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Abstract

Valuation methods that smooth the short-term fluctuations in the market values of pension
plan assets are regularly used when actuarial valuations of defined benefit pension plans
are performed and contribution rates are determined. The “Moving Average of Market”,
“Deferred Recognition”, “Adjusted Market” and “Write-up” methods using arithmetic av--
eraging and allowing for cash flows and the time value of money are shown to be equivalent
under the appropriate definitions. Stability and moment properties of the pension system
are studied when random investment returns are made on plan assets and the resultant
asset gains and losses are amortized. It is demonstrated that there is a limit to the total
amount of smoothing, through both asset valuation and gain or loss amortization, if the
process of funding for pension benefits is to remain stable. Typical averaging periods and
amortization periods of up to 5 years appear to be efficient in terms of minimizing both
the variability of plan funding levels and contribution rates. Finally, it is shown that the

actuarial asset valuation methods do generate a smooth and unbiased estimate of market
values.
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1 Introduction

Defined benefit pension plans are valued at regular intervals. One purpose of an actuarial
valuation is to determine a suitable rate of contribution to the pension fund in the following
year. Both plan assets and liabilities are valued and compared. For such funding or
management valuations, assets are not always measured at their pure market values. An
actuarial asset value is used in order to smooth out short-term market fluctuations. The
asset value should be consistent with the actuarial value of long-term retirement liabilities.
When pension plans are valued for accounting or other statutory purposes, assets may be
valued at market, or according to some prescribed method.

Only actuarial valuations with the objective of setting contribution rates are considered
here. Certain methods of valuing the assets of defined benefit plans are investigated. The
methods are described in general terms by the Committee on” Retirement Systems Re-
search (1998). They are the “Moving Average of Market” (or “Average Value”), “Deferred

Recognition”, “Adjusted Market” and “Write-up” methods.

2 A Simplified Model

A simple defined benefit pension plan model is postulated in order to study the effect of
using asset valuation methods. The plan provides only a straightforward pension at a
specified retirement age based on final salary. The benefit rules are taken to be fixed and
no discretionary benefit enhancement (save for prespecified benefit indexation) is allowed.

Projections of the experience of the pension plan must be made. Demographic ex-
perience is not a source of considerable uncertainty for large pension plans. The plan
population is assumed to be constant and mortality and other decrements are assumed
to be in accordance with a life table {I;} which may incorporate a promotional salary

scale {s,} such that [, = s,l, (where age is indexed by z). Economic experience is more



variable. Inflation on plan benefits and returns on plan assets are not independent and
are not easy to model. Furthermore, the liability pertaining to active plan members is
based on (projected) final salary whereas the retirees’ pension liability is usually either
fixed nominally or partially indexed with consumer prices inflation. As a first approxima-
tion, we assume away inflation. Salaries are subject to general economic wage inflation,
as distinct from promotional, merit-based or longevity-based wage increases in {s,}. It is
assumed that pensions in payment are fully indexed with wage inflation. The actuarial
liability for both retirees and actives thus increases in line with wage inflation. All mon-
etary quantities (including values of liabilities and assets, asset returns, payroll etc.) are
therefore measured net of wage inflation. (We may alternatively ignore inflation altogether
and consider nominal quantities.) The real rate of return on plan assets (i.e. net of wage
inflation) is assumed to be a sequence of independent and identically distributed random
variables. This assumption is made for the sake of simplicity. It reflects market efficiency
but is oversimplified as plan assets are not continuously traded but may be held to match
certain liability cash flows.

Actuarial valuations are carried out at regular intervals, say at the beginning of each
year. The set of actuarial assumptions used in each valuation is assumed to be time-
invariant, in line with the stationary nature of plan experience as projected above. An
‘individual’ actuarial cost method is used, generating an actuarial liability AL and a normal
cost NC (deflated by wage inflation). These are constant, given the assumptions made
above. The actuarial assumption as to mortality and other decrements is based precisely
on life table {I,}. The experience of the pension plan therefore deviates from the valuation
basis only as a result of variable asset returns. Asset gains and losses therefore occur.

Some notation may be introduced at this stage. The market value of pension plan
assets at time ¢ is f(¢). Time is discretized and we assume that all cash flows occur at the

beginning of the year. A contribution payment of ¢(t) is made at the beginning of year



(t, t+1). The total pension benefit is also paid out at the beginning of the year and is
constant (say B) given the assumptions made above. (Recall that all quantities are net of
wage inflation.) Let the real rate of return on plan assets during year (¢ — 1, t) be r(t) so

that, for ¢ > 1,
f@) = Q+r@)f(E—1) +ct—1) - B]. 1
Pension liabilities are valued by discounting at a rate ¢ and Trowbridge (1952) shows that
AL = (1+4)(AL + NC — B). @)

The model described above is a very simplified representation of reality but has the
advantage of being mathematically tractable. It is similar to the models used by Trowbridge
(1952), Bowers et al. (1979) and Dufresne (1988, 1989). One key difference is that an
‘actuarial’ or smoothed value F'(¢) is placed on the assets of the pension plan at time ¢.

The unfunded liability based on the market value of plan assets at time ¢ > 0 is defined

to be:

ul(t) = AL — f(2). (3)
It is natural to define a smoothed unfunded liability based on the smoothed actuarial value
of assets at time ¢ > 0 as follows:

UL(t) = AL — F(¢). (4)

Suppose that the actuarial assumption as to future returns on plan assets is not different
from the valuation discount rate, as in a traditional actuarial valuation. Asset gains and
losses emerge as the investment experience {r(¢)} differs from the actuarial assumption i.
The anticipated market value of the pension fund, if experience agrees with valuation

assumptions during year (¢ — 1, t), is

A = Q+9ft—1)+ct - 1) - B, (5)



while the anticipated actuarial value is
FA)= (1+9)[Ft—-1)+c(t— 1) - B], (6)

for t > 1. The anticipated unfunded liabilities are correspondingly ul4(t) = AL — fA(¢)
and ULA(t) = AL — FA(#).

Losses may be measured based on the market value of assets (unsmoothed losses I(t)) or
based on the actuarial value of assets (smoothed losses L(t)). In either case, an intervalua-
tion loss emerging owing to experience in year (t—1, t) is defined as the difference between
the unfunded liability at ¢ and the anticipated unfunded liability had valuation assump-
tions been realized during (¢ — 1, t). The unsmoothed and smoothed loss are respectively,

fort>1,

1(t) = ul(t) —ul®(t) = FA(8) - £ (D), )
L(t) = UL(t) - ULA(t) = FA{t) — F(¢). (8)

(Gains are, of course, negative losses.)

At time t = 0, pension plan assets have market value f(0) = f;, with probability one.
An initial unfunded liability based on market value of uly = AL — f; therefore exists. The
plan may have been initiated or significantly amended (i.e. the benefit rules or the asset
valuation method or the actuarial cost method may have been changed) at ¢ = 0 and an
initial unfunded liability may have arisen. It is assumed that for ¢ < 0, I(¢) = L(t) = 0.

The contribution paid into the pension fund at the beginning of year (¢, ¢t + 1) is
c(t) = NC + adj(2). 9)

The supplementary contribution (or contribution adjustment) adj(t) should amortize, over
finite periods, the initial unfunded liability as well as the smoothed values of the interval-

uation losses.



3 Asset Valuation Methods

The actuarial or smoothed asset value F'(t) must now be defined. Let u = 144, v = 1/(1+4i).
The present value of plan assets at time ¢ written up over j > 1 years (allowing for cash

flows) is

Fi(t) =/ f(t —j) + Y ufle(t — k) — B]. (10)

k=1

By virtue of the definition of i(t), i.e. using equations (5) and (7),

f@)+1@) =u[fE—1)+c(t-1) - B]. (11)

By recursion, it follows that

Fy(t) = f(t) + iukl(t — k), (12)
Fj(t) = u[Fj(t — 1) + ¢(t — 1) — B] — &%I(t — 7). (13)

The smoothed actuarial value of plan assets at time ¢ is defined as:

OBE {f(t) +2ﬂ-(t>}. 14

Replacing Fj(t) from equation (10) into equation (14) yields the “Moving Average of
Market” or “Average Value” method:
1 n—1 ) n—1
F(t)=g{z1ﬂf(t—j)+ (n—j)u][C(t—j)—B]}, (15)
=0 j=1
for t > 1 and an averaging period n > 1. The smoothed value is an arithmetic average of
the market values of plan assets over the past n years, allowing for cash flows and the time

value of money.

If F;(¢) from equation (12) is substituted into equation (14), the “Deferred Recognition”



asset valuation method is obtained:

n—1 j—1

=
F k
B =f)+= SO ki (16)
j=1 k=0
n—2 n—1-—
=1+ - qu t—13), (17)
3=0

fort > 1. A fraction 1/n of each (unsmoothed) intervaluation loss over the past n—1 years
is recognized and amortized, while the rest is deferred. The market value of plan assets
is adjusted by adding the deferred portions of each loss (with interest) and the method is
also known as the “Adjusted Market” method. See also Winklevoss (1993, p. 173).

Summing both sides of equation (13) and dividing by n gives

I E0 =2 B+ T e - g IS, )

and after adding % f(t) on both sides and using equation (14),

F(t) == |f t—l—l—ZF(t—l ~*Zu’lt~y
+ -71; [F(®) = uf(t— 1) + (n - Dule(t — 1) — B) +1(5)]. (19)

We obtain another form for F(¢) upon using equation (11):

n—1

F(O) = ulF(t= 1) +c(t—1) - B] - - 3" wil(t ) (20)

for ¢ > 1. This is one variant of the “Write-up” method, described by the Committee on
Retirement Systems Research (1998). The actuarial asset value is the anticipated actuarial
asset value, based on the valuation basis and allowing for new cash, adjusted downwards by
the sum of recognized portions of previous (unsmoothed) losses. See Peat Marwick (1986,
p- 25) for an explicit example where such a method is used in conjunction with accounting

valuations under Financial Accounting Standards No. 87.



It is clear that the asset valuation methods described in equations (15), (17) and (20)
are identical, if initial conditions are ignored. For our purposes, these initial conditions
may be arbitrarily defined.

Assume that the pension fund is marked-to-market at time ¢ = 0 and that F(0) = fo. As
regards the methods defined by equations (17) and (20), note that we assumed previously
that for ¢ < 0, I(t) = 0. In order that equation (15) satisfies F(0) = f, we arbitrarily
choose that, for —(n —1) <t <0, ¢(t) = NC and f(t — 1) = vf(t) — NC + B (given
f(0) = fo).

4 Intervaluation Losses

A recurrence relation for the unfunded liability u/(t) may be obtained in terms of the
(unsmoothed) loss I(t), following Dufresne (1989), by replacing f(¢) and f(¢t — 1) using

equation (3) and also replacing c(t — 1) using equation (9) into equation (11):
ul(t) —u-uwl(t-1)=1(¢t) —u-adj(t — 1) (21)

for ¢ > 1.
‘The smoothed intervaluation loss L(t), based on the smoothed actuarial asset value, is

defined in equation (8), and using equations (6) and (20), it follows that

IS i
L(t) =~ ;u It - ) (22)
for ¢ > 1. It is clear that L(¢) is an arithmetic average of the present value of the un-
smoothed losses in the past n years. It is also clear that the unsmoothed losses are not
being immediately recognized and that portions of the losses are being deferred over up to

n years.

A recurrence relation for UL(t) in terms of L(t) may also be obtained. Upon replacing



F(t) and F(t — 1) from equation (4) into
F(t) =u[F(t—1) +c(t — 1) — B] — L(t), (23)
it is readily found that, for ¢t > 1,
UL®) —w-UL(t — 1) = L(t) — u - adj(t — 1). (24)

Compare with equation (21).

5 Supplementary Contributions

The supplementary contribution consists of:

1. amortization payments over an initial period of M years to liquidate the initial un-

funded liability uly;

2. amortization payments for losses over a finite period of m years—where the losses

L(t) are smoothed, i.e. measured in terms of the actuarial smoothed asset value.

For ¢t >0,

m—1

adj(t) = (ulo/dgm) Licrr— + D L{t — §) /i, (25)

Jj=0
where 1x is an indicator function such that 1x = 1 when X is true and 1x = 0 when X is

false.

The supplementary contribution may be expressed directly in terms of unsmoothed
losses {I(¢)}, by substituting equation (22) in equation (25) and employing the following
elementary identities, depending on the relative lengths of the amortization and averaging

periods. If m = n,

n n

n j 2n n
akbj+k = Z bj Z ag + Z bj Z ay. (26)
=0 k=0

7=0 k=0 Jj=n+l  k=j-n



m>n,

m n m+n
Z (Lkb]+k Zb Z ax + Z b Z ax + Z b Z ag. (27)
7=0 k=0 j=0 k=0 j=n+1 = j=m+1l k=j—m
Ifm<mn,
m n m+n
Z apbjik = Zb Zak + Z b; Z ay + Z b; Z ak. (28)
7=0 k= j=m+1 k=j-m j=n+1 k=j—m

It is straightforward to establish that the supplementary contribution may be written
as

m—1n-1

adj(t) = (ulo/dzm)lic—1 + Y, D wkl(t — j — k) /(nizy) (29)
§=0 k=0
m+n—2
= (Ulo/dm)ltSMfl + Z le(t - _]), (30)
7=0
where for m = n,
sm/nan—l OSjSTL—l,
T = (SnT - sm)/nan—l n<j<2n-2, (31)
0 otherwise,
and for m > n,
;+1|/”a 0<j<n-1,
sn—l/ndg| n<j<m-—1,
- (32)

(sp) = Sy /My m<j<m+n-2,

0 otherwise,

10



and for n > m,

Sm/naa“ OSJSm—l,

(Sﬁ—ST)/nﬁ,— mSJSn—l
= J+1] j—m+1] m| ’ (33)

(sﬂ_sm)/ndﬂ n<j<m+n-2,

0 otherwise.
\

From equation (30), it is evident that, at time ¢, a fraction m; of the unsmoothed loss
I(t — j) is paid into the pension fund. In fact, any loss [ is liquidated by payments in

successive years (starting from the year in which the loss emerged) of
{mol, ml, mol, ..., Tmyn-al}.

7; therefore represents the fraction of a loss that is paid j years after the loss emerged.

The loss is completely liquidated by these payments, i.e.

mtn—2

Z vimj =1, (34)
=0

since we may substitute [(¢ — j) by v’ in the identity

m+n—2 m—1n-1

> mlt—j4) = M%ZZW@—J' — k) (35)

=0 m| j=0 k=0
(cf. equations (29) and (30)) and equality (34) follows immediately.

It may also be observed that equation (34) holds when 7; from equations (31), (32)
and (33) is explicitly substituted into it. For example, when m = n, Z;.:Ol vim x nig
represents a linearly decreasing annuity of term n with payments in advance of n, n — 1,
..., 1, whereas Z?Z;Q vim; X nijn—l represents a linearly increasing annuity of term n — 1
with payments in advance of 1, 2, ... , n—1, and the sum of the two yields a level annuity of

term n and annual payments of n. When m > n or m < n, an additional term intervenes.

-1 4 . s
For example, when m > n, Z;”:n v x nar represents a sum of level annuities of term n,

11



deferred by 1, 2, ..., m — n years. (If unit payments are stacked along a time-line, these
level annuities represent the extra ‘diagonals’ in the rectangular geometry of the overall
annuity of term m paying n each year.)

Finally, note the following:

1. When pure market value is used (n = 1), it is not difficult to see that m; = 1/dz;
for 0 < 5 < m—1, and m; = 0 otherwise. This corresponds to the results of
Dufresne (1989). Level payments (comprising both principal and interest) are made

over m years in respect of a loss: the loss is amortized over m years.

2. When asset values are averaged (n > 1), but the resultant smoothed gains and
losses are not amortized and are paid off rightaway (m = 1), then m; = u//n for
0 < j <n-—1and m; = 0 otherwise. The principal component of the loss in any
given year is paid off in equal tranches over n years, along with interest on each

tranche.

6 Decomposition of the Unfunded Liability ul(z)

The unfunded liability ul(t) at market value may also be expressed in terms of unsmoothed
losses {I(¢)}. Replace adj(t) from equation (30) into the recurrence relation (21) to obtain,
fort>1,

m+n—1

wl(t) —uw-ul(t—1)=1() —u Z mi—1l(t — J) — w(ulo/dggp) lecm- (36)

It is easy to verify that the solution to the above is, for t > 1,

m+n—2

ul(t) = (ulobgr=g/dgmlic1 + Y, Nl —7), (37)

j=0

12



where

1 ji=0,
N=w - S ik, 1<j<m+n—2, (38)
0 _ otherwise.

Equations (37) and (38) make sense. u/l(t— 7) is the present value (at time t) of a loss
that emerged j years ago. w/~*ml(t — j) is the present value (at time t) of the fraction
of loss I(t — j) that was paid k years after the loss emerged (j — k years ago). Hence,
I(t — §) Y2474 ui~*my, represents the present value of payments that have been made in the
past in respect of a loss {(t — j) that is yet to be entirely liquidated as at time ¢. Therefore,
A;l(t — j) is the present value of payments that remain to be made from time ¢ onwards in
respect of loss I(t — j).

We may now sum over all unpaid-off losses. Z;”:JB"_Z u/l(t — 7) thus represents the
present value of all past losses that have yet to be entirely paid off as at time ¢, and
E?;B”fz S -4 uw/ kil (t — 7) represents the present value of payments that have been made
in the past in respect of these losses.

Hence, the second term on the right hand side of equation (37) is the present value
of payments that remain to be made from time ¢ onwards to liquidate past losses. The
unfunded liability at any time is the sum of this term and the unamortized part of the
initial unfunded liability.

Remarks:

L. It may be observed that, when pure market value is used (n = 1), A\; = arm‘:ﬂ/ &;l
for 0 < j < m — 1, as obtained by Dufresne (1989). J; is the present value of the

unamortized part of a unit loss j years after it emerged.

2. When the actuarial asset value is used (n > 1) but the resultant gains/losses are not

amortized (m = 1), then A\; =w/(n—j)/nfor 0 <j<n—1.

13



7 Decomposition of the Smoothed Unfunded Liability UL(t)

The smoothed unfunded liability UL(t) based on the actuarial asset value may also be
decomposed into either smoothed losses {L(t)} or unsmoothed losses {l(¢}}. Replacing

adj(t — 1) into equation (24) by equation (25), we find that
m—1
UL(t) —u-UL(t —1) = L(t) —u Y L(t = 1 = 5) /iy — u(ulo/Gzp) Lecar,  (39)
=0

which may be written as (Dufresne, 1989):

m—1

UL(t) = Y (/) DAt = ) + (ulotisg=/ ) L1, (40)

for ¢ > 1. The smoothed unfunded liability at any time consists of the unamortized part
of present and previous smoothed losses, as well as the unamortized part of the initial
unfunded liability.

To express UL(t) directly in terms of the unsmoothed losses {I(¢)}, substitute in equa-

tion (39) using equation (22), to yield the following recurrence relation, for ¢ > 1:

UL(t) —u-UL(t — 1)

1 n—1 ) . m+n—1 ‘ )
=—l(t) + Do n—um )it —5)— > umial(t - 5) — u(ulo/ig)licar. (41)
Jj=1 j=n
It is easy to verify that the solution to the above is
m+n—2
UL(t) = (’lLlodM—_tl/dm)].tSM_l + Z I/jl(t - _7), (42)
j=0
for ¢t > 1, where
& j=0

Ll = Thoow™m 1<j<n—1,
wl — 7wk, n<j<m+n-2,

0 otherwise.

14



Again, equations (42) and (43) make sense. Under the asset valuation method chosen,
only a fraction 1/n of the current loss is recognized while the rest is deferred. A fraction
(j +1)/n of a loss that occurred j years ago (i.e. I(f — j)) is recognized by time t. After n
years, the loss is fully recognized, albeit not fully amortized. v;l(t — j) therefore represents
the present value of payments that remain to be made from time ¢ onwards in respect
of the recognized (not deferred) portion of loss I(t — 7). (Compare with \;I(t — j) in
equation (38).) Hence, the second term on the right hand side of equation (42) is the
present value of payments that remain to be made from time ¢ onwards to liquidate the
recognized (not deferred) portions of past losses.

Remarks:

1. If pure market value is used (n = 1), UL(t) = ul(t) and v; = }; = =7/ gy for

0 < j <m —1, as obtained by Dufresne (1989).
2. If the actuarial asset value is used (n > 1) but the resultant gains/losses are not
amortized (m = 1), then adj(t) = L(¢) and v; =m; =wi/nfor0 < j <n—1.
8 Recurrence Relation for the Unsmoothed Loss

The unsmoothed intervaluation loss (t) is defined in equation (7) and, using equations (1)

and (5), it is clear that
W) =@—=r@)lf(t -1 +ct-1) - B] (44)

for ¢ > 1. Upon substitution into equation (44) of equations (3) and (9), we obtain, for

t>1,
I(t) = (r(t) — ) ul(t — 1) — adj(t — 1) — vAL]. (45)

Now, both adj(t) in equation (30) and ul(¢) in equation (37) have been expressed

15



directly in terms of {I(¢)}. Replacing into equation (45) gives
m+n—2
t+1) =[r(t+1) i {(uzoam/am)hg,w_l + Y Bilt—j4) - vAL} ,  (46)
7=0
for t > 0, where §; = \; — 7, L.e.
w — S ik, 0<j<m+n-2
IBJ _ k=0 (47)
0 otherwise.
B;l(t — 5} is clearly the present value of payments that remain to be made after time ¢ in
respect of loss [(t — j).

Remarks:

1. Whenn=1andm>1, §; = am/dgl for 0 < j <m — 2, and is zero otherwise.
This is similar to the result of Dufresne (1989), except for slightly different time

indexation.
2. Whenm=1andn>1,8; =u/(n—j—1)/nfor 0 < j < n—2, and is zero otherwise.

3. When m = n = 1, and a loss is entirely recognized and paid off immediately, then

9 First Moments

We are primarily interested in the moments of the pension system in its stationary state
(i-e. ignoring initial conditions). All terms involving the initial unfunded liability uly are
zero for t > M. Also, define Er(¢) = r. Mathematical expectation is taken on both sides
of recurrence relation (46): note that the rate of return (¢ + 1) is independent of r(s) and
hence of I(s), for s < ¢. The limit as ¢ — co is then taken. A sufficient stability condition

is given in Proposition 1 of Dufresne (1989). In the following proposition, {6;}, {)\;} and

16



{v;} are summed over j € [0, m+n—2] and s;; is the accumulation of an annuity in arrears

of term n at rate 7.

PROPOSITION 1 If |r —i| > B; < 1, then

. _ —(r—14pwAL

HREO =Ty,
=My (say), (48)
tliglo EL(t) = Moosgp/m, (49)
lim Eul(t) = Moo >N, (50)
lim Ef(t) = AL = My YN, (51)
tli)rgo Ec(t) = NC + Mo (msz)/ (ndgy), (52)
lim BUL(t) = Moo > v, (53)
lim EF(t) = AL — M > v (54)

In the above proposition, lim EL(t) is obtained from equation (22); lim Eul(t) is de-
rived from the decomposition of ul(t), i.e. equation (37); imEf(t) follows by virtue of
equation (3); lim Ec(t) is obtained from equations (9), (25) and (49); im EUL(t) is de-
rived from the decomposition of UL(t), i.e. from equation (42); and lim EF(t) follows from
equation (4).

If the actuarial assumption as to the rate of return on plan assets is an unbiased

estimate, i.e. r = i, then clearly

Bi(t) =EL(t) =0 V¢ (55)

17



from equations (22) and (46). We ezpect no loss to emerge. Also, from equations (37) and

(42),

ulgaf_/a~ 0 <t <L M — ].,
Bul(t) = EUL(t) = MM (56)

0 t> M.
Since no loss arises on average, the unfunded liability (smoothed and unsmoothed) is
expected to equal the unamortized part of the initial unfunded liability and be zero after

the initial unfunded liability is amortized. From equations (9) and (25), it also follows that

NO‘*"LLlo/CLW OStSM*I,
Ec(t) = (57)
NC t> M.
An additional payment or supplementary contribution or supplemental cost is required to

amortize the initial unfunded liability in the first M years.

10 Second Moments

As in Dufresne (1989), it is now assumed that r = i. When pure market values are
used and losses are amortized, Dufresne (1989) observes that the losses are a sequence of
uncorrelated zero-mean random variables when the rate of return process is independent
from year to year. The same result obtains when smoothed asset values are used. It is

clear from equation (45) that, for ¢ > s,
El(t)i(s) = Blr(t) — ¢] x E{[ul(t — 1) — adj(t — 1) —vAL]-I(s)} = 0, (58)

given again the independence of (¢t + 1) from r(s), ul(s) and adj(s) for s < t. Define

Varr(t) = o®. Following the method of Dufresne (1989), we obtain, from equation (46),

Varl(t+ 1) = Ei(t + 1)*

m+n—2
=2 { [(UZoam/dm)ltsM—l - UAL]Z + Z ﬁ]?Varl(t B j)} o
§=0
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Other moments follow by similarly exploiting the serially uncorrelated structure of

{l(t)}. From equation (22), we find that

VarL(t Z uHVarl(t — 7). (60)
3=0
And from equations (3) and (37), it follows that
m+n—2
Varf(t) = Varul(t) = Y XjVarl(t — j). (61)
=0

From equations (9) and (30),
m+n—2

Varc(t) = Y 7 Varl(t - 5). (62)

=0
Given equations (4) and (42), it follows that
m+n—2
VarF(t) = VartUL(t) = Y v2Varl(t — j). (63)
=0
Covariances may also be found. For example, if uly = 0,

Cov[f(t), F(t)] = Cov]ul(t), UL(t)]

m+n—2 m+n—2
= Cov Z/\lt— Z vl(t —7)
=0
m+n—2
= ) M\y;Var(t). (64)
§=0
Likewise, with uly = 0,
m+n-2
Cov[f Z Ajm;Varl(t) (65)

The unsmoothed losses {I(t)} are serially uncorrelated when 7 = 7, but the smoothed

losses {L(t)} are correlated with a cutoff after lag n — 1 since, for 7 > 0,

n—1
Cov[L(t), L(t — 7)] ——Cov Zum— ), > Wit —j—)
3=0

= i LB TVarl(t — §) ifr <n-—1,
= (66)
0 ifr>n-1.
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Similarly, assuming uly = 0 and 7 > 0,

2 N A, Varl(t — §) if T < -2,
Covlf @), St~ m) = | = W ma) s mn (67)

0 ifr>m+n-2

S i Varl(t — §) if T <m+n -2,

j=r

Cov[f (1), f(t—7)] =
0 ifr>m+n-—2.

We are interested in the first instance in moments in the limit as ¢ — oo. All terms
involving uly are zero for ¢ > M. A necessary and sufficient condition for the stability
of difference equations such as equation (59) is given in Proposition 2 of Dufresne (1989)
(note that 0?87 > 0). In the following proposition, {82}, {A3} etc. are summed over
J € [0,m +n — 2], unless otherwise specified, and 57 in equations (70) and (76) is the

accumulation of an annuity in arrears of term N at rate 2i + 2.
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PROPOSITION 2 Suppose that r = i. If and only if 0* Y B2 < 1, then

. o2 AL?
fig Verllt) = a5~
=V (say),

tllglo VarL(t) = Vw§n—‘/n2,

tIg(r)lo Varf(t) = tllglo Varul(t) = Vo Z A2,

tli)rono Vare(t) = Vo Z 7r?,

Jim VarF(t) = lim VarUL(t) = Voo P
Jim Cov[f(t), F(t)] = Voo 3 Ajvs,

lim Cov[f(t),c(t)] = Vio Z AT,

t—o0

tliglo Cov[L(t),L(t — 7)) =
0

Voo i 2 XA jor 0S T <m4n—2

Jim Cov[f(t), ft—7)] =

0

Voo 27082
tlim Covic(t),c(t — 7)) = !

0

T>n

V‘X,u@n_ﬂ/n2 0<7<n—-1,

7

b

T>m+n-—2,

0<T<m+n—-2,

T>m+n—2.

11 Constraints on Averaging and Amortization Periods

(77)

(78)

The stability condition in Proposition 2 limits the range of periods n over which asset

values may be averaged. An excessively long averaging period fails to stabilise the pension

funding process and it eventually becomes non-stationary, with the contribution rates and

asset values having infinite variances. The stability condition also constrains the range of

asset loss amortization periods, m, with very long amortization periods being unstable.
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This suggests that long averaging and amortization periods should not be combined as
excessive smoothing may lead to an unstable pension funding process.

Numerical work shows that the stability condition becomes more constraining as o and
7 increase but also that it does not appear to be very significant in practical conditions. For
example, the condition holds for rates of return averaging up to 10% and with standard
deviations of up to 25% when averaging and amortization periods between 1 and 10 years

are used.
The following short-hand notation is now employed:
Vi = tll)rgo Varf(t), V.= }H& Vare(t).

The observations below are based on further numerical experiments on stable {o, i, m, n}

in Tables 1 and 2:
1. For a given n, as m increases,

(a) V; increases monotonically;
(b) V. exhibits a minimum, except for large enough n when it increases monotoni-
cally.

2. For a given m, as n increases,

(a) V; increases monotonically;

(b) V. exhibits a minimum, except for large enough m when it increases monotoni-

cally.

The monotonic increasing nature of V; with n and m is depicted in Figures 1 and 2
respectively. See also Figure 3. The behavior of V, with n and m is illustrated in Figures 4
and 5 respectively. Figure 6 is a plot of V, with both n and m. The effects of increasing

n and m are similar. This is not surprising given the similar smoothing functions of
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asset valuation and asset gain and loss amortization. Averaging and amortization are
nevertheless not identical smoothing mechanisms and the contour plots of Figure 7 are not
symmetrical about m = n.

The observations concerning V; suggest that both shorter asset value averaging peri-
ods and shorter amortization periods lead to more stable levels of funding and hence to
increased security of pension benefits. This is reasonable as gains and losses are being
recognized earlier and amortized faster.

Conversely, later recognition and slower amortization of gains and losses should imply
smoother and less variable contributions. The observations regarding V. suggest that,
as the averaging and amortization periods increase, contributions do indeed become less
variable—but only up to a point. Longer averaging and amortization periods beyond that
point (the minimum of V,) is counterproductive and contributions become more variable. In
addition, if gains and losses are being amortized over long enough periods, then increasing
the averaging period in an effort to achieve further smoothing is also counterproductive as
it makes contributions more variable (V, increases monotonically with n for large enough
m). Likewise, if asset values are averaged over long enough periods, then lengthening the
term of gain and loss amortization schedules does not further stabilize contributions, but
makes them more variable (V; increases monotonically with m for large enough n).

These observations encompass Proposition 6 of Owadally & Haberman (1999) about
the effects on the security and stability of pension funding of varying the amortization
period for gains and losses (they consider only pure market values of assets, i.e. n = 1).
These observations are also in line with Proposition 2 of Dufresne (1988) about similar
effects under a different gain/loss amortization mechanism (he also considers only pure
market values).

Dufresne (1988) postulates that a reasonable actuarial objective in the long term fund-

ing of pension benefits is to maximize the security of these benefits (for example by mini-
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mizing the variability in funding levels, i.e. minimizing lim Varf(¢)) and also to maximize
the stability of contribution rates (by minimizing lim Varc(¢)). Thus, if both V; and V,
increase as some actuarial control parameter increases over a given range, then the small-
est value of that parameter should be chosen. But if V; increases and V, decreases as the
parameter increases, a tradeoff exists between security and stability and no unique choice
of the parameter value is preferable. Furthermore, if V; exhibits a minimum while V; in-
creases monotonically as the parameter increases, then selecting a parameter value in the
range for which V, increases is inefficient, since there is always a smaller parameter value
outside that range that yields a lower V; for equal V.

The V,-minimizing value of n for various choices of {0, i, m} is given in Table 1 and
the V,-minimizing value of m for various choices of {c, ¢, n} is given in Table 2. The
Ve-minimizing value of n decreases as m increases in Table 1 and for large enough m, V.
increases monotonically with n and the smallest value of V, occurs at n = 1. Similarly, the
Ve-minimizing value of m decreases as n increases in Table 2 and for large enough n, V, is
monotonic increasing with m with its smallest value at m = 1.

Under the efficiency criterion of minimizing V; and V; as used by Dufresne (1988) and

extrapolating from the numerical observations above, we may conclude that:

1. Suppose {0, i, m} are given. Asset values should be averaged over periods ranging
from 1 to the V-minimizing value of n in Table 1. If the amortization period m is
long enough and V, has no minimum, then pure market values (n = 1) should be

used to value plan assets.

2. Suppose {0, ¢, n} are given. Asset gains and losses should be amortized over periods
ranging from 1 to the V;-minimizing value of m in Table 1. If the averaging period n
is long enough and V; has no minimum, then gains and losses should not be amortized

and should be paid off immediately (m = 1).
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These conclusions are not mathematically rigorous and are based on the restricted set
of parameters in Tables 1 and 2 (and also on the simplified modeling assumptions set out

earlier). They are nevertheless important because they demonstrate the following:

1. There are finite limits to the periods over which asset values may be averaged and
gains and losses amortized, not just in order to maintain stability in the pension
funding process, but also in order to stabilise it efficiently. There is a limit to the

total amount of smoothing used in actuarial valuations.

2. The typical choice of between 1 and 5 years, both for the term over which asset values
are averaged and for the period over which gains and losses are amortized, appears

to be efficient under normal economic conditions (see Tables 1 and 2).

3. The choice of intervals over which to average asset values and over which to amortize

asset gains and losses must be made in combination.

4. Asset valuation and asset gain or loss amortization have a complementary smooth-
ing function in the pension funding process and cannot be meaningfully considered

separately.

12 Variability of the Actuarial Asset Value

Finally, the variability of the actuarial asset value generated by the “Moving Average
of Market” or “Deferred Recognition” or “Adjusted Market” or “Write-up” methods, as

defined in equations (15), (17) and (20), is examined.

PROPOSITION 3 Suppose that r = 4. If and only if ozzﬂf <1, then

Jm B[ - FOP < oo, (19
}1}& VarF(t) < tllf?o Varf(t). (80)
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Proof of Proposition 3. E[f(t)~F(t)]* = Varf(t)+VarF(¢) —2Cov[f(t), F(t)] +[Ef (t) —
EF()]* and all the terms on the right hand side are convergent as ¢ — 0o as shown in
Propositions 1 and 2 provided the stability condition holds. As for inequality (80), we note
from equations (71) and (73) that

m+n—2
lim Varf () — lim VarF(2) = Voo Y (A2 —12). (81)
=0
Now A; >0and v; >0for 0 < j <m+n-—2, and
m+n—2 n—2
1
S - w) Zu (1—U—>, (82)
J=0 J=

which is positive for n > 1. Equality follows when n =1 and F(t) = f(t). O

The first part of Proposition 3 indicates that the deviation between the market value
of plan assets and the actuarial smoothed value (as defined in equation (15) or (17) or
(20)) remains bounded in the mean square. The actuarial smoothed value remains in the
proximity of market value in the long term. It is generally understood in the context of the
U.S. Employee Retirement Income Security Act, 1974 (ERISA) that the actuarial value
of plan assets should reflect the current market value of plan assets and presumably not
deviate excessively from it (Winklevoss, 1993, p. 172). The U.S. Internal Revenue Service
also imposes a 20% corridor of market value within which the actuarial value must lie
(McGill et al., 1996, p. 679).

The second part of Proposition 3 indicates that the actuarial value of plan assets is less
variable than the pure market value. Note also that no gain or loss emerges on average in
the long term, in equation (55), when actuarial assumptions are unbiased (r = 1). These
are desirable properties of an asset valuation method. In this respect, see particularly the
Standard of Practice for Valuation of Pension Plans of the Canadian Institute of Actuaries
(1994, para. 5.01) as well as the Actuarial Standard of Practice No. 4 of the Actuarial

Standards Board (1993, para. 5.2.6). These facts qualify the particular variants of the
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“Moving Average of Market”, “Deferred Recognition”, “Adjusted Market” and “Write-up”
methods defined in this paper as being suitable for pension plan asset valuation, given the

aforementioned constraints on the combined choice of averaging and amortization periods.

13 Conclusion

The “Moving Average of Market”, “Deferred Recognition”, “Adjusted Market” and “Write-
up” methods of valuing the assets of defined benefit pension plans were defined and shown
to be identical (disregarding initial conditions). These methods involve an arithmetic
average over the market values of plan assets, allowing for cash flows and the time value
of money. In the context of the simple pension plan model used by Dufresne (1989) and
in which only asset gains and losses are assumed to emerge, it was shown that the asset
valuation methods smooth these gains and losses and defer their recognition. The smoothed
value of the loss, the supplementary contribution paid to defray losses and the unfunded
liabilities based both on market and actuarial asset values were analyzed in terms of the
asset gains and losses (at market value).

The losses (at market value) are shown to be zero on average and uncorrelated over time
when rates of return on plan assets are random and when the actuarial assumption as to
the rate of return is unbiased. The stability of the pension system was explored and its first
and second moments were obtained by following the method of Dufresne (1989). Numerical
work appeared to confirm the conclusion of Owadally & Haberman (1999) concerning the
existence of an efficient range of amortization periods (m) based on Dufresne’s (1988)
criterion of minimizing the variability in the pension plan funding level and contribution
rate in the long term. To achieve efficient funding, the periods (n) over which asset values
may be averaged are likewise subject to a maximum. Typical choices of n and m between

1 and 5 years appear to be efficient. Asset valuation and amortization of asset gains and
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losses have a complementary smoothing function and, if the pension funding process is to
remain stable and efficient, the total amount of smoothing in the actuarial management
of this process is restricted. Finally, the actuarial value of plan assets under the asset
valuation methods was shown to be more stable than the market value of assets.

Various avenues for further research are possible. The simplifying assumptions at the
outset of the model could be relaxed. Inflation could be explicitly modelled, along with
the returns on various asset types. The pension liability valuation discount rate should be
bond-based. Comparisons with other methods of asset valuation and of amortization of
gains and losses are also possible. The choice of averaging and amortization periods under’
statutory requirements, such as the restrictions imposed by the U.S. Internal Revenue

Service, on actuarial asset valuation methods should also be investigated.
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Table 1: [lim Varc(t)]-minimizing values of n for various choices of {o, i, m}. 1 indicates

that lim Varc(t) increases monotonically with n with smallest value at n = 1.
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Table 2: [lim Varc(¢)]-minimizing values of m for various choices of {0, i, n}. 1 indicates
that lim Varc(t) increases monotonically with m with smallest value at m = 1. Blanks

indicate instability.
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Figure 1: lim Varf(t) (scaled) against n for various m. i = 10%, o = 10%.
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Figure 2: lim Varf(t) (scaled) against m for various n. i = 10%, o = 10%.
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Figure 3: lim Varf(t) (scaled) against n and m. 1 = 10%, o = 25%.
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Figure 4: lim Varc(t) (scaled) against n for various m. i = 10%, o = 10%.
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Figure 6: lim Varc(z) (scaled) against n and m. i = 10%, ¢ = 25%.
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Figure 7: Contour plots of lim Varf(t) (above) and lim Varc(t) (below) against m and n.

i = 10%, o0 = 5%. Lighter shading represents higher values.
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