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A�������: We construct several new integrable systems corresponding to nonlocal ver-

sions of the Hirota equation, which is a particular example of higher order nonlinear

Schrödinger equations. The integrability of the new models is established by providing

their explicit forms of Lax pairs or zero curvature conditions. The two compatibility equa-

tions arising in this construction are found to be related to each other either by a parity

transformation P, by a time reversal T or a PT -transformation possibly combined with a
conjugation. We construct explicit multi-soliton solutions for these models by employing

Hirota’s direct method as well as Darboux-Crum transformations. The nonlocal nature

of these models allows for a modification of these solution procedures as the new systems

also possess new types of solutions with different parameter dependence and different

qualitative behaviour. The multi-soliton solutions are of varied type, being for instance

nonlocal in space, nonlocal in time of time crystal type, regular with local structures

either in time/space or of rogues wave type.

1. Introduction

The nonlinear Schrödinger equation (NLSE) [1] is a well studied prototypical nonlinear

integrable system with many physical applications, most notably in nonlinear optics where

it describes the wave propagation in Kerr type media, see e.g. [2], or plasma physics [3]. The

main interest in the NLSE arises from the fact that due its integrability it possesses solitonic

wave solutions that can be realized in form of optical pulses. While the NLSE provides

a very accurate description for the wave propagation of pulses in the picosecond regime

[4], experiments in the high-intensity and short pulse subpicosecond, i.e. femtosecond,

regime [5, 6] suggested for higher order corrections to be taken into account. Motivated

by these physical reasons, Kodama and Hasegawa [7] proposed the higher order nonlinear

Schrödinger equation (HNLSE)

iqt +
1

2
qxx + |q|2 q + iε

�
αqxxx + β |q|2 qx + γq |q|2x

�
= 0, (1.1)
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with constants ε, α, β, γ ∈ R. Besides the NLSE for ε = 0, four cases are known to be

integrable. When the ratio of the constants are taken to be α : β : γ = 0 : 1 : 1 or

α : β : γ = 0 : 1 : 0 one obtains the derivative NLSE of type I [8] and II [9], respectively,

which are in fact related to each other by a dependent variable transformation [10]. For

α : β : γ = 1 : 6 : 3 one obtains the Sasa-Satsuma equation [11] and for α : β : γ = 1 : 6 : 0

the Hirota equation [12]. Variations of the latter are the subject of this manuscript.

We notice that the additional term in the HNLSE when compared to the NLSE, i.e.

(1.1) for ε = 0, shares the same PT -symmetry with the NLSE, as it is invariant with

respect to PT : x → −x, t → −t, i → −i, q → q, where P : x → −x and T : t → −t,

i → −i. Hence HNLSEs may also be viewed as PT -symmetric extensions of the NLSE.
Similarly as for many other PT -symmetric nonlinear integrable systems [13], various other
PT -symmetric generalizations have been proposed and investigated by adding terms to

the original equation, e.g. [14, 15, 16]. A further option, that will be important here,

was explored by Ablowitz and Musslimani [17, 18] who identified a new class of nonlinear

integrable systems closely related to the NLSE by exploiting a hitherto unexplored PT -
symmetry present in the zero curvature condition. Especially one of the new models has

attracted a lot of attention and has let to new investigations, e.g. [19, 20, 21, 22, 23, 24, 25].

Exploring thse new options below for the Hirota equation will lead us to new integrable

systems with nonlocal properties.

Our manuscript is organized as follows: In section 2 we discuss the zero curvature

condition or AKNS-equation for the new class of integrable systems. The solutions to

these systems involve fields at different points in space or time and reduce in certain limits

to the standard Hirota equation, so that we refer to them as nonlocal Hirota equations. The

equations possess two types of solutions of qualitatively different behaviour and parameter

dependence. We identify the origin for this novel feature within the context of Hirota’s

direct method as well as in the application of Darboux-Crum transformations. At first we

discuss these two solution methods for the local Hirota equation in section 3. This will not

only serve as a benchmark for what follows, but we will also report new solutions to these

equations. In section 4-7 we construct and discuss the solutions for the different types of

new models. Our conclusions are stated in section 8.

2. Zero curvature equations for nonlocal Hirota equations

The classical integrability of a model can be established by the Painlevé test [26, 27] or

the explicit construction of its Lax pair [28] which is equivalent to the closely related zero

curvature condition, also referred to as AKNS-equation [29]. While the former is a mere

test, essentially just providing a yes or no answer to the question of whether a model is

integrable or not, the latter is more constructive and constitutes a starting point for an

explicit solution procedure. The reformulations of the equation of motion of the model

in terms of the zero curvature condition allows for the construction of infinitely many

conserved charges, which is synonymous to the model being classically integrable. We

explore various symmetries in this reformulation that will lead us to new types of models

exhibiting novel features.
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In general, the zero curvature condition for two operators U and V is equivalent to

two linear first order differential equations for an auxiliary function Ψ

∂tU − ∂xV + [U,V ] = 0 ⇔ Ψt = VΨ, Ψx = UΨ. (2.1)

For a concrete model these equation have to hold up to the validity of the equation of

motion. When taking the matrix valued functions U and V to be of the general form

U =

�
−iλ q(x, t)

r(x, t) iλ

�
, V =

�
A(x, t) B(x, t)

C(x, t) −A(x, t)

�
, (2.2)

involving the constant spectral parameter λ and at this point arbitrary functions q(x, t)

and r(x, t), the zero curvature condition holds when the matrix entries A, B and C satisfy

the coupled equations

Ax(x, t) = q(x, t)C(x, t)− r(x, t)B(x, t), (2.3)

Bx(x, t) = qt(x, t)− 2q(x, t)A(x, t)− 2iλB(x, t), (2.4)

Cx(x, t) = rt(x, t) + 2r(x, t)A(x, t) + 2iλC(x, t). (2.5)

Suppressing now the explicit x, t-dependence of the functions involved, a solution to the

equations (2.3)-(2.5) with arbitrary constants α, β is

A = −iαqr − 2iαλ2 + β
�
rqx − qrx − 4iλ3 − 2iλqr

�
, (2.6)

B = iαqx + 2αλq + β
�
2q2r − qxx + 2iλqx + 4λ2q

�
, (2.7)

C = −iαrx + 2αλr + β
�
2qr2 − rxx − 2iλrx + 4λ2r

�
, (2.8)

when q(x, t) and r(x, t) satisfy the two equations

qt − iαqxx + 2iαq2r + β [qxxx − 6qrqx] = 0, (2.9)

rt + iαrxx − 2iαqr2 + β (rxxx − 6qrrx) = 0. (2.10)

One may treat these two equations as a set of coupled equations for the fields q and r,

however, most common is to make r dependent on q and reduce them to one independent

equation. Adopting now the general idea from Ablowitz and Musslimani [17, 18] applied

to the NLSE to the current setting we explore various choices and alter the x, t-dependence

in the functions r and q. For convenience we suppress the explicit functional dependence

and absorb it instead into the function’s name by introducing the abbreviations

q := q(x, t), q̃ := q(−x, t), q̂ := q(x,−t), q̌ := q(−x,−t). (2.11)

All six choices for r(x, t) being equal to q̃, q̂, q̌ or their complex conjugates q̃∗, q̂∗, q̌∗

together with some specific adjustments for the constants α and β are consistent for the

two equations (2.9) and (2.10), thus giving rise to six new types of integrable models that

have not been explored so far. We will first list them and then study their properties, in

particular their solutions, in the next chapters.
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The Hirota equation, a conjugate pair, r(x, t) = κq∗(x, t):

The standard choice to achieve compatibility between (2.9) and (2.10) is to take r(x, t) =

κq∗(x, t) with κ = 1. Here we allow κ ∈ R, such that the equations acquire the forms

iqt =−α
�
qxx − 2κ |q|2 q

�
− iβ

�
qxxx − 6κ |q|2 qx

�
, (2.12)

−iq∗t = −α
�
q∗xx − 2κ |q|2 q∗

�
+ iβ

�
q∗xxx − 6κ |q|2 q∗x

�
. (2.13)

Equation (2.12) is the known Hirota equation [12]. Taking in (2.12) κ = 1, α → 1/2 and

β → ε we obtain the HNLSE (1.1) when setting α → 1, β → 6, γ → 0 in there. For

α, β, κ ∈ R equation (2.13) is its complex conjugate, respectively, i.e. (2.13)∗ =(2.12).

When β → 0 equation (2.12) reduces to the NLSE with conjugate (2.13) and for α → 0

equation (2.12) reduces to the complex modified Korteweg de-Vries with conjugate (2.13).

The aforementioned PT -symmetry is preserved in these equations.

A parity transformed conjugate pair, r(x, t) = κq∗(−x, t):
Taking now r(x, t) = κq̃∗ with κ ∈ R together with β = iδ, α, δ ∈ R, the equations (2.9) and
(2.10) become

iqt =−α
	
qxx − 2κq̃∗q2



+ δ[qxxx − 6κqq̃∗qx] , (2.14)

−iq̃∗t = −α
	
q̃∗xx − 2κq(q̃∗)2



− δ(q̃∗xxx − 6κq̃∗qq̃∗x) . (2.15)

We observe that equation (2.14) is the parity transformed conjugate of equation (2.15), i.e.

P(2.14)∗ =(2.15). We also notice that a consequence of the introduction of the nonlocality

is that the aforementioned PT -symmetry has been broken.

A time-reversed pair, r(x, t) = κq∗(x,−t):
Choosing r(x, t) = κq̂∗ with κ ∈ R and α = iδ̂, β = iδ, δ̂, δ ∈ R we obtain from equations

(2.9) and (2.10) the pair

iqt=−iδ̂
	
qxx − 2κq̂∗q2



+ δ[qxxx − 6κqq̂∗qx] , (2.16)

iq̂∗t = iδ̂
	
q̂∗xx − 2κq(q̂∗)2



+ δ(q̂∗xxx − 6κq̂∗qq̂∗x) . (2.17)

Recalling here that the time-reversal map includes a conjugation, such that T : q → q̂∗, i→
−i, we observe that (2.16) is the time-reversed of equations (2.17), i.e. T (2.17)=(2.16).
The PT -symmetry is also broken in this case.

A PT -symmetric pair, r(x, t) = κq∗(−x,−t):

For the choice r(x, t) = κq̌∗ with κ ∈ R and α = iδ̌, δ̌, β ∈ R the equations (2.9) and (2.10)

become

qt=−δ̌
	
qxx − 2κq̌∗q2



− β[qxxx − 6κqq̌∗qx] , (2.18)

−q̌∗t = −̌δ
	
q̌∗xx − 2κq(q̌∗)2



+ β(q̌∗xxx − 6κq̌∗qq̌∗x) . (2.19)

We observe that the overall constant i has cancelled out and the two equations are trans-

formed into each other by means of a PT -symmetry transformation PT (2.19)=(2.18).
Thus, while the PT -symmetry for the equations (2.18) is broken, the two equations are
transformed into each other by that symmetry.
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A real parity transformed conjugate pair, r(x, t) = κq(−x, t):
We may also choose q(x, t) to be real. For r(x, t) = κq̃ with κ, q̃ ∈ R and β = iδ, α, δ ∈ R,
the equations (2.9) and (2.10) acquire the forms

iqt =−α
	
qxx − 2κq̃q2



+ δ[qxxx − 6κqq̃qx] , (2.20)

−iq̃t =−α
	
q̃xx − 2κqq̃2



− δ(q̃xxx − 6κq̃qq̃x) . (2.21)

Just as their complex variants (2.9) and (2.10), also the equations (2.21) and (2.20) are re-

lated to each other by conjugation and a parity transformation (2.15), i.e. P(2.21)∗ =(2.20).

However, the restriction to real values for q(x, t) makes these equations less interesting as

q becomes static, which simply follows from the fact that the left hand sides of (2.20) and

(2.21) are complex valued, whereas the right hand sides are real valued.

A real time-reversed pair, r(x, t) = κq(x,−t):

For r(x, t) = κq̂ with κ, q̂ ∈ R and α = iδ̂, β = iδ, δ̂, δ ∈ R we obtain from (2.9) and (2.10)

iqt =−iδ̂
	
qxx − 2κq̂∗q2



+ δ[qxxx − 6κqq̂∗qx] , (2.22)

iq̂∗t = iδ̂
	
q̂∗xx − 2κq(q̂∗)2



+ δ(q̂∗xxx − 6κq̂∗qq̂∗x) . (2.23)

Again we observe the same behaviour as in the complex variant, namely that the two

equations (2.22) and (2.23) become their time-reversed counterparts, i.e. T (2.23)=(2.22).
However, as a consequence of q being real these equations simply become the time-reverse

NLSE with the additional constraint qxxx = ±6qq̂qx.

A conjugate PT -symmetric pair, r(x, t) = κq(−x,−t):

For our final choice r(x, t) = κq̌ we have no restriction on the constants, i.e. κ,α, β ∈ C, the
equations (2.9) and (2.10) become

qt = iα
	
qxx − 2κq̌q2



− β[qxxx − 6κqq̌qx] , (2.24)

−q̌t = iα
	
q̌xx − 2κqq̌2



+ β(q̌xxx − 6κq̌qq̌x) . (2.25)

These two equations are transformed into each other by means of a PT -symmetry trans-
formation and a conjugation PT (2.25)∗ =(2.24). A comment is in order here to avoid

confusion. Since a conjugation is included into the T -operator, the additional conjuga-
tion of (2.24) when transformed into (2.25) means that we simply carry out x → −x and

t→−t.
The paired up equations (2.12)-(2.25) are all new integrable systems. Let us now

discuss solutions and properties of these equations. Since the two equations in each pair are

related to each other by a well identified symmetry transformation involving combinations

of conjugation, reflections in space and reversal in time, it suffices to focus on just one of

the equations.

3. The local Hirota equations, a conjugate pair

Even though the standard Hirota equation [12] and many of its solutions are known, we

briefly recall the solution procedure and some of its properties. This will serve as a bench-

mark that allows us to point out the novelties of the nonlocal equations. We will also

— 5 —
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report some new solutions. As mentioned, in this case the two equations (2.9) and (2.10)

are compatible with the choice r(x, t) = κq∗(x, t).

3.1 Hirota’s direct method

We start by presenting the bilinearisation for the equations (2.12) and (2.13), focusing

on (2.12) for the above mentioned reasons. Factorizing the Hirota field as q(x, t) =

g(x, t)/f(x, t), with the assumptions g(x, t) ∈ C, f(x, t) ∈ R, we find the identify

f3
�
iqt + αqxx − 2κα |q|2 q + iβ

�
qxxx − 6κ |q|2 qx

��
= (3.1)

f
	
iDtg · f + αD2

xg · f + iβD3
xg · f



+

�
3iβ

�
g

f
fx − gx



− αg

� �
D2
xf · f + 2κ |g|2

�
.

The operators Dx, Dt denote the standard Hirota derivatives [30] defined by a Leibniz rule

with alternating signs

Dn
xf · g =

n�

k=0

�
n

k

�
(−1)k

∂n−k

∂xn−k
f(x)

∂k

∂xk
g(x). (3.2)

Here we use the explicit expressions for Dtf · g = ftg− fgt, D
2
xf · g = fxxg− 2fxgx + fgxx

and D3
xf · g = fxxxg − 3fxxgx + 3fxgxx − fgxxx. The equation (3.1) is still trilinear in

the functions f , g and not yet bilinear as required for the applicability of Hirota’s direct

method. However, the left hand side vanishes when the Hirota equation (2.12) holds and

the right hand side becomes zero when the two bilinear equations

iDtg · f + αD2
xg · f + iβD3

xg · f = 0, (3.3)

D2
xf · f = −2κ |g|2 , (3.4)

are satisfied. For α = 1/2 and κ = −1 they correspond to the equations reported in [31].

When β → 0 the equations (3.3) and (3.4) reduce to the bilinear form corresponding to the

NLSE [12, 32]. The well known virtue of this formulation is that the bilinear forms can be

solved systematically by using the formal power series expansions

f(x, t) =
�∞

k=0
ε2kf2k(x, t), and g(x, t) =

�∞

k=1
ε2k−1g2k−1(x, t). (3.5)

Solving recursively the equations that result when setting the coefficients of each order in ε

to zero, one obtains different types of solutions corresponding to n-soliton solutions with n

depending on the order of expansion. A further well known virtue of Hirota’s direct method

is the remarkable fact that the quantity ε is only a formal parameter and can be set to any

value. Moreover, despite the fact that initially the Ansatz for the solutions appear to be

perturbative, the truncated expansions become exact when setting fk(x, t) = gn(x, t) = 0

for k > ℓ, n > m, for certain values of ℓ and m. We will see below that in the nonlocal

case we have the new option to weaken this condition which then leads to additional new

types of solutions.

— 6 —
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In the manner just described the general one-soliton solution can be found by using

the truncated expansions f(x, t) = 1 + ε2f2(x, t) and g(x, t) = εg1(x, t) in (3.3) and (3.4).

Setting ε = 1 without loss of generality, we obtain the local solution

q
(1)
l (x, t) =

g1(x, t)

1 + f2(x, t)
, with g1 = λτµ,γ, f2(x, t) =

−κ |λ|2
(µ+ µ∗)2

|τµ,γ|2 , (3.6)

with constants µ,γ,λ ∈ C and function

τµ,γ(x, t) := eµx+µ
2(iα−βµ)t+γ. (3.7)

We observe that for real parameter α the presence of the deformation parameter β changes

drastically the overall qualitative behaviour of the wave. When it is vanishing, that is in

the case of the NLSE, the solution is simply a standing wave that changes its amplitude as

a function of time. However, when β is switched on the solutions of the full Hirota equation

displays a qualitatively different behaviour than the one for the NLSE as the wave starts

to move with a speed v = βµ2.
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Figure 1: Regular and singular one-soliton solutions (3.6) for the local Hirota equations (2.12) at

different times for α = 0.5, β = 0.7, γ = 0.4 + i0.3, µ = 0.2 + i0.3, λ = 1 for κ = −1 and κ = 1 in

the left and right panel, respectively.

From figure 1 we also observe that for κ = 1 the solution (3.6) develops a singularity.

Even though these cusp solutions have possible applications [33] and are interesting in their

own right, we will often just focus on the equation for κ = −1 in what follows, since apart

from the overall sign the actual value of κ is irrelevant as it can be absorbed into λ.

To obtain the two-soliton solution we need to go two orders further in the expansion

(3.5) and use f(x, t) = 1 + ε2f2(x, t) + ε4f4(x, t), g(x, t) = εg1(x, t) + ε3g3(x, t) in the

bilinear equations (3.3), (3.4). Setting ε = 1 we obtain the two-soliton solution

q
(2)
l (x, t) =

g1(x, t) + g3(x, t)

1 + f2(x, t) + f4(x, t)
(3.8)
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with

g1 = τµ,γ + τν,δ, (3.9)

g3 =
(µ− ν)2

(µ+ µ∗)2 (ν + µ∗)2
τν,δ |τµ,γ |2 +

(µ− ν)2

(µ+ ν∗)2 (ν + ν∗)2
τµ,γ |τν,δ|2 , (3.10)

f2 =
|τµ,γ |2

(µ+ µ∗)2
+

τν,δτ
∗

µ,γ

(ν + µ∗)2
+

τµ,γτ
∗

ν,δ

(µ+ ν∗)2
+

|τν,δ|2

(ν + ν∗)2
, (3.11)

f4 =
(µ− ν)2 (µ∗ − ν∗)2

(µ+ µ∗)2 (ν + µ∗)2 (µ+ ν∗)2 (ν + ν∗)2
|τµ,γ|2 |τν,δ|2 . (3.12)
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Figure 2: Modulus of the two-soliton solutions (3.8) for the local Hirota equations (2.12) at

different times for α = 0.4, β = 1.8, γ = 0.3, δ = 0.4, µ = 1.3, ν = 0.8, λ = 1, κ = −1 displaying a

faster soliton overtaking a slower one (left panel) and γ = 0.3+ i0.1, δ = 0.4+ i0.7, µ = 1.3 + i0.5,

ν = 0.8 + i0.65, λ = 1, κ = −1 displaying a head-on collision (right panel).
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Figure 3: Modulus of the two-soliton solutions (3.8) for the local Hirota equations (2.12) at

different times for α = 0.4, β = 0.8, γ = 0.3 + i0.1, δ = 0.4 + i0.7, λ = 1, κ = −1 with a left

moving one-soliton with µ = 1. − i1.4, ν = 0.8 + i0.65 (left panel) and a right moving one-soliton

with µ = 1.3 + i0.5, ν = 0.8 + i0.65, (right panel) scattering with a static one-solition acting as a

defect.

In comparison with the NLSE the Hirota equation exhibits a more varied behaviour

due to the presence of the additional parameter β. In figure 2 we display a two-soliton
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composed of a fast one-soliton overtaking a slower one. For a complex choice of the spectral

and shift parameter this behaviour is changed into a head-on collision of two one-solitons.

More striking is the previously not pointed out possibility that within the two-soliton

solution one of the one-solitons contributions can be made static by a suitable parameter

choice. We observe in figure 3 that the static soliton can be seen as a defect. The only effect

of the scattering is the usual slight displacement or time-delay depending on the reference

frame.

3.2 Darboux-Crum transformations

Alternatively, the solutions of the Hirota equation can also be constructed following the

Darboux-Crum transformation scheme [34, 35, 36]. At first we will keep our discussion very

general by leaving the functions q and r generic without specifying the different choices for

r and consider those concrete scenarios in the next sections.

Generally speaking, Darboux transformations relate two different Hamiltonian systems

by means of an intertwining relation [34, 35, 36]. The iteration of this procedure to a se-

quence of Hamiltonian systems is usually referred to as the Darboux-Crum transformation

scheme. In the present case we can convert one of the AKNS equations into an eigenvalue

equation and thus identify a Hamiltonian of Dirac type. Taking Ψ to be a two-dimensional

vector we obtain

Ψ =

�
ϕ

φ

�
, Ψx = UΨ =⇒ −iϕx + iqφ = −λϕ

iφx − irϕ = −λφ
. (3.13)

Comparing with the eigenvalue equation HΨ(λ) = −λΨ(λ), we read off the Hamiltonian

H =

�
−i∂x iq

−ir i∂x

�
= −iσ3∂x + V, (3.14)

from (3.13), with σ3 denoting a standard Pauli matrix. Next we seek to relate this Hamil-

tonian, together with its eigenfunctions, to a set of new Hamiltonians of similar structure

Hn =

�
−i∂x iqn
−irn i∂x

�
= −iσ3∂x + Vn, (3.15)

satisfying HnΨn(λ) = −λΨn(λ) for n ∈ N. By construction the new Hamiltonians are

designed in such a way that the qn and rn satisfy the two equations resulting from the

zero curvature condition with spectral parameters λn and are therefore also solutions to

our nonlinear wave equations. Let us next discuss how to obtain them by employing the

Darboux-Crum transformation scheme for Dirac Hamiltonians as discussed in [37, 38]. The

key assumption is that the different Hamiltonians are recursively related to each other by

intertwining relations

LnHn−1 = HnLn, (3.16)

with intertwining operators Ln. Identifying H0 = H, the iteration of the equations (3.16)

lead to the relation LnH = HnLn with Ln := LnLn−1 . . . L1. It is also easily verified that

the wavefunctions at each level of iteration are simply Ψn(λ) = LnΨ(λ).

— 9 —



Integrable nonlocal Hirota equations

Next we discuss how to obtain the intertwining operators and the potentials. We start

with equation (3.16) for n = 1 and assume the intertwining operator to be of the general

form L1 := I∂x + B. Upon substituting H,H1 and L1the intertwining relation yields the

two equations

V1 = V − i [B, σ3] , and Vx +BV − V1B + iσ3Bx = 0. (3.17)

Taking next B = −UxU−1, as suggested in [37], and substituting the first equation in (3.17)

into the second, the latter becomes equivalent to
�
U−1HU

�
x
= 0. (3.18)

Integrating this equation leads to HU = UΛ with Λ containing the integration constants.

This equation has now become formally equivalent to the Schrödinger equation with the

difference that U is a matrix. Taking diagΛ = (−λ1,−λ2) this equation is solved by

U = (Ψ(λ1),Ψ(λ2)) =: U1 and thus we have found

L1 = I∂x − (U1)x U
−1
1 and V1 = V + i

	
(U1)x U

−1
1 , σ3



. (3.19)

We may now simply iterate these equations obtaining

U2 = (L1Ψ(λ3), L1Ψ(λ4)) , L2 = I∂x − (U2)x U
−1
2 , V2 = V1 + i

	
(U2)x U

−1
2 , σ3



,

U3 = (L2L1Ψ(λ5), L2L1Ψ(λ6)) , L3 = I∂x − (U3)x U
−1
3 , V3 = V2 + i

	
(U3)x U

−1
3 , σ3



,

...
...

...

Un = (LnΨ(λ2n−1),LnΨ(λ2n)) , Ln = I∂x − (Un)x U
−1
n , Vn = Vn−1 + i

	
(Un)x U

−1
n , σ3



.

(3.20)

What is left is to specify our original solution Ψ(λ). Adopting the notation from [38], we

abbreviate Ωi = Ψ(λi) so that at level n of the iteration procedure we have a set of 2n

spinors that can be viewed as null states for the intertwining operator Ln

S2n = {Ω1,Ω2, . . . ,Ω2n−1,Ω2n} , Ωi =

�
ϕi
φi

�
, λi �= λj, (3.21)

i.e. we have LnΩi = 0 for i = 1, ..., 2n.

Having in principle computed Vn in an iterative manner, as in indicated (3.20), we

just need to read off the off-diagonal elements to identify the new solutions qn and rn,

because the Darboux-Crum scheme guarantees that they satisfy the equations (2.9) and

(2.10) when q and r are solutions. These expressions constitute the multi-soliton solutions

we are seeking to construct.

To be explicit, in the first iteration step we have

L1 = I∂x +
1

detW1

�
detD1

1 −detDq
1

detDr
1 detD2

1

�
, V1 = V0 +

2i

detW1

�
0 detDq

1

detDr
1 0

�
, (3.22)

where we introduced the matrices

W1 =

�
ϕ1 φ1
ϕ2 φ2

�
, Dq

1 =

�
ϕ′1 ϕ1
ϕ′2 ϕ2

�
, Dr

1 =

�
φ′1 φ1
φ′2 φ2

�
, D1

1 =

�
ϕ′1 φ1
ϕ′2 φ2

�
, D2

1 =

�
ϕ1 φ′1
ϕ2 φ′2

�
.

(3.23)
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Integrable nonlocal Hirota equations

From V1 we read off the one-soliton solution

q1 = q + 2
ϕ′1ϕ2 − ϕ1ϕ

′

2

ϕ1φ2 − ϕ2φ1
, and r1 = r − 2

φ′1φ2 − φ1φ
′

2

ϕ1φ2 − ϕ2φ1
. (3.24)

In a similar fashion we can use now (3.20) to compute iteratively the higher order solutions.

Remarkably the n-solition solutions can be presented in a closed compact form as

qn = q + 2
detDq

n

detWn
, and rn = r − 2

detDr
n

detWn
, (3.25)

with Wn, Dq
n and Dr

n denoting 2n × 2n-matrices generalizing (3.23). The determinant

of the matrix Wn corresponds to the generalized Wronskian of the set in (3.21) with n

columns containing ϕi, i = 1, ..., 2n, and its derivatives and n columns containing φi and

its derivatives with respect to x

Wn =




ϕ
(n−1)
1 ϕ

(n−2)
1 . . . ϕ1 φ

(n−1)
1 . . . φ ′1 φ1

ϕ
(n−1)
2 ϕ

(n−2)
2 . . . ϕ2 φ

(n−1)
2 . . . φ ′2 φ2

...
...

. . .
...

...
. . .

...
...

ϕ
(n−1)
2n ϕ

(n−2)
2n . . . ϕ2n φ

(n−1)
2n . . . φ ′2n φ2n




. (3.26)

The matrix Dq
n is made up of n − 1 columns containing ϕi and its derivatives and n + 1

columns containing φi and its derivatives

Dq
n =




φ
(n−2)
1 φ

(n−3)
1 . . . φ1 ϕ

(n)
1 . . . ϕ ′1 ϕ1

φ
(n−2)
2 φ

(n−3)
2 . . . φ2 ϕ

(n)
2 . . . ϕ ′2 ϕ2

...
...

. . .
...

...
. . .

...
...

φ
(n−2)
2n φ

(n−3)
2n . . . φ2n ϕ

(n)
2n . . . ϕ ′2n ϕ2n




, (3.27)

and the matrix Dr
n is made up of n+1 columns containing ϕi and its derivatives and n−1

columns containing φi and its derivatives

Dr
n =




φ
(n)
1 φ

(n−1)
1 . . . φ1 ϕ

(n−2)
1 . . . ϕ ′1 ϕ1

φ
(n)
2 φ

(n−1)
2 . . . φ2 ϕ

(n−2)
2 . . . ϕ ′2 ϕ2

...
...

. . .
...

...
. . .

...
...

φ
(n)
2n φ

(n−1)
2n . . . φ2n ϕ

(n−2)
2n . . . ϕ ′2n ϕ2n




. (3.28)

Thus we obtain the 2-soliton solution fromW2, D
r
2 and Dr

2, the 3-soliton solution from W3,

Dr
3 and Dr

3, etc. A closed expression for the Ln-operator can be found in [38].
Let us now construct some concrete solutions. First we need to determineΨ1 by solving

(2.1). Specifying the “seed functions” q and r as r(x, t) = q(x, t) = 0, taking λ → iλ the

component equations for the two linear equations (Ψ1)t = VΨ1 and (Ψ1)x = UΨ1 in (2.1)

decouple into

(ϕ1)x = λϕ1, (φ1)x = −λφ1, (ϕ1)t = 2λ2(iα− 2βλ)ϕ1, (φ1)t = −2λ2(iα− 2βλ)φ1.

(3.29)
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Integrable nonlocal Hirota equations

These equations are easily solved by

Ψ1(x, t;λ) =

�
ϕ1(x, t;λ)

φ1(x, t;λ)

�
=

�
eλx+2λ

2(iα−2βλ)t+γ
1

e−λx−2λ
2(iα−2βλ)t+γ

2

�
, (3.30)

with constants γ1,γ2 ∈ C. Next we implement the constraint r(x, t) = κq∗(x, t), that

converts the local Hirota equation (2.12) into its conjugate (2.13). Given the solution

(3.24) for r = q = 0 this restriction leads to ϕ2 = φ∗1, φ2 = κϕ∗1, so that

Ψ2(x, t;λ) =

�
ϕ2(x, t;λ)

φ2(x, t;λ)

�
=

�
φ∗1(x, t;λ)

κϕ∗1(x, t;λ)

�
=

�
e−λ

∗x+2t(λ∗)2(iα+2βλ∗)+γ∗
2

κeλ
∗x−2t(λ∗)2(iα+2βλ∗)+γ∗

1

�
. (3.31)

Substituting these expressions into (3.24) we obtain the one-soliton solution

q1(x, t) = − 2(λ+ λ∗)e2λx+4λ
2t(iα−2βλ)+γ

1
−γ

2

1− κe2(λ+λ
∗)x+4iα(λ2−(λ∗)2)t−8β(λ3+(λ∗)3)t+γ1+γ

∗

1
−γ2−γ

∗

2

. (3.32)

This solution agrees exactly with the one obtained by means of Hirota’s method in (3.6)

when we set in there λ→ 2(λ + λ∗), µ→ 2λ, γ → γ1 − γ2, κ→ 1.

In the same way we can construct a n-soliton solutions using the set

S̃2n = {Ψ1(x, t;λ1),Ψ2(x, t;λ1),Ψ1(x, t;λ2),Ψ2(x, t;λ2), ...,Ψ1(x, t;λn),Ψ2(x, t;λn)}
(3.33)

with λi �= λj in the evaluation of the formulae (3.25). As we shall discuss below, the

solutions to the new non-local equations are obtained by keeping the same seeds in the

constructions of the wavefunctions Ψ1 and by implementing different types of constraints

in the construction of Ψ2.

We conclude with a remark on how to obtain degenerate solutions for the cases with

equal eigenvalues as discussed in detail for other models in [39, 40, 41]. Instead of consid-

ering the set (3.21) with Ωi provided λi �= λj, we need to implement Jordan states and use

the set

�Sdeg2n =
�
Ω1,Ω2, ∂λΩ1, ∂λΩ2, . . . , ∂

n−1
λ Ω1, ∂

n−1
λ Ω2

�
, Ω1 =

�
ϕ1
φ1

�
,Ω2 =

�
ϕ2
φ2

�
. (3.34)

in the evaluation of the formulae (3.25). Obviously, the combinations of the two different

kind of seeds are also possible giving rise to new building blocks S̃2n and �Sdeg2n .

4. The nonlocal complex parity transformed Hirota equation

In this case the compatibility between the equation (2.9) and (2.10) is achieved by the

choice r(x, t) = κq∗(−x, t). As x is now directly related to −x, we expect some nonlocality

in space to emerge in this model.
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Integrable nonlocal Hirota equations

4.1 Hirota’s direct method

Let us now consider the new nonlocal integrable equation (2.14) for κ = −1. We factorize

again q(x, t) = g(x, t)/f(x, t), but unlike as in the local case we no longer assume f(x, t)

to be real but allow g(x, t), f(x, t) ∈ C. We then find the identity

f3f̃∗
	
iqt+ αqxx + 2αq̃∗q2 − δ(qxxx + 6qq̃∗qx)



= (4.1)

ff̃∗
	
iDtg · f + αD2

xg · f − δD3
xg · f



+
�
f̃∗D2

xf · f − 2fgg̃∗
��3δ

f
Dxg · f − αg



.

When comparing with the corresponding identity in the local case (3.1), we notice that this

equation is of higher order in the functions involved, in this case g,g̃∗,f ,f̃∗, having increased

from three to four. The left hand side vanishes when the nonlocal Hirota equation (2.14)

holds and the right hand side vanishes when demanding

iDtg · f + αD2
xg · f − δD3

xg · f = 0, (4.2)

together with

f̃∗D2
xf · f = 2fgg̃∗. (4.3)

We notice that equation (4.3) is still trilinear. However, it may be bilinearised by intro-

ducing the auxiliary function h(x, t) and requiring the two equations

D2
xf · f = hg, and 2fg̃∗ = hf̃∗, (4.4)

to be satisfied separately. In this way we have obtained a set of three bilinear equations

(4.2) and (4.4) instead of two. These equations may be solved systematically by using in

addition to (3.5) the formal power series expansion

h(x, t) =
�

k
εkhk(x, t). (4.5)

For vanishing deformation parameter δ → 0 the equations (4.2) and (4.4) constitute the bi-

linearisation for the nonlocal NLSE. As our equation differ from the ones recently proposed

for that model in [42] we will comment below on some solutions related to that specific

case. The local equations presented in the previous section are obtained for f̃∗ → f , g̃ → g,

h→ g∗ as in this case the two equations in (4.4) combine into the one equation (3.4).

4.1.1 Two types of nonlocal one-soliton solutions

Let us now solve the bilinear equations (4.2) and (4.4). First we construct the one-soliton

solutions. Unlike as in the local case we have here several options, obtaining different types.

Using the truncated expansions

f = 1 + ε2f2, g = εg1, h = εh1, (4.6)

we derive from the three bilinear forms in (4.2) and (4.4) the constraining equations

0 = ε [i (g1)t + α (g1)xx − δ(g1)xxx] + ε3 [2 (f2)x (g1)x − g1 [(f2)xx + i (f2)t] (4.7)

+if2 [(g1)t + i (g1)xx]] ,

0 = ε2 [2(f2)xx − g1h1] + ε4
	
2f2(f2)xx − 2(f2)

2
x



, (4.8)

0 = ε [2g̃∗1 − h1] + ε3
�
2f2g̃

∗

1 − f̃∗2h1
�
. (4.9)
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At this point we pursue two different options. At first we follow the standard Hirota

procedure and assume that each coefficient for the powers in ε in (4.7)-(4.9) vanishes

separately. We then easily solve the resulting six equations by

g1 = λτµ,γ, f2 =
|λ|2

(µ− µ∗)2
τµ,γ τ̃

∗

µ,γ , h1 = 2λ∗τ̃∗µ,γ , (4.10)

with constants γ, λ, µ ∈ C. Setting then ε = 1 we obtain the exact one-soliton solution

q
(1)
st =

λ(µ− µ∗)2τµ,γ

(µ− µ∗)2 + |λ|2 τµ,γ τ̃∗µ,γ
. (4.11)

Next we only demand that the coefficient in (4.7)-(4.8) vanish separately, but deviate from

the standard approach by requiring (4.9) only to hold for ε = 1. This is of course a new

option that was not at our disposal for the standard local Hirota equation, since in that

case the third equation did not exist. In this setting we obtain the solution

g1 = (µ+ ν)τµ,iγ, f2 = τµ,iγ τ̃
∗

−ν,−iθ, h1 = 2(µ+ ν)τ̃∗
−ν,−iθ, (4.12)

so that this one-soliton solution becomes

q
(1)
nonst =

(µ+ ν)τµ,iγ
1 + τµ,iγ τ̃

∗

−ν,−iθ

. (4.13)

The standard solution (4.11) and the nonstandard solution (4.13) exhibit qualitatively

different behaviour. Whereas q
(1)
st depends on one complex spectral and one complex shift

parameter, q
(1)
nonst depends on two real spectral parameters and two real shift parameters.

Hence the solutions can not be converted into each other. Taking in (4.11) for simplicity

λ = µ− µ∗ the modulus squared of this solution becomes

���q(1)st

���
2
=

(µ− µ∗)2ex(µ+µ
∗)

2 cosh [x(µ− µ∗)]− 2 cosh
�
γ + γ∗ + it

�
α
�
µ2 − (µ∗)2

�
− δ

�
µ3 − (µ∗)3

��� .

(4.14)

This solution is therefore nonsingular for Re γ �= 0 and asymptotically nondivergent for

Reµ = 0. We depict a regular solution in the left panel of figure 4 and observe the

expected nonlocal structure in form of periodically distributed stationary breathers.

In contrast, the nonstandard solution (4.13) is unavoidably singular. We compute

���q(1)nonst

���
2
=

(µ+ ν)2ex(µ−ν)

2 cosh [x(µ+ ν)] + 2 cos [γ + θ + t [α(µ2 − ν2)− δ (µ3 + ν3)]]
. (4.15)

which for x = 0 becomes singular for any choice of the parameters involved at

ts =
γ + θ + (2n− 1)π

α (ν2 − µ2) + δ (µ3 + ν3)
, n ∈ Z. (4.16)

We depict a singular solution in the right panel of figure 4 with a singularity developing at

ts ≈ −0.689751. We only zoomed into one of the singularities, but it is clear from equation
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Figure 4: Nonlocal regular one-soliton solution (4.14) for the nonlocal Hirota equations obtained

from the standard Hirota method at different times for α = 0.4, δ = 0.8, γ = 0.6 + i1.3 and

µ = i0.7, λ = i1.7 (left panel). Nonlocal rogue wave one-soliton solution (4.15) for the nonlocal

Hirota equations obtained from the nonstandard Hirota method at different times for α = 0.4,

δ = 1.8, γ = 0.5, θ = 0.1, µ = 0.2 and ν = 1.2 (right panel).

(4.16) that this structure is periodically repeated so that we can speak of a nonlocal rogue

wave [43, 44].

Notice that for α → −1 and δ → 0 the system (2.14) reduces to the nonlocal NLSE

studied in [17]. For this case the solution (4.13) acquires exactly the form of equation (22)

in [17] when we set ν → −2η1, µ → −2η2, γ → θ2 and θ → θ1. There is no equivalent

solution to the regular solution (4.11) reported in [17], so that q
(1)
st for δ → 0 is a also new

solution for the nonlocal NLSE.

4.1.2 The two-parameter nonlocal two-soliton solution

As in the local case we expand our auxiliary functions two orders further in order to

construct the nonlocal two-soliton solution. Using the truncated expansions

f = 1 + ε2f2 + ε4f4, g = εg1 + ε3g3, h = εh1 + ε3h3, (4.17)

to solve the bilinear equations (4.2) and (4.4), we find

g1 = τµ,γ + τν,δ, (4.18)

g3 =
(µ− ν)2

(µ− µ∗)2 (ν − µ∗)2
τµ,γτν,δ τ̃

∗

µ,γ +
(µ− ν)2

(µ− ν∗)2 (ν − ν∗)2
τµ,γτν,δ τ̃

∗

ν,δ, (4.19)

f2 =
τµ,γ τ̃

∗

µ,γ

(µ− µ∗)2
+

τν,δτ̃
∗

µ,γ

(ν − µ∗)2
+

τµ,γ τ̃
∗

ν,δ

(µ− ν∗)2
+

τν,δ τ̃
∗

ν,δ

(ν − ν∗)2
, (4.20)

f4 =
(µ− ν)2 (µ∗ − ν∗)2

(µ− µ∗)2 (ν − µ∗)2 (µ− ν∗)2 (ν − ν∗)2
τµ,γ τ̃

∗

µ,γτν,δ τ̃
∗

ν,δ, (4.21)

h1 = 2τ̃∗µ,γ + 2τ̃∗ν,δ, (4.22)

h3 =
2(µ∗ − ν∗)2

(µ− µ∗)2 (ν∗ − µ)2
τ̃∗µ,γ τ̃

∗

ν,δτµ,γ +
2(µ∗ − ν∗)2

(µ∗ − ν)2 (ν − ν∗)2
τ̃∗µ,γ τ̃

∗

ν,δτν,δ. (4.23)
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So that for ε = 1 we obtain from (4.18)-(4.23) the two-soliton solution

q
(2)
nl (x, t) =

g1(x, t) + g3(x, t)

1 + f2(x, t) + f4(x, t)
. (4.24)

As for the one-soliton solution (4.11) we recover the solutions to the local equation by

taking τ̃ → τ and µ∗ → −µ∗, ν∗ → −ν∗ in the pre-factors. In figure 5 we depict the

solution (4.24) at different times. These solutions are well localized and maintain their

shape after collision, which is the reason we refer to them as nonlocal soliton solutions.

Since all our solutions are nonlocal, either in space, time or both we will omit the explicit

mentioning of nonlocal at times.
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Figure 5: Nonlocal regular two-soliton solution (4.24) for the nonlocal Hirota equations obtained

from the standard Hirota method at different times for α = 0.4, δ = 0.8, γ1 = 0.6+ i1.3, µ1 = i0.7,

γ
2

= 0.9 + i0.7, µ
2

= i0.9 (left panel). Nonlocal regular two one-soliton solution (4.11) for the

nonlocal Hirota equations γ1 = 0.6 + i1.3, µ1 = i0.7 and γ2 = 0.9 + i0.7, µ2 = i0.9 versus the

nonlocal regular two-soliton solution (4.24) at the same values at time t = 2.5 (right panel).

In the left panel we observe the evolution of the two-soliton solution producing a

complicated nonlocal pattern. In the right panel we can see that at large time the two-

soliton solutions appears to be an interference between two nonlocal one-solitons.

As in the construction for the one-soliton solutions we can also pursue the option to

solve equation (4.9) only for ε = 1 leading to a second type of two-soliton solutions. We

will not report them here, but instead discuss how they emerge when using Darboux-Crum

transformations.

4.2 Darboux-Crum transformations

We start again by choosing the vanishing seed functions q = r = 0 and solve the linear

equations (2.1) with λ→ iλ, i.e. (3.29), with the additional constraint β = iδ by

Ψ̃1(x, t;λ) =

�
ϕ1(x, t;λ)

φ1(x, t;λ)

�
=

�
eλx+2iλ

2(α−2δλ)t+γ1

e−λx−2iλ
2(α−2δλ)t+γ2

�
. (4.25)

In the construction of Ψ2 we implement now the constraint r(x, t) = ±q∗(−x, t), with

κ = ±1, that gives rise to the nonlocal equations (2.14) and (2.15). As suggested from
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the previous section we expect to obtain two different types of solutions. Indeed, unlike as

in the local case we have now two options at our disposal to enforce the constraint. The

standard choice consists of taking ϕ2 = ±φ̃
∗

1, φ2 = ϕ̃∗1 for complex parameters which is very

similar to the approach in local case. Alternatively we can choose here φ1 = ϕ̃∗1, φ2 = ±ϕ̃∗2.

Evidently the first equation in the latter constraint holds when γ∗2 = γ1 in (4.25). It is also

clear that the second option is not available in the local case.

For the first choice we obtain therefore

Ψ̃2(x, t;λ) =

�
ϕ2(x, t;λ)

φ2(x, t;λ)

�
=

�
∓φ∗1(−x, t;λ)

ϕ∗1(−x, t;λ)

�
=

�
∓eλ∗x+2i(λ∗)2(α−2δλ)t+γ∗2
e−λ

∗x−2i(λ∗)2(α−2δλ∗)t+γ∗
1

�
, (4.26)

with λ,γ1, γ2 ∈ C and hence for the lower sign with (3.24) we have

q
(1)
st (x, t) =

2(λ∗ − λ)e2λ
∗x+2i(λ∗)2(α−2δλ∗)t−γ∗

1
+γ∗

2

1 + e2(λ
∗
−λ)x+4i[α(λ∗)2−αλ2+2δλ3−2δ(λ∗)3]t−γ1+γ2−γ∗1+γ∗2

. (4.27)

For the second choice we take Ψ1(x, t;µ) with µ ∈ R and γ2 = γ∗1 in (4.25). In this choice

the second wavefunction decouples entirely from the first and we may therefore also choose

different parameters. Again for the lower we take

Ψ̃2(x, t; ν) =

�
ϕ2(x, t; ν)

φ2(x, t; ν)

�
=

�
eνx+2iν

2(α−2δν)t+γ3

−e−νx−2iν
2(α−2δν)t+γ∗

3

�
(4.28)

and hence (3.24) yields

q
(1)
nonst(x, t) =

2(ν − µ)eγ1−γ
∗

1
+2µx+4iµ2(α−2δµ)t

1 + e2(µ−ν)x+4i(αµ
2−αν2−2δµ3+2δν3)t+γ1−γ

∗

1
−γ3+γ

∗

3

. (4.29)

The n-soliton solutions are obtained considering the set

S̃st2n =
�
Ψ̃1(x, t;λ1), Ψ̃2(x, t;λ1), Ψ̃1(x, t;λ2), Ψ̃2(x, t;λ2), ..., Ψ̃1(x, t;λn), Ψ̃2(x, t;λn)

�

(4.30)

or

S̃nonst2n =
�
Ψ̃1(x, t;µ1), Ψ̃2(x, t; ν1), Ψ̃1(x, t;µ2), Ψ̃2(x, t; ν2), ..., Ψ̃1(x, t;µn), Ψ̃2(x, t; νn)

�

(4.31)

with (4.25) and (4.26) and the formulae (3.25).

5. The nonlocal complex time-reversed Hirota equation

In this case the compatibility between the equations (2.9) and (2.10) is achieved by the

choice r(x, t) = ±q∗(x,−t) when taking κ = ±1. As t is directly related to −t, we expect

some nonlocality in time to emerge in this model. Since it is now clear how the two

different types of solutions emerge within the context of the Hirota method as well as

in the application of the Darboux-Crum transformations, we report here only the latter
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scenario. Using vanishing seed functions q = r = 0 we solve the linear equations (2.1) with

λ→ iλ, α = iδ̂ and β = iδ by

Ψ̂1(x, t;λ) =

�
ϕ1(x, t;λ)

φ1(x, t;λ)

�
=

�
eλx−2λ

2(δ̂+2iδλ)t+γ1

e−λx+2λ
2(δ̂+2iδλ)t+γ2

�
. (5.1)

The constraint r(x, t) = ±q̂∗(x,−t) in (3.24) can be implemented in two different ways by
either taking ϕ2 = ±φ̂∗1, φ2 = ϕ̂∗1 obtaining

Ψ̂2(x, t;λ) =

�
ϕ2(x, t;λ)

φ2(x, t;λ)

�
=

�
±φ∗1(x,−t;λ)

ϕ∗1(x,−t;λ)

�
=

�
±e−λ∗x−2(λ∗)2(δ̂−2iδλ∗)t+γ∗2
eλ

∗x+2(λ∗)2(δ̂−2iδλ∗)t+γ∗
1

�
, (5.2)

or φ1 = ϕ̂∗1, φ2 = ±ϕ̂∗2 with λ = µ ∈ iR, γ2 = γ∗1 and new constants ν ∈ iR, γ2 ∈ C so that

we have

Ψ̂2(x, t; ν) =

�
±ϕ2(x, t; ν)
φ2(x, t; ν)

�
=

�
±eνx−2ν2(δ̂+2iδν)t+γ2
e−νx+2ν

2(δ̂+2iδν)t+γ∗
2

�
. (5.3)

The corresponding one-soliton solutions computed with (3.24) are therefore

q
(1)
st (x, t) =

±2(λ + λ∗)e2λx+γ1+γ
∗

2

e2x(λ+λ
∗)+4(λ∗)2(δ̂−2iδλ∗)t+γ1+γ

∗

1 ∓ e4λ
2(δ̂+2iδλ)t+γ2+γ

∗

2

, (5.4)

and

q
(1)
nonst(x, t) =

±2(µ− ν)e2x(µ+ν)+γ1+γ2

e2µx+4ν
2(δ̂+2iδν)t+γ1+γ

∗

2 ∓ e2νx+4µ
2(δ̂+2iδµ)t+γ2+γ

∗

1

. (5.5)

The nonlocality is now only felt in time for fixed values of x, but we expect to find well

localized solutions in space for fixed values of t. It is clear how to compute the n-soliton

solutions, simply by using the set

Ŝst2n =
�
Ψ̂1(x, t;λ1), Ψ̂2(x, t;λ1), Ψ̂1(x, t;λ2), Ψ̂2(x, t;λ2), ..., Ψ̂1(x, t;λn), Ψ̂2(x, t;λn)

�

(5.6)

or

Ŝnonst2n =
�
Ψ̂1(x, t;µ1), Ψ̂2(x, t; ν1), Ψ̂1(x, t;µ2), Ψ̂2(x, t; ν2), ..., Ψ̂1(x, t;µn), Ψ̂2(x, t; νn)

�

(5.7)

with (5.1) and (5.2) and the formulae (3.25).

An interesting special case is obtained for δ̂ = 0, which correspond to a complex

nonlocal time-reverse version of the modified KdV equation. In this case the solution (5.4)

has no poles for the lower sign and is asymptotically finite for t→±∞ as long as Re γ1 �= 0

and Re γ2 �= 0. We depict some one and two-soliton solutions for the case in figure 6.

We observe from the local nature of the solutions in space and the feature that the

two-soliton solution has one-soliton constituents. As shown in figure 6 when shifting the

parameters in the one-soliton solutions appropriately they match exactly the one-soliton

constituents in the two-soliton solution. However, this only happens at special instances

in time and the solutions will not keep oscillating in synchronicity when time evolves, even

for large values of time.

The nonlocality is now in time, displaying a time crystal [45, 46] like structure as seen

in figure 7.
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Figure 6: Modulus of two one-soliton solutions (5.4) and the corresponding two-soliton solutions

for the complex nonlocal time-reverse version of the modified KdV equation at δ̂ = 0, δ = 1.0 and

different values of time. The one-solitons are computed at for λ = 0.3, γ1 = 0.3 + ∆1 γ2 = 0.2

and λ = 0.4, γ
1

= 0.2 + ∆2 γ
2

= 0.5. The two-soliton is computed for the same values with

∆1 = ∆2 = 0.
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Figure 7: Time crystal structures in the complex nonlocal time-reverse version of the modified

KdV equation at δ̂ = 0, δ = 1.0 and different points in space. The one-soliton solutions (5.4) are

computed for λ = 0.5, γ
1
= 0.2 and γ

2
= 0.8 (left panel). The two-soliton solutions are computed

at for λ1 = 0.6, γ1 = 0.2, γ2 = 0.8, λ2 = 0.3, γ3 = 0.2 and γ4 = 0.5 (right panel).

6. The nonlocal complex PT -transformed Hirota equation

In this case the compatibility between the equation (2.9) and (2.10) is achieved by the

choice r(x, t) = ±q∗(−x,−t) when taking κ = ±1. As x and t are now directly related to

−x and −t, we expect some nonlocality to emerge in space as well as in time. With seed

functions q = r = 0, α = iδ̌, δ̌, β ∈ R we solve the linear equations (2.1) by

Ψ̌1(x, t;λ) =

�
ϕ1(x, t;λ)

φ1(x, t;λ)

�
=

�
eλx−2λ

2(δ̌+2βλ)t+γ1

e−λx+2λ
2(δ̌+2βλ)t+γ2

�
. (6.1)

Implementing the constraint r(x, t) = ±q∗(−x,−t) in (3.24) by ϕ2 = ±φ̌
∗

1, φ2 = ϕ̌∗1 we

obtain

Ψ̌2(x, t;λ) =

�
ϕ2(x, t;λ)

φ2(x, t;λ)

�
=

�
∓φ∗1(−x,−t;λ)

ϕ∗1(−x,−t;λ)

�
=

�
∓e−λ

∗x−2(λ∗)2(δ̌+2βλ∗)t+γ∗
2

eλ
∗x+2(λ∗)2(δ̌+2βλ∗)t+γ∗

1

�
,

(6.2)
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or φ1 = ϕ̌∗1, φ2 = −ϕ̌∗2 with λ = µ ∈ R, γ2 = γ∗1 and new constants ν ∈ R, γ2 ∈ C we have

Ψ̌2(x, t; ν) =

�
−ϕ2(x, t; ν)

φ2(x, t; ν)

�
=

�
−eνx−2ν

2(δ̌+2βν)t+γ2

e−νx+2ν
2(δ̌+2βν)t+γ∗

2

�
. (6.3)

The corresponding one-soliton solutions computed with (3.24) are therefore

q
(1)
st (x, t) =

±2(λ− λ∗)eγ1+γ
∗

2
+2(λ+λ∗)x

eγ1+γ
∗

1
+4(λ∗)2(2βλ∗+δ̌)t+2µx ± eγ2+γ

∗

2
+4λµ2(2βλ+δ̌)t+2λ∗x

, (6.4)

and

q
(1)
nonst(x, t) =

2(ν − µ)eγ1−γ
∗

1
+2(µ+ν)x

e4µ2(2βµ+δ̌)t+2νx + e4ν2(2βν+δ̌)t+2µx
. (6.5)

With (6.1) and (6.2) in the sets

Šst2n =
�
Ψ̌1(x, t;λ1), Ψ̌2(x, t;λ1), Ψ̌1(x, t;λ2), Ψ̌2(x, t;λ2), ..., Ψ̌1(x, t;λn), Ψ̌2(x, t;λn)

�

(6.6)

or

Šnonst2n =
�
Ψ̌1(x, t;µ1), Ψ̌2(x, t; ν1), Ψ̌1(x, t;µ2), Ψ̌2(x, t; ν2), ..., Ψ̌1(x, t;µn), Ψ̌2(x, t; νn)

�

(6.7)

the n-soliton solutions are computed from the formulae (3.25).

As discussed above, the choices r(x, t) = ±q(−x, t) and r(x, t) = ±q(x,−t) with real
qs are less interesting and will therefore not discuss the here.

7. The nonlocal conjugate PT -transformed Hirota equation

In this case the compatibility between the equation (2.9) and (2.10) is achieved by the

choice r(x, t) = κq(−x,−t) with κ ∈ C. As in the previous section we take q = r = 0, but

with no further restrictions on the parameters involved and solve the linear equations (2.1)

to

Ψ̌1(x, t;λ) =

�
ϕ1(x, t;λ)

φ1(x, t;λ)

�
=

�
eλx+2λ

2(iα−2βλ)t+γ1

e−λx−2λ
2(iα−2βλ)t+γ2

�
. (7.1)

When implementing the constraint r(x, t) = κq(−x,−t) in (3.24) by ϕ2 = κφ̌
∗

1, φ2 = ϕ̌∗1 we

obtain a Ψ2(x, t;λ) leading to detDq
1 = detDr

1 = 0 so that the standard solution does not

exist in this case. However, implementing φ1 = i
√
κϕ̌1, by taking eγ2 = i

√
κeγ1 , λ → µ

and likewise for φ2 = −i√κϕ̌2 with new spectral parameters λ → ν and shift parameter

γ3 = γ1 we obtain

q
(1)
nonst(x, t) =

2i(µ− ν)e2µx+4iµ
2(α+2iβµ)t

√
κ
	
1 + e2x(µ−ν)+[4iα(µ2−ν2)+8β(ν3−µ3)]t


 . (7.2)

We notice that all shift parameters have cancelled and since x and t are real the solution

is in general regular. Interestingly, since the compatibility requirement between (2.9) and

(2.10) does not involve a conjugation, we shift formally shift x and t by any complex value,
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which means that q
(1)
nonst(x+∆1, t+∆2) with∆1,∆2 ∈ C is also a solution that will, however,

in general not satisfy the constraint r(x, t) = κq(−x,−t). Note that this operation does not

constitute a full variable substitution, i.e. the differentials are not replaced. The n-soliton

solutions are obtained by using the set

Šnonst2n =
�
Ψ̌1(x, t;µ1), Ψ̌2(x, t; ν1), Ψ̌1(x, t;µ2), Ψ̌2(x, t; ν2), ..., Ψ̌1(x, t;µn), Ψ̌2(x, t; νn)

�
,

(7.3)

in the formulae (3.25).

8. Conserved charges

Since our models are integrable we may employ standard techniques to compute all con-

served charges. Following [47] and references therein we define two new complex valued

fields T (x, t) and χ(x, t) in terms of the components of the auxiliary field Ψ introduced in

(2.1). The local conservation law in terms of these fields

T :=
ϕx
ϕ

, χ := −ϕt
ϕ
, ⇒ Tt + χx = 0 (8.1)

is trivially satisfied. The two first rows in the second equation in (2.1) then yield

T = q
φ

ϕ
− iλ, χ = −A−B

φ

ϕ
, (8.2)

so that the local conservation law in (8.1) becomes

Tt −
�
A+ iλB +

B

q
T




x

= 0. (8.3)

Differentiating T in (8.1) with respect to x the Ricatti equation

Tx = iλ
qx
q

+ rq − λ2 +
qx
q
T − T 2, (8.4)

which needs to be solved for the at this stage unknown function T that also solves (8.3).

An infinite number of charges be obtained from the Gardner transformation [48, 49, 50, 40]

that is defined by expanding T in terms of λ and a new field w introduced as T = −iλ[1−
w/(2λ2)]. Substituting this Ansatz for T into the Ricatti equation (8.4) with a further

convenient parametrisation λ = i/(2ε) leads to the relation

w + ε

�
wx −

qx
q
w



+ ε2w2 − rq = 0. (8.5)

At this stage our discussion describes the two equations (2.9) and (2.10) for the two in-

dependent functions r(x, t) and q(x, t). Expanding the new auxiliary density fields w(x, t)

as

w(x, t) =
∞�

n=0

εnwn(x, t), (8.6)
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we can obtain the functions wn order by order in ε in a recursive recursive manner. Sub-

stituting the expansion for w(x, t) into (8.5) yields the recurrence relation

wn =
qx
q
wn−1 − (wn−1)x −

n−2�

k=0

wkwn−k−2, for n ≥ 1. (8.7)

Taking from (8.5) w0 = rq, the first expressions are calculated to

w1 = −qrx, (8.8)

w2 = −q2r2 + qrxx, (8.9)

w3 = qr2qx + 4q2rrx − qrxxx, (8.10)

w4 = 2q3r3 − 6qrqxrx − 5q2r2x − qr2qxx − 6q2rrxx + qrxxxx (8.11)

Given the local conservation law, it follows that the quantities In =
�
∞

−∞
wndx are all

conserved in time for all choices of the functions r as described in section 2.

9. Conclusions

We exploited various possibilities involving different combinations of parity, time-reversal

and complex conjugation to achieve compatibility between the two equations (2.9) and

(2.10) resulting from the zero curvature condition for the Hirota equation. Each possibility

corresponds to a new type of integrable system. Solving these new nonlocal equations by

means of Hirota’s direct method we encountered various new features. Instead of having

to solve two bilinear equations, these new systems correspond to three bilinear equations

involving an auxiliary function. We solved these equations in the standard fashion by using

a formal expansion parameter that in the end can be set to any value when the expansions

are truncated at specific orders. In addition, the new auxiliary equation allows for a new

option for this equation to be solve for a specific value of the expansion parameter, thus

leading to a new type of solution different from the one obtained in the standard fashion.

We also identified the mechanism leading to this second type of solution within the approach

of using Darboux-Crum transformations. In that context the nonlocal relations between q

and r allow for different options in (3.24).

We have found various different type of behaviours. For the local Hirota equation the

sign of the parameter κ determines whether the solutions are regular or singular whereas

tuning the spectral parameter can produce two soliton solutions with a faster one overtaking

a slower one, a head-on collision and, most interestingly, a solution in which one of the

solitons behaves like a defect. The nonlocal complex parity transformed Hirota equation has

two different types of solutions displaying a nonlocal structure of periodically distributed

stationary breathers or rogue waves. The nonlocal complex time-reversed Hirota equation

possesses regular localized solutions in space, but is nonlocal in time displaying some time

crystal like structures.

There are various interesting questions left for exploration. Evidently more concrete

scenario for the above cases can be explored and further solutions may be constructed, for

instance by taking different seed function in the Darboux-Crum transformation etc. We
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also left aside the study of further interesting properties, such as degeneracies, time-delays

etc., which were considered in [51, 39, 40, 41]. As the approach we followed is general,

further new models related to integrable or even nonintegerable realizations of HNLSE

(1.1) other than the Hirota equation can be constructed and possibly different types of

systems altogether. The most interesting challenge is to investigate whether these nonlocal

solutions can be realized experimentally. Delocalized states occur for instance in optical

beam propagation in nonlinear dielectric waveguides with random varied refractive index,

spacing or size [52]. Furthermore, in [53] it was shown that the nonlocal NLSE is gauge

equivalent to an unconventional model of coupled Landau-Lifshitz equations that describes

the physics of nanomagnetic artificial materials. Finally, it would also be interesting to

perform the inverse scattering transform for the nonlocal Hirota system along the lines

of [54], where it was carried out for the nonlocal nonlinear Schrödinger equation. The

soliton solutions we constructed here, via the Darboux-Crum transformations, are based

on coupled eigenfunctions which display a particular symmetry at x → ±∞, see section

4.2. This suggest the procedure in [54], could also applied be applied for the system treated

here when adopting some extra symmetry conditions.
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