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The design of optimal organic Rankine cycle (ORC) systems requires the simultaneous

identification of the optimal cycle architecture, operating conditions and working fluid,

whilst accounting for the effect of these parameters on expander performance. In this

paper, a novel method for predicting the design-point efficiency of a radial turbine is

developed, which can predict the achievable efficiency based only on the thermodynamic

conditions. This model is integrated into an optimization framework in which the working

fluid is modeled using the Peng-Robinson equation of state and the fluid parameters (i.e.,

critical temperature) are simultaneously optimized alongside the cycle conditions. This

framework can evaluate recuperated and transcritical cycles, whilst heat-transfer area

requirements are estimated based on representative overall heat-transfer coefficients.

For a range of heat sources, a single-objective optimization is first completed in which

power output is maximized, which is then followed by a multi-objective optimization in

which the trade-off between power output and total heat-transfer area is investigated. It is

demonstrated that the optimization framework can simultaneously optimize the working

fluid and cycle parameters, and identify whether a subcritical or transcritical cycle, with

or without a recuperator, is best suited for a particular application, whilst accounting

for the effect of these variables on the expander performance. This information is

critical to identify optimal cycle configurations and working fluids that result in the best

thermodynamic performance, yet exist in the design space in which feasible turbines can

be designed. It is found that the optimal critical temperature does not vary significantly

between different cycle architectures, and is not affected by whether a single or multi-

objective optimization is completed. However, including the expander performance

model results in significantly different cycles to optimal thermodynamic cycles.

Keywords: organic Rankine cycles, ORC, radial turbine, small-scale, multi-objective optimization, fluid

selection, CAMPD
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1. INTRODUCTION

The use of organic Rankine cycle (ORC) technology to covert
low-temperature heat (< 400◦C) is widely studied (Imran et al.,
2018), and the number of plants installed globally continues to
grow (Tartière and Astolfi, 2017). However, challenges including
high investment costs, and the lack of suitable components at
the smaller scale mean the penetration of ORC technology into
domestic and commercial-scale applications remains limited.
Hence, interest in improving the performance, both from a
technical and economic perspective, alongside the development
of new expander designs remain pertinent research areas.

The identification of optimal thermodynamic cycles and
working fluids for ORC systems has been studied in detail.
These studies are numerous, and hence only a few notable
studies are referred to here. The simplest of these involve
a parametric optimization study in which a range of fluids
are evaluated by comparing optimal cycles that maximize
thermodynamic performance, such as power output or overall
energy efficiency (Saleh et al., 2007; Schwoebel et al., 2017). These
studies assume fixed component efficiencies and only consider
thermodynamic performance. The next step is to integrate
thermodynamic analysis with heat-exchanger sizing models,
enabling the trade-off between performance and heat-transfer
area to be investigated. Subsequently, the implementation of
component cost correlations enables the trade-off between
thermodynamic and economic performance to be investigated
through multi-objective optimization (Quoilin et al., 2011;
Lecompte et al., 2013; Pierobon et al., 2013; Andreasen et al.,
2016; Oyewunmi and Markides, 2016).

Despite the increasing complexity of these models, most
studies either consider a pre-prescribed fluid or apply the
same optimization model to a group of fluids. However, the
next generation of models integrate fluid selection with cycle
optimization by introducing fluid parameters that describe the
molecular structure of the fluid into the optimization process.
Computer-aided molecular and process design (CAMPD)
models are capable of combining the entire process into a
single optimization, and of identifying fluid candidates that
may otherwise be overlooked. The studies by Papadopoulos
et al. (2010, 2013) were the first to apply this method to ORC
system design, using it to identify optimal fluids based on
thermodynamic performance, cost, toxicity and flammability.
Later, Palma-Flores et al. (2016) identified fluids based on
thermodynamic performance and safety characteristics, whilst
Cignitti et al. (2017) considered heat-exchanger requirements
alongside thermodynamic performance. All of these studies,
alongside those by Brignoli and Brown (2015) and Su et al.
(2017b) use cubic equations of state, such as the Peng-Robinson
(Peng and Robinson, 1976) or Redlich-Kwong-Soave (Soave,
1972) models. Alternatively, more sophisticated equations of
state, based on statistical-associating fluid theory (Chapman
et al., 1990) have also been used. Research at RWTH Aachen
University has developed ORC-CAMPD models based on the
PC-SAFT equation of state (Lampe et al., 2014, 2015; Schilling
et al., 2016, 2017), whilst research at Imperial College London has
developed similar models based on the SAFT-γ Mie equation of

state (Oyewunmi et al., 2016; White et al., 2017, 2018; van Kleef
et al., 2018). Within both research groups, their latest research
focussed on integrating heat-exchanger sizing models into the
CAMPD model, thus facilitating optimal fluids and cycles to be
identified based on economic performance indicators.

Another important consideration is the effect of the cycle
operating conditions on expander performance. Optimal
thermodynamic cycles typically require large volumetric
expansion ratios, which have implications for expander design.
For large-scale applications a multi-stage axial turbine is
generally favored. However, for small-scale applications a
single-stage expander is preferred. Volumetric expanders are
suitable for low expansion ratios, whilst turbo-expanders are
suitable for a larger range of expansion ratios. Furthermore,
for low mass-flow rates radial turbines are preferred over their
axial counterparts. Thus, radial turbines are the presumed
expander technology within this work. However, even then,
their performance is subject to the operating conditions, with
high expansion ratios corresponding to small rotor-inlet blade
heights and supersonic conditions within the turbine. Therefore,
expander performance should be accounted for within cycle
optimization studies. This involves developing mean-line
turbine design and performance models, integrating these with
thermodynamic cycle models, and completing the optimization
of both turbine and cycle simultaneously. For a radial turbine,
this typically involves optimizing six turbine design parameters,
alongside the working fluid and cycle parameters. Examples
of such studies include those by Bahamonde et al. (2017) and
Meroni et al. (2018). However, the major disadvantage of these
studies, particularly for preliminary sizing, is the complexity of
the resulting model and optimization problem. Alternatively,
non-dimensional parameters (i.e., specific-speed, specific-
diameter and size parameter) are widely used to estimate the
diameter and rotational speed required for a particular turbine to
obtain a high efficiency. These methods rely heavily on empirical
data for turboexpanders operating with ideal gases, although
there have been important studies correlating these parameters
against efficiency for single- and multi-stage ORC axial turbines
(Macchi and Perdichizzi, 1981; Astolfi and Macchi, 2015). Whilst
there have been attempts to develop similar maps for ORC
radial turbines (Perdichizzi and Lozza, 1987; Lio et al., 2017;
Mounier et al., 2018), these methods remain unvalidated, and
to the authors’ knowledge, have not been rigorously integrated
within cycle optimization studies. Thus, there remains a need to
develop methods to predict turbine efficiency without requiring
more detailed expander performance models.

To improve the performance of ORC systems, alternative cycle
architectures have been proposed, such as transcritical cycles
(Chen et al., 2010), cycles operating with two-phase expansion
(Fischer, 2011), and cycles operating with a fluid mixture
(Angelino and Colonna, 1998). The intention behind these
cycles is to completely, or partially, remove the isothermal heat-
addition heat-transfer process into the system, thus reducing
irreversibility and improving thermodynamic performance.
However, in each case the reduced irreversibility does come
at the cost of larger heat exchangers, whilst the three cycles
are associated with higher operating pressures, a lack of

Frontiers in Energy Research | www.frontiersin.org 2 June 2019 | Volume 7 | Article 50

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


White and Sayma Simultaneous ORC Optimization With Turbine

suitable two-phase expanders, particular for high volume ratios,
and detrimental heat-transfer properties, respectively. Thus,
ORC optimization studies should account for different cycle
architectures and consider these trade-offs.

The aim of this study is to combine these aforementioned
aspects into a single framework. The framework is similar to
ORC-CAMPD models in that it can simultaneously optimize
key fluid parameters alongside the cycle operating conditions,
based on both single and multiple objective functions. However,
this study goes beyond previous studies by introducing a novel
expander model that accounts for the effects of the working
fluid and operating conditions on the expander performance,
and by considering transcritical cycles. This allows a group of
systems to be identified for a given application that optimally
capture the trade-off between thermodynamic performance and
heat-exchanger area, yet exist in a design space in which feasible
turboexpanders can be designed. The first main novelty lies in
the development of the new method for predicting the design-
point efficiency of a radial turbine based only on thermodynamic
conditions. The second lies in the completion of a multi-objective
optimization of the fluid and cycle parameters for subcritical
and transcritical cycles, with or without recuperation, accounting
for expander performance. It is found that the optimal critical
temperature does not vary significantly between different cycle
architectures, and is not affected by whether a single or multi-
objective optimization is completed. However, including the
expander performance model results in significantly different
cycles to optimal thermodynamic cycles. These results help to
identify general relationships that can streamline fluid and cycle
selection in the future. Following this introduction, a description
of the developed model is provided in section 2. Then, in section
3, a case study is defined for which a group of single- and multi-
objective optimization studies are completed. The results are
presented and discussed in section 4, and the conclusions from
this study are summarized in section 5.

2. SYSTEM AND COMPONENT MODELING

2.1. Peng-Robinson Equation of State
Within this work the cubic Peng-Robinson equation of state is
used to model the working fluid (Peng and Robinson, 1976),
which allows a potential fluid to be defined in a more generalized
way than using more sophisticated models, such as REFPROP
(Lemmon et al., 2013), which, in turn, allows the working fluid to
become a variable within the optimization process. The precise
details on how the Peng-Robinson model is implemented within
the ORC model are described in White and Sayma (2018), but in
summary, the Peng-Robinson equation state is defined as:

p =
RT

Vm − b
−

aα(T)

V2
m + 2bVm − b2

, (1)

where p is the pressure in Pa, R is the universal gas constant
with units J/(mol K), T is the temperature in K, and Vm is the
molar volume with units of m3/mol. The parameters a and b,
and the function α(T), are fluid-specific and are functions of the
critical temperature Tcr, critical pressure pcr, and acentric factor

ω. Alongside Equation (1) a second-order polynomial is used to
model the ideal-gas specific-heat capacity:

cp,id(T) = A+ BT + CT2 , (2)

where the coefficients A, B, and C are constants that control the
shape of the fluid’s saturation dome, and thus whether the fluid
has a saturated vapor line with a positive or negative gradient
and is categorized as dry or wet, respectively. This has been
demonstrated in our previous study (White and Sayma, 2018).

Using Equations (1, 2) all of the required properties to analyse
the thermodynamic cycle, namely the specific enthalpy h in
J/mol, the specific entropy s in J/(mol K), and the specific volume
v = 1/ρ in m3/mol, can be determined based on a vector of six
fluid parameters:

x =
[

Tcr, pcr , ω, A, B, C
]

. (3)

2.2. Thermodynamic ORC Model
The thermodynamic ORC model described in the same previous
study (White and Sayma, 2018) is used here, although a number
of modifications have been implemented. To summarize, the
cycle is assumed to operate under a steady-state, and no heat
losses or pressure drops are considered. The heat-source and
heat-sink are defined by an inlet temperature, mass-flow rate,
and temperature independent specific-heat capacity. The ORC
state points are defined by: the condensation temperature T1;
the evaporation reduced pressure pr , defined as ratio of the
evaporation pressure to the critical pressure, i.e., pr = p2/pcr;
and the amount of superheat 1Tsh. The pump is modeled with a
fixed isentropic efficiency ηp, whilst the turbine is modeled using
a new variable efficiency turbine model, described in section 2.3.
A schematic of the ORC system under consideration is provided
in Figure 1.

Within this current study the model has been adapted to
also evaluate transcritical and recuperated cycles. The former
is achieved by allowing pr to exceed unity, and then defining
1Tsh as:

1Tsh =

{

T3 − T3′ if pr < 1

T3 − Tcr otherwise ,
(4)

where T3 is the turbine inlet temperature and T3′ is the saturation
temperature. Moreover, because there is no distinct location
for the evaporator pinch-point in a transcritical cycle, the non-
dimensional heat-source temperature drop is defined as:

θ =
Thi − Tho

Thi − Tci
, (5)

where Thi and Tci are the heat-source and heat-sink inlet
temperatures and Tho is the heat-source outlet temperature.
Specifying θ , in turn, defines the ORC working-fluid mass-flow
rate. The recuperator effectiveness is introduced as the last cycle
variable, defined as:

ε =
h2r − h2

1hmax
=

h4 − h4r

1hmax
, (6)
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FIGURE 1 | Description of the ORC systems considered within this study: (A) schematic of a recuperated ORC system; (B) T-s diagram of a subcritical recuperated

ORC system; and (C) T-s diagram of a transcritical recuperated ORC system.

where h2 and h4 are the fluid enthalpies at the pump outlet and
expander outlet, respectively, h2r and h4r are the recuperator
outlet conditions for the high- and low-pressure streams,
respectively, and 1hmax is the maximum possible enthalpy
change within the recuperator. This parameter is found from:

1hmax = min
{

h2r,max − h2, h4 − h4r,min

}

, (7)

where h2r,max is found from the turbine outlet temperature,
h2r,max = f (T4, p2), and h4r,min is found from the pump outlet
temperature, h4r,min = f (T2, p4). The performance of the ORC
system is evaluated by the net power output:

Ẇ = ṁ
[

(h3 − h3)− (h2 − h1)
]

. (8)

In summary, the ORC system can be described by a vector of
five cycle parameters:

y =
[

T1, pr , 1Tsh, θ , ε
]

, (9)

and by allowing pr to take values both above and below unity, and
ε to vary between 0 and 1, it is possible to evaluate subcritical and
transcritical cycles with or without recuperation.

The validity of the ORC model for non-recuperated,
subcritical cycles, based on the Peng-Robinson equation of
state, has previously been confirmed by the authors (White and
Sayma, 2018). It was observed that the optimal cycle parameters
identified from the model were the same as those identified using
an ORCmodel based on REFPROP, with the maximum deviation
in the power output being <6%. These results were also in-line
with results reported in the literature (Brignoli and Brown, 2015;
Su et al., 2017a). Since recuperation does not change the main
cycle state points it follows that the ORC model is also suitable
for recuperated cycles. Extending this previous validation study
to transcritical cycles, optimizations completed with either the

Peng-Robinson or REFROP model identify similar optimal cycle
parameters with similar power outputs. More specifically, the
maximum deviations in the optimal condensation temperatures,
reduced evaporation pressures and expander inlet temperatures
are 0.8, 3.7, and 1.0%, respectively, whilst cycle pressures and
power outputs agree to within 6.5 and 5.5%, respectively. Overall,
this gives good confidence in the accuracy of the model to predict
the thermodynamic performance of subcritical and transcritical
ORC systems.

2.3. Turbine Modeling
As stated previously, it is important to consider the effect of the
operating conditions on expander performance. Unfortunately,
integrating a detailed turbine design model into the ORC model
is associated with a number of challenges. Firstly, simultaneously
optimizing the turbine design alongside the thermodynamic
cycle introduces six design variables, which are in addition
to the 11 variables associated with the working fluid and
thermodynamic cycle. Furthermore, the thermodynamic model
is formulated on a molar basis, whilst the detailed turbine design
model would need to be formulated on a kilogram basis, thus
requiring the fluid molecular mass to also be defined. Finally,
a detailed turbine design model also introduces significant
iterative calculation procedures. Besides computational expense,
a detailed turbine design model would also require fluid
properties, such as the viscosity, which cannot be calculated
using the Peng-Robinson equation of state. Therefore, a detailed
expander model can only be applied if the working fluid is
predefined, or relatively complex group-contribution methods
are applied, which, in turn, require the full molecular structure of
the working fluid to be defined. In either case, introducing these
elements moves away from the objective of this paper.

Instead of a detailed turbine design model, an alternative
is sought that should estimate the turbine efficiency ηt, based
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only on the thermodynamic operating conditions. Expressed
mathematically this model should estimate ηt from:

ηt = f (1hs, ṁ, Vr,s) , (10)

where 1hs is the isentropic enthalpy drop across the turbine
(h3 − h4s), ṁ is the working-fluid mass-flow rate, and
Vr,s is the isentropic volumetric expansion ratio (ρ3/ρ4s),
where the ‘4s’ subscript refers to the properties following an
isentropic expansion.

For conventional turbomachines, operating with air or steam,
the specific speed and specific diameter are used to identify the
optimal rotational speed and diameter of the turbine to obtain
the best efficiency. For ORC turbines the specific speed is also
used, alongside Vr,s and the size parameter SP, defined by:

SP =

√

V̇4s

1h
1/4
s

, (11)

where V̇4s is the expander outlet volumetric-flow rate following
an isentropic expansion (V̇4s = ṁ/ρ4s). Studies correlating Vr,s

and SP against ηt have been completed for single- andmulti-stage
ORC axial turbines (Macchi and Perdichizzi, 1981; Astolfi and
Macchi, 2015). However, for radial turbines, similar correlations
have not been investigated in the same detail. Exceptions include
the work by Perdichizzi and Lozza (1987) who derived a map for
ηt as a function ofVr,s and SP (Figure 2), and Lio et al. (2017) who
derived a similar map using a mean-line performance model.

One option could be to digitize Figure 2 and calculate Vr,s

using a look-up table. However, this approach is not valid since

Figure 2 is derived on a kilogram basis, whilst the models

described in sections 2.1 and 2.2 are defined on a molar basis.

Instead, the authors propose an alternative model. Firstly, from
Figure 2 the variation in ηt with Vr,s can be evaluated at different

FIGURE 2 | Performance map detailing the effect of the isentropic volume ratio

Vr,s and size parameter SP on the maximum isentropic total-to-static efficiency

of a radial-inflow turbine (reproduced from Perdichizzi and Lozza, 1987).

size parameters by taking vertical slices through the contour (e.g.,
for SP = 0.03, ηt = 0.88, 0.87, and 0.86 at Vr,s = 2, 4, and 6,
respectively etc.). After repeating this process for different size
parameters, Figure 3 is obtained. In this figure, each set of results
for a particular size parameter are normalized by the maximum
efficiency that could be obtained for that size parameter. This is
done to remove any variability in ηt due to size effects. Applying
a linear regression to this data leads to:

ηVr

ηmax
= −0.004615Vr,s + 1.007 , (12)

which corresponds to R2 = 0.9328. This line is shown by the solid
black line in Figure 3.

Using Equation (12) the maximum normalized turbine
efficiency (ηVr/ηmax) for a given isentropic volume ratio can
be obtained. According to similitude theory, as a turbine
design that achieves this efficiency is scaled, the velocities and
thermodynamic properties within the turbine, and hence turbine
efficiency, will remain the same if the thermodynamic operating
conditions and working fluid remain the same. However, in
reality, scaling the turbine will lead to a change in turbine
efficiency due to changes in the Reynolds number and relative
clearance gaps.

The change in efficiency due to a change in the Reynolds
number can be estimated from the correlation reported in Baines
(2003), which is defined as follows:

1− η

1− ηref
= K + (1− K)

(

Reref

Re

)0.2

, (13)

where ηref and Reref are the efficiency and Reynolds number of
the original turbine, η and Re are the efficiency and Reynolds
of the scaled turbine, and K is a constant, which is set to 0.35
(Baines, 2003). The Reynolds number is defined as Re = ṁ/µr,

FIGURE 3 | Relationship between the isentropic volume ratio Vr,s and the

normalized turbine efficiency. The red crosses correspond to data-points taken

from Figure 2 and the black line corresponds to Equation (12).
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where µ and r are the viscosity and radius at the rotor inlet,
respectively. Applying the principle of similitude, the ratio of the
Reynolds numbers reduces to a ratio of the blade heights. Hence,
after setting the reference efficiency to the value obtained from
Equation (12), the change in efficiency due to Reynolds number
effects 1ηRe can be estimated as:

1ηRe = (1− ηVr )(1− K)

(

(

bref

b

)0.2

− 1

)

, (14)

where bref and b are the rotor inlet blade heights of the original
and scaled turbines, respectively.

The enthalpy loss due to clearance losses can be estimated
from Dixon (2005):

1hcl = 1h0

(

δ

bav

)

, (15)

where 1h0 is the total enthalpy change across the turbine
uncorrected for clearance, δ is the clearance gap, and bav is
the average of the rotor inlet and rotor outlet blade heights. It
follows that the change in efficiency due to clearance losses can
be calculated from:

η

ηref
=

1h0 − 1hcl

1h0 − 1hcl,ref
, (16)

where ηref and 1hcl,ref are the efficiency and clearance loss of the
original turbine and η and 1hcl are the efficiency and clearance
loss for the scaled turbine. Combining Equations (15, 16), setting
ηref = ηVr and assuming δ remains constant it follows that:

1ηcl = ηVr









δ

bav,ref

(

bav,ref

bav
− 1

)

1−
δ

bav,ref









, (17)

where bav,ref and bav are the average blade heights for the original
and scaled turbine, respectively.

From Equations (14, 17) it is observed that the change in
efficiency is dependent on the two blade height ratios. From
similitude theory it can be shown that:

b

bref
=

bav

bav,ref
≈

√

Ẇ

Ẇref

, (18)

where Ẇ and Ẇref are the power output from the scaled and
original turbines, respectively. This is only approximate since this
is derived by assuming the isentropic efficiency of the turbine
remains unchanged.

Combining everything, the turbine efficiency for a particular
operating condition, defined in terms of Vr,s, 1hss, and ṁ, can be
estimated from:

ηt = ηVr − 1ηRe − 1ηcl , (19)

and the calculation procedure is as follows:

• using an assumed maximum efficiency ηmax, calculate ηVr

using Equation (12);
• assuming the turbine efficiency is unchanged when the turbine

design is scaled, calculate the turbine power output, Ẇ =

ṁηVr1hs;
• using an assumed reference power output Ẇref calculate the

blade height ratio (Equation 18);
• calculate the change in efficiency due to Reynolds number and

clearance effects (based on an assumed relative clearance gap
δ/bav,ref) and hence calculate ηt.

In summary, ηt can be predicted based on three fixed parameters:
the maximum efficiency ηmax, the relative clearance of the
reference turbine δ/bav,ref and a reference power output Ẇref.
To identify suitable values for these parameters a parameter
optimization study was completed to minimize the average
absolute deviation (AAD) between efficiency predictions made
using the method developed in this paper, and those reported
in Figure 2. For this, a map of operating points was constructed,
based on R245fa as the working fluid. To account for variations
in Vr,s, the expansion process was modeled for pr ranging
between 0.05 and 0.9, with 1Tsh = 15 K, to a condensation
pressure that corresponds T1 = 303 K. The mass-flow rate
was varied between 0.1 and 100 kg/s. Within each step of the
optimization process ηt is determined for each operating point
for that current set of optimization variables. Moreover, SP is
calculated and used to estimate ηt using Figure 2. The AAD
between the two maps is calculated, and this is set as the objective
function. The efficiency map obtained from this optimization is
shown in Figure 4. The values for ηmax, δ/bav,ref, and Ẇref are
listed in Table 1.

It is observed from Figure 4 that for SP > 0.01 and Vr,s > 2
the absolute deviation between the model developed in this
section and Figure 2 is <2%. At lower volume ratios, a larger
deviation is observed, and this is accompanied with the turbine
efficiency reducing at low volume ratios which is not observed
in the original map. However, similar behavior to that shown
in Figure 4 was observed in a more recent study (Lio et al.,
2017). Having said this, this deviation is only of minor interest,
as it is unlikely than any turbine within an ORC application will
have Vr,s < 2.

Ultimately, the model enables of ηt to be estimated, based only
on thermodynamic properties that can be defined on a kilogram
or molar basis. This is extremely useful in thermodynamic
optimization studies to consider the effect of the thermodynamic
conditions on the turbine performance. However, it should be
noted that in deriving this model, data was only available for
Vr,s ≤ 10, and therefore further studies should be completed to
confirm its validity for higher volume ratios.

2.4. Heat-Exchanger Sizing
For the same reasons discussed in section 2.3, of which the most
notable is the lack of a simple method to estimate transport
properties, a detailed heat-exchanger sizing model has not been
included in the ORC system model. Instead, to account for the
trade-off between thermodynamic performance and the required
heat-transfer areas, a simple heat-exchanger sizing model has
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FIGURE 4 | Turbine efficiency map defined by the parameters defined in Table 1 (left), and absolute deviation (AD) between this derived map and the original

map in % (right).

TABLE 1 | Optimal parameter values that minimize the AAD between the turbine

model and Figure 2.

ηmax δ/bav,ref Ẇref [MW] AAD [%]

0.9024 7.4× 10−4 1 0.8538

been implemented based on assumed values for the overall heat-
transfer coefficient in each heat-transfer process.

For a particular heat-transfer process (i.e., preheater,
evaporation, superheater, etc.), the required heat-transfer area
is found using a discretized heat-exchanger model, which is
defined as:

A =

n
∑

i=1

ṁ(hin,i − hout,i)

U1Tlog,i
, (20)

where ṁ is the working-fluid mass-flow rate, hin and hout are
the enthalpy of the working fluid at the inlet and outlet of
the ith heat-exchanger element, U is the overall heat-transfer
coefficient for that particular heat-transfer process and 1Tlog

is the counter-flow log-mean temperature difference of the ith

element. The assumed U values for each heat-transfer process
are listed in Table 2 and have been selected according to Hewitt
(1994). Within this study, the waste-heat source is assumed to be
a hot exhaust gas at atmospheric pressure, whilst the heat sink is
assumed to be water. Therefore, for other applications, such as a
liquid waste-heat stream, or an air-cooled condenser, alternative
values to those reported in Table 2 should be used.

The overall heat-transfer coefficient for heat transfer between
a hot exhaust gas and a transcritical fluid is not defined by
Hewitt (1994). However, it is reasoned that for heat-transfer
between a low-pressure exhaust gas and any pressurized fluid,
either subcritical or transcritical, the controlling heat-transfer
coefficient will be the heat-transfer coefficient on the hot exhaust

TABLE 2 | Overall heat-transfer coefficients assumed for the different

heat-transfer processes. Taken from Hewitt (1994).

Process Hot-side fluida Cold-side fluida U [W/(m2K]

Preheaterb Low-pressure exhaust

gas

Low-viscosity organic

fluid

99

Evaporatorb Low-pressure exhaust

gas

Boiling organic liquid 99

Superheaterb Low-pressure exhaust

gas

Medium-pressure

refrigerant gas

93

Heat additionc – – 99

Desuperheater Low-pressure

refrigerant gas

Treated cooling water 105

Condenser Condensing

hydrocarbon

Treated cooling water 764

Recuperator Low-pressure

refrigerant gas

Low-viscosity organic

fluid

99

aFluid definition as classified by Hewitt (1994).
bSubcritical ORC systems only.
cTranscritical ORC systems only.

TABLE 3 | Fixed parameters for the optimization case study.

cp,h [kJ/(kg K)] cp,c [kJ/(kg K)] Tci [K] τ ηp ηat

1.0 4.2 288 1.0 0.70 0.85

aValue only used when using the fixed efficiency turbine model.

gas. Therefore, within this study it is assumed that the overall
heat-transfer coefficient for transcritical cycles is similar to that
of a subcritical cycle.

2.5. Optimization
Within this study two types of optimization will be completed.
The first will seek to maximize the net power output, whilst the
second will investigate the trade-off between maximizing power
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output and minimizing the total heat-transfer area. In general,
the optimization is formulated as:

min
x, y

{−Ẇn(x, y), A(x, y)}

subject to:

g(x, y) ≤ 0

h(x, y) ≤ 0 (21)

xmin ≤ x ≤ xmax

ymin ≤ y ≤ ymax

where x and y are the vectors defining the working fluid
(Equation 3) and ORC system (Equation 9), respectively, g(x, y)
and h(x, y) are the fluid and cycle constraints, respectively, and
xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax are the bounds
on the optimization variables. The single-objective optimization
is completed using the sequential quadratic programming
algorithm, suitable for solving non-linear constrained problems,
whilst the multi-objective optimization is completed using
the multi-objective genetic algorithm optimizer, both available
within the Global Optimization Toolbox (MATLAB 2017a, The
Mathworks, Inc.).

3. CASE STUDY DEFINITION

For the present study, heat-source temperatures ranging between
100 and 400 ◦C will be considered, and for each temperature
eight different optimizations will be completed. The first four
will involve a single-objective optimization aimed at identifying
optimal systems that maximize Ẇn. These will consider both
subcritical and transcritical cycles, and will be completed using
either a fixed efficiency turbine model or the variable efficiency
turbine model proposed in section 2.3. The second set of four
optimizations will follow the same format, but will consider a
multi-objective optimization. Overall, this will allow a complete
investigation into the effects of the cycle architecture, turbine
performance and the optimization objective on the optimal
system parameters.

The case study follows that defined in White and Sayma
(2018). The assumptions for this study are listed in Table 3.
The heat source is hot exhaust gas at atmospheric pressure and
the heat sink is water at Tci = 288 K; hence the specific-heat
capacities are set to cp,h = 1 kJ/(kg K) and cp,c = 4.2 kJ/(kg K),
respectively. Moreover, the heat-sink and heat-source mass-flow
rates are assumed to be equal, and hence τ = (ṁcp)c/(ṁcp)h =

4.2. However, it is noted that in the same previous paper it was
shown that increasing this to τ = 100 did not significantly
affect the optimal working fluid, with the maximum deviation
between the optimal critical temperature for the τ = 100 and
τ = 4.2 cases being <4%. Finally, to remove any scale effects on
the turbine performance, ṁh for each value of Thi is scaled so the
power output from the system is≈25 kW for all cases. To do this,
the first optimization, which identifies the optimal subcritical
cycle that maximizes Ẇn and is based on a constant efficiency
turbine model, is completed for all heat-source temperatures
assuming ṁh = 1 kg/s. The power output from this optimization

is then used to obtain the scaled mass-flow rate (i.e., ṁh =

25/Ẇn) that is used in subsequent optimizations.
The optimization variables and constraints are similar to

those defined in the authors’ previous paper, and are briefly
summarized in Table 4. The main thing to note is that pcr
and ω are not included as variables, but are fixed to pcr =

30 bar and ω = 0.3, respectively. As shown in Figure 5, this
is found to accurately capture the relationship between critical
temperature and normal boiling temperature that is observed for
a range of common working fluids. These fluids include common
hydrocarbons (n-alkanes, methyl-alkanes, cyclo-alkanes and
aromatics with 21 ≤ pcr ≤ 56 bar and 0.13 ≤ ω ≤ 0.39),
siloxanes (9 ≤ pcr ≤ 14 bar; 0.53 ≤ ω ≤ 0.83), and refrigerants
(hydrofluorocarbons and hydrofluoroolefins with 29 ≤ pcr ≤

42 bar and 0.27 ≤ ω ≤ 0.38), alongside ammonia, ethanol,
methanol, and Novec 649 and Novec 774. Moreover, a sensitivity
study showed that ω has little effect on the optimal critical
temperature for a particular heat source, whilst the percentage
difference in power output for different values of ω varied by
<2% (White and Sayma, 2018).

4. RESULTS AND DISCUSSION

4.1. Results From the Power Output
Optimization
The first results to evaluate are the optimal systems that maximize
the power output from each source (Figure 6). Before discussing
these results, it is worth noting that, in all cases, the optimization
converged to a solution with no recuperator (i.e., ε = 0),
thus reaffirming the conclusion found within the literature
that for unconstrained waste-heat streams there is little benefit
in recuperation.

4.1.1. Working Fluid and Cycle Parameters
Previously, the authors have shown that, for a subcritical, non-
recuperated ORC system, the optimal fluid critical temperature
can be found using a linear correlation (Tcr = 0.830Thi + 41.27)
(White and Sayma, 2018). Referring to Figure 6A, the results

TABLE 4 | Variables and constraints for the optimization case study.

Variable Lower

bound

Upper

bound

Unit Constraint

Tcr 343 623 K Pinch-

point

Tho − T2r ≥ 10 K

pcr 30.0 30.0 bar Thp − T2′ ≥ 10 K

ω 0.30 0.30 – Thi − T3 ≥ 10 K

A 0 350 J/mol T4′ − Tcp ≥ 10 K

B 0.01 1.0 J/(mol K) T4 − Tco ≥ 10 K

C −1×10−3 −1×10−4 J/(mol K2 T4 − T2r ≥ 10 K

T1 298 373 K T4r − T2 ≥ 10 K

pr
(subcritical)

0.01 0.85 – Expander

outlet

T4 > T4′

pr
(transcritical)

1.01 3.00 – cp
polynomial

A ≥ 273B+C(273)2

1Tsh 5 400 K C ≥ −B/(2× 623)

θ 0.0 1.0 –

ε 0.0 1.0 –
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FIGURE 5 | Critical temperature Tcr and normal-boiling temperature Tb of

common working fluids available within the REFPROP program (markers) and

the same parameters obtained using the Peng-Robinson equation of state for

different values of ω with pcr = 30 bar (lines). HC, hydrocarbons; SI, siloxanes;

HFC, hydrofluorocarbons; HFO, hydrofluoroolefins.

for the subcritical, fixed expander efficiency optimization agree
with this previous result. This is not surprising as the setup
for both studies is the same, however, in the present study it
is also observed that the transcritical, fixed expander efficiency
optimizations identify optimal systems with very similar critical
temperatures. This suggests that from a thermodynamic point of
view the optimal fluid is independent of the cycle architecture.

As observed in Figure 6C, the increase in Tcr with Thi in both
the fixed efficiency subcritical and transcritical optimizations is
associated with an increase in the cycle pressure ratio, which
follows a power law. Therefore, for high-temperature heat
sources the optimal pressure ratio is very high; more specifically,
for Thi > 600 K, the optimal pressure ratio exceeds 50. Pressure
ratios this high are likely to have a significant effect on expander
performance, particularly if it is a single-stage machine, and will
also result in a sub-atmospheric condensation pressure, leading
to not only physically large condensers, but also design challenges
surrounding the prevention of air ingress.

In comparison, the results obtained using the variable
efficiency model are significantly different. Firstly, the optimal
value of Tcr still increases with Thi, but the increase is
no longer linear. For Thi < 423 K, the optimal values
for Tcr for the optimizations with the fixed and variable
efficiency expander models are similar. However, above this
temperature, to avoid significantly large volumetric expansion
ratios, which lead to a reduction in the turbine efficiency, the
increasing heat-source temperature is utilized by superheating
the working fluid (Figure 6D), rather than increasing Tcr

and maintaining a relatively low superheat. Consequently, the
pressure ratios are reduced by an order of magnitude. In other
words, the optimal thermodynamic cycles, identified using the
fixed efficiency model, represent operating conditions where
turbine performance is poor. Therefore, when the turbine is

considered, thermodynamic performance is sacrificed in favor
of improving turbine performance. Moreover, this reduction
in cycle pressure also has the advantage of removing sub-
atmospheric operating conditions.

It is also useful to highlight a number of findings not been
reported in Figure 6 for brevity. Firstly, for all cycles, the optimal
condensation temperature is similar, and increases linearly with
Thi. This behavior is observed since an increase in Thi implies
an increase in the heat available, and therefore an increase in
the amount of heat that must be rejected to the heat sink.
This, in turn, requires a larger heat-sink temperature increase,
which increases the condensation temperature. Secondly, it is
noted that whilst the working-fluid mass-flow rate reduces as
Thi increases, the difference in the mass-flow rate between the
different cycles does not change significantly. With regards to the
shape of the saturation dome for the optimal cycles, as defined
by the optimized values of A, B, and C, it is found that when
a fixed expander efficiency is assumed, the optimal fluid always
has a saturated vapor line with a positive gradient. This result is
found for both the subcritical and transcritical cycles. However,
when the variable efficiency expander model is used, and the
optimization converges on a cycle with a high superheat (i.e.,
the high-temperature systems), there appears to be a transition to
fluids with a saturated vapor line that has a positive gradient. The
reason for this is not yet fully apparent, but will be investigated in
future studies.

Finally, for all the subcritical optimizations, the optimization
converges on a systemwith themaximum reduced pressure (pr =
0.85). This minimizes the latent-heat of vaporization, which in
turn, minimizes the amount of isothermal heat exchange in the
evaporator, and hence reduces exergy destruction. With regards
to the variation in pr for the transcritical cycles, these are reported
in Figure 7. Combining these results with those reported in
Figure 6A it is observed that the thermodynamically optimal
transcritical cycles (ηt = 0.85) require fluids with high critical
temperatures, but the maximum reduced pressure within the
cycle remains <1.5. On the other hand, the optimal transcritical
cycles identified using the variable efficiency turbine model
require much lower critical temperatures, but to compensate
require higher reduced pressures. This could suggest that in
practical transcritical systems, the required evaporation pressure
could be very high, which could have both technical and
economic implications on the design of the system.

4.1.2. Turbine Efficiency and Power Output
The turbine efficiencies, and variation in SP and Vr,s, for the
optimal subcritical and transcritical systems obtained using the
variable efficiency model are shown in Figure 8. The results
shown in Figure 8B start on the right-hand side, and move from
right to left as Thi increases, and are reported on a molar basis,
and hence cannot be directly compared with Figure 4.

For the subcritical cycles, the lowest temperature system
starts with a high turbine efficiency, owing to low and relatively
high values for Vr,s and SP, respectively. As Thi increases, SP
begins to reduce, whilst Vr,s increases rapidly, which, in turn,
leads to a drop in efficiency. However, until this point, the
cycle operating conditions are the same as the thermodynamic
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FIGURE 6 | Optimal subcritical (pr < 1) and transcritical (pr > 1) cycles for different heat-source temperatures obtained using a fixed turbine efficiency (ηt = 0.85) and

the variable efficiency model (ηt = var.): (A) Optimal critical temperatures; (B) net power output; (C) cycle pressure ratio; and (D) amount of superheat.

optimal conditions identified using the fixed efficiency model.
After this, a transitional period is observed where SP and Vr,s

simultaneously reduce and ηt increases, and this represents the
point where the cycle operating conditions begin to deviate
from the thermodynamic optimum, in search of higher turbine
efficiencies. However, this can only occur for a short while until
the drop in thermodynamic performance becomes significant
enough that it is better to again sacrifice turbine performance.
At this point, the optimal systems settle around a size parameter
of ≈0.0225, and increasing Thi is accommodated by increasing
1Tsh. This, in turn, causes a gradual increase in the Vr,s and a
reduction in ηt. For the transcritical cycles, similar behavior is
observed as Thi increases, although a transitional period is not
observed, with a sudden jump in ηt observed instead.

Referring back to Figure 6, the net power outputs obtained
from the four different optimizations are summarized in
Figure 6B. Comparing the results obtained for a fixed turbine
efficiency, it is observed that the transcritical cycles produce
more power than the subcritical cycles for all heat-source

temperatures, although the difference reduces as Thi increases.
More specifically, at Thi = 373 K, the optimal transcritical
cycle produces 9.7% more power than the optimal subcritical
cycle, whilst this reduces to only 0.9% for Thi = 648 K. This
reduction can be associated with a reduction in the evaporator
load, relative to the total load for the heat addition process
[i.e., (h3′ − h2′ )/(h3 − h2r)], for the subcritical cycles as Thi

increases. In other words, as Thi increases, a larger proportion
of the heat-transfer into the subcritical ORC occurs in the
preheater, rather than in the evaporator. As the two-phase heat
transfer in the evaporator is isothermal, it is associated with
a large amount of exergy destruction. Therefore, reducing the
evaporator load reduces this exergy destruction, and leads to
better thermodynamic performance.

It is also observed from Figure 6B that using the variable
turbine efficiency model, and the subsequent change in the
thermodynamic operating conditions, has a significant effect on
the net power output for both the subcritical and transcritical
cycles. In general, the variable turbine efficiency model results
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in a reduction in the power output that can be produced,
and the relative reduction in power increases as Thi increases.
For the subcritical systems, the relative change in net power
output ranges between +2.0 and −13.2% for heat-source
temperatures of 373 and 673 K, respectively. For the transcritical
systems, the relative change ranges between 0.0 and −11.5%.
This reduction in power output when using the variable
efficiency model can be partly attributed to a reduction in
the turbine efficiency (Figure 8), but also the result of the
reduction in the cycle pressure ratio, as discussed previously.
Ultimately, these results show that both the power output,
and the cycle operating conditions, are quite different when
the variable efficiency model is used instead of assuming a
fixed isentropic efficiency. This demonstrates the importance
of accounting for expander performance during working-
fluid selection and cycle optimization studies. Comparing the

FIGURE 7 | Evaporator reduced pressure for the optimal transcritical systems

obtained using the fixed efficiency and variable efficiency turbine model.

results obtained for subcritical and transcritical cycles with the
variable turbine efficiency model, it is observed that the optimal
transcritical cycles generate more power than the subcritical
cycles (Figure 6B). In particular, the increase in power output
for the transcritical systems ranges between +2.1 and +7.8% for
heat-source temperatures of 423 and 498 K, respectively.

4.1.3. Component Design Aspects
Overall, from the point of view of maximizing Ẇn, transcritical
systems achieve better performance than subcritical systems
(Figure 6). However, transcritical cycle have implications on
the design of the system, owing to higher operating pressures.
Moreover, maximizing Ẇn leads to systems associated with
higher costs, due to large heat-transfer areas. Therefore, as a
preliminary evaluation, the total required heat-transfer area for
the different optimal systems are shown in Figure 9.

Firstly, despite the power output being similar in all cases, the
low-temperature systems require significantly more heat-transfer
area than the higher-temperature systems. It follows that the low-
temperature systems will be associated with higher investment
costs, as well-described within the literature. Comparing the
results for the subcritical and transcritical results obtained with
the fixed efficiency model, it is found that for Thi ≤ 473 K,
the transcritical cycles produce between 9.7 and 3.9% extra
power, but require between 32.9 and 19.2% more heat-transfer
area, respectively. Above 473 K the difference is less significant,
owing to the reduced two-phase heat transfer in the optimal
subcritical systems.

The results for the subcritical systems suggest that the
subcritical cycles identified when considering turbine
performance within the optimization actually result
in significantly lower heat-transfer areas than the
thermodynamically optimal systems, particularly for higher
heat-source temperatures. More specifically, for Thi ≥ 548 K,
the subcritical systems are associated with a reduction in
heat-transfer area between 34.5 and 43.9%, compared to the
thermodynamically optimal cycles, with a reduction in power
between 8.9 and 13.2%. Moreover, these systems are associated

FIGURE 8 | Turbine performance for the optimal subcritical (pr < 1) and transcritical (pr > 1) cycles for different heat-source temperatures obtained using the variable

efficiency model: (A) turbine efficiency; and (b) expansion parameters.
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FIGURE 9 | Total heat-transfer area required for the optimal subcritical (pr < 1) and transcritical (pr > 1) cycles for different heat-source temperatures obtained using

a fixed turbine efficiency (ηt = 0.85) and the variable efficiency model (ηt = var.).

with a reduction in heat-transfer area between 28.9 and 30.6%,
compared to the transcritical cycles identified using the variable
efficiency model, with power reductions between 3.5 and 4.9%.
These significant reductions are associated with the large amount
of superheating that is required for the subcritical cycles, which
leads to a relatively large proportion of the heat-addition process
into the ORC occurring across a large temperature difference
(relative to the temperature difference in the preheater).
Moreover, the increasing superheat at the expander inlet is
also associated with a larger superheat at the expander outlet,
which also leads to both a larger desuperheater load, and a
larger temperature difference within the desuperheater. These
combined effects are a source of increasing irreversibility within
the cycle, leading to a reduction in power output, but evidently a
significant reduction in the required heat-transfer area.

4.2. Results From the Multi-Objective
Optimization
To investigate in more detail the trade-off between
thermodynamic performance, and the size of the heat
exchangers, a multi-objective optimization for each case
has been conducted. The Pareto fronts obtained from these
optimizations for subcritical and transcritical cycles, both with
the fixed and variable efficiency turbinemodels, are shown for the
373, 473, 573, and 673 K heat-source temperatures in Figure 10.

For the 373 K heat source (Figure 10A), there is no
significant difference between the Pareto fronts for the fixed
and variable turbine efficiency models. In other words, for low
heat-source temperatures, the pressure ratios within the optimal
thermodynamic cycles are sufficiently low such that turbine
efficiency is not compromised; this reaffirms the observations in
Figure 6. Secondly, for power outputs below 24 kW, subcritical
cycles are capable of generating the same power output as a
transcritical cycle, but with smaller heat exchangers, whilst for
larger power outputs transcritical outperform subcritical cycles.
Therefore, if one is interested in maximizing the power output

from this heat source, a transcritical cycle should be selected, but
from a more economic perspective, a subcritical cycle would be
more suitable.

For the 473 K heat source (Figure 10B), a larger difference
between the Pareto fronts obtained using the fixed and variable
turbine efficiency models is observed, particularly for the
subcritical cycles. These results are in-line with those reported
in Figure 6, and are observed because at this temperature
the optimal thermodynamic cycles begin to require larger
pressure ratios which are detrimental to turbine efficiency. When
comparing subcritical and transcritical cycles, it is observed
that for power outputs below 20 kW, subcritical cycles perform
the best, generating the same power output but with smaller
heat exchangers. However, to obtain maximum heat recovery,
transcritical cycles are more suitable.

Finally, for both the 573 and 673 K heat sources similar
observations are made. The power output for both cycles,
obtained using the variable turbine efficiency model, are lower
than the power outputs obtained when using the fixed efficiency
model. This demonstrates the importance of considering the
turbine performance within the cycle optimization, particularly
at higher heat-source temperatures. Comparing subcritical
and transcritical cycles, it is again observed that transcritical
cycles are the optimal choice in terms of maximizing power
output. However, up until the maximum power point for
the subcritical system, the thermodynamic performance and
corresponding heat-transfer area requirements are similar for
both the subcritical and transcritical systems. In other words,
either cycle is a suitable. However, considering that transcritical
cycles are associated with higher operating pressures, which, in
turn, are associated with higher costs, it is likely that subcritical
cycles may offer the most economical choice.

Besides comparing the Pareto fronts, it is also worth
considering the fluid and cycle parameters for the cycles that
form the Pareto fronts. For brevity, these results are not reported
in detail, and instead will be briefly summarized. Firstly, the
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FIGURE 10 | Pareto fronts identified from the multi-objective optimization for the subcritical (pr < 1) and transcritical (pr > 1) cycles using the fixed (η = 0.85) and

variable (η = var.) efficiency models: (A) Thi = 373 K; (B) Thi = 473 K; (C) Thi = 573 K; (D) Thi = 673 K.

optimal condensation temperature T1, reduced evaporation
pressures pr , and amount of superheat 1Tsh are not found to
vary significantly across each Pareto front. That is not to say that
they do not vary between the different cycle architectures and
heat-source temperatures, but that for a particular heat source
and cycle architecture the optimal values for these parameters are
not significantly affected by whether the objective is to maximize
power output, or minimize heat-transfer area.

The optimal values for Tcr for each Pareto front are reported
in Figure 11. In this plot, the results for each type of optimization
(i.e., subcritical and transcritical either with the fixed or variable
turbine efficiency model) are reported in the form of a box plot.
Alongside this, the dashed-black boxes correspond to ±3% of
the mean critical temperature for the Pareto front. These results
show that, besides a few outliers for the transcritical cycles for
the 473 and 673 K heat-source temperatures, all of the critical
temperatures that lie on the Pareto front are within ±3% of the
mean critical temperature. In other words, across the Pareto front
there is no significant change in the optimal value for Tcr, and

therefore the optimum is independent of whether the objective is
tomaximize power output orminimize heat-transfer area. On the
other hand, the optimal critical temperature appears to be more
dependent on the cycle architecture, and also on the performance
of the expander.

From the observations for Tcr, T1, pr , and 1Tsh it is inferred
that the pressure ratio does not significantly change across the
Pareto front, and neither do the state points in each cycle.
Instead, the main parameter that controls the trade-off between
thermodynamic performance and total heat-transfer area is the
non-dimensional heat-source temperature drop θ , and for which
a near-linear correlation between θ and Ẇn is observed across
the Pareto front. This suggests that the optimal working fluid
(i.e., critical temperature) and cycle operating conditions can
be identified based on a single-objective optimization based
on power output, and then modified to meet the power
output and heat-transfer area requirements by adjusting θ . In
other words, the optimal working fluid for a particular heat-
source temperature can be identified from the results reported
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FIGURE 11 | Box plots for the optimal critical temperatures Tcr that lie on the Pareto front for each optimization type (A: subcritical, η = 0.85; B: transcritical,

η = 0.85; C: subcritical η = var.; D: transcritical η = var.). The black-dashed lines correspond to ±3% of the mean critical temperature, whilst the red crosses

represent the outliers of the dataset.

in Figure 6A. Neglecting expander performance, the optimal
working-fluid critical temperature for either a subcritical or
transcritical cycle can be identified through a linear correlation,
such as that reported previously (White and Sayma, 2018). For
a more realistic estimate, accounting for expander performance,
a simple linear correlation cannot be derived, but none the less
a qualitative assessment of Figure 6A can be used to identify
the optimal working fluid. Finally, it is worth noting that within
our previous study (White and Sayma, 2018), the results from
the optimization, in which theoretically optimal working fluids
were identified, were compared to results from an optimization
completed for physical working fluids using REFPROP. The
results showed that for heat-source temperatures below 120 ◦C
the maximum deviation between the two models was 18%,
but this reduced to 5% for heat-source temperatures exceeding
220 ◦C. This gives good confidence in the ability of the model to
identify solutions that represent realistic ORC systems operating
with physical working fluids.

5. CONCLUSIONS

Within this paper an integrated optimization framework
for ORC systems has been proposed that can optimize
fluid parameters and cycle conditions for different cycle
architectures, whilst accounting for the effects of these
parameters on the turbine performance. The latter has been
achieved by developing a novel model to estimate the design-
point turbine efficiency based only on the thermodynamic
operating conditions.

The results indicate that including expander performance
within the optimization process results in significantly different
cycles to thermodynamically optimal cycles obtained by
assuming a fixed turbine efficiency. More specifically, the
pressure ratios in the former are reduced by an order of
magnitude. Moreover, as heat-source temperature increases,
the power outputs predicted using the variable efficiency
model reduce, and reach a maximum reduction of 13.2 and
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11.5% compared to the optimal cycles for subcritical and
transcritical cycles, respectively. Comparing subcritical and
transcritical cycles that generate maximum power from the
defined waste-heat streams, transcritical cycles could produce
between 2.1 and 7.8% more power than their subcritical
counterparts. However, results from the multi-objective
optimization studies suggest that when the trade-off between
power output and heat-transfer area is considered, and power
output is slightly reduced in favor of smaller heat exchangers,
subcritical cycles can produce the same power output as
transcritical cycles, but require smaller heat exchangers. This
suggests that from an economic point of view subcritical
cycles are more optimal. Finally, it is found that the optimal
working-fluid critical temperature does not vary significantly
across the Pareto front, but depends on the cycle architecture
and the heat-source temperature. Consequently, within
cycle optimization studies it may be suitable to conduct
fluid selection based on a thermodynamic optimization, and
subsequently adjust the heat-source temperature drop to
meet the required trade-off between performance and heat
exchanger size.

The next steps in this work are to validate further the expander
model developed in this study, and implement a more detailed
heat-exchanger sizing methodology. Moreover, there is the need
to investigate the applicability of these results to a wider group of
heat sources and heat sinks, including heat sinks with a smaller
or larger heat capacity, and to consider liquid waste-heat streams
or air-cooled systems.
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