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Abstract 

Items held in working memory can be either attended or not, depending on their 

current behavioral relevance. It has been suggested that unattended contents might be solely 

retained in an activity-silent form. Here, instead, we demonstrate that encoding of 

unattended contents involves a division of labor. While visual cortex only maintains attended 

items, intraparietal areas and the frontal eye fields represent both attended and unattended 

items.  

The short-term retention of sensory stimuli in working memory is fundamental to human 

cognition1. A wide range of primate electrophysiology and human imaging studies have reported 

content-selective brain signals that encode working memory contents across brief delays2. Such 

persistent stimulus-selective activity has been observed in multiple regions across the cortical 

sheet, including sensory, parietal, and frontal regions2. Recently, however, it has been postulated 

that working memory can be retained in an ‘activity-silent state‘3–5. In this notion, working 

memory contents are believed to be retained by changes in synaptic weights rather than neuronal 

firing3,4. In line with this, several studies have recently reported absence of persistent stimulus-

selective activity when items are held in memory, but currently not behaviorally relevant6–8. Such 

currently non prioritized items are frequently referred to as ‘unattended memory items’ (UMIs) as 

opposed to ‘attended memory items’ (AMIs)5. These results suggest that attended memory items 

are retained actively while unattended memory items are retained in an activity-silent form.  

However, the absence of content-selective signals for unattended items observed in prior 

work6-8 might reflect a lack of sensitivity in the experimental procedures. For example, these 

studies used small numbers of subjects, they trained their classification models on attended items 
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in separate one-item tasks, and they only analyzed a limited set of voxels or electrodes, leaving it 

open whether unattended items might be represented in other brain areas or using an orthogonal 

neural code9. Here, we test directly whether brain regions in sensory but also parietal and frontal 

cortex contain memory representations during the delay phase for unattended stimuli. We acquired 

fMRI data from a large pool of subjects (N = 87) while they were memorizing orientation stimuli 

(see Fig. S1). We used a working memory design that allowed to separately identify 

representations of attended and unattended stimuli. In each trial, participants first memorized the 

 

Figure 1. Two-stage orientation change discrimination task using retro-cue selection. In each trial, subjects are 

first presented with two sequential memory displays (‘Sample 1’, ‘Sample 2’; see Fig. S1). The first presents one 

memory item (a Gabor patch of varying orientation) on one side and a plaid mask on the opposite side. The second 

display presents a second memory item on the other side, again accompanied by a plaid mask on the opposite side. 

The sequential presentation was chosen in order to avoid perceptual grouping of both memory items. The two memory 

displays were followed by a screen with plaid backward masks in the previous locations of the stimuli. 5.5 s later a 

first retro-cue (in red) indicated the side of the sample orientation that should be used for the first upcoming change 

discrimination task. This was followed by the main retention interval of 8 seconds. Following the main retention 

interval, participants viewed a Gabor presented at the cued (red) side and were required to judge whether it was rotated 

clockwise or counterclockwise to the cued sample. A random foil orientation was shown on the not-cued (green) side. 

This was followed by a second retro-cue that indicated either the same (i.e. the previously attended) memory sample 

(‘Repeat Trials’) or the other (previously unattended) memory item (‘Switch Trials’). Following a short delay of 4 s 

participants were again probed with a test item and had to perform the same orientation judgement. Thus, to solve the 

task, subjects had to memorize both items during the main retention interval (following ‘retro-cue 1’), but one item 

was prioritized (the attended memory item, AMI) over the other (the unattended memory item, UMI). MVPA analyses 

focused on the main retention period from 2 to 10 seconds after the retro-cue to account for hemodynamic delays.  
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orientation of two gratings (see Fig. 1). After presentation of these stimuli a retro-cue indicated 

which of the two gratings would be tested in an upcoming change discrimination task following 

an extended delay, which is the main retention interval in our design. Then, after this memory test, 

a second retro-cue was shown that could select either the same or the other orientation for a second 

memory test. Such a two-stage retention task forces participants to maintain the orientations of 

both gratings until the second retro-cue, but prioritizes and thus directs attention to the first retro-

cued item (AMI) while minimizing attention on the other item (UMI)6-7. 

We used a variant of multivariate pattern analysis (cvMANOVA, see Methods for details)10 

to identify which brain regions encoded the memorized orientations for attended and unattended 

items. The experiment was designed to optimize the ability to detect memory information in the 

main retention interval following the first retro-cue (see Fig. 1 & Online Methods for details). The 

analysis was conducted for stimuli in each hemifield separately in order to account for differences 

in retinotopic location. Our analysis focused on the set of regions where prior work indicated the 

presence of persistent stimulus-selective activity for orientations when attention was not 

manipulated11–13: Visual cortex (V1-V4), intraparietal sulcus (IPS0-5) and the frontal eye fields 

(see Fig. 2A). 

In early visual cortex, we found reliable information about attended memory items (see Fig. 

2B, one-tailed one-sample t-test; t86 = 3.37, p = 0.000558) whereas we found no significant 

information for unattended items (one-tailed one-sample t-test; t86 = 0.19, p = 0.423091, lower 

CI95
(corrected) = 0.01). Information was also significantly higher for attended than for unattended 

items (two-tailed paired-sample t-test; t86 = 2.65, p = 0.009467, lower CI95
(corrected) = -0.012, ΔD 

CI95
(corrected) = [0.007 0.048]). This finding closely resembles previous reports that unattended 

memory items are not accompanied by delay-period information in perceptually driven brain 
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regions7. Supplementary Figure 2 suggests that this attention effect is primarily driven by V1. It is 

worth noting that we cannot exclude that more sensitive methods might reveal information for 

unattended items also in visual cortex. Furthermore, whether either attended or unattended items 

can be decoded in the current study might depend on using a larger sample size than in prior work 

(see Fig. S3).  

 Regardless, if our analyses had focused exclusively on these visual brain regions we might 

have concluded that working memory representations for unattended stimuli are silent during the 

delay. Similarly, when we used no anatomical constraints on the voxels used by the classification 

algorithm but focused on voxels activated by perception of the samples (primarily found in sensory 

cortices, similar to Ref.7) we found information for attended items only (one-tailed one-sample t-

test; AMI: t86 = 4.51, p = 0.00001, lower CI95
 = 0.024; UMI: t86 = 1.55, p = 0.061992, lower CI95 

= -0.0008; two-tailed paired-sample t-test; AMI versus UMI: t86 = 2.49, p = 0.014547, ΔD 

 

Figure 2. Representation of attended and unattended memory items. (A) Rendered representations of the human 

brain depicting the three main regions of interest (ROIs): Visual areas (V1-V4, in red), intraparietal areas (IPS0-5, in 

green) and the frontal eye fields (in blue). (B) Information about attended (AMI, circles) and unattended (UMI, 

squares) memory items as indicated by mean pattern distinctness D within each ROI. (n = 87 human subjects; error 

bars indicate SEM; tested using one-tailed one-sample t-tests & two-tailed paired-sample t-tests; *: p < 0.05; **: p < 

0.01; ***: p < 0.001; all Bonferroni corrected for multiple comparisons)  
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CI95
(corrected) = [0.006 0.049]) replicating prior work7. However, when we focused our analysis on 

anterior regions (that were not selectively tested in prior work) the picture changed. In the 

intraparietal sulcus and the frontal eye fields, we found that both attended (one-tailed one-sample 

t-test; IPS: t86 = 3.66, p = 0.000216, lower CI95
(corrected) = 0.012; FEF: t86 = 2.53, p = 0.006667, 

lower CI95
(corrected) = 0.002) and unattended (one-tailed one-sample t-test; IPS: t86 = 3.24, p = 

0.000848, lower CI95
(corrected) = 0.005; FEF: t86 = 3.81, p = 0.000129, lower CI95

(corrected) = 0.005) 

memory items were significantly represented by neural activity patterns (see Fig. 2B). We found 

no significant differences between information about attended and unattended items in these 

anterior regions (two-tailed paired-sample t-test; IPS: t86 = 1.52, p = 0.132059, ΔD CI95
(corrected) = 

[-0.004 0.033]; FEF: t86 = 0.11, p = 0.914863, ΔD CI95
(corrected) = [-0.011 0.014]). This pattern of 

results is reflected by significant differences in the modulation factor for attention (DAMI / DUMI; 

V1-V4: 23.96; IPS: 1.98; FEF: 1.05) in early visual areas as compared to IPS and FEF (bootstrap 

confidence intervals; V1-V4 – IPS: CI95
(corrected) = [3.1, 6.1·105], V1-V4 – FEF: CI95

(corrected) = [4.0, 

4.7·105], IPS – FEF [-1.4, 6.2]). 

In early visual cortex, the time-course of information closely resembles prior work6,7 

showing null-results for unattended items 2 s after cue onset, whereas more anterior areas appear 

to represent unattended items as late as 6-10 seconds after the cue (see Fig. S4). To explore this 

further, we asked whether similar brain activity patterns represented the remembered items in data 

recorded in the 2 seconds before the cue and in the time-period 6-10 seconds after the cue. We 

found such pattern stability xD (see methods for details) across time only in the intraparietal sulcus 

and the frontal eye fields (one-sided one-sample t-test; EVC: xDAMI = 0.0020, t86 = 1.24, p = 

0.1088; xDUMI = 0.0017, t86 = 0.90, p = 0.1845; IPS: xDAMI = 0.0063, t86 = 3.21, p = 0.0009; xDUMI 
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= 0.0027, t86 = 1.51, p = 0.0678; FEF: xDAMI = 0.0031, t86 = 2.70, p = 0.0042; xDUMI = 0.0050, t86 

= 3.64, p = 0.0002). 

 Finally, we tested whether voxels in the hemisphere contralateral to sample presentation 

carry more information about these memorized contents than ipsilateral voxels. In visual cortex, 

consistent with prior work14
, we found no evidence for lateralization (one-tailed paired-sample t-

test; AMI: t86 = -1.13, p = 0.8696; UMI: t86 = -1.60, p = 0.9437). The frontal eye fields showed 

similar results (AMI: t86 = -0.11, p = 0.5447; UMI: t86 = 1.11, p = 0.1341). In intraparietal areas, 

however, we found more information regarding attended items in contra- versus ipsilateral voxels 

(AMI: t86 = 2.84, p = 0.0027; UMI: t86 = -2.1, p = 0.9823) and contralateral areas carried more 

information about attended then unattended items (one-tailed paired-sample t-test; t86 = 4.55, p = 

0.000009). 

Our results directly contradict the assertion that unattended working memory items are 

encoded solely in an activity-silent fashion. We cannot discern whether stimulus-selective 

persistent activity represents an active recurrent excitation network15 or selective activity related 

to other potential forms of retention. Current computational models of retention via synaptic 

plasticity, for example, either (a) require neuronal firing as a means to uphold synaptic signals over 

longer periods of time4 or (b) suggest a complimentary role of recursive activity and synaptic 

plasticity16. Selective changes in synaptic plasticity could even lead to purely epiphenomenal 

selective firing. Thus, the presence or absence of stimulus-selective persistent activity2 (in spiking, 

LFP or BOLD activity) does not rule out synaptic contributions to working memory.  

Critically, our results do provide support for a different hypothesis how attended and 

unattended items differ in their neural representation. One possibility is that sensory cortex 
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maintains a high-resolution representation of the currently attended memory item, whereas parietal 

cortex has a low-resolution representation of both attended and unattended items2,9. If that were 

the case one would expect working memory performance to be more accurate for previously 

attended items. In line with this, behavioral evidence shows that retention in an unattended state 

can result in impaired change detection17, more guesses and non-target responses18, stronger 

categorical biases19 and less precision18,19 as compared to attended memory items. The behavioral 

data from the current study are consistent with these findings (see Fig. S5). Our finding of selective 

recruitment of early visual cortex for the retention of attended memories could be the neural source 

of these behavioral benefits. In line with this, imaging evidence shows that the precision of neural 

representations in visual cortex during the delay period correlates with the behavioral precision 

during recall20. In the current study, the amount of information we found in early visual cortex for 

attended memory items correlated with the individual subjects’ discrimination threshold (Pearson's 

linear correlation coefficient; r = -0.3177, p = 0.0027).  

We thus propose that the attentional modulation of working memory is not implemented by 

switching from an activity-based to an activity-silent, synaptic code, or by increasing the level of 

selective activity for one representation globally across all areas. Rather the attentional 

prioritization in working memory might be realized by the selective recruitment of sensory 

representations which more precisely retain the information for an upcoming task.  
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Supplementary Figure 1 

Stimulus set. 

The main experiment used a set of twelve orientations, six on the left and six on the right. On each side the stimulus set consisted of 
orientations that were 30° apart, but the two sets were separated by 15° to experimentally decorrelate the two conditions. 
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Supplementary Figure 2 

Representation of attended and unattended memory items in different regions of the visual cortex. 

Information about attended (AMI, circles) and unattended (UMI, squares) memory items as indicated by mean pattern distinctness D 
within different regions of the visual cortex. (n = 87 human subjects; error bars indicate SEM; *: p < 0.05; **: p < 0.01; ***: p < 0.001; 
Bonferroni corrected for multiple comparisons). Results were tested against chance using one-tailed one-sample t-tests (V1AMI: t86 = 
3.34, p = 0.0006; V1UMI: t86 = -0.87, p = 0.81; V2AMI: t86 = 1.58, p = 0.059; V2UMI: t86 = 0.86, p = 0.19; V3AMI: t86 = 2.97, p = 0.002; 
V3UMI: t86 = 1.6, p = 0.057; V4AMI: t86 = 1.45, p = 0.076; V4UMI: t86 = 1.48, p = 0.071) and for differences between AMIs and UMIs 
using two-tailed paired-sample t-tests (V1: t86 = 3.42, p = 0.001; V2: t86 = 0.79, p = 0.43; V3: t86 = 0.61, p = 0.54; V4: t86 = 0.02, p = 
0.98). 
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Supplementary Figure 3 

Estimation of the probability of significance of the multivariate pattern analyses with a reduced number of subjects. 

Probabilities were estimated using a bootstrapping procedure with 10000 iterations for each of the main multivariate pattern analyses, 
each area and each possible N ranging from 10 to 86. In each iteration, N values of D were drawn from the whole sample of 87 human 
subjects and a one-tailed one-sample t-test was testing against chance-level (D = 0) at an uncorrected threshold of p < 0.05. Please note 
that these estimates do not easily generalize to studies using a different stimulus set, different numbers of repetitions or an otherwise 
different experimental paradigm. Please further note that the qualitative difference in reliability of information in FEF for unattended over 
attended items is a result of a difference in variance. 
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Supplementary Figure 4 

Representation of attended and unattended memory items across time.  

Information about attended (AMI, circles) and unattended (UMI, squares) memory items as indicated by mean pattern distinctness D on 
a time-point by time-point basis. Vertical lines indicate the onset of the first cue and the two tasks. Grey panels demark the time-points 
used for the main analysis shown in Figure 2. (n = 87 human subjects; error bars indicate SEM; Colored lines on the top part of the figure 
indicate time points with significant above-chance information at p < 0.05 for AMI [top] and UMI [bottom]; tested using one-tailed one-
sample t-tests). 
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Online methods 

Participants 

89 healthy right-handed human subjects (42 female; mean age: 26.8, SEM ±0.4) with normal 

or corrected-to-normal vision were recruited for the current study. We based our estimate of the 

necessary sample size on our prior work on attended working memories21-24 as effect sizes for 

unattended memories are unknown. We substantially increased the N relative to these studies, to 

account for putative reductions in effect size for unattended items and because of a generally 

lowered trial count. Data acquisition for two subjects was aborted during the experiment upon the 

request of the participants. This was prior to any stage of data analysis. We thus analyzed data 

from 87 participants (41 female; mean age: 26.8, SEM ±0.4). Subjects gave informed consent and 

the study was approved by the local ethics committee (Ethics committee, Department of 

Psychology, Humboldt University, Berlin). Data collection and analysis were not performed blind 

to the conditions of the experiment. Detailed information on the experimental design can also be 

found in the ‘Life Sciences Reporting Summary’ published alongside this article.  

Procedure and design 

In an MRI scanner, subjects performed a two-stage delayed change discrimination task6,7 

using Gabor grating stimuli. During this task, subjects memorized two gratings and were twice 

instructed using retro-cues to attend to one or the other for an upcoming change detection task. 

Critically, this paradigm results in a situation after the first cue where one orientation sample is 

prioritized (the attended memory item, AMI) while the other sample is remembered but with lower 

priority (the unattended memory item, UMI).  
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In each trial, participants viewed two sine-wave sample grating stimuli shown consecutively 

left and right to the center of the screen in random order (0.8° off center, for 750 ms, ISI 250 ms). 

During grating presentation the side opposite to the grating was occupied with Gabor plaid stimuli 

and the same plaids were shown as masks after stimulus presentation (for 500 ms). The onset of 

these masks was followed after 5500 ms with by retro cue 1 (presented for 1000 ms). For this cue, 

one of the handles of the fixation cross turned red while the opposite handle turned green. 

Participants were instructed that the sample grating which had been shown on the red side of the 

fixation cross was to be used for the upcoming change detection task.  

This first retro-cue was followed by a prolonged delay (7000 ms), the main retention interval, 

during which participants were expected to maintain orientation representations of both sample 

gratings with the cued orientation prioritized over the other. This delay is the critical time-period 

of interest during which neural representations of prioritized contents (attended memory items, 

AMI) and not-prioritized information (‘unattended’ memory items, UMI) can be distinguished. 

During the change discrimination task that followed (‘task 1’, 2000 ms), participants had to report 

whether a target grating presented on the cued side was rotated clockwise or counterclockwise 

relative to the cued sample grating previously presented on the same side. On the opposite side of 

the screen a randomly rotated foil grating was shown. 

This first task was followed by a second cue (‘retro-cue 2’, 1000 ms), an additional delay 

(3000 ms) and a second task (‘task 2’, 2000 ms). The grating cued for the second task could either 

be the same as for the first task (repeat trials) or the other grating (switch trials). The switch 

probability was 50%. This second task ensured that an item not prioritized for the first task needed 

to be retained until the second cue was presented because subjects did not know in advance whether 

the item might be relevant later. Please note that our study was designed to maximize sensitivity 
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in the first delay period. For this reason, the second delay was chosen very short. Thus, we did not 

perform an analysis of a potential re-instatement of information in the 50% switch trials when a 

stimulus feature switches from unattended to attended6,7. This was further motivated by recent 

proposals that evidence of re-instatement is not conclusive evidence of silent working memory25. 

The intertrial interval was either 2000 ms (50% of trials), 4000 ms (33.3%) or 6000 ms (16.7%). 

A fixation cross (width 0.2°) remained on screen throughout the experiment.  

Prior to the main experiment in the MRI scanner (2-4 days in advance), participants took part 

in a training session outside the scanner using a conventional LCD display. The training comprised 

four experimental runs with shorter delays (1500 ms and 2500 ms for the first and the second delay 

periods, respectively) and using fully randomized sample orientations. Subjects were instructed 

not to use verbal labels for memorizing the stimuli. In the MRI scanner, the experimental paradigm 

was presented on a NordicNeuroLab Monitor (70,5 cm width) and subjects viewed the screen via 

a mirror. Stimulus presentation was controlled using Psychtoolbox26. 

The stimuli used were sine-wave Gabor gratings (5.7° size, phase randomized, spatial 

frequency: 1.8 cycles/degree, 3.06° away from the screen center) with varying orientations. 

Importantly, sample orientations presented (see Fig. S1) in the left visual field were drawn from a 

different pool (7.5°, 37.5°, 67.5°, 97.5°, 127.5°, 157.5°) than orientations on the right (22.5°, 52.5°, 

82.5°, 112.5°, 142.5°, 172.5°) which allowed us to decorrelate items shown in the left and right 

hemifield and thereby AMIs and UMIs (see ref. 27). Gabor plaid stimuli (5.7° size) consisting of 

two random but orthogonal orientations (phase randomized, spatial frequency: 1.8 cycles/degree) 

were used as masks.  
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For the change discrimination tasks, targets were rotated clockwise and counter-clockwise 

on an equal number of trials. The extent of rotation of the test grating was initially set to 20° and 

adjusted using a staircase procedure to generate a consistently challenging task and avoid ceiling 

effects. For each correct response in a given trial (0-2), the difference between test and sample 

orientation was reduced by 0.5° making change discrimination harder. Reversely, the difference 

was increased by 2° for each incorrect response, thus making them easier to differentiate. Changes 

to this discrimination threshold were only applied after the end of a given trial and the same levels 

were used for ‘task 1’ and ‘task 2’ to allow for comparisons between the tasks. The adjustment of 

started during training and continued throughout the fMRI experiment.  

There were 4 scanning runs of 48 trials each. We used a within-subject 2 (retro-cue 1: left vs. 

right) by 2 (retro-cue 2: switch vs. repeat) design. Each of the 12 orientations (6 for each side) had 

to be memorized in 8 trials per run. The pairing of orientations on the left and right was fully 

randomized to allow statistically independent analyses of attended and unattended orientations. 

The assignment of attention conditions to orientation conditions was fully randomized in the first 

39 participants. Based on theoretical considerations28 we then decided to slightly modify the 

randomization so that in the second set of 48 participants each attention condition is associated 

with exactly the same number of trials for each orientation. We found no significant differences 

between the groups in our main analyses. For the change discrimination tasks, the rotation of the 

test orientation was randomized with respect to all other conditions with equal frequency of 

clockwise and counterclockwise rotations for each of the two tasks. The temporal order of 

conditions was fully randomized within each run. 

Overall, the experiment occupied 90 min per participant. In order to decrease effects of 

long-term memory, a short 5-minute run was presented between the 2nd and 3rd experimental 
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block where participants performed the task with random sample orientations while anatomical 

scans were acquired. After the experiment, participants filled out a questionnaire covering the 

strategies participants used for memorization. 

Data acquisition 

fMRI data were collected with Siemens 3-Tesla TIM-Trio MR tomograph located at the 

Berlin Center for Advanced Imaging (Charité-Universitätsmedizin). Within each of the four runs, 

we recorded 663 T2*-weighted gradient-echo echo-planar images (EPI, 33 slices, 3 × 3 × 3 mm 

resolution, 0.6 mm gap, descending order, FoV = 192 mm, TR = 2000 ms, TE = 30 ms, flip angle 

= 80°). The onset of each trial was locked to the onset of the acquisition of an image to minimize 

variation due to slice acquisition onsets. Slices were aligned parallel to the anterior and posterior 

commissures and covered the whole neocortex. In addition, a high-resolution T1-weighted image 

was acquired (192 sagittal slices, 1 mm thickness, RT = 1900 ms, TE = 2.52 ms, flip angle = 9°, 

FOV = 256 mm).  

fMRI preprocessing 

Functional imaging data was analyzed using SPM1229 and cvMANOVA10. After conversion 

to NIfTI format, the functional data were motion corrected and the anatomical image was 

coregistered to the first image of the BOLD time series. No normalization into a standard space 

was performed and we applied no Gaussian smoothing to the data prior to performing the 

multivariate analyses to preserve the fine-scaled spatial structure of the fMRI data. Using a similar 

reasoning, we abstained from using slice-time correction during preprocessing and avoided any 

other temporal filtering to retain the temporal precision of the stimulus-locked time-series (see 

'Data Acquisition'). 
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Anatomical regions-of-interest (ROI) 

We aimed to identify information about attended and unattended memory items within brain 

regions previously found to carry information about memorized gratings11–13. For this, anatomical 

probability maps of retinotopic areas30 in visual cortex (V1- V4), the intraparietal sulcus (IPS0-5) 

and the frontal eye fields (Fig. 2A) were backward transformed into participants’ native space 

using unified segmentation31. These maps were thresholded to exclude voxels with a probability 

to be part of a given area that is lower than 0.1. In a post-hoc exploratory analysis, we investigated 

the information content of V1 to V4, separately. Please note that an analysis based on individual 

retinotopic maps might have had higher sensitivity to detect weak effects in areas beyond V1. For 

the main analyses, these anatomical masks were collapsed across the left and the right hemisphere. 

Separate masks for the left and right hemispheric portions of these areas were used to investigate 

the lateralization of representations in a post-hoc exploratory analysis. Finally, we also performed 

a post-hoc exploratory analysis without any anatomical preselection of voxels to compare our 

results to previous studies7. 

Univariate analyses of sample related activity  

To estimate BOLD activity during the trial a GLM with seven regressors was designed using 

hemodynamic response functions (HRF) time-locked to the onsets of the following events and 

adjusted by their duration: sample grating onsets (1st regressor), first and second cue onsets (2nd-

3rd), each of the delay period onsets separately modeled taking into account their respective 

durations (4th: prior to the first cue; 5th: following the first cue; 6th: following the second cue) and 

both discrimination task onsets merged into one regressor (7th). To identify voxels that responded 

to our grating stimuli, we generated t-maps contrasting the sample grating onsets (irrespective of 

orientation) against the implicit baseline of the model. Then, individual subject-level t-maps were 
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overlaid with each of the ROIs created for each participant. To avoid an arbitrary selection of n 

voxels for each ROI, we generated 25 versions of every ROI, each representing the n voxels with 

the highest sample related activity. For this, we varied n between 20 and 500 voxels in steps of 20 

voxels. We only considered voxels that were positively activated (t > 0). These ROIs with varying 

sizes were later used in a nested cross-validation to choose an optimal voxel number for each ROI 

which at the same time avoiding overfitting. 

Analyses of multivariate pattern distinctness using cvMANOVA 

The goal of the multivariate pattern analyses was to test whether retinotopic areas in visual, 

parietal and frontal cortex have representations of the remembered attended and unattended 

orientations. For this, we used a recently developed technique for multi-voxel pattern analysis, 

cross-validated MANOVA10. cvMANOVA constitutes a variant of multivariate analyses of 

variance32 that can be used to quantify differences in BOLD response patterns24,33. The method is 

comparable to more common classifier-based ‘decoding’ analyses11-14,20–24,34-43 but has a number 

of advantages: It avoids binary classification in favor of a continuous measure of patterned 

differences, performs a parameter-free analysis based on a probabilistic model of the data (the 

multivariate general linear model) and results in an interpretable multivariate effect size (explained 

variance). Moreover, since D is a cross-validated version of a likelihood-ratio statistic, it can be 

expected to be more sensitive than classification accuracy (cf. Fig. 3d in Ref.10). Please note that 

prior work employed data from one-item tasks (i.e. including only attended items) for classifier 

training to avoid training on ambiguous two-item data where the representations of two items 

might overlap6,7. This analysis potentially biases the results in favor of attended memory items. 

Prior work failed to identify information for either attended or unattended items when only using 

data from two-item tasks7, possibly due to a lack of power. Here, to avoid biasing our results, we 
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only recorded data in two-item tasks and significantly increased the N to counteract the lowered 

power when training on such data.  

Here, we used cvMANOVA to ask whether activity patterns in our ROIs carried information 

about the memorized contents. As a first step, a multivariate general linear model (MGLM) using 

finite impulse response (FIR) functions was used to estimate memory-related activity in each 

voxel. Two first level models were estimated for samples presented in the left and the right visual 

field respectively. For each of the 6 orientations per side, we used 12 regressors to model the entire 

24 seconds of each trial in 2-second time bins (i.e. the length of the TR) spanning the time between 

onset of the masks (after sample presentation) until two seconds after the end of the trial (only a 

subset of this time was in the actual decoding analysis time window, see below and Fig. 1). This 

set of regressors was modeled for each orientation in two different conditions: when a particular 

orientation was selected by the cue and when it was not (24 regressors per sample grating). BOLD 

activity in each voxel was fitted with this set of FIR regressors separately for each of the four runs. 

Thus, we had 144 regressors per run for the left and the right side separately (factors: ‘time point’ 

[12] × ‘attended/unattended’ [2] × ‘orientation’ [6]) collapsing across repeat and switch trials and 

a constant regressor to model the run mean. Parameter estimates and residuals from these two 

models were then used in the region-based cvMANOVA.  

Within each model, to test the effect of orientation identity, we used two contrast matrices 

which (with respect to a single time point) had the forms 
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(

 
 
 
 
 
 
 
 
 

1 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
0 0 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 )

 
 
 
 
 
 
 
 
 

, for attended items and

(

 
 
 
 
 
 
 
 
 

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
0 0 0 0 −1)

 
 
 
 
 
 
 
 
 

, 

for unattended items, where the 12 rows correspond to the 12 regressors for attended and 

unattended orientations. 

The columns correspond to the five partial contrasts (comparing orientations 1 vs. 2, 2 vs. 3, 

3 vs. 4, 4 vs. 5, and 5 vs. 6) together defining the effect of orientation. We analyzed the four time-

points following the presentation of the first cue (i.e. FIR bins 5-8, when attended and unattended 

items are differentiated) with a shift of two seconds to account for hemodynamic delay. For this, 

the two contrast matrices were replicated and zero padded. This can be exemplified for attended 

memory items (‘A’ = 1) as follows: 
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𝑇 𝑂 𝐴  
1 1 1  
2 1 1  
3 1 1  
4 1 1  
5 1 1  
6 1 1  
7 1 1  
8 1 1  
9 1 1  
10 1 1  
11 1 1  
12 1 1  
1 2 1  
2 2 1  
3 2 1  
4 2 1  
5 2 1  
6 2 1  
⋮ ⋮ ⋮  
    

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0 0 0 ⋯
0 0 0 0 0 0 ⋯
0 0 0 0 0 0 ⋯
0 0 0 0 0 0 ⋯
1 0 0 0 0 0 ⋯
0 1 0 0 0 0 ⋯
0 0 1 0 0 0 ⋯
0 0 0 1 0 0 ⋯
0 0 0 0 0 0 ⋯
0 0 0 0 0 0 ⋯
0 0 0 0 0 0 ⋯
0 0 0 0 0 0 ⋯
0 0 0 0 0 0 ⋯
0 0 0 0 0 0 ⋯
0 0 0 0 0 0 ⋯
0 0 0 0 0 0 ⋯
−1 0 0 0 1 0 ⋯
0 −1 0 0 0 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 

Here, the rows correspond to the 144 regressors per run, with FIR regressors for all 12 time-

points (‘T’) of each orientation condition (‘O’) grouped together. For the two contrasts per model 

we estimated the amount of multivariate variance explained by the encoded effect relative to the 

multivariate error variance using cross-validated MANOVA10. 

cvMANOVA estimates the variance of the multivariate fMRI time series that can be 

explained by a contrast between conditions (here: differences in multivariate responses to different 

orientations). The ‘pattern distinctness’ 

D = trace (
1

n
B′CC−X′XCC−B · Σ−1),

where C is the contrast matrix, B is the parameter matrix, n is the number of scans, X is the design 

matrix, and Σ is the error covariance matrix. D is the amount of multivariate variance explained 

by the effect encoded in the contrast in units of the multivariate error variance. In order to obtain 
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an unbiased estimate of the explained variance cross-validation is used (see Ref.10 for details). 

Because of the in some cases large number of voxels in a region, explained variance was computed 

relative to an estimate of the multivariate error variance Σ which was regularized towards the 

diagonal, using an optimized regularization parameter44. 

 In the present application, if different orientations would elicit the same multivariate 

response, D would on average be 0, while different responses to different orientations would lead 

to an average D larger than 0. D for attended and unattended orientations was averaged across 

orientations shown in the left and right visual field. 

This procedure was performed separately for all ROIs using varying voxel counts (between 

20 and 500 voxels, see above). In order to select the optimal number of voxels for each area within 

each subject and analysis while avoiding double-dipping, we used a nested cross-validation 

approach. For every subject, we averaged D across all other subjects for all 25 possible ROI sizes 

and selected the ROI size with maximal D. D for the left-out subject with this ROI size was kept 

and this procedure was repeated for every subject.  

While the main analysis used one contrast for attended and unattended contents, each across 

time points, we also performed a post-hoc exploratory analysis that used separate contrasts for the 

twelve time points we estimated in the (FIR-based) multivariate general linear model to generate 

time courses (Fig. S4). Above-zero D for each time point indicates that the multivariate responses 

to different orientations are different at that time point, but not necessarily that this multivariate 

response difference stays the same over time. We thus finally wanted to assess whether the 

informative brain patterns are stable across time (akin to generalization in a cross-classification 

analysis), in particular between the time point directly prior to the onset of the cue and the two 
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time-points at 6–10 seconds after the cue onset. Where standard cvMANOVA quantifies the 

pattern information in the form of variance explained by a contrast (here between different 

orientations), for this purpose we used a variant that estimates the amount of similarly encoded 

pattern information in the form of explained variance shared between two contrasts (orientation-

specific responses at two different time points), the ‘pattern stability’  

xD = trace (
1

n
B′C1C1

−X′XC1C2
−B · Σ−1), 

where C1 and C2 are the two different contrast matrices, B is the parameter matrix, n is the 

number of scans, X is the design matrix, and Σ is the error covariance matrix. Again, cross-

validation is used to obtain an unbiased estimate. xD is on average 0 if there is no shared variance 

between the two contrasts, i.e. if the respective informative patterns are orthogonal to each other. 

Statistical testing 

Group-level statistics (n = 87 human subjects) were performed using one-sample and paired 

t-tests. Please note that one-sample t-tests do not provide population inference45. The data was 

tested for deviation from normality using Kolmogorov–Smirnov tests. We applied Bonferroni 

correction to all resulting p-values to account for the number of areas tested in a given analysis. 

 To test whether the reduction of representational strength in UMI vs AMI is different 

between regions, one would normally test for an interaction using an ANOVA with the factors 

attention and region. Standard interaction analyses test the difference (e.g. between areas) of a 

difference (e.g. between the conditions, DAMI - DUMI) for significance. However, information 

measures are generally not comparable between brain areas as a result of their unique neural 

topology, vascular structure, and levels of physiological noise46-48. In a post-hoc exploratory 

analysis, we therefore adopted the strategy to first quantify the effect of attention within region by 
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an attentional modulation factor DAMI / DUMI, i.e. the ratio between the average D under AMI and 

UMI, which should be comparable between regions. We then computed the three pairwise 

differences of attenuation factors between the three regions, and assessed significant difference 

from 0 by means of bootstrap confidence intervals on these differences49 based on 100,000 

resamples of the 87 subjects, at 95 % confidence corrected for multiple comparisons. 

For behavioral analyses, proportions of correct responses were calculated treating missed 

responses as errors. Reaction time analyses were conducted excluding missed responses. 

Differences in proportions of correct responses were tested using two-tailed Wilcoxon signed rank 

test (n = 87). Discrimination thresholds were averaged across all trials. Correlations between 

discrimination thresholds and measures of pattern distinctness for attended and unattended 

memory items were tested using Pearson's linear correlation coefficients. 

Data availability  

The MRI and behavioral data that were used in this study are available to researchers from 

the corresponding author upon request. 

Code availability  

MATLAB source code for cvMANOVA is available online 

(https://github.com/allefeld/cvmanova/releases). For the analyses in this paper we used v2 (2015–

1–12).  

Additional References 

21. Christophel, T.B., Hebart, M.N. & Haynes, J.-D. J. Neurosci. 32, 12983–12989 (2012). 

22. Christophel, T.B. & Haynes, J.-D. Neuroimage 91, 43–51 (2014). 

23. Christophel, T.B., Cichy, R.M., Hebart, M.N. & Haynes, J.-D. Neuroimage 106, 198–206 

(2015). 



27 

 

24. Christophel, T.B., Allefeld, C., Endisch, C. & Haynes, J.-D. Cereb Cortex 1–16 

(2017).doi:10.1093/cercor/bhx119 

25. Schneegans, S. & Bays, P.M. Journal of Cognitive Neuroscience 1–18 

(2017).doi:10.1162/jocn_a_01180 

26. Brainard, D.H. Spat. Vis. 10, 433–436 (1997). 

27. Pratte, M.S. & Tong, F. J. Vis. 14, 22, 1–12 (2014). 

28. Görgen, K., Hebart, M.N., Allefeld, C. & Haynes, J.-D. arXiv:1703.06670 [q-bio, stat]  

(2017).at <http://arxiv.org/abs/1703.06670> 

29. Friston, K.J. et al. Hum. Brain Map. 2, 189–210 (1994). 

30. Wang, L., Mruczek, R.E.B., Arcaro, M.J. & Kastner, S. Cereb Cortex 25, 3911–3931 (2015). 

31. Ashburner, J. & Friston, K.J. Neuroimage 26, 839–851 (2005). 

32. Timm, N.H. (Springer: New York (NY), 2002). 

33. Guggenmos, M., Wilbertz, G., Hebart, M.N. & Sterzer, P. eLife 5, e13388 (2016). 

34. Haynes, J.D. & Rees, G. Nat. Neurosci. 8, 686–691 (2005). 

35. Haynes, J.-D. & Rees, G. Curr. Biol. 15, 1301–1307 (2005). 

36. Haynes, J.-D. & Rees, G. Nat. Rev. Neurosci. 7, 523–534 (2006). 

37. Kamitani, Y. & Tong, F. Nat. Neurosci. 8, 679–685 (2005). 

38. Soon, C.S., Brass, M., Heinze, H.J. & Haynes, J.D. Nat. Neurosci. 11, 543–545 (2008). 

39. Sterzer, P., Haynes, J.-D. & Rees, G. J. Vis. 8, 10.1-12 (2008). 

40. Cichy, R.M., Chen, Y. & Haynes, J.D. Neuroimage 54, 2297–307 (2011). 

41. Riggall, A.C. & Postle, B.R. J. Neurosci. 32, 12990–12998 (2012). 

42. Lee, S.-H., Kravitz, D.J. & Baker, C.I. Nat. Neurosci. 16, 997–999 (2013). 

43. Bettencourt, K.C. & Xu, Y. Nat. Neurosci. 19, 150–157 (2016). 

44. Schäfer, J. & Strimmer, K. Stat. Appl. Genet. Mo. B. 4, 1–30 (2005). 

45. Allefeld, C., Görgen, K. & Haynes, J.-D. Neuroimage 141, 378–392 (2016). 

46. Dubois, J., Berker, A.O. de & Tsao, D.Y. J. Neurosci. 35, 2791–2802 (2015). 

47. Haynes, J.-D. Neuron 87, 257–270 (2015). 

48. Hebart, M.N. & Baker, C.I. NeuroImage  (2017).doi:10.1016/j.neuroimage.2017.08.005 

49. Efron, B. & Tibshirani, R.J. (CRC Press: 1994). 

 

Competing financial interests 

The authors have no competing interests, or other interests that might be perceived to 

influence the results or discussion reported in this paper. 


