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Abstract

It is often unclear which course of action gives the best outcome. We can reduce this
uncertainty by gathering more information; but gathering information always comes at
a costFor exampleasports player waiting too long to judge EDOOYV WUDMHFWRU\
run out of time to intercept it. Efficient samplers must therefore optimize adffide
when the costs of collectirfgrtherinformationexceedhe expectedenefits, they

should stop sampling and start acting. In visually guided tasks, adults cathesde
tradeoffs efficiently, corredy balancingany reductions iwisuomotor uncertainty
againstcost factorsassociated with increased sampliig investigate how this ability
developgduringchildhood, we tested-11 yearolds adolescentand aduls on a

visual localization task whichthe costs and benefits of samplingreformalized in

a quantitative framework. This allowed us to compare participam@do other, and to

an ideal observer who maximizes expected reward. Visual sampling became
substantally more efficient between-61 years, converging onto adult performance in
adolescence. Younger children systematically wsdenpled information relative to

the ideal observer and varied their samp#$itrgtegy moref-urther analysesuggestd

that young children uska suboptimal decision rutbat insufficiently accounted for

the chance of task failuren line with a late developingbility to computewith

probabilties and costdVe therefore propose that late development of efficient
information sampling, a crucial element of readrld decisioamaking under risk, may
form an important component of soptimality in child perception, action, and

decisionmaking.

Keywords: decisioamaking, perception, information sampling, visuomotor

development, ideal observer.



Introduction

Everyday actionganhave uncertain outcomed/e maytry to catch a ball butave

only partial information about its trajectoxccumulating more information before
acting can helpeduce thigincertainty increasinghe chance of success. But because
informationtypically comes at costwe mustoftendecide whetheto gather more
informationor act on what we already have.

Forexample, when crossing a busy road may pause to estimate the speeds
and trajectories of oncoming traffic before deciding when to cross. If we gather too
little information, we dart into traffic risking an unnecessary disaS&thering too
much informationhowever carries its own costs as we find ourselves standing beside
the road indefinitely, missingaps in traffic wenighthavecrossedChanges in the
costs of waiting or the benefit of information, lead to changes iheghaviour that
maximise expected utility. Late for a meeting, we are more likely to rush into traffic,
accepting slightly higher risks in return for a timely arrivah foggy days we may
sensibly look more carefully before stepping into traffic.

Similarly, a goalkeeper defending a penalty kick may leap too soon and end up
on the wrong side of the net, or observe the striker for too long and leap in the correct
direction but have insufficient time to stop the b&b, while looking reduces the

NHHSHUfV YLVXDO XQFHUWDLQW\ LW FRPHVY DW D FRVW [
longor too little will result in more failed saves in the long run, a quality keeper

should maximissaverateby finding the ideal tradeff that balancesamplingcosts

and benefits

Such decisions require an assessment of how well one might do with and
without additional informationandof whether the cogif gathering more information
is worth the benefitThis is fundamental to all tks in which information gathering
can reduce uncertaingboutsucceedingand includes not just perceptigaided
actions such as navigating traffic or playing sports, but also more cognitive tasks such
as deciding how long to study for a test or look around before purchasing a house.
Here we investigate how and when this fam#ntal information gathering skill
developsetween childhood and adulthood.

Adult informationsampling behavior has been investigated extensively in the
cognitive domain, and human performancty/scally less than optimal, often
markedly so. For exang Tversky& Edwards (1966asked participants to decide

whether to sample random binary outcomes (light on/off) to learn the underlying



probabilities of each possible evéakplorg, orbet onwhich event would occur next

to win points- but without feedbackefploi). Human performance was markedly sub
optimal: participants sampled 8 to 9 times the amount of information needed to
maximize their expected winning8usemeyer & Rapoport (1988), using a similar
costly sampling task, found thparticipantsconsidered costs and benefits of sampling
when deciding when to stop, but in some cases also sampled more than they should
have to maximize their score.

ContrastingE HKDYLRU LV IRXQG L Q(Fevgddoh) HO8%nd\ SUREOHP\
similartasks in whichadultssee a sequence of items differing in value and can either
select the current item or go on to the nettiey cannot go badio a previously
rejected itemIn these taskgqarticipantdend to stop tosoon, loweringher chance
to maximizewinnings(Bearden, Rapoport, & Murphy, 2006; Kahan, Rapoport, &
Jones, 1967; Rapoport & Tversky, 1970; Seale & Rapoport, 1997)

Thus, incognitive sampling tasks thi clearly defined optimal strategiesjults
often fail to follow thisoptimal strategyand maximizeexpected gainn more recent
free sampling tasks, aduksetwo lotteries, €.g, decks of cardwith varying points
and penalties) from which they caeely sample to identify thenoreprofitable lottery
(Hertwig, Barron, Weber, & Erev, 2008 articipantgypically sample only a few
times (~1520) before choosinghich lottery to play This has been characterized as
undersampling(Hau, Pleskac, Kiefer, & Hertwig, 20p&ut without quantified
sampling costs, it is unclear what the gaiaximizing stopping rule igJuni,

Gureckis, & Maloney2016).

It has been argued that adults in cognitive sampling tasks may be using a more
adaptive strategy than first appears. For example, tsaepling may in fact reflect
optimal stopping giving intrinsic costs such as boredom, fatigue, or differemt valu
assigned to payofDudey & Todd, 2001; Seale & Rapoport, 1997articipants might
also be sampling optimally within the constraints of limited memory or planning
capacity(Busemeyer & Rapoport, 1988; Hertwig et al., 2004; Rakow, Demes, &
Newell, 2008; Rakow & Rahim, 201,r base their stopping rules on heuristics, that
whilst suboptimal, areesasombly successful at identifying the ideal strat€gyans
and Buehner, 2011; Fiedler and Kareev, 2011fwigrand Pleskac, 2010)

More recently, sampling decisions have begun to be studied in the visuomotor
domain, capturing problems that more closely resemble those faced in cur road

crossing or ballnterception example@attaglia & Schrater, 2007; Dean, Wu, &



Maloney, 2007; Faisal & Wolpert, 2009; Juni et al., 20I§pically, these tasks have
a strong emphasis on ideal observer models that capture the costs and benefits of
visual informationVDPSOLQJ DQG WKDW WHVW SDUWLFLSDQWVT |
to maximize expected gaim Battaglia & Schrater (2007pr example, the observer
can delay his response in order to acquire more information disolatcation of a
visual targebutthis comes athe cost of movemeiiime - and hence precisiorto hit
the target and earn a rewaifdhetypical finding in thesetasksis that without nach
taskspecific trainingparticipantsare able to trade off the benefit of further sampling
aganst its costso maximize their winningsThis suggests that visuomotor tasks,
adultsarehighly adept at estimating and accounting for their own visual sampling
skills, andmake complexampling choicewith surprising speed and automaticity.

Like adults, children also face many tasks that rely on the ability to decide
when to stop looking and start actitig.everyday risky activities such as crossing the
road or playing outside, inefficient sampling choices could have a major impact on
childhood safetyHowever, as yet, little is known about the contributions of this
crucial decisiormaking skill to visuomotor development. In one recent developmental
VWXG\ FKLOGUHQ DQG WHHQDJHUVY GHFLVLRQV IURP VDI
cognitive doman, using a classic carshmpling paradigm. The results revealed that 8
yearolds sampled approximately the same numbers of cards as adults to learn the
payoffs of two lotteries before selecting one to play for points. In contrast, adolescents
between theges of 1214 years sampled significantly less information than children
or adults before playing, revealing asdaped developmental trajectory. Based on
correlations with questionnaire dathe authors hypothesized that the age differences
were linked © reduced motivation in the teenage ye#ia(den Bo& Hertwig,

2017). However, to date, it is unclear how sampling decisions deivetopisuomotor
contextwhen the payoff structumerivesfrom anoisyvisualestimateteven though
this is a type ofampling problem young children face very frequently in everyday
life, andthathasmajor implications for physical safety.

We may expect that correctly estimating and accounting fantpeecisionof
visual estimates may be challenging early in life, when we have less world experience
and our visual abilities are still changing. Some evidence for this possibility comes
from research on sensory cue integration; when faced with two noisy sensory cues
(e.g., a visual and tactile cue to object size), adults combine these cues into a single

estimatdn a neafoptimal way by taking an average that weigletsch cuen



proportion to itgeliability (Ernst, 2012; Ernst & Banks, @R). In contrast, across a
range of tasks and cue combinations children only start weighting cues by their
precisionsafter the age of 2Q1 years, keeping cues separate before this(tBod,
Del Viva, Sandini, & Burr, 2008; Nardini, Bedford, & Mareschal, 2010; Nardini,
Jones, Bedford, & Braddick, 2008)

One recent study suggests that the ability to weight the rewards and penalties of
different visuomotor action outcomes by thHéielihoodsalso poses a challenge for
children up to the age of 11 yedBekker & Nardini, 2016)When making rapid
reaches to a display with reward and penalty regions, adults correctly accounted for the
imprecision of their reaches, and aimed for locatibatwould nearlymaximize their
expectedscore(Trommershéaser, Maloney, & Landy, 2003Children, in contrast,
DLPHG IRU 3ULVN\" UHJLRQV ZLWK sb akighl KskFobo8s@FH R1 ZLQC
the detriment of their expected scordQ WHUHVWLQJO\ D VLPLODU SUHIHUI
lotteries with high outcome variability has often been reported in childhood and
adolescence for gambles with explicitly stated probabildres valuegBoyer, 2006;

Defoe, Dubas, Figner, & van Aken, 2015; Levin, Hart, Weller, & Harshman, 2007;
Steinberg, 2008; Weller, Levin, & Denburg, 2014lthough it is unclear whether
similar factors may underlie both types of decisions.

In any case, adultypically perform close to ideal asensorimotodecision
tasks In contrastjn childrenyounger than-10yearsold, the availablesensorimotor
informationis not combined and weighted correctadingto substantially poorer
perceptual performance than that of an ideal obsé@&ani, Del Viva, Sandini, &

Burr, 2008; Nardini, Bedford, & Maresch&010; Nardini, Jones, Bedford, &

Braddick, 2008)Similarly, in a rewarded settinghis phenomenon with childreled

to substantially lowewinnings compared to a gamaximizing observer under the

same conditiondekker & Nardini, 201% Therefore, wéypothesizd that younger
children will alsomake inefficient sampling choices when the costs and benefits of
sampling are determined by their own visual abilities, and that this ability will improve
with age.

To quantify ageelated changeas visual information sampling and the
processes supporting this development, we us#te present study childfriendly
adaptation of the visual target localization task describellibyet al.(2016) We
chose this task becausedptureshe complexity ofealistic everyday visual sampling

problemsin a formal decisiomrmaking frameworkwith child-friendly taskdemands



During the experiment, we asked 6 teyigarolds, 13to 15yearolds, and adults, to
locate a hidden target (a cartoon fish) by pressing on a touchs€rektate the fish
SDUWLFLSDQW FRXOG pE X\Jbut K HoihgWwdrhs\piitentdl EBwaidtH W O R F D\
was reducedEach cue was a bubble (marked as a green dot)gpeaied on the

screen (Figure)l Each dot was drawn from an isotropic bivariate Gaussian (Normal)
distributioncentredon the target. The more dots observed (i.e., sampled), the more
likely it became that the centroid of thbservediots lay within the targetontaining

the fish.The probability of catching the fighusincreases with each additiordut
observedHowever eachadditionaldot reducd the potential rewardyfeen curve and

blue line Figure 3. The expected reward for any number of dots is the product of the
rewardfor the fish and the probability of catchingiéd curve Figure 3. The ideal
observer would sample the number of dots with the highest expected reward (dashed
line, Figure 2.

Thus, as in everyday sampling problems (e.g., deciding when to cross a road),
minimising risk involves estimating the benefits of additional information gathering as
defined implicitly by noise in the visual estimate, and then trading this information off
against the sampling cost. As in naturalistic sampling, observers must select the best
tradeoff from a range of potential sampling strategies with different expected payoffs.

Juni et al (2016) found that adult participants performed this task in givalitat
agreement with the optimal strategy, buying fewer location cues when the cost of each
cue increasedn one of their experimental conditions (low stakes), there was no
patterned deviation in sampling from the ideal; though in a semamdiion (high
stakes) participantssampled more information than they should have to maximize
expected gain (about 1.5 additional cues per trial).

To investigate how and when theggimalvisual sampling skills are acquired,
we first characterized the efficiency of sampling across childhood, adolescence and
adulthood. To understand what drives developmental changes, we can then formulate
hypotheses about candidate processes consistent with the specific deviations from
optimaity observed, and test these within the quantitative framework of the ideal
observer model.

Notably, in order to obtain a pure measure of decision making, it is crucial to
remove any confounds due to immature sensorimotor ability. For example, it is
possble that some children may actually need to sample more information than adults

because they are poorer at utilizing the available informationJ(sess & Dekker,



2017) We acounted for this potential confound by also measuring empirically, in a
separate control task, how well the ability to hit the target improved as the number of
cues increased. We then incorporated this measure into the hit probability component
of the ideabbserver model (green curve, Figure 2), against which empirical choices
were compared. In this way, we were able to make individualized predictions for each
participant regarding their optimal decision strategy, against which we compared their

observed pgormance.



Methods

Participants

Participants of the main experiment consisted of twaeirtg adults 1=23.89,

SD=0.79, 20 female), and 129 children and adolescents afjed/éars, all with

normal or correctetbb-normal vision and no knowmeurological disorders. The

children were divided into three equal age groups:-3Q/6arolds M=7.12,

SD=0.11; 17 female); 30-8 yearolds M=8.76,SD=0.10; 13 female); 30 102 year

olds (M=10.93,SD=0.12; 11 femaleTo test for a possible ndmear n8 6 KDSHG
trend in development during adolescence, we tested-2% y@arolds (M=14.7,
SD=0.88, 22 female)n eachagegroup, half of the participants wer@ndomly

assigned to the high cue reliability condition, déimel other half to thlow cue

reliability condition.Six participantsvhose sampling strategies deviated by more than
2.5 Median Absolute Deviations from otherslikely reflecting noscompliance with
taskinstructions-- were excluded (5.0%; see Table 1). When these data are included,
the overall pattern of results remaiqualitatively unchanged.

Finally, controldata was collected froril children aged & years (M$.95
SD=0.13 5 female).Participantavhose sampling strategies deviated by more then 2
mean absolute deviations from the mean groups strategy, were exclude. Remaining
numbers after exclusion are reported in Tablehkresearch was carried out in
accordance with the Declaration of Helsiakid theUCL Research Ethics Committee

approved thexperimentaprocedure$#2280/001)



25.52 mm 14 points 0 points

Figure 1: Participastsampled location cues (dots) drawn fromsatropicbivariate Gaussian
distribution There were two conditions differing in standard deviation: high (12.4 mm) or lo
(27.5mm). Stimuli from the high condition are shown. The target is initially worth 20 points
Eachadditionaldot increased the chance of locating the target, but redoetatget valudy 1
point. Participand decided when to stop samplimgdthen attemptetb locate the fish by
placing a hook on the estimated center of the dot clbtlte hook fell within the target area, th
response was scored ia dndall remainingpointswere awardedOtherwise, amiss yieldedcho
points.

Stimuli and Task

Stimuli were presented on éiyama ProLitd.CD touchscreerdisplay (521.3x

293.2mm liyama Co Ltd, Tokyo, Japaonnected to a MacBodko (Apple Inc.,
Cupertino, CAyunningMATLAB Psychtoolbo3 (Kleiner et al., 2007)Participans

played a fishing game in whichthéye R X JKW =~ S U R E DiEEDCH BMBIERVFHF X H V
the locaton of an invisible target circleontaining a fisl{targetradius 12.8mm)Each
cueincreasd the chancef a correct responggreen lines, Figur). However,it also
incurred a ipointdeductionof the reward foma hit, initially set to20 (blue lines Figure

2). Current targetaluewas displayed on both sides of the screen (see FlyLifbe
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participant only paid the cost of the information samplédaf/succeeded in catching
the fish. No cost was imposed whikeydid not.
Theprobabilistic locatiorcues wergyreendots (radius: 1.1mmyrawn from a

r

¢ kThe

acee

A6
zeromeanbivariate Gaussian distributiamith covariance matrix I—?X age

value of Lots(i.e., the magnitude of external noise) was fixed withuhjectsat ether
12.4mm (high reliability) or Z.5mm (low reliability).Since theGaussiardistribution
wascentredon the target locatioand the sample mean is the unbiased minimum
variance estimator of the population mean of the Gaussian distribtigiarget
location estimateninimizing variance and maximizing probability of hitting the target
wasthecentroid(bivariate meandf theobservedtues(i.e., Mood, Grayhbill, & Boes,
1974) As thenumber of sample®Ndots increased from 1 to 2€hevarance of the
centroidestimate decreased and the probability of hitting the target incrégsed.
participantsaveragd the dotcues perfectlythen following theWeak Law of Large
NumbergFeller, 1968) the expectedstandard deviatiom theaiming point(centroid)

around the target decreasgs rate owmae
Tideal = O dots
V' Naots
The correspondingrobabilityof hitting the targetan then be computed by
LOQWHJUDWLQJ WKLY LGHDO DLPLQ Jep &to§s\WeGatgetW UL E X W L R
circle (see SupplementaRygureS1

for details)
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: reliability | &

: low = . . .
e ' z Figure 2. A formalized model of the sampling
= ' t decisionproblem: targevalue(blue line) and
3 e\ Cors 28mm- |55 probability d hitting (green curvemeasured for
8 ' 8 each participant in a separate conditiare
2 @ plottedas a function osample size Gaxis), and
o =5 . N
- - a separately folow (top) andhigh reliability cues
= . >3 (bottom).The expead gain for each i (red

: = curve) is thearget worth multiplied by

probability of hittingthe target. Théleal
observer samples the number of dotswhich

the expected gaiis highest (circle aintersection
of the red curve and the dotted line thaticates
its maximum)A hypothetical inefficient sample
would score less than the predicted maximum,
either sampling to few dots (squaresjar many
dots @liamond$ or mixing over and under
sampling trial by tria(triangle witherror bar).

high

N\~ reliability

4 Ogors 12mm

hit probability

uren) pajoadxyg/sjurod

Ngots (sample size)

However,as highlighted in the Introduction, there is no reason to suppose that
children or adults are ideal in how they average sensory inform@boes, 2018;

Jones & Dekker, 2017Paticipantspecific imprecisiosin locating the middle of the
dot-cloud will introduce additional randosariability in aiming points around the
target and will concomitantly reduce the hit probability.

To account folindividual differencedn integration ability we measuredhit
probabilities empirically for different values ofid We did so byaskingeach
participantto perform D 3| LINK«&W D aftlr'the main task-his was identical to the
main task, except théhe experimenter conttled the number of cues shown on each
trial. These datallowed us toestimatedirectly, and for each subjedhe probability of
hitting the targeas a function oNgots(green curvegigure2). We could then correct
RXU DQDO\VLV RI W Kribkin) EeMdrhianed for énll SapiihhaiRtyin
estimating the centroid of the do&ee the SuppieentaryFigureSl for details on
how this adjustment was performed.

In the main task, participantgere instructed tgcore as many points as
possible This requiredhemto trade off the berfit of a higherhit probabilitywith
additional dotcues against the cost of kpoint decrease iratgetworth per dot An
ideal observer would compute tgpected score for eachydd by multiplying the
WDUJHWITV FXUUHQW ZR bhWing tAd tsvge(résilting ie&D ELO LW\ R
pxpected gaifficurves in Figre 2), andthenidentifying the Nyots with the highest

score predictionideal Ngots red peak).

12



We varied spatial cue reliability by changing the standard deviation of the
VDPSOLQJ GLWW RXERWALIRQK OIRdés32A Bnim)Eelded av\ 1
IODWWHU ZLGHU H[SHFWHG JDLQ FXbs¥H4DQG FXHV ZLWK

yielded a narrower, more peaked expected gain curve (s&g Hglf of the subjects
were presented with low reliability cues and the other half with high reliability tues.
the implausible case of perfect use of the visual,dhesoptimal strategy was to
sample 8 dots in the low reliability condition and 4 dots in the high reliability
condition.In practice there was some imprecision in use of theams- see Table 1
for ideal numbers dNqotsfor the different age grougter adjusting for participant
speific hit probability functions.

Because visual cue reliability was fixedathin each conditionthe sampling
strategy that maximizes expected gain given a particular hit probability function was
fixed too, so the idealbserver would sample the same number of dots on every trial
(circles, Figure 2). In contrast, an inefficient visual sampler might sample a lower or
higher number of dots tharquiredto maximize expected score (i.e., select a biased
sampling strategy; s@res or diamonds Figure 2), and anyoigkrial variability in
sampling behavior will also reduce the expected reward relative to the ideal (triangles
Figure 2).

Procedure

Dot-sampling taskParticipans were positioned within comfortable reaching distance

of the touchscreerfirst, they were familiarized with the location cues by placing a
cursoron asaturateaiot-cloud (Niots = 20), and pressg enterto see thdocationof
the target (a fish insidearcle) (20 trials) At the start of this training, theyere
instructecthat the fish were most likely to hiégxactlyin the middle of the detloud
andthatthey shouldalwaysaim for this locatiorto get the best possible scoféis
was doned encourage participants to ube ideal response strategfylocating the
arithmetic meanHowever, since we measured hit probabilities empiricalby
separate’l L[HG G R&Mr mbbBeling ‘and analysascount for usef different
strategiesor anyage differences in the ability to locate the mismationof the dot
cloud

Participantghenpracticedthe main task20 trials)in whichtheycould
purchasaip to 20dots by pressing space bamatost of 1 point pesue, deducted

from the initial 20point target rewardf the cursorfell within thetargetcircle when

13



the participant enterdtieir guessthey won thecurrent reward20-Ngots), at which

pointthe circle around the fish turned green angice announced the number of

points won @uditory feedbadk If the cursor fell outside the circléhe circle around

the fish turned recandD VFRUH R1 3]HUR SRLQMeRSuréthat DQQRXQFHG
participants understood the instruction¥imd the middleof the dots theyreceived

feedback aboute arthmetic meanof the dotgindicated by a crosshairjtar making

their responsen the first 15 of these 20 trialBhe main taskonsisted of 10@est

trials. Points won during the test trialgere converted into tokens that could be

exchangedor toys(children)or money(adults)at the end of the experimeiio match

motivation across ages, participants were only informed of how many toys/how much

money the tokens were worth at the end of the task.

Fixed dot taskAfter the main egeriment participans performed aecondsimilar

taskin which they were presented with fixBdoisrather than being allowed to choose
Ndotsthemselve$25 trialsper value of Nots). The purpose of thisaskwas to identify,
for each individualthe probability ohitting the targetas a function oNgots in order

to accounin the main taskor any individual differencein visual integration ability
Nineteen adultsvere presentedith all Ngotsconditions (1 to 20 dotspincethesedata
revealed that hiprobability increasedpproximatelyguadraticallywe only presented
the 2, 3, 7and15 dots conditions to the remaining participaotsinimizetestload,
and fitted curves (constrained splines) to interpolate measureSygpkementary

FigureSl for details).

Measures
In thefixed-dottask a predeterminedumber of dotsvaspresentean eacttrial. The

key outcome measures were the interpolated hit probability as a functieasddiN
each participanfSupplementa FigureS1). This allowed us tadentify, for each
individual, which Nyotsyieldedthe highesexpected rewardy computing the
expected gain curvd érget Value xTargetHit Probability) andcalculatingthe
number of dotshat maximized expected rewagipup averages in Table. 1) the
maintask we measuredhow subject§sampling choices deviatécbm this ideal

sampling strategyand how theiscores deviated from their best possildeores.

Results

14



In the following sections, we first quantifhow muchthe different age groups deviated
from the ideal samplingtrategy, and how this affectétkeir performance. We then
investigate the nature of these deviations (i.e., how theypaceto the optimal and
suboptimal sampling strategidspictedn Figure 2). Finally, wehypothesizavhich
neurocognitivegprocessesouldgive rise tathesespecificagerelated changes and
present further analyses and data testiegehypotheses

Age Differences in Sampling Efficiency

To test for ageaelated improvements in visual information sampling, we first
testedfor age differences in how closely the samplkelsapproximated the idealddis
(Fig. 3). For each subject, we determined the Mean Absolute Deviation between the
Ndots bought on each trial and the individual ideabdNpeak expected gain curvEgs
2&4):

trial™
trial,

| sampled Nyots — ideal Ngos |
jw%riuls

Figure3A plots group meanand 95% Cls for this measuiene $12 9 $ e
performedrevealed that theaviation from the ideal sampling strategy decreased
significantly with age in both cue reliability conditions (high reliability cues:
Fa,.69=4.77, p=0.002 low reliability cues¥,79=5.2 p=0.001). Information sampling
efficiency thus improved with age. Howevedividual sampling decisiongere often
suboptimalat all agesanalyses of individual participants using Bonferronirected
onesamplet-tests(113 testsp < 0.00044)evealed gnificant differences between
Ndots Sampled and fkaiin 25 out of 27 67 yearolds (93%), 22 out of 30-8 yearolds
(73%), 23 out of 27 12 1-yearolds (85%)21 out of D teenagers (72%and 23 out
of 29 adults (79%). Thusithough adults were more efficient and closer to their ideal
sampling strategy than childremanyindividuals still exhibitedsuboptimal sampling
strategies.

To test how these aghfferences in visual information sampliaffected task
performance, wengdictedwhatparticipans § V F BuldiHave beerf they hadused
therown LGHDO VWUDWHI\ RQ HYHQWWUHD QV AMKH3 S HRIGH B\M C
ideal score thawas actually obtained (FiguBB). Score percentage increased

significantly withage for high reliability cued~s,69=5.4, p<0.00) but while a similar

15



pattern was observed in the low cue reliability condition, this effect was not
statistically significantk,7=0.8 p=0.53. This might be because deviating from the
ideal strategyn the low cue reliability conditionesulted in smaller reductions in hit
probability, and hence a lower cost to performance (less steep expected gain curves

(red) n bottom vs. top panel of Figsand 4.

high reliability low reliability
(12mm) (28mm) Figure3. A. Mean dsolute

B 5L i deviation from theyain
&z maximizing strategy (mean
52 4 + 95%Cl) B. score
SE 3 percentagethe percentage
EE 2 of the best score prediction
- (set to 100%, red dotted
=& line) acually obtained. Stars

0 indicate significant

differences across

S consecutive age groups
o 100 (p<0.05 see Supplementary
& Tablel)
S 90
[}
o 80
O
A0
£ 60
3
w50

Age Group
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Y oungerchildreny $ampling strategies deviated more from ideal sampling than
those ofadultsandthis reduced their scor&ampling strategigsecame increasingly
more efficient with agand started to resemileose of adultfrom approximately age
10 years onwardseeFigure 3., andupplementary Tablgl). Adolescence-- the
period between age 11 years and adultheod oftenlinked tomore risky behavior in
real life, and itwas recentlysuggested that this may partbe due to a reduced
tendency to seek out informatiabout probabilitie§vVan den Bos Hertwig, 2017%.

In the current experimermkeviations between the ideal and samplegsWereclosest
to those of adultén adolescentsThis outcomesuggests that the ability to balance
costs and benefits to optimize visual information samptegelops around ag® 1

years or soon thereatfter, and follows an incremental ratheateshaped trajectory.

Age differences in Samplin@ias and Variability

To understand whyounger F K L O Ganhiplpg dhoicewereinefficient, we
investigatedn which specific ways (outlined in Fig 2heydeviatal from the ideal
observerin Figure4 we have plotted the individual sampling strate@rean Noty
against the scores obtainied each age grouas well as the agspecificexpected
gainacrosiNdots(red *H[ S H F W H@vekDhic® lines are group averages, thin lines
are individualy} andthe ideal strategfdotted line) Positive vales indicate over
sampling and negative values undampling. The average idealdNand observed
Ndotsare displayed for each age group in Tabldldtably, the dataoints in all age
groups follow the red curves, indicating a reasonable model fit, ieipdor subjects
who showed constent sampling (see SupplementiigureS2). In the following
sections we tegor suboptimal sampling strategies, as reflectesiystematic bias

towards underor oversampling, and variability in samplir{§igure?2).
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See Table 1 for average group values.
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N after outlier L terna(MmM) Observed Nygi Ideal Ny

removal

cuerdiability high low high low high low high low
condition (1, (12rm)  (28mm)  (12nm) (28mm) (12nm) (28mm) (12mm) (28mm)
6-7yrs: 13 14 34(0.7) 65(0.9) 37(16) 46(.0) 47(023) 7.1(15)
8-9yrs: 15 15 35(1.0) 6.1(12) 36(13) 68(27) 48(0.33) 6.9(1.3)
10-1 yrs: 13 14 2.7(0.8) 59(15) 33(0.9) 65(1.8) 4.6(0.03) 7.1(0.9)
13-15 yers: 15 14  30(0.7) 53(0.8) 4.2(0.8) 7.9(15 4.8(0.25 7.1(L0)
adults; 14 15 3.0(05) 51(0.8) 47(1) 84(L7) 51(0.35 7.5(10)

6-7yrs: nla 1 nla n/a n/a 18.5 (2.6) nfa 20

no ws control

Table 1. For each age group and condition, the number of subjects after outlier removal (ceBymns :
Inemai Mean standard deviation of aiming variance aroundnidele of the dotloud(see
Supplementary Materials Sftom the fixed Nois condition (columns 4), sampled hs(columns 67),
and Ideal Nots (columns 89).

Age Differences iamplingBias?

First we tested if reductions in performance efficiency in childhood were due to a
systematic tendency to under oversample (sampling bias). Either biasuld result
in a reduction in expected gain the case of undesampling because observers
playedfor higher points at an overly great chance of missing the target, and in the case
of undersampling because observargprovel their hitrate at an overly great loss of
target value(Figure2, squares and diamondd o test forage differences in sariipg
bias we computed the meagneddeviation from the optimal sampling strategy
(sampled Nots tideal Niots Figure 3\). Within the low reliability condition, there was
a significant shift from undesampling at the youngest ageslight oversampling in
adults F@,79=4.55 p=0.003. In the high reliability condition, children of all ages
significantlyundersample& while adults did not show arsamplingbias,butthe age
differencein biaswas not significantK,69=1.11, p=0.36. Together these findings
reveal adevelopmental shift fromndersamplingin the youngest children, towards
more extensive ancoserto-ideal sampling in older children and adults.

Age Differences in Trialo-Trial SamplingVariability?

Next, we tested whethgariability in sampling strateggould alsohavecontributed to
reductions imperformance efficiency in childhoo@he ideal observer in this
experimenshould never deviate from the optimal sampling strategy, as any variation
comes at some cost to expected g&nini et al., 2016)To test for agalifferences in

sampling consistency, we compatbd standard deviation of theidN sampled For
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cues with high reliability, sampling was significantly more variable at younger ages
(F@4,69=2.81, p=0.03 Figure B. But theagerelateddecreasén samplingvariability
wasnot significant forcues with low reliability IE,71=0.57, p=0.69. Thus, ateast for
high reliability cues, greater variability in sampling over the course of the kitetly
FRQWULEXWHG W Rerfokma@c€ UHQ YV SRRUHU

Which processesinderlie these agedifferences insampling?

The foregoing analyseshow thainformationsamplingdevelops across childhood
with closerto-ideal sampling strategies resulting in higharget localization scores
This developmenwaspaired with a shift from systematimdersampling ofvisual
information towards samplinthe amounthatoffersa perfect tradeff between
information costs and benefigs well as withess variation in theampling strategies
selectedWhat processesould give rise to thislevelopmental shift in sampling
choice® In the followingsectionwe present additional analyses, datad simulation
to test4 potentialexplanations

'R FKLOGUHQTV V Dde@ad pde Vo theided béckHuge:

1. It takesthe developing systefonger to learn the optimal sampling strategy
over the course of the tagkgedifferences irlearning?

2. Younger childrerassign additionahtrinsic costto samplingfor exampledue
to fatigue or boredomXge differences in samplingsty?

3. &KL O Gstopp@dgindle is more heavily influencbyg information that appears
to provide information about hit probability but is in fact misleading, such as
dot-spread or triato-trial fluctuations in performand@\ge differences in
sensitivity toprobability information)?

4. Childrenare in fact making a correttadeoff between hit probability and
target valugbuttheir probability representatias noisy orbiased/Age

differences irthe visual uncertainty estimg&

1) Age Differences in Learning?

The ideal observer would choose the sampling strategy that maximises gain on each
trial. However, inpracticeparticipants of all ages ed variable sampling strategies
with the greatest variability observed at younger a@esideal observemodelinfers
thegainmaximisingstrategy based ahe (implicit) estimate of theincertainty in the

visual cue anan samplingcosts butin reality, participants may in part rety
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deviation ideal Ndots

reinforcement learning to identify the ideal strateQy.investigate contributions of
suchlearning, we testedthethermarticipans fsampling decisionsnprovedover the
course of the taskndhow thisdiffered across age grouffsigure6).

We fitted linear trends to individual deviations from the idealsdcross the
100 experimental trial®d quantifyshifts towards or away from the ideal sampling
strategy We thencompared the slopes across dgm. cues with high reliability, there
was asignificant overall shift towards motsdersamplingover the course of the task
(slope < 0t(54)=-3.0687, p=0.0034 This maineffect wasdrivenprimarily by
children;Adults did not change their samplingagggysignificantly (t(13=-0.82
p=0.43 while FKLO G UH Q 1V dedeeBse@vier tie piihdugh this pattern did
not reach statistical signitince in the youngest age grqd-11 t(12)=-2.49, p =
0.03 8-9: 1(14) =-2.95, p = 0.01; & t(12) =-1.53, p = 0.1h There was anarginal
age difference in slop@3,51=2.75, p=0.0%h In the lowcue reliability condition
sampling strategiedid not changsubstantiallywith age slopes did not deviate
significantly from zerd 7= -1.3408, p=0.19 and did not differ significantly with age
(F@3,5471,70 p=017). In short adults immediatelghose theirampling strategy tim
the start of theéask suggestingheyrapidly inferred a close tothough not perfectly
ideal strategynd/or were very fast learnets contrastyoungerparticipans
consistentlyundersampled, and if anythinghoved further away from the ideal
strategyover the course of the task, despite receiving constant feedbacktaiout
score Giventhat therewas little evidence fareinforcement learningt any agea

slowerlearningrate is unlikely tdully explainthe age differences in sampling

21 6-7years |[ 8-9years |[10-11 years|f13-15 years adults Figure 6 Mean Nots
sampledacross trials

are displayed per

0 . age group (columns)
. \ —_— and conditions
\ * \ (rows). Shaded error
2 bars indicate
bootstrapped 95%
Cls. Stars indicate
4 0=12 | that theslope
2 parametepof the
linear trendfitted
through individual
0 data deviaté
[~ sigrificantly from

zero (p<0.05)
2 \
0=28

0 50 100 O 50 100 O 50 100 O 50 100 O 50 100
trial number
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2) Age Differences in Sampling Costs?

A tendency to gather too little information in younger children coulexXpdained by
fatigue or boredom, as such factors may impose additional (implicit) costs-on dot
sampling that were not accounted for in the explicit cost function of the ideal observer
model. To test thiswve performed a control experiment with a new cobbdhildren

from the youngest age group (the age group that most exhibitedsardpling in the

first experiment). Eleven 6 toyearolds performed the same low ereiability

condition from the main experiment (9dethods) the only differencevas thatthe

costof sampling more dots was reduced from 1 to O (i.e., tavgeth remained at 20
points throughout, irrespective of the number of datssampledl. Clearly, the gain
maximizing strategy in this case is to sample all 20 dots on every trial€éfuses
frequent button pressing and long test durations, which should amplify any effects of
fatigue or boredom. Nevertheless, 6 tgearolds sampled dastantially more dots

than before, and did not deviate from the ga@ximizing strategypy any greater
extentthan in the main task (18\s.20 as compared with 4.6 vs 7.2). Moreover, they
did not reduce their sampling over the course of the experisamip{ed Nots Start:-

15= 17.9 (SD=3.5), sampledsbkend@sioo= 18.2; (SD2.9); see Supplementary Figure
S3 7KXV LW LV XQOLNHO\ WKDW \RsaQple hiotnmateiil Q TV WHQ
the main experiment was due to fatigue, boredom, lackotifzation, or failure to
comprehend the task. These results atsdirmthat even the youngest children reatd
leastVRPH XQGHUVWDQGLQJ RI WKH uSUREDELOLW\ [ YDOXH
sensibly sampled more information when there were nbogbgampling costs.

3. Age differences iBensitivity tdProbabilistic Informatior?

Juni et al (2016)showed that one reason why adults in their experiment varied their
sample sizes from trial to trimlasthatthey adjusted their sampling strategy to the
spread of the sampled dots, sampling more when dot positions were far apart. This
strategy is suboptimalvhenunderlying sampling distributions have a fixed standard
deviation,hit probabilityis independendf sample spreadvhich is something
participantscould experiencedirst-hand in the training trialand throughout the task
However the false intuition that more closely spasatiplesare somehow more

reliableseemsieeply ingrained.
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Figure 7.The Sample Spread Difference (SSD) is tliference in rootmean squaikerror
between trials on which participants continued sampling (RN Ss. trials on which they
stopped (RM&qy. The SSD is plotted across differeni,ifor each age group ande
reliability. The mean SSD collapsed acrossdié presented in the right panels.

To test whether this false intuition might explain there variable antess efficient
sampling observed in childhood, wetracted the observed dot configurations for
every trial in which participants viewed13l Nyots (data for other conditions were too
sparse). For each dot configuration, sample spread was computed as the Root Mean
Square (RMS) distance of the points from the arithmetic mean. The set of RMS values
wasthen divided into twdypes(RMSstopVS. RMSont), depending on whether the
observer stopped sampling at this point or continued to sample more dots on that trial.
Finally, we computed the me&ample SpreadibBerence(SSD)between the twrial
types

SSD =RMS¢ont 2RMSsiop,
and usedbootstrappindo compute 95% confidence intervals. If obserwveese more
likely to keep samplingvhendot-cue spreaavas high, thefsSD would be positivdn
contrast, if--- as per the ideal observer sampling decisions were made
independently oflot-cue spreadthenSSDwould be ~0The results of tisianalysis
are shown ifFigure7 )LUVW OHW XV FRQVLGhY1n +LIJK 5HOLDE
condition.Up to the ages of 8 to 9 years sampling choicas welependent of datue
spreadA tendency tesample more dots when sample variance was gresgecially
as Niotsincreasegresent in adults (p<0.0lemerged around age-1Q yrs. (p<0.05),
althoughthis patterrdid not reach statistical significance in adolescdntthe Low
5 H O L D E&s® R8NmM) tondition, there was no effect of séangariance for any

age groups.
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Thus, inkeepingwith previous findings (Juni et &016 adults and

RO GHU F gtappiagyuuteQwWeve (incorrectly) affected by dot sample variance in
the high reliability condition, whilegungerchildren were affected less or
inconsistenthby dotcue spreadlhere was no significant effect of dot cue spread on
sampling strategy at grage for Low Reliability cuesDevelopmental changes in
visualsamplingsuch as reduced variance in th@dsampled with agearetherefore
unlikely to be driven bygreatersensitivity to dotspreadn younger participants

We also tested ijreatersusceptibility to hiteand misses on previous trials
could explaingreater variance isampling behaviour itheyounger age groupand
found this not to be the cateee Supplementary Figure S&his analysis showed that
participants age@-9 years analder, all sampled mor&lqots following series of misses
thanafterseries of hitsbut thatthe youngest children did not adjust their sampling
significantly depending oprevioustrial successThis suggests thadults ad older
childrenmay usdeedbackn similar waysto fine-tune their sampling strateglput that

younger children appeared to ayefeedbackaltogether

4) Age Differences in the Visual Uncertainty Estimate?

We next explord whether the tendency to uneggamplein younger childremmay in

fact beadaptiveif you have anmperfect estimate of visual uncertainty. The ideal
observer model we used to analyse the data (e.gues@and 3), assumes that
participants are perfectly aware of how their chances of hittiegarget increases

with Ndots(i.€., Jbs See SupplementaRigureS1). However, participants may have

had some erroor bias in theiestimate ofesponse precision, and this may be more
extreme in childhood& RXO G FKLOGUHQ T\n fadbbde snaxin@sihgestr® L F H V
consideing such plausible limitations?

To test this, wdirst computed the ideal sampling strategy for an obsewitar
anoisybut unbiaseestimate of how hit probability changes with dot sample size.
Details on how this madl was computed are provided inglementaryriguresSs
andS6. With increasing amounts of error in the hit probability estimate, this noisy
ideal observer sampled fewer dots than the ideal observer with a perfect hit probability
estimate (see Supplementary Fig8&. Importantly, however, even for large error in
the visual uncertainty estimate, the reduction in the idead td sample was only

small, and did not approach sampling choices in the youngest age group.

24



It is also possible thahe samplinghoicesin young children might be
explained by a systematiias inthe estimated chance ht the targetSince we had
no apriori reason to assume that children systematically urmderverestimate the
precision oftheirlocation estimate, we considered how processing limitations known
to characterise development (i.e., limited memory), might give rise to such a bias; one
way in which participants might estimate visual uncertainty for a gaemple sizeis
by directly tacking thedeviationsbetween eaclocation guesand the target location.
An observerconsidering onlya limited number of previous triale compute the
deviationbetween location guesses and taoyet to limited memorjor a given Nots
will overestmate the truehance of hitting the targétee Supplementary Figugé for
simulations). However, when we simulated an observer with the maximal bias that this
strategycould result in combined with the highest possible amount of uncertainty
around thisiased estimate of hit probabilitlyat we could modethe ideal sampling
strategy wastill slightly higherthan the Notsobserved in young childrgiiNqotsat age
6-7 = 4.6, ideal Notsfor the most noisy and tsad ideal observer = 5.6 dots), although
it started approaching child behaviour. So, a similar procesd contribute to the
tendency to undesample in childhoodoutis unlikely tofully explain it

Discussion

We useda rewarded targdbcalization tasko measureisualinformationsampling
decisiondn 6- to 15-yearolds and adultsTo perform wellin the taskparticipants
had to weigh the benefit gamplingadditionaldot-cuesagainstthe costof sampling
and identifythe sample sizthat maximized their expectadore Thiscaptures the
problems faced inealworld situationgn which more sampling reduces uncertainty
butcomes at cosf(see Introduction)Visual cue reliability could either be high or
low. For eaclhof theseconditiors, we computd the optimalnumber of samples
(maximal expected winnings and compared human performance to the idgal
measured the efficiency of performance, defined as the ratloseirvergwinnings to
the maximum possible winnings in that conditiBarticipantscould fail b maximize
their winnings by consistently sampling too little information (urskamnpling) or
consistently sampling too much (ov&mpling). They could also fail lsampling too
much ortoo little on some of the trials, even if average, they sampled the correct

amount.

25



The youngest childremarkedlydeviated from the gaimaximizing strategy
(Figure ), and scored less well on the tgfkgure3B). With age, sampling choices
gradually shifted towardhe ideal strateggotha by 1611 \HDUV FKLOGUHQYV VDP
resembledhenear optimaperformance oadults YoungerFKLOGUHQYV VDPSOLQJ
choices were less efficient in that th@yshoweda systematic bias towards under
sampling and (b) showed more variation in the numhsrdots sampled (Figure 4 and
5). While this pattern was observed for both cue reliabilities, not all age differences
reached statistical significance in batieconditions. This is likely because the
conditions differed in their sensitivity these diferent aspectsf samplingefficiency.
For example, given the strongly peaked gamdscapédor high reliability cuesa
suboptimal strategy was penalized more heavilyausedyreater loss of points.
Instead for low reliability cues, there was more mdor undersampling because the
ideal strategy was not compressed towards the lower end of the scale.
Taken togetherthe datasuggestd a gradualagerelatedimprovement in visual
sampling with adultlike performance reachedound age 101 years osoon
thereafterBelow we discuss thgrocesssthatmight give riseto this development
based on ouiurther analyses and control experiments

More variable sampling in childhood

For each experimental condition there was only one optimal stratefjze
participantshould choose the same (optimal) number of samplesenytrial. The

ideal observer wouldlways take the same number of samples in each trial of an
experimental conditio@Juni et al., 2016). In contrast, our human observers were prone
to vary the number of cues sampled across trials, and this tendency was particularly
pronounced in younger children.

One possible explanation for this developmediffiérenceis thatyounge
childrenare slower to learn the statistics of tagk and sespentmore time exploring
ineffective sampling strategieSvidently, when the gaidandscape of a task (i.e., the
mapping of responses to outcomes) isexatctlyknown,exploring differentresponse
strategies cahe helpful fodearning which is begGureckis & Love 2009) In
contrast, when, like our adults, an observer is able to resolve the gain landscape
quickly, we would expect them toptthe ideal strateggarly in the taskand stick
with it. Indeed, they may use previous experience to quickly learaskeoly

generalizatior{Zhang, Kulsa, & Maloney, 2015)
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Interestingly,howevereven though children in the current study were more
variable in their sampling strategiege found no evidencef learning across trial$f
anything,younger participantsioved away fronthe ideal strategy over the course of
thesessiorn(Figure 6) We theeforeconsiderednotherfactor that mightontribute to

F KL O G U HarpuleB&hiplikhgan oversensitivity totaskirrelevant information,

such adrial-by-trial variations inthe spread of the dot cugsndor the outcomes of

previous trials.Whilst an ideal observer with perfect understanding of the hit
probabilities in the current task should ignore these cues, a more realistic observer with
imperfect knowledge about dot cue reliability and their own averaging skills might use
these cues, tmform their sampling decisions.

Adults and older childredid sample more information when the spread of the
existing dotcues on the screen was high (in line with findings by Juni et al), and when
they experienced rin of misses in themmediately preedingtrials. However, there
was no evidence for sensitivity to these cues in the youngest chidheéle. children
varied the number of samples taken from trial to,timaline with a preference for
novelty and exploratiowe could not identifyactorsindicative of learninghat lead
themto sample more or lesbloreover, children appeared to be relatively insensitive
to information about success probability and visual uncertainty. Instead, as discussed
below, more variable sampling in childhoimdpat reflected agradual shiftowards a

strategy with greater potential rewards but lower expected gain in the lang run

Under-sampling

On average,dultssampled the gatmaximising number of dois both cuereliability
conditions(although a substantiabmber of individual adults deviated slightly from
the ideal strategylnstead, younger children systematically ursi@mpled and failed

to maximize their expected winnings as a reduitagerelated shift from under
sampling towards more efficient sampling was particularly noticeable in the lew cue
reliability condition (Figureb top-right panel) However, asimilar agedifference

towards undesamplingemergedver the course of thagh cuereliability condition
(Figure®6). Thus, children persisted ainoosinga sampling strategyith reduced
expected gairdespite continuous feedbaakout the deviations between location

estimates and target locatiohd;rates, and scores
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Undersanpling on this task can be described as-sis&king because it
involves playing for higher stakes at a greater chance of losing, thusriaga
greater range of possible outcomes (e.g., 16 or 0 points) over sampling strategies with
a smaller outcomeange (e.g., 12 or 0 points) but a higher expected score. This is a
standard definition of risky choice behawigDefoe et al., 2015)

‘H FRQVLGHUHG VHYHUDO IDFWRUYV WKDW FRXOG SRW
tendency to undesample.Firstty, we H{fSORUHG ZKHWKHU FKLOSGGUHQYV VL
might be explained bintrinsic cost factorgiot captured in the ideal observeodd in
Figure 2 such agatigue orboredomWe did this by running a contrekperimenin
which samplingmore dotsncurred m pointloss.6- to 7-yearoldsin this situation,
sampledsubstantially mor¢éhanthe childrenn themain experimentCrucially,
despite making more buttepresses and enduring longer tridhese childremlid not
reduce their sampling over the course ofdbetroltask This outcomempliesthat
F KL O Gubstapadindersamplingin the mainexperimenis unlikely to bedueto
fatigue lack of motivationpr some other implicit sampling costterestingly, this
comparison of main and control tasksealeda sensitivity to both value and
probability infaomation even at thgoungest ageof 6-7 years childrensamplednuch
less whersamplingincurreda point loss {£4.6 dotsmaintask, thanwhensampling
improvel the probability of success without any 0s48.5 dotscontroltask. Still,
while 6 to 7yearold childrenweresensitive to both value aqulobability, their
sampling decisions were less efficient than those of older children and adults.

We next testedvhetherthetradeoff children made in the main taskghtin
factbeconsidered optimal if we assumediseand/orbiasin the estimate of visual
uncertaintyand targethit probabilities To explore this possibilitywe first simulated
the effects ohddingGaussianQRLVH WR DQ REVHUYHUYfV LQWHUQDO H
visual uncertaintyThelargest amount aérrorthat we were able to mod@ssuming
equallikelihood of under or over-estimation)only predicedasmall reduction in
sampling suggestinghatthis factoraloneis unlikely toexplain child performance.

We also investigated how a biased estimate of hit probability would affect the
idealsampling strategy. Because\wad no goriori reason to assume that children
would systematically undeor overestimate their charsef hitting the target, we
consideredh bias that mighplausiblyarise fromkeepingtrack of the deviations
betweerlocation estimatand the target. Over a large number of tridds,variance

estimated using this strategyil converge on true visuomotor variance, but across a
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small number of trial§.e., given limited memoryjotal variance will be
underestimatedVe showed thahe most extreme underestimation of visual
uncertaintyfrom this processcombined with the largest error that we could model
around this biased estimatame closer tbut still did notfully captue the extent of
undersamplingin theyoungest age groufNdots= 5.6 in simulationyhile the
youngest children sartgd Niots= 4.6 on average).

Of course, ay data can be tidgivensufficientassumptions about underlying
parametersHowever, the fact that these relatively parsimonious chaogasr ideal
observer modalnable to explain the level of undsampling exhibited by young
children suggests that their inefficienisyunlikelyonly due topoor insight intheir
own visuomotorbilities, athoughit is possibleghat sich limitations playsome role

(see below)

Developmental mechanisms adlecisionmaking during sampling
Adults and oldechildren select the gaimaximizng strategy from the start of
thevisual samplindask, suggesting that they can rapiligrn toestimate and
compute with probabilistic visuomotor information. Here we show that this ability
takesuntil ~age 1011 years to develoghile more research is needed to understand
the mechaniws that drivehis developmental shift towards increasingly optimiaual
sampling choicesve can formulate sontentativehypothesebased on current data.
Ouranalysesndicatethat younger children were less sénsito misleading
informationthatadults and older childrefhey did notake moresamples after a
series of trials ending in failure or when theesin a sample were more spread dat.
DGGLWLRQ FKLOGUHQTVY SHUIRUPDQFH GLG QRW PRYH Wi
extensive experiae- the trendwvas in the opposite direction. In additionspglations
revealed that undesampling at younger ages is not wadiptured by a decisien
process that optimally compensates for a poor representation of visual uncertainty due
to limitations of memory, or to understanding of how this cue affects hiapiidly.
Togetherthese resultsuggest that younger children may be uneeghting or
3L JQ R udn@®HKlence not learning fronprobability information, and that their
choices consequentially are driven too much by potentias.géims could be becaus
young children are still developiragcurateestimates of howoisyvisualinformation

affectsperformancdi.e., the rapid resolution of the galandscapgand ardherefore
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putting less weight othis factor, or because the mechanisresded tscalecost by
probability arehemselvestill developing.

This interpretation is in line witht leastwo developmentaheoriesof
decisionmaking The firststemsfrom the perceptual decisiemakingliterature and
positsthat children have difficultgccounting for thgrecisionof perceptuaestimates
whencombiningdifferenttypes ofinformation because senses are still calibrating. If
it is unclear how @ensory estimat@aps ontavorld, it is best ignoreqGori et al.,
2008) It is possiblghatsimilarprocessPLIJIKW FRQVWUDLQ \RXQJHU FKLOG!
scale the potential value of the targetrectlyby their estimate of uncertaintgbout
the targets position

The result is also line with asecondconceptuallyrelatedset oftheofesin
cognitivedecisionmaking G XD O V \V &ughiBwe irRbdlahcétheories These
theoriespositthatreduced risktaking in childhood and adolescence refldutsh
sensitivity to rewargdcombined with aeduced contranechanism thaguppreses
potentiallyhazardous responsés.e., responses whetieelikelihood of failureis high
(Boyer, 2006; Shulman et al., 2016; Steinberg, 2008)le thesedual system models
typically presume that ristakingactuallyincreases in adolescenoecause hormonal
fluctuations increase imbalance betweaenralmotivationand control processes,
the present study the performance improved monotonically throughout childhood.

Thisresultis in line with a recentmetaanalysisof decisioamaking across
childhood and adolescenamncludingthatmost evidence suggests tiptdying for
higherbut-riskier stakes decreaseknearly (Defoe, Dubas, Figner, & van Aken, 2015)
However theresultsreported hereontrastwith a recenempiricalstudyby Van den
Bos & Hertwig (2017)who reported dJ-shapedievelopmentathangen
performance on a cognitive sampling test&rosschildhood, adolescence, and
adulthood Specifically, 8 yearoldsand adultxollectedsimilar numbes of samples to
learn the payoff structure of two lotteries beforaking a final choicéor points
whilst teenagersampled significantly leq8/an den Bos Hertwig, 2017)

These discrepant results likely reflect differences between the two tasks
and the tested age range. In the current study, inefficient sampling was most
pronounced around the ages of §ears, an age range not tested in the previody.stu
Additionally, participants in the decisigdrom-sampling paradigm of Van den Bos &
Hertwig (2017) must infer the cost/benefit structure of the gamble by trying sufficient

lotteries at no sampling cost. In the present task in contrast, the samplsgrobst
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benefits are experimentally defined, and can be inferred directly from the dot
distribution and point system. Consequently, the types of samplingdfsda the

current task likely rely less on intrinsic cost factors that may distinguish teenage
sampling preferences, such as motivation to seek information when the benefit is
unclear (i.e., when rare events have unknown likelihoods and consequences; Van den
Bos & Hertwig, 2017). The discrepancy across these two studies indicates that the
developmenof sampling behavior in childhood and adolescence might be driven by
different factors, highlighting the importance of understanding which component
processes drive suboptimal behavior across different stages of development and
different taskdomains (Nadlini & Dekker, 2018).

What factors may explain difference in performance across visuomotor
sampling and cognitive sampling tasks more broaRlgSearchers have investigated
many different sampling tasks (see Introduction) that potentially differ in the
"cognitive operations" needed to carry them out. For example, one key step in our task
is computation of the centroid of a display of points, alatisoutine” in Ullman's
terms(Ullman, 1984) ard anexample ofa cognitive operatiothat is a component of
visual cognition. Is the efficient performance we obsenader children,
adolescents, and adultije to the fact thaheycan tap into powerful visual routines?
Indeed we found that younger children (whawvé difficulty with centroid
computationJones & Dekker, 201@Iso did less well.

Could the efficient performance observed be due to some other aspect of our
task not shared with other sampling tasks where hyregiormance is less efficient?
We simply do noknow what these key different procesaes.Understandindgiow
different cognitve operations suppoefficient and less efficient aspectshafman
performance is an important goal of resediiafabasso et al., 1978ut much remains
to be donéNardini & Dekker, 2018; Rahnev & Denison, 2018pme task differences
may be inconsequential while others may be of great importdheesvident way to
work outwhich processes explain performance across diffe@npling tasks is to
design tasks that are identical except in one respagtDelgado, & Maloney (2009)
for example, compared human performance in decision undemnisi a
mathematically equivalent vistmaotor task. Only the source of uncertainty differed in
the two tasks. At first glance, the planning of movements would seems to have little in
common with decision under risk but the two proved to be remarkabikaisim
(Trommershéauser, Maloney, & Landy, 2008)
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Implications for perceptual development and decisions in the real world
The ability to tradeoff the benefits and costs of gathering new datatured by our
visual sampling tasls central to success a wide range of taska real life. Whether
navigating traffic, playing sports, or deciding how long to study for an exam, both
looking toolittle will reduce expected utilitytand hence overall successf our
actions in the long run. Even the youngest children tested displayed a basic
understanding this nuance, since they did not simply maximigateitor potential
score. However, they failed to find the optimal tradiebetween the costs and benefits
of sampling that secures the best performasaspling substantially less informatio
than they should have to maximise performafdes suggests that previously
observed delays in development of efficient decisi@king in childhood also extend
to elementary informatiegathering decisions during visuomotor tagksendency to
sampletoo little information to maximise performance in réfd tasks such as
crossing a busy road, could have serious consequences for child safety. Therefore,
having established that children make inefficient visual sampling choices wedur
controlledreaching task, future studies should investigate how this extendsddeeal
decisionmaking, using tasks in which sanmmicosts are defined implicitgnd that
involve more complex body movements asglialscenes

The sampling inefficiencies documented here, in particular the 1sasepling
and increased variability observed in younger children, introduce novel factors that
may contribute to apparent immaturities in perceptual and motor function in
childhood. This ks important implications for interpretation of future developmental
findings.Consider for exampledevelopmental studies on coherent form or motion
perception in noise. In a typical task (elgdadad, Maurer, & Lewis, 2011)
participants need to report the average direction of moving dots (e.g. up vs. down), a
process that requires averaging many samples across space aidienestimuli are
not limited in duration (e.g. iGunn et al., 2002; Hadad et al., 20Jdarticipants
decide how lag to spend collecting information (e.g. averaging motion directions)
before responding. Our results suggest that theli&atelopmenof perceptual abilities
on such taskstas well as other perceptual tasks in which viewing time may be
controlled by partipants- may be due in part to inefficient sampling strategiather
than xas is more commonly supposedome inherennability to extract the

necessary perceptual information
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More broadly, we propose that insufficient information sampling is an
important component of sediptimality in childhood perception, action and decision
making, with implications for realorld decisioamaking under risk and uncertainty.
Understandinghes implications, and their underlying causes is important because
this maygeneratenelpful tools for increasing chilsifety and wellbeing durirgsks
that require children to stop looking and start actmegveryday tasks itraffic or
spors.
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Context of the research
We present the novel finding that fundamental visual sampling skills show a prolonged
developmental trajectory during childhood, with adiki¢ proficiency reached oniyn
adolescenceThissuggests that agelated improvements on tasks in which viewing
time is controlled by the observer, may in part be due to inefficient sampling
strategies, rather thasas more commonly supposegome inherent inability to
extract tle necessary perceptual informatidhis work should therefore inspire future
research toeesthowinefficienttradeoffs WR pHORRN Y Htbhibutetd ERIGS R Q G |
performancen in everyday tasks such esadcrossingor ball interception, oself-
pacedvisual discrimination

By testing datadriven hypotheses within the moe®sed framework of our
task, we show that poor performance in early childhood may be due to a suboptimal
decisionrule, in which the benefits of information gathering anderweighted or
ignored. ThisILWV LQ ZLWK VXERSWLPDO FXH LQWHJUDWLRQ DC
imbalance models of developmeahd mighbebecause young children are still
forming estimates dfiow theirskills affectperformancen new task context§.e., the
ability to quickly resolvea new gaidandscape)or because the mechanisms that scale
task outcomdy probability are still developingNext studies will be directed at
disentanglinghe contributions of these potentraechanisms

Our findingsalso speak to the debate around child versus adolescent decision
making EHFDXVH XQOLNH (/& dehiBbkH& NdtWwig @01 @addlescent
performancavasadultlike on our task, highlightinthatdifferent factors maghape
poorsampling choiceat different agegndin differenttasks
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SupplementaryFigure S1

,Q D 3IL[HG GRW” WDVN DIWHU WKH PDLQ H[@BHULPHQW
clouds of a fixed sample size {) and asked them to aim for the middle of the dot
clouds(as in the main experiméniThe aim was toneasureon anindividual basis

how the probability of hitting the target increased withNFor Blue bars in
Supplementary Figure 1a show mean hit redegach groumondition. Adults were
presented with all possibleshin the main task (10 20, 25 trials per Notscondition).
However, tokeep the task chilériendly (i.e., to limit test duration)children were

only presented with theqots= 2,3,7 and 1®onditions To interpolate smoothly across
remaining Notsconditions we fitted splinéunctions to the data, constrained to 3

knots, concave and increasing in shape, with a minimum of 0 and maximum of 1. The
resulting blackdottedcurves indicate the interpolated-pitobabilities. These curves

were used in main analysis disectmeasuref hit probability (Fig 2, Main text).
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Theoretical background and rationale:
The reddashedturves in Figure S1 show predicted hit probabilities for an ideal
observer who estimates the mean of theattmtdperfectly 7KH LGHDO REVHUYHUT\
estimate is an unbiased estimate of the location of the certextafget whose
variance decreases linearly as a function &fsN

(Eq S1)

As detailed previously by Juni, Gureckis & Maloney (2016), the predicted probability
that the aiming point will land within the target cirdlean then be computed by
integrating a bivariate Gaussjarentered on the targahdwith variance P , , 8gross

the target circld:

(Eq S2)

In reality, however, anysensorycognitve orPRWRU HUURU LQ WKH SDUWLFL
of the mean of the datioud will increasegesponse erroEq S2 would then

overestimate thes D U W L F L $iDrex&¥.Ys a&rio¥ Biccounted for in the model by

adding an additional zenmean error termF%, ac @ aadch represents the additive

sum of all possible sources of internal noise, thus:
(EqSA)

where
(Eq S3B)

In principle, one could attempt to meaSlF@éwégggpslicitly (e.g., sedones et al,
JASA, 2013 In practice, however, such measurements aretmaal, and often
require the experimenter to makeumber ofjuestionablessumptions (e.g.,
independence betweenidNand P}, ac 2 a8 vas also unnecessary for the present
study, asve were only interested in tfi@al, overallamount of error, irrespective of
its source. We therefore quantified tat@sponserror empirically, by presnting
participants with fixed numbers of doties, and computing the variance in observed

response error, thus:
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(Eq S4)

where Kand Kare response errors in the horizontal and vertical directions,
respectively.9 D O X HoWsWereektimated independently for different values aéiN
(i.e.,as some sources of internal noise may vary wiig)Nand were estimated
independently for eagbarticipant (i.e., as the magnitudeimternal noise may differ
betweerpbservers)

1RWH MWiKdorngordtesll possible sources of response error, includhiot

internalnoise(e.g., motor error, suboptimal integration, etc.), and external:noise

(Eq S4)

and by combining thitotal standard covariance matrix with Eq 3A yieldzadicted
hit function of:

(Eq S5)

In this way,expected hit rateg[hit|Ndotd, wereadjusted to reflect the
performancéabilities of each individual observer. This resulted in more realistic
predictions (black dashed linejersus ifparticipants were assumed to be ideal

observers (red dashed line).

This analyses allowed us estimate sampling choices independent ofageg/
differencedn lntema twhilst there were substantial individual differences (see
Syoplementary Figure 2age differences weramall,as(see Table 1, and the
comparable heights of the blue bars plotting hit probabili§upplementary Figure) 1
though(marginally)significant( dnternaj high reliability X Age: Fa.69=2.17, p= 0.08 idkernal,
low reliability X Age: F,7:=3.97, p= 0.00§, demonstrating the importance of measuring

and correcting fothis factor
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SupplementaryFigure S2

Theideal observer model predicts tepectedscorefor each sampling strategy
based on measures obtainedhe fixed dot condition (seaifplementary
Materials 1).To assestiow wellthis modelcaptures participarg actualtask
performanceve have plottedh the top graphthe predictedaverage score per
trial (x-axis)againsthescores actually obtaingg-axis) on the taskThe
expected value EV of the participants choice afidis the probability of hitting

the target after sampling Ndots times the value remaining:

I tr FOxacee

'8 :0@KPIOLS -1 -3 T

where M is the initial value ohe target.

Data points are colezodedaccording tovariability in the sampling strategy
(by thestandardieviation oferroraround the meaNdots Sampled, acrossall 100
trials, with warmer colors corresponding to more variable samplimgher standard

error. The data points clearly follow the identity line, suggestingttiaideal observer
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predictioncapturedask performancerell. Scores were slightly lower than predicted
(data points fall below the identify lin&r individuals wao sampled more variably
across the experime(depicted in warmer colorgn line withthe prediction for a
suboptimal samplendicated by a triangle with errdrar in Figure 2f the maintext

The bottom two plots shoviinerma, the mean standadviation of aiming
locations from the center of the dbud measured ithefixed Ngots condition(x-axis)
against thesame measure obtained in theeNdots condition(y-axis), averaginghe
measurescrosNdots Sample sizebetween 2 and 19he dataclosely follow the
identity line. Thissuggestshat participants were using consistent sampling strategies
across the conditioon which we basetheideal observemodel, and thenain

sampling task in whiclwve thenused this model to predict perfoamce.
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Supplementary FigureS3

Figure S3Number of dots sampled during the fi(snel)and las{time2) 15 trials of

the low reliability cue condition. Solid lines are from the main experiment where dot
cues cost 1 point each (for gamaximizingnumber of dots for each age group, see
Table 1of Main Manuscript The dotted line reflects the numbers of dots 6-year

olds sampled when additional cues came at zero cost. In the zero cost condition, 6 to 7
yearolds sampled significantly more infoation, made many button presses, endured
longer trials, and did naxhibit signs ofatigue over the course of the experiment. It
follows, thereforethatthe sampling choices of young children in the makperiment
cannot be explainesimply by (i) implicit sampling costs, such as fatigue or boredom,
(i) an unwillingness to sample more than 4 or 5 dots, or (iii) misunderstanding that
sampling more dots increases the probability of successfully touching the hidden
target.

46



Supplementary Figure4

Figure S4 shows the mean number of dots sampled following a string of
correct/incorrect responses on the last N trial8 (géspectively), compared to the
mean Ndots sampled in the K trials preceding these N trials (we plot K=5, but other
values give simdr results)The top panel shows data for High Reliability Cues, the
lower panel shows data for Low Reliability Cu&be change ithe numberof dots
sampled after N ¢(B) consecutive hits (green) or misses (red), relative to the mean
Ndots in the precedg 5 trials is plotted per age group. Error bars indicate
bootstrapped 95%ClBelta Niots=1 means that on average 1 more dot was sampled on
a trial following N correct/incorrect responses As can be seen in the Figure, adults and
older children tended to increase their sampling after a senmesséq>1) and
decrease their sampling afteraaies ofhits, showing that even though their sampling
strategies were closer to the ideal location than in childhood from early on in the task,
trial-to-trial feedback did inform their sampling choices. The youngest children, in
contrast, did not adjusheir sampling significantly based on previous hits and misses.
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Supplementary Materials S5

7TKURXJK VLPXODWLRQYVY ZH WHVWHG LI SDUWLFLSDQWVY
yield the maximum expected score given a noisy estimate of the spraiating

SRLQWYV DUR X Q40K Fo Wwddél thel Méal $ampling strategy under this
sceQDULR ZH DVVXPHG WKDW WHddk R&fagrthohaHU TV HVWLPDW
GLVWULEXWLRQ ZLWlk DRQCQERDPHG PHBOKYWULEXWHG HUL
(range: 0, 2, 4, or 6 for reliable cues, 0, 4, 8, or 12 for unreliable cues). To constrain

bso WR EH SRVLWLYH DQG V\PPHWULFDO o&kb MUXQFDWHG
LQ WKH P RdisWasvgdd i i2.5inm or 27.5mm for reliable vs. unreliable cue
FRQGLWLRQV U HoBds Battb ¥nkh@pproki@aBngkmpiricalvalues

measurd in the fixed dot condition (Tabledf Main Manuscript We then computed

the average ideal strategy, by identifying thgd\vith the highest expected gain on

DYHUDJH DFURVV opsdrawnudanodinly frafriivd/ tkuntated normal

distribution P X odsmu VL J BuBsplon each trial. Results of this analysis are

shown in the figure belowl he dotted line indicates the sampling strategy that would
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PD[LPL]HVY VFRUH DFURVYV D ODUJH QXPEHURI WULDOV Jl
Green anded curves indicate the distribution of probability curves and expected gain
landscapes across trials giverbgswith 13.1 (left) and 27.7 (right) drawn from a

truncated normal distribution with SD =0, 4, 8, 12, (left) and SD =0, 2, 4, 6 (right).

Thick black dotted lines indicate the average gamdscape and its peakl'he graphs

VKRZ WKDW DQ REVHUYHU ZKR RSWLPDOO\ FFRXQWYV IRU
(graphs in bottom three rows) should sample fewer dots than an ideal observer with a

perfeFW HV W Lit®makimieé store (shown in top row). Importantly, however,

the reduction is only small and does not approach childhood sampling behaviour of

sampling (indicated by the pink dotted lines), even given a very large amount of noise

inthe HVWLP RWXISRW R dotd. [ 1
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Supplementary Materials S6

Observers taking part in the figlatching task may estimate theiwrerall response
X Q F HU W4 In@ gtraightforward manner, by keeping track of deviations between
their location estimates and the target (feedback about both are provided
simultaneously), and computing their standard deviation across a number of trials
W6 O¢ s w WhRencomputing SD acrosssaifficiently large number of trials, the
estimated value o, swill approach the true underlying valuys However if only
a fewprevious trials are considered (i.@ue to limited memory capacity odswill
tend to be sysmatically underestimated.
In a next set of simulations, we therefore tested if child sampling behaviour could be
described as optimal, assuming ttheg estimate contained a bias that could arise from
forming an estimate ofbhsbased on a small numbersprévious trials.

For these simulations, we sitisto 27.5mm (focussing on the unreliable cue

FR QG LW LiReRuto HMG-at each fdis we then simulated the distribution of
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distances between the aiming point anddgrgiven an unbiased pointer (mean = 0)
ZLWK &bs Wa thenrandomly sampletliiais (range 240) from this distribution

ard computedhe standard deviatioif o obtain the expected®, ¢ » O¢ 5 u dvedLook the
average SD across.D00 of thessamples. We then computed the corresponding hit
probability and expected score for eacladNo identify the gairmaximising Nots

Figure SSVKRZV WKH UHVXOW R qiaB stnmawd Rsed/omh Q ZKLFK
2, 3, 5 or 40 of the previously observedls. Asis clear from the figure, considering

RQO\ D IHZ WULDOV obsle@db to a siskentafcRISAEdstimdtion of
uncertainty in the location estimate. An observer who computes the ideal strategy
EDVHG RQ WKLV %G SamplsVesk thal they ttuly should to
maximise their score (namely 7.5dy. However, even for the most extreme case in
Z K L Rikislcomputed across a very small number of trials, the deviation from the
ideal observer model with an accurate e€hiv HopfisIsthall (for B, g m t ¢ & U ONdsts,
idea—6.9). In other words, whilst strategy of tracking spreaflaiming points around
the targetvith a limited memoryvould lead to undesampling, this factor alone
cannot fully explain the olesved age differences in sampling.

When estimating error between target and aiming pbeded on only a small
subset of trials (say, the last two observed) the resulting variance estimate may
fluctuate extensiveljrom trial to trialdue tovariability in the sample medocation
around the true mean location (the targégn acombination of bias in the estimate of
visual uncertainty and error around this estimate explain child performance? When
estimating error around the target based on only tatston average (top panel of
figure), this is equivalent to a scenario in whighswould be~21mm (ote the true
SD was~27.5mm). When WKLV 23S0 B kK¥idedibithe simulation of error
around the hit probability estimate saopplementary Figure 4, the maximum

symmetrical error orkbpsthat we can simulate is SD=10mm. In this most extreme

plausible case%os= 8 F 1 £ P cp) T ¥48° E Vo= 21.9, the ideatlot sample

sizeis ggnificantly lower than for a ideal observer with perfect knowledge of visual
uncertainty( bos= 27.8 SD=0. However, wilst the ideal observer prediction
accounting for extreme bias and error around the estimate of hit probebithis
close tothe NiotsSampled by thgoungest age grouit is still higher(optimal dots to
sample is ~5.6 dotsvhile the youngest children sample 4.6 dots on average).
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Supplementary TableS1.

6-7 vs 89 8-9vs 1011 10-11 vs 1315 | 13-15vs

adult

Absolute Deviation from NdotSdeal - Fig 3a

High cue 0.56 0.027 0.45 0.79

Reliability

Low cue 0.43 0.037* 0.99 0.54

Reliability

Score efficiency- Fig 3b

High cue 0.53 0.67 0.02 081

Reliability

Signed Deviation from Ndotsseal - Fig 5a

Low cue 0.044 0.69 0.082 0.95

Reliability

Stand Dev around Ndotsiea - Fig 5b

High cue 0.39 0.023% 0.18 0.26

Reliability

Table S1 reports-palues resulting frm posthocindependensample ttests that
compare age differences between consecutive age gilapk.stars indicate p<0.05,
red star indicates a nagignificant trend of p<0.1n Figures 3 and & the main
manuscript significant group diffeences are indicatednd can also be derived from
overlap inconfidence intervalsSpecifically, a Cl ovedp of less than ~25% indicates
a significant difference at p<0.@@umming & Finch, 2005)These poshoc tests
revealthat the efficiency of visual samplirug the current tasis quantified byhese 4

measuress adultlike from roughlyage 1011 yearonwards

Cumming, G., & Finch, S. (2005). Inference by eye: confidence intervals and how to

read pictures of dat&merican Psychologis60(2), 170.

52



