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Abstract
We show that computational reinforcement learning can model
human decision making in the Iowa Gambling Task (IGT). The
IGT is a card game, which tests decision making under uncer-
tainty. In our experiments, we found that modulating learning
rate decay in Q-learning, enables the approximation of both the
behaviour of normal subjects and those who are emotionally
impaired by ventromedial prefrontal lesions. Outcomes ob-
served in impaired subjects are modeled by high learning rate
decay, while low learning rate decay replicates healthy sub-
jects under otherwise identical conditions. The ventromedial
prefrontal cortex has been associated with emotion based re-
ward valuation, and, the value function in reinforcement learn-
ing provides an analogous assessment mechanism. Thus rein-
forcement learning can provide a good model for the role of
emotional reward as a modulator of the learning rate.

Keywords: reinforcement learning; Q-learning; learning rate
decay; Iowa Gambling Task; ventromedial prefrontal impair-
ment

Introduction
According to psycho-evolutionary theorists, emotions assist

the organism in maintaining homeostasis relative to its be-

havioural and survival goals (Plutchik, 2003). The emotion

feedback mechanism solves problems without the need for

higher cognitive analysis (Damasio, 2006).1 Rolls (2013, Ch.

4) proposes that emotions regulate instrumental learning and

influence contingent outcome-action selection.

The pre-frontal cortex and its regions play a key role

in goal directed learning and behaviour (Miller & Cohen,

2001). Ventromedial prefrontal cortex (VMF) lesions pro-

duce a characteristic learning deficit, where the subject, while

retaining good intellectual function and understanding, is no

longer able to learn from real life mistakes. Wallis (2007) has

argued that the VMF provides emotion valuation input critical

for good decision making.

The Iowa Gambling Task (IGT) was the first clinical test,

which identified VMF impairment in human trials (Bechara,

Damasio, Damasio, & Anderson, 1994). In the IGT, subjects

need to choose a card from one of four decks. There are two

‘good,’ and two ‘bad’ decks, but the ‘bad’ decks start with

positive rewards. Once penalties set in on the bad decks, sub-

jects should adjust the choice of decks accordingly. Fellows

1First published in 1994 by G.P. Putnam’s Sons, New York,
USA.
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Figure 1: The ε-Greedy agent applied to the original IGT data

with different learning rate decay values. A low decay rate

yields normal behaviour, whereas a high decay rate repro-

duces VMF impairment. *See text and Table 4 for details.

and Farah (2005, 2004) present a re-shuffled variation of the

original IGT, where penalties start earlier in the bad decks.

While VMF impaired subjects fail the original IGT, they pass

the re-shuffled variant. On the basis of these differing test re-

sults, Fellows and Farah (2005, 2004) link VMF impairment

to reversal learning deficit.

Computational reinforcement learning methods approxi-

mate an optimal decision policy by iteratively aggregating

time-contingent reward values (Sutton & Barto, 2018). For

example, reinforcement learning techniques may be used to

calculate a suitable path for escaping a maze (Osmankovic &

Konjicija, 2011).

Watkins (1989) developed, the Q-learning framework, a

reinforcement learning model, which, in addition to the dis-

count rate, uses a single novel parameter denoted by α, known

as the learning rate. The learning rate determines the relative

contribution of current yield to accumulated value. We add to

the Q-learning model a decay factor parameter λ, which pro-

duces exponential decay of the learning rate (Powell, 2011,

pp. 427). We show that Q-learning, with the addition of learn-

ing rate decay, reproduces the clinical results of the original

and re-shuffled IGT variants.



Figure 1 presents our key result for the original IGT vari-

ant. For low learning rate decay, the ε-Greedy agent performs

in the range of normal human subjects. As learning rate decay

increases, agent performance reduces to the range of VMF

impaired subjects. The dark and light gray zones mark the

mean fraction of cards chosen from the good decks, reported

in the literature for normal and VMF impaired subjects re-

spectively.

In the remainder of this paper, we first review related liter-

ature. Then we discuss the IGT in detail, develop the com-

putational treatment, and summarize the experimental design

and the results. These are followed by the discussion and

conclusion.

Literature Review
According to Dalgleish (2004), the prefrontal cortex consti-

tutes a primary anatomical locus for animal and human be-

haviour attributed to emotion. Dalgleish’s prefrontal cortex

includes the areas (Krawczyk, 2002, pp. 633-635) others

have called the VMF (Bechara, 2004) or OFC (Rolls, 2000;

Wallis, 2007). This paper uses the term VMF to refer to the

area of the prefrontal cortex involved in valuation by emotion.

However, some studies prefer the term orbitofrontal cortex, or

OFC. This section retains the respective authors’ original use

of the terms OFC or VMF.

VMF impaired patients, can recognise poor decisions and

describe good decision making strategies, but exhibit a dis-

tinctive inability to learn from their mistakes (Bechara et

al., 1994). In IGT studies, this inability applies to negative

(Bechara et al., 1994) and positive rewards (Bechara, Tranel,

& Damasio, 2000).

To explain VMF impaired deficits, Damasio (1998) pro-

poses the Somatic Marker Hypothesis: an involuntary feed-

back mechanism where a physical or virtual body sensation

is associated with a particular emotion. VMF impairment

disrupts somatic marker pathways, and the affected individ-

ual remains in a slow, logic based decision making paradigm

(Bechara, 2004; Damasio, 1998, 2006). Others have instead

advanced the view that VMF impairment leads to loss of re-

versal learning ability (Dunn, Dalgleish, & Lawrence, 2006;

Maia & McClelland, 2005; Fellows & Farah, 2003, 2005,

2004). Reversal learning ability is the facility to unlearn

a stimulus-response-association, which had previously pro-

duced favourable emotion-valued outcomes.

The VMF is also associated with emotion (Krawczyk,

2002; Hornak et al., 2003; Rolls, 2000). Modelling emotion

in learning and decision making has been challenging (Volz

& Hertwig, 2016). Without using emotion, the Rescorla-

Wagner classical conditioning model presents a learning rule

for assessing the pre and post trial associative strength of a

new stimulus (Rescorla & Wagner, 1972). TD(λ) reinforce-

ment learning methods extend the Rescorla-Wagner model

and enable intra-trial assessment of an associative stimulus

(Sutton & Barto, 2018, pp. 350-357). Contingent stimulus-

response animal studies also inspired Q-learning. However,

unlike Rescorla-Wagner, Q-learning does not explain the con-

ditioning mechanism, but instead develops a decision the-

oretic learning framework (Watkins, 1989). Q-learning re-

mains one of the most successful machine learning algo-

rithms, especially as the feedback stage for deep neural net-

works (Mnih et al., 2015).

Puviani and Rama (2016) propose a complex, neurolog-

ically motivated emotion learning framework, which mod-

els both the OFC and the Amygdala. However, typically

computational emotion synthesis employs more abstract, be-

haviourally driven approaches based on varied psychological

views. Recently, reinforcement learning approaches incorpo-

rating emotion have been receiving increased attention. Rein-

forcement learning can produce lightweight models, has close

ties to optimal control, and provides an intuitive approach for

aggregating contingent values (Powell, 2011; Sutton & Barto,

2018).

Moerland, Broekens, and Jonker (2018; 2017) identify and

survey 52 papers published from 1998 to 2016 relating to

emotion and reinforcement learning. They report four com-

mon methods for eliciting emotion: homeostatic targets, in-

trospective appraisal, value function or reward modulation,

and, sensor or sense driven. Emotions influence rewards,

contingencies, modulate the exploitation versus exploration

trade-off, and sometimes directly act on action selection.

Typically, the value function itself aggregates emotion mod-

ulated inputs into an action selection mapping. We believe

that emotion modulated reinforcement learning thus aims to

encapsulate the functionality of the VMF.

While developing our model, the Moerland et al. (2018;

2017) survey had not yet come out. However, we had con-

sidered Broekens, Jacobs, and Jonker (2015), where joy, dis-

tress, hope, and fear act as value inputs into TD(0) computa-

tional reinforcement learning. In contrast to Moerland et al.

(2018; 2017) and Broekens et al. (2015), our model does not

need an emotion generation layer. In the context of the dis-

cussed models, our model re-interprets the Q-value function

as a single aggregated emotion signal. While our learning

rate is modulated by another hyper-parameter, the decay fac-

tor, we do not synthesize emotions to modulate these hyper-

parameters. Instead, we use an external search grid to assess

the end-effect of learning rate changes, which we hypothesize

might result from VMF impairment.

Our learning rate decay law does not satisfy the well-

known statistical convergence requirement that the sum of the

learning weights must be infinite (Robbins & Monro, 1951;

Spall, 2003). In practice, fully proving theoretical statisti-

cal convergence is difficult (Spall, 2003, p. 122), and proof

of theoretical convergence does not automatically ascertain

good model performance (Powell, 2011, p. 450). Moreover,

an individual organism and its decision making mechanisms

possess a finite lifespan. Therefore we think it is valid to

investigate finite term, periodic decisions with tools where

statistical convergence is not theoretically guaranteed. We

propose that our method of simulating human behaviour with



learning rate decay could form a useful baseline for gener-

alised reinforcement learning solutions. We focus here on the

empirical effect of learning rate decay on decision quality and

learning.

The Iowa Gambling Task
The original (Bechara et al., 1994) and re-shuffled (Fellows

& Farah, 2005, 2004) Iowa Gambling Task (IGT) variants

form the basis of this paper and we explain them here in more

detail.

Description
The IGT is a card game where the participant receives a loan,

and should maximize profit including repayment of any loans.

The card game consists of four decks: A, B, C, and D. The

participants are told that “some decks are worse than others.”

(Bechara et al., 2000, p. 2192) In each turn, the participant

draws one card from any deck. For each draw, the participant

then receives a fixed reward, and occasionally has to pay a

fine. Decks C and D, known as the ‘good’ decks, give low

fixed rewards, low fines, and, on average, yield net gains. The

remaining two ‘bad’ decks, A and B, produce high rewards,

but even higher losses, and, on average, produce a net loss.

The game stops after 100 turns, when the dealer announces

the end. However, the participant does not know when the

game will end. If the participant runs out of money, additional

loans are available. The hypothesis is that the participants

discover the ‘good,’ low risk decks and choose accordingly.

A score of more than 50 draws from the good decks is defined

as a normative pass by Fellows and Farah (2005, 2004).

While the original IGT lasts 100 turns, Bechara et al.

(1994) only predefine a 40-draw sequence for each deck.

They do not discuss whether any participants drew more than

40 cards from the same deck, and in the provided example

draws, human participants do not draw more than 40 cards

from the same deck. In our implementation, we use the pub-

lished 40-draw predefined sequences. However, to ensure that

a software agent could potentially draw more than 40 consec-

utive cards from the same deck, we loop at the end of each

deck to the beginning of the deck.

Original and Re-shuffled Card Deck Differences
In the original IGT, the ‘bad’ decks, A and B, each start with

an eight card long ‘special’ sequence, where the player re-

ceives positive net gains. Consequently, at the beginning of

the task, the ‘bad’ decks appear ‘good.’ However, in each bad

deck, the ‘special sequence’ is immediately followed by one

or more high fines, causing the player, on subsequent selec-

tions, to lose all gains and move into debt.

In the re-shuffled variant, Fellows and Farah (2005, 2004)

move the first 8 cards in each original deck to the end. This

removes the initial confounding conditioning sequence, and

players experience, across all decks, fines relatively quickly.

The full details of the original and re-shuffled decks can be

found in Bechara et al. (1994, p. 9) and Fellows and Farah

(2005, 2004, p. 59) respectively.

ε-Greedy Q-Learning with Learning Rate
Decay

This section motivates and develops our Q-learning model

with learning rate decay.

Computational Background
The IGT constitutes a version of the n-armed bandit prob-

lem (Ross, 1983, pp. 131-151): there are four processes, of

which only one can be operated at any one time. The soft-

ware agent devises a policy for gaining information (explor-

ing), for assessing (scoring), and then choosing the most ad-

vantageous process (exploiting). Kuleshov and Precup (2000)

present various classic computational techniques for scoring,

and for balancing exploration versus exploitation. We employ

Q-learning because it is simple and permits investigation of

learning rates which vary from 1•n and its derivatives.

Single State Q-learning
We model the IGT as a single state environment with four

card decks and four actions. We do not fully implement Q-

learning as proposed by Watkins (1989) where the current

contribution to the Q-factors uses off-policy updating. In-

stead, we apply on-policy value function updates as suggested

by Sutton and Barto (2018, p. 32).

Given an action a, let Q•a• be an unknown value function,

and let Qn•a• denote the nth iterative approximation. Then

we write the computational estimation problem as:

Qn•a• • αnra
n • •1−αn• γQn−1•a• (1)

where ra
n • rewarda

n − f inea
n is the net reward for action a at

iteration n , γ is the discount rate, and αn is the learning rate

at iteration n. The discount rate γ, when set to less than 1, is

used to devalue future yields ra
n. We assume that the length

of the card game, although unknown, is not long enough to

create a preference for present rewards. Consequently, we set

γ • 1.

Learning Rate Decay
A rapidly decaying learning rate sequence, {αn}, can get

close to 0 prior to some final period T and effectively cur-

tail learning. We consider a geometric-decay learning rate

sequence of the form (Powell, 2011, pp. 427):

αn • Λαn−1 (2a)

Λ • 2−λ• ln2 (2b)

where λ ∈ [
0•∞

)
is the decay factor, and ln2 is a normalizing

constant used to rescale to natural logarithms in the computa-

tions.

Given equation (2b), {α}n only satisfies the theoretical sta-

tistical convergence requirement ∑n αn • ∞ (Powell, 2011,

pp. 274-285), when λ • 0.

However, equations (2a) and (2b) always guarantee, in a

finite number of iterations, computational convergence in the

sense of |Qn−Qn−1| • ε for some n� ∞ and ε • 0. In prac-

tice, our approach produces good approximations to normal

as well as VMF impaired behaviour.



Table 1: Methodology, Simulation Parameter Summary

Trials, N 2000

Initial Learning Rate, α1 0.05 to 1 by 0.05 steps
*Decay Factor, λ λi • λmax2−ir• ln2

ε-Greediness, ε 0.00 to 0.50 by 0.10 steps

*With λmax • 3•3765, r • 0•012, i • 0•1•2••••

Table 2: Original IGT Test, Pixel Match Computed Means

± SE for Fraction of Cards Chosen from the Good Decks

reported in the IGT Literature

Subjects Study N
Mean fraction

of good decks

Controls

Bechara et al. (1994) 44 0.69 ± 0.015

Bechara et al. (1998) 21 0.62 ± 0.032

Bechara et al. (2000)* 20 0.59 ± 0.019

Farah et al. (2004) 14 0.63 ± 0.023

VMF

Impaired

Bechara et al. (1994) 6 0.37 ± 0.055

Bechara et al. (1998) 9 0.40 ± 0.035

Bechara et al. (2000)* 10 0.45 ± 0.028

Farah et al. (2004) 9 0.50 ± 0.020
*Results reported in 20 draw blocks. Calculation of 100

draw values assume no inter-block covariance.

The ε-Greedy Agent
For most of the time, the ε-Greedy agent exhibits uncon-

strained maximizing behaviour, and at any iteration n, picks

the deck with the highest attributed value:

Q∗n • max
a

Qn•a•• a ∈ {A•B•C•D} (3)

To ensure exploration, occasionally the ε-Greedy agent

chooses an action randomly. Consequently, the agent’s de-

cision making rule is:

Q∗n•ε •

{
Q∗n• with probability 1− ε•
choose a randomly with probability ε

(4)

where ε ∈ •0•1• indicates the probability of exploration.

Experimental Design and Results
Simulations consist of multiple trials of 100 draws. All cross-

section comparisons are conducted at the 100th draw, which

corresponds to the duration of the clinical tasks. Table 1 sum-

marizes the parameter values used in this paper. We assess

the parameter space with brute-force, grid-based searches.

As the original test data (Bechara et al., 1994, 2000; Fel-

lows & Farah, 2005, 2004; Bechara, Damasio, Tranel, & An-

derson, 1998) was not available, we converted the graphi-

cal presentations into numerical format using pixel matching.

For each study, Tables 2 and 3 summarize, for normal and

VMF impaired subjects, the pixel match calculated original

Table 3: Re-shuffled IGT Test, Pixel Match Computed Means

± SE for Fraction of Cards Chosen from the Good Decks

reported in the IGT Literature

Subjects Study N
Mean fraction

of good decks

Controls Farah et al. (2004) 17 0.72 ± 0.038

VMF

Impaired
Farah et al. (2004) 9 0.67 ± 0.078

Table 4: Original and Re-shuffled IGT Mean Fraction Good

Deck Ranges Used for Comparing ε-Greedy Agent and Lit-

erature Results

IGT Variant Original Re-shuffled

Pixel matched studies 4 1

Comparison Rule Table 2 Minimum

and Maximum

Table 3

± 2 SEs

Normal Match

Range

0.59 to 0.69 0.64 to 0.80

VMF Impaired

Match Range

0.37 to 0.50 0.51 to 0.83

and re-shuffled IGT test results respectively, reported in terms

of the fraction of cards chosen from the good decks.

Table 4 shows the pixel matched ranges of fraction of good

decks we derived from IGT literature results and use to com-

pare to the ε-Greedy agent results.

Results
We found that, given appropriate standard values for initial

learning rate and exploration, learning rate decay λ proves to

be the key variable, which determines the ε-Greedy agent’s

degree of success. We first present the results obtained from

learning rate decay and exploration variations, and then dis-

cuss the effects of the initial learning rate.

The Effects of Learning Rate Decay and Exploration
Fig. 2 shows, given exploration, the strong effect of learning

rate decay on mean fraction of good decks. For the original

IGT, as the decay factor increases, the mean fraction good

decks achieved by the agent decreases; and, eventually ap-

proaches a value close to or below 0.5, the IGT fail criterion.

But for the re-shuffled IGT, as the decay factor increases,

mean fraction of good decks scores remain above 0.5.

Figure 2 also shows that for the original and re-shuffled

decks, at ε • 0•40, the ε-Greedy agent matches actual IGT

test subject behaviours: control subject behaviour is matched

at a learning rate decay factor of λ • 0•16 (15% per period

learning rate decay), and VMF impaired subject behaviour is

matched at λ • 0•56 (43% decay).

ε • 0•40 constitutes the first exploration value at which

we obtain a match for healthy and VMF impaired human

performance zones. Further match candidates exist for ε •
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Figure 2: Learning rate decay and ε-Greedy agent IGT perfor-

mance. Dark lines approximate human IGT behaviour. With

high exploration, for the Original IGT, at the lower decay fac-

tor, the agent matches control subject performance; and, at the

higher decay factor, the agent matches VMF impaired sub-

ject results. With high exploration, for the re-shuffled IGT, at

the lower and higher decay factors, the agent matches human

subject performance.

0•40−0•50, where the values of the agent’s mean fraction of

good decks are inside the match ranges for the corresponding

values reported in the literature for human subjects.

At ε • 0•50, the agent explores 50% of the time. 50% ex-

ploration seems high. However, it constitutes a targeted strat-

egy, for example, compared to always choosing lottery num-

bers randomly. We can also see that agents, which do not

explore at all (ε • 0•0), or explore just a little (ε • 0•10), sub-

stantially exceed human performance. We discuss this result

later.

Table 3 shows that the re-shuffled deck VMF impaired

match range is derived from a single study with 9 participants.

In Fellows and Farah (2005, 2004, p. 60, Figure 4), VMF im-

paired subject performance includes a high performace clus-

ter of 3 subjects with a pixel matched cluster mean of 0.95.

These 3 VMF impaired subjects achieve a re-shuffled deck

test result approximated by the performance of our ε=0.10

agent, which achieves across all decay factors a mean frac-

tion of good decks score of 0.92.

Having only a single re-shuffled deck study makes inter-

preting the statistical context of this high performance clus-

ter difficult. Therefore in Table 4, we construct re-shuffled

deck VMF performance match ranges using ±2 standard er-

rors, which produces approximately a 92% confidence inter-

val (two-sided p-value: 0.080516). Our match range can be

interpreted as the smallest match range based on the availabil-

ity of a single study.

With re-shuffled decks, the decay factor λ influences the

mean fraction of good decks by very little. This result ap-

pears to be driven by card sequencing. To test the effect of

card sequencing, we created a new deck environment, where

cards are drawn randomly, without replacement, from the

original IGT decks. This new random draw card environ-

ment produces plots, which display a pattern similar to that

of the original decks in Figure 2, except that as the decay

factor increases, mean fraction of good decks decreases to-

wards but remains above 0.5. Therefore relative to randomly

ordered decks, both the original and re-shuffled decks cre-

ate sequencing biases, which put different demands on learn-

ing: the original decks tax re-learning, while the re-shuffled

decks teach via ‘early punishment.’ It would be interesting

to test whether both normal and VMF impaired subjects pass

the random draw version of the IGT as predicted by our sim-

ulation.

Finally, increasing exploration leads to a steady downward

shift of the mean fraction of good decks plots with little effect

on contour shaping. In contrast, learning rate decay λ appears

key for determining agent behaviour; and increasing learning

rate decay approximates the behaviour of normal and VMF

impaired IGT participants.

The Effects of the Initial Learning Rate Unlike learning

rate decay, the initial learning rate α1, like exploration, only

has a mild effect on the mean fraction of good decks.

Figure 3 shows the effect of the initial learning rate α1 on

mean fraction good decks at the 100th draw for the ε-Greedy

agent with ε • 0•40. For the the original and re-shuffled

decks, mean fraction of good decks scores vary little along

the initial learning rate axis. In contrast, increasing learning

rate decay leads to normative IGT fail (i.e., mean fraction of

good decks ≤ 0.50) for the original decks; but not for the

re-shuffled decks, thereby inducing agent behaviour to match

human trial performance.

Discussion
In our Q-learning IGT simulations, learning rate decay λ con-

stitutes a critical parameter. Increasing learning rate decay

generates the observed behaviour of human IGT participants.

For low learning decay factors, the ε-Greedy agent passes

both the original and re-shuffled IGT. As we increase the

learning decay factor, the agent fails the original test, while

continuing to pass the re-shuffled variant. Therefore, increas-

ing the decay factor leads to the learning behaviour of VMF

impaired IGT participants.

In reinforcement learning, the software agent’s internal val-

uation produces action selection. Rolls and others have ar-
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fraction of good decks. Normal and VMF impaired match

values are marked accordingly for ε • 0•40.

gued that emotions result from reward assessment in the VMF

(Krawczyk, 2002; Hornak et al., 2003; Rolls, 2000, 2013).

We draw parallels between VMF provided reward values and

the reinforcement learning process. The Q-value function en-

capsulates reward information. Learning rate decay λ can

elicit progressive decay in current reward contribution. If

learning rate decay is very high, then current reward value

contribution decreases rapidly, and this leads to quick compu-

tational convergence. This effect produces two impediments,

which may mimic VMF impairment: the value function not

only ‘finalises’ too quickly, but also is itself dominated dis-

proportionately by initial experiences.

Consequently with high learning rate decay, early and high

‘bad’ deck payoffs in the original IGT produce an incorrectly

learned policy response: the ‘bad’ decks appear to be good.

The ε-Greedy agent’s beliefs, once established, even when

presented with current information to the contrary, can no

longer be modified. If emotion impairment due to VMF le-

sions removes the ability to unlearn previously learned re-

sponses, then in reinforcement learning, this behavioural ef-

fect can be achieved via high learning rate decay.

Conclusion
Bechara et al. (1994, in title) state that VMF impaired pa-

tients suffer from an “insensitivity to future consequences.”

Our simulated VMF impaired original IGT results suggest

that this insensitivity comes from remaining mired in the past,

and appears consistent with loss of the ability to reverse learn-

ing.

Interestingly, at lower exploration values, the ε-Greedy

agent achieves mean fractions of good decks that are better

than those achieved by human subjects. To match actual test

subject behaviours, exploration has to be set at a high level.

It is not clear why agent behaviour, while qualitatively mir-

roring human behaviour, achieves better than human results.

A number of possibilities could explain this finding. A refor-

mulated model with decaying ε-Greediness may provide ad-

ditional insight into the exploration versus exploitation trade-

off. Human behaviour may initially have higher exploration,

which then progressively decreases with learning. In this pa-

per, to keep the parameter count low, to avoid over-fitting,

and to focus on the decay factor λ, we have not added any

additional parameters for modelling variable exploration.

Alternatively, given the lack of full-knowledge, human be-

haviour may be more cautious. Human level learning has

evolved for a wide variety of tasks, and therefore may per-

form optimally at other tasks for which Q-learning is less well

suited. In contrast, grid search allows the searcher to become

all-knowing with respect to the parameter space. For humans

with incomplete information, keeping exploration high may

make sense, just in case a deck would produce some unex-

pected yields later in the task.

Finally, it is also possible that the calculations performed

by reinforcement learning agents are too hard for mental

arithmetic and that the lack of precise calculations leads to

sub-optimal decisions.

In a psycho-evolutionary context, emotions provide a flex-

ible mechanism for establishing homoeostatis under environ-

mental uncertainty (Plutchik, 2003; Rolls, 2013). If this en-

vironmental uncertainty fulfils certain regularity conditions,

such as distributional full, or bounded, time-invariance, exis-

tence of the mean, or high-yield state correlation, then there

could be high survival value to speculative learning; that is,

deriving a working decision policy from just a few samples.

From short learning bursts, the organism, or agent, could con-

verge, to a long-term optimal decision rule. Emotions (via

learning rate decay) could be responsible for opening and

closing a short learning window. It is possible that the VMF

driven emotion mechanism has evolved to produce the ability

for organisms to learn efficiently from just a few samples.

Humans have evolved as generalised decision learners. In

many machine learning tasks, only a narrow range of hyper-

parameter values produce a coherent result. Therefore the ad-

dition of a learning decay factor, which mimics human learn-

ing could provide an ideal starting point over a number of

tasks for computational learning. Overall, our results indi-

cate that computational reinforcement learning may be used

as the basis for modelling emotion based learning. The results

are encouraging for further investigation into more complex

forms of learning and emotions.
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