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The present work investigates the nonlinear bending and buckling behavior of Carbon

Nano-Tubes (CNTs) using Variational Asymptotic Method (VAM). Considering a CNT as a

slender beam structure, an asymptotically-correct nonlinear continuum beam model is pre-

sented. Through the resulting nonlinear moment-curvature relationship, the model captures

the phenomenon of ovalization of the cross-sections and local buckling of the CNT, which arises

due to their geometrical nature. Further studies are performed in order to explore the effect

of CNT wall thickness on the nonlinear bending behavior of the CNT structure. It is shown

that the continuum modeling approach can capture the ovalization and further localization of

the CNT deformation under bending. The study aims to provide a reduced-order modeling

framework analyzing the inherent nonlinearities associated with the geometrical nature of

CNTs.

Nomenclature

Ai = Polar basis for deformed geometry

ai = Polar basis for undeformed geometry

Bi = Cartesian basis for deformed geometry

bi = Cartesian basis for undeformed geometry

CBb
ij = rotation matrix from frame b to B

D = material matrix 3-D stiffness

e1 = column matrix, b 1 0 0 cT

Gk = covariant base vectors of deformed configuration

gk = contravariant base vectors of undeformed configuration
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h = wall thickness

K = column matrix of deformed tube twist and curvature measures

l = characteristic wavelength of deformation

R = characteristic dimension of cross section defining mean radius of cross section

R = position vector of points along deformed tube reference curve

r = position vector of points along undeformed tube reference curve

U = strain energy density

u = column matrix of displacement variables along bi

ui = 3-D displacement variables along bi

wi = 2-D warping variables for a cross section along bi , averaged over the tube thickness

wi = 3-D warping variables along bi

x1 = Cartesian coordinate along the reference line of an undeformed tube

x2, x3 = cross-sectional Cartesian coordinates

y2, y3 = cross-sectional polar coordinates

Γi j = 3-D strains

γ11 = 1-D beam generalized extensional strain measures

∆α = Unknown variation in in-surface warping variables; α = 1, 2

εαβ = membrane force strain measures

κi = 1-D beam twist and curvature measures

ραβ = membrane moment strain measures

A = mixed-basis components of deformation gradient tensor

O( ) = order of magnitude of a quantity

ˆ( ) = position vector of arbitrary points in a beam

˜( ) = corresponding skew-symmetric matrix

( )′ = derivative with respect to x1

( )T = Transpose of a matrix (square or column)

( ) = a single variable as quantity

I. Introduction
Recent research focuses on development and characterization of CNTs on one hand while, on the other hand, CNTs

are increasingly used as one of the reinforcing phases in matrix materials in order to enhance the mechanical performance

of the structure and its tailorability. CNTs are thin-walled slender structures possessing very high stiffness and strength
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along their length. At the same time, they have highly flexible cross-sections. Because of such flexibility as well as

their thin, slender and hollow cylindrical structure, as shown in Fig. 1, they undergo large elastic bending deformation

(under typical external loads acting on their parent structure) leading to the ovalization of their cross-sections. This

phenomenon changes the effective bending stiffness of the CNT and hence the moment-curvature relationship. In

addition, under such bending stresses, the thin-walled cylindrical tube may be subjected to local buckling which in turn

affects the global mechanical behavior of the structure.

Fig. 1 Schematic of a carbon nanotube

When a matrix material, say epoxy, is reinforced with CNT, the above-discussed structural characteristics of the

latter will influence the overall mechanical behavior of the composites. For example, the ovalization and buckling of the

CNT could induce debonding of CNT with the surrounding matrix phase ultimately leading to degradation of overall

structural stiffness and strength. Thus, it is an important to address such nonlinearities and instabilities associated

with the geometrical nature of the CNT. More importantly, stand-alone CNTs were explored for its potential usage as

sensors [1]. At times, long CNTs are grown over the surface of fibers for developing hybrid composite architectures [2].

In such cases, individual strands of carbon nanotubes are subjected to Mode I fractures (fracture caused of forces

perpendicular to the length of a slender structure applied in opposite directions on the top and bottom faces, also known

as the opening mode) and buckling when they interact with strands grown on other surfaces. Under such circumstances,

it is critical to capture the nonlinearities associated with its deformation during its operation, thus enabling its successful

application.

In terms of modelling the behaviour of CNT, several approaches are adopted in the literature ranging from atomistic

simulations to conventional continuum models [3, 4]. Though some of the features of CNT (and its composite) behaviour

cannot be addressed by continuum modelling approaches, it is generally observed that such continuum approaches

are very useful in understanding their structural behaviour and further can be utilised for rapid structural design

purposes involving CNT reinforced composite materials [5–12]. Several researchers have observed that continuum
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modeling predicts the mechanics of CNT as observed in experiments [6, 13]. In this context, continuum beam and

shell models [5–9, 14] have been applied to model the bending and buckling behaviour of CNT with a good success,

while non-local beam and shell models [10, 11] were developed to incorporate size effect in CNT mechanical behaviour.

A detailed review of investigations of buckling behaviour of CNT using atomistic and continuum approaches has

been documented by Wang et al. [15]. Despite the fact that understanding the mechanics of CNTs require lower-scale

modeling techniques, continuum approaches have been extensively applied as such an approach can be utilized as a

computationally efficient tool as compared to intensive atomistic simulations. It is from this perspective, a continuum

approach is utilized in this work based on VAM to model their nonlinear bending and buckling behavior. The objective

of the research is to develop an asymptotically-correct geometrically-nonlinear beam model to analyse bending and

buckling behavior of CNT, which can be used to understand its mechanical behaviour under various combined loading

conditions.

II. Modeling Approach
In this research, following the work of Harursampath[16], the bending behaviour of CNTs are studied in an analytical

framework using VAM [17]. VAM has been used in the recent past typically for dimensional reduction problems; for

example, to develop beam and plate models and extensively validated for general or thin-walled beams[18]. This work

begins with a three-dimensional (3-D) strain energy functional of a CNT. VAM is used to split a general 3-D nonlinear

elasticity problem for a beam-like structure into a (2-D) nonlinear cross-sectional analysis and a 1-D nonlinear beam

analysis (as shown in Fig. 2) by taking advantage of certain geometric as well as material-based small parameters

inherent to the tube-like structure such as that of the CNT, considered in this paper. From the geometry of the CNT,

as shown in Fig. 3a, the natural small parameters in this problem are the thickness-to-radius ratio (δh = h/R) and

the radius-to-length ratio (δR = R/l). So, restricting the present analysis to long thin-walled slender beams (tubes),

it is assumed that δh � 1 and δR � 1, where R is a characteristic cross-sectional dimension i.e. radius, l is the

1-D displacements, 
generalized strains, 
& stress resultants

2-D cross-sectional 
 analysis (linear)

2-D cross-sectional 
elastic and inertia 

constants

1-D beam analysis 
(nonlinear)

2-D warping & strain 
recovery relations

3-D recovery 
analysis

3-D stress, strain, & 
displacement fields

cross-sectional 
geometry, 3-D elastic 
constants, & density

initial twist 
& curvature

loads & 
boundary conditions

Fig. 2 Summary of beam analysis procedure using VAM
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wavelength of deformation and h is the wall thickness, also referred to as t in the existing literature. In this work, the

moment-curvature relationship obtained from the cross-sectional analysis (i.e. mean tubular in the beam constitutive

law) is nonlinear due to the inherent geometric and structural characteristics. Further, this nonlinearity is analyzed in

detail by applying it to a beam-like model of CNT. It is observed that the ovalization of the CNT is captured through the

reduction in the bending stiffness, obtained from the 2-D cross-sectional analysis. Local buckling phenomena is also

captured through the nonlinear bending response.

A. Cross-sectional modeling of CNT

The present work considers an equivalent tubular structure in lieu of the CNT for the analysis having an outer radius

of Ro and inner radius of Ri as shown in Fig. 3.

(a) Schematic of the slender prismatic beam model of CNT (b) Cross section of CNT

Fig. 3 Beam configuration and coordinate systems

B. Beam Kinematics

The Cartesian coordinate measures xi and the corresponding unit vectors bi are directed as indicated in Fig. 3. For

the tubular structure as shown in Fig. 3a, in order to take advantage of the thin nature of the wall, the best way forward is

a transformation with the help of cross-sectional arc length y2, the thickness coordinate y3 along with the corresponding

unit vectors a2(y2) and a3(y2). Also, the domain of the tubular beam is such that 0 ≤ x1 ≤ L, −πR ≤ y2 ≤ πR, and

−h
2 ≤ y3 ≤

h
2 . Then, the position vector of any point for the undeformed beam in an inertial reference frame, r̂ is given

as

r̂(x1, x2, x3) = r(x1) + x2b2(x1) + x3b3(x1) = y1a1 + (R + y3)a3(y2) (1)

where r is the position vector of any point along the reference line at x1 = y1. After deformation, the particle that had

position vector r̂ in the undeformed state now has the position vector R̂ in the deformed state. Another Cartesian basis

Bi and a curvilinear basis Ai are specified for the deformed configuration at each point along R and are relat ed to

bi through Bi = CBb
ij bj . The position vector of an arbitrary point in the deformed state denoted by R̂(x1, x2, x3) can
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now be expressed as

R̂(x1, x2, x3) = y1a1 + ui(y1, y2, y3)bi + (R + y3)a3 (2)

The 3-D Green strain is

Γ =
1
2
(AT A − I3) (3)

where I3 is the 3×3 identity matrix, and A is the mixed-basis component matrix of the deformation gradient tensor such

that

Ai j = Bi ·Gkgk · bj (4)

where Gk are the covariant base vectors of the deformed configuration and gk are the contravariant base vectors of the

undeformed configuration. A here is derived as:

A =



1 + u′1
(

R
R+y3

)
u1,2 u1,3

u′2 1 +
(

R
R+y3

)
(u2,2 +

u3
R ) u2,3

u′3
(

R
R+y3

)
(u3,2 +

u2
R ) 1 + u3,3


(5)

where ()′ is used when a quantity is differentiated with respect to x1 or y1 and subscripts ’2’ and ’3’ refer to partial

derivatives with respect to y2 and y3, respectively.

C. Zeroth-Order Approximation

Using the 3-D elasticity model, the strain energy per unit volume is obtained as

U3D =
1
2

Ei jklΓi jΓkl (6)

which is written assuming that the material is linearly elastic satisfying the generalized Hooke’s law, i.e., σ = DΓ

where Γ is the 3-D strain matrix which obtained from Eq. (3), σ =
⌊
σ11 σ12 σ13 σ22 σ23 σ33

⌋T
and the matrix

D is the symmetric matrix of elastic material stiffness coefficients. The strain energy, which would be subjected to

minimization with the help of small parameters, can be written as

U =
1
2

∫ L

0
〈ΓTDΓ〉dx1 (7)

where 〈·〉 =
∮
(·) dx2dx3 It is assumed that maximum strain is O(ε), where ε << 1. A preliminary order-of-magnitude

analysis is performed, retaining only the leading-order terms in the energy. For the zeroth-order approximation, the
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minimization of energy gives rise to the following form of the 3-D displacement field:

u0
1(y1, y2, y3) =

O
(
εR
δR

)︷︸︸︷
q1(x1)

u0
2(y1, y2, y3) =

O
(
εR
δR

)︷︸︸︷
q2(x1) +

O
(
εR

δ2
R

)︷        ︸︸        ︷
q3(x1) cos θ −

O
(
εR

δ2
R

)︷       ︸︸       ︷
q4(x1) sin θ

u0
3(y1, y2, y3) =

O(εR)︷︸︸︷
q5(x1)+

O
(
εR

δ2
R

)︷        ︸︸        ︷
q4(x1) cos θ +

O
(
εR

δ2
R

)︷       ︸︸       ︷
q3(x1) sin θ

(8)

where θ = y2
R . The classical 1-D degrees of freedom extracted above are rigid-body-like displacements of the tube cross

section due to extension (q1), torsion (q2) and bending (q3 and q4). In addition, there is a circumferential uniform radial

displacement (q5) which could be excited, for example, by a pressure differential between the inside and the outside of

the tubular section.

Due to the circular symmetry of the tube, bending in any one direction is similar to that in any other. As such,

one of the two bending degrees of freedom (e.g., q4) can be dropped, for simplicity, without affecting any desired

information. The most direct excitation for q5 is evidently from a pressure loading. From an asymptotic analysis of the

energy functional, it can be shown that the pressure required to excite q5 of O(εR) is O(Eδhε), where E is the order

of elements of D . However, tubes are rarely subjected to such high pressures in practice. It is observed that in the

absence of internal or external pressure, as in the current study, q5 is of an order higher than indicated above for tubes

made of known anisotropic materials under all normal beam loading. Thus, the 1D degrees of freedom which need to

be retained are qi .

D. First-Order Approximation

The variational asymptotic methodology that is being followed in the present work, is derived from Ref. [16]. The

3D displacement field for the first-order approximation is given by

ui = u0
i + wi(x1, y2, y3) (9)

where, wi is the 3D warping field of the cross section, which includes both out-of-plane warping, w1, and the in-plane

warping, w2 and w3. The warping variables are subjected to the constraints

〈wi(x1, x2, x3)〉 = 0, 〈w2,3(x1, x2, x3) − w3,2(x1, x2, x3)〉 = 0 (10)

If wi(y1, y2, y3) are the warping measures along ai of an arbitrary material point, t Here, it is important to note that
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the representation of the warping field is normal to the local shell surface and consists of the following terms

wα(x1, y2, y3) = wα(x1, y2) + y3φα(x1, y2) + ∆α(x1, y2, y3) (11a)

w3(x1, y2, y3) = w3(x1, y2) + ∆3(x1, y2, y3) (11b)

where α = 1, 2. The ∆i, i = 1, 2, 3 represent the unknown variation and the remaining components in the equations (11a)

and (11b) are warping and local rotations “averaged" across the thickness. As the warping field is split, it needs to

satisfy additional constraints as mentioned below:

∫ h
2

− h
2

∆α(x1, y2, y3) dy3 = 0, (12)

∫ h
2

− h
2

∆3(x1, y2, y3) dy3 = 0, (13)

and ∫ h
2

− h
2

∆α,3(x1, y2, y3) dy3 = 0 (14)

These constraints are required to be satisfied in addition to the constraints provided in Eq. (10) which are enforced due

to the extraction of rigid body and uniform radial displacements of the cross section at the zeroth-order approximation.

Also, note that wi are warping measures averaged across the thickness and φα are the local rotation variables.

The zeroth-order displacement field, Eq. (8), and the warping field, Eqs. (11a) and (11b), are substituted into the

displacement field, Eq. (9), which is then substituted into Eq. (3) to obtain the first-order approximation to the 3D strain

field. It should be noted that no a priori assumptions were made on the order-of-magnitude of any of the warping

variables. However, the material limitation of small stains Γi3 = O(ε) requires each of the large terms in the strain is

compensated by other such terms in the same strain component. Thus, the following relations are established, from the
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large terms in Γ13, Γ23, Γ12 and Γ22, respectively:

φ1 = −

O
(

ε
δR

)︷  ︸︸  ︷
q′3 sin θ −

O
(

ε2
δR δh

)︷      ︸︸      ︷
q′3φ2 cos θ +

O(ε )︷      ︸︸      ︷
φ1ε (x1, y2)

φ2 =

O
(

ε
δh

)︷︸︸︷
w2
R
+

O
(

ε
δh

)︷ ︸︸ ︷
Rw2,22 +

O(ε )︷      ︸︸      ︷
φ2ε (x1, y2)

w1,2 =

O
(

ε2
δR δh

)︷     ︸︸     ︷
q′3φ2 sin θ −

O
(

ε
δR

)︷  ︸︸  ︷
q′3 cos θ +

O(ε )︷︸︸︷
w1ε,2

w3 = −

O
(
εR
δh

)︷︸︸︷
Rw2,2 +

O(εR)︷       ︸︸       ︷
w3ε (x1, y2)

(15)

Subscript ε in Eq. (15) denotes thickness-averaged local rotations which are O(ε) and thickness-averaged warping

variables which, when non-dimensionalized with respect to R, are O(ε). Note that w1ε and w3ε are both indicated to be

O(εR) at this stage. However, certain other considerations, to be described below, would limit them to be of higher order.

For the thin walls under consideration, a plane stress state has been shown to be asymptotically correct and the 3D

strain measures can be represented in the form of 2-D shell strain measures as shown

Γαβ = εαβ + y3ραβ (16)

where εαβ are the membrane strains and ραβ are the middle surface bending curvatures, where, α = 1, 2 and β = 1, 2.

Hence, by inspection of Γαβ , the relation between 2D (shell) measures and the 1D (beam) measures is established. The

membrane strains are
ε11 = γ11 + w

′
1 +O

(
ε2,

ε2δR
δh

,
ε2δ2

δ2
h

)
ε22 =

w3ε
R
+O(εδh)

2ε12 = w1ε,2 − Rκ1 +O(εδh)

(17)

while the changes in curvature are

ρ11 = O
(
ε

R

)
ρ22 = φ2,2 +

(
ε

R

)
2ρ12 = O

(
ε

R
,
εδR
Rδ

) (18)
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where

γ11 =
√
[(1 + u0

1
′)2 + u0

2
′2 + u0

3
′2] − 1 (19)

is the 1D extensional strain and κ1 is the 1D twist per unit length. The higher-order terms indicated in Eqs. (17) and (18)

are all of the same order, as treated here. However, the orders of the omitted higher-order terms are all explicitly

indicated so that the reader knows the range of applicability of the theory developed in this paper.

As the 3-D strains are related to the 3-D shell strain measures, the 2-D strain energy density (i.e., energy per unit

middle surface area) can be derived and represented as

U2D =

∫ h
2

− h
2

U3D dy3 =
1
2



ε11

ε22

2ε12

ρ11

ρ22

2ρ12



T


A B

BT D





ε11

ε22

2ε12

ρ11

ρ22

2ρ12



(20)

where A, B and D are the 2-D membrane, bending and coupling stiffness matrices (3×3), respectively. The beam strain

energy density is given by U1D =
∫ πR
−πR

U2D dy2. From this, the unknown warping field is obtained by minimizing strain

energy functional subjected to the global warping constraints mentioned in Eq. (10). Upon substituting the warping

solution in U2D and performing the cyclic integration about y2, U1D is obtained, which is referred to as one dimensional

beam strain energy density correct up to the first order. Recall that w1ε and w3ε were both allowed to be as large as

O(εR) because the preliminary estimation indicated that to be their largest possible magnitude. Now, that will be

disproved using the method of proof by contradiction. Note that w3ε appears only in ε22, while w1ε appears only in 2ε12.

These would imply that the energy could be minimized with respect to ε22 and 2ε12. This, in effect, would mean that the

stress resultants N22 and N12 are zero. However, the solution which results for the warping field has a discontinuity along

y2 in w1ε due to the estimation w1ε = O(εR); and violates the constraint 〈w3〉 = 0 due to the estimation w3ε = O(εR),

invalidating both of these preliminary estimations. In physical terms, a discontinuous solution is valid for a tubular

beam with a longitudinal slit or an open circular cylindrical shell. A slit also allows for a much larger twist necessitating

the consideration of nonlinear extension-twist coupling, known as trapeze effect and Vlasov-like end effects at first order

approximation itself. In the present case, the CNT doesn’t have any slit, so we can consider w1ε and w3ε are both of an
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order higher than ε . Therefore, the first-order approximation to the shell strain energy density is

U2D =
1
2
×



γ11 + ψ

−Rκ1

φ2,2



T 

A11 A16 B12

A16 A66 B26

B12 B26 D22(ρ)





γ11 + ψ

−Rκ1

φ2,2


(21)

where ψ(x1, y2) = w′1.

The beam strain energy density (energy per unit length of the tube) is given by U1D = 2πR〈U2D〉. In order to carry

out this integration, we need to obtain ψ and φ2 (the unknown functions of y2 in Eq. (21). From Eqs. (12)-(14), the

constraints of further relevance (those can be expressed in terms of ψ and/or φ2 are

q′3φ
′
2 sin θ + ρφ2 sin θ − ρ cos θ = ψ,2

〈ψ〉 = 0

〈φ2 cos θ〉 = 0

〈φ2 sin θ〉 = 0

(22)

where ρ is the bending curvature which can be expressed in terms of the reference line displacements. As we consider

slender CNT tube-like structures, we may neglect the term involving φ2 ( as a higher-order end effect) in the first of

the above equations. In the present formulation, the unknown variables ∆i do not appear in the energy and hence the

constraints associated with those unknown variables are superfluous. They would however, be important in the cases

when higher order terms are retained. Further, minimization of the energy leads to the following set of two differential

equations, after the elimination of the Lagrange multipliers used to ensure the satisfaction of the four constraints recently

defined in Eq. (22):

R3ρ sin2 θA11ψ − R cos θB12ψ,θ + R2ρ sin2 θB12φ2,θ + R sin θB12ψ,θθ cos θD22φ2,θθ + sin θD22φ2,θθθ = 0

−Rρ cos θ + Rρ sin θφ2 − ψ,θ = 0
(23)

Note that the 1D extensional and torsional strains do not enter the above equations. Hence, the warping variables φ2

and ψ are independent of the 1D extensional and torsional strains. Periodic coefficients render the above equations

difficult to solve in closed form. These differential equations are solved numerically using shooting method for

comparison with a Fourier series approximation, to be obtained below.

A one-term Fourier series solution is first attempted. The simplest admissible function for φ2 resulting in non-zero
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solution is φs2 sin 2θ. This is substituted into the constraint Eq. (22) to obtain

ψ = ψ0 + Rρ[(φs2/6)(3 sin θ − sin 3θ) − sin θ] (24)

The integration constant ψ0 = 0 on imposing the constraint 〈ψ〉 = 0. Minimizing the energy with respect to φs2 and

defining

µ = D22/R2 A11 (25)

results in the following solution:

φs2 =
9(Rρ)2

5(Rρ)2 + 72µ
(26)

Closed-form solutions thus obtained for the perturbations, wi , to the zeroth-order displacements, u0
i , and it is verified

that their order-of-magnitude are not lower than that of the preliminary estimations. The first-order approximation to the

displacement field (including all terms up to O(εR)) is

uI
1 = q1 − q′3{(R+y3) sin θ −

3(Rρ)2

10(Rρ)2 + 144µ
× [3(R − y3) sin θ − (R + 3y3) sin 3θ]}

uI
2 = q2 + q3 cos θ −

3(Rρ)2

5(Rρ)2 + 72µ
(R − 3y3) sin 2θ

uI
3 = q3 sin θ +

6(Rρ)2

5(Rρ)2 + 72µ
R cos 2θ

(27)

Results for two- and four-term solutions to φ2 are similarly obtained but not explicitly listed here, both because they

are negligible in influence on the results in this paper and the complexity of the equations involved.

III. Results and Discussion: Cross-Sectional Analysis
All results presented in this section correspond to the one-term solution obtained for φ2 in Eq. (26), unless otherwise

specified.

A. Beam Stiffness

After obtaining the beam strain energy correct up to the first order, the 1-D beam constitutive law is summarized

here, which is expressed in terms of the beam strains, namely the extension γ11, twist κ1 and bending curvature ρ. It is

important to note that due to the axisymmetry present in the structure, bending stiffness in both the cross-sectional

Cartesian coordinate directions would be the same and hence only one of them is chosen for representation of the
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constitutive law in Eq. (28). Coefficients A11, A16 and A66 are functions of material parameters and cross-sectional

geometric parameters defined by Harursampath [16].

U1D =
1
2



γ11

κ1

ρ



T 

2πRA11 −2πR2 A16 0

−2πR2 A16 2πR3 A66 0

0 0 S33(ρ)





γ11

κ1

ρ


(28)

where, the nonlinear bending stiffness, S33, is given as follows:

S33(ρ) = πR3 A11

[
1 −

9(Rρ)2

144µ + 10(Rρ)2

]
(29)

It is important to note that the second term in the expression above, for S33, reduces the bending stiffness with increasing

bending curvature and is the source for the well-known nonlinearity. The only factor influencing this nonlinearity is the

ratio of the square of the non-dimensional bending curvature, Rρ, to µ. The definition of µ in Eq. (25) shows that it is a

non-dimensional measure of the resistance of the cross section to flatten/deform in its own plane. A small µ results in a

cross section which is very easily deformed causing highly nonlinear behavior. The limiting cases are

• µ = 0 which results in a semi-membranous (infinitesimally thin) tube with 90% reduction from the linear value of

S33, independent of the bending curvature; and

• µ→∞ which results in a rigid cross section tube with no nonlinearity.

In general, µ is inversely proportional to δ2
h
making thinner tubes more non-linear than the thicker-ones, thus, depicting

the need for accommodating this nonlinearity in the analysis of CNT which are thin-walled tubular structures. The

smallest value of µ is independent of the material used and is only a function of the geometry.

There is another stiffness parameter, β, defined as

β =
B12

√
D22 A11

(30)

and it is a non-dimensional measure of the material coupling between the axial strain and change in shell in-plane

curvature which contributes to the energy through S33. However, it shows up only in the two-or-more-term Fourier

series solutions and is seen to be a higher-order effect. Further, β is zero for isotropic materials and for the present

work involving CNTs. Nonetheless, this coupling factor would be important if one considers a coated CNT beam, for

example when modelling a CNT reinforced in a epoxy matrix [19].
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B. Bending Moment

From the beam strain energy density, the expression for the bending moment can be obtained through partial

differentiation of the energy density,U1D , with respect to the bending curvature ρ.

M =
∂U1D
∂ρ

= πR3 A11ρ

{
1 −

9(Rρ)2
[
144µ + 5(Rρ)2

]
2
[
72µ + 5(Rρ)2

]2

}
(31)

C. Limit-Moment Instability

The limit moment, Ml, defined by the point at which the bending curvature increases with decrease in bending

moment can be obtained by maximizing the moment with respect to the elastic curvature. Further, following the work

of Harursampath [16], the critical moment, Ml, corresponding to the limit-load type instability

Ml = 4.223R2 A11
√
µ (32)

In this approach, there are no ad hoc assumptions which at times lead to conservative results where limit moment is

predicted to be lower than the value obtained from an asymptotically-correct approach.

D. Local Buckling

It has been observed that there is a mode of local failure initiation which precedes the theoretical limit moment in

many practical designs. This is caused by localized buckling of the circular shell in the region of maximum compression.

The stability analysis is focused on this zone of initial buckling. The maximum compressive stress resultant occurs at

θ = 90◦ and is given by

(−N11)max = −A11 ×

[
γ11 − Rρ +

6(Rρ)3 − 18β√µ(Rρ)2

72µ + 5(Rρ)2

]
+ RA16κ1. (33)

This gives us the local buckling stress resultant to perform the stability analysis based on the non-linear results presented

in this paper. Following the work of Harursampath [16], the critical stress at the center of any initial buckles is nearly

equal to that of uniform axial compression. Further, accounting for the change in shell curvature due to nonlinear

bending and using the current notation, we obtain

Nbuckling = 2(1 + Rρ22 |θ=90◦ )(β + χ)
√
µA11

= 2
[
72µ − 13(Rρ)2

72µ + 5(Rρ)2

]
(β + χ)

√
µA11

(34)
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where

χ =

√
D11 A22
D22 A11

(35)

and

A22 = A22 −
A2

12
A11

. (36)

The critical bending curvature at which the local bucking initiates, is then derived by equating the right-hand sides of

the Eqs. (33) and (34), setting γ11 = 0 and κ1 = 0 for pure bending. The smallest possible real solution for the cubic

equation in ρ is sought and a closed-form expression is obtained. The moment at which the local bucking initiates is

then calculated as

Mb = πR2 A11ρlb

[
1 −

9ρ2
lb

(
144µ + 5ρ2

lb

)
2
(
72µ + 5ρ2

lb

)2

]
(37)

where

ρlb =
2
3
√
µ
[
22β + 13χ − R(C2) +

√
3I(C2)

]
(38a)

C2 =
3

√
C1 +

√
C2

1 −
[
54 + (22β + 13χ)2

]3 (38b)

C1 = 81(22β + 13χ) + (22β + 13χ)3 − 243(β + χ) (38c)

(38d)

In the above equations, the principal value of exp(log x/n) is to be attributed to n
√

x. It should be noted that this estimate

of the local buckling load needs to be checked with the results from a fully nonlinear stability analysis.

E. Cross-Sectional Deformation: Ovalization

The flattening of the cross section, ∆ = −w3 |θ=90◦ − w3 |θ=−90◦ , is given by

∆ =
6R3ρ2

5(Rρ)2 + 72µ
. (39)

Parametric equations for the cross section change from x2 = R sin θ and x3 = R cos θ to

X2 = R
(
1 −

φs2
2

)
sin θ + R

φs2
6

sin 3θ (40a)

X3 = R
(
1 +

φs2
2

)
cos θ + R

φs2
6

cos 3θ. (40b)
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In this case, we do not making any assumption restricting the deformation of the circle to an ellipse, as done in some

classical literature, such as Ades [20]. Fig. 4b shows the difference at the limit-moment instability, assuming other

modes of failure have not already occured at a smaller moment. The shape of the deformed cross-section at the limit

moment is independent of the material properties and geometry of the CNT. A closer observation reveals that the limit

moment instability occurs almost immediately after there is a change in the sign of shell curvature at the points of

maximum compression and tension (θ = ±90◦).

F. Results for a Stand-Alone CNT under Bending

A hollow CNT beam of wall thickness, h = 0.066 nm and radius R = 1.5 nm is considered for the analysis. The

geometry and material data used for the study are taken from the reference [21]. The CNT is assumed to be isotropic and

linearly elastic with material properties given by its Young’s modulus ECNT = 5.5 TPa and Poisson’s ratio, νCNT = 0.19.

Using the expression in Eq. (31), the moment-curvature relation is plotted in Fig. 4a along with the version obtained

using linear analysis. The cross-section of the undeformed and deformed CNT subjected to a bending moment is also

shown in Fig. 4b.
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Fig. 4 Nonlinear bending analysis of a CNT

From the results reported in Fig. 4a, it can be clearly observed that the variation of the bending moment with respect

to the curvature is nonlinear due to the inherent hollow thin-walled geometrical characteristics of the CNT. After the

initial linear regime, a gradual nonlinearity is observed, which is attributed to the gradual ovalization of the cross-section,

i.e., reduction in the beam height in the direction of the bending results in reduced bending stiffness of the beam. A

limit moment, Ml, is observed beyond which the bending stiffness of the CNT starts decreasing. In other words, the

beam softens when it undergoes further bending after the limit bending moment.
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G. Comparison with Results in the Literature

In this section, the present results are compared against the results reported in various studies in the literature.

Several articles addressed the nonlinear bending and buckling behaviour of CNTs using continuum elasticity approach,

Molecular Dynamics MD simulations and Finite Element Method FEM. A detailed review of different modelling

techniques adopted for analyzing the mechanical behaviour of CNTs can be found here [3].

The results obtained using the present asymptotic approach are compared with the results obtained using MD

simulation, FEM and continuum shell modelling [13, 15, 21]. In particular, the variation of critical curvature

corresponding to local buckling with respect to the CNT diameter is compared. The following geometric properties of

the CNT are utilized [21]: wall thickness, h = 0.066 nm; diameter of the CNT is varied from d = 0.5 nm to 3 nm. The

results obtained are plotted against the literature results in Fig. 5. The result of critical curvature by Yakobson et al. [13]

is given by 2.352 × t/d2, while the results obtained by Cao et al. [21] are described as follows: From MD simulations,

they obtained the following expression for critical curvature by curve fitting, κ = 0.0738/d2 and from FEM analysis

using shell elements, they obtained a curve-fitted expression given by κ = 0.1076/d2.
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Fig. 5 Comparison of results obtained using present formulation to those obtained fromMD, FEM, and other
results present in the literature

Figure 5 plots the curvature corresponding to the limit moment, Ml as a function of the CNT diameter. From

the comparison, it can be observed that the present results on the buckling curvature are in close agreement with

the literature results obtained from MD simulations. It can also be seen that the FEM and continuum shell models
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overestimate the curvature at buckling and that is because of the ad hoc assumptions involved in the analysis, thus,

supporting the argument made in Sec. III.C. It is also interesting to note that the buckling curvature and the curvature

corresponding to the limit moment obtained from the present study forms the upper and lower bounds on the variation

plots. Thus, it can be concluded that the present continuum modelling approach using VAM provides a good prediction

for the nonlinear bending and buckling behaviour of CNTs.

H. Effect of wall thickness of CNT

In the literature, effective wall thickness of CNT is still an issue to be resolved, as several works report varying

effective wall thicknesses of the CNT. Hence, to explore the effect of CNT wall thickness, the present CNT beam model

is used for a parametric study where the thickness is assigned values ranging from h = 0.02 nm to h = 0.16 nm. The

results of the analysis are summarized in Fig. 6.
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Fig. 6 Effect of wall thickness on CNT bending behaviour

Figure 6a represents the nonlinear variation of the bending moment with increase in the curvature.From the Fig. 6b,

it is observed that increasing the wall thickness increases the load carrying capability of the CNT beam. The limit

moment and the corresponding curvature at the limit moment (Ml) increase monotonically with the thickness of the

wall. This is attributed to the fact that, as the thickness increases, the geometric contribution of the beam towards its

bending stiffness increases. Nonetheless, it is worth noting that the limit moment has a quadratic dependence on the

wall thickness, whereas the curvature at the limit moement varies linearly. More importantly, when the thickness of the

wall is increased, the associated nonlinearity (Brazier effect) is less pronounced and becomes negligible if the thickness

is increased beyond a limit in comparison with the diameter. It is also worth noting that the solutions provided in this

work take advantage of a small parameter, thickness-to-radius ratio. The solutions are sensitive to this parameter and

are only valid for small wall-thickness-to-radius ratios. To summarize, it can be concluded that the influence of wall
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thickness on the bending behaviour is significant, thus warranting an accurate representation of the equivalent CNT

thickness whenever it is modelled in the continuum framework.

IV. Summary and Outlook
A CNT is modelled as a slender beam structure using VAM and its bending and buckling behavior was studied.

From the nonlinear moment-curvature relation, the solutions for the limit moment and the moment corresponding to

local buckling are reported and compared against literature results. The present results have shown that the model

developed using VAM was able to capture the nonlinear bending behaviour reasonably well in terms of critical

curvatures, when compared with the MD simulations and other related works in the literature. Effect of varying wall

thickness on its bending capability was reported which indicated the crucial influence that the choice of equivalent wall

thickness possesses on the bending characteristics of CNTs. Work is in progress to integrate the beam model with a

one-dimensional theory[22], which can further be used to study the deformation behaviour and stress state in CNTs (and

their composites) under arbitrary loading conditions. Further, atomistic aspects such as van der Waals interactions are

being explored for inclusion in the continuum model, which is important especially when ovalisation of the cross-section

occurs bringing the walls closer. Researchers in the past have worked to develop continuum models which account for

van der Waals interactions such as the work by Liew et al. [23], to understand the buckling behavior of CNTs, but this

paper attempts to fill a gap in the literature by using an asymptotically-consistent beam model, considering Brazier

effect for CNTs.
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