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Abstract 

In two previous experiments we investigated the neural precursors of subjects’ “free” 
choices for one of two options (pressing one of two buttons, and choosing between adding 
and subtracting numbers). In these experiments the distribution of sequence lengths was 
taken as an approximate indicator of the randomness (or lack of sequential dependency) of 
the choice sequences. However, this method is limited in its ability to reveal sequential 
dependencies. Here we present a more detailed individual-subject analysis and conclude 
that despite of the presence of significant sequential dependencies the subjects’ behavior 
still approximates randomness, as measured by an entropy rate (on pooled data) of 0.940 
bit / trial and 0.965 bit / trial in the two experiments. We also provide the raw single-subject 
behavioral data. 
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Introduction 

Two previous experiments from our research group (Soon et al. 2008 and Soon et al. 2013 – 
in the following: “experiment 1” and “experiment 2”) assessed the degree to which the 
outcome of subjectively free decisions can be predicted from preceding brain signals. Using 
a combination of functional magnetic resonance imaging and multivariate pattern 
classification, these experiments found that the outcomes of choices can be predicted with 
up to around 60 % accuracy from patterns of brain activity in medial prefrontal and parietal 
cortex as early as 7 seconds prior to the time when the participants believed to be making 
their decisions.  

An interesting question in such a prediction of free choices is the degree to which a 
prediction might reflect or even be influenced by the choice on the previous trial (Lages and 
Jaworska 2012, Heinzle et al. 2009, Soon et al. 2008, 2013), especially since it is known that 
humans are particularly poor at generating random sequences (for a review see Nickerson 
2002).  

Sequence length distributions 

In the original papers (Soon et al. 2008, 2013) the assessment of randomness relied 
predominantly on the distribution of sequence lengths. This distribution is estimated by 
calculating the relative frequency with which sequences of exactly N identical choices occur 
in the time series, for each sequence length N. If a subject’s choice sequence between two 
options A and B were say ABBAAABB this would mean one sequence with length N = 1, two 
sequences with length N = 2 and one sequence with length N = 3. Note that for the analysis 
of experimental data the first and last sequence from each run have to be discarded 
because it is impossible to tell whether they might have been cut off. In case the subject’s 
choices are purely random, i.e. choices are sequentially independent and the two 
possibilities are chosen with the same probability, this is equivalent to the probability of 
sequences in tossing an unbiased coin. The resulting sequence length distribution is 

pN = 0.5N. 

Our original two papers reported that sequence length distributions showed a behavior very 
similar to this theoretical expectation. However, in these studies the data were pooled 
across subjects. In this report, we extend this information by the exact choice sequences for 
individual subjects and experimental runs (see Appendices 1 and 2). While the assessment 
of randomness  based on sequence length distributions is limited, we include it here for 
comparison to the original papers before proceeding to more sensitive analyses. 

Figure 1 shows the estimated probability of sequences with length N as a function of N for 
each individual subject S1–S12 (black bars) in experiment 1 (left or right hand button 
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presses). For comparison, it also shows superimposed the expected distribution of sequence 
lengths for a process where each option is selected randomly and independently from the 
previous trial with a probability of 0.5 (red line). Please note that this parameter-free 
theoretical distribution neglects the effects of limited sampling, i.e. the influence of the 
limited number of trials per run. It fits the distributions for most subjects quite well, except 
for an overabundance of short trials. The same effect was apparent in the analysis of the 
data pooled across subjects (Supplementary Figure 2, Soon et al. 2008).  

Figure 2 shows the same analysis for each individual subject S1–S17 in experiment 2 (adding 
or subtracting numbers). As in the previous experiment (Figure 1), the parameter-free 
theoretical function fits the distributions for most subjects quite well, again with the 
exception of a disproportional number of short trials, which was already apparent in the 
original analysis of pooled data (Supplementary Figure 1, from Soon et al. 2013). 

Probabilities of choices 

One possible deviation from producing an ideal random sequence would be given if the 
subjects had a bias towards one of the two choices. The estimated probabilities (relative 
frequencies) of choosing “left” or “right” in experiment 1 are given in the columns pL and pR 
in Table 1, and for choosing “addition” or “subtraction” in experiment 2 in the columns pA 
and pS in Table 2, separately for each subject. 

A statistical assessment of equiprobability is given by the p-value for a binomial test versus 
pL = pR = 0.5 and pA = pS = 0.5, respectively, in the column “binomial” of Tables 1 and 2. This 
application of the binomial test is not exact, because the test assumes independent 
samples, i.e. here sequential independence, which is not the case in this dataset (see 
below). To account for this fact, we assessed the p-values at a more lenient significance 
level of 0.1 to be more sensitive to possible deviations. The result is indicated by an asterisk 
in the tables: Equiprobability is formally rejected in 1 of 12 subjects in experiment 1, and 4 
of 17 subjects in experiment 2. Please note that not rejecting the null hypothesis cannot be 
considered proof of its truth. Furthermore – for reasons of experimental design – in the 
original experiments participants had been pre-selected based on independent pilot 
experiments where the balance between both options was one criterion for selection (Soon 
et al. 2008). Thus the observed balance between left and right choices cannot be 
generalized to the full population of potential subjects. 

The largest bias of 0.713 vs 0.287 occurs in S14 of experiment 2. On the whole, however, the 
choices were quite balanced in most subjects. Moreover, there is no systematic difference 
between choice probabilities across subjects; sign permutation tests applied to the 
probability differences (pL – pR and pA – pS) result in p-values of 0.6 and 0.871 for 
experiments 1 and 2, respectively. 
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Figure 1: Distribution of sequence lengths from experiment 1, separately for the 12 
subjects. The black bars show the probabilities estimated from the data and the red 
line the theoretical expectation for comparison.  

 
 
Prediction analysis 

The previous two analyses show that the imbalance between choices is weak in most 
subjects and that the sequence lengths roughly follow the distribution that would be 
expected if choices were made sequentially independent and with equal probability. 
However, as expected from the fact that humans cannot produce perfectly random 
sequences (Nickerson 2002) small deviations from the expected distribution pN of sequence 
lengths were observed. We therefore assessed to which degree it would be possible to 
predict choice C(t + 1) from the previous choice C(t). In contrast to analyses of predictability 
of continuous data such as neurophysiological signals, each data point here can take on only 
two different discrete values. Therefore, instead of using a more complex classifier such as a 
support vector machine (see e.g. Müller et al. 2001 for a review), we used the following 
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simple rule: We selected as the prediction of the next choice the one which followed most 
frequently the given previous choice. 

 

 

Figure 2: Distribution of sequence lengths from experiment 2, separately for the 17 
subjects. The black bars show the probabilities estimated from the data and the red line 
the theoretical expectation for comparison. 

 

That is, transition probabilities 

Tij = Pr( C(t + 1) = i | C(t) = j ) 

were estimated from the data based on how often the transitions occured in the data. For 
two choices, the four transition probabilities Tij are arranged in a 2 ⨉ 2 transition matrix T, 
whose entries add up to 1 in each column (see Figures 3 and 4 for examples). A transition 
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matrix was estimated from a subset of the data (“training”) and then used to predict choices 
in the remaining independent part of the data (“test”). Specifically, cross-validation was 
implemented across runs, meaning that the data from one run served as test data and the 
remaining runs served as training data, using each run in turn for testing. The resulting 
prediction accuracies were then averaged across cross-validation folds. Prediction of choice 
C(t+1) was implemented by selecting the column corresponding to the previous choice C(t) 
and then selecting the next choice depending on which of the two possibilities had the 
higher probability. 

 

 pL pR binomial accuracy Bernoulli Markov order entropy pstay pswitch 
S1 0.528 0.472 0.6718 0.36 0.6541 0.6115 2 0.968 0.532 0.468 
S2 0.480 0.520 0.7644 0.62 0.0340 * 0.8329 2 0.959 0.378 0.622 
S3 0.511 0.489 0.9179 0.69 0.0009 ** 0.1906 3 0.870 0.310 0.690 
S4 0.449 0.551 0.4282 0.58 0.1492 0.1544 3 0.930 0.412 0.588 
S5 0.468 0.532 0.4976 0.71 0.0000 ** 0.9453 1 0.873 0.287 0.713 
S6 0.600 0.400 0.0929 * 0.66 0.0013 ** 0.7741 2 0.838 0.329 0.671 
S7 0.543 0.457 0.4351 0.75 0.0000 ** 0.3847 2 0.813 0.253 0.747 
S8 0.476 0.524 0.6536 0.57 0.1957 0.0175 * 2 0.926 0.439 0.561 
S9 0.461 0.539 0.5250 0.74 0.0000 ** 0.3158 3 0.841 0.266 0.734 
S10 0.522 0.478 0.7069 0.59 0.1132 0.5231 3 0.974 0.417 0.583 
S11 0.472 0.528 0.5887 0.74 0.0000 ** 0.0265 * 2 0.790 0.274 0.726 
S12 0.533 0.467 0.6445 0.62 0.0807 0.7939 2 0.952 0.385 0.615 
 0.500 0.500      0.940 0.353 0.647 

Table 1: Analysis of behavioral data from experiment 1. For 12 subjects, the columns 
show: estimated probabilities for choices “L” and “R”; p-value and significance (α = 
0.1) of a binomial test versus pL = pR = 0.5; cross-validated accuracy for predicting a 
choice from the previous one; p-value and significance (α = 0.05, 0.01) for a test of 
sequential independence (Bernoulli process); p-value and significance (α = 0.05, 0.01) 
for a test of sequential dependence on the last choice only (Markov property); 
estimated optimal order of a Markov model; entropy rate in bit / trial of the choice 
sequence according to a second-order Markov model; estimated probabilities for 
staying with the same choice or switching to the other choice. Some of the values are 
also given with respect to data pooled across subjects in the last row. 

 

The cross-validated prediction accuracies for each subject are shown in the column 
“accuracy” in Tables 1 and 2. The average classification accuracy across subjects is 0.64 
(±0.031) in experiment 1 and 0.62 (±0.015) in experiment 2. 
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 pA pS binomial accuracy Bernoulli Markov order Entropy pstay pswitch 
S1 0.542 0.458 0.4394 0.58 0.1548 0.9067 2 0.976 0.423 0.577 
S2 0.495 0.505 1.0000 0.62 0.0379 * 0.0359 * 3 0.912 0.387 0.613 
S3 0.532 0.468 0.4976 0.70 0.0000 ** 0.9161 3 0.855 0.295 0.705 
S4 0.538 0.462 0.3588 0.66 0.0001 ** 0.3659 3 0.926 0.342 0.658 
S5 0.482 0.518 0.7750 0.58 0.0750 0.4165 2 0.956 0.410 0.590 
S6 0.572 0.428 0.0964 * 0.62 0.0009 ** 0.1561 2 0.906 0.370 0.630 
S7 0.474 0.526 0.6398 0.48 0.5560 0.2925 2 0.980 0.538 0.462 
S8 0.539 0.461 0.4264 0.58 0.0671 0.3290 2 0.958 0.415 0.585 
S9 0.489 0.511 0.8250 0.67 0.0000 ** 0.0368 * 2 0.877 0.328 0.672 
S10 0.618 0.382 0.0044 * 0.61 0.8604 0.0191 * 2 0.919 0.535 0.465 
S11 0.500 0.500 1.0727 0.60 0.0560 0.0136 * 2 0.895 0.400 0.600 
S12 0.500 0.500 1.0858 0.58 0.2506 0.0665 3 0.904 0.421 0.579 
S13 0.482 0.518 0.8939 0.63 0.1392 0.2991 2 0.870 0.370 0.630 
S14 0.713 0.287 0.0000 * 0.73 0.3048 0.0301 * 3 0.777 0.538 0.462 
S15 0.492 0.508 0.9307 0.57 0.1501 0.2925 2 0.970 0.434 0.566 
S16 0.578 0.422 0.1371 0.72 0.0000 ** 0.0430 * 2 0.767 0.283 0.717 
S17 0.336 0.664 0.0004 * 0.66 0.0315 * 0.2593 3 0.884 0.459 0.541 
 0.524 0.476      0.965 0.405 0.595 

Table 2: Analysis of behavioral data from experiment 2. For 17 subjects, the columns 
show the estimated probabilities for choices “A” and “S”; for an explanation of the 
further columns, see Table 1. 

 

Stochastic process analysis 

In agreement with previous findings (Nickerson 2002), the sequence length statistics and 
the prediction analyses indicate that there are weak deviations from purely random 
behavior in the choice sequences of subjects. 

The existence of such dependencies over one step can be assessed exactly for each subject 
by testing the null hypothesis of a Bernoulli process (using Fisher's exact test applied to the 
transition counts treated as a contingency table; compare Fisher 1954). The resulting p-
values are shown in Tables 1 and 2, column “Bernoulli”. The null hypothesis of no sequential 
dependency over one step can be rejected at the standard significance level of 0.05 for 7 of 
12 subjects in experiment 1, and for 7 of 17 subjects in experiment 2; in most of these the p-
value is even below 0.01. 

There are two natural follow-up questions: The first is how strong the dependencies are. 
The second is whether sequential dependencies are limited to one step, i.e. whether the 
choice behavior of the subjects conforms to a first-order Markov process. 
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We first turn to the question of Markov order. The null hypothesis of a first-order Markov 
process can be tested using the “minimum discrimination information” approach of Kullback 
et al. (1962); the resulting p-values are shown in Tables 1 and 2, column “Markov”. 
According to this test, sequential dependencies exceeding one step are present in 2 of 12 
subjects in experiment 1, and 5 of 17 subjects in experiment 2. 

Hypothesis tests have a bias in favor of retaining the null hypothesis, and even more so if 
applied in sequence to several nested hypotheses. A better way to assess the extent of 
sequential dependencies is to determine which order a Markov model needs to have such 
that it optimally describes the data. Optimal model orders estimated according to the 
approach of Csiszár and Shields (2000) based on the Bayesian information criterion are 
shown in Tables 1 and 2, column “order”. Data from most subjects appear to be optimally 
modelled by a second-order Markov process. 

Next we turn to the strength of the dependencies. The estimated Markov model order 
assesses the temporal extent of sequential dependencies, but does not quantify their 
strength, or the degree of randomness that the sequential choice behavior of subjects 
retains despite of the influence of previous choices on the next one. The standard way to 
measure randomness is information-theoretic entropy, which quantifies the amount of 
information (surprise) an observer receives when notified of the outcome of a random 
event (see Cover and Thomas 1991). Its adaptation to the case of stochastic processes is the 
entropy rate, the average amount of information received per time step from observing a 
sequence of events. The entropy rate of the choice behavior of subjects, estimated 
according to a second-order Markov model, is given in Tables 1 and 2 for each subject in 
experiment 1 and 2, respectively. Single-subject values vary from 0.767 to 0.980 bit / trial; 
estimated on data pooled across subjects, the entropy rate is 0.949 bit / trial in experiment 
1 and 0.965 bit / trial in experiment 2. For comparison, in the purely random case of 
independent equal-probability choices between two alternatives, the entropy rate would be 
1 bit / trial. 

The sequential choice behavior in detail 

How did the subjects’ choice behavior deviate from randomness? The left panels of Figures 
3 and 4 show one-step transition matrices estimated from the pooled data of all subjects in 
experiment 1 and 2, respectively. They suggest that transitions occur more often in the 
direction of switching to the other choice (“L” → ”R”, “R” → ”L” and “A” → ”S”, “S” → ”A”) 
than staying with the same choice, in a proportion of about 0.6 vs 0.4 on average. Stay and 
switch probabilities estimated for each subject separately, shown in Tables 1 and 2 in 
columns pstay and pswitch, confirm this effect to systematically occur across subjects. 
Estimated switch probabilities are higher than stay probabilities in 11 out of 12 subjects in 
experiment 1, and 14 out of 17 subjects in experiment 2. This tendency to switch also 
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accounts for the higher frequency of sequences of length 1 (see above) than what would be 
expected from a purely random process. 

The right panels of Figure 3 and 4 show the probabilities for the next choice depending on 
the last two previous choices, representing Markov models of order 2. They suggest that the 
preference to switch is more generally a tendency to avoid longer sequences of the same 
choice. Especially in experiment 2 (Figure 4), the probability to switch to the other choice is 
even higher if the two previous choices had been identical, and is lower if there was already 
a switch immediately before. 

 

  

 

Figure 3: Transition probabilities estimated from the data of experiment 1. Left panel: 
First-order Markov model. The two columns correspond to the two possible previous 
choices, the rows to the next choice. Right panel: Second-order Markov model. The four 
columns correspond to the four possible pairs of the two previous choices. Probabilities 
add up to 1 for each column separately. 

 

 

 

Figure 4: Transition probabilities estimated from the data of experiment 2. 
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Discussion 

In this brief report, we analyzed the statistical properties of the sequential choice behavior 
of subjects in two previous experiments (Soon et al. 2008, 2013) in more detail and at the 
individual subject level.  

In most subjects, both possibilities were chosen approximately equally often. This is not 
surprising given that subjects were selected for participation in the experiments based on 
whether they exhibited an approximate balance between choices in a pilot experiment 
before scanning (see Supplementary Material of Soon et al. 2008). The sequence length 
distributions in many subjects follow roughly a distribution that would be expected if 
choices are equiprobable and sequentially independent, but with a higher frequency of 
sequences of length 1. The underlying sequential dependencies can be utilized to predict 
the next choice with an accuracy of about 60 %, and can be shown to be present in most 
subjects. Analysis of the data using a Markov model approach indicates that dependencies 
extend across about two previous choices, but lead only to a small reduction in the amount 
of randomness as quantified by the entropy rate (ca. 0.95 bit / trial). An examination of the 
transition probabilities shows that subjects actively avoid longer sequences of identical 
choices, which accounts for the findings of the sequence length statistics.  

The weak behavioral predictability observed here has been previously reported (Nickerson 
2002, Lages & Jaworska 2012) and has also been observed previously in our own work when 
using more sensitive dependency measures other than sequence length distributions 
(Heinzle, Usnich & Haynes 2009). One interesting question is how this dependency is related 
to brain-based prediction of choices (Lages & Jaworska 2012). Please note that the 
behavioral prediction accuracy cannot be directly compared to the published brain-based 
prediction accuracy of choices because the latter is based on aggregate brain measures 
(runwise parameter estimates rather than single trials, for details see Soon et al. 2008, 
2013). Importantly, there are several reasons that speak for and against sequential 
dependencies as a cause of early predictive information (see Haynes 2011 and Lages & 
Jaworska 2012 for discussions). Furthermore, besides sequential dependencies there are 
several possibilities why early brain activity might be predictive of upcoming choices 
(Haynes 2011). One way to assess the influence of previous trials on brain-based decoding 
accuracy is to perform decoding using labels shifted by one trial. A subsequent paper will 
present a reanalysis of neuroimaging data to address this question. 
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Appendix 

Appendix 1: Behavioral choices of Experiment 1 
Sequences of choices between left and right button presses in 10 runs for each of the 12 
subjects whose fMRI entered the final analysis.  

Subject 1 
RLRLRLLLRL 
LRRRRR 
RRRRLLLL 
LLLRRRRLR 
RRLLLLLLL 
RRLRRRRLLR 
RLLLLLRLRL 
RRLLLRLRL 
LRLLLRRLRL 
LRRLLRRL 
 
Subject 2 
RLRRRLLRLRR 
RLRLRLLLL 
LRLRLRLRRL 
RRLRLLRLRR 
RLRRRLLRLR 
RRRRRLLLRL 
RRRLRLLLRR 
RLRLRRLRLRL 
RLLRLLRLLL 
LRRLRRLLL 
 
Subject 3 
RLRLLRLLR 
RRLLRLRRRL 
RLRLRLLRR 
LRLRRLRRRL 
LRRLLRLRLR 
RLLRRLLRLL 
LRLRLRLLRL 
RRLLRLLLL 
LRRRLRLLR 
RLRLRLRL 
 

Subject 4 
RLRLRRRR 
RRRRLLR 
RLLRRLRR 
RLLRRLRR 
RRRLRRL 
RLRRLLRL 
RLRLLRRL 
LRRLLLL 
RLLRRLLRL 
LLRLRLRL 
 
Subject 5 
RLRRLLRLLLLLR 
LLRLRLRLLRRLR 
LRRRLRLRRLLRRR 
RLLRLRLRLRRLLR 
RLRLRLLRLLLRL 
LRRLRRLRLRLRLR 
LRLLRRLRLRLRRLR 
RLRRLRLLRLRRRLRL 
LRLRLRLRRLRLR 
RLRRLRRRRRRLRL 
 
Subject 6 
RLLLRRLL 
LLRLRLLR 
LRLRLLLR 
LRLRLRLRLL 
RLRLRRRLRL 
RRLLLLR 
LRLLRRLL 
LRLRLRLL 
RLLLRLL 
LLRLRL 
 

Subject 7 
RLLRLRLLR 
RLRLLRLRL 
RLRLLRLRL 
LRRLLRRRLLR 
LRLRLRLLLRR 
RLLLRLLRLRLL 
RLRLRLLLRRL 
LRLRLRRLRRL 
LRLRLLRLRLR 
LLRLRRLRLRL 
 
Subject 8 
RLLRLRRRRRLR 
RLRRLRRLRRRL 
RRLLRLLRRRLLR 
RLLRRLRLLLRR 
LLRRLLLRLRRLL 
RRRLLRLRRLLLR 
RLLLRLRLLRRL 
LRLRLLRLRRR 
LLRLRLLRLLRR 
LLRRRRLRLLRRRL 
 
Subject 9 
RLRLRLR 
LRRRRLLR 
RLRRRRLRR 
LRRLRRRLLRLR 
RLRLRLRLRL 
RLRLRRLLRL 
RLLRLRLLR 
RLRLRLLR 
RLRLRLLL 
RRLLRLRL 
 

Subject 10 
RLRLLRLLLLR 
LRLRLRLLRLL 
RRRRLLLLRRRLL 
RLLRLLRRRLRR 
LLLLLRLRLLRLRL 
RLRLLRLRRLL 
LLLRRRLLRRL 
RLRLLRRLRR 
RLRRLRRLLR 
RLRRRLRLLR 
 
Subject 11 
RLRLRLRRLRLLRLL 
RLLRRLRLRLRLRLRR 
RLRRRRRLLRLRLRR 
RLLRRLRRRLLRL 
RRLLRLLRLRLLRL 
LLRRLRLRLRRLR 
RRLRRLLRRL 
RLRLRLRLL 
RLRLRLRLR 
LRLLRRLRL 
 
Subject 12 
LLRRLRLL 
LRLLRLRR 
LLRRRLR 
LRLLLRL 
RLLRLLLLRL 
RLRRRRLR 
RLRRRLL 
LLLRRLR 
LLRLRLR 
RLLRLR
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Appendix 2: Behavioral choices of Experiment 2 
Sequences of choices between “adding” and “subtracting” in 10 runs for each of the 17 
subjects whose fMRI entered the final analysis.  

Subject 1 
AASASASSSAS 
ASAASSSSSAA 
ASASSASSA 
ASAAAASS 
AAASAASASAS 
AAASAAASSASSA 
SSAASASAA 
ASASASAAAAS 
ASAAASSASSS 
AASSSASAASSAA 
 
Subject 2 
SAASAAASSA 
SSAAASSASAA 
ASSSAASSA 
ASASASSSA 
AASSASASA 
ASSSSASAAAS 
ASSASAAASSA 
ASSASSAASAS 
SSASAAASSAS 
ASSAASSASAS 
 
Subject 3 
AASSSASSAAAAAS 
ASSASASAAASAS 
SSASASAASSASAS 
SSAASSASAASSSA 
ASAASSSSASA 
SASASASASAAAA 
ASSASASASASASS 
ASAASASASASAASA 
AASSASAASASAASA 
ASASAASAASASASAA 
 

Subject 4 
ASAASASASAAAAAA 
ASAASASSAASASAAS 
SAAASASASSSA 
ASAAASASASSAASAS 
ASASAASAASAASSSAA 
ASASSAASASSAASAAS 
ASAAASAASASSSSAASS 
AASAAAASASASSAASASSS 
ASSASAASSASASSSASASA 
ASASASSAASASSSASASSA 
 
Subject 5 
AASASSA 
ASSSSSAASA 
SSASSSSAAA 
ASAAASSAS 
ASSSASSA 
AASASSAASS 
ASASASSASAAS 
SSAAAAASASA 
SASASASSASAAAASSAS 
SSASAASSAASSSAS 
 
Subject 6 
ASSAASAAASSSA 
SAAAASSAAAAAA 
ASASAASASASASAS 
AASAASSSAASASA 
SAASASAASAASSSA 
SAASASSAASAASSA 
SSAASAASAAASAAS 
ASASAASASASSAS 
ASAAASASAAASSAS 
ASAASASSSAAAASAS 
 

Subject 7 
AASAAASASSS 
SSSASAASSS 
SSASAAASAS 
SSSSSAASAAS 
SAASSSSAS 
SSSSAASASSAA 
ASAASSSSASAA 
AASSSAASSAAAA 
SSAAAASSASAAA 
ASAAAASSSSASS 
 
Subject 8 
AASSAASAS 
ASSAASSAAA 
ASSAASAASASSAS 
AAASSSAAAASA 
ASSSAAASASAAS 
SAASSASSAASSA 
SSASASASAAAA 
ASASSSAAAASSSSASA 
ASAAASASAASASA 
SSSAASAASASSAS 
 
Subject 9 
AASASSASAASASS 
SAAASSAASSAASSASSASA 
AASASSASSAASSAASA 
SASSASASAAAASSASAS 
AASSSASAASAASASAS 
SSAASASSAASASASASA 
ASSAAASSSSAAASSSAAS 
SASSAASSASASASSSASAS 
SAASAASASSSAASASSASAS 
SASASASASASAASASSAAS 
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Subject 10 
ASSAASASSSASAAA 
SSAASSAAAAAAAAAA 
AAASAASAASAAAAS 
AAAASAAAAASAA 
AASAAASAAASSAAA 
SAAAASSASSAASSSAS 
ASSASAAASSAAAS 
ASSAASAASSASAAA 
AAAASASSSSASSAA 
ASAAASSASSAASSASS 
 
Subject 11 
SSASSAASAA 
SSAAASSSASA 
SSAAASAASSAA 
SAASSAASSSAAS 
SASASSAAASSSAA 
AASASSASSSAA 
SSASASASASSAASA 
ASASSASASASS 
AASAASAAS 
ASASSAAASSAS 
 
Subject 12 
AASAASSSA 
SSAASSASA 
AAASSSAS 
AASAASSS 
AAASASA 
ASAASASSS 
SSASSAAS 
SASASSAA 
ASSSAASASA 
ASSSAASAAS 
 

Subject 13 
AASASAS 
SSAASS 
SSASAS 
SSASAA 
ASSAASS 
AAASA 
ASAA 
SAASA 
SASSS 
ASSAS 
 
Subject 14 
SAAAAAASASS 
SASAAASSAA 
AASAASAAASA 
AAAASAAAASS 
ASAAAAASA 
SAAASAASSA 
AASAAASAAA 
ASSAAAASAA 
ASAAASAAA 
SAAASAAAAA 
 
Subject 15 
SAAASSSSSAA 
AASSASASSASSA 
ASSSSAAAASASSA 
ASAASASSSAAAA 
AAAASSSASASSSSA 
AASSASAAASASA 
ASASAASASSAA 
ASASASSASSAA 
SSASSSASSASSAAS 
SAASASSSAASSAS 
 

Subject 16 
AASAASAS 
ASAASASSA 
ASAAASAASA 
AASAASASASS 
SASAAASASA 
ASAASAASAS 
SAAASSAASAAS 
ASASAASASAAA 
SASAASASAS 
SASAASSASS 
 
Subject 17 
ASSASSSSSASSA 
SAASSAASSASSA 
SSSSAASASA 
ASAASSSASASS 
SSAASASSASSAS 
SSSSSSASAAAS 
SSASSASSASSSS 
SASSSSSSA 
ASSASASSASSS 
SSSSSASASSAS 
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