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ABSTRACT  
 
Evaluating the interactions between offshore structures and extreme waves plays an essential role for securing the survivability of the 
structures. For this purpose, various numerical tools, e.g. the fully nonlinear potential theory (FNPT), the Navier-Stokes (NS) models and 
hybrid approaches combining different numerical models, have been developed and ultilised. However, there is still a great uncertainty over 
the required level of model fidelity when being applied to a wide range of wave-structure interaction problems. This paper aims to shed 
some light on this issue with a specific focus on the overall error sourced from wave generation/absorbing techniques and resolving the 
viscous and turbulent effects, by comparing the performances of three different models, including the quasi Arbitrary Lagrangian Eulerian 
Finite Element Method (QALE-FEM) based on the FNPT, an in-house two-phase NS model with large-eddy simulation(LES) and a hybrid 
model coupling the QALE-FEM with the OpenFOAM/InterDymFoam, in the cases with a fixed FPSO-like structure in extreme focusing 
waves. The relative errors of numerical models are defined against the experimental data, which are released after the numerical works have 
been completed (i.e. a blind test), in terms of the pressure and wave elevation. It provides a practical reference for not only choosing an 
appropriate model in practices but also on developing/optimizing numerical tools for more reliable and robust predications.  
 
KEY WORDS:  Wave-structure interaction, comparative study, 
blind test, FNPT, NS models, LES.  
 
INTRODUCTION 
 
Understanding the characteristics of the interaction between the 
extreme waves and structures, as well as a reliable prediction of the 
behavior of the structures in a realistic extreme sea, plays a 
fundamental role in the safe and cost-effective design of coastal and 
offshore structures, and marine renewable devices. Such assessments 
and predictions can always be performed in a laboratory environment 
or in a numerical wave tank, where the extreme waves are often 
modeled by using a focusing wave based on the spatial-temporal 
focusing mechanism (Ma, et al., 2015) or the NewWave theory 
(Tromans, et al., 1991).  
 
In design practices, classical approaches in frequency domain are 
employed, such as linear and second order theories, which however 
are shown to be insufficient when higher-order nonlinear effects are 
pronounced. Such higher-order nonlinearities have been pointed out to 
play important roles in the interactions between extreme waves and 
structures (Zang, et al., 2010). To overcome this drawback, 
approaches in time domain with considering sufficient nonlinearities 
have been developed. These include the fully nonlinear potential 
theory (FNPT) and the general viscous flow theory (NS), which is 
formulated by the Navier-Stokes equations. The FNPT model, which 

assumes that the flow is inviscid and irrotational, is solved by different 
numerical methods, such as the boundary element method (e.g. 
Longuet-Higgins & Cokelet, 1976; Grilli, et al. 2001), finite element 
method (e.g. Wu & Eatock-Taylor, 2003; Yan & Ma, 2007; Ma & 
Yan, 2009), spectral element method (e.g. Engsig-Karup, et al. 2016).  
The NS model does not have the assumptions of the FNPT model. 
However, in the real application of the NS model to the wave-structure 
interactions, certain degrees of simplification might be applied, 
resulting different forms of the NS models with main diversities 
including (1) one-phase (Ma 2005; Zhou and Ma, 2010; Lind et al, 
2012; Zheng et al, 2014) or two-phase (Chen et al, 2014; Hildebrandt 
and Sriram, 2014; Ferrer et al, 2016; Hu et al., 2016; Xie, 2012); (2) 
compressible (Yang et al., 2016) or incompressible (Yang et al., 
2017).  The significant diversities also exist in terms of numerical 
approaches on (1) how to solve the governing equation, for which both 
the conventional mesh-based methods, e.g. the finite volume method 
(Chen, et al., 2014; Hildebrandt & Sriram, 2014; Xie, 2015; Yang et 
al., 2017) or meshless methods, e.g. the smoothed particle 
hydrodynamics (SPH, e.g. Lind, et al., 2012; Zheng, et al., 2014) and 
the meshless local Petrov-Galerkin (MLPG_R) method (Ma, 2005; 
Zhou & Ma, 2010; Sriram & Ma, 2012), have been attempted; (2) how 
to track or capture the free surface, e.g. the volume of fluid (VOF, e.g. 
Hu et al., 2016; Xie, 2012) and level set method (Zhang et al, 2009; 
Yang et al, 2017); and (3) how to model the turbulence, e.g. the 
Reynolds Averaged NS (Yang et al, 2016) or Large-eddy simulation 
(LES, e.g. Xie, 2015).  



 
Generally speaking, the computational demands of FNPT models are 
considerably lower than those of NS models.  The accuracy and 
reliability of the FNPT models on simulating extreme wave evolutions 
have been widely recognized (e.g. Yan and Ma, 2010b; Engsig-Karup, 
et al. 2016; Wang et al., 2018). However, the FNPT models cannot 
reliably capture the small-scale viscous and turbulent effects, which 
may be significant near the structures, e.g. the slamming and breaking 
wave impact on structures (Dias and Ghidaglia, 2018), wave motions 
in a small region confined by structures (e.g. Lu and Chen, 2012), due 
to their theoretical assumption.  This initiates the developments of 
hybrid approaches combining the FNPT or other simplified models 
with a NS model for robustly modelling the wave-structure 
interactions.  The fundamental idea of the hybrid approach is that in 
the regions where the viscous/turbulent effects are significant, e.g., 
near the breaking waves and the structures, the NS model is utilised to 
resolve small- and micro-scale physics, e.g. the vortex shedding and 
flow separation; in other regions, e.g. the wave propagation away from 
the structures, the FNPT model or other simplified models are 
employed. Models based on the velocity-decomposition (e.g. Ferrant 
et al., 2003; Luquet et al., 2007, Ferrant et al., 2008; Edmund et al., 
2013) and the domain-decomposition (e.g. Yan and Ma 2010; 
Hildebrandt et al., 2013; Sriram et al., 2014; Fourtakas et al., 2017; 
Yan and Ma, 2017; Higuera et al., 2018; Li & Wang et al., 2018) have 
been developed. Systematic reviews on the development of the hybrid 
models can be found in Sriram et al., (2014) and Li & Wang et al. 
(2018).  
 
Comparative studies have been carried out to investigate the 
performances of different models for specific problems aiming to 
provide a reference or guideline for the selection of suitable numerical 
models, e.g. on the water entry problem (Hong et al., 2017) and 
slamming impact (Dias and Ghidaglia, 2018).  It has found that 
different numerical tools (theories) or the same numerical tool run by 
different persons may produce considerably different results (e.g. 
Hong et al., 2017). This implies that there is still a great uncertainty 
over the required level of model fidelity when being applied to a wide 
range of wave-structure interactions. Such uncertainty may be sourced 
from effectiveness of generating incoming waves, physical 
simplification, numerical truncation error and discretization. This 
paper focuses on a quantitative assessment of the overall performance 
of different models. The problem to be considered is a focused wave 
interaction with a fixed FPSO-like structures. The wave conditions, 
FPSO model, arrangements of the pressure sensors and wave gauges 
are pre-specified by the CCP-WSI consortium (www.ccp-wsi.ac.uk) 
through its blind test workshops. Three numerical methods including 
the QALE-FEM based on the FNPT (Ma and Yan, 2009), a two-phase 
NS model with LES (Xie, 2015) and a hybrid model coupling the 
QALE-FEM with OpenFOAM/InterDymFoam (Li & Wang et al., 
2018). In order to realistically reflect the overall performance of 
different numerical models in practices without artificial numerical 
calibration or data smoothing, the comparison was carried out using a 
blind-test approach, in which the experimental data were released after 
the numerical simulations have been completed. However, it causes 
diversities in numerical practices, e.g. the wave generation and 
absorption, the computational domain sizes, the fluid properties and 
computing hardware.  
 
NUMERICAL METHODS 
 
The QALE-FEM method is based on the FNPT. The velocity potential 
and its time derivative, which is required by the Bernoulli’s equation 
for the pressure evaluation, are governed by the corresponding 
Laplace’s equations and solved by boundary value problems, where 

the free surface boundary condition is written in an arbitrary 
Lagrangian-Eulerian form (Li & Wang et al, 2018), using the FEM. 
The details of the FEM formulations and the time integration scheme 
have been discussed in our previous publications, e.g.  Ma et al. 
(2001).  The main differences between the QALE-FEM method and 
the conventional FEM method is that the computational mesh in the 
QALE-FEM is moving by using a novel methodology based on the 
spring analogy method but purpose-developed for wave-structure 
interaction problems. The details of the QALE-FEM are referred to 
Ma and Yan (2009) and Yan and Ma (2007).  
 
The two-phase NS model developed by Xie (2012, 2013, 2014, 2015 
and 2017) employs the LES approach with the dynamic Smagorinsky 
sub-grid scale (SGS) model (Lily, 1992). The high-resolution VOF 
scheme CICSAM (Compressive Interface Capturing Scheme for 
Arbitrary Meshes) (Ubbink, 1997) is used for identifying the water/air 
phase and thus the free surface. The governing equations are 
discretised using the finite volume method (FVM) on a staggered 
Cartesian grid. The advection terms are discretised by a high-
resolution scheme (Xie, 2012), which combines the high order 
accuracy with monotonicity, whereas the gradients in pressure and 
diffusion terms are obtained by central difference schemes. In order to 
deal with complex geometries in Cartesian grids, the partial cell 
treatment in 3D (Xie, 2015) was utilized in the finite volume 
discretisation. The SIMPLE algorithm (Patankar, 1980) is employed in 
for the pressure-velocity coupling and a backward finite difference 
discretisation is used for the time derivative. More details of this 
model can be found in Xie (2012, 2013, 2014, 2015 and 2017). The 
computer code is parallelized using MPI and a domain decomposition 
technique.  
 
The hybrid FNPT-NS solver, qaleFOAM, combines the QALE-FEM 
and OpenFOAM using a zonal approach, in which the FNPT domain, 
governed by the QALE-FEM, covers the whole computational domain 
and the NS domain is a confined zone around the structure, governed 
by the multiphase NS solver OpenFOAM/interDyMFoam.  On the 
coupling boundary, the velocity, pressure and wave elevation for the 
NS solver are provided by the QALE-FEM. A relaxation zone is 
applied near coupling boundaries to (1) absorb the reflected waves 
from the structures, and (2) ensure a smooth transition of the solution.  
It shall be noted that the solution in the NS domain does not feedback 
to the FNPT domain and the coupling of two models in this paper is a 
weak (one-way) coupling. More details of the qaleFOAM can be 
found in Li & Wang et al. (2018). 
 
EXPERIMENTS AND CASE CONFIGURATIONS 
 
The experiments were performed in the wave basin at the 
University of Plymouth, which features 35 m in length, 15.5 m in 
width and 2.93 m in depth. Flap wave paddles are installed to generate 
three-dimensional waves. A simplified FPSO with two ends being 
semi-circles (0.15 m radius) is used in the experiments.  The length, 
width and the height of the FPSO model is 1.2 m, 0.3 m and 0.3 m, 
respectively, as illustrated in Fig. 1. The temporal variations of surface 
elevation at various locations are recorded by wave gauges with a 
sampling frequency of 128 Hz. Those near or on the surface of the 
FPSO are illustrated in Fig. 1. Six pressure sensors are installed near 
the bow of the FPSO surface. Pressure sensors P1, P2 and P3 are 
placed at the bow and located at 0.05 m above mean free surface 
(MWL), in line with the MWL and 0.05 m below the MWL, 
respectively. The vertical spacing of the sensor groups P4-P6 are the 
same as P1-P3, but they are located at 45o about the longitudinal axis 
of the FPSO. More details of the arrangement of the gauges and the 
pressure sensors can be found in Ransley et al. (2018). The focusing 

http://www.ccp-wsi.ac.uk/


waves are generated by using flap wave paddles whose motions are 
specified by using the 2nd order wavemaker theory. JONSWAP 
spectrum with different significant wave heights (Hs) and peak periods 
(Tp) are considered in this study. The parameters describing the wave 
conditions, including the local wave steepness (kA), are summarized in 
Table 1.  
 

 
Fig. 1: Sketch of the experimental configuration (duplicated from 
https://www.ccp-wsi.ac.uk/blind_test_series_1) 
 

Table 1. Wave parameters for each of the test cases 
ID Tp (s) Hs (m) kA 

11BT1 1.456 0.077 0.13 
12BT1 1.456 0.103 0.18 
13BT1 1.362 0.103 0.21 

 
NUMERICAL RESULTS AND DISCUSSION 
 
Numerical configurations 
 
The numerical wave tank used by the QALE-FEM has the same size 
as the experimental wave basin, i.e. 35m × 15.5m× 2.93m.  To 
accelerate the simulation, the approach using the concept of the 
overset grid method (Ma et al. 2015) is applied. In this approach, two 
sets of computational mesh are used. One covers the entire 
computational domain without the FPSO for modelling the nonlinear 
incident waves. Since the incident wave is unidirectional, the mesh 
size in the direction normal to the wave propagation can be very 
coarse, e.g. 4 cells along the transverse direction of the tank. Another 
one covers a confined zone near the FPSO, i.e. a circular domain with 
diameter of 7 m centred at the geometric centre of the FPSO.  At the 
outer boundary of the confined zone, the free surface elevation and the 
fluid velocity are specified by using the solutions from the first set of 
mesh. A translational zone with a width of 1 m is placed near the outer 
boundary of the confined zone, in order to damp the reflection from 
the FPSO.   
 
The computational domain and the mesh resolution used in the FNPT 
domain of the qaleFOAM is the same as the first set of mesh in the 
QALE-FEM. The NS domain of the qaleFOAM has a size of 5.4 m×3 
m×3.53 m, where the width of the relaxation zone attached to the outer 
boundary of the NS domain is 0.6 m.  The FPSO is placed at the 
centre of the NS domain. A laminar model is used in the NS domain. 
Free-slip boundary conditions are imposed at the bottom, top and side 
walls of the wave tanks in order to avoid resolving the boundary 
layers.  

 
The computational domain of the two-phase NS model with LES has a 
size of 6m × 3m × 3.3m.  The structure is 2.37 m away from the inlet, 
which is exactly the distance between the wave gauge WG1 and the 
bow of the structure in the experiment. With this setup, the 
measurement at WG1 can be used directly to specify the inlet wave 
condition.  On the structure boundary, the wall model is used for the 
near-wall treatment in the LES modelling. On other boundaries, the 
same boundary conditions as the NS domain of the qaleFOAM are 
ultilised.   
 
Wave Generation and Absorption 
 
In the QALE-FEM and the qaleFOAM, the wave is generated by using 
a wavemaker.   Due to the fact that the wave paddle motions are 
unknown, it is necessary to find the wavemaker motion to reproduce 
the incident waves.  To do so, the self-correction technique (Ma, et al., 
2015) is employed in this study. For all cases considered here, the 
wave elevation recorded by WG1 in the empty-tank test without the 
FPSO is used as the targeted wave to reproduce the wavemaker 
motion. After that, the same wavemaker motions are used to drive the 
wavemakers in the QALE-FEM and the qaleFOAM simulations. In 
the LES model, the wave is generated by specifying the inlet boundary 
condition in terms of the wave elevation, velocity and pressure, for 
which the wave elevation recorded at WG1, placed at the inlet of the 
LES domain, in the empty tank test is used to derive the wave 
spectrum and the linear wave theory is adopts to find the particle 
velocity and elevation at the inlet of the computational domain.   
 

 
Fig. 2 Comparison of wave elevations recorded at WG1 in the empty-
tank test of Case 12BT1 
 
In order to check effectiveness of the wave generation, the time 
histories of the wave elevation at WG1 are compared with the 
experimental data (Fig. 2). Since the QALE-FEM and the qaleFOAM 
use the same wave generation technology, the results at WG1 are 
identical and agree well with the experimental data; whereas a 
noticeable discrepancy is observed between the LES results and the 
experimental data.    
 
It is worth noting that the wave generation by specifying the inlet 
boundary conditions using the wave theory for steady wave, e.g. the 
linear and 2nd order wave theories, can result in a satisfactory result 
but is subjected to a technical constraint, i.e. the wave spectrum at the 
inlet must be known at prior. This means that the inlet boundary (wave 
generation boundary) must be placed at a location where the time 
history of the wave elevation is known and recorded by a wave gauge.  
If such a gauge position (as well as the inlet boundary of the 
computational domain) is too far away from the structures, the 
computational domain may become unnecessarily big, leading to a 
long CPU time; if it is too close to the structures, there might be an 
insufficient space between the inlet and the structures to accommodate 
a damping/relaxation zone for suppressing the reflection wave from 
the structures. On the contrary, the self-correction wavemaker 
technique does not have such constraint. Once the wavemaker motion 
is determined by a targeted wave, e.g. that at WG1, the FNPT model 



in the QALE-FEM and the qaleFOAM can well capture the nonlinear 
wave evolutions, as demonstrated by Fig. 3, which compares the wave 
elevations at other positions, i.e. WG16 and WG24, using the QALE-
FEM with the experimental data.  This means that the boundary of the 
NS domain in the qaleFOAM can be placed at any positions, even 
though there are no measured data available. The QALE-FEM in the 
qaleFOAM can provide an accurate prediction of the wave kinematics 
at the inlet of the NS domain. This can be further evidenced by the 
satisfactory agreement between the qaleFOAM results with the 
experimental data in Fig. 3, in which the inlet of the NS domain is 
placed 2.1 m upstream to the bow of the FPSO.  In other words, the 
coupling of the QALE-FEM and the NS solver in the qaleFOAM 
provides a robust way to explore both the large-scale nonlinear wave 
evolution and the small-scale physics such as the viscous and turbulent 
effects near the structures simultaneously (Li & Wang et al, 2018).  
 

 

 
Fig. 3 Comparison of wave elevations recorded at WG16 and WG24 
in the empty-tank test of Case 12BT1 
 
In the QALE-FEM and qaleFOAM, a self-adaptive wavemaker is 
adopted in the right end of the numerical wave tank to absorb the 
wave, avoiding reflection from the outlet. In the LES model, the zero-
gradient or radiation boundary conditions are applied for the flow at 
the outlet of the computational domain.   
 
Table 2: Computational mesh in the NS domain of QALE-FEM  

Mesh No  Mesh grid number      Number of grids on the structure 
surface 

M1 2352996 958 

M2 3449136 3576 

M3 3797136 7576 

 
Extreme Wave Interaction with FPSO-like Structure 
 
The main focus of this paper is to compare the performance of three 
models in the cases with FPSO. The results are discussed in this 
section.  
 
Convergence 
 

 

 
Fig. 4 Wave elevations recorded at different wave gauges in the cases 
with different mesh sizes using the QALE-FEM(Case 13BT1) 

 
Fig. 5 Time histories of the pressure recorded at different locations in 
the cases with different mesh sizes using the QALE-FEM (Case 
13BT1) 
 
Convergence investigations are carried out using meshes with 
different resolutions.  In the QALE-FEM simulation, the time step size 
adopted is the same as the experimental sampling time interval, i.e. 
128 Hz. Three sets of the computational mesh, where the characterized 
mesh size on the free surface ranges from 0.02 to 0.05 m and the 
characterized mesh size near the structure surface ranges from 0.01 to 
0.025 m. The mesh size exponentially increases from the free surface 
to the tank bottom.  Table 2 summarises three sets of mesh used by the 
QALE-FEM. Some results obtained by the QALE-FEM are shown in 
Fig. 4 and Fig. 5 to shed lights on the convergence property of the 
QALE-FEM. These figures, respectively, illustrate the time histories 
of the wave elevation and pressure recorded at different locations for 
Case 13BT1, which involves the steepest wave in this paper. As 
observed, the corresponding results using M2 is similar to those 
adopting M3 (finest resolution) but different from those applying M1 
(coarsest resolution). A similar phenominon is also observed in other 
cases. This justifies that M2 is sufficient for the QALE-FEM to obtain 
the convergent solution. 
The time step size used in both the QALE-FEM and the NS solver of 



the qaleFOAM is dynamically updated by satisfying the Courant 
condition in the NS domain, i.e. the Courant number is smaller than 
0.5, due to the fact that the time step required to obtained convergent 
results by the QALE-FEM is larger than that by the NS solver.  In the 
FNPT domain of the qaleFOAM, the characterized mesh size on the 
free surface is approximately 0.03 m in the longitude direction for all 
cases presented here.  Three set of computational mesh used in the NS 
domain of the qaleFOAM. Detailed results for the convergence of the 
qaleFOAM has been discussed in Li & Yan et al (2018) and the 
corresponding results will not be repeated here.  The time step used in 
the LES modelling is uniform, i.e. 0.0001 s. The computational 
domain of the LES is discretized using a uniform grid of 320 × 320 × 
160 points in the longitude (streamwise), vertical and transverse 
(spanwise) directions, respectively. The total number of cells is 
approximately 16.4 M. The choice of such mesh resolution is based on 
the experience in modelling the wave-structure interaction (Xie, 2015) 
and a further confirmation that the predictions using this mesh agree 
well with a corresponding result with a slightly coarser mesh.  
 

 

 

 

 

 
Fig. 6 Time histories of the wave elevation recorded at different 
positions (Case 12BT1) 
 
Overall Accuracy  
 
In this section, the convergent results from the QALE-FEM, the LES 
and the qaleFOAM are compared with the experimental data in order 
to compare the overall performance of these models on numerically 
simulating the fixed FPSO in non-breaking extreme waves.  

 
Fig. 7 Time histories of the pressure recorded at different positions on 
the FPSO surface(Case 12BT1) 
 
The first case considered is Case 12BT1, where the focusing wave 
steepness kA = 0.18. Fig. 6 compares the wave elevations recorded at 
different positions near the FPSO. At the positions away from the 
FPSO, i.e. WG7 (Fig.6(e)) and WG18(Fig. 6(d)), the waves are less 
disturbed by the FPSO, and, therefore, the corresponding results can 
be used to evaluate whether the incoming waves are well reproduced 
by different wave generation approaches. From Fig. 6(d) and (e), it is 
observed that the numerical results by the QALE-FEM and the 
qaleFOAM, where the self-correction wavemaker technology is used, 
agree well with the experimental data; whereas the results obtained by 
the LES, in which a linear wave theory is used to specify the inlet 
boundary condition, show noticeable discrepancies with the 
experimental data, especially in terms of the occurrences of the 
highest wave crest in Fig. 6(d), as well as at the inlet (Fig. 2). For the 
LES, similar phenomenon is also found on the runup (Fig. 6 (a & b)) 
and the pressure on the bow of FPSO (e.g. Sensors 1 and 4 in Fig. 7). 
This suggests that the effective wave generation must be considered as 
a critical issue when modelling wave-structure interaction, especially 
in the cases with extreme waves.  
 
One may also find from Fig. 6 and Fig. 7 that the accuracies of the 
FNPT model (QALE-FEM), where the viscous effect is ignored, and 
that the NS models are at a similar level, suggesting that the viscous 
and turbulent effects may be insignificant.  This can be further 
demonstrated by Fig. 8, which displays the vortical structure and the 
velocity filed near the FPSO when the focusing trough occurs at the 
bow of the FPSO. As observed from Fig. 8(a), the presence of the 
FPSO mainly disturb the vorticity near the surface of the FPSO. The 
magnitude of the vorticity near the FPSO seem to be very similar to 
those in the far-field wave region and no clear vortex shedding is 
observed (Fig. 8(b)).   



 
(a) Vortical structure during focusing wave impact 

 
(b)Velocity field near the FPSO 

Fig.8 Vortical structure and velocity field near the FPSO (Case 
12BT1, the results are obtained by the LES)  

 
Fig.9 RMS of the wave run-up in the cases with different wave 
steepness 
 
In practices, the wave runup on the floating structure (e.g. WG16, 
WG17 and WG24), the diffraction wave near the FPSO (e.g. WG7) 
and the maximum pressure acting on the structure surface receive the 
most concern.  In order to quantify the accuracy of numerical models, 
two types of errors are defined as below, 

        𝑅𝑅𝑅𝑅𝑅𝑅(𝜂𝜂) = �∑ (𝜂𝜂𝑛𝑛−𝜂𝜂𝑒𝑒)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
               (1) 

        𝜖𝜖(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) = (𝑝𝑝𝑛𝑛
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑝𝑝

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)/𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝              (2) 

 
where the subscripts n and e denote the numerical and experimental 
data, respectively; 𝜂𝜂 the time history of the wave runup; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the 
peak pressure. The time histories of the wave elevation in a duration 
of 10s centred at the instant when the maximum wave elevation occurs 
are used to evaluate the RMS of the wave elevation using Eq. (1).  The 
corresponding errors in the cases with different wave steepness are 
compared and the results are shown in Fig. 9 and Fig. 10 for the wave 
runup and the peak pressure on the FPSO surface, respectively.   
 

It is observed from Fig. 9(d) that 𝑅𝑅𝑅𝑅𝑅𝑅(𝜂𝜂) for all numerical methods 
are similar for the wave elevation recorded at WG7, which is located 
away from the FPSO (Fig. 1). It is found from Fig. 9(c) that, on or 
near the bow of the FPSO (WG16, WG17), 𝑅𝑅𝑅𝑅𝑅𝑅(𝜂𝜂) for the QALE-
FEM is slightly smaller than others; whereas, on the stern of the FPSO 
(WG24), such superiority of the QALE-FEM disappears, partially due 
to the fact that the boundary layer separation likely occurs and 
consequently more significant turbulent effects are expected.  At all 
gauge positions presented in Fig. 9, 𝑅𝑅𝑅𝑅𝑅𝑅(𝜂𝜂)  of the QALE-FEM 
increases as the increase of the wave steepness. From Fig. 10, one may 
find that 𝜖𝜖(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) of the QALE-FEM and the LES is typically lower 
than 10% (Fig. 10), however, that of the qaleFOAM is significantly 
larger for the peak pressure recorded by the pressure sensors placed at 
mean water surface (P2), correlating with the over-prediction of the 
peak runup by the qaleFOAM on the bow of the FPSO (see Fig. 6(a) 
as example).   

 

 
Fig.10 Relative errors of the peak pressure in the cases with different 
wave steepness 
 
Table 3 Summary of numerical configurations 

Case ID QALE-FEM qaleFoam LES 

domain size 
(m) 

35×15.5×2.93 35×15.5×2.93(FNPT) 
5.4×3×3.53(NS) 

6×3×3.3 

Duration(s) 30 30 20 

CPU Xeon E3-
1545 (2.9G) 

Xeon E5-2660 
(2.6G) 

HPC Wales 
cluster 

cores 4 8 512 

parallel OpenMP MPI MPI 

No. of Cells 3.45M 1.96M (NS) 16.4M 

 
Computational time and Efficiency 
 
Further to the analysis of the overall accuracies for different models, 
the CPU time is also compared in order to assess the robustness of the 
models. The QALE-FEM simulations are run in a desktop with Intel 
Xeon E3-1545 (2.9G) using 4 cores with the OpenMP parallelization. 
The qaleFOAM simulations are run in a workstation with Intel Xeon 
E5-2660 (2.6GHz) using 8 cores MPI parallel computing. The LES is 
parallelized using MPI and all cases are run in a 512-core HPC Wales 
cluster. Tab. 3 and 4 summarises the CPU times spent by different 
models and the relevant numerical configurations.  Considering the 



fact that the hardware, especially the number of cores for parallel 
computing, and the simulation duration used by different models are 
different.  For the purpose of comparison, the CPU effort has been 
estimated as the total execution time multiplied by the number of 
cores and divided by the simulation duration, to be consistent with that 
used by the final report of the blind test (Ransley et al, 2018). It is 
further scaled by the CPU effort of the QALE-FEM and summarised 
in Tab. 4. Despite the fact that scaled CPU effort shown in Tab.4 does 
not reflect the differences of the hardware nor the parallel scalability 
of different models, one may agree that the QALE-FEM is much faster 
than other models and the LES is the most time consuming one, 
attributing to a much finer mesh required to achieve a convergent 
results (the number of cells in the LES domain is approximately 8 
times of that in the NS domain of the qaleFOAM).  
 
Table 4 CPU time spent for achieving convergent results (s) 
Case ID QALE-FEM qaleFoam LES 

Total Scaled Total Scaled Total Scaled 
11BT1 7780 1 117982 30.3 - 
12BT1 7986 1 129465 32.4 115200 2769 
13BT1 7985 1 144992 36.3 - 

 
CONCLUSIONS 
 
This paper presents a comparative blind numerical test on the 
interaction between focusing wave and a fixed FPSO-like structure by 
using the QALE-FEM based on the FNPT model, a two-phase NS 
model with LES and a hybrid model, qaleFOAM, which coupling the 
QALE-FEM with OpenFOAM/InterDymFoam. The simulation 
conditions are specified by the CCP-WSI blind test workshop in 
ISOPE 2018 and all simulations are carried out independently without 
the aid of experimental data, which are released after all numerical 
results have been submitted.   It reveals that effectiveness of the wave 
generation is critical for achieving accurate predictions for the wave-
structure interaction problems and the self-correction wavemaker 
technique delivers promising accuracy for reproducing extreme waves 
in the numerical wave tank.  It also concludes that (1) the overall 
accuracies of three models in terms of predicting the wave elevation 
(run-up) and the pressure acting on the FPSO are at a similar level; (2) 
The QALE-FEM based on the FNPT is more robust than the NS 
models; the LES is the most time consuming but has better capacity of 
capturing small-scale physics, especially the turbulence behavior and 
the vortical structures.  
 
It is important to note that the qaleFOAM and the LES do not result in 
a better prediction than the QALE-FEM both in terms of the wave 
elevation/run-up and the pressure, as observed from Fig. 9 and Fig. 10, 
although they have lower degrees of physical simplification (the 
viscous and turbulent effects are included in the qaleFOAM and LES 
models in theory, but they are ignored in the QALE-FEM). Apart from 
the wave generation problem, the overall accuracy also heavily relies 
on to what extend the viscous effects and the turbulent effects can be 
accurately model, e.g. the effectiveness of suppressing the numerical 
diffusions.  This is also worth noting that such conditions are obtained 
from the cases without wave breaking, aeration and violent wave 
impact on the FPSO, where the viscous and the turbulent effects are 
insignificant.  Consequently, it may not be applicable to other cases, 
e.g. those involved slamming impact (Dias and Ghidaglia, 2018). 
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