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Abstract

Recent psychophysical evidence in humans suggests that visuéation is a
highly dynamic and predictive process involving precise models of otfjéra-
jectories. We present a proof-of-concept that such predictigpatial attention
can benet a technical system solving a challenging visual object téetion
task. To this end, we introduce a Bayes-like integration of so-calletynamic
attention priors (DAPs) and dense detection likelihoods, which getndanced
at predicted object positions obtained by the extrapolation of trgctories.
Using annotated video sequences of pedestrians in a parking lottiset,
we quantitatively show that DAPs can improve detection performace signi -
cantly as compared to a baseline condition relying purely on pattermalysis.

1. INTRODUCTION

There is an extensive body of biological insights on various aspects o
visual attention, which is sometimes seen as guided by static local igea
properties [24], sometimes by static spatial context [39]. Even if nestatic
image features, such as local motion, are used [13, 27], such dttenmecha-
nisms are always reactive in the sense that they guide attention tawds the
detected features but do not anticipate future events.
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Recent work [23] however reveals that humans learn highly precisg-d
namic modelspredicting the movement of objects, and that such predictions
are used to guide eye movements to the predicted locations aheddime.
This predictive mechanism is shown to permit the visual pursuit of higi dy-
namic objects, such as squash balls, with the very limited amount okations
per second that can be realized by the human visual system.

As even stronger restrictions usually apply in technical systemsevecon-
sider this mechanism of predictive visual attention to be a crucial imgdient
in the analysis of dynamic scenes. In particular, learned high-levebaels of
future object behavior may permit to keep track of complex objéanotion
with a small number of measurements ( xations), and help to makeedection
more robust in case of simple or no motion.

This article proposes a predictive attention mechanism similar in spiritct
[23] and presents a proof-of-concept for its added value by empig these
so-calleddynamic attention priors (DAPS) in a visual pedestrian detection
task.

We chose pedestrian detection for this evaluation because it is calesed
to be a very challenging detection task [33] that is basically unsolveds b
state-of-the art methods. Therefore, any improvement DAPsam contribute
to this di cult task can be considered signi cant, especially given tha they
come at a negligible computational cost. Nevertheless, this articl&a@uld
de nitely be considered a proof-of-concept for the worthwhilerss, e ciency
and feasibility of DAPs, and not as a study on pedestrian detectionhwch
would require a much more extensive evaluation on much bigger and o
challenging benchmark databases.

1.1. Motivation, system structure and novelty

Motivation. The motivation for the presented work is twofold: rst of all, we
wish to give a system-level realization of an important aspect of bigal
visual perception. Secondly, we wish to show that technical syste can
prot from it with little changes or performance overhead.

Overview. The overall structure of the presented system is shown in Fig. 1.
We extend a visual pedestrian detector, which operates by anaiyg local
pixel patterns in a sliding-window fashion, by DAPs. The predictive geect of
DAPs is contributed by a module for trajectory extrapolation (ofen termed
"tracking™) which predicts imminent pedestrian positions by an analgis of
past detections. In the manner of biological models [24], DAPs are@ied in



a multiplicative fashion to the dense array of detection likelihoods ohined
from the detector, at locations where pedestrians are likely to aacin the
near future. In this way, detections are stabilized and small deviains from
learned appearance models (which always occur, and which lead te tiypi-
cal on-o "ickering" of detections) are compensated for, at leat as long as
the attended locations are the correct ones. In case they aretnDAPs have
little e ect due to the modulatory nature of attention [21]: if there is little
evidence to begin with, it will be enhanced by modulation but neverthess
remain insigni cant. This mechanism is strikingly analogous to Bayesian
inference, and indeed it has been speculated [44] that human pertoen is,
to a large extent, a probabilistic inference process. We establish fyan-
titative evaluation that DAPs are bene cial for applied tasks, in ourcase
pedestrian detection, and that they continue to have these prepties even
if the assumed (simple) motion model is locally violated. In addition, DAP
have the advantage of being extremely computationally e cient. Inorder
to show that our results are not the artifacts of a particular detetion or
tracking method, we perform experiments twice, each time using aerent
combination of detection and tracking algorithms.

Novelty. The presented architecture, which is generic and in no way lim-
ited to pedestrian detection, proposes a previously unexplored yvaf boost-
ing object detection accuracy by predictive spatial attention, mking use
only of components that any real-world object detection systemeeds to
include in any case, i.e., detection and tracking. In this highly dynamicpa
proach, detection and trajectory analysis (tracking) mutually inuence on
each other instead of being arranged in a linear processing chain,iletre-
taining robust and stable dynamics. Apart from their conceptual avelty in
real-world object detection, we additionally propose an extremely @ent
calculation scheme for DAPs which makes their application appealingpes
cially in resource-constrained real-world systems.

1.2. Related work

There is extensive literature about the computational modeling ofhie
various aspects of visual attention [22, 31, 13, 42, 30, 6]. In mangntri-
butions, scene context is used to derive static spatial attention §3 34, 14,
28, 20, 7, 13, 25]. This body of work shows that visual attention is @oten-
tially powerful tool to improve real-world object detection, but al® that the
e ort to make it work in real problems is a considerable one. In partidar,
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Figure 1: Block structure of the real-time pedestrian detection syptem. A Original
image, white boxes show pedestrians that are to be found. The pedtrian left of the
center is too small to be detected and is thus excluded here.B Detections, indicted
by red boxes, resulting from sliding window classi cation. C Results of non-maxima
suppression (NMS) removing overlapping detections. These detdons can be considered
the nal detection result and are passed to evaluation. D Predictions generated from past
detections. Prediction centers and sizes are indicated by greenasses of varying size, and
serve as the sources for dynamic attention priors (green dashedrrow) modulating the
detection process.

several authors treat visual attention as a kind of Bayesian infence process
where the "attention prior" is combined with a likelihood term arising fom
a detection module [39, 36, 34]. Whereas a spatial attention prior rcdbe
easily expressed in a probabilistic form, the detection scores comiingm a
real-world object detector generally need to be "converted" torpbabilities
which is not always straightforward and involves a complicated calibtian
process [34, 35]. In this contribution we show that attentional madation
can work very well even without such calibration, which we avoid as it is
computationally costly. Furthermore, our approach uses dynamiguantities
such as the object's own motion in order to guide attention to the crect
locations. An aspect which our contribution shows explicitly, and whitis
often neglected in conceptual works on visual attention, is thatybreducing
the number of search locations, visual ambiguity is reduced as wellating
to an overall increase in detection accuracy.

Pedestrian detection has been researched for decades, andstthere is
a very large body of previous work [9, 11, 15, 32, 5, 8, 12, 1, 14]} ad
of it capable of real-time operation. System approaches (see S&R) are



based on feature extraction, detection, and object tracking ages, the latter
mostly realized by Kalman or particle Itering [26, 29, 37, 38, 3, 43, 16!1].

Although tracking is included into most pedestrian detection systes) it is

always considered as a post-processing step to detection andsthas the
nal point in a linear processing chain. There is no work we know of tha
makes use of object-centered dynamic attention mechanisms as gropose
them here to in uence its detections, except potentially [16]. As sggsted
by a recent comprehensive comparison study, it seems that staithe-art

approaches for pedestrian detection are currently reaching auralary that

is not easy to break [33].

1.3. Messages and structure of the article

This article uses a bio-inspired attention mechanism to facilitate a stngly
application-oriented problem. It should be noted that we considerhts ap-
proach promising not simply because of the biological analogy, besauof
the practical advantages that can be gained in this way. In partidar, this
article intends to demonstrate the following things:

Dynamic attention priors are feasible and e cient Here, it will
be shown that detection likelihoods in general have a form that allows
multiplicative modulation by attention priors, and that the application
of the latter does not incur signi cant computational cost.

Dynamic attention priors improve the overall performance
of object detectors In particular, they compensate slight deviations
from the learned appearance models, which is a case that oftenursc

Dynamic attention priors do not cause incorrect detections

if predictions are incorrect  As predictions of future detections are
based on a motion model, they can become incorrect when this model
is violated. In this case, it must be shown that actual detections ar
not, or at best slightly, a ected.

To deliver these messages, the article proceeds as follows: in Sethe
training, evaluation and the component parts of the real-time systm are
described in detail. Subsequently, we will present experiments validay the
previous points in Sec. 3 and discuss the signi cance of the resultsSec. 4.
In Sec. 5, we will conclude this contribution by providing an outlook obur
future works.



2. Methods

In order to ensure that results do not depend on a specic choicd o
detection or tracking method, we verify the feasibility of DAPs forwo com-
binations of di erent detection and tracking algorithms. On the onéhand, we
combine a cascaded HOG+SVM based detection method [17] with a sil@p
self-created tracking method based on a linear trajectory assption (system
1), and on the other hand we employ a standard HOG+SVM detector {1
in combination with a state-of-the-art particle Iter tracker [26] (systemll ).

Experiments are conducted for systems | and Il in an identical fagn
on the same data.

2.1. Object detection algorithms

Each algorithm, independently of the used model, provides at timea
list of detectionsD;;. Due to the multi-scale detection approach described in
Sec. 2.1, the size of a detected pedestrian is a multiplevaf, hy (see Sec. 2.1)
which are constants. The spatial scales are numbered in descegdander, the
one with highest resolution being assigned the index= O. Igach subsequent
scale is subsampled along both dimensions by a factor oR using bicubic
interpolation. It is the most practical solution to identify each scaleby its
downsampling factor w.r.t. to the original scale of highest resolution, which
will therefore have the form (i) = 2=2;i 2 Nj,. We can thus characterize any
detection D; by its center coordinatesgD;), by its associated scalel(D;)
and by its scores(D; ):

D; (t) =[€D;); d(D;); s(Dj)] (1)

The variable d(D;) takes its values in powers o? 2. (1 P (2); 2:::] depending
on the used spatial scales during the detection process. The @ntoordi-
nates€¢D;) take values only at the locations of the grid used for the sliding
window detection, see Sec. 2.1. We shall denote a particular detentscore
at spatial grid position %, spatial scale and timet ass(x; ;t).

Cascaded HOG+SVM detection.The global structure of this pedestrian de-
tection method is given in [17]. Due to GPU acceleration, the whole sgsh
can process 15 color images (800x600 pixels) per second on anhe-ghelf
PC (2.0GHz) equipped with a nVidia geForce GTX 580 graphics card. Eh
method is based on the computation of Histograms of Oriented Grihts
(HOG) features [5] using the "GPU" module of the free OpenCV librar [2].
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Adopting the terms presented in [5], we use the following parametrizan
for HOG:

a cell size of 8x8 pixels

a block size of 16x16 pixels

a border of 0 pixels

a window size ofwg ho=32x64 pixels
a window stride of 4x4 pixels

a factor ofID 2 between scales

The pedestrian detection system consists of a cascade of linead aon-linear
support vector machines that are applied in a sliding-window fashiort &9t
spatial scales to the computed HOG features. This cascade apgaeh allows
us to circumvent the speed disadvantage of non-linear SVMs as yhare
only applied to the (few) detections that survive the linear SVM stag. We
therefore consider a detection window at time, with center point % at scale
, to contain a pedestrian if and only if the corresponding scores froboth
the linear and the nonlinear-SVMs,sji, (%; ;t) and sy (%; ;t) exceed their
respective thresholds, & and $. To save computation time, we apply the
non-linear SVMs only to windows for whichs;, > ¢, For training the
linear and the non-linear SVM for pedestrian detection, we used thraining
sets from the Daimler Monocular Pedestrian Detection BenchmarkDM-
PDB, [10]), as well as from the Daimler Stereo Pedestrian Benchmafg].
All training is performed using the libSVM library and tools [4]. We re-
size all training images to a common size of 32x64 pixels prior to training
From these resized images, we compute HOG features according[&} and
store the resulting feature vectors, along with suitably assignedass mem-
berships, in alibSVM training le. Linear and RBF kernel C-SVC trainingis
subsequently conducted using this libSVM training le to obtain linear ad
non-linear pedestrian detectors that are able to distinguish pedesns from

background. Further details on training can be found in [17].

Standard HOG+SVM detection. This method corresponds exactly to the lin-
ear stage of the cascaded HOG+SVM method, except that the wind size
Wo; hg is 48x96 pixels instead of 32x64. In order to avoid training issues, we



use the trained SVM already available in the OpenCV library, implementig
the pedestrian detector whose training is described in detail in [10].uB to
the excellent speed/accuracy trade-o this method o ers even ithout GPU
acceleration, it can still be considered a state-of-the-art arclegitture as other
detectors that yield better performance [12] are much more demding in
terms of computation time or much more complex to implement [17].

2.2. Non-maxima suppression

There will usually be clusters of overlapping detections due to positial
invariance of the basic HOG features used in both detection algoritis. To
obtain the nal results that are passed on to other, possibly sedty-relevant
applications, we therefore perform a simple non-maxima suppressiiNMS)
step that selects detections whose score exhibits a local maximuMMS is
a standard post-processing method in object detection which esqis a set
of bounding boxes with associated scoré®; g, and produces a thinned out
list of boxes/scoresf D;g where only the locally most con dent detections
survive. In detail, the algorithm runs as follows, relying on the overfa
measure

D;j).
Dj)’ @)

Algorithm ~ Simple NMS(f D; g)
1. SortfD; =(€Dj);d(D;);s(D;))g in descending order of scors(D;)
2. fora 1to N

3 for b a+l1to N

4, if D4 not marked for deletion

5. then

6 if O(Da; Db) nms

7 then mark Dy, for deletion

8 Erase marked detections and return list

2.3. Tracking and prediction

We implement two tracking algorithms in order to show that DAPs are
feasible independently of the concrete tracking model that is usedOne
method is a self-created algorithm optimized for execution speedled LRT("linear
regression tracker"), the other is a state-of-the-art particlelter tracker.



2.3.1. Simple multi-object tracking with linear trackers

This method, which we shall term "linear regression tracker" (LRT)op-
erates on the results of the pedestrian detectiohefore applying NMS as
described in Sec. 2.2.

LRT is represented by a time-variable number of track$,, K (t) >k 0.
Each track has an associated track state allowing to predict the qutity
Pr.t = [€r.t; Ort; ¥, 1] Which contains, respectively, the center coordinates,
the scale and the speed of a pedestrian. A measure of the predictirror
1.t IS also computed for each track. The internal variables of a trackethe
linear regression coe cients for position and scalesr,, 7., 1., T, alistof
the T" past assigned detection& 1, ¢, as well as a probability measure 1,
that counts the number of successive frames the tracker wastrassigned a
detection, and which is initially O for new tracks.

For each frame, the following steps are executed in the given order

Figure 2: Schematics of linear trackers: linear regression over allgst detections (red
rectangles) is used to predict the coordinates and scale (green atangles) of the next
detection.

~

Prediction. Every track Ty, k = 0:::K 1 uses its internal variables:
and ; to predict the current state of the tracked pedestrian rectarg
[€r, :t0; dr, 0] for t0= t,

Crt0 = “Tet 1 (to t0)+ ~Tk;t 1
Or 0 = Tt 1(t0 to) Teit 1 (3
wheret, t T. If the track is less than two timesteps old, no linear regres-

sion has been performed yet and the last associated detection isireed as
the result of prediction.

Association. Each track Ty provides a prediction of the current location of the
pedestrian it is tracking, so we obtain a list of prediction®s, .« = [€r, «; dr, ].
For each coupleD;; ; Py, +, the detection and the prediction are compared by
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measuring the overlap measure introduced in Sec. 2.2 between theaaof
the detection box and the area of the predicted box. This overlap easure
is a very good indicator for evaluating if two detection boxes are cld0
each other, and if they are of a similar size. If the overlap exceedset
threshold Y., and if additionally the detection has a score that exceeds a
certain threshold 2% | the detection Dj: Is assigned to trackTy:

if O(PTk it Dj;t) > gss/\ Sdet(Dj;t) > :tsr
I assignDj; to track Ty: 4)

We try to assign all detections to the currently active tracks. Edt track
that is assigned a detection resets its counterr,; = 0. If a track is not
assigned any detections, its counter is increased tg,.: = 1, 1+ 1. Each
unassigned detection spawns a new track that is initialized with the aent
detection as only element ot (t) and having a counter of +, 1 = 0.

Observation. All tracks that have been assigned detections update their in-
ternal parameters. This consists of updating the internal stateariables~,,
v 71, and ¢ . To this end, the list L of past detections is extended
by all detections assigned in the current frame. Conversely, if tHest con-
tains already detections fromT" di erent timesteps, the oldest timestept

is identi ed and all detections associated to the track at are deleted. Sub-
sequently, standard linear regression techniques are used to s#&aight line
through assigned detection centers and detection sizes, yieldirgge tupdated
coecients ~t.t, “1t, 1,0 and ¢ ;. From the same calculation, we obtain
the error measures for position and scale, and we sg.; to their arithmetic
mean.

Deleting single-object trackersEach track veries its probability measure
1.t- If no detection has been assigned to this track for a period of time
Mo, We consider that the track lost the pedestrian, or that the pedgrian is

occluded or out of the eld of view. Subsequently, the track is deled.

Merging. All tracks are compared in a pairwise fashion. If their estimation
for the current positions are close, and if the estimation of their geds are
similar, we merge the trackers, considering that they have beeratiking the
same pedestrian. We keep the one with the lowest current prediati@rror.
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2.4. Particle lter tracking

The particle lter is represented by a time-variable number of track Ty,
K(t) >k 0. Each track T contains 0 n <N ' particles. Each particle
nkt contains the quantitieS€,k.t; dnkt and ¥hi, €kt being the center
coordinates,d,.«: the detection scale andv,«: the associated speed. Also,
each particle has a weight . Each track has an associated track state
Xikt containing the quantities €, ; dy, .+ and ¥ .. which are in complete

analogy to particle states. A track's parameters are: death praibility P,
birth probability P/, track probability increase and decrease stefd" and
P, false negative probabilityP! , a vector of resampling and association
parameters ;i 2 f 0; 1; 2g for position,size and speed respectively, and the
in uence and resampling coe cients ™, . In order not to complicate
the tracking with multiple overlapping detections, we perform non-mxima
suppression on detectionprior to tracking as detailed in Sec. 2.2.

Prediction. Tracks and theirs particles propagate themselves according to a
linear movement model: nxtjt 1= f . j . ( nke 1). For the particular
Case,dn;k;tjt 1= dn;k;t 1 YVhiktjt 1= Mkt 1 Sektjt 1= Gkt 1T Mhoketjt 1

Association. Detections are subjected to non-maxima suppression and |-
tered by the conditionss(Djt) > Y. The remaining detectionsf Djg, are
assigned to existing tracks 0 k < K, see below for more details. Those
tracks which are assigned observations increase their associgbedbability
by P{': Pkt = max(Pyx: 1+ PY;1). Tracks that are not associated update
their probability by: Py; = max(Px: 1 P";0). Detections which are not
associated to any tracks create new tracks having an initial probaity of
Pwt = PY. In case a new track is created, the probabilities of its particles
are! hxt = Pe=N";n=0;:::N" 1 and their states are initially those of
the detection creating the track. In detail, we proceed as follows:

1. For all pairs (Dj; k), we calculate the similarity
G(k;Dj)) =N (&, ®nat 17 oIN(dy,  Ore 13 1)
N (VDjka Yrtit 1 g) (5)

as a product of three Gaussians with manually tuned varianceg , ,,
where the "speed"” of a detection relative to a track is de ned ag, ;r, =

Tt 1 -
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2. Find the closest track-detection pair. If the similarity exceedshe as-
sociation threshold I, associate chosen detection to chosen track.
Remove this track from list of pairs to associate. Repeat 2). If the
similarity is smaller than the threshold, go to 3).

3. Finally, we have a list of associated pairs, a list of non-associated-d

tections and a list of non-associated tracks.

Observation. For each new observatiorD; and for each particle , of the
track the observation was assigned to, the Gaussian similari@( ,.x; Dj)
from eqn. (5) is calculated, only this time between a particle and an eb
servation and with all variance parameters I multiplied by an in uence
coecient . ' governs how strongly particle weights are in uenced by
detections, thus shifting the balance between motion model and sdrvations.
Resulting similarities are normalized per observation, therefore theum of
all similarities from one observation is og;e The weights of particleseral-
culated as a sum of similarities:! nx = G( nk; D)+ 1o PEL The
last term represents the "old" particle Weights in order to stablllze gainst
missed detections.

Resampling. If track probability Py, falls below the death probability P
track is deleted. Otherwise, its particles resample themselves usiramdom
Gaussian uctuations, depending on "  and a multiplier 1=P,; which
increases all ' if a track’'s probability is lower than one, in order to disperse
particles when a track is "lost", making it easier to "pick up" the tra later.
We term ' the "resampling coe cient" governing the noise added during
resampling.

Merging. If some of tracks are very close and move with the same trajecyor
they are supposed to be one and the newest track is deleted.

Correction. New track states are foqu by averaging over the internal stage

of all associated particlesXi . = = l

N n=1 mkit: nkt-

2.5. Application of attention priors

The way of applying a spatial attention priors depends on which of th
two tracking algorithms is used, although the general principle is idénal.
Basically, we use the predictions of each track to increase detectiscores
around locations in the current image where pedestrians are preid to be.

12



Predictions from tracks can come in the form of a predicted pedeistn rect-
anglePy., or in the form of predicted particles and their associated weights,
each of which represents a predicted pedestrian hypothesis.

The dynamic attention prior will boost, at each scale, the dense ay of
detection scores at locations that are "close" to a prediction. Ndigouring
scores in adjoining spatial scales are enhanced as well, albeit with acdimt
depending on the scale di erence. The boost is always excitatory, @ worst
neutral far away from any prediction, in analogy to biological modultary
feedback signals. The mechanism is visualized in Fig. 3, which also shows
that only score modi cations close to predicted tracks need to beomputed.
In regions su ciently far from any track, virtually no modi cation ta kes
place and computations can be skipped, leading to a highly e cient wagpf
applying DAPs.

Systeml: LRT tracker+cascaded HOG detector.Linear detection scores are
multiplied by (1 + s %) where ¥ represents a a Gaussian centered on
a track's prediction P, and having a standard deviation of 9, and sc€ g
discount factor depending on scale di erence. Given that a tracké predicts
the pedestrian position and sizé>; = [, 1; dr, ], the scoress;, (%; ;t) as
spatial scale will be modi ed as follows:

Siin ('X; ;t) I Siin ('X; ;t ) + dap 1+ Adap scale xy dap (6)
scale — 1
1+ |ng 5 k |ng édi t 2
_ ji%x el
¥ =exp o @2 TR

We observe that the scores are modi ed by the proximity of a predion both
in 2D and in scale space, the latter of which is only relevant for identicar
directly adjacent scales. The scores of the RBF classi er are moéd in an
identical fashion although, to save computation time, the modi cabn is only
applied where linear scores exceed the detection threshoffff. 9 governs
the minimal score that will be increased by the attention prior, wheras
A%P 0 controls overall feedback strength. Indeed, if a score is below??,
the modi cation will decrease its value, and forAY# = 0 feedback is turned
0.

Systemll : Particle Iter tracker+simple HOG detector. As the detector in
systemll is basically identical to the linear detection stage of syster the
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Figure 3: Multi-scale modi cation of detection scores around a corectly predicted pedes-
trian (or particle), where the green circle indicates the prediction enter and the green
box its associated scale). Grey crosses represent the positionsdetection scores (sliding
window centers) at each scale, the level of brightness indicating th strength of the boost
caused by DAPs. The white box in the top-left corner of each image idicates sliding
window size at a particular scale. As the size of the predicted pedesan is roughly that
of scale 1 (since white and green rectangles have similar size), theaoses at scale 1 get
boosted more strongly than at other scales. At scale 3 no signi canboost takes places
any longer. Please not that only detection scores around the pedérian are shown, in
reality the whole image is densely covered at each scale.

formula for adapting linear detection scores is very similar to egn.(6¢xcept
that each track's predicted particles are now the basis for scoreoat cation.

14



Param.

Sdet

det

det

nms

Ttr

tr

tr

dtr

lin rbf ass ST™M
Value 5 -1.5..1.5| -1.5..1.5| 0.25 20 0.0 5 15
Param (tjrel it(rjle dap dap Adap ntr tsr
Value | 0.25 10 15pix 15 |0o0r07] 5 | 05
Table 1: Parameters for systeml used in all experiments.
Param Sdet It;let P nms tr tr tr
- n + ass |
Value 5 1:::3| 03 | 0.25 1.0 0203|221
Param Pér pér dap dap Adap N ir u P tr
Value | 0.4 0.5 24pix | 3 | 0o0r0.3]250|1.5| 0.02
Table 2: Parameters for systemll used in all experiments.
Each scores(x; ;t) at position x and scale is modied as follows:
!
X
s(x t) ! s t)+ P 1+ ATP et it ! ik P
k n
(7)
nkit = Iogpidn;k;t |
K logP 5 2
We=ep
_ ikt A
r):;yk;t =exp 2 dap, 2

By comparing eqns.(6) and (7) while disregarding the subsequenttalis,
one best perceives the structural identity between the two ways applying
DAPs.

2.6. Systems

Systeml and Il are structurally very analogous. For a better comprehen-
sion, we present their working in pseudocode form. A part from thdi erent
detection and tracking methods that are used, both di er mainly in he way
NMS is applied as the particle Iter tracker works better when operng on
detections that are pre- Itered by NMS. For obtaining experimenal results,
we use both systems with the parameter values given in Tabs. 1 and 2
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Algorithm  Systeml Input: Image at time t, Output: detections Dj;
1. Apply cascaded HOG detector to image, giving score¥’(x; ;t) and
Srbf(,x; ;t)

2. for k Oto number of tracksK 1

3. do Predict current pedestrian rectanglePr, .. = [€r,; dr, 1] for each
track Ty

4. Apply DAPs to scoress™™ (x; ;t), s™ (% ;t) based onPr,

5.  Generate raw detection®;; from scores by applying thresholds;,; rsr

6. Apply NMS to obtain Itered detection results Dj;

7. Feed raw detectiondj; to LRT tracker if scores exceed !

8. Update tracks

Algorithm  Systemll : Input: Image at time t, Output: detections D

1. Apply linear HOG detector to image, giving scores'™ (x; ;t)

2. for k Oto number of tracksK 1

3. do Predict current particles for each trackTy

4 Apply DAPs to scores based on particles of each tradl

5.  Generate raw detection®;; from scoress" (x; ;t ) by applying thresh-
old i

Apply NMS to obtain Itered detection results D

Feed Itered detectionsDj; to particle lter tracker if scores exceed
8. Update tracks

No

3. Experiments

Evaluation. To easily obtain test data to estimate the e ect of attention pri-
ors, we recorded a set of 11 outdoor videos recorded from a &tafar, during
daytime, on a parking lot in California. In these monochrome videos oés-
olution 800x600, only a single pedestrian is ever visible in front of vaus
and potentially complex backgrounds containing vehicles, trees armadher
distractor structures. We manually generated annotations foraeh image in
these sequences in the form of bounding rectangles which completeon-
tain any visible, non-occluded pedestrians. These rectangles arat tight

around the occurring pedestrians but have a certain variability as evused
a semi-automatic procedure for generating them. In addition, we anually
annotated direction changes of pedestrians in the form of intergathat start

20 images before the onset of a direction change and that end 20 ges after
its completion. Fig. 4 shows example images taken from these videoBval-
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Figure 4: Example images from evaluation streams. Background ang@edestrian identity
and clothing vary strongly between video streams.

stream 0 1 2 3 4 5 6 7 8 9 10
images 814 | 1023 | 751 | 742 | 698 | 1479 | 720 | 558 | 982 | 1011 | 988
dir.changes| 5 6 5 5 7 7 6 5 5 7 6

Table 3: Videos used for testing. There are 11 sequences contaigim single pedestrian.
The total number images is 9766, which gives a total length of 16 mintes at a frame rate
of 10Hz.

uations are performed on the full set of videos described in SecV8e always
compare thefeedback conditioni.e., the system with dynamic attention pri-
ors, to the bottom-up conditionwhere dynamic attention priors are turned
0 by setting A% = 0. By varying the detection threshold g (plus, at the
same time, the detection threshold §& for system1), we obtain ROC-like
plots for all videos; These plots represent detection performanat di erent
trade-o s between the aims of nding all pedestrians and avoiding rorrect
detections. For less-than-perfect detectors these are ofteon icting aims

and a ROC-like plot helps to identify acceptable compromises.

3.1. Preliminary experiment: feasibility

The rst experiment, conducted in the bottom-up condition (see hove)
investigates whether the use of dynamic attention priors as de#wed in
Sec. 2.5 is feasible, and what parameters might be appropriate. Wseu
system| for this purpose as described in Sec. 2.6. To this e ect, we com-
pute the local score pro le of pedestrian detections, both for lire and RBF
scores. For each time step, we rst determine the position and deeof the
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Figure 5: Dense 11x11 matrices of (unmodi ed) detection likelihoodsround local maxima
caused by real pedestrians, averaged over all videos and scaleShown are likelihoods
derived from linear (left) and RBF (right) detector of system I. In both cases, a sharp
drop away from the local maximum at 5/5 is evident, especially for the RBF case. This
is very convenient as a moderate misplacement of attentional modation will not result
in additional detections.

strongest linear or RBF score:
(8)

Centered around this score, which we assume to indicate a pedisirdetec-
tion, we determine the 111 grid of linear/RBF scores on the same spatial
scale. We then calculate the average values of this grid separatety €ach
spatial scale , and over all time steps (=images) in the evaluation sequences
described in 3.

This experiment addresses the rst message of Sec. 1.3: the bdsia-
sibility and e ciency of DAPs. As we wish that modulation by dynamic
attention priors should be as strong as possible in order to maximallyhe
hance detections, but at the same time that it should not introducspurious
detections, it is necessary for the scores to fall o sharply arodra detected
pedestrian. The more pronounced this decay is, the stronger ahdoader
the modulating signal can become without causing spurious deteaim The
results are shown in Fig. 5. From Fig. 5, it is evident that the structre of our
detection system is well-suited for attentional modulation, as theistribu-
tion of scores around their maxima is indeed strongly peaked. we théore
conclude that a broad and strong modulatory signal can be appliedThe
strongly peaked distribution of scores prevents the creation opwrious de-
tections in this case, as score values drop quickly to a point whereethwill
not be su ciently enhanced even by strong modulation. The use ofrbad
and strong modulation is favorable since strong modulation can maxatty

¥, © =arg max,. sin(% ;t):
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enhance (correct) sub-threshold detections, while broad modtizn allows
considerable deviations from the center of the modulation.

Furthermore, we measure execution time of the sliding-window stagf
systeml, see Sec. 2.1, to the baseline condition. Time measurements are in
both cases averaged over a whole video stream of 500 images. W timat
execution time in the baseline condition is 100s whereas it is only 3%
higher in the top-down condition. Experiments were conducted on25GHz
desktop computer with four cores and a CUDA GPU. For systerti a similar
2% increase in computation time is observed on the same computerhaltigh
of cause absolute frame rates are much lower as we use no GPU lacagon
for this system. This computational e ciency is a consequence ohé locality
of DAPs around each track, which allows to restrict the computatio of
egns.(6) and (7) to a local neighbourhood of tracks.

Summing up, we nd that the modi cation of detection scores by DAR
does not at all impair computational performance. Together with énign
behavior of detection likelihoods which favors broad and strong maolgtion,
this allows the conclusion that the application of DAPs is feasible both in
principle and w.r.t. execution time.

3.2. Improvement of detection performance

This experiment addresses the second message of Sec. 1.3, dyag the
bene t of dynamic attention priors in terms of a ROC analysis. We pdorm
this analysis for both presented systems, see Sec. 2.6. As suggeby a
comprehensive study on pedestrian detection [33], evaluation is feemed
by means of ROC-like diagrams giving the percentage of missed oligeas
a function of the number of incorrect detections per image. This ih¢ only
meaningful way to evaluate detection experiments; more well-knawmea-
sures like precision or F-scores require knowledge of the numbenegative
"objects" in an image, which is not well de ned. We present a strearhy-
stream analysis for all evaluation streams described earlier in thiscten,
using the parameters given in Tabs. 1 and 2. A more in-depth discums of
choosing these parameters is conducted in Sec. 4.1.

Evaluation is performed on detection results which are subjected hon-
maxima suppression as described in Sec. 2.2. The linear and non-linear
detection thresholds ¢, d are synchronously varied in a range of [-5,5];
incorrect detections/missed pedestrians are counted for eachréshold set
by a comparison to the annotations described in Sec. 3. Following tlesal-
uation procedure of [20], we use the overlap measwgP; Q) introduced in

19



1 - 1
no feedback 8 no feedback e
[ [
S 08 feedback ma: : S 08 feedback ma:
£ £
5 06 5 06
o @ o
L 04 L 04
3 $ 3
< 02 STREAMO000 s < 02 STREAMO001
w A w
0 0.2 0.4 0.6 0.8 1 01 0.2 0.4 0.6 1
True positive percentage True positive percentage
1 1
no feedback s no feedback e
@ g Q g
S o0s feedback S o0s feedback
£ £
5 0.6 5 0.6
(=% (=%
9 04 3 04
3 3
< 0.2 STREAMO002 < 0.2 STREAMO003
w w
0 0 b mmeT——
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
True positive percentage True positive percentage
1 1 —
no feedback e no feedback e .5
<] g Q g S
S o0s feedback S o0s feedback
£ £
5 0.6 5 06
(=% (=% s <
9 04 3 04
3 3
< 0.2 STREAMO004 < 0.2 AMO05
w w
0= 02 04 06 08 1 0 02 04 06 08 1
True positive percentage True positive percentage
1 1
no feedback e no feedback e
Q g Q g
S o0s feedback S o0s feedback
£ £
5 0.6 5 0.6
(=% (=%
9 04 3 04
3 3
< 0.2 < 0.2 STREAMO07
e w o
0 0 O
1 06 02 04 06 08 1
True positive percentage True positive percentage
1 1
no feedback s no feedback e
[ [
g 0.8 feedback ma: g 0.8 feedback ma:
£ £
5 06 5 06
o o
L 04 L 04
3 3
< 02 STREAMO008 < 02 STREAMO009
L w
0d 0d . il
0. 0.4 0.6 0.8 1 0.2 0 0.6 0.8 1
True positive percentage True positive percentage
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Sec. 2.2 for comparing detected and annotated objects. The uks for in-

dividual videos are given in Fig. 6 for systenh, and in Fig. 7 for systemll .

They show, for both systems, that rather broad DAPs, as sugsgied by the
preliminary experiments, indeed improve overall detection perforamce con-
siderably. This result is a relevant one as it is obtained from a considdale
total video length comprising several pedestrian backgrounds @illumina-

tion conditions. Whats is more, the pedestrians in the test videos ahge
direction quite often, so DAPs are often applied at incorrect positits. If
overall top-down performance is still superior compared to the baline con-
dition, then either incorrect DAPs do not normally cause incorrect etections,
or this performance loss is 0 set by signi cant performance gaindsewhere.

As a last point, we observe that the performance of the two systes in

the baseline condition is not identical but comparable. The improveme
obtained by DAPs it signi cant in both cases, and even slightly more m-

nounced for systeml| .

3.3. Behavior under violation of motion model

Relying on systeml, see Sec. 2.6, this experiment addresses the third
message of Sec. 1.3. We want to show that detection performarisenot
impaired by a violation of the simple linear motion models used to predict
pedestrian positions, and thus to apply DAPs. To this end, we quaify
the detection performance of our system, in the top-down conéb, in and
around abrupt direction changes of pedestrians, basically repeaj the steps
of the previous section, see Sec. 3.2. The only di erence is that kation
is restricted to intervals around a direction change which were maally
annotated as detailed in Sec. 3. We intend to show that the perfoance in
the top-down condition does not drop below baseline condition evehdugh
DAPs are predominantly in the wrong place. The results of this expenent
are visualized in Fig. 8 to allow an easy comparison to baseline and topwh
conditions.

It is clearly shown that performance does not degrade on average.t.
the baseline condition when DAPs are applied predominantly in the wrgn
place. We may speculate that this is partly due to the local centersround
structure of detection scores that was discussed before, angedo the broad
DAPs used: if the DAP is only slightly o the correct pedestrian positia,
the Gaussian will still enhance the correct detection score. Thisdigusti es,
in hindsight, the choice of simple linear trajectory models for predicn
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Figure 8: Comparing baseline and top-down condition for system by ROC-like plots in
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23



purposes. As the basic motion model for the particle lter is linear awell,
we expect these results to generalize to systdinas well.

4. Discussions

In this section, we will rst discuss the experimental results and jdge
the validity and signi cance of the presented work. Subsequentlywe will
critically examine, and ultimately justify our experimental procedue in order
to forestall potential criticisms. Lastly, we will explain, in qualitative terms,
the reasons for the validity of the approach based on illustrationgken from
the experiments.

4.1. Choice and in uence of parameters

In this section, we wish to describe the most important parameteravi-
ations and their e ects. In any complex processing system, theege many
parameters that can be tuned, and it is not at all clear in the beginnm
which are the ones that are responsible for good (or bad) perfoance. As
we conduct an investigation that evaluates two di erent systemsgomposed
of subsystems which di er as well, we restrict this discussion to theapame-
ters relevant to the DAP mechanism and assume that individual congment
methods (detection, tracking) have been optimally parametrizedby hand"
for the given detection task. The most relevant parameters for AP opera-
tion are the threshold % which controls which detections are allowed to
contribute to tracking, the coe cient A% which governs the overall strength
of DAPs, the standard deviation 9 which determines the "broadness" of
DAPs, and lastly the o set 9 which determines the lower boundary of
scores than can be excited by DAPs. Other parameters in uencie perfor-
mance of DAPs as well, namely the tracking timescalB" for systeml or its
equivalent, the resampling coe cient ' for systemll .

We setT", or alternatively ' such that tracks adapt rather slowly to
changed motion models. This is in any case a necessity as detectioxislst
considerable uctuation, and thus a single detection inconsistentith the
current track should not have a signi cant e ect. On the other had, it is
a goal of this study to show that DAPs work well even when the motlés
currently inconsistent with object motion.

In both systemsl and Il , a good value of '3 is crucial to DAP function.
If it is set too low, tracks can be initiated by spurious detections, wbh
will then be reinforced by DAPs causing self-stabilized, "immortal" fise
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detections. Therefore, this threshold needs to have a su cientlyigh value

in order to eliminate spurious detections, or at least to limit their fregency
such that created tracks die immediately after their creation. Ultimately, a
good value for "2 therefore depends on the statistics of scores generated
by the underlying visual detector.

Similarly, the o set 9 depends on the statistics of detection scores. It
should be set such that the lowest observed score caused by d pealestrian
pattern can be boosted beyond the actually detection thresholdyDAPs.
This implies a dependency of this parameter on the overall strengtti DAPS,
A%P n practice, we x 9 to be roughly 1.0 below the smallest observed
pedestrian score, and then calculat&® such that this score just reaches the
detection threshold. For excessively strong values Af#", we often observed
a locking behavior where an object, once detected, would remain detected
irrespective of image content due to strong attentional modulatim Such an
object would be counted as a detection, be passed to the trackamd thus
reinforce its own position and existence, regardless of detectiorelikoods.

Lastly, the spatial scale of DAPs is a crucial parameter that can tally
change the system's behavior. We set it to be broad, that is half a gestrian
size (multiplied by the spatial scale DAPs are applied) as the preliminary
experiments (sec. 3.1) indicate that broad DAPs are very unlikely toreate
spurious detections away from pedestrians.

An overlap threshold of " = 0:25 is chosen due to the less-than-optimal
quality of the annotations which do not tightly encompass pedestmes.

4.2. Novelty and signi cance of results

This article proposes the concept of dynamic attention priors, thais
to say, attentional modulation derived from predictions based onythamic
guantities such as moving objects. DAPs are a new aspect of visa#tention
that is inspired by very recent psychophysical ndings[23]. We coiter it
signi cant that it is possible to directly transfer such insights into a echnical
implementation, leading to a marked performance improvement in a dcult
visual detection task.

What is more, the technical realization of DAPs is very light-weight in
terms of computation time and can thus be applied even in systems rkimg
under real-time constraints. DAPs can even be put "on top" of anast-
ing detection system (in fact this is what we did) without changing syem
structure at all, as long as there is a topographic representatiorf oontin-
uous detection scores. After modifying those scores using DARBe nor-
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mal detection procedure, i.e. the search for local score maximancgo its
course without modi cation, as well as any subsequent operatiorsich as
non-maxima suppression.

Another very signi cant aspect of DAPs is that they do not impair pe-
formance when they are temporarily incorrect, which suggestsahsimple
prediction models for choosing DAPs are su cient. As the movemenbf,
e.g., humans is a very complex thing to predict, some robustness egh
prediction errors is imperative, since even complex prediction modeldl be
incorrect from time to time. Indeed, in this article we chose the simpd¢
models possible which just perform a linear prediction of trajectoe with
excellent results.

As a last point, we wish to emphasize that the vision systems we prassd
are is in good accordance with the notion of biological visual percém ap-
proximating a probabilistic inference process. To be sure, our det®n sys-
tem does not produce probabilities but detection scores which areither
normalized nor calibrated. However, empirical work on the probabitis in-
terpretation of SVM outputs [35] suggests that these scoreseaapproximately
related to probabilities by a simple monotonous transformation. Thisech-
nique was not used in the described system for performance reesdeading
to the rather complicated expressions (6) and (7) for DAPs, insael of simply
using a normalized sum-of-Gaussians probability distribution. Howey, the
essential operation performed by DAPs is still probabilistic inferemc the
combination of data-driven likelihoods (the detection scores) and priori
knowledge in the form of DAPs, forming an a posteriori distribution the
modulated scores) that allows a better estimation of object positig. In this
respect, our system resembles biological systems which also donepresent
probabilities in a direct form, but whose mechanism of attentional &zlback
to lower hierarchy layers nevertheless seem to approximate prdilistic in-
ference.

4.3. Critical points

The rst and most obvious criticism is that the considered evaluatiorse-
guences are "too easy", given that even the results in the baselioendition,
see Fig. 6, are way better than results reported on standard plit bench-
mark databases [33]. It is de nitively correct that the chosen se@mces are
rather simple as there are no occluded pedestrians nor groups edpstri-
ans that could cause detection issues. The backgrounds are etlsimple as
well although there is a large amount of potential distractor objeés such as
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poles, trees, etc, and the pedestrians often move before thisustured back-
ground. The evaluation sequences were chosen precisely for tisamplicity,

as with more complex sequences it would have been dicult to attribut
any performance improvements to the e ect of DAPs. In additionposes
and direction changes of pedestrians are very clearly de ned in tlehosen
evaluation sequences which is what we needed for an unambiguoualysis.
We do not believe that the simplicity of the evaluations is responsible rfthe

strong positive e ect of DAPs. Rather the reverse is the case: it iswuch
easier to improve mediocre detection results than those which aready
quite good, as in the present case. On the whole, we therefore badi¢hat
on di cult sequences, the performance di erences due to DAPs wilbe even
more pronounced. This is part of ongoing work.

Another quite obvious criticism is that we did not prove the e ects of
DAPs using another detection system than HOG+SVM. We chose HOtSVM
as it o ers the best compromise between speed and performancereal-time
pedestrian detection [33]. However, we have published severalutesson the
use of static attentional modulation for vehicle detection [20, 189] using the
detection system of [40]. In all of these works, we could report strg perfor-
mance gains due to attentional modulation, which rather underlinethe fact
that many detection architectures may be coupled to attentionainodulation
as long as continuous detection scores are topologically organized.

4.4. Mechanisms and limitations of DAPs

In addition to the quantitative experiments of the previous sectionhere
we want to elucidate under which conditions DAPs can (or cannot) inrpve
detection performance, and why they do not normally cause prolohs under
violations of the linear prediction model. For the question why DAPs w&,
we refer to Fig. 9. Here one can see that DAPs have a bene cial etein
two cases. First of all, this is the case when the pedestrian is occldder
before strongly structured background which can confuse theaglient-based
detection/classi cation system. Secondly, DAPs play a role when thpedes-
trian exhibits a pose not well recognized by the detection SVM, norally
due to insu cient training data for this pose. This will cause intermittent
failures to detect a pedestrian, leading to a " icker" type of detetton perfor-
mance. Although detection scores will be signi cantly higher than arage
when pedestrians are missed in this way, they will not be high enough t
"survive" the detection thresholds. Here, DAPs ensure that shicscores are
enhanced just su ciently to exceed the respective thresholds.
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Figure 9: Visualizing the reduction of false detections by dynamic atention priors on
three key scenes. Each panel shows the result of detection in thieedback (left) and
bottom-up(right) conditions. Red boxes indicate detections; in the absence of detections,
white boxes visualize the prediction for the current moment. White a blue crosses (color
chosen for best visibility depending on image background) indicate tk center point of the
prediction. 1) Enhancement of partially occluded pedestrian 2) Enfancement of pedes-
trian "in-between" pose which does not often occur in training data 3) enhancement of
pedestrian before strongly structures background.

The downside here is that DAPs will also enhance detections that are
consistently wrong, as shown in Fig. 10. In such cases, DAPs will aatly
increase the number of false detections which is clearly undesirabtéowever
it should be stressed that this happens only for false detectionsahare
consistently in the same place for a sucient time to be tracked, whic
excludes the usual spurious detections exhibited by any detector

As for the question why a violation of the linear motion model does not
usually increase error rates: the basic reason is, of course, tladtentional
modulation will have no e ect if detection scores do not at least atta a value
of 9 Of course confusions could arise in scenes with many pedestriae-lik
distractor objects. However, in order for this to happen, a diséictor object
would have to be in close proximity to the pedestrian and additionally intte
place where a wrong prediction is applied, which is not extremely probia
although it clearly could occur.

5. Conclusion and future works

In this article, we have demonstrated the "translation" of dynamicand
predictive visual attention, as observed in humans, into two varida of an
object detection system, and shown that this improves the veryomplex
task of visual pedestrian detection in a simple benchmark. We choadevel
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Figure 10: A particular situation where DAPs can actually increase the number of in-
correct detections. Shown are two consecutive images from st@en 5, see Tab. 3, where
an incorrect detection occurs in a spatiotemporally consistent waynon-linear SVM score
is shown along with the detection). This will lead to self-enhancementand therefore to
further detections and further tracking. Such undesirable behaior will continue as long
as there is a su cient frequency of incorrect but consistent detections to allow tracking to
continue.

of abstraction that permits an e cient implementation while taking care to
preserve selected aspects of biological information processing. particu-
lar, we modeled how highly dynamic quantities such as moving pedest&a
can give rise to predictive attention priors, and we investigated the ect
of incorrect predictions. Due to the combination of signal-driven mkestrian
likelihoods and prediction-based attention priors, our model appxanates
a Bayesian inference process which is considered to be a key ingredie
human environment perception [44]. It is this property that e ectiely en-
sures robustness to incorrect prediction models, because thealmpercepts
are always composed from likelihood and attention prior taken togetr.
Future work will concern the learning of more advanced prediction odels
that incorporate the pose, i.e., the orientation in space, of deteal pedes-
trians. It is immediately obvious that this information can give valuable
hints about a pedestrian's imminent actions, and vice versa a pedaan's
actions can give hints of what a good de nition of appearance-bakg@ose
categories might be. Furthermore, we will integrate the ego-motioof the
observer into prediction models, making them e ectively non-linearThis is
in accordance with [23] where the use of very advanced predictiorodels
for object trajectories was demonstrated in humans. Evidentlyredicting a
pedestrian's position in the face of strong ego-motion is a challendmit as
the results of this article clearly show, prediction models do not nedd be
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perfectly accurate to be useful. Indeed, approximate models mighe quite
easy to formulate, maybe with the help of implicit perspective models @D
information from stereo vision/laser sensors.
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