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Abstract

In functional magnetic resonance imaging (fMRI), model quality of general linear
models (GLMs) for first-level analysis is rarely assessed. In recent work (Soch et al.,
2016: “How to avoid mismodelling in GLM-based fMRI data analysis: cross-validated
Bayesian model selection”, NeuroImage, vol. 141, pp. 469-489; DOI: 10.1016/j.
neuroimage.2016.07.047), we have introduced cross-validated Bayesian model selection
(cvBMS) to infer the best model for a group of subjects and use it to guide second-level
analysis. While this is the optimal approach given that the same GLM has to be used
for all subjects, there is a much more efficient procedure when model selection only
addresses nuisance variables and regressors of interest are included in all candidate
models. In this work, we propose cross-validated Bayesian model averaging (cvBMA)
to improve parameter estimates for these regressors of interest by combining informa-
tion from all models using their posterior probabilities. This is particularly useful as
different models can lead to different conclusions regarding experimental effects and
the most complex model is not necessarily the best choice. We find that cvBMS can
prevent not detecting established effects and that cvBMA can be more sensitive to
experimental effects than just using even the best model in each subject or the model
which is best in a group of subjects.

Keywords

fMRI-based neuroimaging, mass-univariate GLM, nuisance variables, correlated regres-
sors, cross-validation, Bayesian model averaging.
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1 Introduction

In functional magnetic resonance imaging (fMRI), data are most commonly analyzed
using general linear models (GLMs) which construct a relation between psychologically
defined conditions and the measured hemodynamic signal (Friston et al., 1994; Holmes
and Friston, 1998). This allows to infer significant effects of cognitive states on brain
activation, based on certain assumptions about the measured signal. As different GLMs
can lead to different conclusions regarding experimental effects (Andrade et al., 1999;
Carp, 2012), proper model assessment and model comparison is critical for statistically
valid fMRI data analysis (Razavi et al., 2003; Monti, 2011).
In previous work, we have proposed cross-validated Bayesian model selection (cvBMS)
to identify voxel-wise optimal models at the group level and then restrict group-level
analysis to the best model in each voxel which avoids underfitting and overfitting in
GLM-based fMRI data analysis (Soch et al., 2016). This approach allows for traditional
analysis of neuroimaging data, but uses Bayesian inference for methodological control of
such classical analyses. Importantly, cvBMS detects the model which is optimal in the
majority of subjects, but not necessarily in all of them. Therefore, while this approach is
powerful in a lot of cases and optimal in a decision-theoretic sense, it is not necessary in
other cases and more appropriate alternatives exist.
These cases could, for example, differ by whether regressors of interest are contained in
all models to be compared. By “regressors of interest”, we refer to those predictors whose
estimates enter second-level analysis after first-level estimation. If these regressors are not
part of all models in the model space, e.g. because the models differ by a categorical vs.
parametric description of the experiment using completely different predictors (Bogler
et al., 2013), one must employ the same model in all subjects in order to perform a
sensible group analysis. In this case, cvBMS is the method of choice.
However, if regressors of interest are contained in all models, e.g. because the models only
differ by nuisance regressors describing processes of no interest (Meyer and Haynes, in
prep.), each model provides estimates for the parameters going into group analysis. In
this case, cvBMS might unnecessarily lead one to use a model that is optimal in most
subjects, but still sub-optimal in a lot of them. One could therefore speculate about
performing second-level analysis on parameter estimates from different first-level models,
depending on which model is optimal in each subject and voxel, which could be easily
implemented using subject-wise selected-model maps (Soch et al., 2016).
In the present work, we generalize this idea to motivate a model averaging approach,
more precisely a form of Bayesian model averaging (BMA). In fMRI data analysis, BMA
has been described for dynamic causal models (Penny et al., 2010), but not so far for
general linear models (Penny et al., 2007). In BMA, estimates of the same parameter from
different models are combined with the models’ posterior probabilities (PP) and give rise
to averaged parameter values which are more precise than individual models’ estimates.
These averaged first-level parameters then enter classical second-level analyses. In our
implementation, we calculate PPs from cross-validated log model evidences (cvLME) and
refer to this as cross-validated Bayesian model averaging (cvBMA).
The rest of this paper falls into three parts. In Section 2, we describe the mathematical
details of cvBMA for GLMs in fMRI, resting on both classical and Bayesian inference
for the GLM. In Section 3, we apply cvBMA to simulated data and show that it leads
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to parameter estimates which are closer to their true values than estimates from the
group-level or subject-wise best model. In Section 4, we apply cvBMA to empirical data
before we discuss our results. Again, we show that cvBMA can be more sensitive than
just using even the best GLM in each subject. Moreover, we find that cvBMS can prevent
not detecting established effects, e.g. when using only one model.

2 Theory

2.1 The general linear model

As linear models, GLMs for fMRI (Friston et al., 1994; Kiebel and Holmes, 2011) assume
an additive relationship between experimental conditions and the fMRI BOLD signal, i.e.
a linear summation of expected hemodynamic responses into the measured hemodynamic
signal. Consequently, in the GLM, a single voxel’s fMRI data (y) are modelled as a linear
combination (β) of experimental factors and potential confounds (X), where errors (ε)
are assumed to be normally distributed around zero and to have a known covariance
structure (V ), but unknown variance factor (σ2):

y = Xβ + ε, ε ∼ N(0, σ2V ) (1)

In this equation, X is an n × p matrix called the “design matrix” and V is an n × n
matrix called a “correlation matrix” where n is the number of data points and p ist the
number of regressors. In standard analysis packages like Statistical Parametric Mapping
(SPM) (Ashburner et al., 2016), V is typically estimated from the signal’s temporal auto-
correlations across all voxels using a Restricted Maximum Likelihood (ReML) approach
(Friston et al., 2002b, a). In contrast to that, X has to be set by the user. Especially if
regressors are correlated with each other, there can be doubt about which model to use.
The general linear model (1) implicitly defines the following likelihood function:

p(y|β, σ2) = N(y;Xβ, σ2V ) (2)

GLMs are typically inverted by applying maximum likelihood (ML) estimation to equa-
tion (2). This leads to ordinary least squares (OLS) estimates (Bishop, 2007, eq. 3.15)
if V = In, i.e. under temporal independence, or weighted least squares (WLS) estimates
(Koch, 2007, eq. 4.29) if V 6= In, i.e. when errors ε are not assumed independent and
identically distributed (i.i.d.).
Based on these ML estimates, statistical tests can be performed to investigate brain ac-
tivity during different experimental conditions. These tests however strongly depend on
the design matrix of the underlying model (Carp, 2012). When events overlap in time
or are closely spaced temporally, convolution with the hemodynamic response function
(Henson et al., 2001) will lead to positive correlation between the corresponding regres-
sors. This influences parameter estimates for regressors of interest which in turn influences
statistical tests and can change non-significant to significant or vice versa.
For mathematical convenience, we will rewrite the likelihood function (2) as

p(y|β, τ) = N(y;Xβ, (τP )−1) (3)
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In this equation, P = V −1 is a n×n precision matrix and τ = 1/σ2 is the inverse residual
variance (Koch, 2007, eq. 4.116). For Bayesian inference, it is advantageous to use the
conjugate prior relative to equation (3). We have described this model, the general linear
model with normal-gamma priors (GLM-NG), earlier and derived posterior distributions
on the model parameters (Soch et al., 2016, eqs. 6) as well as the log model evidence for
model comparison (Soch et al., 2016, eqs. 9).
In the following, we will introduce this model quality criterion (Section 2.2) and show
how it can give rise to averaged model parameters (Section 2.3).

2.2 The log model evidence

Consider Bayesian inference on data y using model m with parameters θ. In this case,
Bayes’ theorem is a statement about the posterior density (Gelman et al., 2013, eq. 1.1):

p(θ|y,m) =
p(y|θ,m) p(θ|m)

p(y|m)
(4)

Here, p(y|θ,m) is the likelihood function, p(θ|m) is the prior distribution and the pos-
terior distribution p(θ|y,m) is given as the normalized product of likelihood and prior.
The denominator p(y|m) on the right-hand side acts as a normalization constant on the
posterior density p(θ|y,m) and is given by (Gelman et al., 2013, eq. 1.3)

p(y|m) =

∫
p(y|θ,m) p(θ|m) dθ (5)

This is the probability of the data given only the model, independent of any particular
parameter values. It is also called “marginal likelihood” or “model evidence” and can
act as a model quality criterion in Bayesian inference (Penny, 2012). For computational
reasons, only the logarithmized or log model evidence (LME) L(m) = log p(y|m) is of
interest in most cases. For the GLM-NG, we have derived the posterior distribution
(Soch et al., 2016, eq. 6) and log model evidence (Soch et al., 2016, eq. 9) in earlier work
on model selection for GLMs.
The LME is a reliable model selection criterion as it (i) automatically penalizes for ad-
ditional model parameters by integrating them out of the likelihood (Penny, 2012), (ii)
can be naturally decomposed into model accuracy and model complexity (Penny et al.,
2007) and (iii) accounts for the whole uncertainty about parameter estimates (Gelman
et al., 2013) instead of using point estimates like classical information criteria such as
AIC (Akaike, 1974) and BIC (Schwarz, 1978).
The LME however also requires prior distributions on the model parameters and typically
diverges with ML-style flat priors. As multi-session fMRI data provides a natural basis
for cross-validation (CV), we therefore suggested to use the LME in conjunction with
CV (Soch et al., 2015) in order to avoid the necessity to specify prior distributions (see
Figure S1) which are usually hard to come up with in fMRI research.
In this procedure, a posterior distribution is estimated from all sessions j 6= i using
non-informative prior distributions and then used as an informative prior distribution on
the remaining session i to calculate the LME for this session (Soch et al., 2016). This is
repeated for all CV folds, i.e. for each left-out session i, and the sum of out-of-sample
LMEs (oosLME) then gives rise to the cross-validated LME (cvLME):
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cvLME(m) =
S∑

i=1

log

∫
p(yi|θ,m) p(θ| ∪j 6=i yj,m) dθ (6)

The cvLME has been validated using extensive simulations (Soch et al., 2016) and is
insensitive to the number of folds into which the data are partitioned for cross-validation
(see Figure S2; Soch and Allefeld, in prep.).

2.3 Bayesian model averaging

As log model evidences (LME) represent conditional probabilities, they can be used to
calculate posterior probabilities (PP) using Bayes’ theorem (Hoeting et al., 1999, eq. 2):

p(mi|y) =
p(y|mi) p(mi)∑M
j=1 p(y|mj) p(mj)

(7)

Here, M is the number of models, p(y|mi) is the i-th model evidence where the expo-
nentiated cvLME has to be plugged in and p(mi) is the i-th prior probability which is
usually set to p(mi) = 1/M making all models equally likely a priori. In this latter case,
posterior probabilities are obtained as normalized exponentiated LMEs. Conceptually,
this approach uses the first-level model evidences as the second-level likelihood function
to make probabilistic statements about the model space.
After model assessment using LMEs, the PPs can be used to calculate averaged parameter
estimates by performing Bayesian model averaging (BMA) (Hoeting et al., 1999, eq. 1):

β̂BMA =
M∑
i=1

β̂i · p(mi|y) (8)

Here, β̂i is the i-th model’s parameter estimate for a specific regressor and p(mi|y) is the i-
th model’s posterior probability. Formally, BMA estimates can be seen as the parameter
estimates of a larger model in which the variable “model” has been marginalized out.
Note that, when one model is highly favored by the LME with a PP close to one, BMA is
equivalent to just selecting this model’s parameter estimate. However, BMA automatically
generalizes to cases where LMEs are less clear.1

BMA is theoretically advantageous (Hoeting et al., 1999) by making use of the whole pos-
terior distribution across models, thereby accounting for modelling uncertainty, and has
been empirically shown (Raftery et al., 1997) to provide improved predictive performance,
e.g. measured using a logarithmic scoring rule (Good, 1952).
Model averaging is especially useful in, but not restricted to cases when the regressor
or regressors for which the averaged parameter values are calculated are contained in all
models of the model space. For this reason, BMA is particularly interesting when having
identical regressors of interest, but varying regressors of no interest potentially correlated
to the regressors of interest, which is often the case in fMRI data analysis due to different

1Please note that the cvLME is used for model averaging and therefore session-wise parameter estimates
(e.g. obtained from SPM) are averaged across sessions before applying the BMA equation. In the case
of single-session fMRI data, we suggest to use split-half cross-validation (Soch et al., 2014) and use the
cvLME together with the one estimate for each regressor.
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possible nuisance variables (see Figure 1A). We will investigate such cases in simulation
settings (see Section 3) as well as with empirical data (see Section 4).
For the application of BMA to GLMs for fMRI, we use voxel-wise maximum-likelihood
parameter estimates from SPM’s first-level analysis (Ashburner et al., 2016) and voxel-
wise cross-validated log model evidences as described earlier (Soch et al., 2016) (see Fig-
ure 1B). As we show in the Appendix, maximum likelihood (ML) estimates are equivalent
to maximum a posteriori (MAP) estimates when non-informative priors are used. Finally,
voxel-wise BMA estimates are calculated according to equation (8) (see Figure 1C). To-
gether, this is referred to as cross-validated Bayesian model averaging (cvBMA).
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Figure 1. Model averaging for general linear models in fMRI data analysis. This figure
summarizes our approach of cross-validated Bayesian model averaging (cvBMA). All cal-
culations are performed voxel-wise, an exemplary voxel is highlighted using red crosshairs.
(A) A model space is constructed by adding varying additional regressors (e.g. describ-
ing cues and feedback) to a set of common regressors (e.g. describing targets) which are
included in all models. (B) Model estimation proceeds by classical GLM inversion, re-
sulting in maximum likelihood (ML) parameter estimates (1-4), and by Bayesian GLM
inversion with cross-validation (CV), resulting in maps of cross-validated log model ev-
idences (LME) from which posterior probabilities (PP) can be calculated. (C) Model
averaging proceeds by weighting different models’ estimates for the same regressor with
the corresponding PP to obtain BMA estimates on which second-level inference can be
performed. Parts of this figure are adapted from SPM course material (Stephan, 2010).
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3 Simulation

3.1 Methods

We test the cvBMA approach using simulated data and specifically investigate the impact
of regressor correlation on various parameter estimation methods.
To this end, we imagine three different regressors: a “target” regressor specifying event
onsets for a condition of interest (x1), a “cue” regressor with event onsets before targets
(x2) and a “feedback” regressor with event onsets after targets (x3). Importantly, these
experimental events have close temporal proximity so that convolution with the hemody-
namic response function (HRF) leads to non-orthogonality. Here, we use a trial duration
(tdur) of 2 s and modulate the onset difference (∆t) from 6 s down to 2 s.
Based on these regressors, we define four different models: one consisting of only the
target regressor (m1), two having the target regressor with either the cue regressor (m2)
or the feedback regressor (m3) and one containing all three regressors (m4). In the full
model m4, this leads to covariation of targets x1 with cues x2 and feedbacks x3 where
correlation between regressors decreases with onset difference (see Figure 2A).
For each onset difference or delay, N1 = 10,000 samples with N2 = 25 subjects per
sample are simulated as follows. First, a true model is randomly drawn from M =
{m1,m2,m3,m4} for each subject. For each model and delay, design matrices X for
S = 5 sessions were generated before simulation. Each session consisted of n = 200 scans
at TR = 2 s containing 9 trials with a duration of 2 s in intervals of 20 scans and the
respective delay between target and cue or feedback (see Figure 2A).
Second, true regression coefficients are drawn using the relation

βij = xj + yij

xj ∼ N(µj, σ
2
BS)

yij ∼ N(0, σ2
WS)

where i and j index session and parameter respectively, µj is the true population average
of one regressor’s effect, σ2

BS represents the subject-to-subject variance and σ2
WS represents

the session-to-session variance.
Following a bottom-up approach, the scan-to-scan variance σ2 was set to 1. Then, the
ratio of between-subject variance to within-subject variance σ2

BS/σ
2
WS was set to 2 (cf.

Soch et al., 2016, fig. 6C) and the variances were chosen such that the full model m4

exhibited an expected signal-to-noise ratio 〈SNR〉 = 〈var(Xβ)/σ2〉 of 0.1. This resulted
in values σ2

BS ≈ 1.5 and σ2
WS ≈ 0.75. Finally, the population mean µ1 for the target

effect β1 was calibrated such that the power of a one-sample t-test against µ0 = 0 across
N2 = 25 subjects drawn from a population with total variance of (σ2

BS + σ2
WS) was 0.8 at

a significance level of α = 0.05. This resulted in the value µ1 ≈ 0.75. For the confound
effects β2 and β3, µ was set to 0 reflecting that confound effects exist, but that they are
unsystematic across subjects.2

2For comparison, in an SPM template data set, we have observed the median values µ = 0.14, σ2
BS = 3.33

and SNR = 4.10, i.e. a much higher SNR than in our simulations. These data were first published as a
study on repetition priming (Henson et al., 2002), previously used for model comparison (Penny et al.,
2007) and analyzed according to the SPM8 Manual (Ashburner et al., 2013, ch. 29).
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With µ1 6= 0, simulations allows to assess the true positive rate (TPR), i.e. statistical
power, of a one-sample t-test of β1 against 0. In another N1 = 10,000 simulations, µ1

was simply set to 0 which allows to assess the false positive rate (FPR), i.e. type I error
probability, of the same statistical test.
Third, simulated data are generated by sampling zero-mean Gaussian observation noise
ε ∼ N(0, σ2V ) where the temporal covariance V was set to invoke fMRI-typical auto-
correlations3 and then adding the random noise to the true signal to get a measured
signal y = Xβ + ε that was entered into analyses.
Finally, as the target regressor (x1) was included in all design matrices of our model space,
the model parameter corresponding to target presentation (β1) was estimated using all
four models and models were quantified using the cross-validated log model evidence
(cvLME). Then, we compared four parameter estimates for β1: the one obtained using
the group-level best model (obtained by cvBMS), using the subject-wise best model (with
maximal cvLME), using Bayesian model averaging (obtained by cvBMA) and using the
true model (used to generate the data).

3.2 Results

The impact of covariation between regressors on parameter estimates in the general linear
model (GLM) using ordinary least squares (OLS) is best captured using the inner product
of these regressors. The normalized inner product of two vectors is equal to the cosine of
the angle between them. With 6 s delay, regressors are almost orthogonal, i.e. their angle
is close to 90°. With a delay of 2 s, we observe an angle of 35.7° and a correlation of 0.78
in our simulations (see Figure 2A), implying a considerable degree of non-orthogonality,
but not collinearity between target and cue or feedback regressors.
The precision of parameter estimates can be described by squared errors (SE), i.e. squared
differences between true and estimated parameter values. We were interested in SE(β1),
because the parameter estimate for the target regressor could possibly be confounded by
the cue and feedback regressors, depending on whether they were part of the true model
or not. Additionally, the TPR for a t-test of H1 : β1 > 0 against H0 : β1 = 0 was plotted
against the FPR in a receiver-operating characteristic (ROC) analysis to calculate the
area under the curve (AUC) as a measure of statistical test performance.
First, in the case of a large onset difference, the SEs for this parameter are the same for
all models, because additional regressors do not change parameter estimates if they are
orthogonal to the regressor of interest (see Figure 2B, left panels). Second, when there
is temporal overlap between event regressors, SEs are on average smallest when the true
model is used (see Figure 2B, blue bars), because the model used to generate the data leads
to the most precise parameter estimates. Third, while the true model slightly outperforms
cvBMA estimates, cvBMA estimates slightly outperform the subject-wise best model and
strongly outperform the group-level best model (see Figure 2B, green/red/black), because
BMA accounts for the whole uncertainty over models and does not just select from the
model with maximal LME. Interestingly, the best model and the averaged model get very
close to the true model in cases of moderate correlation which suggests that LMEs are
very decisive so that the advantage of BMA is not very high. This is also reflected in
AUC values not differing very much between models for medium overlap (see Figure 2C).

3In our MATLAB script, V was created using the command: V = toeplitz(exp(-[0:1:(n-1)])).
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The results demonstrate that Bayesian model averaging, i.e. weighting parameter esti-
mates according to the models’ posterior probabilities, can be better than using the best
individual model, i.e. taking parameter estimates from the model with maximal poste-
rior probability. Although cvBMA is worse than using the true model, it is the optimal
approach for empirical data, because the true model is unknown in such cases. These
simulations are therefore a first indication for employing cvBMA in fMRI data analysis.
A second indication will be provided by the analysis of empirical data.
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Figure 2. Simulation performance of cross-validated Bayesian model averaging. This
figure demonstrates that Bayesian model averaging (BMA) can be superior to always
using parameters from the best model as identified by maximal log model evidence (LME).
(A) Design matrices of the full model used in the simulation. Different onset differences
between a target regressor (x1) and preceding cues (x2) as well as subsequent feedback (x3)
are simulated where a delay in seconds implies a certain angle in degrees and correlation
between x1 and x2 as well as x1 and x3. (B) Box plots of squared errors (SE) across
simulations when estimating the target regressor weight (β1) using either the group-level
best model (obtained by cvBMS, black), the subject-wise best model (with maximal
cvLME, red), the averaged model (obtained by cvBMA, green) or the true model (used
to generate the data, blue). Each panel is scaled such that the upper black whisker
corresponds to 95% of the y-axis maximum and the y-axis minimum is at zero. (C) Bar
plots of area under the curve (AUC) when performing an ROC analysis for the second-
level one-sample t-test of β1 against 0. Each panel is scaled to 0.9 < AUC < 1. When
regressors are almost orthogonal, the four estimation techniques do not differ regarding SE
or AUC. With decreasing delay and thus increasing overlap, the true model outperforms
cvBMA and cvBMA outperforms the best-model approaches in terms of both, estimation
precision (B) and test performance (C).
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4 Application

4.1 Methods

We test the cvBMA approach using empirical data from a conflict adaptation paradigm
(Meyer and Haynes, in prep.) and specifically investigate the capability of model averaging
to identify experimental effects that would be undetectable by individual models.
The experimental paradigm (see Figure 3) was an Eriksen flanker task (Eriksen and
Eriksen, 1974) combined with a response rule switch (Bode and Haynes, 2009) giving
a 2 × 2 factorial design, the two factors being conflict (congruent vs. incongruent) and
task set (response rule 1 vs. 2). In each trial, three vertical arrows (pointing upward or
downward) were presented at the center of the screen. The upper and the lower arrow
were either pointing in the same (congruent) or in opposite direction (incongruent) when
compared to the target arrow in the center (see Figure 3C). Subjects were requested to
indicate the direction of the target arrow via right-hand button press, but the response
rule was changing from block to block (see Figure 3C).
Stimuli were presented in 6 sessions with 20 blocks of 10 trials. Each trial consisted of 1
second presentation and 1 second fixation (see Figure 3B). Each block lasted 10× 2 = 20
seconds, was preceded by a 500 ms auditory cue signalling the response rule as well as a
5.5 second delay phase to prepare for the coming block and was succeeded by a 1 second
feedback phase indicating how many blocks would still follow (see Figure 3A). There
were 5 blocks per each of the 4 conditions. The total duration of one block was around
33 seconds and each fMRI session was lasting 666 seconds.
fMRI data were preprocessed using SPM12, Revision 6225 per 01/10/2014 (http://www.
fil.ion.ucl.ac.uk/spm/software/spm12/). Functional MRI scans were corrected for acqui-
sition time delay (slice timing) and head motion (spatial realignment), normalized to
MNI space using a voxel size of 3× 3× 3 mm (spatial normalization), smoothed using a
Gaussian kernel with a full width at half maximum (FWHM) of 6 × 6 × 6 mm (spatial
smoothing) and filtered using a high-pass filter (HPF) with cut-off at T = 128 s (temporal
filtering). Unless otherwise stated, SPM12 default parameters were used.
For first-level analysis, we categorized each block as containing congruent or incongru-
ent stimuli and by whether the response rule switched or stayed relative to the pre-
ceding block.4 This lead to four categories of blocks: congruent-stay, congruent-switch,
incongruent-stay, incongruent-switch. For each subject and each session, a GLM was
specified including four regressors modelling these four types of blocks and two regressors
modelling delay phases for switch blocks and for stay blocks. There was no modelling
of error trials, button presses, reaction times or feedback phases. Each model included
six movement parameters obtained from spatial realignment. A first-order auto-regressive
AR(1) model was used to account for noise auto-correlations.
In second-level analysis, we were interested in the different neural activity in the switch-
delays preceding the application of a new response rule and the stay-delays preceding
the application of the same response rule as before. To again induce correlation between
regressors, we introduce two variable model space features with regressors overlapping
with the delay phase regressors and therefore influencing their estimates.

4The first block was categorized as a switch block, because a new rule had to be applied.
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First, the 500 ms auditory cues before the 5.5 second delay phases were modelled by
two extra regressors, also separated by the switch-stay difference. This model feature was
motivated by the fact these stimulations indeed require two different cognitive processes,
namely auditory perception for the cues and executive planning for the delays.
Second, the first trials of stimulation blocks were additionally modelled by four extra
regressors, separated exactly like the block regressors. This model feature was motivated
by the fact that the first trial of each block could demand a restart cost which was also
observable in the distribution of reaction times, i.e. a significantly higher reaction time
in the first trial compared to later trials (Meyer and Haynes, in prep.).
Taken together, this resulted in four possible models for first-level data (see Table 2): all of
them with blocks and delays being modelled; one with only cue phases being additionally
modelled, one with only first trials being additionally modelled, one with both and one
without both. Across all subjects and sessions, average correlation between delays and
cue phases was 0.63 and average correlation between delays and first trials was 0.46. Like
in our simulation study, the goal was to investigate the properties of statistical inference
being performed with individual models, using the best GLM as identified by maximal
cvLME and using BMA estimates based on the models’ cvLMEs.

auditory cue
0.5 sec delay phase

5.5 sec main block

presentation
1 sec fixation

1 sec

A B 10 x

20 sec pause
≈3 sec feedback

1 sec pause
≈3 sec (exp. dist.)

<<< >>>

L
R

<<<   >>>

L
R

><>   <><

L
R

><>   <><

L
R

C
20 x

Figure 3. Experimental design of the conflict adaptation paradigm. This figure describes
the experiment underlying the data set used for empirical validation of our method. (A)
Sequence of events and exact timing during each of the 20 blocks per session. (B) Se-
quence of events and exact timing during one of the 10 trials per block. (C) Experimental
conditions: The paradigm was a 2 × 2 design with conflict (congruent vs. incongruent)
and task set (response rule 1 vs. 2) being the two factors. Abbreviations: sec = seconds;
exp. dist. = exponentially distributed; L/R = left/right button.
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4.2 Results

On the second level, we focused on the delay phases and looked for a main effect of stay
vs. switch blocks. We hypothesized that delay phases after cues indicating a switch of the
response rule might elicit preparatory processes that lead to higher motor cortex activity
in the left hemisphere (participants responded with their right hand) compared to delay
phases preceding blocks with the same response rule as before. Such an effect has been
suggested by early work on task preparation (Brass and Cramon, 2002), experimentally
demonstrated (Kim et al., 2011) and meta-analytically validated (Kim et al., 2012). In
fact, this main effect later turned out to be due to a positive effect of switch over stay
blocks (see Table 1, right-hand side).
First, we tried to identify this effect using the four first-level models as such. We performed
second-level analysis using the summary-statistic approach (Holmes and Friston, 1998)
and were able to detect a main effect of stay vs. switch in left primary motor cortex using
all models except the one modelling both, cue phases and first trials (see Table 1, upper
section). The effect was not significant at the cluster level under correction for family-wise
errors (FWE) when using the model with cue phases but without first trials, indicating
that modelling the cue phase had a higher impact on parameter estimates for the delay
phase due to their shared variance and higher correlation, making the difference between
stay and switch blocks insignificant.
Next, we performed cross-validated Bayesian model selection (cvBMS) to identify the
group-level optimal model in each voxel (Soch et al., 2015) and observed that all models
are optimal in at least some voxels of the left precentral gyrus (see Table 2). We used
this information to generate selected-model maps (SMM) indicating for each model in
which voxels it is optimal and masked second-level analyses using these SMMs in order
to restrict statistical inferences to those voxels where the corresponding model is best
explaining the data at the group level. This approach, as suggested in previous work
(Soch et al., 2016), lead to the effect only being detected by the models not accounting
for cue phases, again suggesting that modelling these had the greater influence on delay
phase significance (see Table 1, middle section). In the model including first trials but
not cue phases, the main effect of stay vs. switch blocks in left primary motor cortex
was also the global maximum on the respective contrast. This demonstrates that cvBMS
can prevent us from overfitting and not detecting established effects when using just one
model. Notably, the most complex model including both, cue phases and first trials, would
not have been the best choice here.
Last, we compared two estimation methods not being based on individual models: us-
ing parameter estimates from the subject-level optimal models as identified by maximal
LME and using cross-validated Bayesian model averaging (cvBMA) as developed in the
present work. For both methods, voxel-wise cvLMEs were calculated for each model in
each subject. For the best-model approach, first-level parameter estimates in each voxel
were taken from the model having the highest cvLME in this voxel and then subjected to
second-level analysis. For the model averaging approach, first-level parameter estimates
in each voxel were weighted according to posterior probabilities calculated from the mod-
els’ cvLMEs in this voxel (see Figure 1) and the averaged parameters were subjected
to second-level analysis. The best-model approach is equivalent to setting the posterior
probability of the most likely model to 1 and then performing Bayesian model averaging.
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We observe that the effect in question can be identified using both methods, but with
a different degree of significance. When test statistic, cluster size or p-value are taken
as a measure of sensitivity, cvBMA must be judged superior to using the subject-wise
best GLM (see Table 1, lower section). Interestingly, cvBMA does not only calculate the
weighted average of the models’ parameter estimates per voxel, but also seems to make a
compromise regarding the spatial location of the main effect when compared to statistical
inferences based on the individual models (see Figure 4A).
Like our simulation study, this empirical example therefore indicates that performing
cvBMA can be better than using parameter estimates from the subject-wise best GLMs.
Using cvBMA, we can improve parameter estimates for regressors of interest by drawing
information from a variety of models instead of just relying on one particular model.
This is possible, because each model provides parameter estimates for these regressors
and because the models differ in how well they are supported by the measured data, as
quantified by their posterior probabilties. As demonstrated in simulation, by factoring in
our uncertainty in this way, parameter estimates move closer to their true values which
in turn increases the sensitivity for experimental effects.

CA

B

■ w/o cue, w/o 1st    
■ w/o cue, with 1st    
■ BMA estimates

■ overlap of  ■ &  ■
■ overlap of  ■ &  ■

Figure 4. Empirical example for cross-validated Bayesian model averaging. This figure
illustrates how model averaging achieves a compromise between the different models’
parameter estimates. (A) Colored voxels indicate a significant main effect of stay vs.
switch blocks observed when using a model without cue phases and first trials (red), a
model without cue phases but with first trials (blue), both masked with their group-level
selected-model map (SMM) obtained through cross-validated Bayesian model selection
(cvBMS), as well as observed in a second-level analysis on the averaged parameters (green)
obatined via cross-validated Bayesian model averaging (cvBMA). The BMA approach
seems to not only average parameter values, but to also make a compromise regarding
spatial location with respect to the blue (more ventral-posterior) and red (more dorsal-
anterior) clusters. (B) Colored voxels indicate overlap between significant effects using
individual models and cvBMA estimates. The BMA approach shows stronger overlap with
the model including first trials (cyan) than with the one not including them (yellow). By
definition, there is no overlap between these two models as SMMs are mutually exclusive.
(C) Axial sections and color coding used for the panels on the left.
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set-level set-level
x y z F k pFWE GM? x y z t k pFWE GM?

w/o cue phase, w/o 1st trials -15 -13 77 45.98 106 <0.001 no -15 -13 77 6.78 180 <0.001 no
w/o cue phase, with 1st trials -15 -13 77 43.60 175 <0.001 no -15 -13 77 6.60 239 <0.001 no
with cue phase, w/o 1st trials -18 -25 77 20.76 14 0.401 no -18 -25 77 4.56 21 0.237 no
with cue phase, with 1st trials

w/o cue phase, w/o 1st trials -15 -13 77 45.98 13 0.513 no -15 -13 77 6.78 15 0.501 no
-18 -28 77 36.62 16 0.367 no -18 -28 77 6.05 18 0.381 no
-18 8 68 23.72 10 0.691 no -18 8 68 4.87 14 0.547 no

w/o cue phase, with 1st trials -30 -40 71 42.87 100 <0.001 yes -30 -40 71 6.55 135 <0.001 yes
-42 -16 53 4.84 14 0.533 no
-24 -55 59 3.86 10 0.739 no

with cue phase, w/o 1st trials
with cue phase, with 1st trials

averaged model parameter estimates -18 -22 77 28.26 44 0.002 no -18 -22 77 5.32 77 <0.001 no
best model's parameter estimates -18 -16 77 26.81 22 0.021 no -18 -16 77 5.18 71 <0.001 no

Main effect "stay ≠ switch"

no significant effect in left primary motor cortex (AAL 001)

cluster-levelpeak-level cluster-level peak-level

Second-level analyses based on averaged parameters (cross-validated Bayesian model averaging, cvBMA)

First-level model used for
second-level analysis

no significant effect in left primary motor cortex (AAL 001) no significant effect in left primary motor cortex (AAL 001)
no significant effect in left primary motor cortex (AAL 001) no significant effect in left primary motor cortex (AAL 001)

Second-level analyses with unconstrained whole-brain statistical inference (unc., p ≤ 0.001, k = 10)

Second-level analyses masked with selected-model maps (cross-validated Bayesian model selection, cvBMS)

Negative effect "stay < switch"

no significant effect in left primary motor cortex (AAL 001)

Table 1. Empirical example for cross-validated Bayesian model averaging. In each row,
peak-level, cluster-level and set-level statistics are given for an F-test of the main effect
between stay and switch blocks as well as a t-test of the negative effect of stay against
switch blocks. The upper section of the table summarizes unconstrained whole-brain
statistical inference using the four models. The effect in question can be detected using
three models, but not the most complex one. The middle section of the table summarizes
second-level analyses that were masked using selected-model maps (SMM) from cross-
validated Bayesian model selection (cvBMS). The effect in question can be detected
using the two models that do not include cue phase regressors. The lower section of the
table summarizes second-level analysis based on averaged parameters (cvBMA estimates)
and the subject-wise best GLM’s parameter estimates (maximal cvLME). The effect in
question can be detected using both methods, but is stronger when employing the cvBMA
approach. Abbreviations: x, y, z = MNI coordinates; F/t = F-/t-statistic, k = cluster
size; pFWE = family-wise error-corrected p-value; GM = global maximum.
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left right
number of voxels 46334 855 792
w/o cue phase, w/o 1st trials 23548 140 258
w/o cue phase, with 1st trials 9609 252 328
with cue phase, w/o 1st trials 1510 14 0
with cue phase, with 1st trials 11667 449 206

whole-
brain

precentral gyrus

Number of voxels on selected-model maps from cvBMS

First-level model

Table 2. Selected models from cross-validated Bayesian model selection. This table sum-
marizes model selection results for the four models used in the empirical example (see
Figures 3 and 4). For each model, the number of voxels in which it is selected as the
optimal model by cross-validated Bayesian model selection (cvBMS) is given for the left
and right precentral gyrus, taken from the Automated Anatomical Labeling (AAL) atlas
(AAL 001 and AAL 002) and putatively including the primary motor cortices, as well as
at the whole-brain level.
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5 Discussion

We have introduced a model averaging approach for optimizing parameter estimates when
analyzing functional magnetic resonance imaging (fMRI) data using general linear models
(GLMs). We have demonstrated that cross-validated Bayesian model averaging (cvBMA)
serves its intended purpose and that it is useful in practice. As nuisance variables and
correlated regressors are common topics in fMRI data analysis, usage of this technique
reduces model misspecification and thereby enhances the methodological quality of func-
tional neuroimaging studies (Friston, 2009).
Often, psychological paradigms combined with fMRI use trials or blocks with multiple
phases (e.g. cue – delay – target – feedback; see Meyer and Haynes, in prep.), so that the
basic model setup (the target regressors) is fixed, but there is uncertainty about which
processes of no interest (cues, delays, feedback) should be included into the model (An-
drade et al., 1999). Especially in, but not restricted to these cases of correlated regressors
(Mumford et al., 2015), cvBMA has its greatest potential which is why our simulated
data and the empirical examples were constructed like this.
Typically, if one is unsure about the optimal analysis approach in such a situation, just
one model is estimated or, even worse, a lot of models are estimated and model selection is
made by looking at significant effects (Soch et al., 2016). Here, model averaging provides a
simple way to avoid such biases. It encourages multiple model estimation in order to avoid
mismodelling, but calculates weighted parameter estimates by combining the models in
order to avoid subjective model selection. These weighted parameters can then be used
for second-level analyses within standard workflows, e.g. SPM.
Using simulated data, we were able to show that averaged model parameter estimates
have a smaller mean squared error than even the best model’s parameter estimates. Using
empirical data, we demonstrated the trivial fact that different GLMs can lead to the
same effect being either significant or insignificant. Interestingly, we found that the most
complex GLM is not always the best, speaking against the fMRI practitioner’s maxim
that the design matrix should “embody all available knowledge about experimentally
controlled factors and potential confounds” (Stephan, 2010) – though it should still be
applied in the absence of any knowledge about model quality.
Although the most complex model was not optimal in this case, our previously suggested
approach of cross-validated Bayesian model selection (cvBMS) and subsequent masking
of second-level analyses with selected-model maps (SMM) was able to protect against not
detecting an established experimental effect which additionally validates this technique
(Soch et al., 2016). Moreover, cross-validated Bayesian model averaging (cvBMA) was
found to be more sensitive to experimental effects than simply extracting parameter
estimates from the best GLM in each subject which again highlights its applicability in
situations of uncertainty about modelling processes of no interest.
However, we want to caution the reader that model averaging is not a general remedy
against confound effects. In cases of low and medium correlation, cvBMA can be a useful
tool to adjust parameter estimates of experimental regressors for the effects of confound
regressors. But if two HRF regressors are correlated by say 0.99, and just one of them
has an effect on the data, it is almost impossible to find out where this effect really comes
from. Any model selection will either increase the false positive rate (when including an
experimental regressor which does not have an effect) or decrease the true positive rate
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(when including a confound regressor that does not have an effect) of statistical tests for
experimental effects. Even model averaging can only achieve a compromise between these
two suboptima. Also with model selection methods at hand, one should still try to avoid
confounds in experimental designs. And if confounds are unavoidable within subjects,
they should at least not be consistent across subjects.
Moreover, one has to keep in mind that cvBMS and cvBMA do not only perform different
statistical operations, but also have different interpretations. Whereas cvBMS aims at
identifying which psychological model best describes the hemodynamic signal, cvBMA
tries to optimize decisions with respect to certain model parameters, in this case by
improving parameter estimates. For example, if we look at Figure 4A, red and blue voxels
indicate that the respective models are optimal and the respective contrast is significant
in these voxels. In contrast, green voxels indicate that the respective contrast is significant
in these voxels, given that model uncertainty has been removed.
All in all, we therefore see cvBMA as a complement to the recently developed cvBMS.
While cvBMS is the optimal approach when parameters of interest are not identical across
the model space, e.g. because one part of the models uses a categorical and another part
uses a parametric description of the paradigm (Bogler et al., 2013), cvBMA is the more
appropriate analysis when regressors of interest are the same in all models (Meyer and
Haynes, in prep.), such that their estimates can be averaged across models and taken to
second-level analysis for sensible population inference.
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7 Software Note

Implementations of voxel-wise cross-validated Bayesian model selection (https://github.
com/JoramSoch/cvBMS) and cross-validated Bayesian model averaging (https://github.
com/JoramSoch/cvBMA) compatible with SPM8 and SPM12 can be downloaded from
the corresponding author’s GitHub profile (https://github.com/JoramSoch).
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8 Appendix

Consider the general linear model (GLM) given by

y = Xβ + ε, ε ∼ N(0, σ2V ) (A.1)

with known design matrix X and covariance structure V = P−1 as well as unknown model
parameters β and σ2 = 1/τ . Then, maximum likelihood (ML) estimates for regression
coefficients β, their covariance cov(β) and residual variance σ2 are given by

β̂ML = (XTV −1X)−1XTV −1y

ˆcovML(β) = (XTV −1X)−1

σ̂2
ML =

1

n
(y −Xβ̂)TV −1(y −Xβ̂) .

(A.2)

The most common Bayesian treatment of linear regression is the general linear model with
normal-gamma priors (GLM-NG; Bishop, 2007, ch. 3.4; Koch, 2007, ch. 4.3.2). Using
a non-informative prior distribution (Soch et al., 2016, eq. 15), the parameters of the
posterior distribution (Soch et al., 2016, eq. 6) evaluate as

Λn = XTPX

µn = (XTPX)−1XTPy

an =
n

2

bn =
1

2
(y −Xµn)TP (y −Xµn) .

(A.3)

Then, maximum a posteriori (MAP) estimates for regression coefficients β, their covari-
ance cov(β) and residual precision τ are given by

β̂MAP = µn = β̂ML

ˆcovMAP(β) = Λ−1n = ˆcovML(β)

τ̂MAP =
an − 1

bn
≈ an
bn

=
1

σ̂2
ML

.

(A.4)

This demonstrates that ML estimates for the regression coefficients in one session corre-
spond to MAP estimates when analyzing this session with non-informative priors. Given
that all sessions contribute the same amount of evidence – which usually is the case in
fMRI when sessions (approximately) use the same number of scans –, the MAP estimate
from all data is also equal to the average of the session-wise ML estimates

β̂MAP =
1

S

S∑
i=1

β̂
(i)
ML (A.5)

where i indexes session. It follows that BMA using averaged ML estimates (e.g. estimated
using SPM) is equivalent to BMA using MAP estimates obtained with non-informative
priors (e.g. when calculating the cvLME).
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