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Abstract

We examine a new general class of hazard rate models for duration data, con-

taining a parametric and a nonparametric component. Both can be a mix of a

time e↵ect and possibly time-dependent covariate e↵ects. A number of well-known

models are special cases. In a counting process framework, a general profile like-

lihood estimator is developed and the parametric component of the model is

shown to be asymptotically normal and e�cient. Finite sample properties are

investigated in simulations. The estimator is applied to investigate the long-run

relationship between birth weight and later-life mortality.
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1 Introduction

The analysis of duration data using large samples is widespread in economics, ac-

tuarial science and finance, and also in biostatistics and engineering. In each of these

fields it is of primary concern that the model to be estimated is not unduly restrictive.

Semiparametric models provide a balance between flexibility and limited dimensional-

ity. The most common semiparametric model is the Cox proportional hazard model for

the hazard rate �(t),

�(t) = exp{�0W (t))}↵(t) (1)

in which the covariate (or “marker”) e↵ects � are the parameters of interest and the

dependence ↵(t) of the hazard rate on the elapsed duration or time is unspecified; see

Cox (1972). The partial likelihood estimator of the parameter � does not depend on

the functional form of ↵.

However, the estimator has some significant disadvantages. It requires the assump-

tion that the covariates W (t) a↵ect the hazard rate by way of the parametric functional

form exp{�0W (t)} and it does not include unobserved heterogeneity. The recent econo-

metric literature has focused on the latter problem with major contributions from for

example Bijwaard et al. (2013) and Wolter (2016), who provide extensions to the Cox

model to accommodate unobserved heterogeneity, and Hausman and Woutersen (2014)

who propose a semiparametric estimator for discrete duration data. In contrast, in this

paper we focus on relaxing the assumptions associated with the covariate function and

we concentrate on continuous data.

Perhaps ironically, there is often more prior knowledge or consensus about how the

hazard rate varies with the elapsed duration or time t than about how it varies with

the covariates. For example, in the study of adult mortality, it is natural to model
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the e↵ect of age t on the mortality rate by way of the Gompertz specification exp(✓t)

(or by minor generalizations of it) especially if relatively homogeneous sub-populations

are considered and extreme ages are not taken into consideration; see e.g. Wetterstrand

(1981) and Gavrilov and Gavrilova (1991). At the same time, there is no well-established

functional form for the dependence of the mortality rate on socio-economic class, level of

education, and so on. Empirical studies sometimes discretize individual characteristics

into a few categories and estimate e↵ects of corresponding binary indicators using model

(1), see e.g. Osler et al. (2003). If the true mortality rate is a smooth function of the

individual characteristics then the estimated e↵ects may be biased.

Other examples are provided by the literature on unemployment durations and job

durations. Theoretical models based on job search theory make precise predictions on

how individual hazard rates of the unemployment and job duration distributions depend

on the timing of external events and on labor market fluctuations; see van den Berg

(2001). This provides functional forms for the time-varying profile of these hazard rates.

Similarly, theoretical models based on learning theory predict that the hazard rate of

the job duration distribution depends on tenure in a specific inverse-gaussian fashion

(Jovanovic, 1984). Conversely, it is more di�cult to acquire theoretical guidance on

how individual characteristics such as work experience and job complexity a↵ect the

hazard rates. Robust empirical guidance for how the unemployment duration hazard

depends on the time spent in unemployment is provided by Hausman and Woutersen

(2014)’s application of their flexible semiparametric estimator. Using US data they

demonstrate that the dependence on time in unemployment is su�ciently regular for

simple functional forms to capture ↵(t) over wide duration intervals.

If the functional form of the e↵ects of the covariates W (t) on the hazard rate is

unknown then the partial likelihood method used for the estimation of model (1) does

not apply. In the current paper we propose a general semiparametric model that does
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not specify the functional form of covariate e↵ects on the hazard rate, and we develop

an estimation method for this model. The model has the form

�(t) = ↵{X(t); ✓}g{Z(t)} (2)

Here, g(·) is unspecified while ↵(·; ✓)✓2⇥ is a parametric class of functions. The vectors

X(t) and Z(t) are covariate or marker processes, and their elements may include the

elapsed duration (or time) t. Of course, if X and Z are time-invariant then � is simply

the conditional density of t given the covariates, divided by the conditional survivor

function. We show that this model has many existing semiparametric models as special

cases. Note that it also includes nonproportional hazard rate models. In applications,

the researcher may be particularly interested in the function g, for example if Z(t)

includes a policy instrument or treatment regime or if it includes a marker used to

predict future outcomes. However, in other applications ✓ may be the parameter of

interest. In that case, if the functional form of g is unknown, the estimation of a model

that assumes an incorrect functional form for g may result in biased estimates of ✓.

The estimator that we develop is a three-step profile likelihood estimator inspired by

a related approach by Nielsen et al. (1998) for a more restrictive semiparametric model.

In our first stage, we estimate g best possible under the assumption that ✓ is actually

known. In the second stage, we use this estimator bg✓ of g in a profile likelihood, recogniz-

ing that the stochastic hazard ↵{X(t); ✓}bg✓{Z(t)} has a parametric specification family

of hazards, enabling the application of standard maximum likelihood methodology; see

Borgan (1984). In the third estimation stage, we estimate g by bgb✓ using local linear

kernel hazard regression. A major methodological contribution of our paper is that we

improve on the asymptotic analysis in the existing literature for semiparametric hazard

rate inference by using the improved asymptotic approximation theory of counting pro-

cess martingales developed in Mammen and Nielsen (2007). In e↵ect, our estimator of
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✓ is square-root-n consistent, asymptotically normal and e�cient.1 In addition to these

desirable theoretical properties, the estimator is straightforward to use and is applica-

ble as-is to important estimation problems, which is not universally true for flexible

semiparametric estimators. We provide some simulations for further guidance.

We apply our newly devised estimation method to the study of the e↵ect of birth

weight on longevity. Longevity is an important economic variable, as it plays a role in

savings decisions, pension and health insurance, and the costs and benefits of medical

interventions. Recently, the interest in e↵ects of conditions in utero on high-age health

has been growing. It has been shown that a range of diseases and death causes at

high ages have “developmental origins”, i.e. can be a↵ected by conditions in utero. The

latter conditions are often summarized by birth weight. (See overviews in Poulter et al.,

1999, Rasmussen, 2001, Kuh and Ben-Shlomo, 2004, Davey Smith, 2005, Huxley et al.,

2007, and Almond and Currie, 2011.) Studies in this literature use simple parametric

specifications for the e↵ect of birth weight. For example, Leon et al. (1998) distinguish

between four intervals for birth weight in its e↵ect on mortality due to ischaemic heart

disease. Others simply use a binary indicator for whether birth weight is “low” , i.e.,

below 2500 grams, or not. Alternatively, a linear relation is postulated between log birth

weight and the log of the rate of the occurrence of some adverse health outcome.

Such parametric functional forms may be problematic. The continuity of the under-

lying biological mechanisms implies that e↵ects of discretized birth weight indicators

provide biased estimates of e↵ects at specific birth weights. If medical protocols postu-

late interventions that condition on birth weight then the benefits of the intervention

depend on the accuracy with which the relation between birth weight and outcome is es-

1
There has been an increasing interest in e�cient estimation of duration models, see for example

Bearse, Canals-Cerdá and Rilstone (2007) and Rezat and Rilstone (2015) for discrete duration data.

Hausman and Woutersen (2008) provide an overview. Ridder and Woutersen (2003) examine models

with unobserved heterogeneity and provide conditions under which the information matrix is non-

singular.
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timated. Note also that birth weight e↵ects on mortality are plausibly non-monotonous.

For example, Ahlgren et al. (2007) demonstrate positive associations between birth

weight and the rates of almost any type of cancer at higher ages.

This calls for a semiparametric approach in which the long-run e↵ect of birth weight

on mortality is not restricted by a parametric functional form. Our method is partic-

ularly well-suited for this because of the consensus about the functional form for the

dependence of the mortality rate on the current age, for ages up to 90. Specifically, we

may adopt the Gompertz functional form for this. It is well known that the parameters

of this functional form vary by gender and socio-economic class (see references above).

Our method can deal with this, as well as with variation of the birth weight e↵ect by

these personal characteristics.

Clearly, the application requires data of individuals born many decades ago, for

whom birth weight and age at death are recorded with high accuracy. We use the Upp-

sala Birth Cohort Study, UBCoS, which is a lifelong follow-up study of a representative

sample of individuals born in 1915–1929. Upon birth, the birth weight was recorded in

grams by qualified nurses. The data set contains additional information registered at

birth, notably the socio-economic characteristics of the parental household. We conjec-

ture that this data set provides the best data in the world to relate birth weight and

high-age mortality.

The paper is organized as follows. Section 2 presents our semiparametric model

and explains how it contains models in the literature as special cases. In Section 3

we introduce the counting process formulation of our model. In Section 4 we define

the estimators for the parameter ✓ and the nonparametric function g. In Section 5

we introduce the asymptotic distribution theory. In Section 6 we derive the local linear

version of our estimator g and show the simulation results for the local constant and the

local linear estimator to assess their performance under di↵erent bandwidth selection

6



techniques. Section 7 contains the empirical application. Section 8 concludes.

2 The semiparametric model

This section presents the semiparametric model and explains how it contains models

in the literature as special cases. Our model has the stochastic hazard rate

�(t) = ↵{X(t); ✓}g{Z(t)}. (3)

Here, ↵(·; ✓)✓2⇥ is a parametric class of functions whereas g(·) is unspecified apart from

smoothness assumptions to be discussed below. Obviously, ↵ and g must be nonnegative.

The vectors X(t) and Z(t) are covariate or marker processes with dimensions dx and dz,

respectively. For sake of exposition, we take dx � 1 and dz � 1. Note that dz = 0 leads

to a fully parametric model while dx = 0 leads to a fully nonparametric model. The

elements of X(t) and Z(t) may include the elapsed duration or time t. The elements of

the vector X(t) can be discretely or continuously distributed. Concerning the elements

of Z(t), for obvious reasons, we restrict attention to continuously distributed variables.

We discuss exogeneity requirements on the covariate processes below.

Example 1: The Cox model with a time-varying covariate process is obtained as a special

case by taking Z(t) := t and ↵{X(t); ✓} := exp{✓0X(t)}. In this setting, g is the baseline

hazard capturing duration dependence of the hazard while ↵ is the so-called systematic

part of the hazard.

Example 2: The Stratified Cox model (Kalbfleisch and Prentice, 1980) extends the Cox

model by allowing strata to have di↵erent baseline hazards. This can be captured in our

model by specifying Z(t) := (W, t) with W being discrete and finite, and ↵{X(t); ✓} :=

exp{✓0X(t)}. Here, di↵erent values of W capture di↵erent strata.

Example 3: Nielsen, Linton and Bickel (1998) consider a model with X(t) := t and in
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which Z(t) has only one element,

�(t) = ↵(t; ✓)g{Z(t)}, (4)

Like (3), this model does not impose a functional form on the covariate e↵ect. However,

it is more restrictive in that it does not allow the time e↵ect ↵(t; ✓) to depend on

individual characteristics, and it only deals with one covariate Z. In general, in duration

analysis, it is advisable to include all relevant observed covariates in the model, to

prevent bias due to omitted unobserved heterogeneity; see the overview in van den

Berg (2001).

Example 4: Dabrowska (1997) considers a model that can be expressed as

�(t) = exp{✓0X(t)}g{Z(t)} (5)

in the same notation as above. This is a special case of (3) because it assumes a specific

functional form for the function ↵.2

Our general model lends itself to other interesting specifications, for example,

�(t) = ↵(t; ✓)g�{Z(t)} (6)

where g� is a parametric function that does not necessarily satisfy g�{Z(t)} = exp{�0Z(t)}.

One could for example imagine instead that g�{Z(t}) = �0Z(t).

2
A number of other models have been proposed in the literature. For example, Linton, Nielsen

and van de Geer (2003) study a model that is a hybrid between a semiparametric and nonparametric

model; it assumes that the stochastic hazard is a multiplicative or additive function of unspecified

functions of single elements of Z(t). In this paper we do not consider that model. Neither do we

consider semiparametric transformation models for duration data, since these are di�cult to interpret

in terms of hazard rate properties. See Dabrowska (2006) for an example of an estimator for such

a model. Towards the end of the paper we briefly discuss semiparametric models with single-index

structures for the dependence of the hazard rate on Z(t).
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In general, the inclusion of t as an element of X(t) and/or Z(t) allows for non-

proportional hazard specifications, that is, specifications where the hazard e↵ects of t

on the one hand and the covariates on the other are not multiplicative. Allowing for

non-proportionality is useful, as proportionality is often hard to justify. For example,

in the study of mortality, where it is natural to model the parametric e↵ect of age t on

the hazard by way of exp(✓t), the coe�cient ✓ may vary with individual characteristics.

In the study of unemployment durations, the hazard rate of interest is the transition

rate out of unemployment into employment. Economic-theoretical models predict that

the decrease of this rate with the elapsed unemployment duration is stronger if aggre-

gate labor market conditions are unfavorable (Blanchard and Diamond, 1994) or if the

di↵erence between the unemployment insurance level and the welfare level is large (van

den Berg, 1990, 2001). We should emphasize that our model does not rule out that X(t)

and Z(t) have common elements. This has particular statistical implications to which

we turn in subsequent sections.

Semiparametric models are typically developed in conjunction with estimation meth-

ods tailored to the model. The Cox model and the corresponding partial likelihood

estimation method are a case in point. It is useful to discuss some key properties of

the estimators developed for the semiparametric models of Nielsen et al. (1998) and

Dabrowska (1997) and other models and contrast them with properties of the esti-

mator developed in our paper. Nielsen et al. (1998) show that their estimator of ✓ in

(4) is e�cient. This estimator has two stages. In the first stage, they estimate g best

possible under the assumption that ✓ is actually known. In the second stage, they use

this estimator bg✓ of g in a profile likelihood, recognizing that the stochastic hazard

b�(t) = ↵✓(t)bg✓{Z(t)} has a parametric specification family of hazards, enabling the

application of standard maximum likelihood methodology. Our estimator generalizes

this. Dabrowska (1997) proves asymptotic square-root-n consistency and asymptotic
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normality of her estimator of ✓. However, she does not achieve e�ciency as we do with

our approach.

We end this section by mentioning fully nonparametric approaches to statistical

inference as an alternative approach to semiparametric inference. Our estimator for

the function g will be inspired by the nonparametric estimators developed in Nielsen

and Linton (1995) and Nielsen (1998). These studies develop local constant and local

linear kernel hazard estimators, respectively, for a model framework where the stochastic

hazard is fully unspecified as a function of a vector Z(t) which may include t. As methods

for statistical inference on hazard rates, such estimators have the disadvantage that they

su↵er from the curse of dimensionality. Of course, this also applies to other estimators

for nonparametric duration models, such as the estimators of Dabrowska (1987) and

Spierdijk (2008).

3 Counting process formulation of the model

We follow the counting process formulations of e.g. Mammen and Nielsen (2007)

and restrict ourselves to an independent identically distributed sampling and one-jump

counting process case. Let N(t) = (N1(t), ..., Nn(t)) be an n-dimensional collection of n

one-jump counting processes with respect to an increasing, right-continuous, complete

filtration (Ft : t 2 [0, T ]). Specifically, N is adapted to the filtration and has components

Ni taking values in {0, 1}, indicating, by the value 1, whether or not an observed jump

has been registered for the i th individual. The Ni’s are right-continuous step functions,

zero at time zero. The variable Ni(t) is defined over the whole period [0, T ], where T is

finite. Suppose that Ni has predictable intensity, see Andersen et al. (1993),

�i(t)dt = E{dNi(t)|Ft�} = ↵{Xi(t); ✓0}g{Zi(t)}Yi(t)dt (7)

where Yi is a predictable process taking values in {0, 1} indicating, by the value 1, when
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the ith individual is at risk, whereas Xi is a dx dimensional and Zi a dz dimensional

predictable covariate process with support in some compact set X ✓ Rdx and Z ✓ Rdz ,

respectively.

We assume that the stochastic processes (N1, X1, Z1, Y1), ..., (Nn, Xn, Zn, Yn) are in-

dependent and identically distributed for the n individuals. Let

Ft,i = �{Ni(u), Xi(u), Yi(u), Zi(u); u 6 t} and Ft = _n
i=1Ft,i.

It follows that �i is predictable with respect to Ft,i and hence Ft, and the processes

Mi(t) = Ni(t) � ⇤i(t), i = 1, ..., n, with compensators ⇤i(t) =
R t

0 �i(u)du, are square

integrable martingales with respect to Ft,i on the time interval [0, T ]. Hence, ⇤i(t) is

the compensator of Ni(t) with respect to both the filtration Ft,i and the filtration Ft.

4 Definition of the estimators of ✓ and g

4.1 Three-step approach

We use a semiparametric profile likelihood estimation method in three steps.

Step (i). The nonparametric function g is estimated via a Nadaraya-Watson type esti-

mator (to be explained in Subsection 4.2) under the assumption that the true parameter

✓ is known. This estimator of g depends on ✓ and on a smoothing parameter b. We make

use of a leave-one-out version denoted by bgb,✓,�i(z) if the i-th observation is left out.

Step (ii). We derive the likelihood function for the observable data assuming that the

true g is known. The parameter ✓ is now estimated from the pseudo-likelihood that

arises when g is replaced by bg✓(z). This estimator depends on a bandwidth b and we

therefore denote the estimator by b✓b. The leave-one-out version of the estimator is

denoted by b✓b,�i.
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Step (iii). The final estimator of g is now calculated by assuming that b✓b is the true

parameter and by using kernel smoothing using a bandwidth b⇤. Therefore, the final es-

timator of g is of the form bgb⇤,b✓b(z). The leave-one-out version is denoted by bgb⇤,b✓b,�i,�i(z).

The two bandwidth vectors b and b⇤ should not be chosen to be identical. In or-

der to obtain an asymptotically unbiased estimator of ✓ we need an undersmoothing

bandwidth b. Thus b should be of smaller order than b⇤. In our empirical application,

we will choose the tuple (b, b⇤) jointly data-adaptively such that the following overall

cross-validation criterion is minimized:

QCV (b, b
⇤) = n�1

"
nX

i=1

Z
ba2�i{Xi(s), Zi(s)}Yi(s)ds� 2

nX

i=1

Z
ba�i{Xi(s), Zi(s)}dNi(s)

#
,

(8)

where

ba�i(x, z) = ↵(x, b✓b,�i)bgb⇤,b✓b,�i,�i(z),

see also Linton and Nielsen (1995) for a similar criterion for the choice of one band-

width vector. Our introduction of double cross-validation is very flexible in the sense

that it provides the smoothing or the parametric part that is best from the point of

view of a global goodness of fit. And getting the best global fit is not necessarily the

same as getting the best possible parametric estimator. We see the full advantage of

this flexibility in our misspecification study illustrated in Figure 3. The double-cross-

validation approach provides us with that parametric value that is best for the following

nonparametric minimization.

4.2 Definition of bg✓

As the Nadaraya-Watson type estimator of g in Step (i) we may take a local constant

estimator. The approach immediately generalizes to the notationally slightly more bur-

densome local linear approach. The finite sample analyses in our paper illustrates that
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the local linear methodology performs on average better in practice than the local

constant approach.

In this subsection we present the local constant estimator of the nonparametric

function g. For any value of ✓, we use the following leave-one-out procedure:

bgb,✓,�i(z) =

P
j 6=i

R
Kb{z � Zj(u)}dNj(u)P

j 6=i

R
Kb{z � Zj(u)}↵{Xj(u); ✓}Yj(u)du

, (9)

where K is a multivariate kernel function with Kb(·) = b�1
prodK(B�1·) for any multi-

variate b = (b01, ..., b
0
dz)

T . Here, B is the diagonal matrix with diagonal entries b01, ..., b
0
dz

and bprod = b01 · ... · b0dz . We will not always indicate dependence on the bandwidth b

and write bg✓,�i(z) instead of bgb,✓,�i(z). Under our regularity conditions, we have that

bg✓,�i(z)� bg✓(z) = oP (1), uniformly in ✓, i and z, where

bg✓(z) = bgb,✓(z) =
Pn

j=1

R
Kb{z � Zj(u)}dNj(u)Pn

j=1

R
Kb{z � Zj(u)}↵{Xj(u); ✓}Yj(u)du

. (10)

For z that lie in a neighbourhood of the boundary we replace the kernel Kb by a

boundary kernel Kz,b(u), see Assumption (A3). This is not indicated in the notation.

Furthermore, bg✓0 consistently estimates g(z) (see Nielsen and Linton, 1995), and,

away from the true parameter value,

bg✓(z) !p g✓(z) ⌘
g(z)e✓0(z)

e✓(z)
, (11)

where e✓(z) =
R
↵(x; ✓)fu(x, z)y(u)du dx with y(u) = pr(Yi(u) = 1). Let

g⇤✓,�i(z) =

P
j 6=i

R
Kb{z � Zj(u)}�j(u)duP

j 6=i

R
Kb{z � Zj(u)}↵{Xj(u); ✓}Yj(u)du

(12)
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and note that

bg✓,�i(z)� g⇤✓,�i(z) =

P
j 6=i

R
Kb{z � Zj(u)}dMj(u)P

j 6=i

R
Kb{z � Zj(u)}↵{Xj(u); ✓}Yj(u)du

. (13)

As we show below, this quantity can be analyzed by martingale methods. We may call

g⇤✓,�i(z)� g✓,�i(z) the stable and bg✓,�i(z)� g⇤✓,�i(z) the variable part of bg✓,�i(z).

4.3 Definition of b✓

In this subsection we present the expression for the estimator b✓ of the parameter

✓. Conditional on Y,X and Z, the standard log-likelihood for a counting process is
Pn

i=1

R
ln�i(u)dNi(u)�

Pn
i=1

R
�i(u)du, see Aalen (1978). If g(z) were known, we would

maximize the following likelihood function over ✓

`(✓) =
nX

i=1

Z
µ✓{Xi(u), Zi(u)}dNi(u)�

nX

i=1

Z
exp[µ✓{Xi(u), Zi(u)}]Yi(u)du (14)

where µ✓(x, z) = ln{↵(x; ✓)g(z)} is the logarithmic hazard. Consequently, the maximum

likelihood estimator b✓g for ✓ given known g is given by arg max
✓

`(✓).

Since g(z) is not known, we substitute µ̂✓,�i(x, z) for µ✓(x, z) where µ̂✓,�i(x, z) =

ln{↵(x; ✓)bg✓,�i(z)}:

ˆ̀(✓) =
nX

i=1

Z
µ̂✓,�i{Xi(u), Zi(u)}dNi(u)�

nX

i=1

Z
exp[µ̂✓,�i{Xi(u), Zi(u)}]Yi(u)du. (15)

The pseudo-maximum likelihood estimator b✓ is defined as

b✓ = argmax
✓2N0

ˆ̀(✓). (16)

Here, N0 is a fixed compact subset of ⇥ having ✓0 as an interior point.
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4.4 Model identification

As shown in the next section, under regularity assumptions, a consistent nonparametric

estimator of the hazard function a(x, z) = ↵(x, ✓)g(z) can be constructed. We now

discuss the question if this implies that the function g and the parameter ✓ are identified.

We argue that, in general, this is indeed the case if Xi(t) and Zi(t) have no common

elements. Suppose that the support of Xi(t) and Zi(t) does not depend on t and that

the joint support is equal to the product of the marginal supports X and Z. Then

a(x, z) is identified for x 2 X and z 2 Z. Thus
R
Z a(x, z)dz identifies ↵(x, ✓) up to a

multiplicative factor. Suppose now additionally that the parametrization of ↵ is chosen

such that the ratio ↵(x, ✓1)/↵(x, ✓2) is non-constant for all parameters ✓1 6= ✓2. Then

we have that the function ↵(x, ✓) and, in particular, if the map ✓ ! ↵(·, ✓) is invertible,

the parameter ✓ is identified. We also get that g(z) = a(x, z)/↵(x, ✓) is identified. This

discussion also applies if one of the two covariate vectors, Xi(t) or Zi(t), contains time

t as an element.

The situation changes if Xi(t) and Zi(t) have common elements. Let us consider the

case that both covariate vectors have t as a common factor and, in abuse of notation, let

us write the model as a(x, z, t) = ↵(x, t, ✓)g(z, t) where x 2 X , z 2 Z and 0  t  T .

Here the function g and the parameter ✓ is identified if for each pair of parameters

✓1 6= ✓2 there exists a value of t such that x ! ↵(x, t, ✓1)/↵(x, t, ✓2) is non-constant in

x. But, identification relies here strongly on the chosen parametric model for ↵ which

down-weighs the importance of this fact. An illustrative simple example where g and

✓ are not identified is given by models of the form a(t) = ↵(t, ✓)g(t). Trivially, in

this model ✓ and g are not identified. But, one could search for the value of ✓ that

minimizes a global error criterion for the estimation of the product a(t) = ↵(t, ✓)g(t).

We will come back to the discussion of non-identified models in our simulations where
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we will consider the model a(t, z) = t✓�1(1� t)z(1�z). It turns out that our estimation

procedure outlined in this section with using the adaptive bandwidth selector (8) leads

to a much improved estimation compared to estimators that choose a fixed value of

✓. Here, our approach is related to proposals where first a parametric model is fitted

and then in a second step the parametric fit is improved by a nonparametric estimator,

see e.g. Hjort and Glad (1995) and Hjort and Jones (1996). But there is an essential

di↵erence to our approach. We are searching for the parametric fit that leads to the

best two-step procedure of a. For this purpose the parametric fit has to be adapted

to the chosen nonparametric procedure of the second step. We conjecture that this is

achieved by our data adaptive bandwidth selector (8).

5 Asymptotic results

In this section we derive asymptotic results for our estimator for the identified case,

i.e. for the case where Xi(t) and Zi(t) have no common elements. The results will be

for deterministic bandwidths.

We show that Qn(✓) = n�1{ˆ̀(✓) � ˆ̀(✓0)} converges in probability, uniformly in a

neighborhood N0 of ✓0, to a nonrandom function Q(✓) that is uniquely maximized at ✓0.

In fact, we will first show that Qn(✓) can be approximated by Qn(✓) = n�1{`(✓)�`(✓0)},

where

`(✓) =
nX

i=1

Z
µ✓{Xi(u), Zi(u)}dNi(u)�

nX

i=1

Z
exp[µ✓{Xi(u), Zi(u)}]Yi(u)du (17)

with µ✓(x, z) = ln{↵(x, ✓)g✓(z)}. We show in the appendix that Qn(✓) approaches

Q(✓) =

Z Z 
ln

⇢
↵(x; ✓)e✓0(z)

↵(x; ✓0)e✓(z)

�
� ↵(x, ✓)e✓0(z)

↵(x; ✓0)e✓(z)
+ 1

�
↵(x; ✓)fu(x, z)y(u)du dz, (18)

in probability, uniformly over any compact neighborhood of ✓0. This implies consistency
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of b✓. fu(x, z) is the conditional multivariate density of {Xi(u), Zi(u)} given that Yi(u)

is equal to one. We allow fu(x, z) to have one possible Dirac element such that up to

one of the dx elements of the covariate Xi(u) is identically equal to time u or vice versa

for up to one of the elements of Zi(u).

In a next step we show asymptotic normality of b✓. The score vector ŝ✓ and the Hes-

sian matrix Ĥ✓✓ are defined as the first and second derivatives of the pseudo-likelihood

ˆ̀ standardized by sample size:

ŝ✓(✓) =
1

n

nX

i=1

Z
@µ̂✓,�i

@✓
{Xi(u), Zi(u)}dNi(u) (19)

� 1

n

nX

i=1

Z
@µ̂✓,�i

@✓
{Xi(u), Zi(u)}↵{Xi(u); ✓}bg✓,�i{Zi(u)}Yi(u)du,

Ĥ✓✓(✓) = n�1
nX

i=1

Z
@2µ̂✓,�i

@✓@✓T
{Xi(u), Zi(u)}dNi(u)

�n�1
nX

i=1

Z ✓
@2µ̂✓,�i

@✓@✓T
+

@µ̂✓,�i

@✓

@µ̂✓,�i

@✓T

◆
{Xi(u), Zi(u)}↵{Xi(u); ✓}bg✓,�i{Zi(u)}Yi(u)du.

By the mean value theorem

0 = n1/2ŝ✓(✓0) + Ĥ✓✓(✓̆)n
1/2(b✓ � ✓0), (20)

where ✓̆ lies between ✓0 and b✓. We first analyze the pseudoscore vector evaluated at the

true ✓0, using (19) with ✓ = ✓0:

ŝ✓(✓0) =
1

n

nX

i=1

Z
@µ̂✓0,�i

@✓
{Xi(u), Zi(u)}dMi(u) +

1

n

nX

i=1

Z
@µ̂✓0,�i

@✓
{Xi(u), Zi(u)}d⇤i(u)

� 1

n

nX

i=1

@µ̂✓0,�i

@✓
{Xi(u), Zi(u)}↵{Xi(u); ✓0}g{Zi(u)}Yi(u)du (21)

� 1

n

nX

i=1

Z
@µ̂✓0,�i

@✓
{Xi(u), Zi(u)}↵{Xi(u); ✓0} [bg✓0,�i{Zi(u)}� g{Zi(u)}]Yi(u)du.
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Here we have substituted N by M +⇤ and bg✓0,�i by g + bg✓0,�i � g. By the definition of

⇤i, we find that the second and third term on the right hand side of (21) cancel. We

then break bg✓0,�i � g into stable and variable terms. Using the decomposition (13), we

find, after interchanging the order of summation and integration, that

nX

i=1

Z
@µ̂✓0,�i

@✓
{Xi(u), Zi(u)}↵{Xi(u); ✓0}(bg✓0,�i � g⇤✓0,�i){Zi(u)}Yi(u)du

=
nX

i=1

Z
@µ̂⇤

✓0,�i

@✓
{Zi(u)}dMi(u),

where

@µ̂⇤
✓0,�i

@✓
{Zi(u)} =

nX

j 6=i

Z
(@µ̂✓0,�j/@✓){Xj(t), Zj(t)}↵{Xj(t); ✓0}Yj(t)Kb{Zj(t)� Zi(u)}P

k 6=j

R
Kb{Zj(t)� Zk(r)}↵{Xk(r); ✓0}Yk(r)dr

dt.

Now substitute @µ✓0/@✓ + @ ln bg✓0,�i/@✓ � @ ln g✓0,�i/@✓ for @µ̂✓0,�i/@✓ in the first

term on the right hand side of (21). Collecting everything together we obtain that

ŝ✓(✓0) = n�1
nX

i=1

Z
@µ✓0

@✓
{Xi(u), Zi(u)}dMi(u) (22)

�n�1
nX

i=1

Z
@µ̂⇤

✓0,�i

@✓
{Zi(u)}dMi(u)

+n�1
nX

i=1

Z ⇢
@ ln bg✓0,�i

@✓
� @ ln g✓0

@✓

�
{Xi(u)}dMi(u)

�n�1
nX

i=1

Z
@µ̂✓0,�i

@✓
{Xi(u), Zi(u)}↵{Xi(u); ✓0}{g⇤✓0,�i � g}{Zi(u)}Yi(u)du.

We have written ŝ✓ as a sum of four terms: the last term is a stochastic average of

g⇤✓0,�i � g that arises from the bias obtained in the estimation of g: it is asymptotically

negligible if a su�ciently small bandwidth is chosen. Undersmoothing is necessary in

many semiparametric estimation problems; see Bickel et al. (1993) for a discussion. In

the appendix we show that the second and third term on the right hand side of (22)
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are also op(n�1/2). Because the integrands converge to zero in probability, this would

immediately follow if the integrands are predictable. But the latter is not the case, and

therefore the formal proof is more complicated, see the appendix. The proof makes use

of the approach to the predictability issue developed in Mammen and Nielsen (2007).

We have that

n1/2ŝ✓(✓0) = n1/2se✓(✓0) + op(1), where (23)

se✓(✓0) = n�1
nX

i=1

Z
@µ✓0

@✓
{Xi(u), Zi(u)}dMi(u).

since @ lnµ✓{Xi(u), Zi(u)}/@✓ is a predictable process, we can apply Rebolledo’s mar-

tingale central limit theorem to se✓(✓0) and we get that

n1/2se✓(✓0) ! N(0, I0), in distribution, (24)

where

I0 =

Z Z
@µ✓0

@✓

@µ✓0

@✓T
(x, z)↵(x, ✓0)g(z)fu(x, z)y(u)du dz

with
@µ✓0

@✓
(x, z) =

@ ln↵

@✓
(x, ✓0)�

@ ln e✓0
@✓

(z).

In the appendix, we also show that the Hessian matrix Ĥ✓✓(✓) satisfies

sup
✓2Nn

|Ĥ✓✓(✓)� I0| !p 0, (25)

for Nn = {✓ : |✓� ✓0|  �n}�n ! 0 is a shrinking neighborhood of ✓0. In conclusion, we

get from (20), (23), (24) and (25) that n1/2(b✓ � ✓0) ! N(0, I�1
0 ), in distribution.

Theorem 1 summarizes our discussion. Its proof is in the appendix. It makes use of

the following assumptions:
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(A1) For 0  t  1 it holds that pr{Zi(t) 2 Z} = 1 and pr{Xi(t) 2 X1 ⇥ X2} = 1 for

compact subsets Z, X1 of Rdz or Rd1x , respectively, and for a finite set X2 ⇢ Rd2x

with dz � 1 , d1x, d
2
x � 0 and dx := d1x + d2x � 1. The sets Z, X1 and X2 do

not depend on t. The covariate vector {Xi(t), Zi(t)} has a density ft(x, z) with

respect to ⌫ = ⌫x ⇥ ⌫z where ⌫z is the Lebesgue measure on Rdz and ⌫x is a

product of a d1x-dimensional Lebesgue measure and the counting measure on X2.

For a neighborhood N0 of ✓0 we assume that for fixed x2 the functions g(z),

↵(x1, x2; ✓) and ft(x1, x2, z) are strictly positive and continuous on Z, X1 ⇥ N0,

and [0, T ]⇥X1⇥Z, respectively. Furthermore, for ✓ 2 N0 and z 2 Z the function

g✓(z) has 2 derivatives that are continuous in ✓ and z. For the definition of e✓

see equation (11).

(A2) For ✓ 2 N0 the function ↵(x; ✓) is twice di↵erentiable w.r.t. ✓. The derivatives are

bounded for all ✓ 2 N0 and x 2 X1 ⇥ X2. Furthermore, there exists a constant

C > 0 such that k @2

@✓@✓T ↵(x; ✓1) �
@2

@✓@✓T ↵(x; ✓2)k  Ck✓1 � ✓2k for all ✓1, ✓2 2 N0

and x 2 X1 ⇥ X2.

(A3) The kernel K is a multivariate kernel function K(y) = k(y1) · ... · k(ydz) where k

is a symmetric with compact support, say [�1, 1]. It is a kernel of order 2, i.e.
R
ulk(u)du= 0 for l = 1, ..., 2k�1,

R
k(u)du = 1,

R
u2k(u)du 6= 0. If the support

of the kernel Kb(z � ·) is not contained in Z we replace Kb by a boundary kernel

Kz,b that fulfills
R
Z Kz,b(z�u)du = 1,

R
Z(z1�u1)l1 ·...·(zdz�udz)

ldzKz,b(z�u)du =

0 for 0  l1 + ... + ldz  2 � 1, |Kz,b|  C 1
bprod

and that has a subset of

[�b01, b
0
1] ⇥ ... ⇥ [�b0dz , b

0
dz ] as support.It holds that bmax := max{b01, ..., b0dz} ! 0

and that nb2prod ! 1.

(A4) For all ✓ 2 N0 it holds that ↵(x1, x2; ✓)/e✓(z) 6= ↵(x1, x2; ✓0)/e✓0(z) with positive

⌫-measure.
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(A5) It holds that bmax = o(n�1/(4)).

(A6) The semiparametric information matrix I0 is finite and nonsingular.

(A7) ✓0 is an interior point of ⇥.

Note that (A1)–(A7) are standard assumptions. (A1) and (A2) state standard

smoothness assumptions. In (A3) we assume that the kernel K is a kernel of order

2 and that appropriate modifications of the kernel are used at the boundary. The

assumption that nb2prod ! 1 is used in the proof of our main result to verify claim

(40). In this claim the integrand of a martingale integral is replaced by a leave-one-out

expression. Here we use brute force bounds that require nb2prod ! 1. At all other places

of the proof we only need the weaker assumption (nbprod)�1(log n) ! 0. We conjecture

that for covariates Zi(t) that do not depend on time it su�ces to require only that

nb�prod ! 1 for some 1 < � < 2. Assumption (A4) is needed to get identifiability of

the parameter ✓. Assumptions (A5) guarantees that the bias g⇤✓�g✓ is of order oP (n�1/2).

Theorem 1. Make the assumptions (A1)–(A4).

(i) With probability tending to one, there exists a maximizer b✓ in (16). All (measurable)

choices of the maximizer result in a consistent estimator: b✓ p! ✓0.

(ii) Make the additional assumptions (A5)–(A7). Then

n1/2(b✓ � ✓0)
d! N(0, I�1

0 ). (26)

(iii) The asymptotic covariance matrix I�1
0 is consistently estimated by Ĥ�1

✓✓ (
b✓).

We now argue that our estimator of ✓ achieves the semiparametric e�ciency bound.
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For this purpose consider the following parametric specification of the hazard function:

�i(t; ✓) = ↵{Xi(t); ✓}g✓{Zi(t)}Yi(t). (27)

The pseudo-maximum likelihood estimator in the model is the maximizer ✓ of the

likelihood function `(✓). By classical theory one gets that

n1/2(✓ � ✓0) = I�1
0 n�1/2

nX

i=1

Z
@µ✓0

@✓
{Xi(u), Zi(u)}dMi(u) + oP (1).

Thus, ✓ has the same asymptotic limit distribution as b✓ and the specification (27) is

the hardest parametric sub-model of our semiparametric model. In particular, we get

that I0 is the semiparametric information matrix.

In our simulations and in our empirical application we also use a local linear esti-

mator of the functions g✓. It can be shown that this also leads to e�cient estimation of

✓.

In the final estimation step an estimator of g is calculated. This can be done by

bgb⇤,b✓(z) where b✓ is plugged in for the parameter ✓. As discussed above, the bandwidth

vector b⇤ should di↵er from b. We also consider a local linear estimator bgLL
b⇤,b✓(z). For

a definition of bgLL
b⇤,b✓(z) see Appendix B.1. In corollary 1 we only discuss the case dz =

1,  = 1.

Corollary 1. Suppose that assumptions (A1)-(A7) hold with dz = 1,  = 1 hold and

that z is an interior point of Z. Then

p
nb⇤{bgb⇤,b✓(z)� g(z)� b⇤2�(z)} ! N(0, ⌫(z)),

p
nb⇤{bgLL

b⇤,b✓(z)� g(z)� b⇤2�LL(z)} ! N(0, ⌫(z)),
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where

�(z) =
�2

2
µ2(K)

⇢
2
@g

@z
(z)

@ ln e✓0
@z

(z) +
@2g

@z2
(z)

�
,

�LL(z) =
�2

2
µ2(K)

@2g

@z2
(z),

⌫(z) = ��1||K||2 g(z)

e✓0(z)

with µ2(K) =
R
K(t)2dt. Furthermore,

⌫̂(z) =
nb⇤
Pn

i=1

R
Kb⇤{z � Zi(u)}2dNi(u)Pn

i=1[Kb⇤{z � Zi(u)}↵{Xi(u); b✓}Yi(u)du]2

is a consistent estimator of ⌫(z), i.e.

⌫̂(z) !p ⌫(z).

6 Simulation study

In this section we present the core results from our simulation study. We present

additional simulation evidence regarding the bias and variance, both for the overall

variance and for the local bias and variance, as well as empirical coverage in the sup-

plementary Section 9.3

To study the performance of our estimator, we simulate data from the following

models:

Model 1: �(t) = exp{✓t}� ⇥ z(1� z),

3
In the simulations we did not use boundary kernels because for dz = 1 because the b neighborhood

of z is of size b and the bias is also of order b, which results in an error of size b2 which is negligible

under our assumptions.
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Model 2: �(t) = �✓t✓�1 exp

⇢
�1

2
cos(2⇡z)� 3

2

�
,

Model 3: �(t) = exp{✓t} exp
⇢
�1

2
cos(2⇡z)� 3

2

�
,

Model 4: �(t) = t✓�1(1� t)z(1� z). (28)

with ✓ = 1.5 and � = 1. The two-dimensional hazards as functions of t and z are shown

in Figure 1.

6.1 Results: model performance

We report the estimation results from 100 simulated samples using a discretized version

of the local constant estimator and the local linear estimator (see Subsection B.2 in the

appendix). We simulate on a grid R⇥R0 with size 100 ⇥ 100 (i.e., R = 100, R0 = 100)

which seems su�cient for our purposes. The sample size is either n = 10000 or n = 5000

observations. Our estimator is evaluated along three dimensions: (1) bandwidth se-

lection: We evaluate whether feasible bandwidth selection methods work to choose the

two bandwidths b and b⇤, (2) parameter estimate: we compare the true parameter

✓ with its estimate, and (3) Integrated Squared Error (ISE): we evaluate the inte-

grated squared error of our estimator of the function g. Table 1 reports the results for

the cross-validated bandwidths, the ISE bandwidths and the resulting parameter esti-

mates in terms of the average absolute deviation from the true parameter. In general,

the estimator performs well regardless of the true form of the hazard and independent

of whether we use the ISE bandwidths or the bandwidths selected by minimizing the

cross-validation criterion. The parameter is estimated with precision, regardless of the

method, and the parameter estimates are in general not sensitive to bandwidth choice.

It seems that the local constant is as good or even better as the local linear estima-
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tor for estimating the parameter, although the di↵erences are small. Overall, in terms

of the distribution of the ISE, the local linear estimator performs better than the lo-

cal constant estimator, in some models even in smaller sample sizes, which suggests

that the local linear is better suited to capture the nonparametric function, which is

not a surprising result, considering the well-known shortcomings of the local constant

estimator in boundary regions.

In almost all cases, the standard errors on b are rather large, at least compared with

the standard errors on b⇤. This result reflects how little the parameter estimate depends

on the bandwidth choice. This suggests that applied researchers might find it practical

to fix b to be very small and only consider di↵erent bandwidths for b⇤.

Figure 2 visualizes the empirical distribution of the integrated squared error for all

100 samples, for both sample sizes and the two di↵erent estimators and for all four

models. In general, the local linear estimator performs better than the local constant

estimator. Increasing the sample size leads on average to a reduction of the ISE and a

reduction in the variance of the distribution of the ISE. However, while we can retrieve

the parameter with relative precision, cross-validation tends towards undersmoothing

in many of the cases that were considered. While this is not surprising, better feasible

bandwidth selection methods, such as “do-validation” (Gámiz Pérez et al., 2013) might

improve performance.

We also compare the ISE for the nonparametric local constant and local linear es-

timators to the ISE for our semiparametric estimator. In our simulation setting, the

former estimators target a function that has a dimensionality that exceeds the dimen-

sionality of the function g with one. We find that if the semiparametric model is true,

then, unsurprisingly, it improves estimation accuracy enormously to impose this semi-

parametric structure from the outset rather than using a fully nonparametric approach.

In all cases, local linear estimation performs significantly better than local constant es-
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timation, irrespectively of whether a semiparametric or a nonparametric is considered.

These results are unsurprising and the results are not listed here; however, they do

provide us with a helpful sanity check of the estimation and modeling approach of this

paper.

6.2 The “unidentified” case

To demonstrate what happens when we include the same covariate both in the nonpara-

metric function and the parametric function, we perform an additional simulation study

using only Model 4 from the previous section. Disregarding z, we simulate the data with

�(t) = t✓�1(1� t), but in the likelihood function estimating ✓ specify ↵ = t✓�1 and in-

clude t in the estimation of ĝ. The estimated hazard is then calculated as �̂ = ↵✓̂(t)ĝ✓̂(t).

The results for the whole model are depicted in Figure 3. We compare the perfor-

mance of our estimator, in 100 simulated samples, with the fully nonparametric local

linear estimator. For the sake of comparability we compare the estimators in the simu-

lated samples that correspond to the 25th, 50th and 75th percentile of the mean inte-

grated squared error. The estimated parameter is relatively close to the true parameter,

although the estimated parameter varies more with the choice of b than in the identified

case (in that case the choice of b does not matter much). The overall model estimate

(the blue dashed line) tracks the true model very well (see Figure 4), “compensating”

for the missing part of the likelihood function. The di↵erent components of the model

estimate are depicted in the right panel of Figure 4. Additionally to the overall model

estimate �̂, we depict here the estimates for the misspecified parametric function (red

solid line) and the estimated nonparametric function of our model (black, small-dashed

line). The relative di↵erence between mean integrated squared errors of the fully non-

parametric estimator and our semiparametric estimator is depicted on the left panel of

Figure 4 as a function of sample size ranging from N = 500, ..., 5000 observations.
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7 Empirical application: the e↵ect of birth weight

on later-life mortality

7.1 The Uppsala Birth Cohort Study data

The Uppsala Birth Cohort Study is a lifelong follow-up study of birth cohorts of in-

dividuals born in Uppsala in 1915–1929. Rajaleid et al. (2008) demonstrate that it is

representative of birth cohorts in Sweden in the years 1915–1929. Information on early-

life characteristics of these newborns and social characteristics of their parents was

retrieved from the neonatal register of the hospital in Uppsala. Mortality is observed

from parish records and national death registers. Loss of follow-up due to emigration

is observed from censuses, starting with the 1960 census, routine administrative regis-

ters, starting in 1961 or later, and archives. In the data at our disposal, individuals are

followed over time up to the end of 2002, so that the highest observed death age is 87.

Leon et al. (1998) and Rajaleid et al. (2008) provide detailed descriptions of the data.

The birth and death dates and the resulting individual lifetime durations are ob-

served in days. Not all variables are observed for all of individuals, but birth date,

lifetime duration or time until loss of follow-up, and birth weight are observed for vir-

tually every individual. We omit all individuals who were stillborn or died within one

day. This leads to a sample size of 13668 individuals.

Birth weight was recorded in grams. We trim the data by discarding 2 observations

with birth weight below 1000 g and 27 observations with birth weight above 5000 g.

For 13 of the remaining individuals, birth weight is not observed. This leads to the

final sample size of n = 13639 individuals. The socio-economic status or social class at

birth is a grouped hierarchically ordered version of the Swedish SEI code which in turn

is based on the occupation of the main breadwinner in the household. The values run
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from 1 (highest class) to 7.

In the sample, 50% are observed to die before 2002 and 50% have right-censored

lifetime durations, almost all of the latter are still alive at the end of 2002. Table 2 gives

some sample statistics of the main variables that were made accessible for our study.

To interpret the results it is useful to emphasize that living conditions in Sweden in

the birth years 1915–1929 were relatively good in comparison to most other countries at

the time and in comparison to many developing countries today, see references below.

Life expectancy was among the highest in the world, and infant mortality among the

lowest (around 5%). The public health care system was modern, with institutionalized

maternal and child health care in urban areas. At the time of birth, most individuals in

our data resided in or around the city of Uppsala. In the years 1915–1929, the population

of the city of Uppsala was stable at the level of around 30,000 inhabitants. The two

largest sectors in the city’s labor market were manufacturing and trade, occupying 45%

and 25% of the workforce, respectively. Electricity was available everywhere. Lobell et

al. (2007) provide details of the Swedish economy in these years and the surrounding

decades. National Central Bureau of Statistics (1969) provide detailed descriptions of

demographic developments. Sundin and Willner (2007) contains a detailed history of

public health in Sweden. Modin (2002) describes local conditions in Uppsala around

the 1920s. Notice that contemporary birth weight values are in the same ball park as

those in the data.

The data have been used by a number of studies on long-run e↵ects of birth weight.

All of these estimate Cox Proportional Hazard models with partial likelihood. Leon et

al. (1998) and Rajaleid et al. (2008) use discrete birth weight indicators based on a

small number of weight intervals. van den Berg and Modin (2013) assume that the log

cardiovascular mortality rate is a linear function of the log birth weight.

28



7.2 Model specification and results

For the parametric function ↵(.; ✓) in the hazard rate we adopt a Gompertz functional

form, that is, ↵(.; ✓) = exp{✓t}. In words, with age-invariant covariates this means that

the log mortality rate is linear in age. This has been shown to accurately capture the

age dependence of mortality for the ages covered by our observation window, in cohorts

born in the first half of the 20th century. Indeed, as mentioned in Section 1, it is common

in the study of adult mortality to model the e↵ect of age t on the mortality rate by way

of this specification, especially when conditioning on covariates or when considering

relatively homogeneous sub-populations, and provided that extreme ages are not taken

into consideration. See e.g. Wetterstrand (1981) and Gavrilov and Gavrilova (1991) for

overviews of the evidence. As a starting point, we thus take the mortality rate to equal

�(t) = exp{✓t}g(z) (29)

with z being the birth weight. In model extensions we allow ✓ to vary with other

covariates x (see below).

We discretize the time dimension in 150 intervals and the covariate in 100 intervals

(R = 150, R0 = 100), where the covariate is rescaled to lie on the unit interval [0, 1],

according to the formula zu = (z�zmin)/(zmax�zmin). We use the Epanechnikov Kernel

given by K(u) = 3
4(1 � u2)I|u1|. As a robustness check we also use the kernel used in

Nielsen and Tanggaard (2001), but the choice of kernel does not alter our results in any

substantial way. The confidence intervals are calculated using the bootstrap procedure

for kernel hazard estimators introduced by Fledelius et al. (2004).

The estimate of the shape parameter ✓ is practically una↵ected by the bandwidth

choice. The first line of Table 3 gives estimates for the local linear estimator.

Figure 5 shows the estimates of the nonparametric function g, using the local linear
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estimator. The x-axis depicts birth weight and the y-axis shows the estimated values

of the nonparametric part of the hazard function. The estimated function varies over

z in an inverted J- or a U-shape, indicating that mortality risk decreases as birth

weight increases and then increases again at very high birth weights. The results can

be interpreted in the following way: compared to an infant born in the optimal birth

weight range of about 3000-3500g, the relative risk is about 2.5 as high as for an infant

born with 1000g and 1.5 times as high as for an infant born weighting 5000g.

The local constant estimator does not perform satisfactorily. Specifically, it loses

structure very quickly and becomes flat when the bandwidth is increased. This did not

occur in the simulations and may be due to the scarcity of observations in the boundary

regions in the application. Using a local linear framework is therefore strictly preferred.

The association between birth weight and mortality at low ages may be strongly

a↵ected by medical interventions in the first years of life. In contrast, at higher ages,

biological mechanisms may drive the association. At the same time, survival up to

late adulthood means survival into the 1960s and beyond, allowing the individual to

benefit from medical innovations in the mid 20th century. A single function g is not

necessarily able to fit such widely di↵ering explanations. It is therefore interesting to

see whether the estimated g changes if we truncate longevity from below at, say, age

40. Figure 6 plots the shape of g for that case. The results do not fundamentally di↵er

from those in Figure 5. The mortality rate at very low birth weights is now point-

estimated to be lower. This may be due to improvements in medical technology in the

mid 20th century. Alternatively, dynamic selection may cause the frailest individuals

among those with low birth weight to have died before age 40, causing an attenuation of

the association beyond age 40. The “dynamic selection” explanation is at odds with the

model that does not allow for systematic ex ante unobserved heterogeneity. However,

note that the truncation of low longevities does not in fact entail the kind of simple
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attenuation of birth weight e↵ects that one may expect to observe in case of dynamic

selection. Specifically, the point estimate for the “optimal birth weight” shifts slightly

to the right and lies now at about 4000g. In any case, whatever the cause for the small

di↵erences between Figures 5 and 6, one should keep in mind that the confidence bands

in Figure 6 are wider than in Figure 5, especially at extreme birth weight values.

7.3 Comparison to a parametric specification for g

To compare the performance of the estimator to a parametric specification, we replace

the nonparametric function g with a quadratic polynomial,

g(z; �) = exp{�0 + �1z + �2z
2} (30)

The parameters �0, �1 and �2 are estimated with maximum likelihood. The estimates

(standard errors) for �1 and �2 are: �4.64(0.65) and 3.98(0.44), respectively. Further,

b✓ = 9.56e�5(2.67e�12), which is very close to what we find in the semiparametric analy-

sis. The results are shown in Figure 7. While the di↵erences are not large, the parametric

analysis overestimates the mortality risk at high birth weights. The larger point is, of

course, that it is not possible, ex-ante, to know the exact parametric form of the hazard.

One may argue that the inclusion of z2 as a covariate in the parametric g(z; �) in

(30) is likely to lead to a bad fit at very high values of z. As an alternative, we replace z

and z2 in g(z; �) by log z and (log z)2. However, it turns out that the estimation results

do not add new insights to those above.

7.4 Including additional covariates

Our approach allows us to extend the vector X(t) to include more covariates than just

time t. As mentioned above, it is important to avoid omitted covariates in order to

prevent unobserved heterogeneity bias. To proceed, we parameterize our parametric
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function as ↵✓(X(t)) = exp{✓1Xd + ✓2t}, where Xd denotes parental social class at the

birth of the individual. The relevant estimation results are depicted in Figure 8. The

shape of the estimated risk is not materially di↵erent from the estimate ignoring social

class. The parameter estimates are reported in the first line in Table 3. Belonging to a

lower social class increases mortality hazard. For a fully parametric model the results

are in row 2 in Table 3. The parameter estimates are very similar to those for our

semiparametric model.

Gender is known to have a large e↵ect on mortality. We stratify our empirical anal-

ysis by gender and estimate the impact of birth weight, age and social class separately

for men and women. The parameter estimates are shown in Table 3. The estimates

for the impact of social class (✓1) do not di↵er substantially between men and women,

whereas the age dependence estimate (✓2) is larger for men than for women. For birth

weight, the e↵ects di↵er by gender; see Figure 9. The left panel depicts the e↵ect for men

and the right panel for women. The increased risk at high birth weight is much more

pronounced for men than for women. Apparently, birth weights above 4000g present a

risk factor for men but not for women.

8 Conclusion

In the paper we specify a general class of semiparametric duration models and we

develop an estimation technique for these models. The class of models includes models

in which the hazard rate is a nonparametric function of covariates. We argue that our

paper serves a need for estimation methods for such models, since they cannot be recast

in the Cox model. Indeed, our class of models is more general than other semiparametric

model classes studied in the literature. We prove that our estimator is consistent and

e�cient. In simulations we show that our estimator performs well with sample sizes

that are common in epidemiology and econometrics. In the estimation procedure, we
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recommend to use local linear kernel estimation for the nonparametric function of the

covariates.

We apply the estimator to study the association between birth weight and late-

life mortality, which is seen as an issue of great interest due to its relevance for the

“developmental origins” theory of late-life health. This application allows us to assess

the performance of the estimator under realistic empirical conditions, with a sample size

of about 13,000 individuals of which about half have right-censored lifetimes. We find a

non-monotonic relationship. This is preserved if we control for social class at birth. The

relationship cannot be captured with a simple parametric polynomial, confirming the

usefulness of our approach. Separate analyses by gender show that the non-monotonicity

is mostly due to an increased later-life mortality risk for men with high birth weight.

The application very much focuses on the flexible estimation of covariate e↵ects. We

should point out that our approach is also useful if one aims to estimate a parametric

part of the hazard rate in the presence of some covariates whose e↵ects cannot be

captured parametrically because there is insu�cient prior knowledge on their functional

form. The e↵ects of such covariates are then nuisance functions, but they nevertheless

need to be taken into account when estimating the parameters of interest. Our approach

deals with that.

This is potentially important because a model specification with many covariates

leads to a curse of dimensionality, while at the same time the omission of covariates

without controlling for unobserved heterogeneity may lead to biased inference. A dif-

ferent but related topic for further research may be to reduce the dimensionality of the

model by assuming a single-index structure for the parametric part of the hazard rate

as a function of covariates and markers.

As an obvious topic for further research one may consider the inclusion of unobserved

heterogeneity or frailty terms in the individual hazard rates. Indeed, recent advances
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in the econometric literature about duration models have emphasized the need for a

flexible estimation structure in the context of mixed proportional hazard estimation,

see for example Bijwaard et al. (2013), Wolter (2016) and Hausman and Woutersen

(2014). While these papers make important contributions in the way that they relax

certain parametric assumptions, they share the inflexibility of the parametric form of

the covariate function, so there lies potential for further research.
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V̊agerö for permission to use the UBCoS Multigen data. Gerard van den Berg, Enno

Mammen and Lena Janys thank the German Science Foundation (DFG) for financial

support through the FOR916 program. We thank Axel Munk for the coordination of this

program. Enno Mammen’s research was supported by the DFG through the Research

Training Group RTG 1953 and it was prepared at the National Research University

Higher School of Economics, Moscow, Russian Federation within the framework of a

subsidy granted to the HSE by the Government of the Russian Federation for the imple-

mentation of the Global Competitiveness Program. Lena Janys acknowledges funding

through the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)

under Germany’s Excellence Strategy - GZ 2047/1, Projekt-ID 390685813.

34



Appendix A Technical Appendix

A.1 Proof of Theorem 1

Proof of (i). We will show that

sup
✓2N0

|Qn(✓)�Q(✓)| = oP (1). (31)

We now argue that this implies the claim of (i). Put

d✓(x, z) = {↵(x1, x2; ✓)e✓0(z)}/{↵(x1, x2; ✓0)e✓(z)}.

From (A1) and (A4) we get that ln d✓(x, z)� d✓(x, z) + 1 6= 0 with positive ⌫-measure

for ✓ 2 N0 with ✓ 6= ✓0. Note that ln(x) � x + 1 < 0 for x 6= 1. Thus we have that

Q(✓) < Q(✓0) for ✓ 2 N0 with ✓ 6= ✓0. Since Q(✓) is continuous in ✓ we get the statement

of (i), see e.g. Theorem 5.7 in van der Vaart (2000). It remains to show (31). We will

show that

sup
✓2N0

��Qn(✓)�Qn(✓)
�� = oP (1), (32)

sup
✓2N0

��Qn(✓)�Q(✓)
�� = oP (1). (33)

Claim (33) follows by a uniform law of large numbers. Note that Qn(✓) is an average of

i.i.d. summands that are continuous in ✓ and uniformly bounded. For the proof of (32)

it su�ces to show that

sup✓2N0
n�1

nX

i=1

Z 
ln bg✓,�i{Zi(u)}� ln g✓{Zi(u)}

�
dNi(u) !p 0,

sup✓2N0
n�1

nX

i=1

Z
↵{Xi(u); ✓}


bg✓,�i{Zi(u)}� g✓{Zi(u)}

�
Yi(u)du !p 0;
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These two claims follow from

sup1in,✓2N0,z2Z |bg✓,�i(z)� g✓(z)| = OP{(nbprod)�1/2(log n)1/2 + bmax} = oP (1),

see Condition (A3). The result on the uniform convergence of bg✓,�i follows by standard

kernel smoothing theory. One uses that |bg✓,�i(z)� bg✓(z)| = OP ((nbprod)�1), uniformly

for 1  i  n, ✓ 2 N0, z 2 Z. Then one argues that it su�ces to prove uniform con-

vergence over a grid of points ✓ and z values where the number of grid points increases

polynomially. At this point one uses Lipschitz continuity of the kernel K and ↵, see

(A1) and (A2). Then one shows uniform convergence over this grid by application of

an exponential inequality for bg✓,�i(z)� g✓(z). ⇤

Proof of (ii). As outlined in Section (5) we have to show (23) and (25). For the proof

of (23) it su�ces to show the following claims, see also (22).

n�1/2
nX

i=1

Z ⇢
@µ̂✓0,�i

@✓
�

@µ✓0

@✓

�
{Xi(u), Zi(u)}dMi(u) !p 0, (34)

n�1/2
nX

i=1

Z
@µ̂⇤

✓0,�i

@✓
{Zi(u)}dMi(u) !p 0, (35)

n�1/2
nX

i=1

Z
@µ̂✓0,�i

@✓
{Xi(u), Zi(u)}↵{Xi(u); ✓0} (36)

⇥(g⇤✓0,�i � g){Zi(u)}Yi(u)du !p 0.

Claim (36) follows from supz2Z,1in |(g⇤✓0,�i � g)(z)| = OP (b2) = oP (n�1/2), see (A5).

For the proof of (34) we apply the results in Mammen and Nielsen (2007). For the
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determination of
@µ̂✓0,�i

@✓ (x, z) one has to calculate

v̂✓,�i(z) = n�1
X

j 6=i

Z
Kb{z � Zj(u)}dNj(u),

ŵ0
✓,�i(z) = n�1

X

j 6=i

Z
Kb{z � Zj(u)}↵{Xj(u); ✓}Yj(u)du,

ŵ1
✓,�i(z) = n�1

X

j 6=i

Z
Kb{z � Zj(u)}

@↵

@✓
{Xj(u); ✓}Yj(u)du.

Define
@µ̂c

✓0,�i

@✓ (x, z) as
@µ̂✓0,�i

@✓ (x, z) but with v̂✓,�i(z), ŵ0
✓,�i(z), ŵ

1
✓,�i(z) replaced by

v̂c✓,�i(z) = min

 
c�1,max

"
c, n�1

X

j 6=i

Z
Kb{z � Zj(u)}dNj(u)

#!
,

ŵ0,c
✓,�i(z) = min

 
c�1,max

"
c, n�1

X

j 6=i

Z
Kb{z � Zj(u)}↵{Xj(u); ✓}Yj(u)du

#!
,

ŵ1,c
✓,�i(z) = min

 
c�1,max

"
c, n�1

X

j 6=i

Z
Kb{z � Zj(u)}

@↵

@✓
{Xj(u); ✓}Yj(u)du

#!
.

If c > 0 is chosen small enough one can check that v̂c✓,�i(z) = v̂✓,�i(z), ŵ
0,c
✓,�i(z) =

ŵ0
✓,�i(z), ŵ

1,c
✓,�i(z) = ŵ1

✓,�i(z) for all 1  i  n, ✓ 2 N0 and z 2 Z, with probability tend-

ing to one. Thus,
@µ̂c

✓0,�i

@✓ (x, z) =
@µ̂✓0,�i

@✓ (x, z) for all z 2 Z and x 2 X1 ⇥ X2, with prob-

ability tending to one. We now apply Corollary 2 in Mammen and Nielsen (2007) with

h(n)
i {Xi(u), Zi(u)} equal to the leave-one-out version n�1/2

⇣
@µ̂c

✓0,�i

@✓ � @µ✓0
@✓

⌘
{Xi(u), Zi(u)}

and with h(n)
i,j in this corollary equal to two-leave-out analogues. Then Corollary 2 im-

plies (34) if one verifies that

nX

i=1

⇢2i + n
nX

i=1

�2i ! 0, (37)

where ⇢2i = E[
R
h(n)
i {Xi(u), Zi(u)}2↵{Xi(u); ✓}g{Zi(u)} du] and �2i = max1jn E[

R
{h(n)

i �

h(n)
i,j }{Xi(u), Zi(u)}2↵{Xi(u); ✓}g{Zi(u)} du]. Now, (37) can be easily verified because
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of max1in ⇢2i = O(n�2b�1
prod) and max1in �2i = O(n�3b�1

prod). Thus, we get (34).

For the proof of (23) it remains to check (35). For the proof of this claim it su�ces

to show that

n�1/2
nX

i=1

Z
@µ⇤

✓0

@✓
{Zi(u)}dMi(u) = 0, (38)

n�1/2
nX

i=1

Z ⇢
@µ̂⇤⇤

✓0,�i

@✓
�

@µ⇤
✓0

@✓

�
{Zi(u)}dMi(u) !p 0, (39)

n�1/2
nX

i=1

Z ⇢
@µ̂⇤⇤

✓0,�i

@✓
�

@µ̂⇤
✓0,�i

@✓

�
{Zi(u)}dMi(u) !p 0, (40)

where

@µ⇤
✓0

@✓
{Zi(u)} = e�1

✓0
{Zi(u)}

Z
@µ✓0

@✓
{x, Zi(u)}↵{x; ✓0)}ft{Zi(u), x}y(t)dt dx, (41)

and where
@µ̂⇤⇤

✓0,�i

@✓ {Zi(u)} is the following leave one out version of
@µ̂⇤

✓0,�i

@✓ {Zi(u)}.

@µ̂⇤⇤
✓0,�i

@✓
{Zi(u)}

=
nX

j 6=i

Z
(@µ̂✓0,�j,�i/@✓){Xj(t), Zj(t)}↵{Xj(t); ✓0}Yj(t)Kb{Zj(t)� Zi(u)}P

k 6=j,i

R
Kb{Zj(t)� Zk(r)}↵{Xk(r); ✓0}Yk(r)dr

dt.

with

@

@✓
µ̂✓0,�j,�i{Xj(t), Zj(t)} =

@

@✓
ln{↵[Xj(t), ✓0]}

+
1
n

P
k 6=j,i

R
Kb{Zj(t)� Zk(v)}@↵

@✓ {Xk(v), ✓0}Yk(v)dv
1
n

P
k 6=j,i

R
Kb{Zj(t)� Zk(v)}↵{Xk(v), ✓0}Yk(v)dv

.

For the proof of (38) we now argue that that @µ⇤
✓0{Zi(u)}/@✓ = 0. This follows by
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plugging the following terms into the definition (41) of @µ⇤
✓0{Zi(u)}/@✓:

@µ✓0

@✓
(x, z) =

@ ln↵

@✓
(x; ✓)� @ ln e✓

@✓
(z),

@e✓
@✓

(z) =

Z
@↵

@✓
(x; ✓)f(z, x)y(u)du.

For the proof of (39) we proceed similarly as in the proof of (34) above. Again, we apply

Corollary 2 in Mammen and Nielsen (2007), now with

h(n)
i {Zi(u)} = n�1/2

⇢
@µ̂⇤⇤,c

✓0,�i

@✓

�
{Zi(u)} = n�1/2

⇢
@µ̂⇤⇤,c

✓0,�i

@✓
�

@µ⇤
✓0

@✓

�
{Zi(u)},

where

⇢
@µ̂⇤⇤,c

✓0,�i

@✓

�
{Zi(u)} is a truncation modification of

⇢
@µ̂⇤⇤,c

✓0,�i

@✓

�
{Zi(u)}, similarly con-

structed as the modification
⇣

@µ̂c
✓0,�i

@✓

⌘
{Xi(u), Zi(u)} of

⇣
@µ̂✓0,�i

@✓

⌘
{Xi(u), Zi(u)} in the

proof of (34). Again, h(n)
i,j are chosen as the two-leave-out analogues of h(n)

i . Then Corol-

lary 2 in Mammen and Nielsen (2007) implies (39) if we verify (37) with the updated

definitions of ⇢i and �i. By lengthy but straight forward calculations one can show that

max1in ⇢2i = O(n�2b�1
prod) and max1in �2i = O(n�3b�1

prod). This implies (37) because

of assumption (A3) and concludes the proof of (39). For the proof of (40) note that

� = n�1/2
nX

i=1

Z ✓
@µ̂⇤⇤

✓0,�i

@✓
�

@µ̂⇤
✓0,�i

@✓

◆
{Zi(u)}dMi(u)

= n�1
nX

i=1

[�1,i(u) +�2,i(u)]dMi(u),
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where

�1,i(u) = n�1/2
X

j 6=i

Z
0

B@
1
n

P
k 6=j,i

R
Kb{Zj(t)� Zk(v)}@↵

@✓ {Xk(v), ✓0}Yk(v)dv
h
1
n

P
k 6=j,i

R
Kb{Zj(t)� Zk(v)}↵{Xk(v), ✓0}Yk(v)dv

i2

�
1
n

P
k 6=j

R
Kb{Zj(t)� Zk(v)}@↵

@✓ {Xk(v), ✓0}Yk(v)dv
h
1
n

P
k 6=j

R
Kb{Zj(t)� Zk(v)}↵{Xk(v), ✓0}Yk(v)dv

i2

1

CA

⇥↵{Xj(t); ✓0}Yj(t)Kb{Zj(t)� Zi(u)}dt,

�2,i(u) = n�1/2
X

j 6=i

Z
0

B@
1

h
1
n

P
k 6=j,i

R
Kb{Zj(t)� Zk(v)}↵{Xk(v), ✓0}Yk(v)dv

i2

� 1
h
1
n

P
k 6=j

R
Kb{Zj(t)� Zk(v)}↵{Xk(v), ✓0}Yk(v)dv

i2

1

CA

⇥@↵

@✓
↵{Xj(t); ✓0}Yj(t)Kb{Zj(t)� Zi(u)}dt.

Using brute force bounds one gets with a random variable R = OP (1) that for j 2

{1, 2}, i 2 {1, ..., n}, 0  u  T

|�j,i(u)|  n�1/2R

Z
1

bprod
1

✓
max
1idz

����
Zi(u)� Zi(v)

b0i

����  2

◆
dv

 n�1/2R
T

bprod

= oP (1),

because we have assumed that nb2prod ! 1. This implies that � = oP (1) and concludes

the proof of (40).

For the proof of statement (ii) of the theorem it remains to check (25). We will show

the following expansions for sequences �n with �n ! 0. These expansions immediately
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imply (25).

sup
|✓�✓0|�n

����Ĥ1(✓) +

Z Z
@µ✓

@✓

@µ✓

@✓T
(x, z)↵(x, ✓)g✓(z)fu(x, z)y(u)dz dx du

���� = op(1),(42)

sup
|✓�✓0|�n

����Ĥj(✓)

���� = op(1), for j = 2, ..., 5 (43)

where

Ĥ1(✓) = �n�1
nX

i=1

Z
@µ̂✓,�i

@✓

@µ̂✓,�i

@✓T
{Xi(u), Zi(u)}↵{Xi(u); ✓}g✓{Zi(u)}Yi(u)du,

Ĥ2(✓) = n�1
nX

i=1

Z
@2µ̂✓,�i

@✓@✓T
{Xi(u), Zi(u)}

⇥[↵{Xi(u); ✓0}g{Zi(u)}� ↵{Xi(u); ✓}g✓{Zi(u)}]Yi(u)du,

Ĥ3(✓) = n�1
nX

i=1

Z ✓
@2µ̂✓,�i

@✓@✓T
� @2µ̂✓0,�i

@✓@✓T

◆
{Xi(u), Zi(u)}dMi(u),

Ĥ4(✓) = n�1
nX

i=1

Z
@2µ̂✓0,�i

@✓@✓T
{Xi(u), Zi(u)}dMi(u),

Ĥ5(✓) = �n�1
nX

i=1

Z ⇢
@2µ̂✓,�i

@✓@✓T
+

@µ̂✓,�i

@✓

@µ̂✓,�i

@✓T

�
{Xi(u), Zi(u)}

⇥↵{Xi(u); ✓}{bg✓,�i � g✓}{Zi(u)}Yi(u)du.

Note that Ĥ✓✓(✓) =
P5

j=1 Ĥj(✓). For the proof of (42)–(43) one uses results on the

uniform convergence of bg✓ and its first two partial derivatives w.r.t. ✓ and uniform laws

of large numbers. Compare also the proof of part (i) of the theorem for the proof of

(43) for j = 4.

⇤

Proof of (iii). This follows immediately from (25) and the consistency of b✓. ⇤
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A.2 Proof of Corollary 1

The asymptotic distribution of bg follows directly from
p
n-consistency of b✓, see also

Nielsen, Linton and Bickel (1998).

Appendix B The local linear estimator and the dis-

cretized estimator

B.1 The local linear estimator

In this subsection we give a definition of the local linear estimator bgLL
b,b✓ (z). This estimator

is defined as �0 where (�0, �1) solves

0
!
=

nX

i=1

TZ

0

0

B@
1

z � Zi(s)

1

CA↵✓{Xi(s)}Kb{z � Zi(s)}↵✓{Xi(s)}�1dNi(s)

�
nX

i=1

TZ

0

0

B@
1 z � Zi(s)

z � Zi(s) (z � Zi(s))2

1

CA

0

B@
�0

�1

1

CA↵✓{Xi(s)}2Kb{z � Zi(s)}↵✓{Xi(s)}�1Yi(s)ds.

Thus we have that

bgLL
b,b✓ (z) =

a22(✓)y1 � a12(✓)y2
a11(✓)a22(✓)� a12(✓)2

(44)
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with

y1 =
nX

i=1

Z T

0

Kb{z � Zi(s)}dNi(s)ds,

y2 =
nX

i=1

Z T

0

{z � Zi(s)}Kb{z � Zi(s)}dNi(s)ds,

a11(✓) =
nX

i=1

Z T

0

Kb{z � Zi(s)}↵✓{Xi(s)}Yi(s)ds,

a12(✓) =
nX

i=1

Z T

0

{z � Zi(s)}Kb{z � Zi(s)}↵✓{Xi(s)}Yi(s)ds,

a22(✓) =
nX

i=1

Z T

0

{z � Zi(s)}2Kb{z � Zi(s)}↵✓{X(s)}Yi(s)ds.

B.2 Discretized estimators

We use a discrete version of the pseudolikelihood equation (15). Let Err0 be the number

of exposures at the point rr0 in the two-dimensional grid (with R⇥R0 gridpoints) and

Orr0 the number of occurrences (or failures). We can calculate the occurrences and the

exposures as follows:

Or,r0 =

nr0X

j=1

Z tr

tr�1

dNr0,j(s),

and

Er,r0 =

nr0X

j=1

Z tr

tr�1

Yr0,j(s)ds,

for r = 1, . . . , R and r0 = 1, . . . , R0. Note that Or,r0 represents the observed occurrences

of the counting processes {Nr0,1, . . . , Nr0,nr0}, and Er,r0 represents the observed exposures

from the counting processes {Yr0,1, . . . , Yr0,nr0} in the interval [tr�1, tr) (for r = 1, . . . , R

and r0 = 1, . . . , R0). In case of local constant estimation of g, the discrete estimator for

g is:
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bg✓(z) =
PR0

r0=1

PR
r=1 Kb{z � Zr0(r)}Orr0PR0

r0=1

PR
r=1 Kb{z � Zr0(r)}↵{X(r); ✓}Err0

(45)

The discrete estimator for ✓ follows from the discrete version of the likelihood func-

tion:

ˆ̀(✓) =
R0X

r0=1

RX

r=1

ln[↵(X(r); ✓}bg✓(z)]Orr0 �
R0X

r0=1

RX

r=1

↵{X(r); ✓}bg✓(z)Err0 (46)

in which (45) can be inserted. This can in turn be straightforwardly modified into a

discretized leave-one-out estimator. Bandwidth selection is accordingly modified, along

the lines of Subsection B.2.

ˆ̀(✓) =
R0X

r0=1

RX

r=1

ln

"
↵{X(r); ✓}

PR0

r0=1

PR
r=1 Kb{z � Zr0(r)}Orr0PR0

r0=1

PR
r=1 Kb{z � Zr0(r)}↵{X(r); ✓}Err0

#
Orr0

�
R0X

r0=1

RX

r=1

↵{X(r); ✓}
PR0

r0=1

PR
r=1 Kb{z � Zr0(r)}Orr0PR0

r0=1

PR
r=1 Kb(t� r)↵{X(r); ✓}Err0

Err0 . (47)

The discrete leave-one-out estimator for ✓ makes use of the discretized version of the

likelihood function that is defined as follows:

ˆ̀loo(✓) =
R0X

r0=1

RX

r=1

ln[↵{X(r); ✓}bgloo✓ (z)]Oloo
rr0 �

R0X

r0=1

RX

r=1

↵{X(r); ✓}bgloo✓ (z)Err0 . (48)

bgloo is the leave on out version of the estimator where Orr0 is replaced with the

leave-one-out version Oloo
rr0 .

References

Aalen, O. (1978), Nonparametric inference for a family of counting processes, The

Annals of Statistics 6(4), 701–726.

Ahlgren, M., J. Wohlfahrt, L.W. Olsen, T.I.A. Sørensen and M. Melbye (2007), Birth

44



weight and risk of cancer, Cancer 110, 412–419.

Almond, D. and Currie, J. (2011), Killing me softly: The fetal origins hypothesis, Jour-

nal of Economic Perspectives 25, 153–172.

Andersen, P.K., Borgan,Ø., Gill, R.D. and Keiding, N. (1993), Statistical models based

on counting processes, Springer.
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Gámiz Pérez, M.L., Janys, L., Mart́ınez Miranda, M.D. and Nielsen, J.P. (2013), Band-

width selection in marker dependent kernel hazard estimation, Computational Statis-

tics and Data Analysis 68, 155–169.

Gavrilov, L. and N. Gavrilova (1991), The Biology of Life Span: A Quantitative Ap-

46



proach, Harwood, Chur.

Hausman, J.A, Woutersen, T. (2014), Estimating a semi-parametric duration model

without specifying heterogeneity, Journal of Econometrics 178, 114–131

Hjort, N.L. and Glad, I.K. (1995), Nonparametric density estimation with a parametric

start, The Annals of Statistics 23(3), 882–904.

Hjort, N.L. and Jones, M.C. (1996), Locally parametric nonparametric density estima-

tion, The Annals of Statistics 24(4), 1619–1647.

Huxley, R., C.G. Owen, P.H. Wincup, D.G. Cook, J. Rich-Edwards, G. Davey Smith

and R. Collins (2007), Is birth weight a risk factor for ischemic heart disease in later

life?, American Journal of Clinical Nutrition 85, 1244–1250.

Jovanovic, B. (1984), Wages and turnover: a parametrization of the job-matching model,

Studies in Labor Market Dynamics, edited by G.R. Neumann and N. Westerg̊ard-

Nielsen, Springer-Verlag.

Kalbfleisch, J.D. and Prentice, R.L. (1980), The Statistical Analysis of Failure Time

Data, Wiley, New York.

Kuh, D. and Ben-Shlomo, Y. (2004), A Life Course Approach to Chronic Disease Epi-

demiology, Oxford University Press, Oxford.

Leon, D.A., Lithell, H.O., V̊agerö, D., Koupilová, I., Mohsen, R., Berglund, L., Lithell,

U.B. and McKeigue P.M. (1998), Reduced fetal growth rate and increased risk of

death from ischaemic heart disease: cohort study of 15000 Swedish men and women

born 1915–29, British Medical Journal 317, 241–245.

Linton, O.B., Nielsen, J.P. and van de Geer, S. (2003), Estimating multiplicative and

additive hazard functions by kernel methods, Annals of Statistics 31, 464–492.

Lobell, H., Schön, L. and Krantz, O. (2007), Observations from the new Swedish His-

47



torical National Accounts, Working paper, Lund University.

Mammen, E., Nielsen, J.P. (2007), A general approach to the predictability issue in

survival analysis with applications, Biometrika 94(4), 873–892.

Modin, B. (2002), Setting the Scene for Life: Longitudinal Studies of Early Social

Disadvantage and Later Life Chances, Centre for Health Equity Studies, Stockholm.

National Central Bureau of Statistics (1969), Historical Statistics of Sweden, Part

1. Population, Second edition, 1720–1967, National Central Bureau of Statistics,

Stockholm.

Nielsen, J.P. and Linton, O. (1995), Kernel estimation in a nonparametric marker de-

pendent hazard model, The Annals of Statistics, 1735–1748.

Nielsen, J.P., Linton, O. and Bickel, P.J. (1998), On a semiparametric survival model

with flexible covariate e↵ect, The Annals of Statistics, 215–241.

Nielsen, J.P. (1998), Marker dependent kernel hazard estimation from local linear esti-

mation, Scandinavian actuarial journal 2, 113–124.

Nielsen, J.P. and Tanggaard, C. (2001), Boundary and bias correction in kernel hazard

estimation, Scandinavian Journal of Statistics 28(4), 675–698.

Osler, M., Andersen, A.M.N., Due, P., Lund, R., Damsgaard, M.T. and Holstein, B.E.

(2003), Socioeconomic position in early life, birth weight, childhood cognitive func-

tion, and adult mortality. A longitudinal study of Danish men born in 1953, Journal

of Epidemiology and Community Health 57, 681–686.

Poulter, N.R., Chang, C.L., MacGregor, A.J., Snieder, H. and Spector, T.D. (1999),

Association between birth weight and adult blood pressure in twins: historical cohort

study, British Medical Journal 319, 1330–1333.

Rajaleid, K., Manor, O. and Koupil, I. (2008), Does the strength of the association

48



between foetal growth rate and ischaemic heart disease mortality di↵er by social

circumstances in early or later life?, Journal of Epidemiology and Community Health

62(5), e6.

Rasmussen, K.M. (2001), The “fetal origins” hypothesis: challenges and opportunities

for maternal and child nutrition, Annual Review of Nutrition 21, 73–95.

Rezat, S., Rilstone P. (2015), Semiparametric e�ciency bounds and e�cient estimation

of discrete duration models with unspecified hazard rate, Econometric Reviews 35(5),

693–726.

Ridder, G., Woutersen, T. (2003), The Singularity of the Information Matrix of the

Mixed Proportional Hazard Model, Econometrica 71, 1579–1589.

Spierdijk, L. (2008), Nonparametric conditional hazard rate estimation: a local linear

approach, Computational Statistics and Data Analysis 52, 2419–2434.

Sundin, J. and S. Willner (2007), Social Change and Health in Sweden: 250 Years of

Politics and Practice, Swedish National Institute of Public Health, Östersund.
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Tables

Integrated Squared Error
Model n Bandwidths Parameter, e

LC LL LC LL

b b⇤ b b⇤

1
10000 0.3084 (0.1709) 0.0780 (0.0126) 0.2244 (0.2269) 0.1476 (0.0179) 0.011 0.031

5000 0.2872 (0.1858) 0.0872 (0.0126) 0.1688 (0.1985) 0.1674 (0.0237) 0.020 0.035

2
10000 0.1044 (0.1701) 0.1346 (0.0249) 0.1024 (0.1761) 0.1398 (0.0244) 0.010 0.010

5000 0.0418 (0.1082) 0.1466 (0.0246) 0.0456 (0.1214) 0.1448 (0.0254) 0.027 0.027

3
10000 0.4049 (0.0998) 0.1235 (0.016) 0.4571 (0.0974) 0.1305 (0.0147) 0.014 0.022

5000 0.3250 (0.1888) 0.1314 (0.0266) 0.3474 (0.1965) 0.1432 (0.0264) 0.015 0.023

4
10000 0.1642 (0.2643) 0.1628 (0.0258) 0.1500 (0.2373) 0.2468 (0.0357) 0.030 0.030

5000 0.1360 (0.1839) 0.1684 (0.038) 0.1302 (0.1703) 0.2354 (0.0495) 0.054 0.054

Cross-Validation
Model n Bandwidths Parameter, e

LC LL LC LL

b b⇤ b b⇤

1
10000 0.177 (0.1554) 0.026 (0.0117) 0.276 (0.2250) 0.029 (0.0164) 0.028 0.030

5000 0.104 (0.1159) 0.021(0.0034) 0.190 (0.2028) 0.021 (0.0052) 0.038 0.039

2
10000 0.035 (0.0643) 0.022 (0.0095) 0.036 (0.0727) 0.022 (0.0095) 0.011 0.011

5000 0.193 (0.2427) 0.021 (0.0001) 0.691 (0.0192) 0.626 (0.0090) 0.031 0.034

3
10000 0.182 (0.1505) 0.038 (0.0154) 0.213 (0.1792) 0.039 (0.0154) 0.036 0.036

5000 0.171 (0.1577) 0.032 (0.0061) 0.202 (0.1946) 0.032 (0.0064) 0.033 0.033

4
10000 0.092 (0.1809) 0.032 (0.0060) 0.082 (0.1692) 0.032 (0.0058) 0.031 0.031

5000 0.101 (0.1508) 0.031 (0.0044) 0.098 (0.1469) 0.031 (0.0039) 0.055 0.055

Table 1: Simulation results for the models in equation (28), with ✓ = 1.5 as the true parameter, for

two di↵erent sample sizes (5000, 10000). The numbers are averages over 100 simulated samples. The

upper panel shows the results for bandwidths chosen by the infeasible strategy of minimizing the ISE.

b and b⇤ refer to the two associated bandwidths. Standard errors are in parentheses. The lower panel

shows the results for bandwidths chosen by the feasible bandwidth selection criterion of minimizing

the cross-validation score (CV). LC and LL refer to the use of the local constant and the local linear

estimator, respectively. In the last column, the parameter estimate is reported in terms of the average

of the estimation error e = abs(b✓b � ✓0) over 100 samples.



10th mean 90th

variable percentile perc.

right-censored durations 0.50
duration (years) if uncensored 0.9 54.6 80.0
duration (years) if censored 73.7 77.6 84.6
birth weight (grams) 2750 3416 4080
birth year 1916 1922.6 1928
social class at birth (1 to 7: high to low) 2 4.2 6
male 0.52
male birth weight 2810 3478 4140
female birth weight 2700 3349 4000

Table 2: Summary statistics of the sample



b✓1 b✓2

Semiparametric Model (only ✓2) – 9.6⇥ 10�5 (3⇥ 10�12)
Semiparametric Model 0.041 (4.2e-05) 0.00095 (3⇥ 10�9)
Parametric Model 0.042 (4.8e-06) 0.00095 (3⇥ 10�10)
Men 0.04 (7e-06) 0.0001 (5⇥ 10�12)
Women 0.036 (0.0001) 0.001 (8⇥ 10�11)

Table 3: Parameter estimates for ✓1 and ✓2 in a model with parental social class at
birth, standard errors are shown in parentheses.
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Figure 1: The two-dimensional hazard functions of Models 1–4, see (28).
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Figure 2: Kernel density estimates of the integrated squared error over 100 samples.
The solid line represents the local constant estimator with n = 10000, the dashed line
represents the local linear estimator with n = 10000. The dotted line represents the
local constant estimator with n = 5000 and the dot-dash line represents the local linear
estimator with n = 5000.
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Figure 3: The true hazard function, the estimated semiparametric hazard function
and the fully nonparametric estimate for the local linear estimator. Bandwidths were
chosen by cross-validation (semiparametric estimator) and minimizing the infeasible
ISE-Criterion (for the fully nonparametric estimator) for 5000 observations, comparing
the simulations corresponding to the 25th percentile, 50th percentile and 75th percentile
of the mean integrated squared error.
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ĝ(t)t(θ̂−1)

(t−1)t(θ−1), θ=1.5
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Figure 4: The left panel shows the evolution of the relative di↵erence in mean inte-
grated squared error depending on sample size for 100 simulation runs between the fully
nonparametric estimator and the semiparametric estimator with misspecified paramet-
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Figure 5: Estimation results for g using
the local linear estimator. The y-axis re-
ports the estimated hazard, the x-axis de-
picts birth weights.
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Figure 6: The estimated g when using
a truncated sample of individuals with
longevity exceeding age 40.
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Figure 7: Estimated parametric covariate
hazard function.
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Figure 8: The estimated nonparametric
function with social class contained in the
covariate vector, included in the baseline
hazard, full range of birth weights.
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Figure 9: Semiparametric estimation results for g using the local linear estimator,
controlling for social class at birth and stratified by gender.



9 Supplementary Materials
In the following we present some additional simulation evidence on the performance of our estimator

in terms of variance and bias; that is, both the model (overall) bias and the local bias with optimally

chosen bandwidths.

9.1 Empirical coverage and interval length

Table 4 shows the empirical coverage of the bootstrapped, nominal 95% confidence intervals for all four

models. We show the coverage for di↵erent levels of under- and oversmoothing, both for the ”parametric

bandwidth” b and the nonparametric bandwidth b⇤. Even with undersmoothing, confidence bands do

not achieve nominal coverage, although we can get very close, especially for Models 1 and 4 if the degree

of undersmoothing is appropriately chosen. Calonico, Cattaneo and Farrell (2018) propose a method

for bias correction in density estimation that could potentially alleviate the problems of undercoverage.

In Figure 10 we show average interval length for all models depending on the degree of undersmoothing

and on the number of observations. Clearly, average interval length decreases with both smaller degrees

of undersmoothing and with an increase in the number of observations.

9.2 Results: Variance, bias and empirical coverage

Since in the local linear estimation clearly outperforms the local constant estimator in

the simulations above, the results below are calculated using the local linear specification

for ĝ and N = 5000 observations.

Let m = 1, ...,M with M the number of simulations. For each t = r, z = r0 calculate

an estimate for the model �̂m(t, z).

• For the model variance we calculate the average hazard for each cell r, r0 over

all simulations

�̄{xr, zr0} =
1

M

MX

m=1

�̂m{xr, zr0}



Model1
10th perc. 25th perc. 50th perc. 75th perc. 90th perc.

b b⇤ 0.57 0.63 0.79 0.67 0.56

b · 1.2 b⇤ 0.69 0.74 0.82 0.80 0.56

b b⇤ · 1.2 0.73 0.78 0.93 0.89 0.62

b b⇤ · 0.8 0.66 0.71 0.78 0.75 0.64

b · 0.8 b⇤ 0.69 0.74 0.86 0.80 0.58

b b⇤ · 0.2 0.84 0.91 0.83 0.85 0.84

Model2
10th perc. 25th perc. 50th perc. 75th perc. 90th perc.

b b⇤ 0.57 0.63 0.79 0.67 0.56

b · 1.2 b⇤ 0.69 0.74 0.82 0.80 0.56

b b⇤ · 1.2 0.73 0.78 0.93 0.89 0.62

b b⇤ · 0.8 0.66 0.71 0.78 0.75 0.64

b · 0.8 b⇤ 0.69 0.74 0.86 0.80 0.58

b b⇤ · 0.2 0.84 0.91 0.83 0.85 0.84

Model3
10th perc. 25th perc. 50th perc. 75th perc. 90th perc.

b b⇤ 0.57 0.63 0.79 0.67 0.56

b · 1.2 b⇤ 0.69 0.74 0.82 0.80 0.56

b b⇤ · 1.2 0.73 0.78 0.93 0.89 0.62

b b⇤ · 0.8 0.66 0.71 0.78 0.75 0.64

b · 0.8 b⇤ 0.69 0.74 0.86 0.80 0.58

b b⇤ · 0.2 0.84 0.91 0.83 0.85 0.84

Model4
10th perc. 25th perc. 50th perc. 75th perc. 90th perc.

b b⇤ 0.57 0.63 0.79 0.67 0.56

b · 1.2 b⇤ 0.69 0.74 0.82 0.80 0.56

b b⇤ · 1.2 0.73 0.78 0.93 0.89 0.62

b b⇤ · 0.8 0.66 0.71 0.78 0.75 0.64

b · 0.8 b⇤ 0.69 0.74 0.86 0.80 0.58

b b⇤ · 0.2 0.84 0.91 0.83 0.85 0.84

Table 4: Pointwise Coverage Probabilities: Model 1–4, for the 10th, 25th, 50th, 75th,
90th percentile of the covariate z. b and b⇤ chosen optimally and multiplied for di↵erent
degrees of over- undersmoothing.



• and then calculate

V ar�r,r0 =
1

M

MX

m=1

h
�̂m{xr, zr0}� �̄{xr, zr0}

i2

• For the model bias we calculate the di↵erence between the estimated- and the

true hazard for each cell.

B�r,r0 =
1

M

MX

M=1

|�̂m{xr, zr0}� �{xr, zr0}|

We then calculate the total variance/bias in each model as the sum over all cells, i.e.

V armodel =
RX

r=1

R0X

r0=1

V ar�r,r0 and Bmodel =
RX

r=1

R0X

r0=1

B�r,r0 . (49)

In order to examine the local properties of bias and variance, we calculate the vari-

ance and bias for each combination of the covariate and time, i.e. we perform the above

calculations but refrain from summing over all cells and examine each cell individually.

We examine the evolution of the model variance for all four models in Tables 5–8.

The table in the top panel generally shows the evolution of the variance, the table in

the bottom panel the evolution of the bias.

Summarizing the results for all four models, we generally observe that a smaller b

means a larger variance for a given b⇤ and that with an increasing bandwidth b⇤, the

variance decreases, which is what we would expect. In order of magnitude, increasing b⇤

matters much more for decreasing the model variance than increasing b, which is also

in line with our expectations, as the bandwidth generally only a↵ects the value of the

parameter as second order. As for the bias, generally a smaller b⇤ is associated with a

lower bias and the choice of b does not seem to influence the size of the bias by much
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Figure 10: The left panel shows average interval length over 100 simulations for the in-
tervals at z = 0.10, 0.25, 0.5, 0.75, 0.9 for under-/oversmoothing factors (0.2, 0.8, 1.0, 1.2)
of the nonparametric bandwidth (b⇤) while keeping b at the optimal level. The right
panel shows the average interval length over 100 observations for z for an increasing
number of observations from n = 500� 5000 for Model 1.

or even not at all.

The local variance for the four di↵erent models is graphically depicted in Figure

11, using one particular bandwidth combination. The local variance di↵ers from model

to model, so it is not easy to make generalizations about our estimator’s performance

based on these simulations.

The local bias is depicted in Figure 12. As with the local variance, the shape of

the local bias depends on the model, although in all cases, the bias increases at the

boundary values of the covariate z.



b⇤/b 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21 0.23 0.25 0.27

0.07 0.1725 0.1725 0.1724 0.1725 0.1725 0.1724 0.1724 0.1724 0.1724 0.1723 0.1724

0.09 0.1713 0.1713 0.1712 0.1712 0.1712 0.1712 0.1712 0.1711 0.1711 0.1711 0.1711

0.11 0.1698 0.1698 0.1698 0.1698 0.1698 0.1698 0.1698 0.1697 0.1697 0.1697 0.1697

0.13 0.1682 0.1682 0.1681 0.1681 0.1681 0.1681 0.1681 0.1681 0.1681 0.1680 0.1681

0.15 0.1663 0.1663 0.1663 0.1663 0.1663 0.1663 0.1663 0.1662 0.1662 0.1662 0.1662

0.17 0.1642 0.1642 0.1642 0.1642 0.1642 0.1642 0.1642 0.1641 0.1641 0.1641 0.1641

0.19 0.1620 0.1620 0.1619 0.1619 0.1619 0.1619 0.1619 0.1618 0.1619 0.1618 0.1619

0.21 0.1595 0.1595 0.1595 0.1595 0.1595 0.1595 0.1595 0.1594 0.1594 0.1594 0.1594

0.23 0.1570 0.1570 0.1569 0.1569 0.1569 0.1569 0.1569 0.1568 0.1568 0.1568 0.1568

0.25 0.1542 0.1542 0.1542 0.1542 0.1542 0.1542 0.1542 0.1541 0.1541 0.1541 0.1541

0.27 0.1514 0.1514 0.1514 0.1514 0.1514 0.1513 0.1514 0.1513 0.1513 0.1513 0.1513

b⇤/b 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21 0.23 0.25 0.27

0.07 0.0454 0.0454 0.0454 0.0454 0.0454 0.0455 0.0454 0.0454 0.0454 0.0454 0.0454

0.09 0.0413 0.0413 0.0413 0.0413 0.0413 0.0413 0.0413 0.0413 0.0412 0.0412 0.0412

0.11 0.0380 0.0380 0.0380 0.0380 0.0380 0.0380 0.0380 0.0380 0.0380 0.0379 0.0380

0.13 0.0354 0.0354 0.0353 0.0354 0.0353 0.0354 0.0353 0.0354 0.0353 0.0353 0.0353

0.15 0.0337 0.0337 0.0337 0.0337 0.0337 0.0337 0.0337 0.0337 0.0337 0.0337 0.0337

0.17 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335

0.19 0.0345 0.0345 0.0345 0.0346 0.0345 0.0346 0.0345 0.0346 0.0346 0.0346 0.0345

0.21 0.0368 0.0368 0.0368 0.0368 0.0368 0.0368 0.0368 0.0368 0.0368 0.0368 0.0368

0.23 0.0404 0.0404 0.0404 0.0404 0.0404 0.0404 0.0404 0.0404 0.0404 0.0404 0.0404

0.25 0.0454 0.0455 0.0455 0.0455 0.0455 0.0455 0.0455 0.0455 0.0455 0.0455 0.0455

0.27 0.0515 0.0515 0.0515 0.0515 0.0515 0.0515 0.0515 0.0516 0.0516 0.0516 0.0516

Table 5: The top panel shows the evolution of the model variance for Model 1 for b⇤ (de-

picted over the rows) and b (depicted over the columns). The table is centered around the

optimal, infeasible b⇤. The bottom panel shows the model bias.



b⇤/b 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21 0.23 0.25

0.05 0.0470 0.0470 0.0470 0.0470 0.0470 0.0470 0.0470 0.0470 0.0470 0.0469 0.0469

0.07 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467

0.09 0.0465 0.0465 0.0465 0.0465 0.0465 0.0465 0.0465 0.0464 0.0464 0.0464 0.0464

0.11 0.0462 0.0462 0.0462 0.0462 0.0462 0.0462 0.0462 0.0462 0.0462 0.0462 0.0462

0.13 0.0459 0.0459 0.0459 0.0459 0.0459 0.0459 0.0459 0.0459 0.0459 0.0459 0.0459

0.15 0.0455 0.0455 0.0455 0.0455 0.0455 0.0455 0.0455 0.0455 0.0455 0.0455 0.0455

0.17 0.0452 0.0452 0.0451 0.0451 0.0451 0.0451 0.0451 0.0451 0.0451 0.0451 0.0451

0.19 0.0447 0.0447 0.0447 0.0447 0.0447 0.0447 0.0447 0.0447 0.0447 0.0447 0.0447

0.21 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442

0.23 0.0437 0.0437 0.0437 0.0437 0.0437 0.0437 0.0437 0.0437 0.0437 0.0437 0.0437

0.25 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431

b⇤/b 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21 0.23 0.25

0.05 0.0430 0.0430 0.0430 0.0430 0.0430 0.0430 0.0430 0.0430 0.0430 0.0430 0.0431

0.07 0.0369 0.0369 0.0369 0.0369 0.0369 0.0369 0.0369 0.0369 0.0369 0.0369 0.0369

0.09 0.0328 0.0328 0.0328 0.0328 0.0328 0.0328 0.0328 0.0328 0.0328 0.0329 0.0329

0.11 0.0301 0.0301 0.0301 0.0302 0.0302 0.0302 0.0302 0.0302 0.0302 0.0302 0.0302

0.13 0.0288 0.0288 0.0288 0.0289 0.0289 0.0289 0.0289 0.0289 0.0289 0.0289 0.0289

0.15 0.0287 0.0287 0.0287 0.0287 0.0287 0.0287 0.0287 0.0288 0.0288 0.0288 0.0288

0.17 0.0294 0.0294 0.0294 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295

0.19 0.0308 0.0308 0.0308 0.0308 0.0308 0.0308 0.0308 0.0308 0.0309 0.0309 0.0309

0.21 0.0325 0.0325 0.0325 0.0325 0.0326 0.0326 0.0326 0.0326 0.0326 0.0326 0.0326

0.23 0.0345 0.0345 0.0346 0.0346 0.0346 0.0346 0.0346 0.0346 0.0346 0.0346 0.0346

0.25 0.0368 0.0368 0.0368 0.0368 0.0368 0.0369 0.0369 0.0369 0.0369 0.0369 0.0369

Table 6: The top panel shows the evolution of the model variance for Model 2 for b⇤ (de-

picted over the rows) and b (depicted over the columns). The table is centered around the

optimal, infeasible b⇤. The bottom panel shows the model bias.



b⇤/b 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21 0.23 0.25

0.05 0.3648 0.3646 0.3646 0.3645 0.3644 0.3643 0.3642 0.3641 0.3640 0.3639 0.3638

0.07 0.3632 0.3630 0.3629 0.3628 0.3628 0.3627 0.3626 0.3625 0.3624 0.3623 0.3621

0.09 0.3614 0.3612 0.3611 0.3611 0.3610 0.3609 0.3608 0.3607 0.3606 0.3605 0.3604

0.11 0.3593 0.3591 0.3591 0.3590 0.3589 0.3588 0.3587 0.3586 0.3585 0.3584 0.3583

0.13 0.3569 0.3567 0.3566 0.3565 0.3565 0.3564 0.3563 0.3562 0.3561 0.3560 0.3559

0.15 0.3540 0.3539 0.3538 0.3537 0.3536 0.3535 0.3535 0.3534 0.3533 0.3531 0.3530

0.17 0.3508 0.3507 0.3506 0.3505 0.3504 0.3503 0.3503 0.3502 0.3501 0.3500 0.3498

0.19 0.3472 0.3471 0.3470 0.3469 0.3469 0.3468 0.3467 0.3466 0.3465 0.3464 0.3463

0.21 0.3433 0.3431 0.3430 0.3430 0.3429 0.3428 0.3428 0.3427 0.3426 0.3425 0.3423

0.23 0.3390 0.3388 0.3387 0.3387 0.3386 0.3385 0.3384 0.3384 0.3383 0.3382 0.3380

0.25 0.3343 0.3342 0.3341 0.3340 0.3340 0.3339 0.3338 0.3337 0.3336 0.3335 0.3334

b⇤/b 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21 0.23 0.25

0.05 0.0706 0.0705 0.0705 0.0705 0.0705 0.0705 0.0704 0.0704 0.0704 0.0704 0.0704

0.07 0.0626 0.0625 0.0625 0.0625 0.0625 0.0624 0.0624 0.0624 0.0624 0.0623 0.0623

0.09 0.0578 0.0578 0.0578 0.0577 0.0577 0.0577 0.0577 0.0577 0.0576 0.0576 0.0576

0.11 0.0543 0.0543 0.0543 0.0543 0.0543 0.0542 0.0542 0.0542 0.0542 0.0541 0.0541

0.13 0.0522 0.0521 0.0521 0.0521 0.0521 0.0521 0.0521 0.0520 0.0520 0.0520 0.0520

0.15 0.0519 0.0518 0.0518 0.0518 0.0518 0.0518 0.0518 0.0517 0.0517 0.0517 0.0517

0.17 0.0534 0.0534 0.0534 0.0534 0.0534 0.0533 0.0533 0.0533 0.0533 0.0533 0.0532

0.19 0.0567 0.0567 0.0567 0.0567 0.0567 0.0567 0.0566 0.0566 0.0566 0.0566 0.0566

0.21 0.0615 0.0615 0.0615 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614

0.23 0.0672 0.0672 0.0672 0.0672 0.0672 0.0672 0.0672 0.0672 0.0672 0.0672 0.0672

0.25 0.0736 0.0736 0.0736 0.0735 0.0735 0.0735 0.0735 0.0735 0.0735 0.0735 0.0735

Table 7: The top panel shows the evolution of the model variance for Model 3 for b⇤ (de-

picted over the rows) and b (depicted over the columns). The table is centered around the

optimal, infeasible b⇤. The bottom panel shows the model bias.



b⇤/b 0.13 0.15 0.17 0.19 0.21 0.23 0.25 0.27 0.29 0.31 0.33

0.13 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014

0.15 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014

0.17 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014

0.19 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014

0.21 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013

0.23 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013

0.25 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013

0.27 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013

0.29 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012

0.31 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012

0.33 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012

b⇤/b 0.13 0.15 0.17 0.19 0.21 0.23 0.25 0.27 0.29 0.31 0.33

0.13 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128

0.15 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123

0.17 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120

0.19 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118

0.21 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117

0.23 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116

0.25 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117

0.27 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118

0.29 0.0121 0.0121 0.0121 0.0121 0.0121 0.0121 0.0121 0.0121 0.0121 0.0121 0.0121

0.31 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125

0.33 0.0130 0.0130 0.0130 0.0130 0.0130 0.0130 0.0130 0.0130 0.0130 0.0130 0.0130

Table 8: The top panel shows the evolution of the model variance for Model 4 for b⇤ (de-

picted over the rows) and b (depicted over the columns). The table is centered around the

optimal, infeasible b⇤. The bottom panel shows the model bias.
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Figure 11: The evolution of local variance for each combination of the covariate z
and time t for a fixed pair of (optimally chosen) bandwidths b, b⇤ for all four models.
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Figure 12: The evolution of local bias for each combination of the covariate z and
time t for a fixed pair of (optimally chosen) bandwidths b, b⇤ for all four models.


