IT City Research Online
UNIVEREIST; ]OggLfNDON

City, University of London Institutional Repository

Citation: Huber, P. P. (1995). A review of Wilkie's stochastic investment model (Actuarial
Research Paper No. 70). London, UK: Faculty of Actuarial Science & Insurance, City
University London.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/2224/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.




City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A REVIEW OF WILKIE’S STOCHASTIC
INVESTMENT MODEL

by

Paul Huber

Department of Actuarial Science and Statistics
The City University
London

Actuarial Research Paper No. 70

ISBN 1874770700




A REVIEW OF WILKIE’S STOCHASTIC
INVESTMENT MODEL

Paul Huber, B.Sc., F1.A.,F.S.S.

To be presented to a Joint Meeting of the Staple Inn Actuarial Society and
the Royal Statistical Society, General Applications Section on
Tuesday 14 March 1995.



ABSTRACT

This paper reviews the stochastic investment model developed by Wilkie (1984,
1986). This model’s four component models are described and analysed from a
statistical perspective. The distributions of their predicted values are derived and
potential problems with the model’s structure are discussed. Suggestions are made for
the future development of actuarial stochastic investment models.

The paper shows that Wilkie’s model does not provide a particularly good
description of the data. The retail prices index model does not appear to correctly
allow for the apparent non-stationarity and shocks in the inflation data. These features
seem to contribute towards a spurious autoregressive effect in the retail prices index
model, and inappropriate transfer functions with the retail prices index in the share
dividend yield and share dividend index models. Both the share dividend index and
Consols yield models appear to be over-parameterised.

KEYWORDS

Stochastic Investment Models; Wilkie’s Model; Financial Time Series



1. INTRODUCTION

Although Wilkie’s model (Wilkie, 1984, 1986) appears to have become the standard
actuarial stochastic investment model in the United Kingdom (e.g. Daykin and Hey,
1990; Ross, 1989), only a small part of it (the retail prices index model) has been
reviewed from a statistical perspective (e.g. Geoghegan et al., 1992; Kitts, 1988,
1990). Geoghegan et al. (1992: 179) concluded that “... there was little evidence to
suggest that a better fitting parsimonious model could be estimated using standard
Box-Jenkins methodology.” This paper reviews Wilkie’s entire model from a
statistical perspective and provides evidence that challenges this conclusion.

Wilkie’s model is composed of four connected models, a retail prices index
model, a share dividend yield model, a share dividend index model, and a Consols
yield model. These models are analysed consecutively by assessing their structure, the
data on which they were based and their predicted values over the period 1983-93.

Each model’s structure is first examined by describing the distribution of the
predicted values, and by assessing the appropriateness of the transformations made to
the raw data and the significance of the parameters. The criteria used to examine the
transformations include whether they result in a stationary series, whether they are
compatible with each other, whether they have a meaningful interpretation, and
whether they prevent inadmissible values from occurring. The significance of each
parameter is assessed by analysing its sensitivity to various features in the data.

The data on which the model was based is then described. Although the
parameter estimates are conditional on the data over the period 1661-1919, the model
was only fitted to the data over the period 1919-82. Therefore, this section will
concentrate on the data after 1919. A number of problems with this data set are
reported and each model is refitted to a corrected data set.

Each model is then used to calculate one year ahead predicted values over the
period 1983-93 and goodness-of-fit tests are carried out on the resulting residuals.

Finally, the overall stability and suitability of Wilkie’s model is discussed and
suggestions for an alternative model are given.

The SAS computer package was used to perform all the calculations.

2. RETAIL PRICES INDEX MODEL

The retail prices index model is defined by the following equation (for 7> 0):

Vlog, O(t) = QMU + Q4 x(Vlog, Ot —1)- QMU )+ 0SD. QZ(¢)

where Q(f) is a retail prices index, V represents the backwards difference operator,
and QZ(?) is a sequence of independently distributed unit normal random variables.
Parameter values for the full standard basis and “neutral” initial conditions are:

OMU=0.05, 04=0.6, 0SD=0.05, V 1og,0(0) = OMU.
This model has attracted all the attention in the other reviews of Wilkie’s model

(Kitts, 1988, 1990; Geoghegan et al., 1992). These reviews generally criticised this
model for failing to explicitly take into account “... the existence of bursts of inflation



.. the existence of large, irregular shocks ... the possible non-normality of residuals
... (Geoghegan ef al., 1992: 179). This section illustrates the extent to which these
features were taken into account by the retail prices index model. The conclusions
reached are similar to those in the above-mentioned reviews, but are arrived at using a
different approach.

2.1 THE STRUCTURE OF THE MODEL

2.1.1 The distribution of the predicted values
As shown by Kitts (1988) and Hiirlimann (1992), the distribution of the predicted
values of the retail prices index model is (for ¢, £>0 and Q4 #+1):

' 2 42k
Viog, Ot +k{r) ~ N(QMU +04* x(Vlog, O(t) - QMU),%%QTA——)]

Fort,k>0and Q4=1:

Vlog, O(t +klt) ~ N(Vlog, O(r),k x 0SD?)

Therefore, the predicted values of the force of inflation have a mean and variance
that tend to QMU and QSD*/(1 — Q4% respectively (for —1<Q4<1) at a rate
determined by the value of Q4. The fluctuations about the mean are equally likely to
be positive or negative. The predicted rate of inflation has a lognormal distribution.
From a neutral starting position a 95 percent prediction interval for the force of
inflation in the following year, using the full standard basis, is (=0.05, 0.15). As this
interval is relatively wide, the model provides little information on the level of future
inflation rates.

2.1.2 The transformation

The retail prices index was transformed into a series of the force of inflation. This
transformation has a meaningful interpretation and prevents inadmissible values from
occurring, but does not appear to result in a stationary series. The mean and standard
deviation of the force of inflation changes from —0.025 and 0.076 over the period
1919-33, to 0.039 and 0.035 over the period 1934-73, and to 0.138 and 0.052 over the
period 1974-82 (see figure 1, that plots Wilkie’s original data). This observation is
supported by Wilkie’s finding (Appendix B of Geoghegan ef al., 1992) that the force
of inflation series is heteroskedastic and various other econometric papers (Franses
and Paap, 1994; Osborn, 1990). The following section shows how this important
feature influenced the retail prices index model.

2.1.3 The significance of the parameters

The retail prices index model expresses the force of inflation in any year as a linear
function of the force of inflation in the previous year. The slope of this function is Q4.
Figure 2 illustrates the significance of this relationship by plotting the force of
inflation in each year (minus QMU) against the force of inflation in the previous year
(minus QMU), and the retail prices index model. The residuals in every year are equal
to the vertical distance between these points and the line.
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Figure 2 shows that the model provides a reasonable fit to the data over the
period 1919-82, but not over the three sub-periods (which are represented separately
in figure 2). The parameter estimates for the period 1934-73 are presented in table 1.
(The other two sub-periods are too short for any meaningful parameter estimates to be
calculated.) This shows that Q4 is not significantly different from zero over this
central sub-period, which contradicts Wilkie’s remark that “[t]here is fairly little
uncertainty about the appropriate value[s] for 04 ...” (Wilkie, 1986: 346).

1919 192%

1939 1949 1959

Figure 1. The force of inflation, Viog O(9).

1969

1979

- - -~ 191933 AR
° 193473 el s
o1940 |4 &7 Fomaol | o
N N -
- - A= 197482 e . - ﬂi
SR - A
°© o |8 T8 peTT 37
Model - Io-ey
.
w0y
g ° B AR
oo oTEP e % o O
e vl AN
PEEEL NS .
.o AN .
S A4 N
. 1921
Swie2”
-03 025 -0.15 -0.1 005 0 0.05 01 015 02

Figure 2. V log O() - QMU plotted against V log O(t— 1) - OMU.

Table 1. Estimated parameters for the retail prices index model, 1934-73

04 oMU 0SD
0.2545 0.0395 0.0331
(0.1541) (0.0073)




Therefore, the significance of 04 appears to be dependent on the changes in
mean that occurred around 1934 and 1974; probably referred to as “... the existence of
bursts of inflation ...”, by Geoghegan ef al. (1992).

If a non-stationary mean was the only feature of the data, then Q4 would be
expected to equal one. However, assuming the residuals are independent and normally
distributed, Q4 is significantly less than one (Wilkie (1984) estimates Q4 as 0.5976,
with a standard error of 0.0985). As the residuals are clearly not normally distributed
(The skewness coefficient, B,*=-0.49 and the kurtosis coefficient, B,=6.07), further
analysis is required before the hypothesis, that the force of inflation series has a non-
stationary mean, can be rejected.

An important feature contributing to the non-normality of the residuals is the
sharp changes in the force of inflation; referred to as “... the existence of large,
irregular shocks ...”, by Geoghegan ef al. (1992). These shocks have a relatively large
influence on the regression and, taken on their own, would be expected to result in a
value of zero for Q4. Therefore, it is likely that these shocks mask the non-stationarity
in the data. Excluding the shocks in the years 1920-23, 1940-41, 1948, and 1951-52
from the regression, over the period 1919-82, results in an estimate of 0.8 for Q4 with
a standard error of 0.09. This supports the hypothesis that the force of inflation series
has a non-stationary mean. It is difficult to arrive at any definite conclusions because
the shocks over the period 1974-82 cannot be excluded without eliminating the entire
period, which removes the major source of the non-stationarity.

Therefore, the retail prices index model appears to “average” the effects of a non-~
stationary mean and shocks in the data. This results in a model that does not produce
either future changes in the mean or future shocks, rather it produces a spurious
tendency for the series to revert to the mean.

Using a stationary model to describe non-stationary data makes it very difficult to
determine appropriate values for QMU and QSD because the data provides a number
of alternatives depending on the period considered. According to Wilkie (1986: 346),
there is “... considerable uncertainty about the value to use for QMU, where anything
between 0.04 and 0.10 might be justifiable ...”

2.2 THE DATA

2.2.1 Description of the data

The inflation index, used in Wilkie (1984), was constructed by linking the
Schumpeter-Gilboy Consumers’ Goods Index A and B (1661-1790), the Gayer,
Rostow and Schwarz Domestic and Imported Commodities Index (1790-1850), the
Rousseaux Overall Price Index (1850-1871), the Board of Trade Wholesale Price
Index (1871-1914), the Cost of Living Index (1914-1947), the Interim Index of Retail
Prices (1947-1956), and the General Index of Retail Prices (1956-1982).

The data for the earlier indices, the Cost of Living Index and the Retail Prices
Index over the period 1947-61, was obtained from Mitchell (1962) and Mitchell and
Jones (1971). This data represents the annual average values of these indices (not June
values as was intended), which may have the effect of inducing a spurious moving
average effect, see: Working (1960). From 1962 the inflation index was constructed
from the June Retail Prices Index values.

Most of the earlier indices are of doubtful relevance to the modelling of future
inflation rates because they do not measure changes in the general level of retail



prices. The Gayer, Rostow and Schwarz index is based on the prices of commodities
and the Board of Trade index is based on the prices of wholesale goods. These indices
also tend to have a very narrow coverage of goods.

The Cost of Living Index used constant weights that were based on a working
class family budget enquiry made in 1904. This index was dominated by the food
category that made up 60 percent of the index. (Comparable weights for the Interim
Index in 1947 and the General Index in 1994 are 35 percent and 14 percent
respectively.) Allen (1948) questioned the appropriateness of this index, because it
had a very narrow coverage and tended to concentrate on items that were subsidised
during World War II. Using weights based on a working class family budget enquiry
made in 1937-38, Allen estimated that the index would have increased by
approximately 60 percent over the period 1938-47 compared with an increase of
approximately 30 percent in the official figures. For the above reasons, it is probably
not suitable to use this index in the construction of a retail prices index model.

The Interim Index of Retail Prices used weights that were based on a family
budget enquiry made in 1937-38 (covering workers with incomes not exceeding £250
per annum). Minor modifications were made to these weights in January 1952. As this
index did not cover all types of households, it is not strictly compatible with the
General Index of Retail Prices.

The results of a comprehensive family budget enquiry made in 1953-54, covering
all types of households except for pensioners and the extremely wealthy, were used to
determine the initial weights of the General Index of Retail Prices. This index’s
weights have been updated annually since 1962 based on the results of family
expenditure surveys for the three years ending in June in the previous year.

2.2.2 Refitting the model to the corrected data

A corrected data set was constructed using month-end index values rather than annual
averages. The inflation rates before 1947 were calculated using July index values
(rather than June values) because the Cost of Living index was calculated at the
beginning of every month. Unconditional maximum likelihood parameter estimates
for this corrected data are not significantly different from those in Wilkie (1984), but
QA is less stable than Wilkie’s estimates imply. The revised estimates of QA are:
0.5031, 0.5040, and 0.6023, with standard errors of 0.1095, 0.1241, and 0.1327, over
the periods 1919-82, 1933-82, and 1946-82, respectively. These estimates are also
dependent on the particular month used (Franses and Paap, 1994). Over the period
1930-82, revised estimates of QA4 are: 0.5716 and 0.7416, with standard errors of
0.1142 and 0.0912, using June and December values respectively. The effect of using
the maximum likelihood estimation technique as opposed to Wilkie’s method (least
squares conditional on all the available historical data), was negligible.

2.3 THE RESIDUALS OVER THE PERIOD 1983-93

Table 2 presents the one-step ahead residuals for Wilkie’s retail prices index model
over the period 1983-93. There are too few residuals for a detailed statistical analysis,
but some general observations can be made. The standard deviation of the residuals is
0.0247, which is greater than the standard deviation of the actual data: 0.0237.
Therefore, over the period 1983-93, a simpler model (with Q4 equal to zero) would
have provided a better fit than the retail prices index model.



Table 2. Residuals for the retail prices index model, 1983-93

Year Actual Predicted Residual
1983 0.0359 0.0726 -0.0367
1984 0.0501 0.0415 0.0086
1985 0.0673 0.0501 0.0172
1986 0.0247 0.0604 -0.0357
1987 0.0411 0.0348 0.0063
1988 0.0451 0.0447 0.0004
1989 0.0793 0.0471 0.0323
1990 0.0934 0.0676 0.0258
1991 0.0568 0.0761 -0.0193
1992 0.0380 0.0541 -0.0160
1993 0.0121 0.0428 -0.0307

The standard deviation of the residuals is also significantly less than QSD, which
is to be expected because there were no major shocks over this period.

3. SHARE DIVIDEND YIELDS MODEL

The share dividend yields model is defined by the following equations (for #> 0):
log, ¥(t) = YW .Viog, O(t)+ YN (t)

where: (1-Y4.B)x (YN (£)-log, YMU ) =YE (t)= ¥SD .YZ (t)

where Q(f) is a retail prices index, ¥(¢) is a share dividend yield, V represents the
backwards difference operator, B represents the backwards step operator, and YZ(?) is
a sequence of independently distributed unit normal random variables.

Parameter values for the full standard basis and “neutral” initial conditions are:

YW=1.35, YMU=0.04, YA=0.6, ¥YSD=0.175, V log,0(0)= QMU,
Y(0)= YMU . ™M,

3.1 THE STRUCTURE OF THE MODEL

3.1.1 The distribution of the predicted values
The distribution of the predicted values of the share dividend yields model is:

log, Y(¢+klt) ~ N(p,y(t +k|t),c§(t+k|t)), for t,k>0
where (for Y4#x1 and Q4 #£1):

w, (¢ +klf) =log, YMU +YW .OMU +Q4*. YW x(Vlog, O(t)- OMU)
+Y4* x (log, ¥(t) - log, YMU — YW .Viog, O(t))



YSD? x(1-¥4%) . (Yw.0SDY x (1- 04%*)
(1-747) (1-04)

o2t +kit)=

The predicted share dividend yields have a lognormal distribution. Note that if
Y4 =QA, then the force of inflation in year ¢ has no influence on the mean, p(¢+ k7).
From a neutral starting position a 95 percent prediction interval for the logarithm of
the share dividend yield in the following year, using the full standard basis, is
(-3.52=10g,(0.03) ,—2.78 =10g,(0.06)). This interval is fairly wide, suggesting that
this model is dominated by the error term.

3.1.2 The transformation

The share dividend yield data was transformed by taking logarithms. This
transformation prevents inadmissible values from occurring and appears to produce a
stationary time series, but its mean increases substantially over the period 1974-82
(see figure 3). The transformation does not have any meaningful interpretation and is
incompatible with the retail prices index transformation. Taking logarithms of the
dividend yield causes a change in yields from y, to y, to be as significant as a change
from y, to y,xy,/y,, for any initial yield y. On the other hand, the inflation
transformation causes a change in the inflation rate from e, to e, to be as significant as
a change from e, to (1+¢,)x (1 +e,)/(1+e,)—1, for any initial inflation rate e, This
reduces the significance (relative to the retail prices index transformation) of the high
yields in 1920-21, 1940, and 1974-75, and increases the relative significance of the
low yields in 1933-37 and 1943-47.

3.1.3 The significance of the parameters
The share dividend yield model can be represented as follows (for #> 0):

log, Y(t)—log, YMU — YW .Vlog, O(t)
=YA4 x(log, ¥(r 1) -log, YMU —YW .Vlog, O(t 1))+ YE (¢)

-2.5

1919 1929 1939 1949 1959 1969 1979

Figure 3. The log of the share dividend yield, log Y(?).
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Using this representation, figure 4 shows that the autoregressive nature of the
model is not related to the increase in yields and inflation over the period 1974-82. A
negative value of Y4 would have been obtained over this period.

The share dividend yield model can also be represented as follows (for > 0):

(1- ¥4.B) x(log, ¥(¢)-log, YMU ) = YW x(1-Y4.B)x Vlog, O(t)+YE ()

Using this representation, figure 5 illustrates the sensitivity of Y to the outliers
in 1920-22, 1940, 1974-75, and 1980. This explains why “[t]he values of YW vary
considerably according to the period chosen ...” (Wilkie, 1984: 58). Over the periods
1919-82, 1933-82, and 1946-82 Wilkie (1984) estimated YW as 1.35, 2.41, and 1.77
respectively.
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These outliers all correspond to years in which inflation shocks occurred and the
outliers in 1920, 1940, and 1974 correspond to years in which the greatest increases in
yields occurred. If these outliers are excluded from the regression then YW becomes
insignificantly different from zero. Therefore, YW does not describe a general
tendency for changes in yields to be correlated with changes in inflation, but describes
the tendency for large increases in yields to be correlated with inflation shocks. As the
retail prices index model does not allow for these shocks (see section 2), YW should
be set to zero for modelling purposes.

3.2 THE DATA

3.2.1 Description of the data

The share dividend yield data, used in Wilkie (1984), was obtained from the BZW
equity index (1919-30), the Actuaries Industrials (All Classes Combined) Index
(1931-53), the Second Series Actuaries Industrials (All Classes Combined) Index
(1954-61), and the FT-Actuaries All Share Index (1962-82).

The data from the BZW index is only calculated at the end of every year (not in
June as was assumed). If the BZW data is to be included then end of December values
should be used.

There are a number of significant differences between these indices that may
distort the true underlying relationships in the data. The FT-Actuaries index includes
shares from all types of companies, whereas the others exclude financial company
shares. The Actuaries indices are geometrically averaged indices (Haycocks and
Plymen, 1956), whereas the others are arithmetically averaged indices. The BZW
index was based on 30 shares; the Actuaries indices are based on roughly 150 shares;
the FT-Actuaries index is currently based on roughly 850 shares (594 in 1962).

The Actuaries price indices have generally underperformed other equity price
indices over similar time periods. Over the periods 1930-49, 1940-50, and 1950-60,
the Actuaries price index increased by —48, 96, and 152 percent respectively,
compared to increases of —35, 115, and 224 percent respectively in the Investors
Chronicle equity price index (Haycocks and Plymen, 1964). (The Investors Chronicle
index was an arithmetically averaged index based on roughly 100 shares.)

A significant event that should be allowed for when modelling share indices is
that in November 1972, the government froze dividend payments. This initial freeze
was changed to a maximum increase in dividends of 5 percent in March 1973, 12.5
percent in July 1974, and 10 percent in July 1975. The controls expired in July 1979.

3.2.2 Refitting the model to the corrected data

A corrected data set was constructed using both December and June values.
Unconditional maximum likelihood parameter estimates for this data, using June
values, are not significantly different from those reported in Wilkie (1984). When
December values are used, YW is not significant. A revised estimate of YW is: 0.4017,
with a standard error of 0.3937, over the period 1919-82 using December values.

3.3 THE RESIDUALS OVER THE PERIOD 1983-93.

Table 3 presents the one-step ahead residuals for Wilkie’s share dividend yield model
over the period 1983-93.



Table 3. Residuals for the share dividend yield model, 1983-93

Year Actual Predicted Residual
1983 -3.0879 -2.9892 -0.0986
1984 -3.0221 -3.1017 0.0796
1985 -3.0366 -3.0505 0.0140
1986 -3.2545 -3.1307 -0.1238
1987 -3.4933 -3.2047 -0.2886
1988 -3.1749 -3.3560 0.1811
1989 -3.1442 -3.1219 -0.0223
1990 -3.0534 -3.1122 0.0589
1991 -2.9838 -3.1186 0.1348
1992 -3.0241 -3.0725 0.0483
1993 -3.2493 -3.1165 -0.1329

The standard deviation of the residuals is 0.1370 which is not significantly less
than the standard deviation of the actual data, 0.1496, at the 39 percent significance
level using an F-test. Therefore, over the period 1983-93, a simpler model (with Y4
and YW equal to zero) would not have provided a significantly worse fit.

4. SHARE DIVIDEND INDEX MODEL
The share dividend index model is defined by the following equations (for #>0):

Vlog, D(t)= DM(t)+ DX.Vlog, Q(t)+ DMU + DY.YE (t -1)
+(1+ DB.B)x DSD.DZ(t)

DD

where: DM(t) = DW x| ———v—
1-(1-DD)xB

]xvlogg o)

where Q(?) is a retail prices index, D(7) is a share dividend index, YE(f) is obtained
from the share dividend yield model, V represents the backwards difference operator,
B represents the backwards step operator, and DZ(f) is a sequence of independently
distributed unit normal random variables.

Parameter values for the full standard basis (reduced standard basis in brackets
where these values differ) and “neutral” initial conditions are:

DW=08, DD=02, DX=02, DY=-02(-0.3), DMU=0, DB=0.375 (0),
DSD=0.075 (0.1), YE(0)=0, DM(0)=DW . QMU, DZ(0)=0.

4.1 THE STRUCTURE OF THE MODEL

4.1.1 The distribution of the predicted values
The distribution of the predicted values of the share dividend index model is:

Vlog, D(t + k|t) ~ N(p, (¢ + klt),03(t + k|¢)), fort,k>0
where, for k=1:



u (¢ +1) = (DW.DD+ DX) x (OMU + 04 x(Viog, O(t) - OMU ))
+DM(t)x (1~ DD)+ DMU + DY .YE (t)+ DB.DSD.DZ(t)
o3(t+1t) = DSD* + QSD* x(DW.DD+ DX )’

Fork>1,(1-DD)#+l, 04.(1-DD)#1, 04— (1 -~ DD)#0, and Q4 #+1:
py(t +k|t) = DMU + QMU x (DX + DW)+(DM(r) - DW.QMU ) x (1- DD)"

+(V1og, 0(t)- oMU ) xDX.04* + (o - DxX)x (04* - (1~ DDY"))

o2(t +k|t) = DSD* x(1+ DB?)+ YSD*.DY?
o [, (1204 1-(@4.1-pD)f) . (1-(1-DD}*
+OSD [“ (1—QA2) 2.a.[3>{ —oa(-o0) P | T(“ppy

DW.DD.QA
o= 2-DE.E2
04-(1-DD)

where: +DX,and B = _D_V_VDD(;DD)
0A4-(1-DD)
From a neutral starting position a 95 percent prediction interval for the force of
growth of dividends in the following year, using the full standard basis, is
(=0.10,0.20). The predicted growth of share dividends has a lognormal distribution.

4.1.2 The transformation

The share dividend index was transformed into a series of the force of change in the
share dividend index (see figure 6). This transformation appears to be appropriate, but
it is incompatible with the dividend yield transformation (see section 3.1.2).
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Figure 6. The force of increase in the share dividend index, Vlog D(f).

13



4.1.3 The significance of the parameters
The share dividend index model is over-parameterised, even based on Wilkie’s
estimates (see table 4). Virtually all the parameters are not significantly different from
zero over the periods 1933-82 and 1946-82. Over the period 1920-82, DX is not
significantly different from zero and DD, DW, DX, and DMU are highly correlated
with one another (see table 5). Surprisingly, Wilkie (1984, 1986) did not comment on
this extremely poor fit. In addition, the standard errors of DD and DW were grossly
under-estimated by Wilkie (1984). Revised estimates of these standard errors, over the
period 1920-82, are: 0.1415 and 0.9503, respectively. These estimates imply that DD,
DW, and DX are not significantly different from zero over all the periods considered.
Table 6 shows the parameter estimates obtained when excluding DD, DW, and
DMU. As DSD does not increase significantly, these parameters appear to be
superfluous. This suggests that lagged terms of Vlog,0(f) contribute little additional
information to the share dividend index model. The high correlation between DMU
and, DD and DW, suggests that the term DM(f) is a measure of the mean of
Vlog,D(f). After DD and DW were excluded, the term involving DX was found to
provide a better measure of the mean than the constant DMU.

Table 4. Estimated parameters for the dividend index model

Period DD Dw DX DMU DY DB DSD

192082 0.1151 13240 03721 00104  -02667 03931  0.0702
(0.0582)  (0.5458) (0.2145)  (0.0193)  (0.0527) (0.1301)

1933-82 00669  1.1529 03227 00037  -0.1766 03612  0.0543
0.1373)  (1.3968) (0.2300)  (0.0250)  (0.0453) (0.1662)

1946-82 0.1167 0.6221 0.2258 0.0316 -0.1056 0.2846 0.0490
(0.1634) (0.6305) (0.2465) (0.0222) (0.0494) (0.1865)
Source: Table 7.2 of Wilkie (1984)

Table 5. Correlation matrix of the parameter estimates, 1920-82

Parameter DD Dbw DX DMU DY DB
DD 1 -0.8220 -0.4738 0.7103 0.0026 0.0257
Dw - 1 0.0762 -0.8592 -0.1487 -0.0309
DX - - 1 -0.2249 0.2203 0.0160

DMU - - - 1 0.1076 0.0317
DY - - - - 1 0.1981
DB - - - - - 1

Table 6. Estimated parameters for the dividend index model

Period DD Dw DX DMU DY DB DSD
1920-82 - - 0.8162 - -0.2267 0.4778 0.0749
(0.1550) (0.0502) (0.1156)

193473 00214 19327 -02018  0.0278 -0.1855 03102  0.0503
0.1975) (10.9230) (0.2870) (0.0357) (0.0549)  (0.1643)

1934-73 . . - 0.0460  -0.1707 03654  0.0511
0.0116)  (0.0508)  (0.1541)
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To assess whether the retail prices index transfer function was only included
because the force of inflation has a non-stationary mean, the model was fitted both
including and excluding this transfer function over the period 1934-73 (see table 6).
These estimates illustrate that this transfer function is of no significance over this
period in which the force of inflation is relatively stationary (see section 2.1.3).
Therefore, the retail prices index transfer function appears to only measure the mean
of Vlog,D(f). As Wilkie’s model assumes a stationary mean force of inflation, the
parameters DW, DD, and DX should be set to zero for modelling purposes.

The parameters DY and DB both appear to have a fairly meaningful role in the
share dividend index model, but their values are influenced by outliers. The parameter
DB is mainly affected by the outliers in the period 1920-42 and becomes only
marginally significant once these outliers are taken into account (see table 4). (Note
that setting DB to zero corresponds to the reduced standard basis.) Parameter
estimates of DY=-0.2 and DB=0.3 appear to be appropriate after taking the outliers
into account. The value and significance of DY are hardly affected if the errors from
the share dividend yield model are calculated with Y7 set to zero.

4.2 THE DATA

4.2.1 Description of the data

The share dividend index data was obtained from the same sources as the share
dividend yield data. Therefore, the comments made in section 3.2.1 are equally
applicable to this section.

4.2.2 Refitting the model to the corrected data

A corrected data set was constructed using a share dividend index linked when the
underlying dividend indices first overlap. Unconditional maximum likelihood
parameter estimates for this corrected data were found to be not significantly different
from those presented in Wilkie (1984).

4.3 THE RESIDUALS OVER THE PERIOD 1983-93

Table 7 presents the one-step ahead residuals for Wilkie’s share dividend index model
over the period 1983-93. The standard deviation of the residuals is 0.0590 which is
not significantly less than the standard deviation of the actual data, 0.0735, at the 25
percent significance level using an F-test. Therefore, over the period 1983-93,
Wilkie’s share dividend index model does not provide a significantly better fit than a
model that simply predicts the force of dividend growth by the mean force of dividend
growth.

There is a significant cross-correlation between these residuals and the retail
prices index model’s residuals at a lag of zero and the share dividend yield model’s
residuals at a lag of 2. This suggests that the transfer function with the retail prices
index model was incorrectly specified over this period. The significant cross-
correlation with the yield residuals is mainly caused by the fall in yields in 1987. The
average of the residuals is 0.0188, which is high but not significantly different from
Zero.
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Table 7. Residuals for the dividend index model, 1983-93

Year Actual Predicted Residual
1983 0.0625 0.0577 0.0048
1984 0.1267 0.1038 0.0229
1985 0.1852 0.0747 0.1105
1986 0.0966 0.1024 -0.0058
1987 0.1074 0.0844 0.0229
1988 0.1383 0.1255 0.0128
1989 0.1652 0.0372 0.1279
1990 0.1521 0.1283 0.0238
1991 0.0609 0.0633 -0.0025
1992 0.0063 0.0297 -0.0234
1993 -0.0620 0.0259 -0.0879

5. CONSOLS YIELD MODEL

The Consols yield model is defined by the following equations (for > 0):
C(t)=cm(t)+CN(t)

CD

here: cM(t)=cwx| —L
waere ) x[l—(l—CD)xB

)xwoge o)

log, CN(t) =(CALB+CA2.B* + C43.B*) x (log, CN(r) - log, CMU )
+log, CMU +CY.YE (t)+ CB.CI(¢) + CSD.CZ(z)

where Q(?) is a retail prices index, C(¥) is the Consols yield, YE(?) is obtained from the
share dividend yield model, V represents the backwards difference operator, B
represents the backwards step operator, CZ(f) is a sequence of independently
distributed unit normal random variables, and CI(f) is an intervention variable for
1974.

A minimum value of 0.005 is postulated for C(#).

Parameter values for the full standard basis (reduced standard basis in brackets
where these values differ) and “neutral” initial conditions are:

CW=1, CD=0.045(0.05), CY=0.06(0), CMU=0035 CAI=12(0.91),
CA2=-048 (0), CA3=02(0), CB=0, CSD=0.14 (0.165), CM(0)=CW.QMU,
CN(0) = CN(=1)= CN(=2) = CMU.

5.1 THE STRUCTURE OF THE MODEL

5.1.1 The distribution of the predicted values
The distribution of the predicted values of the allowance for future inflation is:

CM(t + kl£) ~ N(p,, (¢ + k£),02,(t + k|t)), fort,k>0



where (for (1-CD)==£1, 04.(1-CD)=1, 04— (1 -CD)#0, and Q4 #+1):
Ben(2 + K|1) = CW.OMU +(CM(1) - CW.QMU ) x (1- CD)

vt [ 24 -(1-cof
+(Viog, 0(r) - QMU ) x CD.CW .04 [QA—(I—CD)]

’ 2
Gim(t+k|t)=QSD2x(CW—-CD)) X(QAZ X(I—QA ")

04-(1-CD 1-04
1-(04.(1-cD)) , (1-(1-cDf*
-2.04.(1-CD)x (m)+(l—CD) x (Wn

From a neutral starting position a 95 percent prediction interval for the allowance
for expected future inflation in the following year, using the full standard basis, is
(0.0456,0.0544). This interval is very narrow, suggesting that there is little
uncertainty about the allowance for future inflation.

The distribution of the predicted values of the Consols real yield model is:

log, CN(t + k|t) ~ N(p,, (¢ + kt),62 (¢ + k|t)), fort,k>0

cn

where:

Beo (1 +K) = b, x (log, CN(r) - log, CMU ) + ¢, , x (log, CN(¢ 1)~ log, CMU )
+6,, x(log, CN(r ~2) ~log, CMU )+ log, CMU

ol (t+klt)= ((CY'YSD )+ CSDZ) x i(%)z

n=0

—-

where (for £>0, and i=1, 2, and 3):
0 =CALY,, +CA2.,;,_, +CA3.0,, 5

¢1,0= 1, ¢1,—1 =0, ¢1,—2= 0, ¢2,0=0’ ¢2,—1 =1, ¢2,—2= 0, 4)3,0:0: 4’3,-1 =0, ¢3,—2= 1

For the full standard basis (for k>0, and i=1, 2, and 3):

B = 0, Ak + 7% x (B,.cos(6.(k 1)) +8,.sin(6.(k - 1)))
where:
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A=0.9143, y=0.4677, 0=1.2604, o, = 1.0536, B, =0.5062, 8,=0.2185, at,=—0.3010,
B,=—0.4378, 8,=—-0.4566, o, =0.2305, B,=—0.0229, 8,=0.2347.

For the reduced standard basis (for #, k>0 and CAI = *1):

¢1,k =CAI*, and ¢'2,k = ¢3,k =0

From a neutral starting position a 95 percent prediction interval for the logarithm
of the Consols real yield in the following year, using the full standard basis, is
(-3.6276 =10g,(0.0266) , —3.0772 =10g,(0.0461)). The predicted Consols real yield has
alognormal distribution.

The predicted values of the Consols yield model have the following mean and
variance (for ¢, k>0):

M (t+k|t) =pn (t+klt)_l_ep,"(:+k|:)+05xc§,,(z+ku)
(4 cm

GZ (t +k|t) _ Gim(t + k|t) + (erpm(1+k\t)+c§"(t+ku)) % (euf,,(nku) _ 1)

From a neutral starting position a 95 percent prediction interval for the Consols
yield in the following year, using the full standard basis, is roughly (0.0746,0.0961).
This interval is also very narrow.

5.1.2 The transformation

The inflation component of the Consols model was modelled without any
transformation and the logarithm of the real yield was modelled. This results in a non-
linear model that cannot be put into an ARIMA format. These transformations do not
satisfy any of the requirements for suitable transformations. Wilkie’s model prevents
negative real yields from occurring, but allows negative nominal yields to occur,
whereas negative real yields are possible but negative nominal yields are not. The
logarithm of the Consols yield series has a highly non-stationary mean (see figure 7).
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Figure 7. The log of the Consols yield, log,C(f).
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5.1.3 The significance of the parameters

Wilkie (1984) estimated the Consols yield model’s parameters by setting CW to 1 and
CD to a “plausible” value, estimating the other parameters so as to minimise CSD,
and repeating this process, after adjusting CD, until CSD was minimised. To check
whether Wilkie’s estimates are optimal and to obtain an estimate of the standard error
of CD, the Consols model was refitted with the parameter CD included in the fitting
procedure (see table 8). (To prevent negative real yields, it was necessary to include
the restriction: 0.0025 < CD <0.0623.) Table 8 shows that Wilkie’s estimates are not
optimal because they result in a higher residual standard deviation than the alternative
estimates, and that CD is not significant. The parameter estimates for the model,
excluding the term CM(Y), are also presented in table 8. These estimates provide an
even better fit than those obtained including CM(¥), which was forced into the Consols
yield model because of the constraints: CW=1 and 0.0025 <CD <0.0623.

The parameter CY is not significant (see table 8) and consequently should be set
to zero (as in the reduced standard basis).

The parameters CAIl and CA2, and, C42 and CA3 are highly correlated
suggesting that the model is over-parameterised. This was noted by Wilkie (1984:
112), and allowed for in the reduced standard basis by setting CA2 and CA3 to zero.
These parameters were not set to zero in the full standard basis because, according to
Wilkie, this did not provide “... a satisfactory representation of the past ...” (Wilkie,
1984: 111). Surprisingly, this discrepancy was not pursued further.

Omitting CA2 from the model, significantly increases CSD and decreases the
significance of CA3. This implies that C4l, CA2, and CA3 are functions of one
another rather than that some of them are superfluous. An ARIMA model of the
Consols yield series is likely to contain a unit root because it has a non-stationary
mean. This implies that: CAI =1-CA2-CA3. Using this parameterisation, CA2 and
CA3 still appear to be functions of one another. A suitable parameterisation for CA2
was found to be: C42=-2x CA43.

Table 8. Estimated parameters for the Consols model, 1919-82

Parameter Estimate Wilkie’s Estimates Setting CM(H)=0
CMU 0.0363 0.0355 0.1471 -
(0.0035) (0.0085) (0.3439)
CAl 1.1882 1.2019 1.1943 1+CA3
(0.1163) (0.1064) (0.1155)
CA2 -0.5048 -0.4806 -0.5014 —2xCA3
(0.1744) (0.1716) 0.1727)
CA3 0.2987 0.2045 0.2954 0.2580
(0.1125) (0.1115) (0.1104) (0.0852)
CD 0.0124 0.0450 - -
(0.0082) .
cY 0.0600 0.0649 0.0475 0.0258
(0.0792) (0.0633) (0.0671) (0.0629)
CB 0.4132 0.4968 0.3522 0.3614
(0.1091) (0.1409) (0.0898) (0.0876)
CSD 0.0926 0.1288 0.0784 0.0796

Source: Table 8.6 of Wilkie (1984)
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Assuming C4I1=1+CA3 and C42=-2x CA3, the Consols yield model can be
represented as:

Vlog, C(t) = CA3x V*log, C(t)+CY.YE (t)+ CB.CI(t)+ CE(r), fort>0

This parameterisation represents the change in the Consols yield as a function of
the acceleration of the Consols yield. Table 8 presents this model’s parameter
estimates (CMU is irrelevant because CAI+CA2+CA3=1). This parameterisation
appears to be appropriate because it does not significantly increase CSD. The value of
CA3 (given in table 8) is highly influenced by the years 1974-76. An estimate of
CA43=0.35 is appropriate after taking these outliers into account.

Therefore, it appears that the Consols yield model attempts to represent the above
relationship rather than the more elaborate relationships in the actual model. As far as
the reduced standard basis is concerned, it seems appropriate to set CY to zero but it
does not appear to be appropriate to set CA2 and CA3 to zero.

5.2 THE DATA

5.2.1 Description of the data
The Consols yield series used in Wilkie (1984) was obtained from Mitchell (1962)
over the period 1756-1929, The Actuaries’ Investment Index over the period 1935-61,
the FT-SE Actuaries Share Indices over the period 1962-80, and the Financial Times
over the period 1981-82. Over the period 1930-34, the Consols yields were
supposedly obtained from The Actuaries’ Investment Index, but the Consols yield was
only reported in The Actuaries’ Investment Index from the December 1933. The yield
used for 1934 is not equal to the yield reported in The Actuaries’ Investment Index.
The yields in Mitchell (1962) appear to represent the coupon divided by the
annual average of the daily prices of the stock (not the running yield at the end of June
as was intended).

5.2.2 Refitting the model to the corrected data

A corrected data set was constructed from the prices of 2.5% Consolidated Stock
reported in the Financial Times. It was not possible to obtain exact maximum
likelihood estimates for the Consols yield model because of the non-linear
transformation. Therefore, the estimation method used in Wilkie (1984) (conditional
least squares) was used to try to obtain parameter estimates for the corrected data. It
. was not possible to obtain a reasonable set of estimates because they were found to be
highly dependent on CM(0), and to be highly correlated with one another. This
confirms that the model is ill-conditioned and over-parameterised (see section 5.1).

5.3 THE RESIDUALS OVER THE PERIOD 1983-93

Table 9 presents the one-step ahead residuals for Wilkie’s Consols yield model over
the period 1983-93. The standard deviation of the residuals is 0.2973 which is greater.
than the standard deviation of the actual data, 0.2519. Therefore, over this period, the
Consols yield model provides a worse fit than a model that simply predicts the
Consols real yield by the mean Consols real yield. The standard deviation of the
residuals is also significantly greater than CSD.
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Table 9. Residuals for the Consols yield model, 1983-93

Year Actual Predicted Residual
1983 -3.4985 -2.9894 -0.5092
1984 -3.2603 -3.6345 0.3742
1985 -3.3639 -3.0791 -0.2848
1986 -3.8058 -3.4471 -0.3588
1987 -3.6553 -3.8899 0.2346
1988 -3.5357 -3.4897 -0.0460
1989 -3.5152 -3.5190 0.0038
1990 -3.2303 -3.5168 0.2864
1991 -3.2714 -3.1564 -0.1150
1992 -3.5832 -3.3435 -0.2398
1993 -4,0611 -3.6518 -0.4093

There is a significantly large positive correlation between these residuals and the
retail prices index model’s residuals at a lag of zero. This suggests that the allowance
of future inflation model was incorrectly specified over this period. The average of the
residuals is —0.0967, which is low but not significantly different from zero.

6. CONCLUSION AND AREAS FOR FUTURE RESEARCH

Wilkie’s stochastic investment model does not provide a particularly good description
of the data and does not appear to be any better than a model that simply uses the
means as predictors for the four transformed series.

The transformations used by Wilkie (1986) are incompatible with one another, do
not all have meaningful interpretations, and permit negative Consols yields. These
problems can be overcome in future models by transforming each asset class
(including inflation) into a series of the force of growth of total returns and, for assets
with non-negative, non-constant cash-flows, a series of the force of growth of cash-
flows. These transformations will not always result in a stationary series. Non-
stationarity will need to be taken into account by using alternatives to standard
ARIMA models, such as: cointegrated models, ARCH models and threshold models.

Wilkie’s model is over-parameterised as DD, DW, DB, CD, and CY all appear to
be insignificant and CAl and CA2 can be replaced by 1+CA43 and —2xCA3,
respectively. The inflation data contained shocks and was non-stationary. These
features cannot be explicitly taken into account in standard ARIMA models and
appear to have caused Q4 and YW to be incorrectly included in the model.
Considerable further research is required to determine more appropriate relationships
between the retail prices index model and the other models. The relationship
represented by YA appears to be far less significant after 1974. Since 1982, OSD is
significantly less than, and CSD is significantly greater than, their respective
estimates.

There are numerous problems with the data on which Wilkie’s model was based.
In particular, the data was compiled from a number of different sources that are not
entirely compatible. The effects of these differences should have been examined
before the combined data was used. The effects of seasonality in the retail prices
index also need to be examined.
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