:Nm) = statev ((2*Nm + 1):(3*Nm))

43 sigMo (1:Nm) = statev ((3*Nm + 1):(4*Nm))

44 sigLo (1:Nm) = statev ((4*Nm + 1):(5*Nm))

45 zeta (1) = statev (5*Nm + 1)

46 sigVo = statev (5*Nm + 2)

47 strantemp = statev ((5*Nm + 3):(5*Nm + 8))

48

49 call v2m(strantemp , stran3x3)

50 call RevM7_C(ks, cs, E, v, Nm , &

51 fcdash , dstran , &
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52 stran3x3 , sigVo , zeta , &

53 epsN0plus , epsN0minus , &

54 sigNo , sigMo , sigLo , &

55 sigij)

56

57 call m2v(stran3x3 , strantemp)

58

59 call m2v(sigij , stress)

60

61 statev (1:Nm) = epsN0plus (1:Nm)

62 statev ((Nm + 1):(2*Nm)) = epsN0minus (1:Nm)

63 statev ((2*Nm + 1):(3*Nm)) = sigNo (1:Nm)

64 statev ((3*Nm + 1):(4*Nm)) = sigMo (1:Nm)

65 statev ((4*Nm + 1):(5*Nm)) = sigLo (1:Nm)

66 statev (5*Nm + 1) = zeta (1)

67 statev (5*Nm + 2) = sigVo

68 statev ((5*Nm + 3):(5*Nm + 8)) = strantemp (1:6)

69

70 call jacobian(v, E, ddsdde)

71

72 ! ! For debugging purposes

73 ! open (205, file='C:\Temp\umat2.txt ',form='formatted ',status='old ',position='append ',action='write ')

74 ! do I = 1, 3

75 ! write (205, fmt =*) (stran3x3(I,J), J = 1, 3)

76 ! end do

77 ! write (205, fmt =*) '------------------------------------------'

78 ! do I = 1, 3

79 ! write (205, fmt =*) (sigij(I,J), J = 1, 3)

80 ! end do

81 ! write (205, fmt =*) '------------------------------------------'

82 ! ! do I = 1, 6

83 ! ! write (205, fmt =*) stran(I), dstran(I)

84 ! ! end do

85 ! ! write (205, fmt =*) '------------------------------------------'

86 ! close (205)

87

88 end subroutine UMAT

89

90 subroutine RevM7_C(ks, cs, E, v, Nm , &

91 fcdash , depsij , &

92 epsij , sigVo , zeta , &

93 epsN0plus , epsN0minus , &

94 sigNo , sigMo , sigLo , &

95 sigij) !kount (kount is not to be used to optimise runtime)

96 ! implicit none

97

98 ! Matrices

99 real*8 :: cs(21), ks(5), Nij(3,3), Mij(3,3), Lij(3,3)

100 real*8 :: sigij (3,3), epsij (3,3), depsij_temp (1,6), depsij (6,1), depsij3x3 (3,3)

101 real*8 :: n(1,3), m(1,3), l(1,3), wmu

102 real*8 :: sij(3,3)

103 real*8 :: zeta (2)

104

105 ! Scalars

106 real*8, intent(in) :: v, E, fcdash

107 real*8 :: fc0dash , E0, EN0

108 real*8 :: sigV , sigVo

109 real*8 :: k1, k2, k3, k4, k5

110 real*8 :: c1, c2, c3, c4, c5, c6 , c7, c8 , c9, c10 , c11 , &

111 c12 , c13 , c14 , c15 , c16 , c17 , c18 , c19 , c20 , c21

112 real*8 :: epsN , epsL , epsM , depsN , depsL , depsM

113 real*8 :: epsV0 , depsV , epsV

114 real*8 :: epse , epsIo , epsIIIo , alpha , sigVb

115 real*8 :: depsD , epsD0 , epsD , gamma0 , gamma1 , beta2 , beta3 , sigDb

116 real*8 :: EN, sigNe

117

118 real*8 :: beta1 , p1, p2, sigNb

119 real*8 :: sigN

120 real*8 :: ET, sigN0hat , sigtaub , sigtaue , sigtau

121 real*8 :: sigL , sigM

122

123 integer :: mew , Nm

124 integer :: J!, kount
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125

126 real*8 :: epsN0plus(Nm), epsN0minus(Nm)!, zeta (:), zeta_temp (:)

127 real*8 :: sigNo(Nm), sigMo(Nm), sigLo(Nm)

128

129 ! DGEEV related

130 real*8 :: A(3,3), WR(3), WI(3), VL(3,3), VR(3,3), WORK (1000)

131 integer :: INFO , LDA , LDVL , LDVR , LWORK , NN

132 character :: JOBVL , JOBVR

133 real*8 :: D(3,3)!, V(3,3)

134

135 ! DELETE

136 real*8 :: epsij6x1 (6,1)

137

138 call v2m(depsij , depsij3x3)

139

140 fc0dash = 15.08d+6; E0 = 20.0d+9

141

142 k1 = ks(1); k2 = ks(2); k3 = ks(3); k4 = ks(4)

143 k5 = ks(5)

144

145 c1 = cs(1); c2 = cs(2); c3 = cs(3); c4 = cs(4)

146 c5 = cs(5); c6 = cs(6); c7 = cs(7); c8 = cs(8)

147 c9 = cs(9); c10 = cs(10); c11 = cs(11); c12 = cs(12)

148 c13 = cs(13); c14 = cs(14); c15 = cs(15); c16 = cs(16)

149 c17 = cs(17); c18 = cs(18); c19 = cs(19); c20 = cs(20)

150 c21 = cs(21)

151

152 EN0 = E/(1 - 2*v); sigV = 0

153

154 do J = 1, 3

155 sigij(J,:) = [0, 0, 0]

156 end do

157 do mew = 1, Nm

158

159 call BazInt(mew , Nm, n, wmu)

160 call BazFdc(n, m, l)

161 call sub_NML(n, m, l, Nij , Mij , Lij)

162

163 ! Step 1.

164 call ijij_F(Nij , epsij , epsN) ! epsN

165 call ijij_F(Mij , epsij , epsM) ! epsM

166 call ijij_F(Lij , epsij , epsL) ! epsL

167

168 call ijij_F(Nij , depsij3x3 , depsN) ! depsN

169 call ijij_F(Mij , depsij3x3 , depsM) ! depsM

170 call ijij_F(Lij , depsij3x3 , depsL) ! depsL

171

172 ! Step 2.

173 epsV0 = (epsij (1,1) + epsij (2,2) + epsij (3,3))/3

174 depsV = (depsij (1,1) + depsij (2,1) + depsij (3,1))/3

175 epsV = epsV0 + depsV

176

177 ! Step 3.

178 A = epsij

179 NN = 3; LDA = NN; LDVL = NN; LDVR = NN

180 JOBVL = 'N'; JOBVR = 'V'; LWORK = 1000

181 call dgeev(JOBVL , JOBVR , NN, A, LDA , WR, WI , VL, LDVL , VR , LDVR , &

182 WORK , LWORK , INFO)

183 D = A

184

185 epse = max(-sigVo/EN0 ,0.0d+0)

186 epsIo = max(D(1,1), max(D(2,2), D(3,3)))

187 epsIIIo = min(D(1,1), min(D(2,2), D(3,3)))

188 alpha = (k5/(1+ min(max(-sigVo ,0.0d+0),c21)/EN0))*(( epsIo - epsIIIo)/k1)**(c20) + k4

189 sigVb = -E*k1*k3*exp(-epsV/(k1*alpha))

190

191 ! Step 4.

192 depsD = depsN - depsV

193 epsD0 = epsN - epsV0

194 epsD = epsD0 + depsD

195

196 gamma0 = fc0dash/E0 - fcdash/E

197 gamma1 = exp(gamma0)*tanh(c9*max(-epsV ,0.0d+0)/k1)
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198 beta2 = c5*gamma1 + c7; beta3 = c6*gamma1 + c8

199 sigDb = - (E*k1*beta3)/(1.0d+0 + (max(-epsD ,0.0d+0)/(k1*beta2))**2)

200

201 ! Step 5.

202 epsN = epsV + epsD

203 EN0 = E/(1 - 2*v)

204

205 if (sigNo(mew) .ge. 0.0d+0) then

206 EN = EN0*exp(-c13*epsN0plus(mew))*(1 + 0.1* zeta (1) **2) **(-1)

207 if ((sigNo(mew) .gt. EN0*epsN) .and. (sigNo(mew)*depsN .lt. 0.0d+0)) then

208 EN = EN0

209 end if

210 elseif (sigNo(mew) .lt. 0.0d+0) then

211 EN = EN0*(exp(-c14*abs(epsN0minus(mew))/(1 + c15*epse)) + c16*epse)

212 end if

213 sigNe = sigNo(mew) + EN*depsN

214

215 zeta (2) = zeta (1) + max(depsV , 0.0d+0)

216

217 ! Step 6.

218 beta1 = -c1 + c17*exp(-c19*max(-sigVo - c18 ,0.0d+0)/EN0)

219 p1 = -max(epsN - beta1*c2*k1 ,0.0d+0); p2 = (c4*epse + k1*c3)

220 sigNb = E*k1*beta1*exp(p1/p2)

221 if (sigNb .ge. 0.0d+0) then

222 sigNb = sigNb

223 elseif (sigNb .lt. 0.0d+0) then

224 sigNb = 0.0d+0

225 end if

226

227 ! Step 7.

228 sigN = max(min(sigNe ,sigNb), sigVb + sigDb)

229

230 ! Step 8.

231 if (abs(sigNe) .gt. abs(sigN)) then

232 epsN0plus(mew) = max(epsN ,epsN0plus(mew))

233 epsN0minus(mew) = min(epsN ,epsN0minus(mew))

234 end if

235

236 ! Step 9.

237 sigV = sigV + 2*wmu*sigN

238

239 ! Step 10.

240 ET = EN0 *((1 - 4*v)/(1 + v))

241 sigN0hat = ET*max(k1*c11 - c12*max(epsV , 0.0d+0), 0.0d+0)

242 if (sigN .le. 0.0d+0) then

243 sigtaub = ((c10*max(sigN0hat - sigN ,0.0d+0))**(-1) + (ET*k1*k2)**(-1))**(-1)

244 else

245 sigtaub = ((c10*sigN0hat)**(-1) + (ET*k1*k2)**(-1))**(-1)

246 end if

247

248 ! Step 11.

249 sigtaue = sqrt((sigLo(mew) + ET*depsL)**(2) + (sigMo(mew) + ET*depsM)**(2))

250 sigtau = min(sigtaub , abs(sigtaue))

251 if (sigtaue .eq. 0.0d+0) then ! change to tolerance

252 sigL = sigLo(mew)

253 sigM = sigMo(mew)

254 else

255 sigL = (sigLo(mew) + ET*depsL)*sigtau/sigtaue

256 sigM = (sigMo(mew) + ET*depsM)*sigtau/sigtaue

257 end if

258

259 ! Step 12.

260 sij = sigN*Nij + sigL*Lij + sigM*Mij

261 sigij = sigij + 6*wmu*sij

262

263 sigNo(mew) = sigN

264 sigLo(mew) = sigL

265 sigMo(mew) = sigM

266

267 end do

268 sigVo = sigV

269 epsij = epsij + depsij3x3

270 end subroutine RevM7_C
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271

272 subroutine UniaxialY(D, Y)

273 ! implicit none

274 real*8 :: p1 , D(6,6), Y(6,6)

275

276 if (D(2,2) .ne. 0.0d+0 .and. D(3,3) .ne. 0.0d+0 .or. D(2,3) .ne. 0.0d+0 .and. D(3,2) .ne. 0.0d+0)

↪→ then

277 p1 = D(2,2)*D(3,3) - D(2,3)*D(3,2)

278 Y(1,1) = D(1,1) + (D(1,2)*(D(2,3)*D(3,1) - D(2,1)*D(3,3)) + D(1,3)*(D(2,1)*D(3,2) - D(3,1)*D(2,2)

↪→ ))/p1

279 Y(1,2) = (D(1,2)*D(3,3) - D(1,3)*D(3,2))/p1

280 Y(1,3) = (D(1,3)*D(2,2) - D(1,2)*D(2,3))/p1

281 Y(1,4) = D(1,4) + (D(1,2)*(D(2,3)*D(3,4) - D(2,4)*D(3,3)) + D(1,3)*(D(2,4)*D(3,2) - D(2,2)*D(3,4)

↪→ ))/p1

282 Y(1,5) = D(1,5) + (D(1,2)*(D(2,3)*D(3,5) - D(2,5)*D(3,3)) + D(1,3)*(D(2,5)*D(3,2) - D(2,2)*D(3,5)

↪→ ))/p1

283 Y(1,6) = D(1,6) + (D(1,2)*(D(2,3)*D(3,6) - D(2,6)*D(3,3)) + D(1,3)*(D(2,6)*D(3,2) - D(2,2)*D(3,6)

↪→ ))/p1

284 Y(2,1) = (D(2,3)*D(3,1) - D(2,1)*D(3,3))/p1

285 Y(2,2) = D(3,3)/p1

286 Y(2,3) = -D(2,3)/p1

287 Y(2,4) = (D(2,3)*D(3,4) - D(2,4)*D(3,3))/p1

288 Y(2,5) = (D(2,3)*D(3,5) - D(2,5)*D(3,3))/p1

289 Y(2,6) = (D(2,3)*D(3,6) - D(2,6)*D(3,3))/p1

290 Y(3,1) = (D(2,1)*D(3,2) - D(2,2)*D(3,1))/p1

291 Y(3,2) = -D(3,2)/p1

292 Y(3,3) = D(2,2)/p1

293 Y(3,4) = (D(2,4)*D(3,2) - D(2,2)*D(3,4))/p1

294 Y(3,5) = (D(2,5)*D(3,2) - D(2,2)*D(3,5))/p1

295 Y(3,6) = (D(2,6)*D(3,2) - D(2,2)*D(3,6))/p1

296 Y(4,1) = D(4,1) + (D(4,2)*(D(2,3)*D(3,1) - D(2,1)*D(3,3)) + D(4,3)*(D(2,1)*D(3,2) - D(2,2)*D(3,1)

↪→ ))/p1

297 Y(4,2) = (D(4,2)*D(3,3) - D(4,3)*D(3,2))/p1

298 Y(4,3) = (D(2,2)*D(4,3) - D(2,3)*D(4,2))/p1

299 Y(4,4) = D(4,4) + (D(4,2)*(D(2,3)*D(3,4) - D(2,4)*D(3,3) + D(4,3)*(D(2,4)*D(3,2) - D(2,2)*D(3,4))

↪→ ))/p1

300 Y(4,5) = D(4,5) + (D(4,2)*(D(2,3)*D(3,5) - D(2,5)*D(3,3) + D(4,3)*(D(2,5)*D(3,2) - D(2,2)*D(3,5))

↪→ ))/p1

301 Y(4,6) = D(4,6) + (D(4,2)*(D(2,3)*D(3,6) - D(2,6)*D(3,3) + D(4,3)*(D(2,6)*D(3,2) - D(2,2)*D(3,6))

↪→ ))/p1

302 Y(5,1) = D(5,1) + (D(5,2)*(D(2,3)*D(3,1) - D(2,1)*D(3,3)) + D(5,3)*(D(2,1)*D(3,2) - D(2,2)*D(3,1)

↪→ ))/p1

303 Y(5,2) = (D(5,2)*D(3,3) - D(5,3)*D(3,2))/p1

304 Y(5,3) = (D(2,2)*D(5,3) - D(2,3)*D(5,2))/p1

305 Y(5,4) = D(5,4) + (D(5,2)*(D(2,3)*D(3,4) - D(2,4)*D(3,3) + D(5,3)*(D(2,4)*D(3,2) - D(2,2)*D(3,4))

↪→ ))/p1

306 Y(5,5) = D(5,5) + (D(5,2)*(D(2,3)*D(3,5) - D(2,5)*D(3,3) + D(5,3)*(D(2,5)*D(3,2) - D(2,2)*D(3,5))

↪→ ))/p1

307 Y(5,6) = D(5,6) + (D(5,2)*(D(2,3)*D(3,6) - D(2,6)*D(3,3) + D(5,3)*(D(2,6)*D(3,2) - D(2,2)*D(3,6))

↪→ ))/p1

308 Y(6,1) = D(6,1) + (D(6,2)*(D(2,3)*D(3,1) - D(2,1)*D(3,3)) + D(6,3)*(D(2,1)*D(3,2) - D(2,2)*D(3,1)

↪→ ))/p1

309 Y(6,2) = (D(6,2)*D(3,3) - D(6,3)*D(3,2))/p1

310 Y(6,3) = (D(2,2)*D(6,3) - D(2,3)*D(6,2))/p1

311 Y(6,4) = D(6,4) + (D(6,2)*(D(2,3)*D(3,4) - D(2,4)*D(3,3) + D(6,3)*(D(2,4)*D(3,2) - D(2,2)*D(3,4))

↪→ ))/p1

312 Y(6,5) = D(6,5) + (D(6,2)*(D(2,3)*D(3,5) - D(2,5)*D(3,3) + D(6,3)*(D(2,5)*D(3,2) - D(2,2)*D(3,5))

↪→ ))/p1

313 Y(6,6) = D(6,6) + (D(6,2)*(D(2,3)*D(3,6) - D(2,6)*D(3,3) + D(6,3)*(D(2,6)*D(3,2) - D(2,2)*D(3,6))

↪→ ))/p1

314 else

315 print *, 'Error '

316 end if

317 end subroutine UniaxialY

318

319 subroutine transpose_vec(vector1 , vector2)

320 ! implicit none

321 real*8 :: vector1 (1,6), vector2 (6,1)

322 integer :: I

323

324 do I = 1, 6

325 vector2(I,1) = vector1(1,I)

326 end do
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327 end subroutine transpose_vec

328

329 subroutine Iso(v, E, D)

330 ! implicit none

331 real*8 :: v, E, D(6,6), onem2v

332

333 onem2v = 1.0d+0 - 2.0d+0*v

334 D(1,:) = [1.0d+0-v, v, v, 0.0d+0, 0.0d+0, 0.0d+0]

335 D(2,:) = [v, 1.0d+0-v, v, 0.0d+0, 0.0d+0, 0.0d+0]

336 D(3,:) = [v, v, 1.0d+0-v, 0.0d+0, 0.0d+0, 0.0d+0]

337 D(4,:) = [0.0d+0, 0.0d+0, 0.0d+0, onem2v , 0.0d+0, 0.0d+0]

338 D(5,:) = [0.0d+0, 0.0d+0, 0.0d+0, 0.0d+0, onem2v , 0.0d+0]

339 D(6,:) = [0.0d+0, 0.0d+0, 0.0d+0, 0.0d+0, 0.0d+0, onem2v]

340

341 D = E/((1+v)*onem2v)*D

342 end subroutine Iso

343

344 subroutine ijij_F(Matrix1 , Matrix2 , output)

345 ! implicit none

346 real*8 :: Matrix1 (3,3), Matrix2 (3,3), output

347 integer :: I, J

348

349 output = 0

350 do I = 1,3

351 do J = 1,3

352 output = output + Matrix1(I,J)*Matrix2(I,J)

353 end do

354 end do

355 end subroutine ijij_F

356

357 subroutine BazFdc(n,m,l)

358 ! implicit none

359

360 real*8 :: n_temp (3,1)

361 integer :: I

362 real*8 :: n(1,3), m(1,3), l(1,3)

363 logical :: logic1

364

365 logic1 = (sqrt(n(1,1)**2 + n(1,2)**2 + n(1,3) **2) - 1.0d+0 .le. 1.0d-8)

366

367 if ((n(1,1) .eq. 1.0d+0) .and. (n(1,2) .eq. 0.0d+0) .and. (n(1,3) .eq. 0.0d+0)) then

368 m(1,:) = [0.0d+0, 1.0d+0, 0.0d+0]

369 elseif ((n(1,1) .eq. -1.0d+0) .and. (n(1,2) .eq. 0.0d+0) .and. (n(1,3) .eq. 0.0d+0)) then

370 m(1,:) = [0.0d+0, -1.0d+0, 0.0d+0]

371 elseif ((n(1,2) .eq. 1.0d+0) .and. (n(1,1) .eq. 0.0d+0) .and. (n(1,3) .eq. 0.0d+0)) then

372 m(1,:) = [-1.0d+0, 0.0d+0, 0.0d+0]

373 elseif ((n(1,2) .eq. -1.0d+0) .and. (n(1,1) .eq. 0.0d+0) .and. (n(1,3) .eq. 0.0d+0)) then

374 m(1,:) = [1.0d+0, 0.0d+0, 0.0d+0]

375 elseif ((n(1,3) .eq. 1.0d+0) .and. (n(1,1) .eq. 0.0d+0) .and. (n(1,2) .eq. 0.0d+0)) then

376 m(1,:) = [0.0d+0, 1.0d+0, 0.0d+0]

377 elseif ((n(1,3) .eq. -1.0d+0) .and. (n(1,1) .eq. 0.0d+0) .and. (n(1,2) .eq. 0.0d+0)) then

378 m(1,:) = [0.0d+0, -1.0d+0, 0.0d+0]

379 elseif ((n(1,1) .ne. 0.0d+0) .and. (n(1,2) .ne. 0.0d+0) .and. (n(1,3) .eq. 0.0d+0) .and. logic1 .

↪→ eqv. .true.) then

380 m(1,:) = [-n(1,2), n(1,1), 0.0d+0]

381 elseif ((n(1,2) .ne. 0.0d+0) .and. (n(1,3) .ne. 0.0d+0) .and. (n(1,1) .eq. 0.0d+0) .and. logic1 .

↪→ eqv. .true.) then

382 m(1,:) = [0.0d+0, -n(1,3), n(1,2)]

383 elseif ((n(1,1) .ne. 0.0d+0) .and. (n(1,3) .ne. 0.0d+0) .and. (n(1,2) .eq. 0.0d+0) .and. logic1 .

↪→ eqv. .true.) then

384 m(1,:) = [-n(1,3), 0.0d+0, n(1,1)]

385 elseif ((n(1,1) .ne. 0.0d+0) .and. (n(1,2) .ne. 0.0d+0) .and. (n(1,3) .ne. 0.0d+0) .and. logic1 .

↪→ eqv. .true.) then

386 m(1,:) = [1.0d+0/ sqrt (1.0d+0 + (n(1,1)/n(1,2))**2), &

387 -(n(1,1)/n(1,2))/sqrt (1.0d+0 + (n(1,1)/n(1,2))**2), &

388 0.0d+0]

389 else

390 print *, 'Error , none of the conditions was met.'

391 end if

392

393 l(1,:) = [(m(1,2)*n(1,3) - m(1,3)*n(1,2)), (m(1,3)*n(1,1) - m(1,1)*n(1,3)), (m(1,1)*n(1,2) - m(1,2)

↪→ *n(1,1))]

394 end subroutine BazFdc
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395

396 subroutine sub_NML(n, m, l, Nij , Mij , Lij)

397 ! implicit none

398 real*8 :: n(1,3), m(1,3), l(1,3), Nij(3,3), Mij(3,3), Lij(3,3)

399 integer :: I, J

400

401 do J = 1, 3

402 do I = 1, 3

403 Nij(I,J) = n(1,I)*n(1,J)

404 Mij(I,J) = (m(1,I)*n(1,J) + m(1,J)*n(1,I))/2

405 Lij(I,J) = (l(1,I)*n(1,J) + l(1,J)*n(1,I))/2

406 end do

407 end do

408 end subroutine sub_NML

409

410 subroutine BazInt(kount , Nm, n, wmu)

411 implicit none

412

413 real*8 :: n(1,3), wmu

414 integer :: kount , Nm

415 real*8, dimension (:,:), allocatable :: BazInt_storetemp , BazInt_store

416

417 if (Nm .eq. 37) then

418 allocate (BazInt_storetemp (1,4*Nm))

419 BazInt_storetemp (1,:) = [1d+0, 0d+0, 0d+0, 0.0107238857303d+0, &

420 0d+0, 1d+0, 0d+0, 0.0107238857303d+0, &

421 0d+0, 0d+0, 1d+0, 0.0107238857303d+0, &

422 0.707106781187d+0, 0.707106781187d+0, 0d+0, 0.0211416095198d+0, &

423 0.707106781187d+0, -0.707106781187d+0, 0d+0, 0.0211416095198d+0, &

424 0.707106781187d+0, 0d+0, 0.707106781187d+0, 0.0211416095198d+0, &

425 0.707106781187d+0, 0d+0, -0.707106781187d+0, 0.0211416095198d+0, &

426 0d+0, 0.707106781187d+0, 0.707106781187d+0, 0.0211416095198d+0, &

427 0d+0, 0.707106781187d+0, -0.707106781187d+0, 0.0211416095198d+0, &

428 0.951077869651d+0, 0.308951267775d+0, 0d+0, 0.00535505590837d+0, &

429 0.951077869651d+0, -0.308951267775d+0, 0d+0, 0.00535505590837d+0, &

430 0.308951267775d+0, 0.951077869651d+0, 0d+0, 0.00535505590837d+0, &

431 0.308951267775d+0, -0.951077869651d+0, 0d+0, 0.00535505590837d+0, &

432 0.951077869651d+0, 0d+0, 0.308951267775d+0, 0.00535505590837d+0, &

433 0.951077869651d+0, 0d+0, -0.308951267775d+0, 0.00535505590837d+0, &

434 0.308951267775d+0, 0d+0, 0.951077869651d+0, 0.00535505590837d+0, &

435 0.308951267775d+0, 0d+0, -0.951077869651d+0, 0.00535505590837d+0, &

436 0d+0, 0.951077869651d+0, 0.308951267775d+0, 0.00535505590837d+0, &

437 0d+0, 0.951077869651d+0, -0.308951267775d+0, 0.00535505590837d+0, &

438 0d+0, 0.308951267775d+0, 0.951077869651d+0, 0.00535505590837d+0, &

439 0d+0, 0.308951267775d+0, -0.951077869651d+0, 0.00535505590837d+0, &

440 0.335154591939d+0, 0.335154591939d+0, 0.880535518310d+0, 0.0167770909156d+0, &

441 0.335154591939d+0, 0.335154591939d+0, -0.880535518310d+0, 0.0167770909156d+0, &

442 0.335154591939d+0, -0.335154591939d+0, 0.880535518310d+0, 0.0167770909156d+0, &

443 0.335154591939d+0, -0.335154591939d+0, -0.880535518310d+0, 0.0167770909156d+0, &

444 0.335154591939d+0, 0.880535518310d+0, 0.335154591939d+0, 0.0167770909156d+0, &

445 0.335154591939d+0, 0.880535518310d+0, -0.335154591939d+0, 0.0167770909156d+0, &

446 0.335154591939d+0, -0.880535518310d+0, 0.335154591939d+0, 0.0167770909156d+0, &

447 0.335154591939d+0, -0.880535518310d+0, -0.335154591939d+0, 0.0167770909156d+0, &

448 0.880535518310d+0, 0.335154591939d+0, 0.335154591939d+0, 0.0167770909156d+0, &

449 0.880535518310d+0, 0.335154591939d+0, -0.335154591939d+0, 0.0167770909156d+0, &

450 0.880535518310d+0, -0.335154591939d+0, 0.335154591939d+0, 0.0167770909156d+0, &

451 0.880535518310d+0, -0.335154591939d+0, -0.335154591939d+0, 0.0167770909156d+0, &

452 0.577350269190d+0, 0.577350269190d+0, 0.577350269190d+0, 0.0188482309508d+0, &

453 0.577350269190d+0, 0.577350269190d+0, -0.577350269190d+0, 0.0188482309508d+0, &

454 0.577350269190d+0, -0.577350269190d+0, 0.577350269190d+0, 0.0188482309508d+0, &

455 0.577350269190d+0, -0.577350269190d+0, -0.577350269190d+0, 0.0188482309508d+0]

456 allocate (BazInt_store(Nm ,4))

457 BazInt_store (:,:) = transpose(reshape(BazInt_storetemp , [4,Nm]))

458 end if

459 n(1,:) = BazInt_store(kount ,1:3)

460 wmu = BazInt_store(kount ,4)

461 end subroutine BazInt

462

463 subroutine v2m(vector , matrix)

464 ! implicit none

465 real*8 :: vector (6,1), matrix (3,3)

466

467 matrix (1,:) = [vector (1,1), vector (4,1), vector (6,1)]
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468 matrix (2,:) = [vector (4,1), vector (2,1), vector (5,1)]

469 matrix (3,:) = [vector (6,1), vector (5,1), vector (3,1)]

470 end subroutine v2m

471

472 subroutine m2v(matrix , vector)

473 ! implicit none

474 integer :: I

475 real*8 :: vector (6,1), matrix (3,3)

476

477 do I = 1, 3

478 vector(I, 1) = matrix(I, I)

479 end do

480

481 vector(4, 1) = matrix(1, 2)

482 vector(5, 1) = matrix(2, 3)

483 vector(6, 1) = matrix(3, 1)

484 end subroutine m2v

485

486 subroutine jacobian(v, E, ddsdde)

487 ! implicit none

488

489 real*8 :: v, E, ddsdde (6,6)

490 integer :: I, J

491

492 do I = 1, 6

493 do J = 1, 6

494 ddsdde(I,J) = 0.0d+0

495 end do

496 end do

497

498 do I = 1, 3

499 do J = 1, 3

500 ddsdde(J, I) = E*v/((1+v)*(1-2*v))

501 end do

502 ddsdde(I, I) = E*(1-v)/((1+v)*(1 -2*v))

503 end do

504 do I = 4, 6

505 ddsdde(I, I) = E/(2*(1+v))

506 end do

507 end subroutine jacobian
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