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Abstract

Recent years have witnessed remarkable progress in nanoscience and nonlinear optics

research, paving entry of 2D materials such as graphene, phosphorene, silicene, and so

on. Graphene has extraordinary optical, electrical, mechanical and thermal properties.

The uniqueness of graphene lies in its modulation depth (> 90%) and signal attenuation

(< 5%), achieved by controlling its Fermi level through gate voltage. It is envisioned that

graphene-based modulators would be the ultimate high-speed modulator of the future,

performing at speeds up to 10 times faster than existing ones.

The accuracy of such solutions lies in determining the permittivity (εr) of materi-

als used. Graphene possesses complex conductivity (σ(ω) = σ1 + jσ2) and permittivity

(ε(ω) = ε1 + jε2). Using Kubo formalism, we derived an analytical method for finding

the conductivity of graphene (σg,interband +σg,intraband) and then the complex permittivity

(εg). The values of ε(ω) are plotted as a function of chemical potential (µ, eV), wavelength

(λ, nm) and thickness of graphene layers (tg).

Benchmarking was carried out using two solvers viz., complex and perturbation to

ascertain the suitability of the method. Effective mode index (neff) and absorption (α)

are calculated for quasi-TE and quasi-TM guided modes of the waveguide. We found that

the waveguide performance parameters are highly influenced by the position of graphene

layers in the waveguide and the thickness and type of dielectric material that encapsulate

the graphene layers. Two positions viz., graphene-as-top layer and graphene-as-slot layer

were analysed. Three dielectric materials, hBN, Al2O3 and HfO2, classified as low-, high-

and very-high index, respectively, are chosen. For operation wavelength range (1.3–1.7µm)

and for varying dielectric layer thickness from 5 to 70 nm, the plots for neff and α (dB/µm)

are obtained.

Performance parameters such as extinction ratio (ER) and insertion loss (IL) were

calculated for varying dielectric thickness (5–70 nm). ER and IL are achieved within

the ranges 20–70 and 3–4 dB/µm, respectively. We inferred that to enhance the modal

properties (neff and α), graphene-as-top layer waveguide can have a combination of very

high-index (εr = 25) dielectric material (thickness > 15− 20 nm) encapsulating graphene

whereas a very high-index dielectric with reduced thickness (< 5 − 10 nm) encapsulating

graphene is suitable for graphene-as-slot layer waveguide.



Contents

1 Introduction 1

1.1 Photonic materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Photonic crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Current trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Light waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 n and ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2.1 Mode Effective Index . . . . . . . . . . . . . . . . . . . . . 8

1.2.2.2 Optical Absorption . . . . . . . . . . . . . . . . . . . . . . 8

1.2.3 Wave mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.4 Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Silicon-on-Insulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Waveguide Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.2.1 Thin film deposition . . . . . . . . . . . . . . . . . . . . . . 15

1.3.2.2 Photolithography . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.2.3 Etching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Electro-absorption modulators . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.1 Modulation Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 Objectives of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.7 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Finite Element Characterization of Waveguides 28

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Light–matter interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Optical modulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1.1 Operation Principle . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Theory of waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Planar waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.2 Dielectric slab waveguide . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.3 Rib waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.3.1 Guided modes . . . . . . . . . . . . . . . . . . . . . . . . . 35

vi



Contents

2.3.3.2 Plasmonic waveguides . . . . . . . . . . . . . . . . . . . . . 37

2.3.4 General solution to Maxwell’s equations . . . . . . . . . . . . . . . . 39

2.3.4.1 Basic Equation . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.4.2 Analytical solution . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.2 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4.3 Implementation of FEM . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4.4 Element Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4.5 Line Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4.6 Triangular Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.7 Vector Field Formulation . . . . . . . . . . . . . . . . . . . . . . . . 56

2.4.8 The Matrix Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4.9 Shape Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4.10 Element Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 Graphene Photonics 64

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.1 Carbon Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.2 Crystal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2.3 Mono-, bi- and trilayers . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Electronic Band Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.1 Tight Binding Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 Optical Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5 Dielectric Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.6 Plasmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4 Benchmarking Graphene-based Optical Waveguides 99

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2.1 Study 1: Graphene-based Rib Waveguide . . . . . . . . . . . . . . . 103

4.2.2 Study 2: Graphene-based Slot Waveguides . . . . . . . . . . . . . . . 109

4.2.3 Study 3: Top Layer Graphene Waveguide . . . . . . . . . . . . . . . 115

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5 Characterization of Graphene–Silicon Hybrid Waveguides 120

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2 Characterisation of Optical Waveguides . . . . . . . . . . . . . . . . . . . . 121

5.2.1 Silicon Photonic Waveguides . . . . . . . . . . . . . . . . . . . . . . 122

vii



Contents

5.2.2 Top- versus Slot-layered Graphene Waveguides . . . . . . . . . . . . 123

5.3 Characterisation of Slot Waveguides with Bilayer Graphene . . . . . . . . . 127

5.3.1 Dielectric-encapsulated bilayer graphene waveguide . . . . . . . . . . 131

5.3.2 Graphene-on-Graphene slot waveguide . . . . . . . . . . . . . . . . . 133

5.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.4 Characterisation of Trilayer Graphene-based Waveguides . . . . . . . . . . . 137

5.4.1 Top- and slot-graphene waveguides . . . . . . . . . . . . . . . . . . . 138

5.4.1.1 Top layer graphene . . . . . . . . . . . . . . . . . . . . . . 139

5.4.1.2 Slot layer graphene . . . . . . . . . . . . . . . . . . . . . . 140

5.4.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.4.2 ABA and ABC Stack Waveguides . . . . . . . . . . . . . . . . . . . 142

5.4.2.1 Proposed waveguide designs . . . . . . . . . . . . . . . . . 144

5.4.2.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . 145

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6 Conclusions and Suggestions for Future Research 153

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.2 Suggestions for Future Research . . . . . . . . . . . . . . . . . . . . . . . . . 155

A To calculate complex ε(ω) of graphene 157

Bibliography 159

viii



List of Figures

1.1 Propagation of a plane electromagnetic wave. . . . . . . . . . . . . . . . . . 2

1.2 Energy band separation showing overlapping valence band (VB) and con-

duction band (CB) for metal and rest separated with a band gap energy,

Eg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Photonic crystals of (a) one, (b) two and (c) three dimensions. Different

lines show variation in dielectric constants (ε1, ε2, ε3) within the crystal. . 5

1.4 The continuous spectrum of an electromagnetic spectrum. . . . . . . . . . . 7

1.5 Light ray travelling from medium 1 to medium 2. n1 and n2, refractive

indices of media; ki, kr, and kt, incident, reflected and transmitted light

rays, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 A 1D wave function: a, f(x); b, f(x− 1); c, f(x− 2); and d, f(x− 3). . . . 9

1.7 Plot showing sin(ωt) and cos(ωt). . . . . . . . . . . . . . . . . . . . . . . . . 10

1.8 Principle of refraction (a) and total internal reflection (b) of light rays in

medium 1 and medium 2 of different refractive indices n1 and n2, respectively. 13

1.9 Schematic of a SOI waveguide. Layers 1, 2 and 3 denote Si substrate, SiO2

and crystalline Si, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.10 Common types of channel waveguides: (a) rib, (b) strip and (c) buried.

Refractive indices n1, n2 and n3 denote substrate, core and cladding (air),

respectively, in each of the waveguides. . . . . . . . . . . . . . . . . . . . . . 14

1.11 Electron micrograph of a fabricated Si rib waveguide. . . . . . . . . . . . . . 15

1.12 Schematic of a plasma genaration chamber: S, sheath; e1 and e2, electrodes;

p, plasma; AC, power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.13 Schematic of sputtering technique: (1) anode, (2) cathode, (3) plasma, (4)

shutter, (5) substrate, (6) target and (7) diffusion. . . . . . . . . . . . . . . 17

1.14 Schematic of CVD process: (1) main gas flow region, (2) transport to sur-

face, (3) gas phase reactions, (4) adsorption of film precursor, (5) nucleation

and island growth, (6) surface diffusion, (7) redesorption of film precursor,

(8) desorption of volatile surface reaction products and (9) step growth. . . 17

1.15 Schematic of oxidation process. Dotted lines (a1 · · · a2) denote the Si–SiO2

interface after formation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.16 Steps involved in photolithography technique. (a) SoI wafer coated with

thin polymer (photoresist), (b) exposure of UV light on the wafer covered

by a mask and (c) waveguide pattern obtained after hard bake. . . . . . . . 20

ix



List of Figures

1.17 Schematic of chemical etching process: 1, silicon; 2, SiO2; 3, photoresist.

(a) Unexposed photoresist after developing stage. (b) Oxide layer is etched

in a HF + NH4F solution. (c) Removal of photoresist with H2SO4. . . . . . 21

1.18 Schematic of a typical electro-absorption modulator. . . . . . . . . . . . . . 22

2.1 Number of papers published each year in a few relevant technical journals:

(a) Electronics Letters; (b) Applied Optics; (c) Electronic Letters and Ap-

plied Optics and Bell Systems Technical Journal. . . . . . . . . . . . . . . . 29

2.2 (a) Classical representation of a particle and field. (b) Corresponding quan-

tum representation. In (b), dots mean the probability distribution of par-

ticle position; field φ at x, φ(x). . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Incident (Ei), reflected (Er) and transmitted rays (Et) at a plane interface

between two dielectric media. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 A planar waveguide. The refractive indices of guide, upper cladding, and

substrate are denoted by ng, nc and ns, respectively. . . . . . . . . . . . . . 34

2.5 Ray of light in a dielectric slab waveguide. . . . . . . . . . . . . . . . . . . . 35

2.6 A SOI rib waveguide with R1 (air, n = 1), R2 (Si, n = 3.477) and R3 (SiO2,

n = 1.444). Here h=rH, for r < 0.5. For computational purposes broken

lines denote air region which covers all around the waveguide. . . . . . . . . 36

2.7 A hybrid plasmonic waveguide: (1) metal; (2) dielectric; (3) silicon; (4) SiO2. 37

2.8 Surfase plasmons originating in a metal–dielectric interface. ε1 denotes the

real part of dielectric constant. . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.9 Coupling scheme of waveguide and plasmonic modes in a metal–dielectric

interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.10 Triangular elements used in FEM to cover chosen domain: (a) one element;

(b) two elements with a common boundary. . . . . . . . . . . . . . . . . . . 45

2.11 A linear Lagrange triangle. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.12 Quartic Hermite and quintic Argyris triangles. . . . . . . . . . . . . . . . . 47

2.13 Rectangular grid: domain division; (•) a node. . . . . . . . . . . . . . . . . 48

2.14 Mesh formation in FEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.15 First (a) and second (b) order triangular elements. . . . . . . . . . . . . . . 54

2.16 A typical element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1 (a) Fibre-optic cables transmitting information through light waves. (b)

Map showing countries connected by undersea fibre optic cables. . . . . . . 65

3.2 Prominent allotropes of carbon: (a) diamond, (b) fullerene, (c) carbon nan-

otube and (d) graphite. Dotted lines in (d) represent the van der Waals

bonding (π bonds). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Publications on graphene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Monolayer graphene: basis of all graphitic forms. (a) 0D bucky balls; (b)

1D nanotubes; and (c) 3D graphite. . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Monolayer of graphene: (a) HRTEM image; (b) TEM image by Berkeleys

TEAM05. C=C bond distance: 0.14 nm. . . . . . . . . . . . . . . . . . . . . 69

x



List of Figures

3.6 Depiction of electronic orbitals of ground state and excited state carbon atom. 69

3.7 Artistic imagination (NanoSmiths, 2018) showing strength of graphene mono-

layer (0.335 nm thick). A layer of graphene has a breaking strength of

42 N/m (intrinsic strength of a defect-free sheet) – 100 times more than

that of the strongest hypothetical steel film of the same thickness. . . . . . 70

3.8 Two atom basis superimposed forming a hexagonal lattice. Two carbon

atoms (A and B) in each unit cell are shown in different colours (blue and

red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.9 Honeycomb lattice of graphene layer: (a) lattice structure depicting Bravais

lattice; (b) reciprocal lattice of the triangular lattice; (c) atoms (A and B)

with nearest neighbours; (d) directions for reference to nearest neighbours. . 72

3.10 (a) First Brillouin zone. (b) Dirac cone. . . . . . . . . . . . . . . . . . . . . 73

3.11 Bilayer stacking of graphene layers: (a) upper layer translated by δ1 with

respect to the lower – the A′ sites on top of B sites; (b) upper layer translated

by −δ1 with respect to the lower – the B′ sites on top of A sites. . . . . . . 74

3.12 Trilayer graphene stack: (a) ABA, (b) ABC, (c) and (d) next layer moved

one C–C bond distance, 0.142 nm. . . . . . . . . . . . . . . . . . . . . . . . 75

3.13 Representation of tight binding model in graphene lattice. . . . . . . . . . . 76

3.14 Representation of electronic band structure in graphene. (a) Dirac cone;

(b) cones at Dirac points K and K ′; (c) Brillouin zone in a graphene layer;

and (d) unit cell of two-atom basis. . . . . . . . . . . . . . . . . . . . . . . . 80

3.15 Graphene electron spectrum (Dirac cones) at K points of the Brillouin zone. 81

3.16 (a) Optical conductivity versus gate voltage. (b) Pauli blocking mechanism. 82

3.17 (a) Landau levels. (b) Schematic of Landau levels in Dirac cone. . . . . . . 84

3.18 Raman spectra of graphitic layers. . . . . . . . . . . . . . . . . . . . . . . . 89

3.19 Contrast spectra of graphene sheets of varying thickness. . . . . . . . . . . . 90

3.20 Benchmarking with Lu and Zhao. λ = 1550 nm; tg = 0.7 nm; “theirs” refers

to ε(ω) plots of Lu and Zhao and “ours” the ε(ω) plots from our study. . . 91

3.21 Benchmarking with Gosciniak and Tan. λ = 1550 nm; tg = 0.7 nm; “theirs”

refers to ε(ω) plots of Gosciniak and Tan and “ours” the ε(ω) plots from

our study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.22 Benchmarking with Kwon. λ = 1550 nm; tg = 0.7 nm; “theirs” refers to

ε(ω) plots of Kwon and “ours” the ε(ω) plots from our study. . . . . . . . . 92

3.23 Complex dielectric constants of bilayer graphene (tg = 0.69 nm) at λ =

1550 nm calculated and used in our study. . . . . . . . . . . . . . . . . . . . 92

3.24 Complex dielectric constants deduced using Kubo formula for mono-, bi-

and trilayer graphene of thickness (tg) 0.4, 0.69 and 1.12 nm, respectively. . 93

3.25 Complex dielectric constants of ε(ω) for two Fermi levels, µ = 0.4 and

µ = 0.509 eV representing conditions ON and OFF, respectively; tg = 0.69 nm. 94

3.26 Complex ε(ω) as a function of λ, values derived using our code. . . . . . . . 96

xi



List of Figures

4.1 (a) Accumulation of charge carriers in graphene–dielectric interface upon

applying a voltage. (b) Depiction of light modulation using electrical signal. 100

4.2 Schematic of graphene based waveguide: (a) electric signal, (b) incident

light and (c) modulated light pulse. . . . . . . . . . . . . . . . . . . . . . . . 100

4.3 (a) Waveguide with active (A) and passive (P) materials. (b) A rib waveg-

uide with graphene in layer 5. Layer 3 forms the core (Si), layers 1 and 2

are dielectric materials (e.g., SiO2) and layers 4 and 6 are termed buffer ma-

terials such as hBN, Si3N4 or Al2O3 that encapsulate graphene; Vg denotes

applied gate voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4 Waveguide redrawn from Gosciniak and Tan (2013) for validating complex

and perturbation solvers. Since the waveguide is symmetric, half-structure

was chosen as marked. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5 Mode effective index (neff) for validating perturbation and complex solvers. 104

4.6 Mode absorption (α) for validating perturbation and complex solvers. . . . 104

4.7 Electric field of quasi-TM Ey mode for chosen dielectric constants of graphene

from Gosciniak and Tan (2013), simulated by using the complex solver. . . 105

4.8 TM mode: Re(neff) and α for high- and low-index spacers between Si slab

and Si ridge (λ = 1550 nm). Inset shows Fig. 3(a) in Gosciniak and Tan

(2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.9 Re(neff) and α for two supported modes, TM and TE, for high-dielectric

spacer. Inset shows Fig. 3(b) in Gosciniak and Tan (2013). . . . . . . . . . 107

4.10 Re(neff) and α for high- and low-index spacers between Si slab and Si ridge

for TE mode; µ =0.512 eV. Inset shows Fig. 4(c) in Gosciniak and Tan

(2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.11 Re(neff) and α for high- and low-index spacers between Si slab and Si ridge

for TM mode; µ =0.512 eV. Inset shows Fig. 4(d) in Gosciniak and Tan

(2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.12 Waveguides (a), (b), (c) and (d) represents figures chosen from Fig. 2a, 2b,

2e and 2f, respectively, from Lu and Zhao (2012) for benchmarking task. . . 110

4.13 Waveguides redrawn from Fig. 2 of Lu and Zhao (2012) for benchmarking

using our complex code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.14 Electric field plots of TM Ey mode for waveguide (a) shown in Fig. 2(a) of

Lu and Zhao (2012); Si–(graphene/dielectric)–Si. . . . . . . . . . . . . . . . 112

4.15 Electric field plots of TM Ey mode for waveguide (b) shown in Fig. 2(b) of

Lu and Zhao (2012); Si–(graphene/dielectric)–Si, dielectric strip waveguide. 112

4.16 Electric field plots of TM Ey mode for waveguide (c) shown in Fig. 2(e) of

Lu and Zhao (2012); Si–(graphene/dielectric)–Cu, width = 400 nm. . . . . . 112

4.17 Electric field plots of TM Ey mode for waveguide (d) shown in Fig. 2(f) of

Lu and Zhao (2012); Cu–(graphene/dielectric)–Si, width = 200 nm. . . . . . 113

4.18 Mode profile and electric field of TM mode for waveguide in Fig. 2(a) of

Lu and Zhao (2012). Table shows the comparison of neff and α values of

theirs and ours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xii



List of Figures

4.19 Mode profile and electric field of TM mode for waveguide in Fig. 2(b) of Lu

and Zhao (2012). Inset shows the comparison of neff and α values of theirs

and ours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.20 Absorption versus wavelength plot as shown in Fig. 4(a) of Lu and Zhao

(2012). Inset shows their plot. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.21 TM mode absorption as a function of chemical potential (µ) for waveguide

in Fig. 4(c) of Lu and Zhao (2012). Inset shows the plot from their study. . 116

4.22 (a) Three-dimensional illustration of the modulator. Source: Liu et al.

(2011). (b) electric field plot obtained using our complex solver for their

waveguide dimensions. Inset shows the electric field plot from their study

(Liu et al. 2011). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.23 Study of Liu et al. (2012) showing 2D (a) and 3D (b) models of double

layer graphene modulator. Steps for fabrication is shown from (c) to (f).

Source: Liu et al. (2012). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.24 Waveguide designs taken from literature: (a) Liu et al. (2012); (b) Phatak

et al. (2016); (c) Koester et al. (2012), Hu and Wang (2017); (d) Lu and

Zhao (2012). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.1 A rib waveguide in silicon-on-insulator. The refractive indices (n) air, Si

and SiO2 are 1, 3.477 and 1.444, respectively. . . . . . . . . . . . . . . . . . 121

5.2 A silicon nanowire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3 Rectangular silicon waveguides: (a) strip and (b) rib. Dimensions of Si core

are width 0.4µm and thickness 0.3µm. In (b), the Si slab is of thickness

0.15µm and width 1µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.4 Mode profiles of Si strip waveguide: (a) TM; (b) TM contour; (c) TE; (d)

TE contour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5 Mode profiles of Si rib waveguide: (a) TM; (b) TM contour; (c) TE; (d)

TE contour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.6 Waveguides with graphene as top (a) and slot (b) layers. tgraphene =

0.69 nm; λ = 1550 nm; refractive indices (n) of Si, SiO2 and hBN are 3.4777,

1.444 and 1.98, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.7 TM mode effective index plots of top-layer and slot-layer graphene. . . . . . 126

5.8 TM mode absorption plots of top-layer and slot-layer graphene. . . . . . . . 126

5.9 TE mode effective index plots of Si nanowire and waveguides with graphene

as top layer; height-to-width ratio, w/a. . . . . . . . . . . . . . . . . . . . . 128

5.10 TM mode effective index plots of Si nanowire and waveguides with graphene

as top layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.11 Silicon rib waveguides with graphene as slot layer: (a) graphene with en-

capsulated dielectric and (b) graphene directly on silicon and separated by

a dielectric. Refractive indices of Si, SiO2, hBN and Al2O3 are 3.477, 1.444,

1.98 and 3.017, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xiii



List of Figures

5.12 TM and TE mode effective index (a, c) and absorption (b, d) for waveg-

uides with dielectric layer encapsulated graphene and graphene-on-graphene

configuration; (a) and (c) show the change in real part of neff; λ = 1550 nm. 130

5.13 TM and TE mode profiles of low-index dielectric-encapsulated graphene

layers. (a) TM; (b) TM electric field; (c) TE; (d) TE electric field. ε(hBN)

= 3.9204; ON: ε(0.4 eV) = 4.7592 + j4.4441; λ = 1550 nm. . . . . . . . . . . 132

5.14 TM and TE mode profiles of high-index dielectric-encapsulated graphene

layers. (a) TM; (b) TM electric field; (c) TE; (d) TE electric field. ε(Al2O3)

= 9.1; OFF: ε(0.52 eV) = −0.4998 + j0.5340; λ = 1550 nm. . . . . . . . . . 133

5.15 Mode effective index and absorption of TM and TE modes in a dielectric-

encapsulated bilayer graphene waveguide. Plots (a) and (c) show the change

of magnitude in real part of neff. . . . . . . . . . . . . . . . . . . . . . . . . 134

5.16 TM and TE mode profiles of waveguide with graphene–hBN–graphene stack.

(a) TM; (b) TM electric field; (c) TE; (d) TE electric field. ε(hBN) =

3.9204; ON: ε(0.4 eV) = 4.7592 + j4.4441; λ = 1550 nm. . . . . . . . . . . . 135

5.17 TM and TE mode profiles of waveguide with graphene–Al2O3–graphene

stack. (a) TM; (b) TM electric field; (c) TE; (d) TE electric field. ε(Al2O3)

= 9.1; OFF: ε(0.52 eV) = −0.4998 + j0.5340; λ = 1550 nm. . . . . . . . . . 136

5.18 Mode effective index and absorption of TM and TE modes in a graphene-on-

graphene slot waveguide. Plots (a) and (c) show the change of magnitude

in real part of neff. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.19 Top (a) and slot (b) waveguides with trilayer (1.12 nm) graphene, encapsu-

lated with dielectric materials. Dotted lines indicate dielectric–graphene–

dielectric stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.20 Complex dielectric constants of trilayer graphene for Fermi level up to 2.0 eV.139

5.21 Waveguide with trilayer (1.12 nm) graphene as top layer. Plots (a) and (c)

show variations of real part of neff as a function of chemical potential, µ. . . 140

5.22 TM mode profile (a) and corresponding electric field, TM Ey (b) for trilayer

graphene as top layer waveguide. . . . . . . . . . . . . . . . . . . . . . . . . 141

5.23 Slot waveguide with trilayer (1.12 nm) graphene. Plots (a) and (c) show

variations of real part of neff as a function of chemical potential, µ. . . . . . 141

5.24 TM mode profile (a) and corresponding electric field, Ey (b) for trilayer

graphene as slot layer waveguide. . . . . . . . . . . . . . . . . . . . . . . . . 142

5.25 Effective refractive indices (Re(neff)) of quasi-TE and quasi-TM modes of

waveguide with HfO2-encapsulated trilayer graphene as top layer. . . . . . . 143

5.26 Effective refractive indices (Re(neff)) of quasi-TE and quasi-TM modes of

waveguide with HfO2-encapsulated trilayer graphene as slot layer. . . . . . . 144

5.27 Proposed designs for trilayer graphene with ABA Bernal and ABC rhom-

bohedral stacking order in as a dielectric-encapsulated layer placed as slot

(a) and as top (b); tD, thickness of dielectric layer; tG, thickness of graphene.145

5.28 TE and TM mode effective index and optical absorption of waveguide with

graphene–dielectric stack as top layer. . . . . . . . . . . . . . . . . . . . . . 146

xiv



List of Figures

5.29 TE and TM mode effective index and optical absorption of waveguide with

dielectric–graphene–dielectric stack as slot layer. . . . . . . . . . . . . . . . 147

5.30 Mode profiles of dielectric-encapsulated trilayer graphene waveguide: (a)

hBN; (b)Al2O3; (c) HfO2. In (c) mode moves towards the graphene–

dielectric stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.31 TM (a) and TE (b) mode optical absorption for varying dielectric thickness

in a graphene-as-top layer waveguide. . . . . . . . . . . . . . . . . . . . . . 148

5.32 Optical absorption for TM modes of top-graphene (a) and slot-graphene

(b) waveguides; µ = 0.53 eV. . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.33 TE and TM mode effective index of graphene-slot waveguide for varying

wavelength (λ): ON, 0.4 eV (a, c); OFF, 0.53 eV (b, d). . . . . . . . . . . . 150

5.34 Top-graphene: TM mode (a) extinction ratio and (b) insertion loss for

varying dielectric layer thickness. . . . . . . . . . . . . . . . . . . . . . . . . 150

5.35 Slot-graphene: Extinction ratio (a) and insertion loss (b) for varying dielec-

tric thickness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

xv



List of Tables

1.1 List of few combinations optical materials . . . . . . . . . . . . . . . . . . . 4

4.1 Benchmarking of results with Lu and Zhao (2012), obtained by using our

complex code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.1 Complex dielectric constant values, ε(ω) = ε1 + jε2, for µ = 0− 1.0 eV. . . 157

xvi



Chapter 1

Introduction

“Let there be light; and there was light”

Probably, Sunlight is the oldest of all “lights” mankind has ever seen or known after

the Big Bang, just 13.7 billion years ago! Sunlight is the source of energy for all living

beings on Earth. This proves one of the properties of light – it’s a form of energy! On an

average, Sunlight takes 8 minutes and 20 seconds to reach the Earth.

The question “is light a wave or a particle” broadly remained till the dual nature

of light was founded. Light holds both the properties of a wave and of a particle. A

wave is simply an oscillation by which energy is transferred from one point to the other.

Or a uniform disturbance (mechanical) that propagates through matter or space. The

two most important ways of such transferring of energy through waves are classified as

mechanical waves and electromagnetic (EM) waves; sound waves and light waves are

classical examples, respectively. Former requires a medium, for instance air, to travel but

latter do not require a medium for propagation. This thesis is wholly based on study of

modal properties of electromagnetic waves. A propagating EM wave shown in Fig. 1.1

undergoes periodic changes in strengths of electric field and magnetic field.

A propagating light (EM) wave through a material medium can be controlled since it

interacts with the atoms or molecules in the material. Such a medium is termed waveg-

uide and have been a subject of study since the 1890s. Light wave act as a carrier in

a waveguide. Most materials respond to an electric field applied as gate voltage. Only

materials that allow/interact with EM waves and electric/magnetic fields can be used to

design waveguides. Lithium niobate (LiNbO3), lithium tantalate (LiTaO3), potassium

dihydrogen phosphate (KDP) and gallium arsenide (GaAs) are among several materials

that are commonly used to design wavguides. JJ Thomson first proposed the structure

1



Figure 1.1: Propagation of a plane electromagnetic wave. Adapted from [1].

for guiding waves in 1893. Then Oliver Lodge (1894) tested it experimentally. In 1897,

Lord Rayleigh derived the first mathematical analysis for electromagnetic waves. In 1964,

Nelson and Reinhart observed phase modulation of light wave due to linear electro-optic

effect. Devices based on electro-optic effect are used for analog/digital signal and infor-

mation processing, optical computing and sensing, etc. Controlling the optical properties

of light is the key aspect in photonics.

Thus the idea in electrooptic devices is to engineer the optical properties of a material

by applying a voltage. Change in permittivity tensor of the material results in modifica-

tion of phase, frequency, amplitude and propagation direction of the light wave. Therefore,

studying propagation of light through such materials is important for designing electroop-

tic devices. An applied electric field affects redistrubition of charges at the atomic level

inside a material. This leads to linear (Pockels) and quadratic (Kerr) electrooptic effects.

Optoelectronic materials are classified on the basis of both these effects. It is observed

that Kerr electrooptic effect is exhibited by almost all crystals.

Combination of elements in groups III–V, II–VI and IV are important for designing

modulator devices. Metals, insulators and semiconductor elements differ with separation

between valence band and conduction band (Fig. 1.2). This is termed bandgap and

denoted by Eg. Most elements in these groups respond to injection of electrons and holes

by applying a voltage or through an optical pump. This results in change of absorptive

properties due to change in carrier concentration. Here, the accuracy in determining

the dielectric constant (ε) of the materials holds prime importance. Progress in crystal

growth techniques such as molecular beam epitaxy (MBE), metal-organic chemical vapour
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1.1. Photonic materials

deposition (MOCVD) and atomic layer deposition (ALD) has led to growing different

layers of materials one above the other with very high degree precision of layer alignment.

Such designs result in heterojunction structures which play major role in optoelectronic

device applications.

Figure 1.2: Energy band separation showing overlapping valence band (VB) and conduc-
tion band (CB) for metal and rest separated with a band gap energy, Eg.

Pockels effect denotes linear variation in refractive index (n) of a dielectric medium

(crystal) with respect to applied electric field. A propagating wave through the crystal

becomes dependent on the electric field vector. Such phenomenon is very useful for de-

signing optical modulators using these materials. Modulating the light beam is the core

principle on which these devices operate.

Optical modulators are of following types:

� acousto-optic

� electro-optic

� electroabsorption

� interferometric

� fibre-optic

� liquid crystal

� micromechanical

1.1 Photonic materials

Photonics is a word coined from photon and electronics. Photons are light particles with

energy E = hν. Electronic devices integrated with light waves for modulation and trans-

3



1.1. Photonic materials

Table 1.1: List of few combinations optical materials

NH4H2PO4 KD2PO4 LiNbO3 InP GaAs

ZnSe KH2PO4 SrTiO3 GaInAsP GaAlAs

ZnTe CsH2AsO4 LiTaO3 CaF2 GaN

Bi12SiO20 BaTiO3 KNbO3 BaF2 YAG

ZnO ZnSe ZnS Si–Ge Polymer optic materials

mission results in the birth of photonics. So, materials that are capable of molding the

flow of light and that respond to electrical field are categorized as photonic materials. The

type of atoms and lattice geometry of these materials govern their electrical, electronic

and optical properties. The thickness of these layers are in terms of micrometer (µm) and

nanometer (nm). These materials respond to light waves by reflecting or propagating or

confining them. As is well-known, fibre optic cables made of materials that guide light

are extensively used in telecommunications industry. Fibre optics deals with propagation

and interaction of EM waves with material medium. Now the technology is moving to-

wards identifying materials for high-speed computing as electronic devices have bandwidth

limitation.

Photonics materials comprise a wide range of elements viz., semiconductor materials,

nanomaterials, biophotonic materials and polymer materials (Table 1.1). The advent of

2D materials has opened the gates for new materials of one atomic layer thickness or few

atomic layers. One such material is graphene and this thesis is based on it. Integrating

these materials with other materials hexagonal boron nitride (hBN), hafnium oxide (HfO2),

molybdenum disulsulfide (MoS2), etc. offers a huge potential for new range of electronic

devices. Shortcomings observed in silicon photonics could be alleviated by integrating

newly found materials with electronic components, for instance, optical interconnects.

Optical signals sent through optical fibres need to be converted to digital form for

information processing. Therefore the speed of operation of the device that converts is

crucial. Due to bandwidth limitation, electronic components cannot be tuned for high

speed operations. Thus this limitation has led to the birth of 2-D optoelectronic materi-

als. Electronic devices can be replaced with optical devices such as switches, connectors,

receivers, modulators, filters and transmitters.

Materials exhibit weak nonlinearities when exposed to high intensity EM waves. Such

nonlinearities arise form anharmonic motion of electrons with respect to an applied field.

If a material is considered as a pool of charged particles, then an applied electric field will
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1.1. Photonic materials

induce an oscillation in the pool of electrons. At low intensities, in induced polarisation,

the displacement of the electrons or dipole, P , is directly proportional to the magnitude of

the electric field of the incident light wave given by, P = χE, where χ is the linear optical

susceptibility, a function of the refractive index of the material. For instance, laser light

generates very intense fields, which give rise to nonlinear optical effects and the expression

for polarisation is given by,

P = χ(1)E + χ(2)E + χ(3)E + . . . (1.1)

1.1.1 Photonic crystals

Photonic crystals are materials of which the refractive index (n) that vary periodically in

1, 2 or all 3 spatial dimensions [2]. Multilayers of such materials form two- and three-

dimensional photonic structures that mold the flow of light (Fig. 1.3). The thickness of

these layers are in terms of micrometer (µm) and nanometer (nm). These material respond

to light waves by reflecting or propagating or confining them. As is well-known, fibre-

optic cables made of materials that guide light are extensively used in telecommunications

industry. Now the technology is moving towards identifying materials for high-speed

computing.

Figure 1.3: Photonic crystals of (a) one, (b) two and (c) three dimensions. Different lines
show variation in dielectric constants (ε1, ε2, ε3) within the crystal. Adapted from [2].

A crystal possesses long range periodic arrangement of atoms or molecules. An electron

entering a crystal thus passes through a periodic potential. Therefore the type of atoms

and lattice geometry govern the electrical, electronic and optical properties of the crystal.

Similar to a crystal with atoms or molecules and periodic potential, a photonic crystal

has macroscopic constituents with differing dielectric constants and periodic dielectric

function or a periodic refractive index. Here, the photonic band gaps prevent EM wave
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from propagating in particular directions and corresponding frequencies. When a photonic

crystal prevents EM wave propagation in all directions irrespective of its polarization and

source of emission, the crystal is said to have a perfect photonic band gap. Photonic band

gap materials have a periodic dielectric profile, which prevents light of certain frequencies

or wavelengths from propagating in one, two or any number of polarisation directions

within the materials. This is synchronous to the electronic band gap and thus known as

photonic band gap.

1.1.2 Current trends

Recent years have witnessed remarkable growth in nanoscience and nonlinear optics re-

search, paving entry of 2D materials such as graphene [3], phosphorene [4], silicene [5] and

so on. These materials offer exceptional properties which are in need for potential applica-

tions in nanoelectronics. Graphene has extraordinary optical, electrical, mechanical and

thermal properties. Moreover, the optoelectronic and nonlinear properties of graphene

makes it a suitable material for systems requiring extremely high operational bandwidth

(12 THz) [6]. The uniqueness of graphene lies in its modulatoon depth (> 90%) and

signal attenuation (< 5%), achieved by controlling its Fermi level through gate voltage.

Graphene demonstrates strong light–matter interactions. Plasmons in graphene are tun-

able and operate in wide range of frequencies from terahertz to visible. It is envisioned

that graphene-based modulators would be the ultimate high-speed modulator of the fu-

ture, performing at speeds up to 10 times faster than existing ones.

Optical modulation has started getting attention in the recent years due to limitation

imposed by electrical interconnects. On the other hand, optical interconnects have proven

to be viable alternatives for ever growing demands of high speed computing, termed Quan-

tum Computing, using qubits. Exploiting quantum aspects such as fermions of materials

have shown possibilities of building future quantum computers. Recent studies have estab-

lished Majorana Fermions (surface codes and colour codes) as the framework for quantum

computation [7, 8] and a strategy to regulate the phase of Majorana state [9].

Intense research is being focussed on developing cost-effective, fast, high-performance

optical modulators for optical interconnects. The 2D materials such as graphene, tran-

sition metal dichalcogenides (TMDs) and phosphorene have proven to be promising for

implementing functions such as generation, propagation, modulation and detection of pho-
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tons for integrated photonic circuits [10].

1.2 Fundamentals

1.2.1 Light waves

Light waves are characterized as wavelength (λ), frequency (ν) and speed (c), forming the

simple equation, c = λν. James Clerk Maxwell, in 1865, proposed that light waves are

indeed electromagnetic waves comprising oscillating electric and magnetic fields. Speed

of light was measured to be 299,792,458 m/s. Light particles are defined as photons, a

quantization of EM energy, which behaves like particles as well as waves. Energy equation

of photon is given as E = hν, where h denotes Planck’s constant, 6.62 x 10−34J/s. Figure

1.4 shows the complete chart of electromagnetic spectrum.

Figure 1.4: The continuous spectrum of an electromagnetic spectrum [11].

1.2.2 n and ε

Refractive index (RI) is the prime property of an optical waveguide which is used to study

propagating modes, intensity distribution, insertion loss and cutoff wavelengths. It is

a dimensionless physical quantity denoted by n. It is actually a complex number with

real and imaginary parts: n = n′ − jn′′, where n′ the real part and n′′ the absorption

coefficient which shows the level of absorption of light wave within the waveguide. In an

ideal transparent material, n = n′, indicating n′′ = 0. According to Snell’s law light ray

undergoes reflection and refraction when passing from one medium to another (Fig. 1.5),

given by, n1 sin θ1 = n2 sin θ2 where n1 and n2 denote indices of refraction in medium 1

and medium 2, respectively.
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1.2. Fundamentals

Figure 1.5: Light ray travelling from medium 1 to medium 2. n1 and n2, refractive indices
of media; ki, kr, and kt, incident, reflected and transmitted light rays, respectively.

Dielectric constant or permittivity (ε) is square of refractive index, given by, εr = n2.

In this study, we deal with materials having a complex dielectric constant, ε1 + jε2. This

part is dealt in detail with Chapter 3.5.

1.2.2.1 Mode Effective Index

The term “effective index” (neff) is derived from the word “refractive index” (n). It denotes

the measure of overall delay experienced by the guided light wave inside a medium; for

instance, a three-layer waveguide medium. Refractive index (n) is the inherent property

of a material whereas neff refers to the property of the waveguide, which depends on the

refractive indices of the individual materials that make the waveguide.

1.2.2.2 Optical Absorption

Optical absorption occurs when the energy of an incoming photon is transferred to an

electron in the valence band which moves to the conduction band if the photon energy

(Ep) is larger than the bandgap energy (Eg). The photon absorbed in this process results

in an electron–hole pair. Photons with energy smaller than the bandgap energy, Ep < Eg,

are not absorbed and the waveguide is transparent for lights with wavelengths longer than

λ = hc/Eg. The optical absorption coefficient is denoted by α which is the most important

factor for electro-absorption modulators and photodetectors [2].

1.2.3 Wave mechanics

Mathematically, a wave represents a function that propogates with respect to time. Figure

1.6 shows displacement of a function f (x ), moving with x − x0 where x0 = 1, 2, 3. This

8



1.2. Fundamentals

represents a wave moving along positive x -axis whereas x+x0 will denote a wave function

along negative x -axis.

Figure 1.6: A 1D wave function: a, f(x); b, f(x− 1); c, f(x− 2); and d, f(x− 3).

The 1D wave equation for light waves is given by

∂2E

∂x2
− µε∂

2E

∂t2
= 0 (1.2)

where E(x, t) is the electric field, µ the magnetic permeability and ε the dielectric permit-

tivity. Here, x is the propagation direction.

The electric field of a light wave is then given by

E(x, t) = A cos(kx− ωt− θ) (1.3)

where A is the amplitude and θ the absolute phase of the wave.

Figure 1.7 shows the plot of sinωt with respect to time t and ω the angular frequency.

Both ω and frequency (ν) are related by ω = 2πν. Such a propagating optical wave is

expressed as:

E = E0 sin(kz ± ωt) (1.4)

where the phase is (kz ± ωt), kz denotes the wave propagation in z direction with k

the propagation constant determining the progression rate of the wave with distance z.

Wavelength and propagation constant are related as λ = 2π/k. Below equation addresses
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Figure 1.7: Plot showing sin(ωt) and cos(ωt).

the mathematical description of a sinusoidal wave:

y(r, t) = y0 sin

[
2π

λ
(r − vt)

]
(1.5)

where y(r, t) is the displacement of wave at position r and time t, y0 the amplitude of the

wave, λ the wavelength, v the speed of wave which equals to λ× f and t the time.

Phase angle of the wave is given by,

φ =
2π

λ
(r − vt) (1.6)

Other aspects of wave are interference, superposition, diffraction and polarization.

These effects are not dealt in this thesis but can be studied from various books [12].

1.2.4 Maxwell’s equations

In electromagnetism, Maxwell’s equations play a pivotal role providing complete descrip-

tion of how electric and magnetic fields behave under space and time constraints [13].

Using divergence theorem and Stokes’ theorem, Maxwell’s equations transform the follow-

ing basic equations from integral form to differential form.

Gauss’ law for electric field:∮
S

−→
E · n̂ da =

qin

ε0

Divergence theorem⇒ ~∇ · ~E =
ρ

ε0
(1.7)

Gauss’ law for magnetic field:∮
S

−→
B · n̂ da = 0

Divergence theorem⇒ ~∇ · ~B = 0 (1.8)

10



1.2. Fundamentals

Faraday’s law:∮
C

~E · d~l = − d

dt

∫
S

~B · n̂ da Stokes′ theorem⇒ ~∇× ~E = −∂
~B

∂t
(1.9)

Ampere–Maxwell law:∫
C

~B · d~l = µ0

(
Ienc + ε0

d

dt

∫
S

~E · n̂ da
)

Stokes′ theorem⇒ ~∇× ~B = µ0

(
~J + ε0

∂ ~E

∂t

)
(1.10)

where ~E denotes the electric field vector; ~B the magnetic field vector; ρ the electric

charge density; ~J the electric current density; ε0 the electric permittivity of free-space,

ε0 = 8.854×10−12F/m, ε = ε0εr, εr the relative permittivity; µ0 the magnetic permeability

of free-space, µ0 = 4π × 10−7H/m and µ = µ0µr.

Using differential form of Maxwell equations, the wave equation is derived from Fara-

day’s law (1.9) by taking curl on both sides of equation (1.9) as follows:

~∇×
(
~∇× ~E

)
= ~∇×

(
−∂

~B

∂t

)
= −

∂
(
~∇× ~B

)
∂t

(1.11)

Applying vector operator identities and Laplacian to vector field components, yield

the following linear second-order wave equation

∇2 ~E = µ0ε0
∂2 ~E

∂t2
(1.12)

where ~E is the electric field vector, denoting an electric field (wave) propagating from one

point to other.

Similarly, Ampere–Maxwell law yields

∇2 ~B = µ0ε0
∂2 ~B

∂t2
(1.13)

where ~B is the magnetic field vector.

As we have seen earlier, waves are actually propagation of energy in the form of electric

and magnetic fields. For an electromagnetic field, the expressions for energy density (UE)

and energy flux (UH) are derived using Poynting’s theorem and Maxwell’s equations:

UE =
1

2
ε ~E2 UH =

1

2
µ ~H2 (1.14)

where UE and UH denote energy per unit volume of electric and magnetic fields, respec-

tively. Both vector quantities yield energy associated with an EM wave as ~S = ~E × ~H,

known as Poynting vector.
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Further, the constitutive relations are used to define the properties of the medium

through which the EM wave propagates. Using E the electric field (V/m), B the magnetic

flux density (V-s/m2), D the electric displacement flux density (C/m2) and H the magnetic

field (A/m), following relations are derived:

In isotropic media,

D = εE B = µH (1.15)

In anisotropic media,

D = ε̂ · E B = µ̂ ·H (1.16)

where¯̄ε is the permittivity tensor and¯̄µ the permeability tensor given by

ε̂ =

 εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 µ̂ =

 µxx µxy µxz
µyx µyy µyz
µzx µzy µzz

 (1.17)

1.3 Waveguides

History of communications dates back when scientists attempted to use lens and mirrors to

transmit light waves. It led to the search for appropriate transmission medium. Invention

of laser gave a thrust of optical communications with first laser operating at λ = 694 nm

and optical frequency of 5× 1014 Hz. But free-space propagation is not a suitable way of

communication as the beam is scattered by atmospheric factors such as rain, fog, snow, etc.

Also, electronic components impose a limitation on bandwidth of optical communication.

Therefore, the need for allowing light to propagate through another medium was identified.

Optical waveguides confine and guide light within a media of higher refractive index

(n) than its surroundings i.e., cladding. Guiding light works according to the principle of

total internal reflection (Fig. 1.8(a)). When a light ray hits the interface of two media

with different refractive indices (n1 and n2), with a certain angle of incidence (θi), a part of

the light is refracted (or transmitted) and other part is reflected back within the medium.

This principle is known as total internal reflection. The reflected ray follows a zig-zag path

within the medium (Fig. 1.8(b)).

If the waves propagate in the z -direction as exp(jβz), then the longitudinal propagation

constant β is related to the ray angle φ by

β = n1k cosφ (1.18)
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Figure 1.8: Principle of refraction (a) and total internal reflection (b) of light rays in
medium 1 and medium 2 of different refractive indices n1 and n2, respectively.

The propagation constant β is constrained for guided modes by

n1k > β > n2k > n3k (1.19)

The aspect of confining, controlling and routing light on nanoscale has gained sig-

nificant attention since the advent of 2-D materials. Light is confined to the order of

sub-wavelength scale in these devices. Through proper choice of materials, mode confine-

ment can be achieved at nanoscale.

1.3.1 Silicon-on-Insulator

Waveguide is the building block of photonic circuits. A 1D waveguide is termed planar

and 2D the channel, which confine light in one-dimension and two-dimension, respectively.

Photonic crystals can confine light in all the three dimensions. Silicon-on-Insulator (SOI)

is the most extensively used platform used in microelectronics industry. Figure 1.9 shows

a conventional SOI waveguide structure. Layer 2 is a buried SiO2 with n = 1.46 and layer

3 the crystalline Si with n ≈ 3.5. Thickness of these layers are of the order of a micron

but varies according to fabrication methods.

From Maxwell’s equations that govern the light wave propagating through this waveg-

uide (Fig. 1.9) with conductivity σ = 0 and magnetic permeability µ = µ0:

∇× E = −µ0
∂H

∂t
(1.20)

∇×H = ε
∂E

∂t
= ε0n

2∂E

∂t
(1.21)
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Figure 1.9: Schematic of a SOI waveguide. Layers 1, 2 and 3 denote Si substrate, SiO2

and crystalline Si, respectively.

where E is the electric field, H the magnetic field, µ0 the free-space permeability, ε0 the

free-space permittivity and n the refractive index of the medium. Components of electric

field and magnetic field are denoted by (Ex, Ey, Ez) and (Hx, Hy, Hz), respectively.

Figure 1.10: Common types of channel waveguides: (a) rib, (b) strip and (c) buried.
Refractive indices n1, n2 and n3 denote substrate, core and cladding (air), respectively, in
each of the waveguides.

Figure 1.10 shows the most common waveguide structures in use. Refractive index, n2,

of layer 2 is higher than those of substrate (n1) and cladding (n3) such that the light wave

is confined within layer 2. Silicon waveguides are capable of supporting multiple modes

with dimensions even less than the operating wavelength.
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1.3.2 Waveguide Fabrication

Fabrication involves step-by-step processes of thin film deposition, photolithography and

etching. Thin film deposition is carried out by methods viz., sputtering, chemical vapour

deposition (CVD) and thermal oxidation (SiO2). Waveguide dimensions are controlled

by thickness of thin film and pattern followed for photolithography. Figure 1.11 shows a

micrograph of an actual SOI rib waveguide wherein a deposited oxide layer provides an

upper cladding, and the buried oxide layer providing the lower cladding.

Figure 1.11: Electron micrograph of a fabricated Si rib waveguide. Reproduced from [14].

Most common farication processes include Separation by IMplanted OXygen (SIMOX),

Bond and Etch-back SOI (BESOI), wafer splitting and silicon epitaxial growth [14]. Other

techniques include electron-beam lithography (EBL), holographic/combination lithogra-

phy and anisotropic dry etching [15].

1.3.2.1 Thin film deposition

Deposition processes are carried out in vacuum chambers evacuated to around 10−6 Torr.

Thermal evaporation is a conventional technique followed for depositing desired material

onto the substrate. Plasma gas is prevalent in all stages of fabrication viz., deposition,

etching, removal of photoresist and ion implantation. Plasma is composed of ionized gas

comprising ions, electrons and neutral particles. It can be achieved by applying AC or DC

voltage to a gas contained in a pressurised chamber. Figure 1.12 shows a plasma setup.

Plasma gas is sent to the evacuated pressurised chamber which is stabilised to the

order of 10−3 and 10−2 Torr. Inside the chamber, electrons lose their energy through

collision with gas atoms. In turn, excited gas atoms emits energy with a distinctive glow
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1.3. Waveguides

Figure 1.12: Schematic of a plasma genaration chamber: S, sheath; e1 and e2, electrodes;
p, plasma; AC, power. Adapted from [14].

which varies according to the constituents of gas atoms. Sheath (S) refers to the dark

region which contains very few electrons. In Si processing, plasma is derived from CF4

gas. Using plasma gas, the etch rate can be controlled.

(a) Sputtering: This technique employs inert gas ions (e.g., argon) to strike the target

and eject metallic atoms. Thus, the sputtered atoms migrate to the target wafer. The

inert gas is ionized inside a plasma chamber. This technique uses a 13.56 MHz power and

hence called RF sputtering. Figure 1.13 shows a schematic of sputtering process. The

formed plasma potential makes inert gas ions to strike the target and eject the atoms

which then travels to the wafer layer.

Energetic ions bombard the target element and eject the atoms. These atoms, called

sputtered particles then deposit on thin films onto the substrate. This is called sputter

deposition based on plasma used. Cathode and anode face each other inside a vacuum

chamber. An inert gas (argon) is then introduced into the chamber which reaches a pres-

sure of 1–10 Pa. High voltage to the range of 2 keV, applied between the electrodes, ignites

a glow discharge. Argon ions are driven towards the target which ejects free atoms due to

heavy bombardment. Ejected atoms are finally guided to the target wafer.

(b) Chemical vapour deposition: This is the most common technique for epitaxial

growth of silicon. As the name indicates, deposition of desired film occurs due to chemical
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Figure 1.13: Schematic of sputtering technique: (1) anode, (2) cathode, (3) plasma, (4)
shutter, (5) substrate, (6) target and (7) diffusion. Adapted from [14].

reactions. It is a process by which a solid film is deposited onto the surface of Si wafer

by gas phase reactions at the surface. Figure 1.14 shows the schematic of a CVD process.

Here, dichlorosilane (SiH2Cl2) is used as source gas. Wafer surface temperature is raised

to the order of > 1000◦C which is the driving factor behind the chemical reaction. CVD

processes such as gas transport mechanism and chemical reaction kinetics are explained

in various studies [16,17].

Figure 1.14: Schematic of CVD process: (1) main gas flow region, (2) transport to surface,
(3) gas phase reactions, (4) adsorption of film precursor, (5) nucleation and island growth,
(6) surface diffusion, (7) redesorption of film precursor, (8) desorption of volatile surface
reaction products and (9) step growth. Adapted from [14].
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Gas phase reactions play vital role here. Deposition takes place due to the chemical

reaction between the reactants on the substrate. Reactant gases are pumped into the

vacuum (reaction) chamber. Under optimum temperature and pressure conditions, the

reactants undergo reactions on the substrate. Conditions vary according to the choice of

film deposition. Finally, products of the reaction are deposited onto the substrate. Key

parameters in this technique include reaction rates, gas transportation mechanism and

diffusion processes. Following steps define the CVD technique:

(a) reactants are transported to the reaction zone

(b) gas phase reactions start

(c) reactants are transported to surface of substrate

(d) physical and chemical adsorption occur

(e) desorption of volatile by-products

(f) moving by-products away from reaction zone

Following are some of the reaction types from this technique:

Pyrolysis : SiH4(g) → Si(s) + 2H2(g) at T = 650◦C

Reduction : SiCl4(g) + 2H2 → Si(s) + 4HCl(g) at T = 1200◦C

Oxidation : SiH4(g) + O2 → SiO2(s) + 2H2(g) at T = 450◦C

Compounds : SiCl4(g) + CH4 → SiC(s) + 4HCl(g)

Major advantage of CVD process is that high growth rates can be achieved and the

possibilities of growing epitaxial films. On the other hand, it is a complex process which

involves high temperatures and emission of toxic and corrosive gases.

(b) Thermal oxidation: The basic model reactions for this technique are as fol-

lows [18]:

Si + 2H2O → SiO2 + H2 (wet)

Si + O2 → SiO2 (dry)
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Figure 1.15 shows the simple schematic of oxidation technique. Chemical reactions

occur at both the boundaries of oxide layer and diffusion process takes place. Oxygen is

supplied to a quartz oxidation tube which has silicon slices placed flat on a quartz boat.

Silicon slices are usually circular in shape with 22 mm diameter and 200µm thickness.

The oxide thickness after formation are measured using interferometric techniques.

Figure 1.15: Schematic of oxidation process. Dotted lines (a1 · · · a2) denote the Si–SiO2

interface after formation [14].

Oxidant diffusion and Si/SiO2 interface chemical reaction are the major controlling

factors in this technique. Thickness of oxide deposition varies linearly with time.

1.3.2.2 Photolithography

Photolithography is a technique by which layers of thin films are patterned, etched and

then coated [19]. It is the process of transferring the image of an integrated circuit to

a substrate under controlled conditions. First, substrates are coated with photoactive

material called photoresist. Then a pattern is aligned and projected on the substrate via

UV light. The image is then developed. This process involves mask, photoresist, aligner,

developer and setup for baking.

Geometric shapes are transferred on a mask to a polished surface. Optical radiation is

used to image the mask on a Si wafer with the help of photoresist layers. This technique

involves following steps:

� step 1: surface (wafer) cleaning

� step 2: barrier layer formation

� step 3: spin coating with photoresist

� step 4: soft baking to densify resist

� step 5: mask alignment to register patterns
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� step 6: exposure

� step 7: development

� step 8: hard baking

� step 9: post process cleaning

In this technique, a mask-defined pattern is transferred onto the wafer surface. A pho-

toresist i.e., a photosensitive polymer, is used to print the pattern on the wafer. Figure

1.16 shows the steps involved in this process.

Preparation of wafer : The wafer should be free from any contaminants and desorbed of

Figure 1.16: Steps involved in photolithography technique. (a) SoI wafer coated with thin
polymer (photoresist), (b) exposure of UV light on the wafer covered by a mask and (c)
waveguide pattern obtained after hard bake [14].

moisture. Cleaning is carried out by a wet process and then rinse and dry. Then baking

at T = 150◦C results in surface dehydration, which is done prior to applying photoresist.

Finally wafer is coated with an adhesive such as hexamethyldisilazane.

Photoresist : Wafer is then coated with a liquid photoresist. Coating process involves dis-

pensing the resist (1–10 mL) to the center of wafer and spun at a speed 1–5 krpm. Resist

is thus distributed throughout the wafer.

Soft bake: It drives off the solvents in the resist and improves the uniformity and adhe-

siveness of the resist. This step is carried out at T = 100◦C that lasts for few minutes.
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UV exposure: Resist-coated wafer is placed in the mask-aligner with a submicron preci-

sion. Required pattern is defined in the mask. Then UV light is exposed onto the wafer.

Mask has transparent regions through which light passes through and photosensitive ele-

ments of resist are activated which are removed later on. This is known as positive resist.

In a process wherein unexposed areas are removed is called negative resist.

Photoresist developing: At this stage, wafer is treated with a developing solution. Depend-

ing on process (positive or negative), solution dissolves (activated or unactivated resist)

and thus desired pattern is formed in the wafer.

Hardbake: This is the final stage wherein resist solvents are cleared and strengthening the

adhesiveness of resist to the surface of the wafer takes place. Temperature is 90− 140◦C

which lasts for several minutes depending on requirement. Care should be taken such that

pattern deformation does not occur. Pattern is then printed on photoresist.

1.3.2.3 Etching

This is the process of removal of layers from the wafer surface. It involves two approaches

viz., wet and dry. Controlled and monitored material removal is carried out through

physical (mechanical) or chemical (reactive) process. Figure 1.17 shows a wafer with SiO2

on Si. Slanted lines denote hardened resist on SiO2 layer. To remove oxide layer uncovered

by resist, the wafer is immersed in a HF or HF+NH4F solution. Chemical reactions do

not affect Si or protected oxide layers but etches away the exposed oxide layer. Chemicals

making up such solution are called etchants. Different etchants are used for different

materials. For instance, a solution of HCl + HNO3 + H2O is used for indium tin oxide

(ITO).

Figure 1.17: Schematic of chemical etching process: 1, silicon; 2, SiO2; 3, photoresist. (a)
Unexposed photoresist after developing stage. (b) Oxide layer is etched in a HF + NH4F
solution. (c) Removal of photoresist with H2SO4 [14].
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Temperature, etching time and etch rate are vital in this process. Types of etching

are wet, dry and plasma. Mechanical ways of etching are ultrasonic agitation or cleaning,

using abrasive compounds for polishing and supercritical cleaning.

1.4 Electro-absorption modulators

An electro-absorption modulator is basically a semiconductor device that introduces changes

in incident light intensity by means of absorption. The materials that make such mod-

ulator are responsible for inducing a change in absorption spectrum due to an applied

electric field. Change in refractive index (n) is caused by the electrical signal which re-

sults in change of real (Re(n)) and imaginary (Im(n)) parts of refractive indices of the

material. Change in Re(n) is termed electro-refraction and change in Im(n) is termed

electro-absorption. An EAM works on the ON–OFF principle thereby encoding informa-

tion on an optical signal, termed modulation. Schematic of a typical EAM is shown in

Fig. 1.18.

Figure 1.18: Schematic of a typical electro-absorption modulator [14,20].

Our study deals with electroabsorption modulators (EAMs) wherein the modulation

is achieved by controlling the incoming light beam by an applied voltage. In 1958, Franz

and Keldysh developed the theory of optical absorption by crystals when subjected to an

electric field. In 1963, Tharmalingam [21] derived expression for absorption coefficient (α)

in the presence of a uniform field. The absorption factor plays a vital role in governing

the performance of an EAM.
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1.4.1 Modulation Mechanism

As already stated, the fundamental principle of an EAM is that the incident light beam

is absorbed by the medium, which is controlled with an electrical signal. Then the nature

of optical output will be based on the electrical signal that modulates the incident light.

The primary E-field effects that apply to semiconductor materials are Pockels effect, Kerr

effect and Franz–Keldysh effect [22,23].

Absorption in a semiconductor waveguide results from inter-band and free carrier ab-

sorption [15]. In the former, photons with energy greater than the band gap (~ω > Eg) of

the material are absorbed by the excitation of electrons from valence band (VB) to con-

duction band (CB). The latter is due to concentration of free carriers affecting both real

and imaginary parts of n. Absorption changes in semiconductors are given by following

Drude–Lorentz equation:

∆ω =
e3λ2

0

4π2c3ε0n

(
Ne

µe(m∗ce)
2 +

Nh

µh(m∗ch)2

)
(1.22)

where e is the electronic charge, c the velocity of light, µe the electron mobility, µh the hole

mobility, m∗ce the effective mass of electrons, m∗ch the effective mass of holes, Ne the free

electron concentration, Nh the free hole concentration, ε0 the permittivity of free-space

and λ0 the free-space wavelength.

Wavelength of incident light also plays a crucial role in absorption. A pure Si shows

an absorption of 2.83 dB/cm at λ = 1.15µm and 0.004 dB/cm at λ = 1.52µm [24].

1.5 Numerical methods

Numerical methods or techniques [25] evolved for designing devices using software that are

based on theoretical methods for predicting the performance and behaviour of a system

before experimentation. Results from theoretical methods have always aided experimental

research in terms of cost and time. Some of the popular names include Newton, Euler,

Lagrange, Gauss, Jacobi, Fourier, Chebyshev and so on. Theoretical methods have roots

in mathematics, for instance, Gauss–Jordan and Jacobi methods. Ordinary differential

equations are used in methods such as Adams and Moulton, Runge–Kutta, Rayleigh–Ritz

for problems in mechanics, aerodynamics and acoustics, respectively. Numerical methods

form a bridge between mathematics and physics, especially. Invention of computers in mid-
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1940s greatly reduced the time involved in working out calculations which were done using

pen and paper. A new branch called “Computational Methods” was born encompassing

physical, chemical and biological sciences, all branches in engineering as well as economics.

Present day software helps research visualize the outcomes in a more advanced way.

On this regard, this thesis is wholly based on the Finite Element Method (FEM)

or Finite Element Analysis (FEA) which is one of the most widely used technique for

design and analysis in engineering. Following are the fields where such methods are most

commonly used to develop software for testing, research and development:

� mechanical, aerospace, civil and automotive engineering

� structural and stress analysis

� flow of fluids

� heat transfer

� electromagnetic fields

� soil mechanism

� acoustics

� biomechanics

Numerical methods have been widely used in the study of optical guided-wave devices

due to the availability of faster and cheaper computer power. These methods are con-

cerned with finding numerical solutions to the Helmholtz’s wave equation derived from

Maxwell’s equations. For planar structures, or for structures with 1D index variation, the

approximate methods yield satisfactory results. However, for accurate characterization of

3D structures, a fully numerical method such as finite difference or finite element method

is required.

We will be focussing only on electromagnetic study using FEM. Photonics, a branch

of electromagnetics, is the study of governing light for practical applications, for example,

fibre optics. Lasers and light beams carry energy and information for various applica-

tions. Techniques are grouped under ComputationalPhotonics that employ numerical

methods. Results from computations help us identify pitfalls and optimize design before
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fabrication. This is termed simulation showing the propagation of EM wave in the ma-

terial of study. Nowadays we have a range of customised software especially in photonics

based on FEM, mostly in two-dimensional (2D) domains, categorized as time-domain and

frequency-domain methods. There are numerous methods proposed for both domains till

date. Time-domain techniques study a system and analyse the response with respect

to time whereas frequency-domain study a system’s response with respect to a range of

frequencies. This thesis follows the studies based on frequency-domain.

1.6 Objectives of the thesis

This thesis is devoted to study the following:

1. to benchmark H-field full vectorial FEM (perturbation and complex) with chosen

studies in literature;

2. to derive an analytical method for obtaining complex dielectric constants (ε1 + jε2,

where ε1 and ε2 denote real and imaginary parts) of graphene for entire voltage

range 0–2 eV;

3. to study fabrication possibilities and build a model to implement FEM for charac-

terizing proposed waveguide designs;

4. to conduct a detailed investigation of H-field and E-field modal profiles of proposed

rib and slot waveguides;

5. to ascertain the influence of dielectric layers with different (low-, high- and very

high) refractive indices on mode effective index and absorption;

6. to evaluate device performance parameters such as operation wavelength range, mod-

ulation depth and insertion loss;

7. to determine potential trade-offs between these performance metrics for practical

applications;

1.7 Structure of the thesis

This thesis comprises six chapters. Chapters 1 and 2 are devoted to the fundamentals

of light wave propagation, different methods in fabrication of optical waveguides and the
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explanation of Finite Element Method. Chapter 3 explains the significance of graphene,

beginning with physical and unique properties of this wonder material. Our method and

results we obtained in the study of dielectric constants of graphene are also presented in

this chapter. Chapters 4 is devoted for the benchmarking task we carried out as a precursor

for characterising graphene-based waveguides. In Chapter 5 we discuss our results in detail

and propose waveguide designs based on our findings. Chapter 6 concludes this thesis and

provides suggestions for future research.

Chapter 1 provides the recent trends in nanoelectronics with the advent of 1D and

2D materials. The need of these materials and their exceptional properties are given.

Fundamentals such as wave mechanism and Maxwell’s equations are explained for the

study of light wave propagation in a material medium. We move on to the background

of waveguides and the phenomena behind propagation. Few basic silicon-on-insulator de-

signs were discussed. Waveguide fabrication and the methods involved are explained with

schematic of the processes such as thin film deposition, CVD, sputtering, photolithography

and etching. Finally the modulation mechanism is briefly discussed.

Chapter 2 begins with fundamentals of interaction between light and matter and the

principle of operation in modulators. Planar, slab and rib waveguide theories are discussed.

A brief about plasmonic waveguides is given. Finite element method (FEM) is explained

in detail with an introduction to Maxwell’s equations.

Chapter 3 deals with physical, electrical and optical properties of graphene. The

physical properties of mono-, bi- and trilayers of graphene are explained. The electronic

band structure that gives rise to the Dirac cone is discussed. Optical conductivity (σ(ω) =

σ1 + jσ2) of graphene is introduced here since it leads to derivation of complex relative

permittivity (ε(ω) = ε1 + jε2) of graphene in the next section. We followed two methods

in the literature [26,27] and formed our analytical method for deriving complex dielectric

constants of graphene. We benchmarked the plots of complex dielectric constants of

graphene from three studies [6, 28,29]. A brief introduction to plasmonics is given.

Chapter 4 is devoted for benchmarking of modal properties from three studies [6,20,29].

The task of benchmarking is carried out to validate our complex and perturbation solvers

with published results. This helps to debug and identify the limitations in our solvers and

find ways to increase mesh dimensions handled by the solvers. The effective index (neff),
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absorption (α) and electric field intensity plots are benchmarked and the results obtained

using our methods are given.

Chapter 5 presents the characterization of waveguides we carried out in this study.

Mode profiles, effective index, absorption and performance parameters (ER, IL) are evalu-

ated. This chapter is divided into three parts. First part discusses the characterisation of

silicon nanowires (strip and rib waveguides). An introduction to influence of positioning

of graphene layers (top versus slot) in the waveguide is given. Second part deals with

characterisation of waveguides with bilayer graphene. We discuss here the influence of

dielectric layers on modal properties of graphene-based waveguides.

Third part in Chapter 5 deals with characterization of trilayer graphene-based waveg-

uides. Results using low-, high-, and very high-index dielectric materials encapsulating

graphene layers are presented. Our proposed waveguide designs are given. We discuss the

modal solutions of proposed designs in detail in this final part. Conclusion and suggestions

for future research are given in Chapter 6.
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Chapter 2

Finite Element Characterization of
Waveguides

2.1 Introduction

Dielectric waveguides are being studied since the early years of 19th century [30]. Achieve-

ment of lasing action in semiconductors by research groups in 1962 [31–33] led to the

realization of light guidance in p–n junction [34, 35]. Further, heterostructure laser was

developed in late 1960s [36]. In 1964, it was found that guiding action of a p–n junction

could be used in a modulator via the electro-optic effect [37]. Such inventions in optical

waveguide research resulted in rapid growth of potential applications in communication

systems. Figure 2.1 shows rapid rise in this field of research between 1964 and 1980.

In this chapter, we discuss the waveguide design, characteristics and numerical method

for characterization. First we discuss the interaction between light and matter. Here,

matter refers to the materials (e.g., silicon, graphene and so on) that are used to design the

waveguide. Next, the optical modulators which is the core study of this thesis. Second,

we move on to the theoretical aspects of waveguides. Here we study the interaction

phenomena of light with material using equations. Finally, we discuss the Finite element

method used for characterization of waveguide. Basic concepts and steps involved in finite

element study are discussed in detail.

2.2 Light–matter interaction

Interaction of light with matter results in following phenomena: reflection, refraction,

emission, absorption and transmission. Light constitutes photons of energy, E = hν. De-

pending on the structure of matter and wavelength of light, this energy is either absorbed
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2.2. Light–matter interaction

Figure 2.1: Number of papers published each year in a few relevant technical journals:
(a) Electronics Letters; (b) Applied Optics; (c) Electronic Letters and Applied Optics and
Bell Systems Technical Journal. Reproduced from Adams (1981) [38].

or reflected. There are other phenomena viz., fluorescence and diffraction. When light is

incident on a surface or traverses a material medium, interactions with electrons of atoms

or molecules that are present in the lattice take place. An electron, upon absorbing a

photon, use the energy to move to an excited state of higher energy and then fall to lower

energy by dissipating it in the form of a photon. Such process happens in few nanoseconds.

The difference in energy between higher and lower states decides the frequency of emitted

photon. A light photon has neither mass nor charge but it interacts with electrons, atoms

and molecules. A light beam is nothing but a stream of photons of well-defined energy

depending on the wavelength of the light. Thus the energy of photon is given by

Ep = hν =
hc

λ
= ~ω, ν =

c

λ
; ω = 2πν; ~ =

h

2π
(2.1)

where Ep is the energy of photon in joules, h the Planck’s constant (6.625× 10−34 J s), ~

the reduced Plancks constant equals to h/2π, c the speed of light (2.998× 108 m/s), λ the

wavelength of light and ω = 2πν the angular frequency.

Interference and polarization phenomena of light proved wave nature of light and

photoelectric effect the particle nature. The “true” nature of light was understood only
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2.2. Light–matter interaction

after Maxwell’s formulation of EM theory. Light is made of electromagnetic waves which

are governed by Maxwell’s equations. Electric and magnetic fields at x at time t are

denoted by E = E(x, t) and H = H(x, t) [39]. These fields are not classical but quantum

in nature. Similar to Schrdinger and Heisenberg treatments for quantization of material

systems, the electric and magnetic fields of light are quantized.

Figure 2.2: (a) Classical representation of a particle and field. (b) Corresponding quantum
representation. In (b), dots mean the probability distribution of particle position; field φ
at x, φ(x) [39]

Figure 2.2(b) shows the quantization of light photon. The electric field E(x) is defined

by a functional ψ[E(x)], within a certain range. A quantum field is a field with vector

potential.

2.2.1 Optical modulators

Electrooptic (EO) effect is a widely applied phenomena which forms the working principle

of modulators. Materials that respond to electrical and optical fields are used to make

devices based on EO effect. Most external modulators were made from materials such as

KDP, ADP, BaTiO3 and LiNbO3, InP and polymer materials. The list also includes ZnO,

ZnS and GaAs. Franz–Keldysh effect marked the arrival of electroabsorption modulators.

Initially a high voltage was required to achieve large extinction ratio [23]. Light wave

modulation is carried out by changing the absorption (α) or refractive index (n). The

major figures of merit of a modulator are as follows [10]:

� modulation speed

� modulation depth

� operation wavelength range
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2.2. Light–matter interaction

� energy consumption

� insertion loss

The ability to modulate optical signals at particular data transmission rate (bit/s) is

know as modulation speed. Modulation depth is nothing but extinction ratio (ER) which

is the ratio of maximum to minimum transmittance (Tmax/Tmin). An ER> 7 dB is pre-

ferred in most applications especially involving high data rate transfers and ER. 4 dB for

short-distance data transfers. Modulators are expected to operate at telecommunication

wavelength, λ = 0.85, 1.3, 1.5µm. Energy consumption is measured with fj/bit. Energy

efficient modulators should operate with few fj/bit for higher data connection speed. In-

sertion loss (IL) refers to the system energy efficiency. Derivations and explanations for

ER and IL are provided in further chapters.

2.2.1.1 Operation Principle

Modulation happens in a waveguide when change in absorption (α) or refractive index (n)

occurs. These changes are based on Pockel’s effect, Franz-Keldysh effect, quantum con-

fined Stark effect (QCSE), exciton-bleaching or tunable carrier density effect and plasma

or injected carrier effect [23]. Many reported waveguide structures are single waveguide,

Mach-Zehnder, directional coupler etc. First, the design procedure of a waveguide mod-

ulator is considered. The absolute values of the absorption coefficient (α) and refractive

index (n) and their change with applied voltage (V) or carrier injection are determined. At

the initial stage, such values are taken from literature. Mixed crystals such as ternary or

quaternary are used for semiconductor waveguides and necessary parameters are obtained

using liear or quadratic approximation of binary materials by extrapolating the fractional

content values.

Waveguide characteristics are strongly dependent on the waveguide core and cladding

materials as the optical confinement factor depends on the refractive index profile. There

are five important factors pertaining to intensity modulators:

� on/off ratio

� voltage required for on/off

� 3-dB bandwidth
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2.3. Theory of waveguides

� insertion loss

� chirping

The on/off ratio is an important parameter which is usually 15 or 20 dB. It is defined

as the ratio of incident light intensity (Pin). It is given as follows:

[ on

off

]
= −10log10

(
Pout

Pin

)
(2.2)

In electroabsorption materials, the transmitted light intensity is calculated using the ab-

sorption coefficient with the incident light intensity as follows:

Pout

Pin
= exp(−Γ ·∆α · L) (2.3)

where Γ is the optical confinement factor, ∆α the change in absorption coefficient and L

the sample length.

The change in absorption coefficient (∆α) strongly depends on the applied voltage

(Vin) and wavelength of incident light (λ). Normally, the smaller the applied voltage,

the better for operation of electronic circuits. For instance, a 2 V peak-to-peak voltage is

needed for high-speed operation (>10 Gb/s). The 3-dB bandwidth is determined by the

device capacitance when the device is operated in reverse bias condition, except when it is

operated by carrier injection with very slow speed such as a few nanoseconds. When the

speed is limited by the device capacitance, the 3-dB bandwidth is calculated as follows [23]:

[f3dB]1 =
1

πRC
(2.4)

where R is the load resistance and C the capacitance. The device capacitance is propor-

tional to the length of the sample (L, say 5µm) and width W.

2.3 Theory of waveguides

Waveguides are the most basic components of an optoelectronic system. They form the

building blocks of such systems. A suitable combination of active (Si, graphene) and pas-

sive materials (hBN, SiC, SiON) makes an efficient waveguide. For effective propagation

in a waveguide, refractive index (n) of core material should be higher than other layers,

such that n1, n2 < n3 and n3 > n4.
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Materials are chosen based on their optoelectronic properties and response to electrical

and optical signals. An electro-optic modulator requires a nonlinear material that could

modulate optical signal with electrical input at ultrafast rate. Reflecting, propagating

and confining light waves within a specified volume are the fundamental characteristics of

a waveguide. Materials with excellent optical and electrical properties are of particular

interest for designing waveguides. A multilayer rib waveguide is made of layers with

differing refractive indices to reduce leaky modes. In our study, we will be studying modes

that effectively confine EM field within core Si and graphene.

Dielectric slab waveguides have been studied extensively in literature. To begin with,

the standard problem of reflection and refraction at an interface between two isotropic

dielectric media is considered. This results in Snell’s laws, Fresnel’s laws for reflection

and transmission coefficients and the expressions for phase shift on reflection of a plane

wave at a dielectric interface. This leads to derivation of the eigenvalue equation for a

three-layer dielectric interface. Electromagnetic mode treatment of dielectric slab yields

an identical eigenvalue equation.

Figure 2.3: Incident (Ei), reflected (Er) and transmitted rays (Et) at a plane interface
between two dielectric media.

Figure 2.3 shows a plane interface (x = 0) in the y− z plane between two media char-

acterized by ε1, µ0 and ε2, µ0. A plane wave is incident in the x− z plane from medium q

on this interface. Here we assume that the incident (Ei), reflected (Er) and transmitted

(Et) rays are coplanar and corresponding equations are given as follows:
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2.3. Theory of waveguides

1. Incident wave: Ei = E1e−jωt exp[ikn1(−x cos θ1 + z sin θ1)]

2. Reflected wave: Er = E3e−jωt exp[ikn1(x cos θ3 + z sin θ3)]

3. Transmitted wave: Et = E2e−jωt exp[ikn1(x cos θ2 + z sin θ2)]

where k = ω(µ0ε0)1/2 = 2π/λ; n1 and n2 are the refractive indices in media 1 and 2;

θ1, θ2 and θ3 are incident, refraction and reflection angles, respectively.

2.3.1 Planar waveguides

There are various types of waveguides and out of which is the planar waveguide. This two-

dimensional waveguide enables confining light in one direction (y) and allow to spread in

other direction (x ). Geometry of simple planar waveguide in shown in Fig. 2.4. For a

3-layer asymmetric planar waveguide, the refractive indices are related as nc < ns < ng

such that incoming light is confined within the guiding core. When indices of substrate

(ns) and upper cladding (nc) are equal, ns = nc), yields a symmetric guide.

Figure 2.4: A planar waveguide. The refractive indices of guide, upper cladding, and
substrate are denoted by ng, nc and ns, respectively.

In the waveguide shown in Fig. 2.4, refractive index (n) is taken as a constant value

within chosen regions of the waveguide. Many waveguides have graded index since the

refractive index changes gradually.

2.3.2 Dielectric slab waveguide

Consider a three-layer dielectric slab waveguide (Fig. 2.5) with material refractive indices

n1, n2 and n3 such that n1 > n2 ≥ n3. This variation in refractive indices of the material

results in an asymmetric waveguide for n2 6= n3 and a symmetric waveguide for n2 = n3.
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2.3. Theory of waveguides

Figure 2.5: Ray of light in a dielectric slab waveguide.

As shown in Fig. 2.5, light ray undergoes total internal reflection at each interface,

thus light is trapped within the core layer of the waveguide. This is known as guided mode.

Waves propagate in the z -direction as exp(iβz). The longitudinal propagation constant,

β, is related to the ray angle φ by β = n1k cosφ and hence it follows the propagation

constant β is constrained for guided modes as follows:

n1k ≥ β ≥ n2k ≥ n3k (2.5)

Here the minimum value of β for guided propagation, or the cut-off condition, for the

mode is n2k.

2.3.3 Rib waveguide

Silicon-on-Insulator (SOI) waveguides with dimensions greater than hundreds of nanome-

ters support multiple modes but are not preferred for photonic cirucits as presence of

multiple modes will affect the performance. A simple expression for single-mode condition

(SMC) was first proposed by Soref et. al [40]

W

H
≤ 0.3 +

r√
1− r2

(for 0.5 ≤ r < 1) (2.6)

where r is the ratio of slab height to overall rib height and W/H is the ratio of waveguide

width to overall rib height.

2.3.3.1 Guided modes

Maxwell’s equations in terms of refractive index nj (j = 1, 2, 3) of the three layers, and

assuming the magnetic permeability is everywhere the same as that of free space µ0, are

given by [38],
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2.3. Theory of waveguides

Figure 2.6: A SOI rib waveguide with R1 (air, n = 1), R2 (Si, n = 3.477) and R3 (SiO2,
n = 1.444). Here h=rH, for r < 0.5. For computational purposes broken lines denote air
region which covers all around the waveguide.

∇×H = n2
jε0

dE

dt
(2.7)

∇×E = −µ0
dH

dt
(2.8)

∇ ·E = 0 (2.9)

∇ ·H = 0 (2.10)

where cross denotes a vector product, H and E are respectively the magnetic and electric

field vectors and ε0 and µ0 denote dielctric permittivity and magnetic permeability of

vacuum, respectively, n the refractive index of the medium and t the time variable.

To obtain a complete description of all modes supported by dielectric waveguides, the

Maxwell’s equations (2.1)–(2.4) must be solved. Modes of slab waveguide can be classified

as transverse electric (TE) and transverse magnetic (TM). The TE modes have no electric

field component along the direction of wave propagation whereas TM modes have no

longitudinal magnetic field component.

We now move on to plasmonic waveguides made of materials with complex refractive

indices, in other words, complex dielectric constants (ε1 + jε2), where ε1 denotes the real

part and ε2 the imaginary part. Chapter 3 deals with complex dielectric constants in

detail.
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2.3.3.2 Plasmonic waveguides

Electromagnetic wave propagating through a material (polarizable) medium is polarized

and couples with the medium. This coupled mode of excitation results in a polariton.

In a cloud of electrons or an electron plasma, such coupled modes are termed plasmon-

polaritons [41, 42]. Resulting polaritons in bulk traverse through an unbounded medium

whereas surface polaritons that result due to the coupling of incident radiation with surface

dipole excitation and propagate along the interface between two media. Existence of

surface plasmons is in the boundary of semiconductor layers in the plasmonic waveguide.

Such waveguides are made of semiconductor materials whose electrons behave similar to

a quasifree electron gas.

Figure 2.7: A hybrid plasmonic waveguide: (1) metal; (2) dielectric; (3) silicon; (4) SiO2.

Figure 2.7 shows a typical hybrid plasmonic waveguide. In a graphene-based plasmonic

waveguide, usually graphene is sandwiched between dielectric layers. As phonons are

quanta associated with vibration of a crystal lattice, plasmons are quanta of oscillations

of surface charges induced by external electric fields in the boundary.

Surface plasma waves occur in a dielectric–metal interface (Fig. 2.8), where dielectric

has a positive dielectric constant (+ε1) and metal with negative real part of dielectric

constant (−ε1). Properties of plasmonic waves are based on solving Maxwell’s equations

for interface between two semi-infinite and isotropic dielectric media. In such waveguides,

the thickness of metal layer is much lower than the dielectric layer. For example, in

a graphene-silicon hybrid waveguide, the graphene–boron nitride (BN) interface acts as
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metal–dielectric for certain gate voltages; thickness of graphene is 0.33 nm to that of BN

is 10 nm. Strong light confinement can be achieved in a plasmonic waveguide.

Figure 2.8: Surfase plasmons originating in a metal–dielectric interface. ε1 denotes the
real part of dielectric constant.

A waveguide mode that arises in a dielectric couples with the surface plasmon mode

in the metal. This results in an evanescent wave as the wave amplitude exponentially

decreases with increasing distance from the metal–dielectric interface. Figure 2.9 shows

the scheme of coupling of waveguide mode with dielectric mode in a plasmonic waveguide.

Figure 2.9: Coupling scheme of waveguide and plasmonic modes in a metal–dielectric
interface.
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2.3.4 General solution to Maxwell’s equations

Maxwell’s equations govern the propagation of light through optical media and its in-

teraction with the optical media. Thus derived equations are valid for entire frequency

spectrum and differential form are stated as follows:

∇× E + ∂B
∂t Faraday′s Law

∇×H − ∂D
∂t Maxwell−Ampere Law

∇ ·D = ρ Gauss′ Law
∇ ·B = 0 Gauss′ Law Magnetic

(2.11)

Considering a lossless dielectric isotropic material, the electric E and magnetic H field

vectors are related through the constitutive equations

D = ε0E + P

B = µ0H

where D is the electric flux density (coulombs/m2), B the magnetic flux density (webers/m2),

ρ the charge density, µ0 the magnetic permeability of vacuum (= 4π × 10−7 F/m) and ε0

the vacuum dielectric permittivity.

Assuming a complex time dependence through the factor exp(jωt), where j is an

imaginary unit, ω the angular frequency and t the time. Substituting for B and D, the

time derivatives in the above equations may be rewritten as follows:

∇× E + jωµH = 0 (2.12)

∇×H − jωεE = 0 (2.13)

Taking curl of above equations and substituting from Maxwell’s equations yields,

∇×∇× E − ω2µεE = 0 (2.14)

∇×∇×H − ω2µεH = 0 (2.15)

Using the following vector identity

∇×∇×A = ∇(∇ ·A)−∇2A (2.16)

the first terms of equations 2.14 and 2.15 becomes

∇(∇ · E)−∇2E − ω2µεE = 0 (2.17)
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∇(∇ ·H)−∇2H − ω2µεH = 0 (2.18)

These equations can be written as follows:

∇2E + k2E = 0 (2.19)

∇2H + k2H = 0 (2.20)

where k = ω
√
εµ0.

Equations 2.17 and 2.18 or 2.19 and 2.20 provide the general solution to Maxwell’s

equations using properties of the material and angular frequency of the incoming electro-

magenetic signal. To obtain an optical mode, these equations need to be solved for the

chosen waveguide structure.

2.3.4.1 Basic Equation

Expanding the curl operator in equation 2.17 using rectangular coordinate system results

in

∂2E

∂x2
+
∂2E

∂y2
+
∂2E

∂z2
= −ω2µεE (2.21)

The field vector E can be separated into the individual components such that there is an

equivalent differential equation for each of the vector components:

∂2Ex

∂x2
+
∂2Ex

∂y2
+
∂2Ex
∂z2

= −ω2µεEx (2.22)

∂2Ey

∂x2
+
∂2Ey

∂y2
+
∂2Ey

∂z2
= −ω2µεEy (2.23)

∂2Ez

∂x2
+
∂2Ez

∂y2
+
∂2Ez

∂z2
= −ω2µεEz (2.24)

2.3.4.2 Analytical solution

Consider the planar waveguide shown in Fig. 2.4, the field quantities are taken to be

varying along only one direction. In this 3-layer (substrate, core, cladding) waveguide

structure, assuming the incoming light is confined along y-axis, the partial derivative

along x-axis is written as ∂
∂x = 0. Now we introduce a parameter φ such that

φ =

{
Ex For TE mode
Hx For TM mode

(2.25)

then equations 2.19 and 2.20 can be written as

∂2φ

∂y2
+
(
k2

0n
2 − β2

)
φ = 0 (2.26)

40



2.3. Theory of waveguides

where n = ε2 and β the phase constant.

For two-dimensional waveguides, the TE mode has no longitudinal component of the

electric field, Ez = 0. The non-vanishing field components are defined as follows:

Hy =
β

ωµ
Ex (2.27)

Hz =
1

jωµ

∂Ex

∂y
(2.28)

Ex =
β

ωε
Hy

1

jωµ

∂Ex

∂y
(2.29)

For TM modes, there is no magnetic field along the propagation direction, Hz = 0.

The only non-vanishing field components are given as follows:

Ey =
β

ωε
Hx (2.30)

Ez =
1

jωε

∂Hx

∂y
(2.31)

Hx =
β

ωµ
Ey

1

jωµ

∂Ez

∂y
(2.32)

Solutions to equation 2.26 are either exponential or sinusoidal functions of y in each re-

gions of the waveguide. The particular function is dependent on the factor
(
k2

0n
2 − β2

)
. In

the 3-layered waveguide, for a guided wave, the phase constant β will satisfy the condition

kns ≤ β ≤ knf . Equation 2.26 will then have following solution [43]:

φ =


Ac exp(−αcy) 0 ≤ y
Af cos kfy +Bf sin kf −t ≤ y ≤ 0
As exp[αs(y + t)] y ≤ −t

(2.33)

where Af , Bf , Ac and As are arbitrary constants determined by boundary conditions

which must be satisfied at the interface of two media. Values αc, αs and kf are given as:

αc =
√
β2 − k2n2

c (2.34)

αs =
√
β2 − k2n2

s (2.35)

kf =
√
k2n2

f − β2 (2.36)

These are well-confined modes normally referred to as TE0/TM0 and TE1/TM1 modes.

For β > knf , the function φ must be exponential in all three regions, which would imply
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infinite energy in the upper and lower cladding of the waveguide [44]. Of course, such a

mode will not exist. A substrate radiation mode is obtained for a value of kns > β > knc

and this mode is confined at the interface of the upper cladding but varies sinusoidally in

the substrate. Such a mode can only be supported over short distances as it losses energy

from the guiding region to the substrate region and hence not very useful in transmission

of signal. It may, however, prove useful in tapered coupler applications. The number of

modes that can be supported by a waveguide depends on the thickness of the waveguiding

layer and on the material properties of the waveguide as well as the frequency. This

implies that for a given waveguide thickness and given refractive indices, there is a cut-off

frequency, ωc below which waveguiding cannot occur. In optical waveguide applications,

the wavelength is of fixed value, the problem is therefore to determine the refractive

index values for which a particular mode can be supported. It can be shown that for the

asymmetric waveguide, the refractive indices are related through the following equation,

∆n = nf − ns ≥
(2m+ 1)2λ2

0

32nf t2

where m = 0, 1, 2, ... is the mode number, λ0 the vacuum wavelength and t the thickness

of the waveguiding layer.

The properties of planar waveguides can be thus studied using analytical methods.

Exact analytical solutions can also be obtained for planar guides with stepped refractive

index values but for a continuously graded index guide, it is rather difficult to obtain

exact analytical solutions. Planar waveguides have a limited range of use due to 1-D

optical confinement, whereas in many applications, 2-D optical confinement is preferred

which can be provided by channel or 3-D waveguides. It is not possible to obtain exact

analytical solutions to such waveguides, except in very special cases, and many practical

waveguides have complex structures with arbitrary index distribution. The propagation

mode is often a hybrid mode, Exmn (the main components of the electromagnetic field being

Ex and Hy) or Eymn (the main components of the electromagnetic field being Ey and Hx)

modes, where subscripts m and n refer to the mode order such that m,n = 1, 2, 3, ...,

corresponding to the total number of extrema appearing in distribution of the electric

fields in both x and y directions. In reality, one of the modes is dominant, TEy in the

case of Exmn mode and TMy in the case of Eymn mode where the existence of such modes

compounds the complexity of obtaining an analytical solution. Amongst the many reasons,
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following factors show the difficulties in obtaining an exact analytical solution to Maxwell’s

equations:

� the electromagnetic field may extend beyond the guiding core

� anisotropic and non-linear optical materials may be used to extend the range of

waveguide applications

� materials with complex refractive index (n1 + jn2) such as graphene

2.4 Finite Element Method

The characteristics of light wave propagation in a waveguide are studied using numerical

methods through which modelling and simulations of different waveguides can be carried

out. This reduces time and cost involved in choosing a suitable design before experi-

mentation. These methods are adopted for finding approximate solutions to boundary

value problems using partial differential equations. To name few: Galerkin and moment

methods, Transfer matrix method, Finite-element-based methods, Finite-difference-based

methods, Transmission line matrix method, Monte Carlo method, etc., broadly classified

as computational photonics. The book written by Rahman and Agrawal [45] explains

solving waveguide problems using Finite Element method in detail.

Finite element method is relatively a new and powerful numerical method used in

the analysis of optical waveguide problems. Using this approach, any optical waveguide

cross-section can be divided into triangular elements and the field components within the

elements are approximated by polynomial functions. The versatility of the method ensures

that each element can be of a different dielectric material, anisotropic, non-linear or lossy.

The finite element formulation is usually established using a variational technique [46,47].

Vector variational formulations of Maxwell’s equations provide a means of solving

wave propagation problems where all six electromagnetic field components are required

whereas scalar formulations are inadequate [48]. Such formulation also provides a better

convergence where the natural boundary condition is that of Dirichlet. Using a standard

procedure, a variational formulation can be obtained as follows [49]:

1. Find the variational integral whose first variation is zero for the given boundary

conditions.
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2. Choose an appropriate trial function and expand the field components as a sum of

the trial functions.

3. Substitute the trial fields in the variational integral and find the first variation and

equate it to zero

4. The resulting simultaneous equations from the weak formulation of the boundary

value problem are equivalent to a standard eigenvalue matrix equation of the form

Ax − λx = 0. This equation can then be solved by one of several standard matrix

algorithms.

Different variational formulations have been proposed for use with FEM. The simplest

of these is the scalar approximation, which is useful where the field can be said to be

predominantly TE or TM. It has been applied to the analysis of different types of waveguide

problems [50–52]. For practical waveguides, the scalar formulation is not accurate since

the modes are hybrid. To overcome this shortcoming of the scalar approximation, a

vector formulation with at least two field components is used. Both the E and H field

vector variational formulations or combinations of the two have been used. The natural

boundary condition for the E field is that of a magnetic wall. This implies a conducting

electric boundary wall, n × E = 0. Such a condition is however difficult to implement

on arbitrarily shaped guide walls. Therefore, E-field formulation requires special care

in preserving the continuity of the transverse components of the fields. It is difficult to

implement the natural boundary condition using this method for guides with arbitrary

index distribution. However, the two axial components on which the formulation is based

are the least essential of the six vector field components. Also, this method suffers from

spurious modes which can be reduced at the expense of increased computational cost [52].

Vector H field formulation has been extensively used due to its ability to solve generally

anisotropic waveguide problems [46, 47]. Since the natural boundary condition is that of

an electric wall there is no need to explicitly enforce this condition. This formulation can

be given as follows [47]:

ω2 =

∫
(∇×H)∗ · ε−1 · (∇×H) dΩ∫

H∗ · µ−1 ·H dΩ
(2.37)

where ε and µ are the permittivity and permeability of a loss-free medium. Applying

Raleigh–Ritz procedure to equation 2.37 will yield a similar matrix equation as in the

44



2.4. Finite Element Method

vector E formulation. A serious shortcoming of this equation is the appearance of spurious

solutions which are attributed to the fact that the divergence condition ∇ · H = 0 is

not satisfied. Rahman and Davies, in their study, enforced this divergence condition by

imposing a ‘penalty’ function that could eliminate these spurious modes [46].

Almost all natural phenomena can be described using differential/integral equations.

Deriving such equations may not pose difficulty, however, solving them by analytical meth-

ods is a formidable task. Nowadays many simulation programs are used which has reduced

the time required for calculations to a great extent. Finite element method is a theoretical

method wherein the domain of study is “built” using a finite number of elements. This

method is built using mathematical equations that define field in each element. Therefore,

the shape of elements plays a significant role in this method. In other words, it is a method

by which a complex domain is ”broken” into smaller elements and assigning approximating

functions in each element to solve them mathematically [45]. Elements are chosen such

that the shape and size of each element covers as closely as possible the geometry of the

chosen domain (Fig. 2.10).

Figure 2.10: Triangular elements used in FEM to cover chosen domain: (a) one element;
(b) two elements with a common boundary. Source: Rahman and Agrawal [45].

Investigation of light wave propagation is of prime importance in the characterization

of waveguides. In this regard, finite element method (FEM) has been established as one of

the most powerful and versatile methods used in the analysis of optical waveguides [46,47,

53–55] in numerical modelling. FEM allows each element to have a different but piecewise-

constant refractive index (εr = n2) which enables applying FEM to analyse arbitrarily

shaped diffused anisotropic waveguides. Optical waveguides are characterized by solving

Maxwells equations which involves calculating eigenfunctions, or modes of the waveguide,

at a fixed frequency and the eigenvalues that correspond to the axial propagation constant
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of the wave in the waveguide. The graphene/silicon hybrid waveguide has hybrid nodes

and is generally anisotropic [49].

The basic idea of the finite element method is to divide the region of interest into

a large number of finite elements or sub-regions. These elements maybe one, two or

three-dimensional. The idea of representing a given domain as a collection of discrete

elements is not new, it is recorded that ancient mathematicians estimated the value of

π by representing the circle as a polygon with a large number of sides. FEM has been

used to solve complex engineering problems such as structural analysis in aircrafts, fluid

flow, heat transfer and mass transport. Later on, this method found its way in solving

electromagnetic field problems. Waveguide problems are described by using integral or

differential equations. Then these equations are solved using numerical methods. FEM has

established itself as one of the most powerful and accurate technique for solving problems

associated with integrated optical waveguides and microwave devices. The versatility of

the method allows elements of various shapes to be used to represent an arbitrary cross-

section [49].

2.4.1 Definition

Finite elements, as the name suggests, the domain of study will be divided into smaller

elements of finite size and numbers, with each element having a suitable approximating

function [45]. These elements construct a finite element space comprising field variables

of partial differential equations and integral equations. Elements are of 1D, 2D and 3D

of which 2D denotes a triangular element. The 2D element is mostly used for studying

waveguides. A finite element (K,P,N) is defined as follows [56]:

� K ⊆ Rn a domain with piecewise smooth boundary – the element domain

� P a finite-dimensional space of functions on K – the shape function

� N = {N1, N2, . . . , Nk} a basis for P’ – the nodal variables

Let us now see how to form triangular finite elements. Consider K as any triangle, Pk

the set of polynomials of degree ≤ k. Dimensions of Pk will follow the relation:

dimPk =
1

2
(k + 1)(k + 2) (2.38)
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Let us consider z1, z2 and z3 the vertices of triangle K and L1, L2 and L3 linear

functions defining the lines joining the vertices of K (Fig. 2.11).

Figure 2.11: A linear Lagrange triangle.

In Fig. 2.11, k = 1, therefore using equation 2.38, dimP1 = 3. Using this equation we

can derive for k = 2, 3, 4, .... Apart from Lagrange, we have other elements called Hermite

and Argyris (Fig. 2.12). In quartic Hermite, k = 4 yields 15 dimensions and quintic

Argyris, k = 5 results in 21 dimensions [56].

Figure 2.12: Quartic Hermite and quintic Argyris triangles.

2.4.2 Basic concepts

The major key ideas in FEM are

1 discretization of the region of interest into elements

2 using interpolating polynomials to describe the variation of the field within each of the

elements

Instead of differential equations for the system under investigation, variational expres-

sions are derived and the piecewise continuous function is approximated by a piecewise
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continuous polynomial within each element. From the equivalent discretized model con-

tribution from each element, an overall system is assembled. This can be regarded as a

sub-class of the Ritz–Galerkin method in which the trial functions are replaced with poly-

nomial functions. In the classical analytical procedure where the region is not subdivided

into regions, only the simplest structures with basic material properties can be considered.

The finite difference method is the simplest of all the discretization procedures and in the

traditional version uses a rectangular grid (Fig. 2.13) with nodes at the intersections of

the orthogonal straight lines. Such an approach is not particularly suited to irregular

geometries with curved boundaries and interfaces since the intersections with the gridlines

could be at points other than at the nodes. It is not well suited to the analysis of problems

in which there are steep variations of the field [49].

Figure 2.13: Rectangular grid: domain division; (•) a node.

On the other hand, FEM allows the domain to be subdivided into elements or sub-

regions. These elements can be of various shapes such as triangles and rectangles thus

enabling the use of irregular grid for complex waveguide structures. The method can there-

fore be easily used to analyse problems with steep variations of the field and can be adapted

quite readily to anisotropic and inhomogeneous problems. The accuracy of this method

could be systematically increased by increasing the number of elements. The method does

not rely on the variational method for its establishment; it could be established by using

the Galerkin method, which is a weighted-residual method. The importance of this last

point is that the method could be applied in cses where no variational formulation exists

or cannot be found [49].

The steps involved in FEM can be summarized as follows:

1. discretize the domain under investigation into sub-domains or elements. The accu-
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racy of the method depends on the level of discretization. It is recommended to

use more elements in areas where the field is thought to have steep variations. It

is also not advisable to use elements across physical boundaries or interfaces. For

symmetrical domains, the mesh should follow the same type of symmetry.

2. the functional for which the variational principle should be applied for the elements

are then derived. In deciding on the interpolation function, certain continuity condi-

tions must be satisfied by the interpolation function across inter-element boundaries.

These requirements are normally obvious from physical consideration of the prob-

lem. It is however also necessary that the function have to be an admissible member

of the Ritz and Galerkin methods. It follows that the polynomial function has to

remain unchanged under a linear transformation from one coordinate system to the

other.

3. assemble all the element contributions to for a global matrix.

4. solve the system of equations that is obtained, in this case a matrix equation.

Figure 2.14: Mesh formation in FEM. Adapted from Rahman and Agrawal [45].

Figure 2.14 shows how FEM discretization can be applied to a waveguide with different

regions, viz., a cladding (nc), guide (ng) and substrate (ns). The elements used in this case

are triangular since it is much easier to represent an arbitrary cross-section with triangles

rather than with rectangles. In 2-D waveguide analysis, the triangles can be of any order
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but the most commonly used triangles are of first and second orders.

2.4.3 Implementation of FEM

Consider the following Helmholtz equation:

∇2φ+ k2φ = 0 (2.39)

as the governing equation in a waveguide problem, defined within the domain Ω, where φ

is the electric or magnetic field component ∇2 is a Laplacian operator defined as

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2.40)

In equation 2.39, k2 is a constant related to frequency and given also that Γf and Γn

are boundaries within the said domain, then the following boundary conditions may be

defined:

(1) on the boundary Γf (Dirichlet boundary condition)

φ = φ̂ (2.41)

(2) on the boundary Γn (Neumann boundary condition)

∂φ

∂n
= n · ∇φ = ψ̂ (2.42)

where n is the outward normal unit vector. The gradient operator, is defined by the

following matrix differential operator

∇ =

 ∂/∂x
∂/∂y
∂/∂z

 (2.43)

in the Cartesian system of co-ordinates. Taking into consideration the stated boundary

conditions, the functional for equation 2.39 could be written as (Koshiba, 1990)

F =
1

2

∫∫∫
Ω

[(∇φ)2 − k2φ2]dΩ−
∫∫
Γn

φψ̂dΓ (2.44)

The stationary requirement of the above functional, δF = 0, coincides with the govern-

ing equation of the problem. The Neumann boundary condition is automatically satisfied

in the variational procedure as such it is referred to as the natural boundary condition.

The Dirichlet boundary condition however needs to be imposed and is therefore called the
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forced boundary condition. The functional for each of the elements of the region could

then be written as

F =
1

2

∫∫∫
e

[(∇φ)2 − k2φ2]dΩ−
∫∫
Γe

φψ̂dΓ (2.45)

The functional for the whole of the domain can then be regarded as a summation of

the element functions

F =
∑
e

Fe (2.46)

For the n nodes within each element, the field φ can be approximated as follows:

φ =

n∑
i=1

Niφi (2.47)

where φi is the ith nodal parameter of the element e and Ni is the interpolation or shape

function. The above equation could be written in Matrix form as follows

φ = {N}T {φ}e (2.48)

where the component of the vector {φ}e is φi and that of the vector {N}T is the interpo-

lation function Ni, T denotes a transpose, {·} and {·}T denotes a column and row vector,

respectively.

For convergence of the solution, the shape function Ni must satisfy certain conditions

when the functional contains first order derivatives:

� the variable φ and its derivatives must include constant terms, and

� the variable φ must be continuous at the interface of two adjacent elements.

The first of the two conditions is also known as the completeness condition and is

simple to satisfy provided complete polynomial expressions are used in each element. The

second of the two conditions is called the compatibility condition. First order elements

are the most fundamental and first order polynomials are used with them but higher order

elements are used with higher order polynomials. Since the number of nodes within each

element coincides with the number of terms in a complete polynomial expansion, the nodes

are simply arranged to satisfy the compatibility condition.
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2.4.4 Element Equations

To obtain the element equations it is necessary to perform a coordinate transformation.

This is because the interpolation function is defined using the local coordinates and hence

it is necessary to find a means of linking the global derivatives in terms of the local

derivatives. Secondly, the element volume over which the integration has to be carried

out needs to be expressed in terms of local coordinates with change of limits as may be

appropriate.

Assuming the local coordinates ξ1, ξ2 and ξ3 have as a corresponding set, the following

global coordinates x, y and z as follows:

x = x(ξ1, ξ2, ξ3) (2.49)

y = y(ξ1, ξ2, ξ3) (2.50)

z = z(ξ1, ξ2, ξ3) (2.51)

Using partial differentiation rules, the transformation relation for differentiation can be

written as follows 
∂
∂ξ1
∂
∂ξ2
∂
∂ξ3

 = [J ]

 ∂
∂x
∂
∂y
∂
∂z

 (2.52)

where the matrix [J ] is a Jacobian matrix defined as

[J ] =


∂x
∂ξ1

∂y
∂ξ1

∂z
∂ξ1

∂x
∂ξ2

∂y
∂ξ2

∂z
∂ξ2

∂x
∂ξ3

∂y
∂ξ3

∂z
∂ξ3

 (2.53)

The global matrix of the derivatives can then be obtained through an inversion of the

Jacobian matrix to give  ∂
∂x
∂
∂y
∂
∂z

 = [J ]−1


∂
∂ξ1
∂
∂ξ2
∂
∂ξ3

 (2.54)

2.4.5 Line Elements

Line elements (1D) are the most fundamental of all the elements used. These elements

can be of

a) first order

b) second order, and
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c) third order

These are normally used for solving 1D problems. It is necessary to introduce the line

coordinates L1 and L2. The relationship between line and Cartesian coordinates is given

by [
L1

L2

]
=

1

le

[
x2 −1
−x1 1

] [
1
x

]
(2.55)

where x1 and x2 are the Cartesian coordinates of the edge of the line and the length of

the element le is given by

le = x2 − x1 (2.56)

If the local coordinate is now defined as ξ1 then

L1 = ξ1 (2.57)

L2 = 1− L1 = 1− ξ1 (2.58)

The transformation relation for differentiation is then given by

d

dx
= − 1

le

d

dξ1
(2.59)

For integration, the transformation relation is given by

∫
e

f(x)dx = le

1∫
0

f(ξ1)dξ1 (2.60)

Using equations 2.59 and 2.60 both the differentiation and integration formulae could be

written as

df

dx
=

1

le

(
− ∂f

∂L1
+

∂f

∂L2

)
(2.61)

∫
e
Lk1L

l
2dx = le

1∫
0

ξk1 (1− ξ1)ldξ1

= le
k!l!

(k+l+1)!

(2.62)

The shape function vector for the linear element and its derivative are given as

{N} =

[
L1

L2

]
(2.63)

and

{Nx} =
d{N}
dx

=
1

le

[
−1
1

]
(2.64)
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respectively. The modal coordinates (L1, L2) of the linear element are given as follows:

node 1: (1, 0) node 2: (0, 1) For the quadratic element, the shape function and its

derivatives are defined as

{N} ==

 L1(2L1 − 1)
L2(2L2 − 1)

4L1L2

 (2.65)

{Nx} =
l

le

 1− 4L1

4L2 − 1)
4(L1 − L2)

 (2.66)

The nodal coordinates for nodes 1, 2 and 3 are given as (1, 0), (0, 1) and (1
2 ,

1
2), respectively.

2.4.6 Triangular Elements

In practical, most electromagnetic problems are of the two-dimensional type. This makes

the use of triangular elements a common practice. These elements can be of either first

order, second order or higher order (Fig. 2.15). In applying the first order elements, it can

be seen that nodes occur at the vertices of the triangles while nodes are also defined at

the middle of the edges for second order elements. In this work, only first order triangular

elements are used since the second order elements are costly in terms of the computa-

tional time. Since adjacent elements will have common nodes, it is important to adopt a

numberint system that will assign to this common nodes of the same numbers.

Figure 2.15: First (a) and second (b) order triangular elements.

Triangular elements shown in Fig. 2.15 are used in two-dimensional problems. For such

an element, the area coordinates L1, L2 and L3 are introduced. The equation relating the

Cartesian coordinates to the area coordinates is given by 1
x
y

 =

 1 1 1
x1 x2 x3

y1 y2 y3

 L1

L2

L3

 (2.67)
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or  L1

L2

L3

 =

 1 1 1
x1 x2 x3

y1 y2 y3

−1  1
x
y

 =
1

2Ae

 a1 b1 c1

a2 b2 c2

a3 b3 c3

 1
x
y

 (2.68)

where (x1, y1), (x2, y2) and (x3, y3) are the Cartesian coordinates of the vertex k, where

k = 1, 2, 3 of the triangle. The coefficients ak, bk and ck are defined as

ak = xlym − xmyl (2.69)

bk = yl − ym (2.70)

ck = xm − xl (2.71)

The subscripts k, l and m are cyclical around the three vertices of the triangle. The area

Ae of the element is given as

2Ae =

 1 1 1
x1 x2 x3

y1 y2 y3

 (2.72)

If the local coordinates ξ and η are defined as

L1 = ξ (2.73)

L2 = η (2.74)

L3 = 1− L1 − L2 = 1− ξ − η (2.75)

then the transformation relation for differentiation will be given by the following:[
∂
∂ξ
∂
∂η

]
= [J ]

[ ∂
∂x
∂
∂y

]
(2.76)

where

[J ] =

[
x1 − x3 y1 − y3

x2 − x3 y2 − y3

]
(2.77)

or [ ∂
∂x
∂
∂y

]
= [J ]−1

[
∂
∂ξ
∂
∂η

]
(2.78)

with

[J ]−1 =
1

2Ae

[
b1 b2
c1 c2

]
(2.79)

The relation for integration is given as

∫∫
f(x, y)dxdy = 2Ae

1∫
0

1−ξ∫
0

f(ξ, η)dξ dη (2.80)
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Using equations (2.70) through to (2.77), the formulae for both differentiation and inte-

gration can be given by

∂f

∂x
=

1

2Ae

(
b1
∂f

∂L1
+ b2

∂f

∂L2
+ b3

∂f

∂L3

)
(2.81)

∂f

∂y
=

1

2Ae

(
c1
∂f

∂L1
+ c2

∂f

∂L2
+ c3

∂f

∂L3

)
(2.82)

∫∫
e
Lk1L

l
2L

m
3 dxdy = 2Ae

1∫
0

ξk
[∫ 1−ξ

0 ηl(1− ξ − η)m dη
]
dξ

= 2Ae
k!l!m!

(k+l+m+2)

(2.83)

We now move on to the vector field formulation that leads to accurate characterisation

of general waveguides.

2.4.7 Vector Field Formulation

This formulation requires at least two field components, namely, E-field and H-field. For-

mer approach was first applied by English and Young [48]. This formulation is suitable for

generally anisotropic and loss-less problems. The natural boundary condition corresponds

to a magnetic wall and as such it is essential to enforce the electric wall as the bound-

ary condition (n × E = 0). Such a condition is quite difficult to impose for an irregular

structure. It also requires an additional integral to ensure the continuity of the fields at

the dielectric interfaces. The H-field formulation, on the other hand, has as its natural

boundary condition the electric wall and the magnetic field is continuous everywhere. As

such it is suitable for dielectric waveguide problems as no boundary conditions need to be

imposed. This formulation is given as

ω2 =

∫
(∇×H)∗ · ε̂−1 · (∇×H) dΩ∫

H∗ · µ−1 ·H dΩ
(2.84)

The above formulation leads to non-physical or spurious solutions since the divergence

condition ∇ · H = 0 is not satisfied. Various methods exist for detecting these spurious

modes. A simple way is to examine the field profiles, since these modes are characterised

by inconsistency and a random variation of the field they are easy to identify. The math-

ematical idea underpinning the physical solution is that the condition ∇·H = 0 is obeyed

by the eigenvector. By calculating ∇ ·H for each eigenvector, it is possible to identify the

true solutions from the spurious ones. The objective, however, is not simply to detect these

modes, but to eliminate them or at least suppress them. The penalty-function method

proposed by Rahman and Davies [46] is one the best established methods for eliminating
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these spurious solutions. The method includes an additional term α, the penalty term, a

dimensionless number in the variational formulation, which now is written as:

ω2 =

∫
(∇×H)∗ · ε̂−1 · (∇×H) dΩ +

(
α
ε

) ∫
(∇ ·H)∗(∇ ·H) dΩ∫

H∗ · µ−1 ·H dΩ
(2.85)

2.4.8 The Matrix Equation

It has been stated that the vector formulation leads to a standard eigenvalue problem of

the form

Ax− λBx = 0 (2.86)

where x represents the engen vector, which holds the nodal field values. If in equation

2.84, the numerator is written as

xT ·Ax =

∫
(∇×H)∗ · ε̂−1 · (∇×H) dΩ (2.87)

and the denominator as

xT ·Bx =

∫
H∗ · µ ·H dΩ (2.88)

then the functional

J =

∫
(∇×H)∗ · ε̂−1 · (∇×H) dΩ− k2

0

∫
H∗ · µ ·H dΩ (2.89)

can be written as

J = xT ·Ax− λ · xT ·Bx (2.90)

To find a stationary solution, it is required that

∂J

∂x
= 0 (2.91)

Applying this minimisation procedure to equation 2.89, the following eigenvalue equation

2.86 is obtained

Ax− λBx = 0

which can be solved using any standard matrix routine to obtain the field values at the

nodes.
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Figure 2.16: A typical element.

2.4.9 Shape Functions

The shape functions are a set of interpolation functions, defined in terms of complete

polynomials and which are normalised over each element. If a typical element, as shown

in Fig. 2.16 is considered, then the shape function is chosen so that it uniquely defines

the field within the element under consideration.

At the nodal points, they take on values equal to the nodal values φ1, φ2 and φ3.

It is important therefore that the functions are expressed in terms of their nodal values.

Within the triangle, the field value can be adequately modelled by the expression

φ = a+ bx+ cy (2.92)

where a, b and c are constants. These constants can be represented in terms of the

coordinates of the nodes. The nodal values of φ can then be expressed as

φ = a+ bx1 + cy1 (2.93)

φ2 = a+ bx2 + cy2 (2.94)

φ3 = a+ bx3 + cy3 (2.95)

The above system of equations can be solved to determine a, b and c as

a =
φ1(x2y3 − x3y2) + φ2(x3y1 − x1y3) + φ3(x1y2 − x2y1)

2Ae
(2.96)
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b =
φ1(y2 − y3) + φ2(y3 − y1) + φ3(y1 − y2)

2Ae
(2.97)

c =
φ1(x3 − x2) + φ2(x1 − x3) + φ3(x2 − x1)

2Ae
(2.98)

where Ae is the area of the triangle. Substituting these values into equation 2.92 will yield

φ(x, y) = N1φ1 +N2φ2 +N3φ3 (2.99)

or

φ(x, y) = [N ]{φ} (2.100)

N1 =
1

2A
[(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y] (2.101)

N2 =
1

2A
[(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3)y] (2.102)

N3 =
1

2A
[(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1)y] (2.103)

The above can be rewritten as

N1 = a1 + a2x+ a3y (2.104)

N2 = a4 + a5x+ a6y (2.105)

N3 = a7 + a8x+ a9y (2.106)

An important property of shape function is that

N1 +N2 +N3 = 1 (2.107)

The H-field components Hx, Hy and Hz can be written as

Hx(x, y) = N1Hx1 +N2Hx2 +N3Hx3 (2.108)

Hy(x, y) = N1Hy1 +N2Hy2 +N3Hy3 (2.109)

Hz(x, y) = N1Hz1 +N2Hz2 +N3Hz3 (2.110)

In matrix form, the above equations can be expressed as

H =

 Hx

Hy

Hz

 =

 N1 0 0 N2 0 0 N3 0 0
0 N1 0 0 N2 0 0 N3 0
0 0 N1 0 0 N2 0 0 N3





Hx1

Hy1

Hz1

Hx2

Hy2

Hz2

Hx3

Hy3

Hz3


(2.111)
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In a simplified form this is equivalent to H=[N]H, where [N] is the 3 × 9 matrix shown

above and H is the 9× 1 column vector which represents the components of the field.

Similarly, the expression for ∇×H could be written as

∇×H = [Q] ·H (2.112)

where

[Q] =

 0 −∂N1
∂z

∂N1
∂y 0 −∂N2

∂z −∂N2
∂y 0 −∂N3

∂z −∂N3
∂y

∂N1
∂z 0 −∂N1

∂x
∂N2
∂z 0 −∂N2

∂x
∂N3
∂z 0 −∂N3

∂x

−∂N1
∂y −∂N1

∂x 0 −∂N2
∂y

∂N2
∂x 0 −∂N3

∂y
∂N3
∂x 0

 (2.113)

The Q-matrix, after evaluation, i.e., finding the derivative of the shape, with jβz being

the z -variation, becomes

[Q] =

 0 jβN1 a3 0 jβN2 a6 0 jβN3 a9

−jβN1 0 −a2 −jβN2 0 −a5 jβN3 0 −a8

−a3 a2 0 −a6 a5 0 −a9 a8 0

 (2.114)

The B-matrix can also be calculated in a similar fashion from equation 2.87. Since µ

is a scalar quantity, it can be taken outside the integral to give

xT ·B · x = µ

∫
H∗ ·H dΩ (2.115)

since H = [N] H

Be =

∫
∆

[N ]∗ · [N ] dΩ (2.116)

The solution of the above expressions yields a 9× 9 matrix. The integration is carried out

using equation 2.83 and the resulting Be matrix is as follows:

Be =



A
6 0 0 A

12 0 0 A
12 0 0

0 A
6 0 0 A

12 0 0 A
12 0

0 0 A
6 0 0 A

12 0 0 A
12

A
12 0 0 A

6 0 0 A
12 0 0

0 A
12 0 0 A

6 0 0 A
12 0

0 0 A
12 0 0 A

6 0 0 A
12

A
12 0 0 A

12 0 0 A
6 0 0

0 A
12 0 0 A

12 0 0 A
6 0

0 0 A
12 0 0 A

12 0 0 A
6


(2.117)

The area of each element or triangle is denoted by Ae. The coefficients of the Ae matrix

can also be calculated using equation 2.83. Making the following substitutions H=[N]H

and ∇×H = [Q] · {H}, yields

xT ·Ae · x =

∫
{H}∗ · [Q]∗ε̂−1 · [Q]{H} dΩ (2.118)
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2.4. Finite Element Method

A simplification of the above will yield an Ae matrix of the form

Ae =

∫
[Q]∗ε̂−1 · [Q] dΩ (2.119)

For isotropic media, ε is a scalar quantity and hence can be factored out of the integral

sign. For anisotropic media, ε is a tensor defined by a 3× 3 matrix as follows:

ε =

 ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 (2.120)

Finding the inverse of ε, [P ] (Appendix), equation 2.119 can be rewritten as

Ae =

∫
[Q]∗ · [P ] · [Q] dΩ (2.121)

Carrying out necessary algebraic calculations yields a 9× 9 matrix. Using the integration

formula of 2.87, the integrals can be evaluated as∫
N2

1 dΩ =
A

6
(2.122)

∫
N1 dΩ =

A

3
(2.123)∫

dΩ = A (2.124)

For instance, the Ae11 matrix is given as

Ae11 = p22β
2A

6
+ p23a3jβ

A

3
+ p32a3jβ

A

3
+ p33a

2
3A (2.125)

The other 80 elements of the Ae matrix can be found in a similar way.

2.4.10 Element Assembly

The next stage in the finite element method is the assembly of the element matrices [Ae]

and [Be] into global matrices [A] and [B] respectively. An appropriate matrix solver is

then used to obtain the eigenvalues and eigenvectors of the equation. The assembly of

the global matrix is done with respect to the nodes of the domain. Where two or more

nodes are common to more than one element then it is advisable to add the contribution

of each adjacent element to the global matrix when the calculation for the common node

is carried.
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2.4. Finite Element Method

As previously noted, for every element in the discretised variational formulation, there

is an expression of the form

{H}[N ]{H}T = {H1 · · ·H9}


N11 · · · N19

· · ·
· · ·
· · ·
N91 · · · N99



H1

·
·
·
H9

 (2.126)

Each term in the matrix Nij relates to two nodal field values where the indices, i and

j, correspond to the nodal field values of the vectors {H} and {H}T according to the

local numbering of an element. If a scalar formulation is considered, then only one field

component need be taken into account Hx for example and the expression can be written

as

{ Hx1 Hx2 Hx3 }

 N11 N12 N13

N21 N22 N23

N31 N32 N33

 H1

H2

H3

 (2.127)

The global matrix Gpq may be defined as

G =


G11 · · · G18

· · ·
· · ·
· · ·
G81 · · · G88

 (2.128)

If P is the total number of nodal points of the structure, the order of the global matrix

is P × P , which defines the size of the matrix when only one unknown field component is

considered for each node. The terms of the global matrix, Gpq, are the field contributions

of two nodes, p and q according to the global numbering system. Each term of the global

matrix Gpq consists of a local contribution from only one element, unless the nodes lie on

a shared boundary. The terms of the global matrix, G11, for the first node with respect

to itself will be defined as

G11 = NA
11 (2.129)

where NA
11 is the term for the element matrix for the element A. The terms of the global

matrix for other nodes which do not lie on a shared boundary can be found in a similar

manner: G12 = NA
13, G24 = NB

32, etc. When the nodes are on a shared boundary, then the

contributions of each element are added to the node, for example,

G22 = NA
33 +NB

33 (2.130)
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2.5. Summary

2.5 Summary

This chapter has presented the general formulation of the Finite element method for

optical waveguide problems. Various aspects of implementation of the method have been

explained including domain discretisation, shape functions and field representations. The

development of the vector H-field formulation of eliminating spurious modes has been

reviewed. In addition, this chapter provided the theory behind different waveguide designs

and the guided modes. The operation principle of the optical modulator is also explained.
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Chapter 3

Graphene Photonics

3.1 Introduction

Photonics has shown exotic ways to overcome the speed limitation in electronics. Elec-

tronic interconnections (e.g., copper cables) suffer from bandwidth issues and loss due to

performance restrictions in terms of energy consumption, speed, cross-talk and disper-

sion. On the other hand, optical interconnections have shown promising alternatives with

better performance such as higher bandwidth and lower loss. An optical modulator is a

device that modulates, i.e., varies the fundamental characteristics, of light propagating

through an optical waveguide. Intense research is currently under way in light modulation

to develop cost-effective, compact, efficient, high speed broadband optical modulators for

high-performance optical interconnects [57]. Idea of optical interconnects in the 1970s

arose to overcome the limitation set by electrons moving in the solid. Keyes [58] envis-

aged that optical elements would be much faster than their electrical counterparts due to

greater velocity of optical signals.

An optical interconnect is a dielectric waveguide that operates at optical frequencies.

In a broader picture, an optical fibre (Fig. 3.1(a)) that transmits information using light

is such a waveguide. Fibre optic communications are in the forefront of long distance as

well as undersea data telecommunications (Fig. 3.1(b)). Technology started adopting light

waves for data transmission since 1960s [59]. As it took years and years of research to fully

evolve communications through optical waves, it would take at least a decade of research

to realise ultrafast devices for optical interconnects. Now that a range of two-dimensional

materials such as graphene, phosphorene and silicene have been identified, technology is

slowly adapting to blend such materials with existing ones such as silicon for high-speed

high-performance devices.
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3.1. Introduction

Figure 3.1: (a) Fibre-optic cables transmitting information through light waves. (b) Map
showing countries connected by undersea fibre optic cables. Source: [60].

Two-dimensional layered materials exhibit a range of physical behaviours from that of

an insulator to a semiconductor with narrow-gap to a semimetal or metal. Such materials

offer numerous opportunities for diverse photonic and optoelectronic applications. For

instance, graphene has been widely used for devices operating at extremely broad spectral

range from ultraviolet, visible and near-infrared to mid-infrared, far-infrared and extend-

ing to terahertz and microwave regions, due to its unique electro-optical properties [10].

These materials have been shown to be compatible with various photonic structures, for

example, well developed fibre and silicon devices. Intense research is now underway to in-

tegrate 2D materials with current optical fibres and CMOS technology. Two-dimensional

materials also provide mechanical flexibility, easy fabrication and integration and robust-

ness. Additionally, generation, propagation, modulation and detection of photons can be

accomplished [61].

In these 2D nanostructures, the sea of electrons or electron gas play pivotal role in

electro-optical properties of the material. For example, applying an electric field per-

turbs the electrons that couple with incoming light wave and that the collective excita-

tions induces surface plasmons. They then confine or trap optical waves into regions
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3.2. Physical Properties

(metal–dielectric interface) much smaller than their wavelengths. In case of a boron

nitride–graphene–boron nitride (BN) stack, the combined thickness could be 20.7 nm,

where graphene is of just 0.7 nm thick and BN each 10 nm. Such a combination op-

erates within a range of wavelength, λ=800–2000 nm. Therefore, plasmonic resonances

play a crucial role. Plasmonic circuits tightly confine the electromagnetic waves at the

metal–dielectric interface which is identified to be a potential solution for electro-optic

modulation. Plasmons in graphene are discussed in Section 3.6.

Graphene has been studied theoretically in depth as early as 1947 [62], however the

monolayer was thought to be unstable. In 1986, Boehm et al. [63] in their study proposed

the first observation of graphene monolayer. They introduced the name “graph-ene” de-

riving it from the combination of “graphite” (graph) and the suffix (ene) that refers to

polycyclic aromatic hydrocarbons. Experimental discovery of graphene happened in an

unusual way – a scotch tape method – whereby Novoselov et al. [3] prepared graphene

films by mechanical exfoliation or repeated peeling from pyrolytic graphite. This acci-

dental discovery led to award of Nobel prize in Physics for Andre Geim and Konstantin

Novoselov in 2010 for their “groundbreaking experiments regarding the two-dimensional

material graphene” [64]. In following sections, we discuss the physical, electrical and

optical properties of graphene in detail.

3.2 Physical Properties

Graphene is precisely a monolayer of carbon atom that forms a tightly packed two-

dimensional (2D) honeycomb lattice. Actually, this lattice is the basic structure of graphitic

materials. In the history of carbon allotropes, graphite is the oldest known allotrope which

was discovered in a mine near Borrowdale in Cumbria, England, around 16th century. Co-

incidentally, graphene, the youngest known allotrope of carbon, was exfoliated firstly by

two British researchers in Manchester, England, in 2004. After this accidental “discovery”,

graphite is seen as a graphene sheet stack that bond the layers together due to van der

Waals interaction. Note that the interlayer distance is 0.335 nm. The weaker nature of

van der Waals bonding makes exfoliation of graphene sheets possible. The other allotropes

such as 0D fullerenes (bucky ball) and 1D carbon nanotubes can be termed as graphene

sphere (C60) and rolled up graphene sheets, respectively. Another prominent allotrope of
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carbon is diamond which consists of four club-like orbitals forming a tetrahedron.

Figure 3.2: Prominent allotropes of carbon: (a) diamond, (b) fullerene, (c) carbon nan-
otube and (d) graphite. Dotted lines in (d) represent the van der Waals bonding (π bonds).
Adapted from Ref. [65].

Figure 3.2 shows allotropes of carbon. Diamond is one of the hardest natural materials

with all four valence electrons in 2s and 2p, with 2 in each, involved in the formation of

σ bonds with other carbon atoms. Diamond is an insulator with large band gap, Eg

= 5.47 eV. On the other hand, the π bonds in graphite are weaker and responsible for

good electronic conduction properties. Fullerene is a C60 molecule which has the form of a

sphere (football), wherein some hexagonal bonding carbon atoms are replaced by pentagon

formation that causes crumbling leading to a sphere-like formation. Carbon nanotubes

are further classified as SWNT and MWNT, meaning single wall nanotube and multiwall

nanotubes, respectively.

Figure 3.3: Publications on graphene [66].

Graphene is considered a rising star

amongst the 2D class of materials. Fig-

ure 3.3 shows a spike in number of papers

published on graphene after 2004 and sig-

nificantly increasing afterwards the award

of Nobel prize in 2010. Graphene exhibits

exceptionally high crystal and electronic

quality [67]. Potential applications such as
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optical interconnects, environmental monitoring, medicinal, biosensing and security de-

vices of such material has been proposed by numerous studies [10]. Graphene has a

unusual electronic spectrum that led to start of “relativistic” solid state physics, where

quantum relativistic phenomena is observed. It represents a new class of materials that

are just one atom thick, offering insights to low-dimensional physics which are currently

studied by various research groups for applications. Not only graphene but also other 2D

materials such as transition metal dichalcogenides (TMDs) and black phosphorus have

shown promising applications in electronics, photonics and optoelectronics.

Figure 3.4: Monolayer graphene: basis of
all graphitic forms. (a) 0D bucky balls; (b)
1D nanotubes; and (c) 3D graphite. Source:
Geim and Novoselov [67].

Graphene is basically an allotrope of

Carbon. Other allotropes include dia-

mond, graphite, fullerenes and carbon nan-

otubes (Fig. 3.4). Of these allotropes of

carbon, the youngest is two-dimensional

graphene which represents a single layer

graphite sheet. Layers of graphene are clas-

sified as mono (0.4 nm), bi (0.69 nm), tri

(1.12 nm) and few or multiple layers ≤ 10

[68]. Thickness of Bilayer graphene (BLG)

is taken as 0.7 nm by most simulation stud-

ies [6, 29] as single layer thickness is very

thin. Further, bilayer is considered the most energetically stable stack of two graphene lay-

ers [69]. Thickness of graphene has been a subject of discussion as atomic force microscopy

(AFM) measurements were proven to be inaccurate [70]. Figure 3.5 shows HRTEM and

TEM images taken by two research groups showing hexagonal lattice formation in graphene

layer.

3.2.1 Carbon Bonds

Graphene is made of chain of carbon atoms which have been extensively studied by various

research groups. We have various studies for carbon and its bonding with other elements.

Therefore, here we present a fundamental part which is needed in understanding the

physical properties of graphene. A ground state carbon atom has six electrons in the

configuration 1s22s22p2, depicting two electrons in the inner orbital 1s and 4 electrons
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Figure 3.5: Monolayer of graphene: (a) HRTEM image by Ref. [71]; (b) TEM image by
Berkeleys TEAM05 [72]. C=C bond distance: 0.14 nm.

in the outer orbitals 2s and 2p. The 2p orbitals (2px, 2py, 2pz) are approximately 4 eV

higher than the 2s orbital. Figure 3.6 shows the ground state and excited state electronic

configurations for a carbon atom.

Figure 3.6: Depiction of electronic orbitals of ground state and excited state carbon atom
[73].

Two electrons in the innermost orbital (1s) is close to the nucleus and are irrelevant

for chemical bonding or reactions. Four electrons in 2s and 2p, with two electrons in each,

are responsible for the bonding nature of carbon atoms. As the 2p orbitals are 4 eV higher

than the 2s orbitals, it is energetically favourable to place two electrons in the latter and

two in the former. At the time of bonding, one electron from 2s orbital is easily excited

to 2p (2pz to be exact) state for forming covalent bonds with other atoms. Therefore, we

now have four equivalent quantum-mechanical states as follows:

|2s〉, |2px〉, |2py〉 and |2pz〉
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This quantum-mechanical superposition of state |2s〉 with n |2pj〉 states is termed as

spn hybridisation. In case of graphene, the superposition of the 2s and two 2p orbitals

(|2px〉, |2py〉 states), results in sp2 hybridisation. The following represents the 3 quantum-

mechanical states of the sp2 hybridisation in graphene [73]:

|sp2
1〉 =

1√
3
|2s〉 −

√
2

3
|2py〉,

|sp2
2〉 =

1√
3
|2s〉 −

√
2

3

(√
3

2
|2px〉+

1

2
|2py〉

)
,

|sp2
3〉 = − 1√

3
|2s〉+

√
2

3

(
−
√

3

2
|2px〉+

1

2
|2py〉

)
.

(3.1)

These orbitals are oriented along the xy-plane with mutual angles 120◦ and the re-

maining 2pz orbital remains unhybridised and is perpendicular to the plane. A hexagonal

structure of graphene is akin to the benzene ring which has carbon atoms linked by σ

bonds. The C–C bond length in graphene is 0.142 nm [74]. Bonding plays a major role in

physical and chemical properties of the metal and a strong bond obviously denotes higher

the material strength or in other words, strength of the thin film of graphene (Fig. 3.7).

It takes an elephant to stand on a pencil to tear a film of graphene!!

Figure 3.7: Artistic imagination [75] showing strength of graphene monolayer (0.335 nm
thick). A layer of graphene has a breaking strength of 42 N/m (intrinsic strength of a
defect-free sheet) – 100 times more than that of the strongest hypothetical steel film of
the same thickness [64].

The unhybridised 2pz orbital has one extra electron (because of sp2 hybridisation) that

forms π-bonds and is half-filled [76]. Such half-filled bands play major role in the physics
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of strongly correlated systems because of their strong tight-binding character and the large

Coulomb energies [74]. Plasmons in graphene are caused by electron oscillations which is

due to the electronic structure which in turn is the resultant of bonding nature of C=C in

graphene. So the study of basic bonding structure of graphene is required to understand

the unique properties of this wonder material. A detailed discussion on chemical bonding

of graphene is out of scope of this thesis. So we now move on to overview of crystal

structure and stacking or orientation of layers in graphene when its thickness exceeds

0.335 nm – the thickness of monolayer [77].

3.2.2 Crystal Structure

Figure 3.8: Two atom basis super-
imposed forming a hexagonal lat-
tice. Two carbon atoms (A and B)
in each unit cell are shown in differ-
ent colours (blue and red) [78].

In graphene, carbon atoms condense in a honeycomb

lattice due to sp2 hybridisation. This honeycomb

lattice, with 2 carbon atoms in the basis (Fig. 3.8),

is not termed a Bravais lattice because two neigh-

bouring sites (A and B) are not equivalent. Each

unit cell contains one lattice point and a two-atom

basis. Any lattice point can be reached by adding

an integral number of primitive vectors. The vec-

tors dA and dB from a lattice point to an atom in

the basis and are used in calculating the structure

factor as follows:

|a1| = |a2| =
√

3l, |dA| = |dB| =
l

2
, φ = 120◦

(3.2)

From equation 3.2, φ = 120◦ denotes the angle between orbitals in sp2 hybridisation.

Figure 3.9 illustrates graphene crystal lattice with sublattices A and B. Vectors a1 and

a2 form the basis vectors of the triangular Bravais lattice. Its primitive lattice vectors

are a∗
1

and a∗
2
. The shaded region in Fig. 3.9(b) denotes the first Brillouin zone with

centre Γ and two inequivalent corners K and K ′. From Fig. 3.9(c), a site on the A

sublattice has its nearest neighbours in the directions (Fig. 3.9(d)) north-east, north-west

and south. Similarly, a site on the B sublattice has nearest neighbours in the directions

north, south-west and south-east. Both A and B form a two-atom basis for a triangular
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Bravais lattice [73].

Figure 3.9: Honeycomb lattice of graphene layer: (a) lattice structure depicting Bravais
lattice; (b) reciprocal lattice of the triangular lattice; (c) atoms (A and B) with nearest
neighbours; (d) directions for reference to nearest neighbours. Adapted from Ref. [73].

The distance between nearest-neighbour (nn) carbon atoms is 0.142 nm. The three

vectors that connect a site on A with a nn in B is given by

δ1 =
a

2

(√
3ex + ey

)
,

δ2 =
a

2

(
−
√

3ex + ey

)
,

δ3 = −aey

(3.3)

and the basis vectors a1 and a2,

a1 =
√

3aex

a2 =

√
3a

3

(
ex +

√
3ey

)
.

(3.4)

Modulus of basis vectors |a1| and |a2| yields the lattice spacing

ã =
√

3a = 0.24 nm (3.5)

and the area of the unit cell is

Aunit cell =

√
3ã2

2
= 0.051 nm2 (3.6)

Therefore, the density of carbon atoms is

nC =
2

Aunit cell
= 39 nm−2 = 3.9× 1015 cm−2 (3.7)
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From Fig. 3.9(b), the reciprocal lattice is spanned by the vectors given by

a∗
1

=
2π√
3a

(
ex −

ey√
3

)
a∗

2
=

4π

3a
ey

(3.8)

Actually, all sites of the reciprocal lattice represent equivalent wave vectors, such that,

any wave (vibrational lattice excitation or quantum-mechanical electronic wave packet)

propagating on the lattice with a wave vector differing by a reciprocal lattice vector has

the same phase up to a multiple of 2π, given by

ai · a∗j = 2πδij (3.9)

where δij = 1 if i = j and δij = 0 if i 6= j.

Figure 3.10: (a) First Brillouin
zone. (b) Dirac cone. Adapted
from Ref. [78].

From equation 3.9, the reciprocal vectors are calcu-

lated as follows:

a∗
1

= 2π
a2 × a3

a1 · a2 × a3
,

a∗
2

= 2π
a3 × a1

a1 · a2 × a3
,

a∗3 = 2π
a1 × a2

a1 · a2 × a3
,

(3.10)

where a1 and a2 are primitive vectors of the crystal and

a3 the ẑ unit vector. The first Brillouin zone which is

the unit cell of reciprocal lattice and the behaviour of

relativistic particle are shown in Fig. 3.10. In the figure,

b1 and b2 denote a∗
1

and a∗
2
, respectively. Closer to the

points K and K ′, the energy of electrons in graphene

depend linearly on their wavenumber. This behaviour is

similar to that of a relativistic particle whose behaviour

is governed by the Dirac equation,

|b1| = |b2| =
4π

3l
, φ = 60◦ (3.11)

The crystallographic points play a major role in defining the electronic properties of

graphene as their low-energy excitations are centred around the two points, K and K ′.

Electronic properties are discussed in detail in Section 3.3.
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3.2.3 Mono-, bi- and trilayers

A single atomic plane is a 2D crystal. In case of graphene, the atomic plane is made of car-

bon atoms. The thickness of monolayer graphene (MLG) is 0.335 nm. As seen in previous

sections, a single layer of graphene is where the carbon atoms are arranged on a honey-

comb lattice. Whereas in a bilayer, the second layer is shifted over one carbon–carbon

bond length (0.142 nm) with respect to the first layer. MLG are zero-gap semiconductors

with the low-energy electrons behaving as massless Dirac fermions. They are chiral as

their wavefunction has two components – pseudospin with direction pinned to the electro

momentum [74]. Bilayer graphene (BLG) are distinct 2D systems – zero-gap semiconduc-

tors with low energy chiral electrons but with quadratic low-energy dispersion. Applying

a perpendicular electric field to the bilayer opens a gap between valence and conductions

bands and transforms charge neutral bilayers to insulators [79].

Figure 3.11: Bilayer stacking of graphene layers: (a) upper layer translated by δ1 with
respect to the lower – the A′ sites on top of B sites; (b) upper layer translated by −δ1

with respect to the lower – the B′ sites on top of A sites. Source: Ref. [73]
.

Let us consider the case of bilayer graphene (BLG) of thickness 0.69 nm [68]. Inter-

layer spacing is roughly d = 2.4a = 0.34 nm. In a bilayer stack, the layers are arranged

such that the upper layer atoms are placed at the hexagon centres of lower layer. The

layers are translated with respect to each other with displacement given by either δi or

−δi, where i = 1, 2 or 3. Figure 3.11 shows two possibilities of stacking bilayer graphene.

Now we move on to trilayer graphene of thickness 1.12 nm [68]. From the bilayer

graphene wherein the second layer is translated with respect to first by δi, the third layer

may be considered to be translated with respect to second either by δi or −δi. Former

leads to ABA stacking and latter the ABC stacking. It is generalised as follows:
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� Layers translated with respect to their lower neighbour by δi leads to rhombohedral

stacking, also called ABC stacking, which has 6 atoms per unit cell. However,

structural defects are often present in domains with ABC stacking [69].

� In alternate translation (δi,−δi, δi,−δi, ...), such stacking results in a hexagon or

ABA or Bernal stacking. This is the most common stacking found in natural graphite

crystals [69].

In 2011, three research groups [80–82] reported experimental findings that ABC-

stacked trilayers are distinct from all other graphene multilayers. Measurements of quanti-

zation sequence of Hall conductance confirmed that low-energy electrons in ABC trilayers

exhibit a cubic dispersion unlike mono- and bilayers. Applying a perpendicular electric

field in ABA trilayers, increases the overlap between valence and conduction bands which

enhances the conductivity [83]. Figure 3.12 shows trilayer ABA and ABC stacking order

with layers shifted to one C–C distance (0.142 nm) with respect to the next layer.

Figure 3.12: Trilayer graphene stack: (a) ABA, (b) ABC, (c) and (d) next layer moved
one C–C bond distance, 0.142 nm. Reproduced from Ref. [80].

In a layer of graphene, one s-orbital (2s2) and two p-orbitals (2px, 2py) hybridize

leading to sp2 hybridisation, forming σ-bond between carbon atoms which are separated

by 0.142 nm. The σ-band provides robustness to the lattice. Based on Pauli principle,

these bonds form a deep valence band since they have a filled shell. The remaining p-

orbital (2pz) stands perpendicular to the planar structure and forms covalent π-bonds

with nearest neighbouring carbon atoms. This π-band has only one electron from each

atom and thus half-filled.
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Mono- and bilayer graphene have simple electronic spectra and both are zero-gap

semiconductors. For three layers and beyond, the spectra becomes complicated since

several charge carriers appear and valence and conduction bands start overlapping [67].

Therefore, graphene layers are distinguished as single-, double- and few- (3 to < 10 layers).

Increasing layers of graphene approaches the 3D limit of graphite at 10 layers [84].

3.3 Electronic Band Structure

Given the electronic configuration of carbon (1s22s22p2), three electrons are involved in

forming strong covalent σ bonds and one electron per atom forms the π bonds. At low

energies, the π electrons are responsible for electronic properties whereas the σ electrons

form energy bands far away from the Fermi energy [73]. Charge carriers in graphene

constitute a 2D gas of massless Dirac fermions (i.e., carrier transport is governed by the

relativistic Dirac equation). Fig. 3.6, there is an energy difference (∼ 4 eV) the 2s and

2p orbitals, which leads to hybridisation of these orbitals. Of the four valence electrons

in carbon atom, one electron in each of 2s, 2px and 2py orbitals form σ bonds with three

nearest neighbours and the remaining one electron in 2pz forms π bond with nearest

neighbours. The electrons forming π bonds determine the energy spectra of graphene

represented using the tight binding model.

3.3.1 Tight Binding Model

Figure 3.13: Representation
of tight binding model in
graphene lattice. Source: [73].

A free-electron model defines how charge carriers be-

have in a metallic solid and thus represents the elec-

tronic structure. In case of materials with closed shell

atoms (e.g., graphene), the free electron model may not

be appropriate. A tight binding model (Fig. 3.13) brings

together the wavefunctions of atoms and their interac-

tion to represent the electronic structure of such systems.

The simplest model is the system with one atom per unit

cell with one valence orbital φ(r).

The general form of Bloch wave function is used in this model:

ψ =
∑

R

eik.Rφ(r−R) (3.12)
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3.3. Electronic Band Structure

where R represents the set of lattice vectors a1 and a2 and φ(r) the envelope function.

Since there is a overlap of atomic wave functions, φ is approximated by a linear combination

of set of atomic wave functions.

Using equation 3.12, the wave function for an atom in an unit cell is given by

ψk(r) =
1√
N

∑
m

exp(jk.Rm)φ(r−Rm) (3.13)

This idea is extended to two atoms in an unit cell system. As seen in previous sections,

long range order of hexagonally arranged carbon atoms make up a layer of graphene. This

arrangement is seen as a lattice with a two-atom basis in a unit cell. Lattice vectors are

given as

a1 =
a

2
(3,
√

3), a2 =
a

2
(3,−

√
3) (3.14)

and vectors for reciprocal lattice are given by

b1 =
2π

3a
(1,
√

3), b2 =
2π

3a
(1,−

√
3) (3.15)

where the carbon–carbon bond distance, a ≈ 0.142 nm. The Bravais lattice vectors are

given by

Rj = mja1 + nja2 (3.16)

where mj and nj are integers. Each ion on site Rj yields an electrostatic potential and the

overall potential energy is given as
N∑
j
V (Rl −Rj) where N is the number of lattice sites

and Rl and Rj the lattice sites. This is a periodic function with respect to an arbitrary

translation by lattice vector Ri.

The points K and K ′ at the corners of Brillouin zone (see Fig. 3.10) in graphene

are important for the electronic spectra and are called Dirac points. Their positions in

momentum space are given

K =

(
2π

3a
,

2π

3
√

3a

)
, K ′ =

(
2π

3a
,− 2π

3
√

3a

)
(3.17)

the three nearest neighbour vectors are

δ1 =
a

2
(1,
√

3) δ2 =
a

2
(1,−

√
3), δ3 = −a(1, 0) (3.18)

and the six nearest neighbour vectors are located at

δ′1 = ±a1, δ
′
2 = ±a2, δ

′
3 = ±(a2 − a1). (3.19)

77
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From the orbital representation of graphene (Fig. 3.6), we understand that electron

in 2pz orbital forms σ bond, which is taken into account in this model. Therefore, in a

unit cell, we have two 2pz orbitals denoted by φ1 and φ2. The total wave function is then

given by

φ = b1φ1 + b2φ2 (3.20)

where b1 and b2 denote constants, |b1|2 + |b2|2 = 1. The nearest-neighbour atoms exert

atomic potential on these two electrons and the Hamiltonian is given by

H =
∇2

2m
+
∑
R

(Vatom(r− r1 −R) + Vatom(r− r2 −R)) (3.21)

where r1 and r2 denote positions of the two atoms. The constants b1 and b2 are obtained

by solving the Schrdinger equation,

Hψ = Eψ (3.22)

For the total wave function with constants (b1 and b2) and states (φ1 and φ1), using

bra and ket vectors, above equation becomes

〈φj |H |ψ〉 = E 〈φj | ψ〉 (3.23)

where j = 1, 2.

Considering only nearest neighbours R = 0,a1,a2 terms in |ψ〉,

〈φ1 |ψ〉 = b1 + b2〈φ1 |φ2〉 (1 + e−ik.a1 + e−ik.a2) (3.24)

〈φ2 |ψ〉 = b2 + b1〈φ2 |φ1〉 (1 + e−ik.a1 + e−ik.a2) (3.25)

Here 〈φ1 |φ2〉 = 〈φ2 |φ1〉. From equation 3.21, the atomic Hamiltonian for two atoms, a1

and a2 is given by

H1 =
∇2

2m
+ Vatom(r− r1) (3.26)

H2 =
∇2

2m
+ Vatom(r− r2) (3.27)

Therefore,

H = H1 + ∆H1 = H2 + ∆H2 (3.28)

We now use a simple relation as φj are eigenfunctions of Hj ,

Hj |φj〉 = εj |φj〉 (3.29)
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3.3. Electronic Band Structure

where εj represents the energy of 2pz orbitals. As we have only carbon atoms in a layer

of graphene, ε1 = ε2, which is now denoted by ε0. Setting ε0 = 0,

〈φ1|H |ψ〉 = 〈φ1|H1 + ∆H1 |ψ〉 = 〈φ1|∆H1 |ψ〉 (3.30)

〈φ2|H |ψ〉 = 〈φ2|H2 + ∆H2 |ψ〉 = 〈φ2|∆H2 |ψ〉 (3.31)

As we are studying a two-atom basis, so only the nearest neighbours are relevant for atoms

1 and 2 when calculating the terms of 〈φj |∆Hj |ψ〉. So the terms for above two equations

are given as follows:

〈φ1|∆H1 |ψ〉 = b1β + b2γ1f
∗(k) (3.32)

〈φ2|∆H2 |ψ〉 = b2β + b1γ1f(k) (3.33)

where
β = 〈φ1|∆H1 |φ1〉
γ1 = 〈φ1|∆H1 |φ2〉 = 〈φ2|∆H2 |φ1〉
f(k) = 1 + eik.a1 + eik.a2

(3.34)

Using equations (3.25) through (3.33), transforming the Schrdinger equation (3.23 ) into

an eigenvalue equation as(
β f∗(k)(γ1 − γ0E)

f(k)(γ1 − γ0E) β

)(
b1
b2

)
= E

(
b1
b2

)
(3.35)

where β is the variation in energy of 2pz orbital, exerted by carbon atoms in a graphene

layer. The above equation leads to the dispersion relation E = E(k). From Schrdinger

equation (3.23) and Bloch equation (3.13), the two basis wave functions are assumed as

ψ(1,2) =
∑

R
eik.Rφ(1,2)(r−R) (3.36)

The energy variation, β, is considered negligible as it corresponds to a minor rigid shift on

the energy band. Using this fact, equation (3.35) is simplified further since the hopping

parameter, γ0, is small. Then the dispersion relation becomes

E(k) = ±γ1 |f(k)|

= ±γ1

√√√√1 + 4 cos

(
ky
√

3a

2

)
cos

(
kxa

2

)
+ 4cos2

(
kxa

2

) (3.37)

where kx and ky are components of k. The above equation leads to the energy band

structure of graphene shown in Fig. 3.14(a), which can be obtained using MATLAB

codes.

79



3.3. Electronic Band Structure

Figure 3.14: Representation of electronic band structure in graphene. (a) Dirac cone; (b)
cones at Dirac points K and K ′; (c) Brillouin zone in a graphene layer; and (d) unit cell
of two-atom basis. Adapted from Refs [85,86].

The electronic band structure shown in Fig. 3.14(a) represents how the valence and

conduction bands cross each other at six points in the corners of the 2D hexagonal Brillouin

zone (BZ) in Fig. 3.14(c). Both these bands meet at K and K ′, called Dirac points. Each

BZ has three K and three K ′ points. Fig. 3.14(b) depicts the cones at K and K ′ separately

and each carbon atom contributes an electron (2pz) each for conduction. The electrons

and holes behave like relativistic particles near the Dirac points with half-spin due to the

linear dispersion relation in equation (3.37). So the charge carriers of graphene are termed

as Dirac Fermions that make graphene a zero-gap semiconductor. Importantly, the Fermi

level in graphene can be controlled by applying a gate voltage (Vgate), which is an unique

property. The electronic and optical properties vary with respect to change in chemical

potential. This variation and its influence on material properties such as dielectric constant

(ε) is discussed in the next section.

The region close to K and K ′ is termed a low-energy region where the Hamiltonian

is approximated by a first-order expansion. Firstly, around K point, k = κ + K, and by

first-order expansion of f(k), equation (3.35) becomes,

−
√

3γ1a

2

(
0 κx − iκy

κx + iκy 0

)(
b1
b2

)
= ε(κ)

(
b1
b2

)
(3.38)
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Secondly, above dispersion relation simplifies to

ε(κ) = ∓~vF |κ| (3.39)

where vF is termed the Fermi velocity and it is given by

vF =

√
3

2

γ1a

~
(3.40)

As the two-dimensional energy spectrum is linear, the electrons always move at a constant

speed, vF. Using literature values for γ1 = 2.9 eV [87] and a = 0.426 nm [88], the Fermi

velocity is calculated to be, vF ≈ 106 m/s. This shows the charge carriers in graphene

move in a similar manner of light, as if they are relativistic particles with zero mass.

The Hamiltonian in terms of Fermi velocity at K is

H = ~− vF κ̂ · σ (3.41)

where

κ̂ = −i∇ = −i
(
x̂
∂

∂x
+ ŷ

∂

∂y

)
(3.42)

and σ the Pauli matrices are given by σ = (σx, σy).

3.4 Optical Conductivity

Figure 3.15: Graphene electron spectrum
(Dirac cones) at K points of the Brillouin
zone.

We have seen the electron band structure

of graphene in previous section. It is very

simple, near the energy ε = 0, the energy

bands form cones at Dirac points K and K ′

in the two-dimensional Brillouin zone (Fig.

3.15) with Fermi velocity, vF ≈ 106 m/s.

One of the unique properties of graphene

is that the quasiparticles such as plasmons

and fermions obey a linear dispersion re-

lation. As a consequence, an additional

symmetry that is chiral in nature exists for

these quasiparticles. This chiral symmetry

fixes the direction of pseudospin – parallel

or antiparallel – to the directions of motion of electrons and holes, respectively, which
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3.4. Optical Conductivity

also has an immediate and dominant effect on the electronic and optical properties of

graphene [89].

Modulation mechanism in a graphene modulator is wholly based on electron–photon

interaction. Charge carrier density or carrier concentration (ng) levels play a major role

in this phenomena, which is unique in graphene, as this levels can be adjusted through

doping or by applying an external gate voltage.

ng =
ε0εr

t e
Vg = γVg (3.43)

where ε0
∼= 8.854× 10−12 F/m is the permittivity of free space, εr the relative permittivity

of substrate (SiO2, εr = 3.9), t the thickness of SiO2 (e.g., 300 nm) and e ∼= 1.602×10−19 C

the electronic charge. Using these values, the proportionality coefficient γ between charge

carriers and applied gate voltage is γ ∼= 7.3× 1010 cm−2V−1 [90].

Figure 3.16: (a) Optical conductivity ver-
sus gate voltage. Reproduced from Ref. [90].
(b) Pauli blocking mechanism. Adapted from
Ref. [91].

Studies based on conductivity of

graphene (σg) gained prominence when it is

found that this property “never falls below

a minimum value” [90], even when ng tends

to zero. Adjusting the chemical potential

with electric field thus provides unique ef-

fects which can be exploited in realising

electronic devices at the nanolevel. An-

other important phenomena, unusual half-

integer quantum Hall effect, has been ob-

served in graphene which is also due to the

effect of electric field on both electron and

hole carriers [92]. Figure 3.16(a) shows

variation of optical conductivity (σ) as a

function of gate voltage (Vg). For both po-

larities, σ linearly increases with increas-

ing Vg. The Pauli blocking mechanism is

shown in Fig. 3.16(b). In stage I, inter-

band transitions occur as graphene absorbs

incident light. In stage II, the carriers relax
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3.4. Optical Conductivity

and redistribute given by Fermi–Dirac distribution. Stage III shows saturable absorption

when further absorption is blocked, which is termed Pauli blocking, as no two electrons

can be in the same quantum state. At this stage, no light will be absorbed and graphene

is transparent.

Optical absorption in graphene occurs from two transitions or contributions viz., intra-

band and interband. Former happens within cones and latter between the lower (valence

band) and upper (conduction band) cones. The term transitions refer to the production

of electron–hole pairs. The intraband transitions exists even at zero energy, ε = 0. When

Fermi energy is at the Dirac point, the Fermi surface shrinks to a point, so the intraband

transitions disappear and only interband transitions between the lower and upper cones

exist [93]. The change in optical conductivity of graphene under excitation arises from

both intra- and interband contributions. Kubo formula is used for describing the complex

conductivity of graphene including both the transitions [91,94,95]:

σ = σintra + σ′inter + jσ′′inter (3.44)

where “intra” denotes the transitions within valence bands whereas “inter” the electron

transitions between valence and conduction bands.

σintra = σ0
4µ

π

1

~τ1 − i~ω
(3.45)

σ′inter = σ0

(
1 +

1

π
arctan

~ω − 2µ

~τ2
− 1

π
arctan

~ω + 2µ

~τ2

)
(3.46)

σ′′inter = −σ0
1

2π
ln

(~ω + 2µ)2 + ~2τ2
2

(~ω − 2µ)2 + ~2τ2
2

(3.47)

where µ is the chemical potential (in eV), σ0 = e2/4~ ∼= 60.8µS is the universal optical

conductance, ~ = h/2π, h the Planck’s constant (6.626176×10−34 joule-seconds), ω = 2πν,

ν the frequency of optical pump and τ1 = 8.3× 1011 s−1 and τ2 = 1013 s−1 the relaxation

rates of intra- and interband transitions, respectively [96]. The complex conductivity of

graphene takes the final form,

σ(ω) = σ1(ω) + jσ2(ω) (3.48)

where σ1(ω) and σ2(ω) denote the real and imaginary parts of σ(ω).
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3.5. Dielectric Constants

In the next section, we discuss a very important parameter, dielectric constant or

permittivity, of graphene. It is denoted by ε and this parameter plays a very crucial role

in the electro-optic modulation phenomena on which this thesis is mainly based on.

3.5 Dielectric Constants

Optical properties of a material are mostly based on their electronic band structure and

dielectric screening factors. The dielectric function ε(q, ω) is dependent on wave vector q

and frequency (ω = 2πν). The uniqueness of graphene is that the chemical potential can

be controlled through external voltage, i.e., tuning Fermi level (EF) by electrical gating

(Vg). The dielectric function (ε(ω)) of graphene is a complex term since it is derived from

conductivity (σ(ω)), which is also a complex term as seen in previous section. Both ε and

σ consist of interband and intraband contributions.

To obtain ε(ω), we need to calculate σ(ω) first. Stauber et al. [27] has presented a

detailed study on optical conductivity of graphene. They used Kubo formula and intro-

duced a correction to the real part of σ(ω). Their study has included the following cubic

term in the density of states (ρ(E)) with usual Dirac cone approximation,

ρ(E) =
2E√
3πt2

+
2E3

3
√

3πt4
+

10E5

27
√

3πt6
(3.49)

Figure 3.17: (a) Landau
levels [97]. (b) Schematic
of Landau levels in Dirac
cone [98].

A graphene layer confines electrons in a two-dimensional

system which results in quantum-mechanical phenomenon

such as Landau levels. These quantized behaviours of Dirac

fermions in graphene are studied experimentally in infrared

spectroscopy experiments [99] as well as using scanning tun-

nelling microscopy (STM) and scanning tunnelling spec-

troscopy (STS). The measurements show Landau-level spec-

tra and rich level-splitting in graphene layers of varying thick-

ness. Based on these results, the presence of number of layers

and stacking order (random or ABA or ABC) in graphene

sample can be identified. In graphene, Landau levels are not

equidistant, therefore all optical transition frequencies are

different from each other. The optical transitions are of two

types:
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3.5. Dielectric Constants

a) intraband: transition between electron (hole) states;

b) interband: transition between electron and hole states, i.e., valence and conduction

bands.

For calculating the dielectric constant of graphene layers, it is very important to know

the number of layers present in the sample as it will impact the dielectric constant values

which are very crucial for electro-optic modulation. Next section we will discuss the

method we used in this study to obtain the complex dielectric constant values (ε1 + jε2)

for various voltage levels (µ = 0 − 1 eV). The concept of electro-optic modulation using

graphene layer is based on its uniqueness on controlling of Fermi level (chemical potential,

µ) by applying a gate voltage (Vg).

3.5.1 Method

Several studies have obtained the conductivity equation [26,27,94,100], σ(ω), from Kubo

formula and identified the range of complex dielectric constants, ε1 + jε2, for graphene

[6, 28, 29]. Here ε1 and ε2 denote the real and imaginary parts of ε(ω). The factors such

as angular frequency (ω), chemical potential (µ), scattering rate (Γ) and temperature (T )

influence the conductivity as well as the permittivity of graphene. So the first step is to

derive the equation for optical conductivity σ(ω) and then calculate the permittivity ε(ω)

at various voltage levels (in eV).

Under an external electric field, a material polarize (P = χeE) or carry a current

j = σE, where χe is the electric susceptibility and σ the conductivity. In case if the

electric field (E) is not strong enough, both these parameters are independent of E. They

then depend only on the material properties which is termed linear response since χe and

σ are independent of the electric field [101].

An electric field varies in space and time sinusoidally given by

E(t) = E cos(ωt) (3.50)

In a solid, the response will be a first order with an electric current given by

jα(t) = σ
(1)
αβEβ cos(ωt) + σ

(2)
αβEβ sin(ωt) (3.51)

In terms of complex notations, equation (3.51) is equivalent to

j(t) = Re[σ(ω)Ee−iωt] (3.52)
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with complex conductivity σ = σ(1) + jσ(2) where real part denoting the in-phase or

dissipative and imaginary part the out-of-phase or reactive response to the E field.

Optical conductivity of a material is studied through the material’s response to an

external electric field given by

E(r, t) = E0eiq·r
−iωt

(3.53)

Conductivity is calculated from following relation, within this linear response:

Jα(r, t) = σαβ(q, ω)Eβ(r, t) (3.54)

To find expression for conductivity, we start with the Hamiltonian of the system,

H =

∫
ddr

[
1

2m
ψ†(x)(p− eA)2ψ(x)− eφ(x)φ†(x)ψ(x)

]
+Hint (3.55)

From above equation, the current is found by

j = −δH
δA

=
−ie~
2m

(
ψ†(x)∇ψ(x)− ψ(x)∇ψ†(x)

)
︸ ︷︷ ︸

jp

− e
2

m
Aψ†(x)ψ(x)︸ ︷︷ ︸

jd

(3.56)

where jp is the paramagnetic current and jd the diamagnetic current.

The observed current is the expectation value of current operation given by,

J(r, t) = 〈jp(r, t)〉 − ne2

m
A(r, t) (3.57)

where n denotes the electron density which is a vital parameter.

We have seen in previous sections that the π electrons in graphene are responsible for

conduction. Therefore, the dispersion of such electrons in the first Brillouin zone is given

by

E(k) = s~vF |k| (3.58)

where ~ is the reduced Planck’s constant and vF the Fermi velocity, ∼ 106 m/s; here,

s = +1 refers to the conduction band and s = −1 the valence band; |k| = 0 refers to the

Dirac point, thus, E(|k| = 0) = 0 eV.

The uniqueness in graphene is the tuning of Fermi level by electrical gating or exter-

nal voltage. This applied gate voltage (Vg) alters the carrier density, ng = C(V + V0).

Accordingly, the Fermi level gets shifted by

EF = ~vF
√
π · ng (3.59)
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where V0 is the offset voltage; C refers to the capacitance estimated from a simple capacitor

model (especially for devices involving two layers of graphene separated by a dielectric)

given by

α =
ε0εd

tde
(3.60)

where ε0
∼= 8.854× 10−12 F/m is the permittivity of free space, εd the permittivity of

dielectric and td the thickness of dielectric between two graphene layers [6].

In an undoped graphene, under thermal equilibrium, the mobile (π) electrons in CB

and holes in VB act similar to intrinsic carriers in a semiconductor. Therefore, in terms

of density of states (DOS), the sheet carrier density ρg of such intrinsic carriers is given

by

ρg(E) =
gsgv

2π(~vF)2 |E| (3.61)

where gs refers to the two-fold spin degenerate and gv the two valleys in the first Brillouin

zones (K and K ′); gs = gv = 2 [102]. The charge carrier density is given by,

n =

∞∫
0

dE ρg(E) f(E) (3.62)

where f (E ) is the Fermi–Dirac distribution given by

f(E) =

(
1 + exp

[
E − EF

kBT

])−1

(3.63)

where kB is the Boltzmann constant, T the absolute temperature and EF the Fermi level.

Using dimensionless variables u = E/kBT and η = EF/kBT , equation (3.62) can be

rewritten as,

n =
2

π

(
kBT

~νF

)2

=1(+η) (3.64)

Similarly, the symmetric hole density is given by,

p =
2

π

(
kBT

~νF

)2

=1(−η) (3.65)

where =j(η) is termed the Fermi–Dirac integral with j = 1.

The Fermi level, under no external bias and no optical illumination, is unique and

exactly at the Dirac point, EF = 0 eV, and the intrinsic carrier concentration is derived

using above equations as,

n = p = ni =
π

6

(
kBT

~vF

)2

(3.66)
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The above equation is an ideal equation which has carrier concentration (n) dependent

only on Fermi velocity (vF). At room temperature, this value is ni ≈ 9× 1010 cm−2 taking

into account the intrinsic electron and hole sheet densities [102].

In previous sections, we have seen that modulation in a graphene-based waveguide is

carried out by tuning Fermi level in graphene through electric gating and the Fermi level

shift is given by

∆EF = ~vF

√
π |n| (3.67)

where ~ the Planck constant (h) divided by 2π and vF the Fermi velocity (≈ 106 m/s).

Using Kubo formula, the derived equation for conductivity is given as follows [26]:

σ(ω) =
σ0

2

(
tanh

~ω + 2µ

4kBT
+ tanh

~ω − 2µ

4kBT

)
︸ ︷︷ ︸

interband

− i σ0

2π
log

[
(~ω + 2µ)2

(~ω − 2µ)2 + (2kBT )2

]
︸ ︷︷ ︸

interband

+ i
4σ0

π

µ

~ω + i~γ︸ ︷︷ ︸
intraband

(3.68)

where µ is the Fermi level, γ the intraband scattering rate, σ0 the universal conductivity

defined by e2/(4~), kB the Boltzmann constant (1.38×10−23m2kgs−2K−1), ω the angular

frequency (= 2πν) and T the temperature in kelvin.

Using equation (3.68), the complex dielectric function can be obtained as follows [6]:

ε(ω) = 1 + j
σ(ω)

ωε0tg
(3.69)

where tg is the thickness of graphene layer, ε0 the permittivity of free space (8.8542 ×

10−12m−3kg−1s4A2) and ω = 2πν with ν = c/λ; (velocity of light, c = 3 × 108ms−1 and

λ the wavelength of incident light in µm).

3.5.2 Results and Discussion

We have seen in previous sections the uniqueness of graphene layer is that the Fermi level

(EF) can be tuned by applying a gate voltage (Vg). This property makes graphene layers

most suitable for electro-absorption modulators. In simple terms, electrons in graphene

couple with photons and thus light modulation is achieved by tuning the Fermi energy of

graphene with electrical gating. Equations (3.68) and (3.69) shows expressions for σ(ω)
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and ε(ω), respectively. From equation (3.69), it is obvious that the dielectric constant

ε(ω) depends on wavelength (λ) and tg the thickness of graphene layer. In this section,

we present our results on change in dielectric constant (ε(ω)) with respect to Fermi level

or chemical potential, layer thickness and wavelength of incident light.

Figure 3.18: Raman spectra
of graphitic layers. Source:
[68].

We have chosen the thickness of graphene layers from

an experimental study [68] as follows:

a) Monolayer: 0.4 nm

b) Bilayer: 0.69 nm

c) Trilayer: 1.12 nm

Figure 3.18 shows Raman spectra of graphite with

mono-, bi- and trilayers. Technically, graphene is a mono-

layer of carbon atom of diameter 0.3 nm, so a thickness

of monolayers graphene taken as 0.33–0.4 nm is agreeable.

As yet, a broad consensus has not been reached among

research groups in treating the thickness of monolayer or

bilayer graphene as given above. Most theoretical stud-

ies [6, 29, 103] used bilayer thickness of graphene as 0.7 nm. Studies [103–105] have taken

thickness of graphene layer as 1 nm. In case of 2D materials, thickness measurement is

very crucial as their electronic and thermal conduction properties heavily depend on layer

thickness and difference of 0.1 or 0.01 will influence the results.

Novoselov et al. [3] used 1-mm-thick platelets of highly-oriented pyrolytic graphite

(HOPG) as starting material to prepare single, double and few layer graphene. They

found that thin flakes of this material with thickness, d<10 nm attach strongly to SiO2.

This is an important finding when thickness of graphene required for electronic devices

is still unclear. At d <≈ 1.5 nm, graphene films are not visible to the naked eye. Also,

single-layer graphene has rarely been observed to be flat so some areas of film are ruptured

or folded back. The step heights for single and double folds are found to be 0.4 and 0.8 nm,

respectively (see Supplementary Material in Ref. [3]).
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Figure 3.19: Contrast spectra of graphene
sheets of varying thickness. Source: [77].

Figure 3.19 shows the contrast spectra

taken for varying thickness of graphene lay-

ers. Samples a–f are more than 10-layer

thick. Contrast spectra is calculated as fol-

lows:

C(λ) =
R0(λ)−R(λ)

R0(λ)
(3.70)

where R0(λ) is the reflection spectrum

from SiO2/Si substrate and R(λ) the re-

flection spectrum graphene sheet. The con-

trast peak position as shown in the figure remains steady at λ = 550 nm for layers up to

10. Beyond 10-layer thickness, the contrast spectra peak shifts towards higher wavelength

(a and b), and negative contrast starts occurring for increasing number of layers (c–f).

It is obvious that when samples become thick that the reflections from surface is more

intense than that from the substrate leading to negative contrast [77].

We now move on to our results from the analytical expression (equations 3.68 and 3.69)

we derived for calculating the dielectric constants of graphene [26,27,94]. Using equation

(3.69), we can obtain a range of dielectric constants for varying thickness of graphene layers

(tg), chemical potential (µ) and wavelength (λ). Permittivity or dielectric constant (ε(ω))

depends on conductivity of the material which is derived using Kubo formula. First, we

benchmarked our analytical expression with studies [29], [6] and [28]. Plots from equation

3.69 are plotted against theirs as shown in Figs 3.20, 3.21 and 3.22, respectively.

Plots in the figure show similar trend with Re(ε1) peaks at µ = 0.4 eV and becomes

negative beyond µ = 0.5 eV. When the electric gating (Vg) causes Re(ε1) to negative

values, the corresponding effect is termed “epsilon near zero” (enz ) effect. For instance,

µ(0.52 eV) = −0.4998+j0.5340 is one such enz value, where TM mode attenuation peaks.

The enz effect is that when the fundamental TM mode starts attenuating rapidly, which

will be discussed in Chapters 4 and 5. An interactive MATLAB code was written (Ap-

pendix A) for the analytical expression (3.68 and 3.69) to obtain range of complex di-

electric constants (ε1 + jε2) for varying chemical potential µ, wavelength λ and thickness

of graphene layer tg. Thickness of graphene layer was taken as 0.7 nm. Using equation

(3.69), the values obtained were plotted against the chemical potential, µ = 0− 1.0 eV.
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Figure 3.20: Benchmarking with Lu and Zhao [29]. λ = 1550 nm; tg = 0.7 nm; “theirs”
refers to ε(ω) plots of Lu and Zhao [29] and “ours” the ε(ω) plots from our study.

Figure 3.21: Benchmarking with Gosciniak and Tan [6]. λ = 1550 nm; tg = 0.7 nm;
“theirs” refers to ε(ω) plots of Gosciniak and Tan [6] and “ours” the ε(ω) plots from our
study.

We will now move on to the discussion of dielectric constant plot in detail, which is

crucial for electro-optic modulation. Figure 3.23 shows the plot obtained using analytical

expressions (3.68) and (3.69) derived for bilayer graphene (0.69 nm) at the telecommuni-

cation wavelength, λ = 1550 nm.

In this plot, we have varied only the Fermi level (EF) or chemical potential (µ), keeping

λ and tg constant. The applied gate voltage alters the carrier density (ng) in graphene
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Figure 3.22: Benchmarking with Kwon [28]. λ = 1550 nm; tg = 0.7 nm; “theirs” refers to
ε(ω) plots of Kwon [28] and “ours” the ε(ω) plots from our study.

Figure 3.23: Complex dielectric constants of bilayer graphene (tg = 0.69 nm) at λ =
1550 nm calculated and used in our study.

and shifts the Fermi level accordingly. This change in Fermi level influences the optical

property (refractive index, n) of graphene which undergoes a range of variations. Plots

shown in Figs 3.20, 3.21, 3.22 and 3.23 show variation of complex dielectric constant

(ε1 + jε2), which is the square of refractive index, εr = n2.

The chemical potential (µ) varies from 0 to 1 eV. Real part of dielectric constant,

Re(ε1), reaches a peak at ε(0.4 eV) = 4.7592 + j4.4441. Beyond 0.50, the Re(ε1) gate-

dependent dielectric constant becomes negative, ε(0.51 eV) = −0.0839 + j0.5728. This is
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a transition point for transformation of graphene from dielectric to metallic. The attenu-

ation of fundamental TM mode increases rapidly when µ is between 0.5 eV and 0.52 eV,

showing the enz effect. Altogether, huge variations in waveguide parameters such as mode

effective index (neff) and mode absorption (α in dB/µm), can be observed from ε(0.4 eV)

to ε(0.7 eV), which will be discussed in further sections. We interpolated 55 voltage levels

from 0 to 1.0 eV for calculating the variations in complex dielectric constants ε1 + jε2.

The range of values we calculated using derived method are given in Appendix A.

Next we shall study the variations of ε(ω) with respect to change in graphene layer

thickness (tg).

Figure 3.24: Complex dielectric constants deduced using Kubo formula for mono-, bi- and
trilayer graphene of thickness (tg) 0.4, 0.69 and 1.12 nm, respectively.

Equation (3.69) shows the dependence of ε(ω) on tg. For the plot shown in Fig. 3.23, we

used bilayer graphene of tg = 0.69 nm to deduce the complex values for ε(ω). Figure 3.24

shows variations of complex ε(ω) for mono-, bi- and trilayers of graphene as a function

of Fermi level. Graphene layer thickness (mono, bi and tri) values are taken from an

experimental study [68]. Plots show similar trend with all three layers showing a peak at

µ = 0.4 eV. As the layer thickness increases the amplitude of peaks for Re(ε(ω)) decreases.

Both real and imaginary parts of ε(ω) undergoes rapid change in the chemical potential

window between 0.3 and 0.5 eV. In this region of change, the waveguide properties such as

neff and α undergoes drastic changes which are discussed in detail in next section. These

changes are very unique of graphene that form the basis for electro-optic modulation –

ON/OFF condition.
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Both inter- and intraband transitions contribute to the trend of ε(ω). The sign of

Re(ε(ω)) beyond 0.4 eV changes due to intraband absorption. The interband transitions

do not happen when µ > 0.4 eV and intraband dominates beyond this Fermi level [28,29].

Since the drop of Re(ε(ω)) is drastic and due to enz effect, it is quite difficult to pinpoint

the voltage level where graphene crosses the transition point (µt) to metallic. For instance,

Ref. [29] has µt = 0.515 eV with ε(ω) = −0.048 + j0.323, whereas Ref. [6] has µt =

0.51 eV with ε(ω) = −0.50 + j0.50. Note the difference in Re(ε(ω)) for both studies. Our

calculations yield µt = 0.5070 eV with ε(ω) = −0.0839 + j0.5728.

Kwon [28] has discussed in his study the reason for these variances which arise due

to the analytic expression used for conductivity (σg). In their study, µt = 0.513 eV with

ε(ω) = −0.202 + j1.32 and has pointed out µt = 0.514 eV with ε(ω) = −0.026 + j0.212

in another study (see Ref. [22] in [28]). However, owing to the steep fall in Re(ε(ω))

beyond µ = 0.4 eV, these variations are not critical when considering the enz effect.

Similarly, irrespective of layer thickness, the Im(ε(ω)) shows a steady trend from 0 eV,

starts decreasing beyond 0.36 eV, drops rapidly from 0.4 to 0.507 eV and steadies thereafter

(see plot of Im(ε2) in Fig. 3.23).

Figure 3.25: Complex dielectric constants of ε(ω) for two Fermi levels, µ = 0.4 and
µ = 0.509 eV representing conditions ON and OFF, respectively; tg = 0.69 nm.

Operation wavelength range is an important parameter in assessing performance of
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a modulator. For use in optical data transmission systems, modulators are required to

operate in one or more of the major telecom windows: ∼ 0.85, 1.3 and 1.5µm [10].

Graphene optical modulators have been found to accommodate extremely broad operation

bandwidth covering from visible to microwave regions [20, 106]. Figure 3.25 shows the

variations in ε(ω) as a function of wavelength (λ), calculated using equation (3.69).

Figure 3.25 is plotted over a wavelength range 1000–2000 nm for a bilayer graphene.

This covers the typical fibre optic communication bandwidth, 1300–1600 nm. Both plots

show similar trend but Re(ε(ω)) has absorption peaks at different wavelengths:

ON : µ = 0.4 eV; Re(ε(ω)) = 4.4944 at λ = 1500 nm

OFF : µ = 0.509 eV; Re(ε(ω)) = 4.3328 at λ = 1200 nm

For a lower potential, µ = 0.4 eV, the peak in Re(ε(ω)) moves towards longer wave-

lengths, λ= 1500 nm and vice versa for higher potential. Even though the ε(ω) varies

for µ and λ, graphene layer has a constant absorption of πα = 2.293% from visible to

infrared wavelengths; α = e2/~c ≈ 1/137, c is the speed of light [87]. The fine struc-

ture constant, α, describes the coupling between light and relativistic electrons (π). Fur-

ther we benchmarked our code with a study [6]. We chose their voltage levels, µ =

0.42, 0.46, 0.512, 0.54 eV and obtained their plots. Then we used same voltages in our code

and the plots yielded are shown in Fig. 3.26; inset shows theirs [6].

These chosen voltage levels lie between 0.4 and 0.6 eV, where the Re(ε(ω)) drops rapidly

and the attenuation of fundamental TM mode drastically increases (enz effect) leading to

OFF condition. As seen from these results, when compared to the layer thickness (tg),

graphene do not show a strong dependence on wavelength. This finding will be discussed

further with the results of waveguide performance parameters. This weak wavelength

dependence enables graphene-based modulator for broadband operation that can process

hundreds of channels from different systems in the same device [6].

To summarise, in this section, we have discussed in detail the method to obtain com-

plex dielectric constants (ε(ω) = ε1 + jε2) of graphene and its dependence on thickness of

graphene layer and wavelength of incident light. We studied the two important contribu-

tions, viz., interband and intraband, that leads to complex conductivity (σ(ω) = σ1 + jσ2)

which in turn results in complex ε(ω). This property is unique in graphene which threw

light on other quantum-mechanical effects such as generation of surface plasmons, which

is broadly classified as Plasmonics. Before moving on to the next chapter where we begin
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Figure 3.26: Complex ε(ω) as a function of λ, values derived using our code. Inset:
Gosciniak and Tan [6] for comparison.

discussing our first part of results on the study of waveguide characteristics, we would like

to present a brief note on plasmonics in the following section.

3.6 Plasmonics

The understanding of the optical response of graphene is very important for fabrication

and device design for photonic and opto-electronic applications. Our study is based on

characterization of electro-optic modulator wherein light–matter interaction is crucial.

Electromagnetic field interacts with free electrons in metal and the study of such inter-

actions is broadly classified as Plasmonics. As seen in previous section, the role of inter-

and intraband absorptions plays a vital role in the effects that lead to modulation of

electromagnetic wave transmitted through the thin layer of graphene, which has a sea of

electrons and holes in the valence band (VB) and conduction band (CB), respectively.

Electromagnetic wave composed of photons transfer its energy to electrons in CB, or holes

in VB, raising those to a higher energy. Thus band transitions occur. The number of free

conduction electrons and band transitions determine the optical response of metals. The
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Drude model defines the optical response of the metals. A high frequency conductivity of

monolayer graphene has a Drude form as follows:

σ̃(ω) =
iD

π(ω + iΓ)
(3.71)

where ω is the frequency, Γ the scattering rate and D the Drude weight that has following

value when neglecting electron–electron interactions,

D =

(
νFe

2

~

)√
π |n|

where νF is the Fermi velocity (= 1.1× 106 m/s) and |n| the carrier density.

The electron is treated as a forced damped harmonic oscillator with angular frequency

ω0 = 0 and the following equation provides solution to the motion of an electron with

harmonic time-dependence for both E and x given by

E(t) = E0e−iωt x(t) = x0e−iωt (3.72)

The polarisation (P) caused due to the electron oscillation is given by P = −nex, where n

is the carrier concentration and e the charge of an electron. Using the relation D = εε0E,

the equations (3.72) are solved as follows:

D = ε0

(
1−

ω2
p

ω2 − iγω

)
E (3.73)

where D is the electric displacement, E the electric field, γ the damping constant and ωp

the plasma frequency. The dielectric function, ε(ω), of the free electron medium is given

by

ε(ω) = 1−
ω2

p

ω2 − iγω
(3.74)

which is derived from the constitutive relations of Maxwell’s equations; D = εε0E.

Plasmons are quantized plasma oscillations of free electrons. This phenomena of elec-

tronic charge density oscillations occur in the bulk and at the surface of metals. When

such occurring at a metal–dielectric interface are called surface plasmons. Precisely, a

photon passing through a material medium couples strongly with the internal degrees of

freedom inside the material and is termed as a polariton. In case of graphene, as plasmons

are generated at the metal–dielectric interface, they are called surface-plasmon-polaritons

(SPPs). The characteristic relationship between energy and plasma frequency is given by,

Ep = ~ωp = ~

√
4πne2

me
(3.75)
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where n is the density of conduction electrons, e the charge of an electron, me the mass

of an electron; ωp is termed the plasma frequency [107]. Also, electronic oscillation is a

simple harmonic function with plasma frequency,

ωp =

√
ne2

mε0
(3.76)

Plasmon polaritons are collective excitations of photons and electrons that has the

ability to confine energy of long wavelength radiation (e.g., λ = 1550 nm) at the sub-

wavelength/nanoscale dimensions. For instance, in a typical waveguide with dielectric–

metal–dielectric sandwich, the thickness of hBN (dielectric) and graphene are 10 and

0.7 nm, respectively. A surface plasmon polariton (SPP) is an EM wave that propagates

along the surface showing a strong sub-wavelength energy confinement at metal–dielectric

interface [108].

We will now move on to the next chapter discussing our results benchmarked with

prominent studies.The calculated complex dielectric constants (ε(ω)) from equations (3.68)

and (3.69) were used to ascertain the waveguide characteristics such as mode effective index

(neff) and absorption loss (α). The key figures of merit viz., modulation depth or extinction

ratio (ER), operation wavelength range and insertion loss (IL) are calculated.
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Chapter 4

Benchmarking Graphene-based
Optical Waveguides

4.1 Introduction

An electro-optic modulator is a device that allows to control the amount of light passing

through the material, depending on an applied electric signal. Here, light acts as carrier of

electric signal, which is coded with information, for instance ‘0s’ and ‘1s’. When a voltage

is applied to a graphene–dielectric waveguide, charge carriers accumulate in the interface

resulting in a chemical potential, which can be tuned with a gate voltage. Figure 4.1(a)

shows a waveguide with two graphene layers separated by a dielectric material. When

voltage is applied, positive and negative charges accumulate along the interfaces. This

chemical potential can be tuned such that the incoming light across the material can be

absorbed or allowed due to interband or intraband absorptions. When light passes through

a material it perturbs the chemical potential leading to absorption, which is nothing but

a quantum-mechanical effect. An artistic illustration of an EOM using light as carrier

wave modulated by electrical signal is depicted in Fig. 4.1(b). Input light modulation by

electrical signal carrying digital information is shown. Output is seen as light pulses i.e.,

0s and 1s.

The 2D material (graphene in our study) performs the function as a self-amplitude

modulator enabling ultrafast pulse generation [10]. A research group at the University of

California, Berkeley, demonstrated that a waveguide could break the current speed limits

in digital communications using graphene as top layer. The researchers placed graphene

on top of a silicon waveguide and were able to achieve a modulation speed of 1 GHz. The

speed of such modulator could theoretically reach as high as 500 GHz [20]. Many material
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Figure 4.1: (a) Accumulation of charge carriers in graphene–dielectric interface upon
applying a voltage. (b) Depiction of light modulation using electrical signal. Source: IBM
T.J. Watson Research Center video.

combinations, such as cadmium sulfide (CdS), lithium niobate (LiNbO3), ammonium di-

hydrogen phosphate (ADP), potassium dihydrogen phosphate (KDP), potassium titanyl

phosphate (KTP), quartz (SiO2), gallium arsenide (GaAs), indium phosphide (InP), bar-

ium titanate (BaTiO3) and lithium tantalate (LiTaO3), are available and can be chosen

based on application. In this list, LiNbO3 modulators possess many attractive features

for modulation of visible and NIR light, making them the prime choice in many applica-

tions [109]. These modulators have several advantages over the other EOMs such as low

drive power, high intrinsic modulation bandwidth and stable operation over a reasonable

temperature range.

Figure 4.2: Schematic of graphene based
waveguide: (a) electric signal, (b) incident
light and (c) modulated light pulse. Source:
[20].

As discussed in previous chapters, the

electronic band structure of graphene is re-

sponsible for the ultrafast modulation of

incoming light. The interaction between

charge carriers and ultrafast optical pulses

produces a non-equilibrium charge carrier

accumulation in VBs and CBs, which re-

laxes at an ultrafast timescale. This en-

sures wideband and ultrafast saturable ab-

sorption from Pauli blocking. Due to such

nature in 2D materials, combinations of different 2D heterostructures, such as graphene–

hexagonal boron nitride (hBN), graphene–black phosphorus, TMD–hBN, TMD–graphene

and TMD–TMD combinations are currently explored. Of all graphene–dielectric combi-
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nations, the hBN–graphene–hBN stack outperforms other 2D material combinations with

its remarkable carrier transport properties [110].

In Chapter , we have discussed about photonic materials and experimental methods

for exfoliating graphene layers and Chapter 2 explained the numerical method adopted to

characterize the waveguide under study. Chapter 3 was devoted to discussion of graphene

and its unique properties. In this chapter, we discuss the ways we adopted for studying

graphene–silicon hybrid waveguides. We used two in-house solvers viz., perturbation and

complex, which were written using FORTRAN codes, and were already in use for obtaining

modal solutions. Firstly, we used these codes to benchmark with chosen published studies.

After validation of results, we studied modal solutions of a silicon nanowire (1D and

2D) and then moved on to graphene-based waveguides in Chapter 5. In this chapter,

we present the results of benchmarking and analyse the plots obtained for optimizing

waveguide parameters such as effective index and absorption.

The vector H-field formulation is one of the most accurate and versatile methods for

studying optical waveguide problems [47]. The formulation is written as follows [45]:

ω2 =

∫∫
(∇×H)∗ · ε̂−1 · (∇×H) dΩ +

(
α
ε

) ∫
(∇×H)∗(∇ ·H) dΩ∫∫

H∗ · µ−1 ·H dΩ
(4.1)

where ε̂ and µ̂ are the general anisotropic permittivity and permeability of the loss-free

medium, respectively, α the dimensionless penalty coefficient and Ω the cross-section of

the waveguide. Equation 4.1 has electric wall as natural boundary condition, expressed as

n·H = 0.

Waveguides are the most basic components of an optoelectronic system. They form

the building blocks of such systems. A suitable combination of active (Si, graphene) and

passive materials (hBN, SiC, SiON) can make an efficient waveguide. For effective prop-

agation in a waveguide, refractive index (n) of core material should be higher than other

layers, such that n1, n2 < n3 and n3 > n4. Materials are chosen based on their optoelec-

tronic properties, response to electrical and optical signals. An electro-optic modulator

requires a nonlinear material that could modulate optical signal with electrical input at

ultrafast rate.

Reflecting, propagating and confining light waves within a specified volume are the

fundamental characteristics of a waveguide. Materials with excellent optical and electrical
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properties are of particular interest for designing waveguides. A multilayer rib waveguide

is shown in Fig. 4.3. Layers with differing refractive indices reduce leaky modes. EM wave

traversing through such a polarizable medium is modified by the polarization it induces

and couples to it of which the coupled mode of excitation is termed a polariton. As shown

in Fig. 4.3(b), optical absorption in graphene can be controlled by means of shifting its

Fermi energy level through electrical gating, Vg [111,112].

Figure 4.3: (a) Waveguide with active (A) and passive (P) materials. (b) A rib waveguide
with graphene in layer 5. Layer 3 forms the core (Si), layers 1 and 2 are dielectric materials
(e.g., SiO2) and layers 4 and 6 are termed buffer materials such as hBN, Si3N4 or Al2O3

that encapsulate graphene; Vg denotes applied gate voltage.

4.2 Benchmarking

The objective of this stage is to benchmark our results (ε, neff , α) with published studies

as well as choosing the suitable solver, either perturbation or complex, for further study.

For this we need to simulate the chosen waveguide using both the solvers and benchmark

them with published results. This stage is carried out in steps as given below:

a) understanding the theory of calculating conductivity (σ) and permittivity (ε) from

Kubo formula

b) writing an analytical method to calculate σ and ε based on equations

c) writing a MATLAB program for the analytical method

d) benchmark MATLAB permittivity values obtained
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e) simulating waveguide design, using both complex and perturbation codes, as given

in chosen studies from literature

f) plot all results (ε(ω), neff , α) for chosen waveguides

g) benchmark results with chosen studies

For benchmarking dielectric constants, the studies of Gosciniak and Tan [6], Kwon [28]

and Lu and Zhao [29] are chosen. These plots are discussed in detail further. For bench-

marking the solvers, studies [6], [29] and Liu et al. [20] are taken. Results on calculating

and benchmarking effective indices and propagation loss values are presented. Studies [6]

and [29] were benchmarked using in-house solvers as well as commercial package, COM-

SOL.

4.2.1 Study 1: Graphene-based Rib Waveguide

Initially, both solvers were subjected to analysis of a bulk waveguide, taken from Gosciniak

and Tan [6], as shown in Fig. 4.4. We have adapted our solvers to represent the test

structure effectively and dimensions are given in the figure. This is to analyse which

solver would be accurate for studying graphene-based waveguides as graphene possesses a

wide range of complex dielectric constants, ε(ω).

Figure 4.4: Waveguide redrawn from Ref. [6] for validating complex and perturbation
solvers. Since the waveguide is symmetric, half-structure was chosen as marked.

In their study, thickness of graphene layer was taken as 0.7 nm, denoting bilayer

graphene. Each graphene layer is sandwiched between dielectric materials so as to en-

hance dielectric optical confinement. We have discussed in previous chapters that di-

electric constant of graphene, ε(ω), is complex with real and imaginary parts, ε1 + jε2.
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Using perturbation and complex solvers, modal effective index (neff) and absorption (α)

are obtained.

Figure 4.5: Mode effective index (neff) for validating perturbation and complex solvers.

Figures 4.5(a) and (b) show neff calculated using complex and perturbation solvers

and validation against chosen points from Gosciniak and Tan [6]. Plots from both solvers

show similar trend and beyond 0.45 eV, results from perturbation starts deviating from

other two beyond 0.49 eV. For high-index dielectric, this deviation is prominent as shown

in Fig. 4.5(b).

Figure 4.6: Mode absorption (α) for validating perturbation and complex solvers.

Figures 4.6(a) and (b) show mode absorption (α) calculated using both the solvers.

In both high- and low-index dielectric, results from complex solver is close to that of the

chosen study [6]. Results from perturbation solver varies drastically beyond 0.49 eV similar

to the trend observed with neff plot in previous figure. The underlying reason is that when

Re(ε(ω)) becomes lesser in magnitude than Im(ε(ω)), the results from perturbation solver

starts deviating from the actual. Whereas, the complex solver follows the trend of reported

results [6] since it remains unaffected due to the variations in real and imaginary parts of
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ε(ω). On the other hand, perturbation solver could accommodate a 500×500 mesh but

complex solver could only reach up to 100×100 for a 2D waveguide for a given computer

resources. Even though the complex solver could consider only smaller mesh divisions

when compared to the perturbation code, it was taken for further benchmarking as it

yields accurate results.

Figure 4.7 shows the electric field plots of quasi-TM mode. The dielectric constants

chosen are as follows: εlow, εhigh, εenz and εmetallic, referring to the voltages 0, 0.4, 0.51

and 0.7 eV, respectively.

Figure 4.7: Electric field of quasi-TM Ey mode for chosen dielectric constants of graphene
from Ref. [6], simulated by using the complex solver.

In above plots, the electric field in graphene layer undergoes drastic changes within

the voltage range, 0–1 eV. A sharp peak is observed in all plots which represents the

graphene–dielectric interface. A high degree of dielectric confinement enables good light–

matter interaction. A sharp peak at εenz denotes the epsilon-near-zero (enz ) effect, plot

(c), where the absorption reaches the maximum and the real part of ε(ω) turns negative.
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After 0.6 eV, graphene becomes metallic as shown in plot (d). These electric field plots

are obtained using complex mode solver. A major drawback was noticed at this stage.

As we have chosen a bulk waveguide (8 layers), the computation time for complex solver

took to almost 40–50 minutes when the mesh size was set to 100×100. For each step, it

become time consuming to use complex solver. Therefore, COMSOL was used to obtain

the modal solutions, since it is also based on FEM.

First, a template for 2D waveguide was created using COMSOL. Next, four plots

from Gosciniak and Tan [6] were chosen for benchmarking the template. The flexibility in

COMSOL is that once a template is built and a structure is benchmarked, the template can

be reused for studying various structures. Also the computation time is only few minutes

even for an “extremely fine” mesh which is a major advantage. The bulk waveguide from

the chosen study was then built in COMSOL. Figures 3(a and b) and 4(c and d) were

chosen from Ref. [6]. Each of these figures shows the results of both neff and α for TE ad

TM modes.

Figure 4.8: TM mode: Re(neff) and α for high- and low-index spacers between Si slab and
Si ridge (λ = 1550 nm). Inset shows Fig. 3(a) in Ref. [6].

Figure 4.8 shows mode effective index and absorption of TM mode for the bulk waveg-

uide having bilayer (0.7 nm) graphene as slot layers separated by hBN. We benchmarked
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our results with that of Gosciniak and Tan [6]. Our results agreed with theirs, thus

validating our template and understanding of bulk waveguides using graphene as slot lay-

ers. Core silicon in the waveguide has a width of 400 nm and height 260 nm. Low-index

(n = 1.98) and high-index (n = 3.47) are taken. The latter outperforms in both neff and

α as obviously a higher index will result in higher absorption.

Figure 4.9 shows plots for neff and α of TE and TM modes. This plot differs from the

previous with width and height of silicon core taken as 400 and 200 nm, respectively. Note

that the height of the core has been reduced by 60 nm from the previous and the dielectric

with high-index, n = 3.47.

Figure 4.9: Re(neff) and α for two supported modes, TM and TE, for high-dielectric
spacer. Inset shows Fig. 3(b) in Ref. [6].

Gosciniak and Tan [6] has stated that a 60 nm decrease in height of core results in

significantly larger absorption for TM mode than that of the TE mode. All plots in both

the figures denote a steep fall after µ = 0.51 eV, where the “dielectric” to “metallic”

transition of graphene occurs. This dip in absorption is attributed to the enz effect.

Figure 4.10 shows the wavelength dependence of neff and α of TE mode for the bulk

waveguide with high- and low-index dielectric. Waveguide dimensions are the same as

those mentioned for the plots in Fig. 4.8. The chemical potential is set as µ = 0.512 eV,
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which refers to the OFF voltage, resulting in maximum absorption for both TE and TM

modes.

Figure 4.10: Re(neff) and α for high- and low-index spacers between Si slab and Si ridge
for TE mode; µ =0.512 eV. Inset shows Fig. 4(c) in Ref. [6].

Figure 4.11 shows the waveguide characteristics of TM mode for waveguide with di-

mensions as mentioned above. Comparing both TE and TM plots, the latter has shown a

significant higher absorption reaching close to 5 dB/µm. Gosciniak and Tan [6] have cal-

culated the f3dB bandwidth to be 16.5 THz for both high- and low-index dielectric spacers.

This shows the strength of broadband operation of the modulator to accommodate hun-

dreds of channels due to weak wavelength dependence.

All four plots benchmarked with Ref. [6] have shown a very good agreement with our

results thus validating our understanding of a bulk waveguide with graphene as a slot layer.

Graphene layer possesses high carrier mobility and high saturation velocity and therefore,

the operating bandwidth is likely to be limited by the transit time of carriers. On this

regard, the relaxation time (τ) is inversely proportional to the degree of crystalline disorder

in graphene. Ideally, a high quality graphene layer can operate with a modulation speed

in picoseconds timescale at 500 GHz [113]. Next, we consider another benchmarking study

which we have considered for the understanding of graphene-based optical modulators.
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Figure 4.11: Re(neff) and α for high- and low-index spacers between Si slab and Si ridge
for TM mode; µ =0.512 eV. Inset shows Fig. 4(d) in Ref. [6].

4.2.2 Study 2: Graphene-based Slot Waveguides

This study explores the electro-optic properties of slot waveguide in which graphene layer is

sandwiched between silicon nitride (Si3N4) as buffer layers (Fig. 4.12). Here the thickness

of buffer layers (10 nm) remained same whereas the thickness of Si layer was varied in each

structure.

Lu and Zhao [29] used different structures for simulations with a 3D FDTD code.

Each waveguide comprises graphene sandwiched between dielectric layers and core as Si.

Thickness of graphene layer was taken as 0.7 nm. Two dielectric constants of graphene

are chosen as follows: ε(0 eV) = 0.985 + j 8.077; ε(0.515 eV) = −0.048 + j0.323, denoting

εenz, representing ON and OFF voltages, respectively. Dielectric constants of rest of the

materials are as follows: ε(Si) = 12.0409; ε(Si3N4) = 3.9204; ε(SiO2) = 2.0736; ε(Cu) =

−67.86 + j10.01. Dimensions of the waveguide (Fig. 4.13) are taken as given in Fig. 2

from Ref. [29].

First, we used our complex solver to study each of these waveguides and obtained

electric field plots for the waveguides chosen. As shown earlier, the complex solver has

the ability to provide accurate results even with high variations in the real and imaginary
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Figure 4.12: Waveguides (a), (b), (c) and (d) represents figures chosen from Fig. 2a, 2b,
2e and 2f, respectively, from Ref. [29] for benchmarking task.

parts of dielectric constant which was found lacking with perturbation solver. So we used

only complex solver to obtain further results. The electric field plots of TM Ey mode

are obtained for four structures (waveguides a, b, c and d shown in Fig. 4.13) with two

dielectric constant values at µ = 0 and µ = 0.515 eV are chosen.

Figure 4.14 shows a drastic change in the electric field plots between ON and OFF

states. An absorption of α = 0.183 dB/µm is obtained for low-loss state and in the

high-absorption state, α = 4.603 dB/µm. Figure 4.15 shows the case of an asymmetric

slot waveguide, which shows only a slight change in performance. This proves that high

absorption can be achieved if graphene is encapsulated with a buffer material (hBN, Si3N4).

Figures 4.16 and 4.17 show plots obtained for waveguides with Cu as bottom layer and

cladding, respectively. Here, the dielectric constant of Cu is taken as −67.86 + j10.01. Cu

is a CMOS compatible metal and is used in all plasmonic modulators. In all these studied

waveguides, the thickness of buffer layer (Si3N4) is fixed at 10 nm; and λ = 1550 nm.

Table 4.1 displays the mode effective index and absorption values for all waveguides

benchmarked with Ref. [29]. Our results agree very closely with waveguides (a) and (b)

but shows similar trend with waveguides (c) and (d). The reason is attributed to the

presence of very high dielectric constant of Cu in the latter two waveguides and also the

mesh limitation imposed in this solver (110×110). Complex solver needs to be tweaked

for handling high complex dielectric constants and high mesh (500×500 and 1000×1000).

We further benchmarked two more plots from Lu and Zhao, using COMSOL. Waveg-

uide (a) in Fig. 2 of Ref. [29] is chosen for benchmarking. Obtained mode profile and
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Figure 4.13: Waveguides redrawn from Fig. 2 of Ref. [29] for benchmarking using our
complex code.

electric field of TM mode are shown in Fig. 4.18. These results validated our understand-

ing and methods we followed for the analysis of graphene-based hybrid waveguides. The

electric field plots for ON and OFF voltages are shown in Fig. 4.18(a) and (b), respectively.

Next, we benchmarked another waveguide of Fig. 2(b) in Ref. [29], which is shown in

Fig. 4.19. The electric field plots for ON and OFF voltages are shown in Fig. 4.19(a) and

(b), respectively. Tables in both Figs 4.18 and 4.19 show the values obtained for neff and

α. The values show a very close agreement between theirs and ours.

On comparing the two waveguides, one having graphene layer in the slot of the core

and the other with graphene layer in the slab, there is only a slight shift observed in their
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Figure 4.14: Electric field plots of TM Ey mode for waveguide (a) shown in Fig. 2(a) of
Ref. [29]; Si–(graphene/dielectric)–Si.

Figure 4.15: Electric field plots of TM Ey mode for waveguide (b) shown in Fig. 2(b) of
Ref. [29]; Si–(graphene/dielectric)–Si, dielectric strip waveguide.

Figure 4.16: Electric field plots of TM Ey mode for waveguide (c) shown in Fig. 2(e) of
Ref. [29]; Si–(graphene/dielectric)–Cu, width = 400 nm.

effective indices, for instance, 2.075 and 2.079 of ON and OFF levels, respectively. On the

other hand, absorption values for these two levels are 0.166 and 4.184 dB/µm, respectively.
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Figure 4.17: Electric field plots of TM Ey mode for waveguide (d) shown in Fig. 2(f) of
Ref. [29]; Cu–(graphene/dielectric)–Si, width = 200 nm.

Table 4.1: Benchmarking of results with Lu and Zhao [29], obtained by using our complex
code

Effective index, neff Absorption, α (dB/µm)
ε(ω) Waveguide Ours Theirs Ours Theirs

0.985+j 8.077 (a) 2.01695 2.03200 0.15873 0.18300
(b) 2.08159 2.03200 0.15873 0.18300
(c) 2.35352 2.27600 2.28571 2.38800
(d) 2.59330 2.20500 2.31846 2.21200

−0.048+j 0.323 (a) 2.01913 2.03400 4.01960 4.60300
(b) 2.08509 2.02200 4.12432 4.59900
(c) 2.44142 2.25000 14.63280 12.07100
(d) 2.56851 2.17600 11.39110 9.35400

Similar trend is observed in the other waveguide shown in Fig. 4.19. Absorption values for

both levels are 0.176 and 4.176 dB/µm, respectively, whereas the neff values are 2.129 and

2.132, respectively. Our results from these simulations have shown very good agreement

with those of Lu and Zhao [29].

Finally, we concluded benchmarking of study 2 with plotting of absorption values as

a function of wavelength and chemical potential for waveguide as shown in Fig. 4.20 and

4.21, respectively. Inset in both figures shows the plots taken from Lu and Zhao [29].

Our plots follow similar trend with theirs but shows a significant difference in absorption

peak. This reason is attributed to the chosen dielectric constants at µ = 0.515 eV with

λ = 1550 nm. Our plot has absorption peak at µ = 0.515 eV with λ = 1530 nm. Due to

the difference in the analytical method followed for calculating the dielectric constants of

graphene, such variations are observed in both plots. For instance, from their method,
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Figure 4.18: Mode profile and electric field of TM mode for waveguide in Fig. 2(a) of Lu
and Zhao [29]. Table shows the comparison of neff and α values of theirs and ours.

at µ = 0.515 eV, the enz ε(ω) = −0.048 + j0.323; in our method, at µ = 0.515 eV, the

enz ε(ω) = −0.0967 + j0.5405. In Table 4.1, we used their dielectric constants for µ = 0

and µ = 0.515 eV. The effect of these variations have already been discussed in previous

chapter.

To summarise, in this section, we explained our results obtained for benchmarking the

waveguide taken from literature. The results and plots of ours have shown a very good

agreement with that of theirs. With this understanding, we will now move on to the third

study we took for benchmarking the electric field plot.
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Figure 4.19: Mode profile and electric field of TM mode for waveguide in Fig. 2(b) of Lu
and Zhao [29]. Inset shows the comparison of neff and α values of theirs and ours.

4.2.3 Study 3: Top Layer Graphene Waveguide

Liu et al. [20] reported the first waveguide-integrated graphene-based electroabsorption

modulator wherein the modulation is achieved by tuning the Fermi level of a monolayer

graphene sheet. Width of the Si waveguide is 600 nm and dielectric spacer (Al2O3) is

7 nm. Wavelength (λ) in their study was 1.53µm. Figure 4.22(a) shows the waveguide

design used in their study.

Their study has not explicitly given complete details of the waveguide parameters,

especially the dielectric constants of graphene. So we have used ε(ω) values from our

study and followed their design specifications. Using complex solver we obtained the

electric field, shown in Fig. 4.22(b). Our plot shows the same trend with their curve of
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Figure 4.20: Absorption versus wavelength plot as shown in Fig. 4(a) of Lu and Zhao [29].
Inset shows their plot.

Figure 4.21: TM mode absorption as a function of chemical potential (µ) for waveguide
in Fig. 4(c) of Lu and Zhao [29]. Inset shows the plot from their study.

magnitude of electric field shown in Fig. 4.22(b). In their next study, Liu et al. [114]

proposed a bilayer graphene separated by dielectric material (Fig. 4.23). This study

provides a complete description of experimental steps adopted to synthesize sheets of
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Figure 4.22: (a) Three-dimensional illustration of the modulator. Source: Ref. [20]. (b)
electric field plot obtained using our complex solver for their waveguide dimensions. Inset
shows the electric field plot from their study [20].

graphene. The optimized wavelength used in this study is λ = 1537 nm. A modulation

depth of ∼ 6.5 dB was achieved in their study.

Figure 4.23: Study of Liu et al. [114] showing 2D (a) and 3D (b) models of double layer
graphene modulator. Steps for fabrication is shown from (c) to (f). Source: [114].

Possible fabrication process of double-layer graphene is shown in Fig. 4.23(c)–(f). It

can start with preparation of Si waveguide from a SOI wafer (c). A sheet of graphene

prepared by CVD method can be transferred mechanically onto the waveguide (d). E-

beam lithography is used at this stage and oxygen plasma removed unwanted regions. A

thin layer of aluminium is deposited by thermal evaporation and Al2O3 by ALD method

(e). Second, graphene sheet is mechanically transferred and EBL and oxygen plasma

are used to define the active region (f). Metal electrodes are deposited. Here, graphene

layers are separated by a 12 nm thick Al2O3 layer, thus forming a parallel plate capacitor
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structure. A switching voltage of VD = 6 V for this device was determined by dielectric

constant and thickness of gate oxide.

Figure 4.24: Waveguide designs taken from literature: (a) Liu et al. [114]; (b) Phatak et
al. [96]; (c) Koester et al. [115], Hu and Wang [103]; (d) Lu and Zhao [29].

Figure 4.24 shows few structures of graphene-based waveguides proposed by different

studies. Here, the placement of graphene is prominent as it is the active layer which in-

teracts with incoming light and modulation is based on graphene’s switching behaviour.

So, graphene layer should be made to interact with maximum light intensity to achieve

effective modulation. Plasmons or surface plasmons (SPs) which are quantisation of collec-

tive surface excitation of charge carriers play a major role in graphene-based modulators.

Graphene contains intrinsic plasmons that results in high quantum efficiency of light-

matter interaction [89]. Plasmons couple strongly with incoming EM waves leading to

plasmon-photon coupling due to which a great amount of EM energy is confined within

waveguide at subwavelength scales. Therefore, encapsulating graphene with dielectric ma-

terial or having a dielectric layer between core and graphene enhances TM mode due to

dielectric confinement of the EM wave.

4.3 Conclusion

We discussed the results from perturbation and complex solvers used for benchmarking

with studies from the literature. Our results showed that perturbation solver may not be

accurate when the real part (ε1) of complex ε(ω) is smaller in magnitude than the imagi-

nary part (ε2). Whereas results from complex solver showed a very close agreement with

the literature but imposes restriction on mesh dimension. Upon validating our understand-

ing of graphene-based waveguides with literature studies, we now move on to proposing

our designs and discussion of results. From benchmarking, we inferred that placement of
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graphene layer as either slot or top layer, affects TE and TM mode absorptions, whereas

effective index (neff) undergoes a minor change as a function of wavelength (λ) or gate

voltage Vg. Therefore, graphene layer is the most suitable for electro-absorption modula-

tors. Taking fabrication factors into account, in the next chapter we discuss the waveguide

designs we propose and present their results.

.
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Chapter 5

Characterization of
Graphene–Silicon Hybrid
Waveguides

5.1 Introduction

Light–matter interaction at nanoscale level is the unique property observed in 2D optical

materials viz., graphene, phosphorene and so on. This forms a separate branch in nanopho-

tonics termed Plasmonics. Due to growing state-of-the-art techniques in nanofabrication,

applications such as ultrafast electro-optical modulator are envisaged. Plasmonics allow

strong interaction between the free electrons and incoming light wave, breaking the diffrac-

tion limit and thus light is confined in deep-subwavelength volumes. In a graphene-based

waveguide, at λ = 1550 nm, plasmonic modes are obtained in the graphene–dielectric

interface, wherein thickness of bilayer graphene is just 0.7 nm.

The modal solutions of graphene-based waveguides will be discussed in this chapter

beginning with finite-element characterization of a silicon nanowire. An Si nanowire waveg-

uide is a semiconductor structure based on concept of silicon-on-insulator technology. It

consists of a layer of single-crystalline silicon separated from the substrate by a layer of

insulator. Here the substrate is silicon. The insulator is called buried oxide viz., SiO2,

hBN, Al2O3, Si3N4, etc. These layers are made into a simple optical waveguide (Fig. 5.1)

that guides EM wave. So waveguides are the building blocks of any photonic circuit. In

earlier chapters, light confinement within waveguides based on Maxwell equations were

discussed.

An expression for single-mode condition (SMC) for a rib waveguide shown in Fig. 5.1
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Figure 5.1: A rib waveguide in silicon-on-insulator. The refractive indices (n) air, Si and
SiO2 are 1, 3.477 and 1.444, respectively.

is given by [40]

W

H
6 0.3 +

r√
1− r2

(for 0.5 6 r < 1) (5.1)

where r is the ratio of slab height to overall rib height, and W /H is the ratio of waveguide

width to overall rib height.

5.2 Characterisation of Optical Waveguides

Waveguides form the basic building blocks of optical modulators through which the elec-

tromagnetic waves are guided. The study of guided modes, TE and TM, is of prime

importance to ascertain the characteristics of modulators prior to fabrication. These

characteristics depend on properties of materials used in the waveguide design. A mate-

rial capable of changing its optical property such as refractive index (n) is used in such

waveguides. Depending on the optical property of the material which is changed for

light modulation, modulators are primarily classified as absorptive or refractive modula-

tors. In the former, the absorption coefficient (Im(n)) of the material is controlled by an

absorption-related effect viz., electro-absorption, Franz–Keldysh effect and the quantum

confined Stark effect.

Optical waveguides are characterized by obtaining TE and TM mode profiles and cor-

responding plots for effective index (neff), absorption (α), extinction ratio (ER), insertion
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loss (IL) and so on.

Figure 5.2: A silicon nanowire.

We have discussed the step-by-step

characterization procedure using Finite El-

ement Method [45] in Chapters 2 and

4. We already carried out benchmarking

results of our perturbation and complex

solvers. It is observed that perturbation

results are not accurate when the mag-

nitude of Re(ε(ω)) is less than Im(ε(ω)).

So, complex solver was used for obtaining

modal solutions of graphene-based waveg-

uides. As a first step, a silicon nanowire (Fig. 5.2) was studied using both solvers. In

the figure, due to one-fold symmetry, the block as marked by solid line is considered for

simulation.

5.2.1 Silicon Photonic Waveguides

In silicon photonics, a silicon nanowire is a basic waveguide structure of silicon on a

substrate. This Si waveguide, prepared from a silicon-on-insulator (SOI) wafer, forms the

start of fabrication process of multi-layered Si optical waveguides. The SOI waveguiding

structures are more popular due to the possibility of much stronger optical confinement.

These modulators have undergone significant transformation since early 1980s. Silicon is a

potential material in the class of photonics materials, and also a platform for 2D materials

such as graphene to realize ultrafast modulation devices for quantum computers.

TE and TM mode profiles of Si strip and rib waveguides are shown in Figs 5.4 and

5.5. The waveguide dimensions are chosen based on an earlier design optimization shown

in Fig. 5.2; width, 0.4µm; thickness, 0.3µm. For the strip waveguide, the effective indices

of TM and TE modes are obtained as 2.159484 and 2.412079, respectively, whereas for rib

waveguide, these values are 2.755377 and 2.812342. The mode is effectively confined in rib

than the strip waveguide. The reason is attributed to the presence of Si slab introduced

in the rib waveguide.

Comparing TE modes in Fig. 5.4(c) and 5.5(c), the mode is moved down by the slab.

This phenomena was exploited by Gosciniak and Tan [6] who placed bilayer graphene in
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Figure 5.3: Rectangular silicon waveguides: (a) strip and (b) rib. Dimensions of Si core
are width 0.4µm and thickness 0.3µm. In (b), the Si slab is of thickness 0.15µm and
width 1µm.

the slab and ridge interface. In their study, the slab is mentioned as a low or high index

buffer material with n = 1.98 or n = 3.47, respectively. Thus introducing a slab moves

the maximum of the mode electric field closer to the graphene layers, thereby enhancing

graphene–light interaction which is crucial for electro-optic modulation.

The optical properties of graphene namely the optical conductivity (ρ) and permittivity

(ε) are highly influenced by the chemical potential (µ) which is fine tuned by applying a

gate voltage (Vg). This is studied in the next section. This unique property of tuning of

Fermi level using applied voltage forms the principle of graphene-based electro-absorption

modulators.

5.2.2 Top- versus Slot-layered Graphene Waveguides

Positioning graphene layer(s) as a top-layer or slot-layer in the waveguide influences its

modal properties. Experimental studies [20,96,114] proposed graphene as top layer. Step-

by-step fabrication process was explained in [114]. Lu and Zhao [29] stated that effect of

change in dielectric constant of graphene is not very manifest when graphene is placed as

top layer. Gosciniak and Tan [6] discussed the benefits of positioning graphene as slot,

since it increases graphene’s interaction with maximum light intensity. Effect of graphene

conductivity (ρg) change is not very pronounced if graphene is placed far from the electric

field maximum of the propagating mode. On this regard, we study the TM mode properties

in both of these waveguides.

We begin characterisation of graphene-based waveguides with two designs as shown in

Fig. 5.6. Dimensions of waveguide are core width 0.4µm and height 0.3µm which showed
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Figure 5.4: Mode profiles of Si strip waveguide: (a) TM; (b) TM contour; (c) TE; (d) TE
contour.

good confinement at λ = 1550 nm. Figures 5.7 and 5.8 show neff and α variations of TM

mode as a function of chemical potential (µ).

Plots in above figures show electrically tunable variations of neff and α of the TM mode

in both the waveguides. These variations are due to change in complex dielectric constant,

ε(ω) = ε1 + jε2, of the graphene layer. Between 0.4 and 0.55 eV, the magnitude of ε(ω)

varies more than 30 times [6]. This is the reason for high modulation depth achieved in

graphene-based modulators. The TM mode in slot-waveguide shows a steady rise and

fall in both neff and α. This is attributed to the reason that graphene layer is placed at

maximum light intensity of the waveguide.

Next, we consider only the waveguide with top-layer graphene in Fig. 5.6(a). The

dielectric material between graphene layer and silicon chosen as one with high-index

(ε(Al2O3)=9.1) and other with low-index (ε(hBN)=3.9204). Dielectric (buffer) materi-

als for graphene-based waveguides are chosen such that they have lattice matching with
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Figure 5.5: Mode profiles of Si rib waveguide: (a) TM; (b) TM contour; (c) TE; (d) TE
contour.

Figure 5.6: Waveguides with graphene as top (a) and slot (b) layers. tgraphene = 0.69 nm;
λ = 1550 nm; refractive indices (n) of Si, SiO2 and hBN are 3.4777, 1.444 and 1.98,
respectively.
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Figure 5.7: TM mode effective index plots of top-layer and slot-layer graphene.

Figure 5.8: TM mode absorption plots of top-layer and slot-layer graphene.
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graphene which is of hexagonal lattice. Use of this isolated layer prevent carrier injec-

tions between graphene and silicon. Also, growing graphene layer directly on silicon is not

preferred due to lattice mismatch between both. The first graphene EOM proposed exper-

imentally by Liu et al. [20] has Al2O3 as buffer layer between single layer graphene and sil-

icon, which showed electroabsorption modulation of 0.1 dB/µm. In their next study [114],

the same authors, proposed experimentally a double layer graphene modulator that has

bottom graphene layer directly on silicon and the other top graphene layer separated by

5 nm thick Al2O3, which showed ∼ 0.16 dB/µm. This improvement in absorption from pre-

vious design is due to the dielectric confinement of electromagnetic wave which generates

surface plasmons in the dielectric interface.

Figures 5.9 and 5.10 show TE and TM mode effective index results, respectively,

obtained for Si nanowire, Si–hBN–graphene and Si–Al2O3–graphene waveguides, where

ε(hBN)=3.9204 and ε(Al2O3)=9.1. In both modes, the high-index dielectric shows dis-

tinct variation in neff while that of the low-index is marginal. The TM mode is significantly

affected by change of dielectric material whereas TE does not. This task is carried out

to find out the suitable dielectric material if graphene layer is placed on top of silicon

core. Here, we infer that a high-index dielectric material is appropriate for waveguides

with top-layer graphene. We will be discussing this finding in further sections in detail.

The increase in neff for the waveguides with dielectric materials is attributed to the

dielectric confinement and that is why graphene is encapsulated by dielectric layers when

used in such hybrid waveguides. In the next section we will discuss modal solutions of

waveguides with graphene as slot layers. In the waveguides we discussed above, only

graphene possesses a complex dielectric constant (ε(ω) = ε1 +jε2) which is responsible for

absorption phenomena. Therefore, the absorption phenomena in graphene-based waveg-

uides is highly influenced by the thickness of graphene as well as the refractive index of

dielectric material used as isolation or buffer layer.

5.3 Characterisation of Slot Waveguides with Bilayer Graphene

Slot waveguides are suitable designs for enhancing optical confinement within the slot re-

gions. In a plasmonic waveguide, a dielectric–metal interface generates surface plasmons

in the slot which are ideal for electro-absorption phenomena. In a graphene-based waveg-
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Figure 5.9: TE mode effective index plots of Si nanowire and waveguides with graphene
as top layer; height-to-width ratio, w/a.

uide, absorption arises due to varying ε(ω) of graphene. Therefore, the objective in such

a waveguide is always to enhance interaction between graphene and incoming light wave

by placing graphene–dielectric stack in a region of maximum light intensity. Based on

results presented above, we infer that graphene as a horizontal slot serves for application

requiring high TM mode absorption.

Fabrication procedure for these waveguides are explained in Ref. [114]. Such design is

classified as a horizontal slot waveguide. The slot layer is first deposited onto a silicon layer

and then second silicon layer is grown. E-beam lithography (EBL) and oxygen plasma are

used to remove unwanted region and define the active region.

In this section, we present the results of two horizontal slot waveguides, one with

graphene–dielectric sandwich and the other with two graphene layers separated by a di-

electric, placed in core silicon. The latter waveguide design was taken from Ref. [103].

This is to study the influence of dielectric layers on waveguide parameters such as effective

index and absorption. These waveguides are shown in Fig. 5.11. Waveguide (a) is termed

as the one with dielectric-encapsulated graphene and the other waveguide (b) as the one

with graphene-on-graphene configuration, even though it is separated by a thin layer of

dielectric material. Thickness of each layer of graphene is taken as 0.69 nm and that of
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Figure 5.10: TM mode effective index plots of Si nanowire and waveguides with graphene
as top layer.

Figure 5.11: Silicon rib waveguides with graphene as slot layer: (a) graphene with en-
capsulated dielectric and (b) graphene directly on silicon and separated by a dielectric.
Refractive indices of Si, SiO2, hBN and Al2O3 are 3.477, 1.444, 1.98 and 3.017, respec-
tively.
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dielectric layers is set as 10 nm throughout the study.

The unique property of graphene is the tunable Fermi level (EF) through which ab-

sorption of light wave can be controlled. The Fermi level is adjusted by applying a gate

voltage. We study the modal properties neff and α for the voltage range from 0 to 1 eV.

The dielectric constants, ε(ω), of graphene are obtained by interpolating 0–1 eV with 55

discrete voltage levels each having a complex ε(ω) = ε1 + jε2. The variations of neff and

α for each of ε(ω) and plotted against the Fermi level, µ, as shown in Figure 5.12.

Figure 5.12: TM and TE mode effective index (a, c) and absorption (b, d) for waveguides
with dielectric layer encapsulated graphene and graphene-on-graphene configuration; (a)
and (c) show the change in real part of neff; λ = 1550 nm.

Plots shown in the figure show a distinct variation between 0.4 and 0.5 eV irrespective

of the type of modes. This is where peak absorption and maximum absorption occurs

as shown in (b) and (d), respectively. It can be seen that waveguide (b) outperforms

waveguide (a) in terms of neff. At µ = 0.51 eV, a peak in TM mode absorption is achieved

for both waveguides, which agrees with that of Gosciniak and Tan [6]. Due to the enz

effect, the α undergoes rapid rise and fall within this voltage range. The change in TE

mode absorption after 0.35 eV is similar to that noticed in the study by Phatak et al. [96].
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Next we carried out the study of mode profiles of both the waveguides and their

variations in neff and α as a function of w/a ratio. Height (w) of the waveguide is varied

from 0.4–1.0µm and corresponding width (a) varies from 0.3–0.9µm and the w/a ratio is

calculated accordingly.

Two voltage levels, 0.4 and 0.52 eV, corresponding to ON and OFF, respectively, are

chosen. The dielectric constants (ε(ω)) of graphene with λ=1550 nm at these levels are

given by,
ε(0.4 eV) = 4.7592 + j4.4441

ε(0.52 eV) = −0.4998 + j0.5340

We have used these ε(ω) values to characterize waveguides (a) and (b) in the next sections.

The reason why these voltages are chosen is that between 0.4 and 0.52 eV, the magnitude

of ε(ω) of graphene varies more than 30 times [6]. This is the stage where graphene’s

behaviour changes from dielectric to metallic such that the electrons behave like massless

Dirac fermions [90]. Mode profiles, effective index and optical absorption are studied for

the TE and TM guided modes of these waveguides.

5.3.1 Dielectric-encapsulated bilayer graphene waveguide

In this section, we study the waveguide (a) shown in Fig. 5.11 wherein each of the graphene

layers are encapsulated with dielectric materials such as hBN and Al2O3 of low- and high-

index, respectively. We used both dielectric materials separately and the mode profiles

are shown in following figures. Plots for effective index and optical absorption are shown.

For mode profiles, hBN is taken for ON condition whereas Al2O3 for OFF condition.

TE and TM mode profiles of waveguide (a) are shown in Fig. 5.13. Mode profile (a)

shows effective dielectric confinement of TM mode. Here µ=0.4 eV refers to the beginning

of transition state (from dielectric to metallic) where absorption in graphene undergoes

drastic changes. Figure 5.14 show TM and TE mode profiles, neff and α, for waveguide

(a) at µ=0.52 eV. This is where the enz effect is observed that leads to drastic rise and

fall in absorption, α. A high-index dielectric (ε(ω) = 9.1) is used to obtain these results,

since a high-index dielectric induces high TM mode absorption as seen in the figures.

The influence of high-index dielectric material on absorption phenomena of graphene-

based waveguide is shown in above figures. The TE neff has shown an increase from

2.300564 to 2.401029 which is attributed to the high-index dielectric between the bilayer
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Figure 5.13: TM and TE mode profiles of low-index dielectric-encapsulated graphene
layers. (a) TM; (b) TM electric field; (c) TE; (d) TE electric field. ε(hBN) = 3.9204; ON:
ε(0.4 eV) = 4.7592 + j4.4441; λ = 1550 nm.

graphene. Similarly, TM mode neff increases from 2.016236 to 2.383794. In case of optical

mode absorption, the TM mode undergoes drastic increase in α due to the enz effect. It

reaches an absorption (α) of 4.585 dB/µm at 0.52 eV from 0.236 dB/µm at 0.4 eV. This is

again attributed to the change in chemical potential as well as the high-index dielectric

acting as buffer layer between graphene layers.

Next we analyse the changes in neff and α with respect to aspect ratio (w/a). Figures

5.15 and 5.18 show the effective index (neff) and absorption (α) results for TM and TE

modes of low- and high-index dielectric-encapsulated graphene layers for ON and OFF

ε(ω) at λ = 1550 nm.

In plots shown above, the influence of high-index dielectric material is distinct in case

of TM mode neff and α. In case of TE mode, both these parameters are very close to

each other for ON (0.4 eV) and OFF (0.52 eV) conditions, showing TE mode neff and

α remain unaffected by the index of the dielectric material. The absorption (α) of TM
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Figure 5.14: TM and TE mode profiles of high-index dielectric-encapsulated graphene
layers. (a) TM; (b) TM electric field; (c) TE; (d) TE electric field. ε(Al2O3) = 9.1; OFF:
ε(0.52 eV) = −0.4998 + j0.5340; λ = 1550 nm.

mode is significantly larger than that of the TE mode. Therefore, the change in chemical

potential (µ), from 0.4 to 0.52 eV has a stronger influence on TM mode. In this study,

the thickness of dielectric material was maintained at 10 nm. To bring in a change in TE

modal properties, we infer that the dielectric thickness needs to be increased, which will be

dealt in later sections. We have now studied the influence of µ and index of the dielectric

material on modal properties of dielectric-encapsulated graphene-based waveguides.

5.3.2 Graphene-on-Graphene slot waveguide

Graphene-on-graphene configuration was first experimentally proposed by Liu et al. [114].

Their design had two layers of graphene separated by 5 nm thick Al2O3 which acted as

isolation layer, placed on top of silicon core. Graphene directly on silicon is not preferred

due to lattice mismatch between both. For this study, the waveguide design adapted from

Ref. [103] was chosen. We follow their design of graphene–Al2O3–graphene stack placed

as slot as shown in Fig. 5.11(b).
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Figure 5.15: Mode effective index and absorption of TM and TE modes in a dielectric-
encapsulated bilayer graphene waveguide. Plots (a) and (c) show the change of magnitude
in real part of neff.

Figures 5.16 and 5.17 show TM and TE mode profiles and electric field distribution in

the waveguide. The waveguide with high-index dielectric outperforms in terms of both neff

and α when compared to that of low-index dielectric stack. An absorption of 4.98 dB/µm

is obtained in graphene–dielectric–graphene stack, whereas in the dielectric-encapsulated

graphene waveguide, α = 4.58 dB/µm. This difference is attributed to the dielectric

absorption that takes place in the latter, even though the difference is only marginal. On

the other hand, in the latter waveguide, the dielectric layer encapsulation prevents carrier

injection into silicon that arises when gate voltage is increased.

Figure 5.18 show the effective index and absorption plots obtained for graphene-on-

graphene design as a function of w/a ratio. Plot (a) shows a marked difference from

previous design (Fig. 5.15(a)) where neff variation for both dielectric materials are signifi-

cant. In graphene-on-graphene configuration, the neff of ON-Al2O3 and OFF-hBN are too

close. Similarly, in plot (c), neff for both dielectric materials irrespective of ON or OFF

condition, lie on the same line which is similar to that of previous design. In terms of
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Figure 5.16: TM and TE mode profiles of waveguide with graphene–hBN–graphene stack.
(a) TM; (b) TM electric field; (c) TE; (d) TE electric field. ε(hBN) = 3.9204; ON:
ε(0.4 eV) = 4.7592 + j4.4441; λ = 1550 nm.

absorption shown in plot (b), G-on-G design shows higher absorption (α = 4.9797 dB/µm)

than the dielectric-encapsulated graphene waveguide (α = 4.5856 dB/µm).

5.3.3 Summary

We have now analysed the modal properties of both designs viz., dielectric-encapsulated

graphene and graphene-on-graphene configuration. Plots from both designs show the

chemical potential (µ) dependence of Re(neff) and α on TM and TE modes. The change

in complex dielectric constant of graphene, ε(ω) = ε1 + jε2, affects the modal properties

of the waveguides. Therefore, the ε(ω) of graphene plays a crucial role in the electro-

absorption phenomena. Electric field plots for OFF condition, shown by sharp peaks in

plot (b) for both designs indicate very strong confinement within graphene layers.

Polarization-dependent loss is noted from both TM and TE mode absorption plots

(b) and (d), respectively, shown in Figs 5.15 and 5.18. At dimensions of height 0.3 nm

and width 0.4 nm, at 0.52 eV, TM achieves a loss of 4.9797 dB/µm whereas that of TE

is 0.0201 dB/µm, which proves a very strong absorption in the former. At 0.25 eV, the
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Figure 5.17: TM and TE mode profiles of waveguide with graphene–Al2O3–graphene
stack. (a) TM; (b) TM electric field; (c) TE; (d) TE electric field. ε(Al2O3) = 9.1; OFF:
ε(0.52 eV) = −0.4998 + j0.5340; λ = 1550 nm.

absorption in both modes are 0.2697 and 0.2566 dB/µm, respectively. Such strong polar-

ization dependence could be utilized to realize a compact polarizer [103]. Variations in

modal properties were not significantly different in both designs. In fabrication point of

view, dielectric-encapsulated graphene is preferred since it eliminates performance deteri-

oration due to carrier injections between layers.

Both waveguide designs are termed bulk since they have more than two to three layers.

Fabrication of such structures possesses challenges in terms of layer alignment. Encap-

sulating graphene layers is inevitable as it enhances dielectric confinement and generates

surface plasmons which are crucial for modulation. Graphene–dielectric–graphene layers

form a parallel plate capacitor model and the maximum operating bandwidth is limited by

the RC constant of the device. In terms of speed of modulation, a high quality graphene

layer can operate on the timescale of picoseconds which implies that graphene-based elec-

tronics have the ability to operate at 500 GHz [6].
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Figure 5.18: Mode effective index and absorption of TM and TE modes in a graphene-on-
graphene slot waveguide. Plots (a) and (c) show the change of magnitude in real part of
neff.

5.4 Characterisation of Trilayer Graphene-based Waveguides

Single layer graphene has shown a relatively small absorption of πα = 2.293% of incident

light [87, 116]. Many experimental and theoretical studies [6, 29] have proposed devices

with graphene layer thickness as 0.7 nm, equivalent of bilayer graphene (BLG). Stacking

of graphene layers plays an important role as the layers of graphene are shifted over the

length of one C–C bonding with respect to the other. In BLG, Bernal stacking or AB is

considered the most stable structure [117,118].

In 2011, three groups have experimentally shown that ABC stacked trilayers are unique

among multi-layers of graphene [81, 82, 119]. Zhang et al. [82] showed experimentally

the quantum Hall effect in trilayer graphene. Shih et al. [119] demonstrated a solution-

phase technique for producing large area trilayer graphene with controlled stacking. Wu

[120] showed trilayer graphene with complex interlayer transitions have a rich electronic

structure when compared to SLG and BLG. Sun et al. [121] have successfully synthesised

large area of bi-, tri- and tetra-layers of graphene with Bernal stacking.
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Very recently, Fan et al. [122] proposed a four-layer graphene electroabsorption mod-

ulator. Therefore, two- to four-layer thickness of graphene layers prove to be ideal for

future electronic devices. Recently, few studies have considered thickness of graphene as

1 nm for their designs [123–125]. Simulation results are similar for graphene thickness 0.3

or 1 nm [126]. In this study, we have chosen thickness of graphene layers to be 1.12 nm [68]

which is equivalent to a trilayer graphene (TLG) stack.

5.4.1 Top- and slot-graphene waveguides

We begin the study of trilayer graphene waveguides with a comparison between top and

slot-layered graphene-based waveguides, which was earlier discussed in Section 5.2.2. We

use similar waveguide designs as shown in Fig. 5.6, with thickness of graphene taken as

1.12 nm. Here. trilayer graphene is encapsulated with high-/low-index dielectric materials

as shown in Fig. 5.19. We consider orientation is graphene as random but not confined to

ABC or ABA stacking, which will be discussed in the next section.

Figure 5.19: Top (a) and slot (b) waveguides with trilayer (1.12 nm) graphene, encapsu-
lated with dielectric materials. Dotted lines indicate dielectric–graphene–dielectric stack.

In Section 5.2.2, we studied mode profiles of top versus slot-layered graphene waveg-

uides, for µ = 0 − 1.0 eV. In this section, we use the same waveguide designs but with

trilayer graphene encapsulated with dielectric materials and calculate the mode effective

index and absorption for µ = 0− 2.0 eV.

The Fermi level is extended to 2.0 eV (Fig. 5.20) to observe any distinct variations

in neff and α beyond 1.0 eV. It is interesting to note that real and imaginary parts ε(ω)

do not show any distinct variation beyond 1.0 eV, other than the dielectric to metallic

transition stage at 0.4–0.53 eV. The dielectric layer thickness was kept constant at 10 nm.
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Figure 5.20: Complex dielectric constants of trilayer graphene for Fermi level up to 2.0 eV.

Width and height of the waveguide are 0.4 and 0.3µm, respectively. Low-index dielectric

is taken as hBN with ε = 3.9204 whereas high-index dielectric is taken as Al2O3 with

ε = 9.1.

5.4.1.1 Top layer graphene

Here, the dielectric–graphene–dielectric stack is placed as a layer on top of 0.3µm thick

silicon core as shown in Fig. 5.19(a)). In Section 5.2.2, we discussed the guided modes in a

graphene layer on top of silicon with a buffer material (dielectric) in between. Now we are

considering another dielectric film on top of graphene thus forming dielectric–graphene–

dielectric stack. Figure 5.21 show plots obtained for effective index (neff) and absorption

(α) as a function of chemical potential (µ = 0− 2.0 eV).

In the neff plot for TM (Fig. 5.21(a)), first peak occurs at 0.39 eV (2.804635), falls and

next peak occurs ar 0.53 eV (2.805636). Such a trend is observed in the graphene as top

layer waveguide with only one dielectric material with first peak at 0.4 eV (2.515052) and

next at 0.52 eV (2.514053) as shown in Fig. 5.7. We note that adding a dielectric layer on

top of graphene shifts the high peak magnitude from first to second.

The TM mode profile in Fig. 5.22 shows a sharp peak at the dielectric–graphene

interface due to enz effect. The waveguide is in OFF condition which occurs at µ =

0.5300 eV with ε(ω) = −0.1099 + j0.3190.
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Figure 5.21: Waveguide with trilayer (1.12 nm) graphene as top layer. Plots (a) and (c)
show variations of real part of neff as a function of chemical potential, µ.

5.4.1.2 Slot layer graphene

In this waveguide, trilayer graphene is placed as a horizontal slot layer in the core Si (Fig.

5.19(b)). Waveguide dimensions are as shown in Fig. 5.6(b). Figure 5.23 shows plots of

neff and α for TM and TE modes of waveguide with trilayer graphene as slot layer.

TM mode absorption undergoes drastic rise, reaching up to 9.3 dB/µm at µ = 0.53 eV

(ε(ω) = −0.1099 + j0.3190). This rise is attributed to the enz effect as the magnitude

of Re(ε(ω)) approaches −0.1099. For both TE and TM modes, the neff of the waveguide

with high-index dielectric is larger than the one with low-index. In case of TM mode, neff

shows a steady trend after the rise and fall at 0.53 eV, whereas for TM mode, neff steadily

falls after the peak at 0.4 eV. Only absorption (α) shows a huge difference between TM

and TE modes. Even with high-index dielectric (ε(Al2O3)=9.1), the TE mode absorption

peaks only up to 0.11 dB/µm even though the dielectric–graphene–dielectric stack is placed

where there is maximum field intensity in the waveguide.

The TM mode profile and electric field intensity plots are shown in Fig. 5.24 which

shows a strong peak in the graphene–dielectric interface. The waveguide with high-index

dielectric achieves maximum absorption of 9.3 dB/µm whereas the waveguide with low-

index dielectric, the absorption is 6.4 dB/µm.
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Figure 5.22: TM mode profile (a) and corresponding electric field, TM Ey (b) for trilayer
graphene as top layer waveguide.

Figure 5.23: Slot waveguide with trilayer (1.12 nm) graphene. Plots (a) and (c) show
variations of real part of neff as a function of chemical potential, µ.

5.4.1.3 Summary

We have now studied the modal properties of dielectric-encapsulated graphene stack,

placed as top layer and as a slot layer in the waveguide. We infer that only TM mode shows

a high absorption in a horizontal slot waveguide with dielectric-encapsulated graphene as

slot layer. In terms of fabrication, the latter design is comparatively easier than the for-

mer. Graphene–dielectric stack as slot suffers from layer alignment. On the other hand,
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Figure 5.24: TM mode profile (a) and corresponding electric field, Ey (b) for trilayer
graphene as slot layer waveguide.

graphene layers interact with maximum field intensity only when placed as a slot. This

aspect is dealt in further sections and we suggest a dielectric material combination for

improving TE mode absorption with graphene as top layer waveguides.

In case of effective index, the TE mode at graphene-as-top design with high-index

dielectric is higher (2.93718) than that at graphene-as-slot design (2.90638). Only in

terms of absorption, the latter design outperforms the former by several magnitudes. We

observe that to improve modal properties in graphene-as-top layer design, it required a

high-index dielectric encapsulated graphene layer placed on top of silicon.

5.4.2 ABA and ABC Stack Waveguides

Monolayer graphene is a honeycomb lattice of carbon atom with C-C bond distance

1.42 nm. Bilayer graphene is of AB or Bernal stacking with inter-layer spacing d0 ≈ 0.334 nm.

In AB stacking, the atoms in top layer are shifted to one C–C bond distance with respect

to the other. In case of trilayer graphene, similar trend is followed in ABC (rhombohe-

dral) stacking. Here A, B and C refer to the first, second and third layers of graphene,

respectively. In bi and trilayers, the inter-layer coupling leads to drastic changes in the

electronic band structure of graphene. Section 3.2.3 explains the different stacking possi-

bilities observed in bi and trilayers.

Bao et al. [127] have shown π-band dispersions for AAA, ABA and ABC stackings and

suggest that mono- and bi-layer graphene are not suitable for electronic devices due to

the absence of bandgap even under an applied electric field. Monolayer graphene has zero
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density of states (DOS) at the Dirac point whereas trilayer has high density of states due

to the formation of flat band at the K point near Fermi level.

In this section, after conducting a detailed study on waveguides with graphene-as-top

and graphene-as-slot, we propose waveguide designs with suitable combination of dielectric

materials for desired performance parameters such as extinction ratio (ER) and insertion

loss (IL). So far we have presented results for graphene-based waveguides with low-index

(hBN) and high-index (Al2O3) dielectric material combinations. Here we introduce an-

other dielectric material, hafnium oxide (HfO2), which is getting attention recently for use

with graphene-based waveguides [128, 129]. Hafnium oxide is classified under materials

with very high dielectric constant; ε = 25.

We carried out a brief study of two waveguides using HfO2 as dielectric material. The

objective of this study is to observe the TE (TE1, TE2, TE3) and TM (TM1, TM2, TM3)

guided modes when increasing the width of the core from 0.4 to 2.0µm at a constant

height of 0.3µm. Here we studied only neff as optical mode absorption (α) is studied in

further sections in detail. The results are presented as follows.

Figure 5.25: Effective refractive indices (Re(neff)) of quasi-TE and quasi-TM modes of
waveguide with HfO2-encapsulated trilayer graphene as top layer.

Figures 5.25 and 5.26 presents Re(neff) results of guided modes for waveguide with

very high-index dielectric (ε = 25) encapsulating graphene as top layer and slot layer,

respectively. Both TM and TE modes show similar increasing trend and after width

0.8µm the increase is very minimal. This trend is different from the one observed for w/a
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Figure 5.26: Effective refractive indices (Re(neff)) of quasi-TE and quasi-TM modes of
waveguide with HfO2-encapsulated trilayer graphene as slot layer.

ratio where the increase in neff was exponential since there is change in both width and

height of the core.

5.4.2.1 Proposed waveguide designs

Figures 5.27(a) and (b) shows the waveguide designs proposed in this study. Dielectric–

graphene–dielectric layers are denoted by 2tD+tG representing two dielectric layers encap-

sulating trilayer graphene. Sandwiching graphene within dielectric layers enables effective

dielectric light confinement at nanoscale level and generate surface plasmons at the in-

terface. In the energy bands of mono, bi and trilayers of graphene the conduction band

(CB) and valence band (VB) meets at Dirac point. For bi and trilayers, a bandgap ap-

pears when applying gate voltage. The reason why we have chosen trilayer graphene in

this study is that as monolayer graphene absorbs only 2.3% of incident light, so few layer

graphene will be beneficial for electrooptic devices wherein absorption gains prominence.

Fabrication of both the proposed slot- and top-layer graphene waveguides is compar-

atively easier as it starts with conventional silicon-on-insulator pattern. Production of

large area trilayer graphene with controlled stacking is discussed by Shih et al. [119]. Very

recently, Sugawara et al. [130] has demonstrated selective fabrication of ABA and ABC

stacking of trilayer graphene. hBN–graphene sheets are obtained through a two-step chem-

ical vapour deposition (CVD) process [131]. Deposition of Al2O3 is carried out using ALD

technique [114]. Formation of hafnium oxide–graphene hybrid was discussed by Ansell et

144



5.4. Characterisation of Trilayer Graphene-based Waveguides

Figure 5.27: Proposed designs for trilayer graphene with ABA Bernal and ABC rhombo-
hedral stacking order in as a dielectric-encapsulated layer placed as slot (a) and as top
(b); tD, thickness of dielectric layer; tG, thickness of graphene.

al. [128]. Currently, various fabrication techniques are available so our designs have high

degree of fabrication possibilities [114,128].

5.4.2.2 Results and Discussion

Figures 5.28 and 5.29 show effective index and absorption plots for TE and TM modes

of top- and slot-graphene (trilayer) waveguides. Here the thickness of dielectric is fixed

as 10 nm throughout the study. The mode effective index follows similar trend in both

designs with a peak at 0.5 eV which is clearly seen in slot-graphene (neff = 2.55) waveguide

but a slight increase in top-graphene (neff = 2.41) waveguide, in case of HfO2 buffer. This

is due to 0.15µm silicon encapsulating the graphene–dielectric sandwich in the former. On

the other hand, in slot-graphene, optical absorption shows a distinct peak (12.5 dB/µm)

for HfO2. Whereas, for top-graphene, it reads a meagre 0.6 dB/µm even with a very

high-index dielectric such as HfO2 (ε = 25). This is due to the fact that, in slot design,

graphene is placed at the centre of the waveguide. Many studies proposed slot waveguide

placing graphene at the location of maximum light intensity [6, 105,132].

Dielectric constants of materials used for above plots are as follows: ε(hBN) = 3.9204;

ε(Al2O3) = 9.1; ε(HfO2) = 25. TM effective index in (a) of both figures show a significant

difference in neff of very high-index dielectric. TE mode absorption in (d) of both fig-

ures, the waveguide with very high index dielectric is significantly ahead in the top-layer

waveguide than that of the slot-layer. This suggests the point which we put forward for
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Figure 5.28: TE and TM mode effective index and optical absorption of waveguide with
graphene–dielectric stack as top layer.

graphene–dielectric stack as top layer that TE mode can be enhanced to a good extent

with HfO2–graphene–HfO2 combination on top of silicon core.

Designs proposed by Phatak et al. [96] and Liu et al. [114] have graphene as top layer.

In the former study, their design involves two graphene layers separated by Al2O3 which

involves removal of buried oxide (BOX) through hydrogen fluoride (HF) etching. This

design deliver a bulk waveguide with complex fabrication steps. Therefore, in this study,

we adopted a pattern of high-index dielectric (HfO2) and trilayer graphene in our designs

which is relatively simple and straightforward. By varying the dielectric layer thickness,

we have shown ways to enhance TE mode absorption which is lagging in their designs.

Mode profile in Fig. 5.30(c) show the mode shifts towards graphene–dielectric stack

which enhances the TE mode absorption. Our design, with HfO2 as dielectric of thickness

50 nm achieves a TE absorption of 0.18µm which was only 0.14µm in Ref. [96] with complex

design process. Recently, Aznakayeva et al. [129] proposed low voltage modulators using

graphene and hafnium oxide. So, in this study, we aim to propose simple designs for

graphene as slot and top layer designs and deliver ways to tune performance parameters
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Figure 5.29: TE and TM mode effective index and optical absorption of waveguide with
dielectric–graphene–dielectric stack as slot layer.

Figure 5.30: Mode profiles of dielectric-encapsulated trilayer graphene waveguide: (a)
hBN; (b)Al2O3; (c) HfO2. In (c) mode moves towards the graphene–dielectric stack.

by varying thickness of different dielectric materials with low- (hBN), high- (Al2O3) and

very high-index (HfO2). Steps for fabrication can be taken from experimental studies

[81,82,114,120].

We now present and discuss the results obtained for varying dielectric layer thickness

(tD) encapsulating the graphene layers and the variations as a function of change in wave-

length (λ). Performance parameters such as extinction ratio (ER) and insertion loss (IL)

of two proposed waveguides (slot-graphene and top-graphene) are discussed in this section.
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Figure 5.31: TM (a) and TE (b) mode optical absorption for varying dielectric thickness
in a graphene-as-top layer waveguide.

Figure 5.31 shows optical absorption of top-graphene waveguide at µ = 0.25 eV, which

refers to ON voltage; ε(ω) = 1.3335 + j5.1690. In both TM and TE plots, high-index

dielectric shows significant rise when compared to the other two. The reason is attributed

to the very high dielectric constant of HfO2. Waveguide with HfO2 shows a peak absorption

of α = 0.18 dB/µm within tD =50–55 nm range. This design shows a good enhancement

of TE mode from the absorption of α = 0.14 dB/µm shown in Ref. [96]. Therefore, we

propose, for a top-graphene waveguide, a high-index buffer with trilayer graphene is a

suitable combination. A combination of trilayer graphene and high-index buffer proves to

be a potential design for electro-optic modulation especially for low power consumption

applications [129].

Next we analyse the broadband response of the waveguide and the results are shown

in Fig. 5.32. Operation wavelength range is another important parameter of a modulator.

Modulators are expected to operate in three major telecom windows viz., 0.85, 1.3 and

1.5µm. Our plots have covered the wavelength from 1.3 to 1.7µm.

Both designs show a peak at λ = 1550 nm which is in accordance with results in

Ref. [6]. In top-graphene design, the TM mode absorption of high-index dielectric with

α = 0.62dB/µm significantly outperforms other two (α = 0.2 dB/µm and α = 0.1 dB/µm

for Al2O3 and hBN, respectively). In slot-graphene waveguide, peak absorption reaching

12 dB/µm was achieved by high-index dielectric. This is attributed to the fact that the

graphene–dielectric stack is positioned at the maximum field intensity region in the waveg-

uide. Therefore, using a high-index dielectric as buffer layer between graphene and silicon

results in a very high absorption waveguide. In Fig. 5.32, the dielectric layer thickness is
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Figure 5.32: Optical absorption for TM modes of top-graphene (a) and slot-graphene (b)
waveguides; µ = 0.53 eV.

taken as 10 nm throughout.

Most experimental studies [114,115] have proposed waveguide designs with graphene as

top layer, as it has high fabrication possibilities. In line with their results, here we propose

a simple design using trilayer graphene (1.12 nm) and high-index dielectric (HfO2, ε = 25)

combination that enhances the TE and TM mode confinements. Top-graphene achieves

neff = 2.868 which is higher than that of a TE rib (2.798) and TM rib (2.530) designs in

Ref. [96].

Broadband response of top- and slot-graphene waveguides at µ = 0.4 eV are shown

in Fig. 5.33. Mode effective index has shown a steady decrease for increasing wave-

length in both waveguides. In slot-graphene, low- and high-index dielectrics have a high

effective index of 2.38 and 2.60, respectively. Whereas in top-graphene, both have 2.60

and 2.63, respectively. Large variation in slot design is due to the reason that dielectric–

graphene–dielectric layers are in the region with maximum light intensity. So the influence

of dielectric layers on waveguide performance is more in slot-graphene when compared to

top-graphene design. This imposes a thickness limitation of dielectric layers in slot waveg-

uides wherein bilayer graphene layers are separated with a dielectric [6, 103] because it

leads to increase in capacitance which degrades mode propagation.

The performance parameters such as insertion loss (IL) and extinction ratio (ER) are

calculated as follows:

IL = −10log10(Tmax) ER = 10log10

(
Tmax

Tmin

)
(5.2)

ER is obtained for both designs between the major telecom windows, 1.3–1.7µm. The
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5.4. Characterisation of Trilayer Graphene-based Waveguides

Figure 5.33: TE and TM mode effective index of graphene-slot waveguide for varying
wavelength (λ): ON, 0.4 eV (a, c); OFF, 0.53 eV (b, d).

formula for ER is explained as below:

ER = 10log10

(
Tmax

Tmin

)
= 10log10

(
exp−4παON L

exp−4παOFF L

)
where αON and αOFF denote the imaginary parts of neff at ON and OFF states of the

waveguide, respectively, and L the length of graphene sheet.

Figure 5.34: Top-graphene: TM mode (a) extinction ratio and (b) insertion loss for varying
dielectric layer thickness.

Next, the influence of dielectric layer thickness (tD = 5−70 nm) on ER and IL is stud-
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ied. Figure 5.34(a) and (b) show ER and IL for graphene as top layer design, respectively.

Length of graphene active layer is taken as 5µm. Design with very high-index has shown a

steady increase in both designs whereas high- and low-index have shown a steady decrease

apart from ER. Therefore, by controlling the thickness of dielectric layers, desired waveg-

uide performance can be achieved, say ER 40–60 dB and IL 2–3 dB/µm. Broken marked

lines in those figures show optimum ER and IL that can be obtained using high-index

dielectric. This is very important as using high-index dielectric such as HfO2 can be used

for modulation around 1 V [128]. In case of high- and low-index, ER and IL variation

is modest up to a thickness of 40 nm. Even after, up to 70 nm, both dielectrics vary in

performance slightly. Therefore, in case of top-graphene design, the influence of high-

or low-index on propagation is only minimal. This leads to the need of very high-index

dielectric material to encapsulate graphene in a top-graphene design.

Figure 5.35: Slot-graphene: Extinction ratio (a) and insertion loss (b) for varying dielectric
thickness.

Figure 5.35(a) and (b), respectively, show ER and IL for varying tD from 5 to 70 nm.

Very high-index has shown a sharp increase from 5 nm thickness whereas high- and low-

index have shown a steady decrease. Also, the ER and IL variations for high- and low-index

are placed apart. This proves the influence of dielectric layer being more in slot-graphene

when compared to top-graphene design. Therefore, using a very high-index, tD= 5 nm will

achieve a high ER of 80 dB. On the other hand, high- and low-index dielectric materials

provide optimum ER and IL within the range 20–70 and 3–4 dB/µm, respectively. Based

on these results, we infer that very high-index dielectric materials are not suitable for slot-

graphene design. Also, using our results, we can ascertain the optimum dielectric thickness

needed for high- and low-index to achieve desired performance that can be decided for top-
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graphene and slot-graphene waveguides.

5.5 Summary

In this chapter, we presented a detailed analysis of tasks carried out in this study of

graphene–silicon hybrid waveguides. Starting with characterization of silicon nanowires,

we analysed the optimum dimensions of silicon on insulator will be height 0.3 nm and

width 0.4 nm. Position of graphene layer in the waveguide is crucial for performance, so

two designs (top- and slot-layer graphene) were studied. Then we moved on to the study of

importance of dielectric layer encapsulating graphene. We observed the minute variations

in mode effective index (neff) and absorption (α) with respect to low- and high-index

dielectric materials.

We proposed two waveguide designs based on these results. We characterised the de-

signs we proposed and found suitable dielectric–graphene combinations for graphene-as-top

layer and graphene-as-slot layer waveguides. Our results were based on recent experimen-

tal findings on trilayer graphene [119,120,128,130,131] and the fabrication possibilities of

proposed waveguide designs are straightforward.
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Chapter 6

Conclusions and Suggestions for
Future Research

6.1 Conclusions

In the last few decades, a new frontier has emerged in the field of optoelectronics. The

advent of 1D and 2D materials such as carbon nanotubes and graphene [67] has resulted

in a wide range of applications hybridising them with existing designs, for instance, op-

toelectronic modulators [20, 114]. Graphene is expected to play a major role in silicon

nanophotonics reducing costs significantly and in increasing the communication band-

width. Its inherent switching ability as a function of varying gate voltage makes graphene

a potential material in the field of optoelectronics. Owing to its thickness (monolayer,

0.4 nm; bilayer, 0.69 nm; trilayer, 1.12 nm) [68], graphene is not a stand-alone material.

Therefore, the remarkable optical properties of graphene can be utilized by integrating it

with existing silicon (Si) waveguides by forming a hybrid structure.

The objectives of this study is to design and characterise graphene-based hybrid waveg-

uides using Finite Element Method. The objectives outlined in this thesis have been suc-

cessfully accomplished and a detailed analysis of waveguide designs undertaken for this

study are presented. We focussed on the study of influence of dielectric materials encap-

sulating graphene layers in the waveguide. The positioning of this dielectric–graphene–

dielectric stack is of prime importance as graphene is an active layer in the electro-optic

modulation process. Benchmarking is an essential task in research as it is necessary to val-

idate our method with published results. Theoretical and experimental studies [6, 20, 29]

were chosen and using our models and understanding, we obtained their results through

our mode solvers viz., complex and perturbation.
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6.1. Conclusions

In Chapter 1, the recent trends in nanophotonics and fundamentals behind light wave

propagation are explained. Thin film fabrication methods and processes involved are

explained in detail. Mechanism of modulation is given a brief introduction. Study of

experimental methods helped us in designing waveguides with high degree of fabrication

possibilities. The designs we proposed at the end of this study are CMOS compatible and

can be effectively integrated with on-chip optical interconnects. Study of waveguides is

the primary objective of this research. So, in Chapter 2, we provided the fundamentals

behind light–matter interaction and types of waveguides such as planar, slab and rib.

Plasmonic waveguides are given a brief introduction. This thesis is based on Finite element

method [45].

Graphene is an wonder material which has an inherent ability of tuning the Fermi

level by applying a gate voltage. This phenomena makes graphene an unique material for

designing electro-optic modulators. The speed of modulation is in picoseconds timescale

[20]. Therefore a detailed study of physical, electrical and optical properties of graphene is

given in Chapter 3. Graphene possesses a complex conductivity (σ(ω) = σ1 + jσ2) which

is used to derive the complex dielectric constant (ε(ω) = ε1 + jε2) values as a function

of Fermi level or chemical potential (µ). The enz effect in graphene causes rapid rise

in absorption of TM mode between 0.4 and 0.55 eV; for example, in a bilayer graphene

of thickness 0.69 nm, ε(0.51 eV)= −0.0839 + j0.5728. The thickness- and wavelength-

dependent ε(ω) are calculated.

Dielectric constants of graphene depend on thickness of graphene layer (tg), chemical

potential (µ) and wavelength (λ). Therefore, a detailed study on physical properties of

mono-, bi- and trilayers of graphene and the electronic band structure are discussed in

Chapter 3. Optical conductivity (σ(ω)) and electrical permittivity (ε(ω)) are complex

quantities in graphene. So the interband and intraband transitions are presented in this

chapter. Our analytical method derived for calculating ε(ω) was benchmarked with three

studies [6,28,29] which proved the validity and accuracy of our derived method. Through

the MATLAB code written for the derivation, we obtained ε1 + jε2 for 55 discrete voltage

levels from 0 to 1.0 eV and further extended up to 2.0 eV.

Benchmarking task was carried out for validating and improving our perturbation

and complex mode solvers. Limitations are identified for both codes. In Chapter 4,
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we have presented our results of benchmarking with three published studies [6, 20, 29].

We successfully benchmarked the effective index (neff), absorption (α) and electric field

intensity plots using our in-house solvers as well as COMSOL. The aspect of benchmarking

helped us validate and improve our understanding before proposing new waveguide designs

in line with fabrication possibilities.

We proposed two novel waveguide designs for electro-absorption modulator that forms

a hybrid structure of graphene and silicon. We observed that the positioning of graphene

sheets as well as the layer thickness plays a vital role in influencing the modal properties

of the waveguide. Our results of performance parameters such as ER and IL will help

designing waveguides for required applications. We finally proposed a combination of

high-index dielectric encapsulated graphene for waveguides with graphene as top layer.

For waveguides with graphene as slot layer, reduced thickness, say 5 nm, of high-dielectric

material yield good results.

6.2 Suggestions for Future Research

a) Benchmarking task exposed the limitations in our perturbation and complex mode

solvers. Results from our codes indicated a close agreement with published studies.

For accurate determination of modal properties, the perturbation code has to be

debugged to be able to handle ε(ω) values with real part (ε1) smaller than the

imaginary part (ε2).

b) Complex code, even though it can handle any values of ε(ω), it needs to be improved

further so that it accommodates mesh dimensions beyond 110× 110. The ability to

handle mesh dimension of at least 500× 500 is required using complex code.

c) Computation time is another factor noticed while using our codes but it can be

overcome by using latest versions of computers with at least 16GB RAM. Even

then, both codes need to be debugged for reducing computation time when studying

bulk waveguides of more than three layers.

d) Graphene-based waveguides rely on light–graphene interaction so efficient designs

are required that would position graphene stack in the field of maximum intensity.

e) Through our findings, it is shown how dielectric materials with graphene influence
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modal properties of the waveguide. Now we have a range of 2D materials such as

phosphorene, TMDs, silicene, etc. which can be integrated with graphene to enhance

performance. Graphene–polymer combination is also a prospective combination for

high speed electro-absorption modulators.
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Appendix A

To calculate complex ε(ω) of
graphene

Section 3.5.1 explains the analytical method we adopted for calculating the complex di-

electric constants of graphene, ε(ω) = ε1 + jε2. From equation 3.69, it is noted that ε(ω)

depends on wavelength (λ) and thickness of graphene layers. Figures 3.24 and 3.26 show

the variations in values of ε(ω) as a function of thickness of graphene layers and wave-

length, respectively. Table A.1 lists the complex ε(ω) values obtained using our MATLAB

code shown in Box A.1.

Table A.1: Complex dielectric constant values, ε(ω) = ε1 + jε2, for µ = 0− 1.0 eV.
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The interactive MATLAB code written for calculating these complex values of ε(ω)

are given as follows:

 

%Calculation of dielectric constant 

clc 

p_vac = 8.8542e-12;  

e = 1.6022e-19; 

c = 299792458; 

%h = 1.0546e-34; 

h_p = 6.626070040e-34; 

h = h_p/(2*pi); 

%h = 6.5821e-16; 

sig_0 = 60.85e-6; 

%tau_1 = 1.2e-12; 

%tau_2 = 1e-14; 

tau_1 = 8.3e11; 

tau_2 = 1e13; 

j = sqrt(-1); 

k_B = 1.3806503e-23; 

%k_B = 8.617e-5; 

T = 300; 

h_g = 54e-3*e;   

lambda = 1.55; 

mu = 0.507; 

g_layer = 0.7; 

  

%a = 'Wavelength = '; 

%lambda = input(a); 

w = 2*pi*c/(lambda*1e-6); 

%b = 'Chemical potential ='; 

%mu = input(b); 

mu_c = mu*e;  

%c = 'graphene layer ='; 

%g_layer = input(c); 

g = g_layer*1e-9; 

  

sig_inter_a = (sig_0/2)*(tanh((h*w+2*mu_c)/(4*k_B*T))+ 

tanh((h*w-2*mu_c)/(4*k_B*T))) 

  

sig_inter_b = 

j*(sig_0/(2*pi))*log((h*w+2*mu_c)^2/(((h*w-

2*mu_c)^2)+(2*k_B*T)^2)) 

  

sig_intra = j*((4*sig_0)/pi)*((mu_c)/(h*w+i*h_g)) 

  

sig_total = sig_inter_a - sig_inter_b + sig_intra  

eps = 1+(j*sig_total/(w*p_vac*g)) 

n = sqrt(eps) 

Abs=abs(eps)  

  

Box A.1: Code for deriving complex values of ε(ω). Inset shows the plot obtained for ε(ω)
varying within the voltage range, µ = 0− 1.0 eV
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ers, “Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene

superstructure dynamics,” Science, vol. 345, no. 6193, pp. 200–204, 2014. 81

[89] A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nature Photonics,

vol. 6, no. 11, p. 749, 2012. 82, 118

[90] K. Novoselov, A. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos,

and A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature, vol.

438, no. 7065, pp. 197–200, 2005. 82, 131

[91] Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic

devices,” ACS Nano, vol. 6, no. 5, pp. 3677–3694, 2012. 82, 83

[92] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum

hall effect and berry’s phase in graphene,” Nature, vol. 438, no. 7065, pp. 201–204, 2005. 82

[93] L. M. Malard, K. F. Mak, A. C. Neto, N. Peres, and T. F. Heinz, “Observation of intra-and

inter-band transitions in the transient optical response of graphene,” New Journal of Physics,

vol. 15, no. 1, p. 015009, 2013. 83

[94] V. Gusynin and S. Sharapov, “Transport of dirac quasiparticles in graphene: Hall and optical

conductivities,” Physical Review B, vol. 73, no. 24, p. 245411, 2006. 83, 85, 90

[95] S. Luo, Y. Wang, X. Tong, and Z. Wang, “Graphene-based optical modulators,” Nanoscale

Research Letters, vol. 10, no. 1, p. 199, 2015. 83

[96] A. Phatak, Z. Cheng, C. Qin, and K. Goda, “Design of electro-optic modulators based on

graphene-on-silicon slot waveguides,” Optics Letters, vol. 41, no. 11, pp. 2501–2504, 2016.

83, 118, 123, 130, 146, 148, 149

[97] Hitoshi-Berkeley. (2018) Lecture notes, 221A, Landau levels. [Online]. Available:

www.hitoshi.berkeley.edu/221a/landau.pdf 84

[98] L.-J. Yin, K.-K. Bai, W.-X. Wang, S.-Y. Li, Y. Zhang, and L. He, “Landau quantization

of dirac fermions in graphene and its multilayers,” Frontiers of Physics, vol. 12, no. 4, p.

127208, 2017. 84

[99] Z. Jiang, E. A. Henriksen, L. Tung, Y.-J. Wang, M. Schwartz, M. Y. Han, P. Kim, and

H. L. Stormer, “Infrared spectroscopy of landau levels of graphene,” Physical Review Letters,

vol. 98, no. 19, p. 197403, 2007. 84

[100] K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement

of the optical conductivity of graphene,” Physical Review Letters, vol. 101, no. 19, p. 196405,

2008. 85

[101] M.-C. Chang. (2013) Chap 3 Linear response theory. [Online]. Available: https:

//phy.ntnu.edu.tw/∼changmc/Teach/SM/ch03 .pdf 85

[102] T. Fang, A. Konar, H. Xing, and D. Jena, “Carrier statistics and quantum capacitance of

graphene sheets and ribbons,” Applied Physics Letters, vol. 91, no. 9, p. 092109, 2007. 87,

88

164

www.hitoshi.berkeley.edu/221a/landau.pdf
https://phy.ntnu.edu.tw/~changmc/Teach/SM/ch03_.pdf
https://phy.ntnu.edu.tw/~changmc/Teach/SM/ch03_.pdf


Bibliography

[103] X. Hu and J. Wang, “Ultrabroadband compact graphene–silicon tm-pass polarizer,” IEEE

Photonics Journal, vol. 9, no. 2, pp. 1–10, 2017. 89, 118, 128, 133, 136, 149

[104] A. Vakil and N. Engheta, “Transformation optics using graphene,” Science, vol. 332, no.

6035, pp. 1291–1294, 2011. 89

[105] J.-S. Shin and J. T. Kim, “Broadband silicon optical modulator using a graphene-integrated

hybrid plasmonic waveguide,” Nanotechnology, vol. 26, no. 36, p. 365201, 2015. 89, 145

[106] B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena,

L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband

transitions,” Nature Communications, vol. 3, p. 780, 2012. 95

[107] D. Pines, “Collective energy losses in solids,” Reviews of Modern Physics, vol. 28, no. 3, p.

184, 1956. 98

[108] S. Ghosh and B. M. A. Rahman, “Evolution of plasmonic modes in a metal nano-wire studied

by a modified finite element method,” Journal of Lightwave Technology, vol. 36, no. 3, pp.

809–818, 2018. 98

[109] E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier,

D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien et al., “A review of lithium niobate

modulators for fiber-optic communications systems,” IEEE Journal of Selected Topics in

Quantum Electronics, vol. 6, no. 1, pp. 69–82, 2000. 100

[110] P. Avouris, T. F. Heinz, and T. Low, 2D Materials. Cambridge University Press, 2017. 101

[111] Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and D. N. Basov,

“Dirac charge dynamics in graphene by infrared spectroscopy,” Nature Physics, vol. 4, no. 7,

pp. 532–535, 2008. 102

[112] Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao,

M. Thiemens, G. Dominguez et al., “Gate-tuning of graphene plasmons revealed by infrared

nano-imaging,” Nature, vol. 487, no. 7405, pp. 82–85, 2012. 102

[113] S. O. Koswatta, A. Valdes-Garcia, M. B. Steiner, Y.-M. Lin, and P. Avouris, “Ultimate rf

performance potential of carbon electronics,” IEEE Transactions on Microwave Theory and

Techniques, vol. 59, no. 10, pp. 2739–2750, 2011. 108

[114] M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Letters,

vol. 12, no. 3, pp. 1482–1485, 2012. 116, 117, 118, 123, 127, 128, 133, 144, 145, 146, 147,

149, 153

[115] S. J. Koester, H. Li, and M. Li, “Switching energy limits of waveguide-coupled graphene-on-

graphene optical modulators,” Optics Express, vol. 20, no. 18, pp. 20 330–20 341, 2012. 118,

149

[116] S. Luo, Y. Wang, X. Tong, and Z. Wang, “Graphene-based optical modulators,” Nanoscale

Research Letters, vol. 10, no. 1, p. 199, 2015. 137

[117] H. Aoki and M. S. Dresselhaus, Physics of Graphene. Springer Science & Business Media,

2013. 137

[118] M.-Y. Ni and K. Wakabayashi, “Stacking sequence dependence of electronic properties

in double-layer graphene heterostructures,” Japanese Journal of Applied Physics, vol. 53,

no. 6S, p. 06JD03, 2014. 137

165



Bibliography

[119] C.-J. Shih, A. Vijayaraghavan, R. Krishnan, R. Sharma, J.-H. Han, M.-H. Ham, Z. Jin, S. Lin,

G. L. Paulus, N. F. Reuel et al., “Bi-and trilayer graphene solutions,” Nature Nanotechnology,

vol. 6, no. 7, pp. 439–445, 2011. 137, 144, 152

[120] B.-R. Wu, “Field modulation of the electronic structure of trilayer graphene,” Applied Physics

Letters, vol. 98, no. 26, p. 263107, 2011. 137, 147, 152

[121] Z. Sun, A.-R. O. Raji, Y. Zhu, C. Xiang, Z. Yan, C. Kittrell, E. Samuel, and J. M. Tour,

“Large-area bernal-stacked bi-, tri-, and tetralayer graphene,” ACS Nano, vol. 6, no. 11, pp.

9790–9796, 2012. 137

[122] M. Fan, H. Yang, P. Zheng, G. Hu, B. Yun, and Y. Cui, “Multilayer graphene electro-

absorption optical modulator based on double-stripe silicon nitride waveguide,” Optics Ex-

press, vol. 25, no. 18, pp. 21 619–21 629, 2017. 138

[123] J.-S. Kim and J. T. Kim, “Silicon electro-absorption modulator based on graphene-hexagonal

boron nitride heterostructure,” Journal of Lightwave Technology, vol. 34, no. 22, pp. 5293–

5299, 2016. 138

[124] J.-S. Shin and J. T. Kim, “Broadband silicon optical modulator using a graphene-integrated

hybrid plasmonic waveguide,” Nanotechnology, vol. 26, no. 36, p. 365201, 2015. 138

[125] K. Tsirka, A. Katsiki, N. Chalmpes, D. Gournis, and A. S. Paipetis, “Mapping of graphene

oxide and single layer graphene flakesdefects annealing and healing,” Frontiers in Materials,

vol. 5, no. 37, 2018. 138

[126] H. Shu, Z. Su, L. Huang, Z. Wu, X. Wang, Z. Zhang, and Z. Zhou, “Significantly high

modulation efficiency of compact graphene modulator based on silicon waveguide,” Scientific

Reports, vol. 8, 2018. 138

[127] C. Bao, W. Yao, E. Wang, C. Chen, J. Avila, M. C. Asensio, and S. Zhou, “Stacking-

dependent electronic structure of trilayer graphene resolved by nanospot angle-resolved pho-

toemission spectroscopy,” Nano Letters, vol. 17, no. 3, pp. 1564–1568, 2017. 142

[128] D. Ansell, I. Radko, Z. Han, F. Rodriguez, S. Bozhevolnyi, and A. Grigorenko, “Hybrid

graphene plasmonic waveguide modulators,” Nature Communications, vol. 6, p. 8846, 2015.

143, 145, 151, 152

[129] D. Aznakayeva, F. Rodriguez, O. Marshall, and A. Grigorenko, “Graphene light modulators

working at near-infrared wavelengths,” Optics Express, vol. 25, no. 9, pp. 10 255–10 260,

2017. 143, 146, 148

[130] K. Sugawara, N. Yamamura, K. Matsuda, W. Norimatsu, M. Kusunoki, T. Sato, and T. Taka-

hashi, “Selective fabrication of free-standing aba and abc trilayer graphene with/without

dirac-cone energy bands,” NPG Asia Materials, vol. 10, no. 2, p. e466, 2018. 144, 152

[131] Y. Miyata, E. Maeda, K. Kamon, R. Kitaura, Y. Sasaki, S. Suzuki, and H. Shinohara, “Fab-

rication and characterization of graphene/hexagonal boron nitride hybrid sheets,” Applied

Physics Express, vol. 5, no. 8, p. 085102, 2012. 144, 152

[132] K. Kim, J.-Y. Choi, T. Kim, S.-H. Cho, and H.-J. Chung, “A role for graphene in silicon-

based semiconductor devices,” Nature, vol. 479, no. 7373, pp. 338–344, 2011. 145

166


	1 Introduction
	1.1 Photonic materials
	1.1.1 Photonic crystals
	1.1.2 Current trends

	1.2 Fundamentals
	1.2.1 Light waves
	1.2.2 n and 
	1.2.2.1 Mode Effective Index 
	1.2.2.2 Optical Absorption

	1.2.3 Wave mechanics
	1.2.4 Maxwell's equations

	1.3 Waveguides
	1.3.1 Silicon-on-Insulator
	1.3.2 Waveguide Fabrication
	1.3.2.1 Thin film deposition
	1.3.2.2 Photolithography
	1.3.2.3 Etching


	1.4 Electro-absorption modulators
	1.4.1 Modulation Mechanism

	1.5 Numerical methods
	1.6 Objectives of the thesis
	1.7 Structure of the thesis

	2 Finite Element Characterization of Waveguides
	2.1 Introduction
	2.2 Light–matter interaction
	2.2.1 Optical modulators
	2.2.1.1 Operation Principle


	2.3 Theory of waveguides
	2.3.1 Planar waveguides
	2.3.2 Dielectric slab waveguide
	2.3.3 Rib waveguide
	2.3.3.1 Guided modes
	2.3.3.2 Plasmonic waveguides

	2.3.4 General solution to Maxwell's equations
	2.3.4.1 Basic Equation
	2.3.4.2 Analytical solution


	2.4 Finite Element Method
	2.4.1 Definition
	2.4.2 Basic concepts
	2.4.3 Implementation of FEM
	2.4.4 Element Equations
	2.4.5 Line Elements
	2.4.6 Triangular Elements
	2.4.7 Vector Field Formulation
	2.4.8 The Matrix Equation
	2.4.9 Shape Functions
	2.4.10 Element Assembly

	2.5 Summary

	3 Graphene Photonics
	3.1 Introduction
	3.2 Physical Properties
	3.2.1 Carbon Bonds
	3.2.2 Crystal Structure
	3.2.3 Mono-, bi- and trilayers

	3.3 Electronic Band Structure
	3.3.1 Tight Binding Model

	3.4 Optical Conductivity
	3.5 Dielectric Constants
	3.5.1 Method
	3.5.2 Results and Discussion

	3.6 Plasmonics

	4 Benchmarking Graphene-based Optical Waveguides
	4.1 Introduction
	4.2 Benchmarking
	4.2.1 Study 1: Graphene-based Rib Waveguide
	4.2.2 Study 2: Graphene-based Slot Waveguides
	4.2.3 Study 3: Top Layer Graphene Waveguide

	4.3 Conclusion

	5 Characterization of Graphene–Silicon Hybrid Waveguides
	5.1 Introduction
	5.2 Characterisation of Optical Waveguides
	5.2.1 Silicon Photonic Waveguides
	5.2.2 Top- versus Slot-layered Graphene Waveguides

	5.3 Characterisation of Slot Waveguides with Bilayer Graphene
	5.3.1 Dielectric-encapsulated bilayer graphene waveguide
	5.3.2 Graphene-on-Graphene slot waveguide
	5.3.3 Summary

	5.4 Characterisation of Trilayer Graphene-based Waveguides
	5.4.1 Top- and slot-graphene waveguides
	5.4.1.1 Top layer graphene
	5.4.1.2 Slot layer graphene
	5.4.1.3 Summary

	5.4.2 ABA and ABC Stack Waveguides
	5.4.2.1 Proposed waveguide designs
	5.4.2.2 Results and Discussion


	5.5 Summary

	6 Conclusions and Suggestions for Future Research
	6.1 Conclusions
	6.2 Suggestions for Future Research

	A To calculate complex () of graphene
	Bibliography

