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f Department of Psychology, Humboldt-Universität zu Berlin, Germany

• Corresponding author: joram.soch@bccn-berlin.de.
BCCN Berlin, Philippstraße 13, Haus 6, 10115 Berlin, Germany.

Abstract

Voxel-wise general linear models (GLMs) are a standard approach for analyzing func-
tional magnetic resonance imaging (fMRI) data. An advantage of GLMs is that they
are flexible and can be adapted to the requirements of many different data sets. How-
ever, the specification of first-level GLMs leaves the researcher with many degrees of
freedom which is problematic given recent efforts to ensure robust and reproducible
fMRI data analysis. Formal model comparisons that allow a systematic assessment of
GLMs are only rarely performed. On the one hand, too simple models may underfit
data and leave real effects undiscovered. On the other hand, too complex models might
overfit data and also reduce statistical power. Here we present a systematic approach
termed cross-validated Bayesian model selection (cvBMS) that allows to decide which
GLM best describes a given fMRI data set. Importantly, our approach allows for non-
nested model comparison, i.e. comparing more than two models that do not just differ
by adding one or more regressors. It also allows for spatially heterogeneous modelling,
i.e. using different models for different parts of the brain. We validate our method
using simulated data and demonstrate potential applications to empirical data. The
increased use of model comparison and model selection should increase the reliability
of GLM results and reproducibility of fMRI studies.
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fMRI-based neuroimaging, mass-univariate GLM, model misspecifcation, underfitting
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1 Introduction

Over the last 20 years, the general linear model (GLM; Friston et al., 1994; Holmes and
Friston, 1998) has been the main workhorse in the analysis of functional neuroimaging
data. Though many alternatives are available – e.g. network modelling approaches (Smith
et al., 2011) such as dynamic causal modelling (Friston et al., 2003), multivariate pat-
tern analysis (Haxby, 2012) or representational similarity analysis (Kriegeskorte et al.,
2008) –, the GLM approach remains the most important analysis method for task-based
experiments using functional magnetic resonance imaging (fMRI), among other reasons
because it is well understood and highly flexible.
However, this flexibility has its drawbacks as well. Using the GLM, a researcher has to
make a lot of modelling decisions – which processes to consider relevant, which experi-
mental events to model and in which detail, which hemodynamic basis set to use etc. –,
many of which strongly influence the sensitivity of the analysis. This situation tempts the
researcher to run not just one analysis based on a priori information about the paradigm
and previous experience or general recommendations (Josephs and Henson, 1999; Grin-
band et al., 2008), but to try many different models until good results are obtained (Leek
and Peng, 2015). This strategy, a form of so-called p-hacking (Simonsohn et al., 2014),
may render the false positive rate much higher than indicated by the nominal significance
level (Simmons et al., 2011) and is one of the reasons for recent doubt about the repro-
ducibility of neuroimaging studies (Pernet and Poline, 2015; Glatard et al., 2015). On the
other hand, the obvious solution – to decide for a single analysis pipeline in advance and
refrain from post-hoc modifications, a procedure referred to as pre-registration (Boekel
et al., 2015) – often leads to a suboptimal model which may fail to detect a real effect.
In this paper, we propose a different approach: to select an optimal model from a number
of candidate models, but without recourse to the statistical significance of a test based
on this model. Instead, we apply Bayesian model selection (BMS; MacKay, 2003; Bishop,
2007) to general linear models. Note that we do not propose to replace null hypothesis
tests with Bayesian procedures, but only suggest to select the optimal model via BMS
and then apply a standard GLM-based hypothesis test (t-test or F -test).
In the following section, we examine the problem of model misspecification in more detail,
review relevant literature and motivate our own approach which uses cross-validation
(Arlot and Celisse, 2010) on the first level to utilize empirically informed priors and
employs random-effects model selection (Stephan et al., 2009) on the second level to
account for possibly different optimal models in different subjects. We also give a short
overview of the method’s output for non-technical readers. The third section derives
the mathematical details of our approach which is applied to an empirical data set in
the fourth section. Finally, we validate our method in two simulated model spaces and
discuss several of its implications.
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2 Background

2.1 Model misspecification

For almost every psychological paradigm that can be implemented as an fMRI experiment,
there exist several plausible ways to model it in a GLM (Monti, 2011; Carp, 2012). Typical
questions that occur in setting up the analysis include: Should one include this regressor
of no interest or not? Does this cognitive process represent the baseline or must it be
considered activation? What is the duration of the underlying neuronal process? Should
one model cue stimuli, button presses, error trials or feedback screens? How should the
hemodynamic response be modeled? etc. If decisions are made that do not satisfy the
data, this leads to a misspecified model.
Two basic forms of mismodelling are underfitting and overfitting (Guyon and Yao, 1999;
see also MacKay, 2003; Bishop, 2007). In the first case, a necessary regressor is omitted
from the model which reduces the model’s descriptive power with respect to the given
data (increasing the in-sample error). For example, the subject’s reaction times (RT) in
task-based fMRI experiments can account for a considerable amount of signal variance
(Grinband et al., 2011; Yeung et al., 2011) so that omitting an RT regressor from the
GLM would cause underfitting. In the second case, unnecessary regressors are included in
the model, which are then just fitted to noise and thereby reduce the model’s descriptive
power with respect to other data of the same kind (increasing the generalization error).
For example, global signal regression (GSR) in resting-state fMRI might induce spurious
anti-correlations (Murphy et al., 2009; Chai et al., 2012) so that including it in the
model would cause overfitting. It is also possible that a relevant effect is modeled, but
the regressor does not have the optimal shape, e.g. because the assumed hemodynamic
response function (HRF) does not reflect the actual hemodynamic response (Monti, 2011).
Since this can be seen as omitting the correct regressor but including a wrong one, in this
case overfitting and underfitting occur at the same time. From the the perspective of a
hypothesis test based on the respective model, underfitting increases the residual error
while overfitting decreases the error degrees of freedom which is why in consequence both
reduce the sensitivity (power) of the test.
These theoretical considerations are supported by empirical evidence of potential under-
fitting (Lieberman and Cunningham, 2009), potential overfitting (Eklund et al., 2012)
and potential p-hacking (Vul et al., 2009). It has also been demonstrated that activations
detected using GLM-based fMRI analysis substantially depend on the model which is
employed and its particular assumptions (Carp, 2012). Since these are only rarely scru-
tinized during GLM specification, mismodelling can be considered a serious problem in
fMRI data analysis (Monti, 2011).
An alternative way to describe under- and overfitting is through the concepts of accu-
racy and complexity. An underfitted model does not have sufficient accuracy (too large
in-sample error or residual variance), an overfitted model is too complex (has more pa-
rameters than can be well estimated from the given data). In the following, we will mainly
use this latter terminology.

2



2.2 Previous measures against model misspecification

In practice, when faced with the question whether a particular regressor should be in-
cluded in a model, sometimes a null hypothesis test is performed to make this decision
(see e.g. Henson et al., 2001). A statistical parametric map for the corresponding param-
eter is computed at the group level, and the regressor is included if there are significant
effects in brain areas that are thought to be relevant for the paradigm. There are several
disadvantages to this approach: First, it is restricted to nested model comparison (Penny,
2012), i.e. choosing between two models that only differ by including or not including a
regressor (or a set of regressors). Second, it only measures the gain in model accuracy
through better fit (lower residual variance), but not model complexity and how well it
generalizes to other data (Oaksford, 2002) which is only indirectly accounted for via e.g.
numerator degrees of freedom in the F-statistic. Third, it also fails to detect the relevance
of regressors that have a non-significant effect at the group level, but still contribute to
model fit on the level of individual subjects (Rigoux et al., 2014).
Beyond this näıve approach, the problem of model misspecification in fMRI analysis has
been recognized by researchers and a number of strategies have been developed to deal
with potential mismodelling. Kherif and Loh have proposed algorithms for model opti-
mization, but they only allow inference pertaining to nested model comparisons (Kherif
et al., 2002) and condition regressor timing (Loh et al., 2008). Razavi et al., 2003 investi-
gated model accuracy based on the goodness of fit, but do not consider model complexity.
Luo and Nichols, 2003 have supplied a range of frequentist methods for the diagnosis of
a given model and exploratory data analysis. Measures against overfitting were proposed
for certain situations, e.g. noise-model selection (Penny et al., 2007b) and hemodynamic
response modelling (Kay et al. 2008a). In addition, there are some recommendations
regarding the temporal specification of experimental conditions (Josephs and Henson,
1999; Yarkoni et al., 2009), orthogonalisation of regressors (Mumford et al., 2015) and
modelling of non-white noise (Lund et al., 2006). However, none of these methods and rec-
ommendations provide a general remedy for all possible forms of model misspecification
and they are not based on systematic model comparison.

2.3 General linear model selection for fMRI data analysis

An approach that avoids these shortcomings is Bayesian model selection (BMS). One
reason for this is that it uses the Bayesian log model evidence (LME) as a measure of
model quality, a measure which accounts for both model accuracy and model complexity,
so that maximizing it avoids both underfitting and overfitting (MacKay, 2003; Bishop,
2007). Moreover, it attaches a model quality to any GLM and therefore enables non-
nested model comparison, i.e. comparing more than two models that do not just differ by
one or more regressors but in arbitrary ways (Penny, 2012).
The concept of Bayesian model selection is not new to neuroimaging. In dynamic causal
modelling (DCM; Friston et al., 2003; Stephan et al., 2008), the free energy, a variational
approximation to the log model evidence (Friston et al., 2007) is an established measure
to quantify model quality (Penny et al., 2004). For the GLM, the past has seen Variational
Bayesian (Penny et al., 2003, 2005, 2007a) and Empirical Bayesian (Friston et al., 2008;
Penny and Ridgway, 2013) methods to calculate the log model evidence. In this work,
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we introduce a number of methodological improvements which address shortcomings of
these approaches and increase the usability of BMS across GLMs for fMRI.
First, a practical problem for the use of BMS is that it requires prior distributions on the
model parameters. Using too wide priors will exaggerate the complexity of models which
include more regressors while too narrow priors will underestimate it. Optimally, pri-
ors should be informed by previous experience about typical parameter values (Stephan,
2010). However, such numeric information is normally not included in neuroimaging pa-
pers and concrete values strongly depend, among others, on scanner technology (Tri-
antafyllou et al., 2005). We here solve this problem by using part of the available data
to obtain an informative prior and another part to calculate the log model evidence,
leading to the cross-validated log model evidence (cvLME). BMS based on this quantity
is referred to as cross-validated Bayesian model selection (cvBMS).
Second, as opposed to previous Bayesian analyses (Penny et al., 2003, 2005, 2007a), we
use a simple, but reasonable model structure which exactly corresponds to the model un-
derlying standard first-level fMRI data analyses (Friston et al., 1994) as performed e.g. by
Statistical Parametric Mapping (SPM). This enables an Analytical Bayesian computation
for the Bayesian GLM with normal-gamma priors (GLM-NG) which makes our method
both fast and precise.
The cvLME for the GLM-NG is combined with a voxel-wise implementation of random-
effects Bayesian model selection (RFX BMS; Stephan et al., 2009; Rosa et al., 2010;
Penny et al., 2010; Rigoux et al., 2014), a common procedure for second-level model
inference that accounts for the optimal model to vary across voxels as well as subjects.
This allows for spatially heterogeneous modelling, i.e. using different models for different
areas of the brain (Razavi et al., 2003).

2.4 Application of the method

On the first level, once a model is specified and estimated for a given subject, cvBMS
calculates a cross-validated version of the log model evidence (cvLME) for each voxel
in the brain. This results in a cvLME map which quantifies the model’s performance in
different parts of the brain (see Figure 1A). The cvLME is a relative measure of model
quality and its absolute value has no direct interpretation.
For a single subject, two or more models are compared by converting the log model
evidences jointly into posterior model probabilities. If the models fall into one or more
model families, where models of a family have a particular modelling decision in common,
log model evidences can be first aggregated into log family evidences which are then
converted into posterior family probabilities. The optimal model or model family is the
one with the largest posterior probability.
On the second level, cvBMS accounts for the fact that different models may be optimal
in different subjects. Using the first-level log model (or family) evidences for all models
(or families) in all subjects, it estimates how frequently each model is optimal in the
population of subjects. The results are brain maps of estimated model frequencies (see
Figure 1B) or, alternatively, maps of the posterior probability that a given model is more
frequent than all others, the so-called exceedance probability. The optimal model or model
family is the one with the largest estimated frequency.
Just as log model evidences, posterior probabilities and model frequencies are voxel-wise

4



and have the form of brain maps. Selecting models on a voxel-by-voxel basis results in
a selected-model map (SMM) which can then be used to restrict GLM-based analyses to
those voxels where the corresponding model is optimal.
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Figure 1. Model selection for general linear models in fMRI data analysis. This figure
summarizes our approach of cross-validated Bayesian model selection (cvBMS). All calcu-
lations are performed voxel-wise, an exemplary voxel is highlighted using red crosshairs.
(A) First level: All fMRI data from one subject and design matrices for each model enter
general linear model estimation (GLM) with cross-validation across sessions (CV) which
produces voxel-wise cross-validated log model evidence (cvLME) maps for each model
on which population inference is based. (B) Second level: The cvLME images from all
subjects (N = number of subjects) and all models (M = number of models) enter random-
effects Bayesian model selection (RFX BMS) which produces voxel-wise frequency maps
on which model decisions are based. In each voxel, the model with the highest frequency
in the population is selected for data analysis which constitutes a selected-model map
(SMM). Parts of this figure are adapted from SPM course material (Stephan, 2010).
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3 Theory

In this section, we describe in detail the mathematical derivation of our proposed method.
For the non-technical reader mainly interested in the practical use of the method, we
recommend to directly proceed to Section 4 demonstrating the application of the method
to empirical data.

3.1 The general linear model

As linear models, GLMs for fMRI (Friston et al., 1994; Kiebel and Holmes, 2011) assume
an additive relationship between experimental conditions and the fMRI BOLD signal, i.e.
a linear summation of expected hemodynamic responses into the measured hemodynamic
signal. Consequently, in the GLM, a single voxel’s fMRI data (y) are modelled as a linear
combination (β) of experimental factors and potential confounds (X), where errors (ε)
are assumed to be normally distributed around zero and to have a known covariance
structure (V ), but unknown variance factor (σ2):

y = Xβ + ε, ε ∼ N(0, σ2V ) (1)

In this equation, X is an n × p matrix called the “design matrix” and V is an n × n
matrix called a “correlation matrix” where n is the number of data points and p ist the
number of regressors. In standard analysis packages like Statistical Parametric Mapping
(SPM) (Ashburner et al., 2013), V is typically estimated from the signal’s temporal auto-
correlations across all voxels using a Restricted Maximum Likelihood (ReML) approach
(Friston et al., 2002b, a). In contrast to that, X has to be constructed by the user which
is essential to the specification of a GLM (Monti, 2011). As there are often many possible
models for a given psychological paradigm, GLMs for fMRI need to be subjected to model
selection in order to avoid model misspecification.
The general linear model in (1) implicitly defines the following likelihood function:

p(y|β, σ2) = N(y;Xβ, σ2V ) (2)

Classical estimation of the GLM proceeds by maximizing the likelihood function p(y|β, σ2)
with respect to the unknown parameter β to find the optimal parameter estimates. Under
temporal independence, i.e. if V = In, this Maximum Likelihood (ML) solution is obtained
by Ordinary Least Squares (OLS) estimation (Bishop, 2007, eq. 3.15).
If V is not equal to the identity matrix In, i.e. errors ε are not assumed independent and
identically distributed (i.i.d.), Weighted Least Squares (WLS) estimation is employed
which gives rise to Gauss-Markov (GM) estimates (Koch, 2007, eq. 4.29). This WLS
solution is equivalent to multiplying data y and design X with a whitening matrix W =
V −1/2 and then performing OLS estimation.
Statistical inference proceeds by multiplying the parameter estimates β̂ with a contrast
vector or matrix c and thresholding statistical parametric maps (SPM) to perform a t-test
or an F-test on the parameter estimates (Stephan, 2010).
Classical inference for the GLM using the ReML approach, WLS estimation, contrasts
and SPMs of t-values or F-values is implemented in standard analysis packages such as
SPM where it is applied to each voxel indepedently which is usually called a “voxel-wise”
or “mass-univariate” analysis of fMRI data.
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3.2 Bayesian inference for the GLM

Classical and Bayesian estimation agree in their use of the likelihood given by equation
(2). For mathematical convenience, we rewrite the likelihood function in terms of an n×n
precision matrix P = V −1 and the inverse residual variance τ = 1/σ2:

p(y|β, τ) = N(y;Xβ, (τP )−1) (3)

Other than classical inference, Bayesian inference requires prior distributions on the model
parameters. The straightforward choice of prior distribution for the general linear model
with unknown regression coeffcients β and inverse residual variance τ is the conjugate
prior relative to this likelihood function (Koch, 2007, ch. 4.3.2; Bishop, 2007, ch. 3.3), the
normal-gamma distribution (Koch, 2007, eq. 2.212; Bishop, 2007, eq. B.52)

p(β|τ) = N(β;µ0, (τΛ0)−1)

p(τ) = Gam(τ ; a0, b0)
(4)

where µ0 and Λ0 are the prior mean and the prior precision of β and a0 and b0 are the
prior shape and rate parameters for τ (Gelman et al., 2013, p. 68).
Bayes’ theorem implies that the posterior is proportional to the product of likelihood and
prior. As we show in Appendix A, the likelihood function from (3) and the parameter
prior from (4) result in the following posterior distribution on the model parameters

p(β|τ, y) = N(β;µn, (τΛn)−1)

p(τ |y) = Gam(τ ; an, bn)
(5)

where the posterior parameters are given by (Koch, 2007, eq. 4.159)

µn = Λ−1
n (XTPy + Λ0µ0)

Λn = XTPX + Λ0

an = a0 +
n

2

bn = b0 +
1

2
(yTPy + µT0 Λ0µ0 − µTnΛnµn)

(6)

By calculating a posterior distribution, we update our belief about the model parameters
regarding their location and precision. Upon model estimation, this posterior distribution
can be used for statistical inference about the unknown parameters β and τ .

3.3 The Bayesian model evidence

Consider Bayesian inference on data y using model m with parameters θ. In this case,
Bayes’ theorem is a statement about the posterior density (Gelman et al., 2013, eq. 1.1):

p(θ|y,m) =
p(y|θ,m) p(θ|m)

p(y|m)
(7)
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The denominator p(y|m) acts as a normalization constant on the posterior density p(θ|y,m)
and is given by (Gelman et al., 2013, eq. 1.3)

p(y|m) =

∫
p(y|θ,m) p(θ|m) dθ (8)

This is the probability of the data given only the model, independent of any particular
parameter values. It is also called “marginal likelihood” or “model evidence” and can act
as a model quality criterion in Bayesian inference, because parameters are integrated out
of the likelihood (Penny, 2012). For computational reasons, only the logarithmized or log
model evidence (LME) L(m) = log p(y|m) is of interest in most cases.
As we show in Appendix B, the log model evidence for the GLM-NG is given by

L(m) =
1

2
log |P | − n

2
log(2π) +

1

2
log |Λ0| −

1

2
log |Λn|+

log Γ(an)− log Γ(a0) + a0 log b0 − an log bn

(9)

where the posterior parameters are given by equation (6).

3.4 Accuracy and Complexity

Recall Bayes’ theorem for model-based inference on unknown parameters θ given by
equation (7). Rearranging this equation, the model evidence can also be written as

p(y|m) =
p(y|θ,m) p(θ|m)

p(θ|y,m)
(10)

Logarithmizing both sides of the equation and taking the expectation with respect to the
posterior density over model parameters θ gives (Penny et al., 2007a, eq. 8)

L(m) =

∫
p(θ|y,m) log p(y|θ,m) dθ −

∫
p(θ|y,m) log

p(θ|y,m)

p(θ|m)
dθ (11)

Using this reformulation, the LME as a model quality measure can be naturally decom-
posed into an accuracy term, the posterior expected log likelihood, and a complexity
penalty, the Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) between the
posterior and the prior distribution (Friston et al., 2007; Penny et al., 2007a)

L(m) = Acc(m)− Com(m)

Acc(m) = 〈log p(y|θ,m)〉p(θ|y,m)

Com(m) = KL [p(θ|y,m)||p(θ|m)]

(12)

This reflects the capability of the LME to select models that achieve the best balance
between accuracy and complexity, i.e. models that explain the observations sufficiently
well (high accuracy) without employing too many principles (low complexity). Model
accuracy and complexity also relate to the well-known bias-variance trade-off: When
model complexity grows, this decreases an estimator’s bias, but increases its variance,
leading to lower in-sample error, but higher generalization error (Hastie et al., 2001).
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The log model evidence is superior to other model quality criteria like Akaike’s informa-
tion criterion (AIC) (Akaike, 1974) or Bayesian information criterion (BIC) (Schwarz,
1978) in two ways. First, in the accuracy term, it does not use frequentist point estimates
like the ML, but accounts for the possible uncertainty about model parameters θ. Sec-
ond, in the complexity penalty, different parameters receive different complexities which
accounts for the fact that model parameters might be correlated (Penny, 2012) or might
introduce a different degree of flexibility into the model.

3.5 Cross-validated log model evidence

These benefits of the Bayesian model evidence come at the cost of having to specify prior
distributions on the model parameters (Gelman, 2008). However, in fMRI data analysis
with new or modified experimental paradigms and different types of scanners or scanning
protocols, such prior information is usually not at hand. Non-informative priors can be
used in this absence of knowledge, but they are usually improper and let the model
evidence diverge. However, improper priors can lead to proper posteriors. We therefore
use a non-informative prior for estimating the model from the data of all but one session
and then employ the resulting posterior distribution as an informative prior, allowing us
to compute the model evidence for the left-out session.
In more detail, we perform S-fold cross-validation where S is the number of sessions,
and priors in each session are calculated as posteriors from all other sessions.1 Using
non-informative (improper) priors for the combined data ys̄ from S − 1 sessions s̄ (e.g.
s̄ = {1, 2, 3, 4}), we obtain combined posteriors p(θ|ys̄). Using these posteriors as infor-
mative (proper) priors in the remaining session s (i.e. s = 5) and based on the common
assumption of statistical independence between sessions, we obtain an out-of-sample log
model evidence (oosLME) as follows:

log p(ys|m) = log

∫
p(ys|θ,m) p(θ|ys̄,m) dθ (13)

This procedure embodies the Bayesian maxim that “today’s posterior can be tomorrow’s
prior” (Stephan, 2010) and is similar to the log predictive density score (LPDS) approach
(Villani et al., 2009; Li et al., 2010). The cross-validated log model evidence (cvLME) is
then given by

log p(y|m) =
S∑
i=1

log p(yi|m) (14)

As non-informative priors for cross-validation in the context of GLMs for fMRI, we use
a normal-gamma distribution given in equation (4) with the prior parameters

µ0 = 0p, Λ0 = 0pp and a0 = 0, b0 = 0 (15)

which yields an infinitely wide and therefore flat Gaussian for the regression coefficients
β (Friston et al., 2002b) and Jeffreys prior for the inverse residual variance τ (Jeffreys,

1For single-session fMRI data, we suggest split-half cross-validation which we have successfully tested on
an SPM template data set (Henson et al., 2002; Ashburner et al., 2013; Soch et al., 2014).
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1946). As one can see from equation (6), these (improper) priors are non-informative in
the sense that only the data remain to influence the (proper) posteriors.

3.6 First-level Bayesian model inference

If several models m of the same data y can be specified, the model evidence can be used
for model inference. In the simplest case of only two models, Bayes factors (BF) or log
Bayes factors (LBF) are used for model comparison (Koch, 2007, eq. 3.67):

LBFi,j = log p(y|mi)− log p(y|mj) (16)

Evidence in favor of one model is usually considered “strong” when the LBF exceeds
three, meaning that seeing the data y is about exp(3) ≈ 20 times more likely under
model mi than mj (Kass and Raftery, 1995). In the case of two or more models, posterior
model probabilities can be calculated using Bayes’ theorem (Penny et al., 2010):

p(m|y) =
p(y|m) p(m)∑M
i=1 p(y|mi) p(mi)

(17)

One can also consider a model family f , i.e. a set of models m that share some charac-
teristic (Stephan et al., 2009), e.g. certain parameters like a set of regressors in the case
of the GLM. Using the law of marginal probability, a family evidence can be calculated
from the evidences of the models belonging to this family as follows:

p(y|f) =
∑
m∈f

p(y|m) p(m|f) (18)

If models or families are to be compared in several subjects, it is advisable to use an
explicit population proportion model which will be described in the next section.

3.7 Second-level Bayesian model selection

On the second level, between-subject variance in individual model preferences can be
accounted for by a hierarchical model in which first-level model evidences p(yi|mj) (model
j applied to subject i) serve as the second-level likelihood function p(y|m). Models m
are then assumed to follow a multinomial distribution with model frequencies r and a
Dirichlet distribution with concentration parameters α is used as the prior distribution
for model frequencies r.
This extension of Pólya’s urn model (Mahmoud, 2008), also called random-effects Bayesian
model selection (RFX BMS), has been introduced and validated (Stephan et al., 2009),
extended and refined (Penny et al., 2010) and revisited (Rigoux et al., 2014). It is widely
applied (Stephan et al., 2010) in dynamic causal modelling (DCM) and was also imple-
mented for voxel-wise model inferences (Rosa et al., 2010).
An iterative estimation algorithm has been developed to infer a posterior distribution
over model frequencies p(r|y) from prior concentration parameters α0 (Stephan et al.,
2009). This procedure and the model are given in detail in Appendix D. In this work, we
apply RFX BMS to cvLMEs from the first level and use a uniform prior over r. Then,
the posterior distribution over r informs us about the proportion of the population whose
data are best explained by each of the models.
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3.8 Decision-theoretic model choice

In DCM, it is common practice (see e.g. Deserno et al., 2012) to report group-level model
selection results using exceedance probabilities (EP), i.e. the posterior probability of a
model being more frequent than any other model (Stephan et al., 2009; Penny et al.,
2010). Additionally, RFX BMS also gives rise to estimated model frequencies in the form
of expected frequencies (EF), i.e. the posterior means 〈r〉, or likeliest frequencies (LF),
i.e. the posterior modes r̂MAP. When a uniform prior is used, LFs directly quantify the
proportion of subjects in the sample in which a particular model is optimal.
In model selection, we are not so much interested in inference about the model frequencies
r, but rather in an optimal decision regarding the models m, i.e. which model to use to
analyze a group of subjects. As we show in Appendix E, this optimal model choice can
be finessed using Bayesian decision theory (BDT) and is achieved by choosing the model
with the largest estimated frequency (EF or LF) in an RFX BMS.
Selected-model maps (SMM) are therefore defined as binary maps indicating where a
particular model has the largest frequency. In this paper, we use SMMs with an additional
cluster threshold of 10 voxels for all whole-brain results and use LFs when we make
quantitative statements about model evidence in favor of each model.
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4 Validation: empirical data

We demonstrate and validate the cvBMS approach using empirical fMRI data acquired
in a sample of 22 subjects using orientation pop-out processing (Bogler et al., 2013).
In this experiment, the screen showed a 3×7 array of homogeneous bars oriented either 0°,
45°, 90° or 135° relative to the vertical axis (see Figure 2A). This background stimulation
changed every second and during each trial, one target bar on the left and one target bar
on the right were independently rotated either 0°, 30°, 60° or 90° relative to the rest of
the stimulus display (see Figure 2B). Those trials of orientation contrast (OC) lasted 4
seconds and were alternated with inter-trial intervals of 7, 10 or 13 seconds.
Below the grid of bars in central position, a square was presented that opened up to the
left or to the right side for 1 second every 2 seconds. Subjects were asked to indicate via
button press whether the square opened up to the same side or the opposite side relative
to the last opening.
This study also included a localizer paradigm in which a single bar identical to one of
the target bars from the main experiment (see Figure 2B) was presented in blocks. These
blocks were separated by intervals of no stimulation.
fMRI data was preprocessed using SPM8, Revision 5236 per 04/02/2013 (http://www.fil.
ion.ucl.ac.uk/spm/software/spm8/). Functional MRI scans were corrected for acquisition
time delay (slice timing) and head motion (spatial realignment), normalized to MNI space
and smoothed with a Gaussian kernel with an FWHM of 6× 6× 6 mm.
For the localizer data, a GLM with two regressors, left and right visual stimulation, was
estimated. At the group level, two paired t-tests (left vs. right and vice versa) were per-
formed to define regions of interest (ROI) that were found to be responsive to oriented
bars in the left and right hemisphere (Bogler et al., 2013). Statistical inference was per-
formed using family-wise error (FWE) correction, a significance level of p ≤ 0.05 and an
extent threshold of k = 10. The resulting localizer masks were used to look for model
preferences in particular regions.
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B

A

Figure 2. Experimental paradigm for orientation pop-out processing. This figure de-
scribes the psychological paradigm used in our empirical validation data set. (A) A 3× 7
background display of homogeneously oriented bars rotated by 0°, 45°, 90° or 135° was
alternated every second. (B) During each four-second trial, one bar on the left and one
bar on the right were randomly rotated 0°, 30°, 60° or 90° counter-clockwise relative to
the background display. This is referred to as left and right orientation contrast (OC).
This figure is adapted from the original study (Bogler et al., 2013).
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4.1 1st model space: technical model parameters

In the first model space, we begin with the most common approach and build a model
with one onset regressor per experimental condition, leading to 16 regressors per session.
We include motion parameters from spatial realignment, we activate temporal filtering
using a high-pass filter at T = 128 s and we choose temporal non-sphericity correction
using a first-order auto-regressive AR(1) model. The feature that varies over models is
the number of hemodynamic response function (HRF) kernels. In the first model, box-
car stimulus functions are convolved with a canonical hemodynamic response function
(cHRF) as implemented in SPM. In the second model (cHRF+1), we additionally include
the temporal derivative of the cHRF. In the third model (cHRF+2), we include the
temporal and dispersion derivative of the cHRF (Henson et al., 2002).
Using group-level model selection and subsequent generation of selected-model maps, we
find that the cHRF does not underfit and is sufficient in almost all parts of the brain
(see Figure 3A). There are regions in cerebral cortex, potentially belonging to the dorsal
attention network (DAN) (Fox et al., 2005, 2006), that require cHRF+1, but no voxels
where cHRF+2 was selected. Since the temporal derivative can account for differences in
the latency of the peak response (Henson et al., 2001), this could indicate that the HRF
peaks earlier or later in DAN regions. As the dispersion derivative can capture differences
in the duration of the peak response (Henson et al., 2001), this suggests that the duration
of the peak response does not vary significantly across voxels.

4.2 2nd model space: modelling experimental factors

For the second model space, we use the winning model with a canonical HRF and no
HRF derivatives as a starting point and focus on different ways of modelling the neural
processes underlying the perception of orientation contrast (OC). The model introduced
above (GLM I) considers the experiment a factorial design with two factors (left vs.
right OC) having four levels (0°, 30°, 60°, 90°) each. This results in 4 × 4 = 16 possible
combinations or experimental conditions modelled by 16 onset regressors convolved with
the canonical HRF.
The second model (GLM II) puts all trials from all conditions into one HRF-convolved
regressor and encodes orientation contrast using a parametric modulator that is given as

PM =
deg

90°
with deg = (0°, 30°, 60°, 90°), resulting in PM = (0, 1/3, 2/3, 1), such that the parametric
modulator is proportional to orientation contrast. There was one PM for each factor of
the design, i.e. one PM for left OC and one PM for right OC.
In behavioral pre-tests for the original study, it was observed that reaction time is not
linear in orientation contrast. Instead, the reaction time when being presented with the
respective OC and asked to detect where OC occured saturates at lower levels for higher
OC (Bogler et al., 2013). Thus, a further model was implemented.
The third model (GLM III) is similar to the second model, but uses a nonlinear trans-
formation of orientation contrast to calculate a parametric modulator that is given by
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■ GLM III [no confounds]   ■ GLM III-S [plus stimulus]   ■ GLM III-R [plus response]   ■ GLM III-S/R [including both]

■ GLM II [linear-parametric model]     ■ GLM III [nonlinear-parametric model]

■ GLM I [categorical model]     ■ GLMs II & III [parametric models]

■ GLM cHRF [canonical HRF]     ■ GLM cHRF+1 [plus one derivative]     ■ GLM cHRF+2 [plus two derivatives]

A

B

C

D

■ initial model choice: 16 regressors, movement parameters, implicit baseline, T = 128 s, AR(1)

■ final model choice: GLM III, used for further analysis of model preference within V4 (see Figure 5)

Figure 3. Sequential model selection for orientation pop-out processing. This figure
shows selected-model maps (SMM) obtained from group-level model selection performed
in several steps (see Section 4) and displays the likeliest frequency (LF) for the selected
model in each voxel. Color scales range from 0 to 1, except for the cyan, yellow and violet
bars in panel D which range from 0 to 0.5. The white area in each section highlights the
orientation-sensitive V4 (more ventral) and anterior parts of V1 (more dorsal) that were
obtained from analysis of the localizer paradigm. Note that different slices are displayed
in each panel in order to make model preferences perfectly visible. (A) 1st model space:
different hemodynamic basis sets were compared; the canonical hemodynamic response
function (cHRF) alone (red) came out best. (B) 2nd model space, family selection: using
the cHRF, the categorical model was compared against the family of parametric models;
parametric models (cyan) perform better. (C) 2nd model space, model selection: within
the parametric models, a linear and nonlinear parametric modulator were compared; the
nonlinear-parametric model (green) is superior. (D) 3rd model space: using the nonlinear-
parametric model, confound modelling was investigated; confound modelling was only
required in regions not of interest to the task (cyan, yellow, violet). Exact voxel counts
for each model comparison are given in Table 1.
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whole-

brain

V1 V4

left right left right

Number of voxels 53265 16 18 119 62

1st model space: technical model parameters

GLM cHRF 37215 16 18 58 26

GLM cHRF+1 16050 0 0 61 36

GLM cHRF+2 0 0 0 0 0

2nd model space: modelling experimental factors (family selection)

GLM I 1194 0 0 0 0

GLMs II & III 52071 16 18 119 62

2nd model space: modelling experimental factors (model selection)

GLM II 4910 3 0 0 0

GLM III 48355 13 18 119 62

3rd model space: modelling confounding variables

GLM III 51050 16 18 119 62

GLM III-S 647 0 0 0 0

GLM III-R 1074 0 0 0 0

GLM III-S/R 494 0 0 0 0

4th model space: lateralization of visual perception

GLM III-l 23006 0 1 13 55

GLM III-r 30259 16 17 106 7

Table 1. Sequential model selection for orientation pop-out processing. This table breaks
down model selection results for the four model spaces reported earlier (see Figures 3
and 5). For each model space, the number of voxels in which each model is selected as
the optimal model by cvBMS is given for the two regions of interest, anterior parts of V1
and the orientation-sensitive V4, as obtained from the localizer paradigm and seperated
by cranial hemisphere, as well as at the whole-brain level.
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PM =
1

deg
30° + 1

with deg = (0°, 30°, 60°, 90°), resulting in PM = (1, 1/2, 1/3, 1/4), such that the paramet-
ric modulator is proportional to the expected average reaction time. This OC model
is intended to be a psychologically more plausible description of the neural processing
underlying OC perception.
This model space is equivalent to the set of three models already used in the original
publication (Bogler et al., 2013). We will refer to GLM I as the “categorical model”,
GLM II as the “linear-parametric model” and GLM III as the “nonlinear-parametric
model”. In all models, background stimulation was treated as implicit baseline so that
only target onsets were explicitly modelled. Note that these models are not nested in
each other and therefore significance testing of additional regressors is not applicable for
model selection. Furthermore, we cannot just use the best model in each single subject
as this would make second-level analysis impossible due to different model parameters.

4.2.1 Accuracy and Complexity

First, just consider GLM I and GLM II. These two models encode exactly the same
information, namely the values of the factors “left OC” and “right OC” at each point in
time. However, they represent this information in different ways: Whereas the parametric
model assumes a parametric shape of the measured signal, the categorical model allows
for a greater flexibility of activation patterns across experimental conditions. This means
that every signal that can be identified using GLM II can also be detected using GLM I,
but not vice versa.
We performed group-level model selection on the cross-validated log model evidences
(cvLME) to find voxels where GLM II has a higher model frequency than GLM I. Due to
the specific assumptions in GLM II and the higher flexibility of GLM I, we hypothesized
that GLM I and GLM II might be equal in terms of model accuracy and the difference
would primarily come from on a complexity advantage of GLM II over GLM I. Within
left V4, which is known to be sensitive to orientation contrast (Burrows and Moore, 2009;
Bogler et al., 2013), we identified the peak voxel (likeliest frequency (LF) = 86.29%, ex-
ceedance probability (EP) = 99.97%, [x y z] = [−18,−76,−8] mm) and extracted cvLME
as well as model accuracy and model complexity from this voxel for each subject (see
Figure 4). For this purpose, accuracy and complexity were calculated based on theorem
(12) and using equations (C.2) and (C.4) derived in Appendix C.
From the differences in cvLME, accuracy and complexity, it can be seen that model
accuracy alone weakly favors GLM I (see Figure 4A), because it better explains the
signal, but model complexity alone strongly favors GLM II (see Figure 4B), because it
uses fewer variables to do so. Taken together, the log model evidence clearly favors GLM
II (see Figure 4C). We therefore conclude that, given the data have a functional form
such that the measured signal is continuously related to the levels of an experimental
factor, there is no need for categorizing the data by these levels or there might even be
the danger to overfit data using a categorical model regarding this factor. Using cvBMS,
this overfitting can be detected and effectively eliminated.
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Figure 4. Accuracy and complexity for categorical and parametric model. This figure
illustrates the trade-off between model accuracy and model complexity in the log model
evidence. A group-level model selection was performed between the categorical (GLM I)
and the linear-parametric (GLM II) model (see Section 4.2.1). From the peak voxel in
favor of GLM II within left V4, we extracted model accuracy (Acc), model complexity
(Com) as well as log model evidence (LME) and calculated the difference of GLM I (m1)
relative to GLM II (m2) indicating an advantage (higher accuracy, lower complexity,
greater LME) for either GLM I (red) or GLM II (blue). (A) Regarding model accuracy,
there is a slight advantage for the categorical model due to its higher flexibility. (B)
However, model complexity is consistently lower for the parametric model due to its
fewer regressors. (C) Since LME = Acc−Com (and therefore ∆LME = ∆Acc−∆Com),
this has the consequence that the log model evidence most often favors GLM II. This
demonstrates that the complexity penalty is able to prevent overfitting that would occur
from looking at the accuracy term alone.
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4.2.2 Model family comparison

Next, consider all the three models. It is clear that GLM II and GLM III are more
similar to each other than each of them is similar to GLM I. When a model space is
not balanced and some models are more similar to each other than others, more similar
models share evidence between them. This effect is called model dilution and can lead to
false conclusions about model preferences (Penny et al., 2010).
In order to avoid model dilution, we divide the model space into two model families:
a family of parametric models consisting of GLM II and GLM III and a “family” of
categorical models consisting only of GLM I. We calculated a log family evidence for the
parametric models using equation (18) and compared it to the log model evidence of the
categorical model using group-level model selection.
We find that there is overwhelming evidence for parametric processing in the entire brain
and especially in the regions that we were most interested in, namely parts of V1 and the
OC-sensitive V4 (see Figure 3B). Only in some voxels, mostly located in right parietal
cortex, the categorical model is better.

Why are the parametric models also superior in voxels not related to the paradigm?

If there is no signal, model selection prefers simpler models. This means, although there
is no signal that can be attributed to orientation pop-out processing in large parts of the
cortex and white matter, we might still develop a model preference in these voxels. If none
of the models yields a useful description of the observed variations, it is only reasonable
to work with the least complex model using the fewest regressors. Since the parametric
models only have 3 regressors, they are to be prefered over the categorical model with 16
regressors, leading to a very strong model quality difference in white matter regions.

4.2.3 Individual model selection

Last, consider only GLM II and GLM III. From the previous “between-family” analysis,
these two parametric models remain as candidates for the optimal model of orientation
pop-out processing as operationalized by the present paradigm. We therefore performed a
“within-family” analysis and submitted their log model evidences to another group-level
model selection.
We find that, within the family of parametric models, there is overwhelming evidence for
the nonlinear-parametric model in the entire brain and in particular the localizer regions
V1 and V4 (see Figure 3C). Voxels attributed to the linear-parametric model do not show
a clear pattern, but seem to be restricted to white-matter parts of the brain.

Why is there a difference between the models in voxels not related to the paradigm?

Model complexity is not just the number of parameters. This means, although both mod-
els have the same number of regressors and a similar structure with one onset regressor
and two parametric modulators, they can still receive different complexity penalties which
apparently has been the case here. The reason for this is that the complexity measure in
the log model evidence is a measure of the informational content of the model and also
depends on the data through the posterior distribution.
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4.3 3rd model space: modelling confounding variables

So far, we have identified the optimal modelling of the variance components related to
the processes of interest, namely orientation pop-out processing. In addition to this,
there are processes of no interest, particularly the control fixation task employed in this
experiment. To know whether these processes of no interest should be modelled or not
is important, because how they are modelled might influence parameter estimates and
statistical inferences for the processes of interest. This is what we are trying to find out
using the third model space.
We use the winning model from the previous analysis (GLM III) as the null model for
this model space. To this basic model, certain regressors are either added or not added,
resulting in a model space spanned by binary axes: First, we can model the background
stimulation (B), so far treated as an implicit baseline, using four regressors for the levels
of orientation (0°, 45°, 90° or 135°). Second, we can model the fixation stimulus (S) shown
on the screen, using two regressors for the square either opening to the left or to the
right side. Third, we can model the fixation response (R) given by the subject, using two
regressors for one-back responses and responses indicating the opposite.
If present, all regressors are timed according to the experiment: Background stimulations
change every second, fixation stimuli occur every 2 seconds and are active for 1 second and
fixation responses are locked to the time of the button press with a duration of zero. Since
there are three features to be additionally modelled (background, stimulus, response) and
there are two options for each feature (modelling or not modelling it), there are 23 = 8
models in this model space with GLM III being the simplest and GLM III-B/S/R being
the most complex model.
In summary, we find that none of these modifications is required for appropriate modelling
of this data set (see Figure 3D). In almost all parts of the brain, including V1 and V4,
GLM III is selected as the best model of neural activity. GLMs including background
stimulation are not selected in any voxel, suggesting that background stimulation in fact
plays the role of an implicit baseline. Among the models without background stimulation,
the control-task fixation stimulus (S) is hard to disentangle from the co-occuring fixation
response (R), so that GLM III-S, GLM III-R and GLM III-S/R form clusters in motor
cortex (due to button presses during the fixation response), auditory cortex (due to
rhythmicity of the fixation stimulus) and ventricles (due to motion energy induced by
motor activity).
The observed model preferences are thus consistent with the functional neuroanatomy
of these regions. We suggest that modelling confounding variables is not required here,
presumably because (i) the changes that are captured are faster than the acquisition
frequency implied by the TR = 2,400 ms (background stimulation: T = 1 s; fixation
stimulus: T = 2 s; fixation response: T ≈ 2 s), (ii) the additional regressors are highly
correlated with the onset regressor describing the task and (iii) processes of interest and
of no interest do not engage the same regions of the brain.
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4.4 4th model space: lateralization of visual perception

Finally, we would like to demonstrate that model selection cannot only be used for
methodological control of data analysis, but also to decide between competing hypotheses
about neural processing. Imagine we would want to know which part of the visual field
is processed in which part of the brain.2 Formally, this corresponds to specifying mod-
els that describe different hemifields and comparing them in different hemispheres. For
this purpose, we take the winning model from the last two model spaces, the nonlinear-
parametric GLM III, and specify two new models: The first one only models OC on the
left side and the second one only models OC on the right side. This was achieved by just
removing the opposite PM regressor in each case.
We present model selection results using histograms of likeliest frequencies (LF) across
voxels from left and right V4, as defined by the localizer analysis. As can be seen, mod-
elling only right OC (GLM III-r) makes a better model in left V4 (see Figure 5A) and
modelling only left OC (GLM III-l) is performing better in right V4 (see Figure 5B)
meaning that orientation pop-out processing is contra-lateralized (see Figure 5C). This
is consistent with the fact that contents of the left visual hemifield are neurally processed
in the right visual cortex and vice versa (Van Essen et al., 1992) and shows that model
selection is capable of detecting anatomically plausible lateralization effects.

For comparison purposes, we have also performed all nested model comparisons (1st, 3rd
and 4th model space) using conventional GLM techniques, i.e. omnibus F-tests on the
additional regressors. These results are provided in the supplementary online material (see
Supplementary Figure S1 and Table S1). Note that this type of classical model selection
cannot be employed for non-nested model comparison (2nd model space).

2Note that this model space represents a sanity-check analysis by which we just try to recover known
model preferences, because we already know the answer.
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Figure 5. Confirming lateralization of visual cortex via model selection. This figure
illustrates the application of model selection to answer questions about functional neu-
roanatomy. A group-level model selection was performed between two models of orienta-
tion contrast (see Section 4.4). We analyze likeliest frequencies (LF), which describe the
proportion of subjects in which a particular model is optimal, and look at the perfor-
mance of two models (including left OC or right OC) in two regions (left V4 and right
V4). (A),(B) Histograms of LFs across the voxels from V4 as obtained from the localizer
analysis. Clearly, the GLM with right OC only performs better in voxels from left V4 only
and the other way around. (C) From the LF histograms, we calculated the proportion of
voxels in which the two models were selected based on having the higher LF. The result-
ing plot demonstrates the interaction effect between side of the visual field and side of the
visual cortex which is consistent with the contra-lateral processing in visual perception.
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5 Validation: simulated data

We additionally validate the cvBMS approach using simulated fMRI data. We place these
simulations after the empirical validation, because we want to generate realistic fMRI sig-
nals and thus use one of the model spaces that were explained in the previous section
and already applied to empirical fMRI data. We perform two simulations and investigate
certain properties of the cvLME criterion in order to demonstrate that the cvBMS ap-
proach is an appropriate tool for model selection. We only focus on the performance of
the cvLME on the first level and not on the validity of RFX BMS at the second level
since this latter part of the technique has already been validated (Stephan et al., 2009;
Penny et al., 2010).
First, as model selection serves to infer the most likely model given the data, it should
be capable of identifying true models – something which we do not know when analyzing
empirical data, but which we can control in simulation-based validation. We therefore
investigate the capability of the cvLME to identify the GLM that certain data were gen-
erated with. We analyze this while varying between-session variance of the true parameter
values, because the cvLME assumes stationarity of model parameters across recording
sessions. This means that model selection performance is expected to decrease as non-
stationarity across sessions increases. For this simulation, we use the three non-nested
models from the 2nd model space that represent different ways of how experimental
factors can be described.
Second, the reason to perform model selection is not only to eventually use the generat-
ing model of an observed process, but also to estimate parameter values more precisely
and to perform statistical tests more accurately. We therefore investigate the impact of
model selection on mean squared errors of parameter estimates as well as sensitivity
and specificity of statistical tests on model parameters. We analyze this in the context
of correlated regressors, since high correlation of an additional regressor with existing
regressors is often taken as an indication not to include it in order to preserve design
orthogonality. In this simulation, we use a nested model difference motivated by GLM
II and manipulate the correlation of one additional regressor with two regressors already
present in the model.
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5.1 1st simulation: influence of between-session variance

5.1.1 Methods

The model space consists of a categorical model (GLM I) which models all conditions
of the 4 × 4 design using 16 regressors, a linear-parametric model (GLM II) which puts
all trials into one regressor and encodes orientation contrast on the left and right visual
hemifield as two parametric modulators and a nonlinear-parametric model (GLM III) in
which the parametric modulators are a nonlinear function of orientation contrast. For
the purpose of this simulation, movement parameters and implicit baseline were removed
from the design matrix in each model (see Figure 6A).
From the first model, we extract the covariance matrix V as computed by SPM during
model estimation in order to induce the same temporal auto-correlation structure into
all data. For each model, we extract the design matrix X as generated by SPM during
model specification in order to simulate realistic fMRI signals. Both X and V describe 5
sessions of fMRI recording. Synthetic data is then generated as follows.
First, true regression coefficients are drawn using the relation

βij = xj + yij

xj ∼ N(0, σ2
v)

yij ∼ N(0, σ2
s)

where i and j index session and parameter respectively, σ2
v represents the voxel-to-voxel

variance and σ2
s represents the session-to-session variance. In other words, we are working

with regionally specific effects which are zero mean across all realizations (Friston et al.,
2002a) and spherical covariance matrices on the regression coefficients (Penny, 2012).
The sampled parameters imply a certain true signal Xβ and induce a certain signal vari-
ance var(Xβ). A residual or scan-to-scan variance σ2 is chosen such that var(Xβ)/σ2 =
SNR for a desired signal-to-noise ratio (SNR).
Second, simulated data is generated by sampling zero-mean Gaussian observation noise
according to the relation ε ∼ N(0, σ2V ) and then adding the random noise to the true
signal to get a measured signal y = Xβ + ε.
In our simulation, we set σ2

v = 2.5 and SNR = 4.5 (which approximately correspond to
the median values 2.67 and 4.57 observed in the SPM template data set3) while between-
session variance σ2

s is varied from 0.25 to 5 in steps of 0.25.
For each level of σ2

s ,N = 10,000 data sets are generated using a true model which results in
Nsim = N×20 = 200,000 simulations per model. Then, for each data set from each model,
we calculate the cvLME using each model which gives rise to Nsim × 3 × 3 = 1,800,000
cvLMEs. Performance of cvLME is evaluated based on average model differences and the
ability to recognize the true model.

3These data were first published as a study on repetition priming (Henson et al., 2002), previously used
for model comparison (Penny et al., 2007a) and analyzed according to the SPM8 Manual (Ashburner
et al., 2013).
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5.1.2 Results

The results from this simulation are shown in Figure 6. Average log Bayes factors (LBF)
in favor of the true model and proportions of correct model selections (Pcorr) are plotted as
a function of the between-session variance σ2

s . Note that σ2
s is proportional to the squared

coefficient of variation of the regression coefficients across sessions CV2 = (σs/〈|βj|〉)2

and therefore can be seen as a measure of non-stationarity.
First, GLM I can be detected as the generating model with an overwhelming precision
of 99.18 % (see Figure 6D, left). This is due to the fact that this model differs strongly
from the other two models which in turn only differ from each other in small details.
Additionally, GLM II and GLM III make very special assumptions about the signal as
a function of orientation contrast while GLM I can account for more diverse activation
patterns across experimental conditions.
Second, GLM II and GLM III can be reliably distinguished from each other, but less
reliably selected against the other model. The reason for this is that true signals generated
using GLM II or GLM III can also be identified by GLM I due to its higher flexibility.
This means that GLM I can only be ruled out based on a complexity disadvantage. Still,
detecting GLM II and GLM III as generating models works at acceptable accuracies of
75.06 % and 73.77 % (see Figure 6D, middle and right).
To our knowledge, the session-to-session variance (here: σ2

s = 0.25, . . . , 5) is almost always
lower than the voxel-to-voxel variance (here: σ2

v = 2.5) in real fMRI data which is why we
expect that first-level model detection accuracy will be higher than 80 % even for model
differences hard to detect like GLM II/III vs. GLM I. With second-level model selection,
an additional degree of accuracy will be achieved.
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Figure 6. Simulation performance of non-nested model selection. (A) Design matrices of
the three models that were used in this simulation. Each column of the figure represents
simulations in which the model at the top was the true model. (B) Average log Bayes
factors (LBF) in favor of the true model, i.e. against the other two false models, as
a function of between-session variance. (C) Proportion of correct model selections, i.e.
succesful identifications of the true model by maximum LBF, as a function of between-
session variance.
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5.2 2nd simulation: influence of regressor correlation

5.2.1 Methods

We want to systematically study how model selection performance is influenced by shared
variance between a model’s regressors and another regressor that might be added or not
added to the model. To this end, we take the design matrix of the linear-parametric model
(GLM II, null model) and use its parametric modulators to create a more complex model
(GLM II+, full model). Ignoring movement parameters and the implicit baseline, GLM
II has three regressors (see Figure 7A): an onset regressor encoding orientation contrast
events (x1), a parametric modulator for left OC (x2) and a parametric modulator for
right OC (x3). Then, GLM II+ has an additional artifical regressor (x4) that is given by

x4 = cos(α)xm + sin(α)xo

xm =
1

2
(x2 + x3)

x2 ⊥ xo ⊥ x3

where xm is the mean of x2 and x3 and xo is a regressor that is orthogonal to x2 and
x3

4. In other words, we form x4 as an average of a highly correlated regressor xm and
a completely uncorrelated regressor xo where α determines the weighting and thereby
controls how much variance x4 shares with x2 and x3. Note that x2 and x3 as well as xm
and xo are normalized to unit vectors in order to avoid scaling effects.
If α is very high, x4 will be dominated by the orthogonal regressor so that its correlation
with x2 and x3 will be very low. In the case that α = 0°, x4 has a correlation of around 0.7
with x2 and x3 and a correlation of 1 with (x2 + x3). Importantly, we will not investigate
this extreme case, because the design matrix of GLM II+ is colinear in this situation,
making it a redundant model that is to be avoided a priori. Instead, we vary α from 5°
to 90° in steps of 5° and analyze different properties of the selected model.
Like in the first simulation, the design matrixX and the covariance matrix V are extracted
from the estimated SPM models and describe 5 sessions of fMRI recording. Synthetic data
is then generated using the same procedure as before, again using σ2

v = 2.5, but with a
fixed σ2

s = 1.25 which induces a ratio of between-voxel to between-session variance of 2
and a coefficient of variation for the regression coefficients of around 0.88. Together with
the very subtle model difference of a single covariate regressor, this relatively low effect
consistency was intended to make model comparison as hard as possible.
For each level of α, we generate the corresponding x4, and for each of these x4, N = 10,000
data sets are generated resulting in Nsim = N × 20 = 200,000 simulations per model
(SNR = 0.1). In another Nsim = 200,000 simulations for each model (SNR = 10), the true
values of the common model parameters x2 and x3 are set to zero in order to investigate
specificity (when true values are zero) and sensitivity (when true values are not zero) of
statistical tests later on. For all these simulations, cvLMEs are calculated and LBFs are
used to define the selected and the rejected model in each simulation.

4In this implementation, xo is chosen from the orthonormal basis of the design matrix calculated in
MATLAB via null([x1 x2 x3 xc]’) where xc is a constant regressor.
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5.2.2 Results

The results from this simulation are shown in Figure 7. The correlation of x4 with x2 and
x3 is shown as a function of regressor angle α. Moreover, mean squared errors (MSE) for
the common model parameters x2 and x3 as well as sensitivity (true positive rate, TPR)
and specificity (true negative rate, TNR) of an omnibus F-test on the parameters x2 and
x3 are plotted against α.
The two models have three common parameters. The MSE describes the expected squared
deviations of estimated parameters from their true values across simulations. When α is
low and correlation is high, β2 and β3 are estimated closer to their true values when the
selected model is used compared to when the rejected model is used (see Figure 7C).
Intuively, this effect disappears with higher α. This confirms that even if the additional
regressor is not of interest in itself, selecting the correct model still improves the parameter
estimation for regressors of interest.
The capability of selected models to more precisely estimate parameters of interest also
carries over to the quality of statistical test based on these parameter estimates. The
sensitivity or TPR is the probability that the null hypothesis is rejected, given that it is
false, and the specificity or TNR is the probability that the null hypothesis is not rejected,
given that it is true. In our case, null hypothesis and alternative hypothesis are given by

H0 : x2 = x3 = 0 and H1 : x2 6= 0 or x3 6= 0

which means that we are testing whether there is an effect of orientation contrast for at
least one side of the visual field. We have simulations using both models, GLM II and
GLM II+, in which H1 is true (when parameters are drawn from distributions), as well
as simulations in which H0 is true (when parameters are set to zero deliberately).
The simulation shows that sensitivity is reduced when the null model is true and the
full model is used (see Figure 7D, left) and specificity is reduced when the full model is
true and null model is used (see Figure 7D, right). The fact that the specificity suffers
massively when the more complex model is true and the rejected model is used means
that the F-test can be heavily invalidated by a large false positive rate (FPR) when
models omit variables that would be required for sufficient explanation of the data. In
contrast, the specificity does not decrease very much when the simpler model is true and
the rejected model is used in our example. This is because the full model also contains
all the regressors that are in the null model.
The problem of adding non-orthogonal regressors to a design matrix is well known among
practitioners of GLM-based fMRI analysis (Andrade et al., 1999) and design orthogonality
is commonly used to assess the amount of covariation between regressors (Ashburner
et al., 2013, ch. 28). As is evident from the plots, differences in MSE as well as sensitivity
and specificity disappear when α is high, such that correlation with x4 becomes low.
We therefore argue that regressors can be harmlessly added to the design matrix, if
their correlation with the regressors already present is neglible. However, if they share
considerable variance with other regressors, model selection is required to keep statistical
inference valid.
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Figure 7. Simulation performance of nested model comparison. (A) Design matrices of
the two models that were used in this simulation. Each column of the figure represents
simulations in which the model at the top was the true model. (B) The additional regressor
of GLM II+ (x4) was manipulated so that it showed different degrees of correlation with
the two other regressors of interest (x2 and x3). (C) Mean-squared errors (MSE) for the
common parameters x2 and x3 when analyzing the data using the selected model (blue)
or the rejected model (red) as a function of their vector angle with x4. (D) Sensitivity
(dashed) and specificity (dotted) of an omnibus F-test on the common parameters x2 and
x3 when analyzing the data using the selected model (blue) or the rejected model (red)
as a function of their vector angle with x4.
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6 Discussion

We have introduced a model selection approach for constraining analysis approaches
when analyzing functional magnetic resonance imaging (fMRI) data using general linear
models (GLMs). We have demonstrated that cross-validated Bayesian model selection
(cvBMS) serves its intended purpose and that it is useful in practice. Usage of model
assessment and model selection effectively removes uncertainty from GLM-based fMRI
analysis, reduces model misspecification and thereby enhances the methodological quality
of functional neuroimaging studies (Friston, 2009).

6.1 Model selection against first-level mismodelling

In functional neuroimaging, mismodelling can lead to suboptimal signal explanation and
false statistical inferences. If just one model is estimated and no other modelling ap-
proaches are considered, this can cause underfitting or overfitting so that researchers may
fail to reject null hypotheses that are false (false negatives). If many models are tested and
model choice is made by looking at significant results, this encourages p-hacking which
may lead researchers to reject null hypotheses that are true (false positives). Using model
selection, we can solve this problem. Model selection encourages multiple model estima-
tion in order to avoid mismodelling, but bases the final model choice on objective criteria
to avoid p-hacking. In our case, these objective criteria are how well a model fits the data
(model accuracy), as a protection against underfitting, and how well it generalizes to new
data (negative model complexity), as a protection against overfitting.
The advantages of our approach are manifold: It represents a substantial advance over
occasionally performed informal model selection using classical significance tests. It prop-
erly quantifies accuracy and complexity, it can handle arbitrary model differences and it
delivers voxel-wise optimal models. A disadvantage of the method is that cvLME maps
have to be calculated for each model separately without the possibility of only estimating
one global model and then comparing within this model (Kherif et al., 2002; Penny and
Ridgway, 2013). This is however alleviated by the technique’s computational efficiency
and the modularity facilitated by the model-wise evidence calculation. Lastly, the possi-
bility of using different GLMs for different parts of the brain can be easily implemented
by masking group analyses with the selected-model map (SMM) belonging to the model
that the group analyses were performed with. This means that second-level model es-
timation is performed in all voxels, but second-level statistical inference is restricted to
voxels where the corresponding first-level GLM is optimal.
The approach of cross-validated model selection thereby complements existing cross-
validated pre-processing validation techniques addressing the issue of nuisance variable
regression (Kay et al., 2013; Churchill et al., 2015). We envisage that also a lot of method-
ological problems of model building that have been discussed in the past, e.g. relating to
the optimal hemodynamic response function (Lindquist et al., 2009; Steffener et al., 2010)
or optimal reaction time modelling (Todd et al., 2013; Woolgar et al., 2014; Soch et al.,
2015), can be approached using the proposed method. Beyond that, competing scientific
theories, e.g. relating to prediction error processing (Knutson et al., 2001; Abler et al.,
2006) or response conflict and time-on-task (Grinband et al., 2011; Yeung et al., 2011),
might be tested against each other. Furthermore, subject-level measures of model quality
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such as posterior model probabilities (see Section 3.6) may allow to uncover individual
variation in stimulus processing, e.g. in the context of visual receptive field mapping
(Thirion et al., 2006; Kay et al., 2008b).
In the remainder of this section, we discuss issues relating to the theoretical aspects of our
model quality measure as well as its practical application to empirical data and directions
for future research.

6.2 Cross-validation and Bayesian model selection

In principle, cross-validation in a Bayesian context does not differ from cross-validation
in a classical context. Parameters of interest are estimated from one (part of the) data set
in order to test generalization of a model to another (part of the) data set. In fact, the
cross-validated log model evidence (cvLME) is just the Bayesian analogue to the sum of
out-of-sample log-likelihoods (oosLL) in Frequentist statistics, called the cross-validated
log-likelihood (cvLL):

cvLL =
S∑
i=1

log p(yi|θ̂(∪j 6=i yj))

cvLME =
S∑
i=1

log

∫
p(yi|θ) p(θ| ∪j 6=i yj) dθ

Here, S denotes the number of sessions indicating S-fold cross-validation and the union
symbol ∪ signifies that parameters are estimated from several sessions as ML estimates
θ̂(y) for cvLL or as posterior distributions p(θ|y) for cvLME. Whereas cvLL uses point
estimates and the likelihood function, cvLME accounts for the whole uncertainty about
model parameters by using the marginal likelihood.
Cross-validation requires that data sets are drawn from the same source or population.
This means that, in application to fMRI, the above formulas are based on the assump-
tion of independence between recording sessions, mathematically implying that likelihood
functions and marginal likelihoods factorize over parts of the data. Furthermore, cross-
validating the log model evidence requires a certain degree of stationarity across sessions.
Using simulations, we have investigated the influence of non-stationarity in the form of
between-session variance on model parameters and found that the cvLME can accommo-
date moderate stationarity violations.
Usually, cross-validation is considered to be a measure against overfitting. Since we are
controlling for overfitting (and underfitting) already using the model evidence itself, our
use of cross-validation has three other reasons: First, we wanted to avoid having to specify
prior distributions on the model parameters. Second, we wanted to avoid approximations
that originate from methods estimating hyperparameters like Empirical Bayes (Friston
et al., 2008; Penny and Ridgway, 2013) or methods employing hyperpriors like Variational
Bayes (Penny et al., 2003, 2005, 2007a). Third, and most importantly, we wanted to use
the whole potential of the complexity penalty in the log model evidence along the following
rationale.
As we have seen earlier (see Section 3.4), the Bayesian complexity is identical to a
Kullback-Leibler (KL) divergence between the posterior distribution and the prior distri-
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bution over model parameters. If a model is more likely than another, i.e. better describing
the underlying causes of the measured signal, it will estimate the parameters more uni-
formly across sessions, because it exactly and only incorporates the required parameters.
This means that priors obtained via cross-validation from all except one session will be
closer to the posteriors in the remaining session. Consequently, for such models, the KL
divergence between the posterior distribution and a prior obtained from independent data
will be smaller on average and they will receive a higher log model evidence. On these
grounds, one could even say that the complexity penalty in the log model evidence is
never really used properly unless empirical priors are employed.

6.3 Pragmatics of model selection for methodological control

There is no statistical inference without a statistical model. This is the reason why model
selection is different from scientific inference. While we might not declare a model dif-
ference significant, we will still make a decision which model we use for data analysis,
because in the end we have to use one model to make any inference at all. This highlights
that a different rationale is required in model selection, because it is a decision-theoretic,
not an inferential problem. We have shown that our approach can be framed in the logic
of decision theory and leads to a very simple decision rule. As a consequence, when for
example comparing two models, the threshold for a model to be selected will not be an
estimated model frequency of say 0.95, but 0.5 in order to force a decision for one of the
two models in any possible situation.
Another problem is model dilution. Like any comparison of more than two models, RFX
BMS with three or more models is susceptible to the problem of model dilution (Penny
et al., 2010). Model dilution occurs when some models are more similar to each other
than to others and evidential support for this type of model is shared between them so
that a sub-optimal model is selected as the winning model (Penny et al., 2010, p. 5). For
this reason, a model space has to be balanced regarding all its axes in order to avoid
model dilution. For example, our 3rd model space was balanced, because it had three
axes (background stimulation, fixation stimulus, fixation response) with two levels each
(modelling or not modelling it) and all 23 = 8 possible combinations were evaluated. In
contrast, our 2nd model space with one categorical model and two parametric models
was not balanced which is why we first did a family selection and then performed model
selection within the winning family.
A third issue is sequential model selection. While the separation of different modelling
decisions into consecutive model spaces with the winning model at one stage being the
starting point for the next stage enhances the practical usability of our method, it is based
on the assumption that model space dimensions from different stages do not interact with
each other. For example, it is possible (though not very likely) that the parametric models
would have performed better with two HRF derivatives (GLM II/III, cHRF+2) which
was not tested, because the categorical model came out best with just the canonical
HRF (GLM I, cHRF). In other words, when we use a model in configuration A1 (rather
than A2) and compare model configurations B1 and B2, we believe that the preference
regarding B1 vs. B2 will be the same with a model in configuration A2 (just like in A1).
If we do not believe this, sequential model selection is invalid and the full model space
(A1/B1, A1/B2, A2/B1, A2/B2) has to be analyzed.
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6.4 Across-voxel model selection for fMRI data analysis

Usually, in fMRI, signals from tens of thousands of voxels are acquired which makes
computational complexity an important issue. We restricted the method to simple, but
reasonable assumptions about model structure corresponding to established first-level
data analyses, and we were able to derive analytical solutions for the general linear model
with normal-gamma priors (GLM-NG) which allows whole-brain model comparison for
large model spaces and many subjects in affordable time.5

The mass-univariate nature of standard fMRI data analysis also raises the question of
across-voxel inference for model selection. Across-voxel model selection is the task of
selecting an optimal model for a set of voxels. While the best model in the full brain was
always more or less clear (see Figure 3 and Table 1), there has also been variation in the
optimal model across voxels. On the one hand, different voxels might require different
analysis strategies since the corresponding brain area may be involved in the cognitive
task in different ways. On the other hand, it could be useful to model a particular brain
region uniformly using the same model in all voxels or to know which model is best in
the whole brain. Overall, we see four ways to deal with this topic.
First, one can regard across-voxel inference as not sensible at the whole-brain level and
just mask second-level inference based on a specific first-level model with the respec-
tive selected-model map, as proposed in this paper. This enables spatially heterogeneous
modelling and ensures that inference is safe at each voxel.
Second, a model explicitly accounting for the covariance of model preference across voxels
could be specified. This can happen at the first level by building multivariate GLMs on
multiple time series y (Allefeld and Haynes, 2014) or at the second level by building a
spatial model over model frequencies r (Rosa et al., 2010, p. 224).
Third, instead of operating on the parameter estimates from the same first-level model,
second-level analysis could be calculated from the estimates of different GLMs, depending
on which model is optimal in each single subject. Using subject-wise selected-model maps,
this could be easily implemented.
Fourth, Bayesian model averaging (BMA) on the common model parameters might be
applied (Penny et al., 2010) before entering first-level estimates into second-level analyses.
Using the posterior model probabilities as weighting factors, this would account for the
whole uncertainty about modelling approaches.
The last two approaches make across-voxel inference unnecessary, because there would
be no decision for a particular model at each voxel to be made anymore, but are also
restricted to model spaces in which the regressors of interest are present in all models.
The question of across-voxel model selection and the potential of BMA across GLMs for
fMRI could therefore be a promising direction for future research.

5We tested the speed of our method by calculating voxel-wise cvLME for GLM III in our empirical data
set. With a time consumption of 02:18 min, cvLME calculation was almost as fast as SPM’s classical
(ReML) model estimation (01:33 min) and clearly outperformed computation of a log model evidence
map using SPM’s (Variational) Bayesian GLM with standard settings [AR order of 3, UGL spatial
priors] (40:06 min) and with most parsimonious settings [AR order of 0, no spatial prior information]
(15:16 min). All computations were performed using MATLAB R2013b on a 64-bit Windows 7 PC with
16 GB RAM and four hyperthreaded Intel i7 CPU kernels working at 3.40 GHz.
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8 Software Note

An implementation of voxel-wise cross-validated Bayesian model selection (cvBMS) com-
patible with SPM8 and SPM12 can be obtained from the corresponding author.
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Appendix

A Parameter estimation for the Bayesian GLM

For the Bayesian GLM, we write the likelihood function as:

p(y|β, τ) = N(y;Xβ, (τP )−1) =

√
|τP |
(2π)n

exp
[
−τ

2
(y −Xβ)TP (y −Xβ)

]
(A.1)

As a prior distribution, we use the normal-gamma distribution:

p(β|τ) = N(β;µ0, (τΛ0)−1) =

√
|τΛ0|
(2π)p

exp
[
−τ

2
(β − µ0)TΛ0(β − µ0)

]
p(τ) = Gam(τ ; a0, b0) =

b0
a0

Γ(a0)
τa0−1 exp[−b0τ ]

(A.2)

As every Bayesian analysis, Bayesian inference for the GLM is based on Bayes’ theorem:

p(θ|y,m) =
p(y|θ,m) p(θ|m)

p(y|m)
(A.3)

For the Bayesian general linear model with normal-gamma priors (GLM-NG), this reads:

p(β, τ |y) =
p(y|β, τ) p(β, τ)

p(y)
(A.4)

Since p(y) is just a normalization factor, the equation becomes a proportionality:

p(β, τ |y) ∝ p(y|β, τ) p(β, τ) (A.5)

Writing this out for the GLM-NG yields:

p(β, τ |y) ∝ p(y|β, τ) p(β, τ) = p(y|β, τ) p(β|τ) p(τ)

=

√
|τP |
(2π)n

exp
[
−τ

2
(y −Xβ)TP (y −Xβ)

]
·√

|τΛ0|
(2π)p

exp
[
−τ

2
(β − µ0)TΛ0(β − µ0)

]
·

b0
a0

Γ(a0)
τa0−1 exp[−b0τ ]

(A.6)

Collecting identical variables gives:

p(β, τ |y) ∝

√
τn+p

(2π)n+p
|P ||Λ0|

b0
a0

Γ(a0)
τa0−1 exp[−b0τ ]·

exp
[
−τ

2

(
(y −Xβ)TP (y −Xβ) + (β − µ0)TΛ0(β − µ0)

)] (A.7)
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Completing the square over β gives:

p(β, τ |y) ∝

√
τn+p

(2π)n+p
|P ||Λ0|

b0
a0

Γ(a0)
τa0−1 exp[−b0τ ]·

exp
[
−τ

2

(
(β − µn)TΛn(β − µn) + (yTPy + µT0 Λ0µ0 − µTnΛnµn)

)] (A.8)

From this, we can isolate the posterior distribution over β:

p(β|τ, y) = N(β;µn, (τΛn)−1)

µn = Λ−1
n (XTPy + Λ0µ0)

Λn = XTPX + Λ0

(A.9)

From the remaining term, we can isolate the posterior distribution over τ :

p(τ |y) = Gam(τ ; an, bn)

an = a0 +
n

2

bn = b0 +
1

2
(yTPy + µT0 Λ0µ0 − µTnΛnµn)

(A.10)

B Log model evidence for the Bayesian GLM

According to the law of marginal probability, the model evidence is given by

p(y|m) =

∫
p(y|θ,m) p(θ|m) dθ (B.1)

Writing this out for the GLM-NG yields:

p(y|m) =

∫∫
p(y|β, τ) p(β|τ) p(τ) dβ dτ (B.2)

At first, we only focus on the integrand

p(y, β, τ) = p(y|β, τ) p(β|τ) p(τ) (B.3)

We have already evaluated this term as

p(y, β, τ) =

√
τn|P |
(2π)n

√
τ p|Λ0|
(2π)p

b0
a0

Γ(a0)
τa0−1 exp[−b0τ ]·

exp
[
−τ

2

(
(β − µn)TΛn(β − µn) + (yTPy + µT0 Λ0µ0 − µTnΛnµn)

)] (B.4)

Using the posterior distribution over β, we can rewrite this as
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p(y, β, τ) =

√
τn|P |
(2π)n

√
τ p|Λ0|
(2π)p

√
(2π)p

τ p|Λn|
b0
a0

Γ(a0)
τa0−1 exp[−b0τ ]·

N(β;µn, (τΛn)−1) exp
[
−τ

2
(yTPy + µT0 Λ0µ0 − µTnΛnµn)

] (B.5)

Now, β can be integrated out easily:

∫
p(y, β, τ) dβ =

√
τn|P |
(2π)n

√
|Λ0|
|Λn|

b0
a0

Γ(a0)
τa0−1 exp[−b0τ ]·

exp
[
−τ

2
(yTPy + µT0 Λ0µ0 − µTnΛnµn)

] (B.6)

Using the posterior distribution over τ , we can rewrite this as∫
p(y, β, τ) dβ =

√
|P |

(2π)n

√
|Λ0|
|Λn|

b0
a0

Γ(a0)

Γ(an)

bn
an

Gam(τ ; an, bn) (B.7)

Finally, τ can also be integrated out:∫∫
p(y, β, τ) dβ dτ =

√
|P |

(2π)n

√
|Λ0|
|Λn|

Γ(an)

Γ(a0)

b0
a0

bn
an

= p(y|m) (B.8)

Thus, the log model evidence is given by

log p(y|m) =
1

2
log |P | − n

2
log(2π) +

1

2
log |Λ0| −

1

2
log |Λn|+

log Γ(an)− log Γ(a0) + a0 log b0 − an log bn

(B.9)

C Accuracy/Complexity for the Bayesian GLM

The Bayesian model accuracy is defined as

Acc(m) = 〈log p(y|θ,m)〉p(θ|y,m) =

∫
p(θ|y,m) log p(y|θ,m) dθ (C.1)

For the GLM-NG, it evaluates to

Acc(m) =− 1

2

an
bn

[
(y −Xµn)TP (y −Xµn)

]
+

1

2
log |P | − n

2
log(2π)

+
n

2
(ψ(an)− log(bn))− 1

2
tr(XTPXΛ−1

n )

(C.2)

The Bayesian model complexity is defined as

Com(m) = KL [p(θ|y,m)||p(θ|m)] =

∫
p(θ|y,m) log

p(θ|y,m)

p(θ|m)
dθ (C.3)
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For the GLM-NG, it evaluates to

Com(m) = +
1

2

an
bn

[
(µ0 − µn)TΛ0(µ0 − µn)− 2(bn − b0)

]
− 1

2
log
|Λ0|
|Λn|

+
1

2
tr(Λ0Λ−1

n )− p

2
+ a0 log

bn
b0

− log
Γ(an)

Γ(a0)
+ (an − a0)ψ(an)

(C.4)

D Second-level Bayesian model selection

We consider model evidences p(yi|mj) for the data from subjects i = 1, . . . , N analyzed
using models j = 1, . . . ,M . In this setting, model frequencies can be inferred using a
hierarchical population proportion model defined by the following probability densities:

p(y|m) =
N∏
i=1

p(yi|mi) =
N∏
i=1

M∏
j=1

p(yi|ej)mij

p(m|r) =
N∏
i=1

Mult(mi; 1, r) =
N∏
i=1

M∏
j=1

r
mij

j

p(r|α) = Dir(r;α) =
Γ(
∑M

j=1 αj)∏M
j=1 Γ(αj)

M∏
j=1

r
αj−1
j

(D.1)

Accounting for different subjects being best explained by different models, i.e. allowing
the variable model to be a random effect, a Variational Bayesian (VB) iterative estimation
algorithm has been developed (Stephan et al., 2009) to infer a posterior distribution over
model frequencies p(r|y) from prior concentration parameters α0 as follows:

α = α0

until convergence

uij = exp

[
log p(yi|ej) + ψ(αj)− ψ

(
M∑
j=1

αj

)]

βj =
N∑
i=1

uij
ui

where ui =
M∑
j=1

uij

α = α0 + β

end

p(r|y) = Dir(r;α)

(D.2)

This algorithm is best understood as distributing subjects on models where each subject
can be divided onto the models depending on its relative model evidences. Therefore,
when the uniform prior α0 = [1, ..., 1] is used, the posterior αj − 1 can be regarded as the
effective number of subjects “using” model j (Stephan et al., 2009).
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E Decision-theoretic model choice

We define the 1-0 utility function on the variable m

U(m, m̂) = [m = m̂] (E.1)

and the benefit function as the posterior expected utility

B(m̂) = Er|y[Em|r[U(m, m̂)]] (E.2)

where p(m|r) and p(r|y) come from second-level RFX BMS. Since the utility function is
only one when the true model is correctly identifed, the benefit function becomes

B(m̂) =

∫
p(m̂|r) p(r|y) dr (E.3)

With the probability densities (D.1), this evaluates to

B(m̂) =
Γ
(∑M

j=1 αj

)
∏M

j=1 Γ (αj)

∏M
j=1 Γ

(
αj +

∑N
i=1 m̂ij

)
Γ
(∑M

j=1

(
αj +

∑N
i=1 m̂ij

)) (E.4)

With the estimation algorithm (D.2), this evaluates to

B(m̂) =
Γ(M +N)

Γ(M + 2N)

M∏
j=1

∑
m̂ij−1∏
k=0

(αj + k) (E.5)

The optimal decision regarding models m is the one that maximizes the benefit:

m∗ = arg max
m̂

B(m̂) (E.6)

Remember that m is an N ×M matrix. Therefore, in principle, a different model could
be chosen for each subject. However, if the same model k has to be used in all subjects
which generally is the case in fMRI data analysis, the benefit function becomes

B(k) ∝
N∏
i=1

(αk + i− 1) (E.7)

With this correction on the benefit function, the optimal decision is given by

m∗ = 1N ⊗ ek, with k = arg max
j

αj (E.8)

This means that choosing models with respect to the largest posterior alphas or, equiv-
alently, the largest estimated frequency, in an RFX BMS maximizes the expected utility
or benefit function and is the recommended choice according to Bayesian decision theory.
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