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Abstract—There is an urgent societal need to assess whether
autonomous vehicles (AVs) are safe enough. From published
quantitative safety and reliability assessments of AVs, we know
that, given the goal of predicting very low rates of accidents,
road testing alone requires infeasible numbers of miles to
be driven. However, previous analyses do not consider any
knowledge prior to road testing – knowledge which could bring
substantial advantages if the AV design allows strong expectations
of safety before road testing. We present the advantages of a new
variant of Conservative Bayesian Inference (CBI), which uses
prior knowledge while avoiding optimistic biases. We then study
the trend of disengagements (take-overs by human drivers) by
applying Software Reliability Growth Models (SRGMs) to data
from Waymo’s public road testing over 51 months, in view of the
practice of software updates during this testing. Our approach is
to not trust any specific SRGM, but to assess forecast accuracy
and then improve forecasts. We show that, coupled with accuracy
assessment and recalibration techniques, SRGMs could be a
valuable test planning aid.

Index Terms—autonomous vehicles, reliability claims, statisti-
cal testing, safety-critical systems, ultra-high reliability, conser-
vative Bayesian inference, software reliability growth models

I. INTRODUCTION

In recent years, autonomous vehicles (AVs) have moved
rapidly from labs to public roads. AVs are claimed to have the
potential to make road traffic much safer and more efficient.
Much research has been conducted on various aspects of de-
ploying AVs, e.g. design, implementation, regulation and legal
issues [1]–[6]. Due to considerable investment, practical AVs
seem just around the corner; e.g., Waymo LLC – formerly the
Google self-driving car project – launched its first commercial
AV taxi service on 5th December 2018.

Prior to that, Waymo, like other AV manufacturers, has been
testing its AVs on public roads in the U.S. for years. Such
operational testing in real traffic, with close observation of AV
performance, is a necessary part of assessing the safety of AVs.
Indeed, Google presented its 1.4 million miles of road testing
data as important testimonial evidence in the U.S. Congress
hearings on AV regulation [7]. Meanwhile, scholars [8], [9]
have used the same kind of data to draw sobering conclusions
about how far AVs are from achieving their safety goals and
(an even harder challenge) demonstrating that it is achieved.

This work is partially supported by the UK EPSRC through the Offshore
Robotics for Certification of Assets (ORCA) Hub [EP/R026173/1].

These studies mostly rely on descriptive statistics, giving
insights on various aspects of AV safety [8], [10]–[12]. A
RAND Corporation study [9] has been highly cited, and in this
paper we refer to it for comparison, to illustrate similarities and
differences between alternative statistical approaches to assess-
ment and the results thereof. For the reader’s convenience, we
will refer to this paper as “the RAND study”. The RAND study
uses classical statistical inference to find how many miles need
to be driven to claim a desired AV reliability with a certain
confidence level. However, such techniques do not address
how safety and reliability claims1, based on operational testing
evidence, can be made in a way that:

a) is practical given very rare failure events, such as fatal-
ities and crashes. If and when AVs achieve their likely safety
targets, rates of such events will be very small, say a 10−7

probability of a crash event per mile (pcm). Especially for test
failures that could cause a fatality – counted to estimate future
probability of a fatality event per mile (pfm) – most companies
will observe no such failures, if they are even close to the
target. If they did observe any, the required redesign/update
of the AV could make the fatality data obsolete. Gaining
confidence in such low failure rates is a major challenge [13],
[14], possibly requiring infeasible amounts of operation to
discriminate between the conjectures that the (say) pfm is as
low as desired, or is not. This was the case in the RAND study
findings.

b) incorporates relevant prior knowledge. In conventional
system, this prior knowledge would typically include evidence
of soundness of design (as supported by verification results)
and quality of process. AVs rely for core functionalities on
machine learning (ML) systems, for which the ability to
prove correct design is lacking (despite intense research). But
AVs, just as more conventional systems, will normally include
safety precautions (e.g. defence in depth design with safety
monitors/watchdogs [15]). Indeed, such “safety subsystems”
are not only suggested in policy making [1], but also ex-
tensively implemented by AV manufacturers [16], [17]. Such

1In this paper we only deal with probabilistic claims, so “reliability”
claims will be about probabilities of occurrence of failures, “safety” claims
about failures that are safety-relevant. The two kinds do not require different
statistical reasoning, except as far as affected by practical differences in e.g.
frequencies, desired bounds, and degrees of observability.



safety subsystems have relatively simple functionalities (e.g.
bringing the vehicle to a safe stop), can avoid relying on ML
functions, and allow for conventional verification methods.
If these safety subsystems are the basis for prior confidence
in safety, evidence about their development and verification
should be combined (in a statistically principled way) with
operational testing evidence. The same applies if evidence for
the ML functions or the whole system is available (e.g. from
automated testing [18] or formal verification [19], [20]).

c) considers that while road testing data are collected, the
AVs are being updated. For an unchanging vehicle operating
under statistically unchanging conditions, “constant event rate”
models, as applied, e.g., in the RAND study, may apply.
However, there is an expectation that an AV’s ML-based
core systems improve as the vehicle evolves with testing
experience, which should be reflected in the frequency of
failure-related events. So, for instance, one would expect a
decreasing trend in the frequency of disengagements2, as has
been observed. E.g., [8] reports noticeable changes for disen-
gagements per mile (dpm) over cumulative miles. Although
decreasing dpm does not imply increasing reliability/safety of
the AV3, it is a useful indicator to study (e.g. for planning of
road testing, and as inputs to more refined analysis of actual
AV reliability). Assessment of changing measures like dpm
should use statistical approaches that account for such changes.

The key contributions of this work are:
a) For constant safety and reliability scenarios, we develop

a new Conservative Bayesian Inference (CBI) framework for
reliability assessment, that can incorporate both failure-free
and rare failures evidence. Including the case of non-zero fail-
ure counts generalises existing CBI methods [23]–[26], applied
in other settings such as nuclear safety, that consider only
failure-free evidence. For AVs, instead, occasional failures are
to be expected. So our new framework incorporates failures
into the assessment. Being a Bayesian approach, it also allows
for the incorporation of prior knowledge of non-road-testing
evidence (e.g. verified aspects of the behaviour of an AV’s
ML algorithms; verification results for the safety subsystems).
We then compare claims based on our CBI framework with
claims from other AV case studies, using the same data and
settings (in particular, we consider how CBI compares with the
well-known inference approach used in the RAND study). CBI
shows how these other approaches can be either optimistic, or
too pessimistic, and the difference may be substantial.

b) For scenarios with the AV evolving over cumulative miles
driven, we show how past AV disengagement data can be
used to predict future disengagement, and such predictions

2Failures causing AVs’ control to be switched to human drivers.
3Interpreting dpm as an indicator of AV safety is wrong [8] and potentially

dangerous, through both being misleading and creating incentives to improve
dpm rather than safety [21]. Proper use of dpm data in arguing safety would
require assessing the interplay between (a) the evolution of ML functions, (b)
that of the safety drivers, and (c) the safety subsystems.

Note that, an improvement of ML-based functions most likely reduces
drivers’ ability to trigger disengagements when needed, by affecting e.g. their
trust in the AV and situation awareness. Also, the probability of a safety
subsystem’s successful action depends on the probability distribution of the
demands created by the ML-based functions [22].

evaluated against observations. To this end, we use Software
Reliability Growth Models (SRGMs) [27]. Fitting these models
to Waymo’s publicly available testing data, we evaluate the
accuracy of their reliability forecasts, and show how the
models’ predictions can be improved by “recalibration” –
a model improvement technique that utilizes statistical data
on how the models’ past predictions fall short of observed
outcomes [28].

The outline of the rest of this paper is as follows. Next, we
present (Section II) preliminaries on assessing reliability from
operational testing. Section III details the new CBI framework
while Section IV introduces SRGMs, applied to Waymo’s
disengagement data. Sections V and VI summarise related
work, contributions and future work.

II. OPERATIONAL TESTING & FAILURE PROCESSES

For conventional safety-critical systems, statistical evalua-
tion from operational testing, or “proven in use” arguments,
are part of standards like IEC61508 [29] and EN50129 [30].
These practices are supported by established [31], [32] and
still evolving [33]–[35] probabilistic methods. Since, for AVs,
road testing is emphasised as evidence for proving safety and
reliability, it is not surprising that inference methods using
such operational evidence are attracting attention.

In general, depending on the system under study, a stochas-
tic failure process is chosen as a mathematical abstraction of
reality. Here, for AVs, we describe the failure processes (of
fatalities, crashes or disengagements) as:

a) Bernoulli processes for the occurrence of fatalities or
crashes. These models assume the probability of a failure4

per driven mile is a constant, and events in one mile are
independent of events in any other mile driven. This process
assumption may not really hold for various reasons (e.g. AV
reliability can evolve during testing, or AVs required to operate
under dependent, changing road/environmental conditions).
For some of these objections, it can be observed that in
many practical scenarios a Bernoulli model is an acceptable
approximation of the more complex, real process. Even for
such a scenario, one would still expect that changing the
ML-based systems during testing would make the Bernoulli
model inapplicable. Arguments for still using it as a first
approximation could be, for instance, that the non-ML based
safety subsystems raise the overall AV reliability to a much
higher level than that of the ML-based systems, and this overall
AV reliability remains constant during observation, despite the
evolution of the ML-based systems5.
There are two reasons for us to use this model: i) the model
is simple enough to highlight the challenges of AV safety

4For brevity, we call “failure” generically the event of interest (disengage-
ment, crash, etc.), and use “failure rate” both in its technical meaning as the
parameter (dpm) of, say, a Poisson process, and for the probability of failure
per mile in a Bernoulli model (pfm, pcm).

5“A first approximation” because the evolution of the ML-based core
changes the set of failures to be tolerated by the safety subsystem (cf [22]).
A previous statistical study [36] found that some key AV reliability measures,
e.g. pcm for AVs, appear constant over time but this is not enough to support
making it a modelling assumption.



assessment, and ii) for the purpose of comparison against the
RAND study [9] which uses this model.

b) Point processes for disengagements: Point processes,
such as Poisson processes (in which inter-event times are inde-
pendent, identically distributed, exponential random variables)
are well-suited for modelling reliability during continuous
system operation. Another example, that of Non-homogeneous
Poisson processes, allows for non-stationarity and dependence
in the failure data [37]. In what follows, using families of point
processes from the SRGM literature, we illustrate how the
predictive accuracy of forecasts of future AV disengagements
can be evaluated, and possibly improved (see Sec. IV).

III. THE CBI APPROACH FOR pfm & pcm CLAIMS

Published CBI methods [23]–[26], [38] are for conventional
safety-critical software (e.g. nuclear protection systems where
any failure is assumed to have significant consequences), and
thus deal with operational testing where no failures occur.
However, AI systems do fail in operation. For AVs, although
very rare, crashes and a fatality have been reported. To deal
with (infrequent) failures, we propose a more general CBI
framework, in which 0 failures becomes a special case. For
AVs, we apply CBI to assessing pfm and pcm, and compare
the results with those of the RAND study.

Assessment claims using statistical inference come in differ-
ent flavours. The RAND study derives “classical” confidence
statements about the claim of an acceptable failure rate. E.g.,
95% confidence in a bound of 10−x means that if the failure
rate were greater than 10−x, the chances of observing no
failures in the miles driven would be 5% at most. The Bayesian
approach, instead, treats failure rate as a random variable with
a “prior” probability distribution (“prior” to test observations).
The prior is updated (via Bayes’ theorem) using test results,
giving a “posterior” distribution. Decisions are based on
probabilities derived from the posterior distribution, e.g. the
probability (“Bayesian confidence”), say 0.95, of the failure
rate being less than 10−x. These two notions of confidence
have radically different meanings, but decision making based
on levels of “confidence” of either kind is common: hence we
will compare the amounts and kinds of evidence required to
achieve high “confidence” with either approach.

Now, a challenge for using Bayesian inference in practice is
the need for complete prior distributions (of the failure rate, in
the present problem). A common way to deal with this issue
is to choose distribution functions that seem plausible in the
domain and/or mathematically convenient (e.g. for conjugacy).
However, often, such a distribution does not describe only
one’s prior knowledge, but adds extra, unjustified assumptions.
This may do no harm if the posterior depends on the data much
more than on the prior distribution, but in our case (with few or
zero failures), the conclusions of the inference will be seriously
sensitive to these assumptions: those extra assumptions risk
dangerously unsound reasoning.

CBI bypasses this problem: rather than a complete prior
distribution, an assessor is more likely to have (and be able
to justify) more limited partial prior knowledge, e.g. a prior

confidence bound – “I am 80% confident that the failure rate is
smaller than 10−3” – based on e.g. experience with results of
similar quality practices in similar projects. This partial prior
knowledge is far from a complete prior distribution. Rather, it
constrains the prior: there is an infinite set of prior distributions
satisfying the constraints. Then, CBI determines the most
conservative one from this set, in the sense of minimising
the posterior confidence on a reliability bound.

A. CBI With Failures in Testing

As described in Section II, consider a Bernoulli process
representing a succession of miles driven by an AV, and let
X be the unknown pfm value (the setup if, instead, crashes
are considered, is analogous). Suppose k failures in n driven
miles are observed (denoted as k&n for short in equations).
If F (x) is a prior distribution function for X then, for some
stated reliability bound p,

Pr(X 6 p | k&n) =
∫ p
0
xk(1− x)n−kdF (x)∫ 1

0
xk(1− x)n−kdF (x)

(1)

As an example, suppose that, rather than some complete
prior distribution, only partial prior beliefs are expressed about
an AV’s pfm:

Pr(X 6 ε) = θ, Pr(X > pl) = 1 (2)

The interpretations of the model parameters are:
• ε is the engineering goal, a target safety level that

developers try to satisfy for a given reliability measure (e.g.
pfm). To illustrate, for pfm, this goal could be two orders [39],
or three orders [17], of magnitude safer than human drivers.
• θ is the prior confidence that the engineering goal has

been achieved before testing the AVs on public roads. Such
prior confidence could be obtained from simulations, or from
verification of the AV safety subsystems, and has to be high
enough to decide to proceed with public road testing.
• pl is a lower bound on the failure rate: the best reliability

claim feasible given current vehicle technology. For instance,
pfm cannot be smaller than, say 10−15, due to catastrophic
hardware failures (e.g. tyre/engine fails on a highway), even
if the AV’s ML-based systems are perfect. Research assuming
inevitable fatalities, e.g. [40], supports such pl.

The foregoing is just one interpretation of the parameters;
interpretations can vary between manufacturers and across
business models.

Now, assuming one has the prior beliefs (2), the following
CBI theorem shows what these beliefs allow one to rigorously
claim about an AV’s safety and reliability.

Theorem 1. A prior distribution that minimises (1) subject
to the constraints (2) is the two-point distribution, Pr(X =
x) = θ1x=x1

+ (1− θ)1x=x3
, where pl 6 x1 6 ε < x3 , and

the values of x1 and x3 both depend on the model parameters
(i.e. pl, ε, p) as well as k and n. Using this prior, the smallest
value for (1) is

xk1(1− x1)n−kθ
xk1(1− x1)n−kθ + xk3(1− x3)n−k(1− θ)

1p>ε (3)



where 1S is an indicator function – it is equal to 1 when S is
true and 0 otherwise.

The proof of Theorem 1 is in appendix A. Depicted in Fig. 1
are two common situations (given different values of the model
parameters): with failure-free and rare failures evidence.

Fig. 1: Conservative two-point priors for two choices of model
parameters – with failure free data (left) and rare failures (right).

Solving (3) for n – the miles to be driven to claim the pfm is
less than p with probability c, upon seeing k failures – provides
our main technical result. From a Bayesian perspective, n
will depend on the prior knowledge (2). In what follows, we
compare the proposed n values from CBI, the RAND study, a
Uniform prior and Jeffreys prior (as suggested by regulatory
guidance like [31]). Similar comparisons can be made for pcm;
we omit these due to page limitations.

B. Numerical Examples of CBI for pfm Claims

In the RAND study, data from the U.S. department of
transportation supported a pfm for human drivers of 1.09e−8
in 2013. For illustration, suppose that a company aims to
build AVs two orders of magnitude safer, i.e. ε = 1.09e−10,
as proposed by [39]. Also, assume pl = 10−15: that is, the
unknown pfm value cannot be better than 10−15.

Q1: How many fatality-free miles need to be driven to
claim a pfm bound at some confidence level?

With the prior knowledge (2), we answer Q1 by setting
k = 0 and solving (3) for n. Fig. 2 shows the CBI results with
θ=0.1 (weak belief) and θ=0.9 (strong belief) respectively,
compared with the RAND results, and Bayesian results with a
uniform prior Beta(1, 1) and the Jeffreys prior for Binomial
models (Beta(0.5, 0.5) [31, p.6.37]). Fig. 2 shows that (3) can
imply significantly more, or less, miles must be driven than
suggested by either the RAND study or the other Bayesian
priors – depending on how confident one is before seeing test
results that the goal ε has been reached. For instance, to claim,
with 95% confidence, that AVs are as safe as human drivers
(so p = 1.09e−8), the RAND analysis requires 275 million
fatality-free miles, whilst CBI with θ = 0.9 only requires 69
million fatality-free miles, with 90% prior confidence that the
AVs are two orders of magnitude safer than humans (based on,
e.g., having the core ML-based systems backed up by non-
ML safety channels that are relatively simple and easier to
be verified. Such verification can be the case in traditional
safety-critical systems [15]).

Alternatively, if one has only a “weak” prior belief in the
engineering goal being met (θ = 0.1), then CBI requires 476
million fatality-free miles – significantly more than the other
approaches compared.

Fig. 2: Fatality-free miles needed to be driven to demonstrate a
pfm claim with 95% confidence. Note, the curves for Bayes with a
uniform prior and the RAND results overlap in the figure (to be exact,
there is a constant difference of 1 between them which is simply a
consequence of the similarity between their analytical expressions in
this scenario).

The reader should not be surprised that our conservative
approach does not always prescribe more fatality-free miles
be driven than that prescribed by the RAND study – different
decision criteria and statistical inference methods can yield
different results from the same data [41]. However, it is true
that, for any confidence c, CBI will require significantly more
miles than the RAND study prescriptions for all claims p
“close enough” to the engineering goal ε.

We note that, for AVs that may have less stringent reliability
requirements (e.g. AVs doing regular inspection missions on
offshore rigs), both the engineering goal and reliability claims
can be much less stringent than the examples in Fig. 2. We
present CBI and RAND results for such a scenario in Fig. 3,
with an engineering goal ε = 10−4 and a range [10−4, 10−2]
for the claimed bound p. Although it shows the same pattern
as Fig. 2, the evidence required to demonstrate a reliability
claim being met with the given confidence level is much less
and within a feasible range. For instance, when the claim of
interest is p = 10−3, CBI with a strong prior belief in the
engineering goal being met (i.e. θ = 0.9) requires less than
103 failure-free miles, while the RAND method requires 2 to
3 times as many.

Notice that, for all of the scenarios we have presented so far,
no amount of testing will support trust in any bound p lower
than ε. This is because of constraint (2). It allows a range of
possible prior distributions – and thus posterior confidence
bounds – but with no added basis for trusting any bound
better than ε (as exemplified in Fig. 2). Hence, a conservative
decision maker that has partial prior knowledge (2) cannot
accept a claim, on the basis of the fatality-free operation, that
the AV reliability exceeds the engineering goal. Of course, if
further evidence justifies a prior knowledge in some bound p
(< ε), then CBI can give more informative claims.

Q2: How many miles need to be driven, with fatality
events, to claim a pfm bound at some confidence level?

The RAND study answers this question via classical hy-



Fig. 3: Failure-free miles needed to be driven to demonstrate a less
stringent reliability claim with 95% confidence.

pothesis testing, choosing as an example a confidence bound
20% better than human drivers’ pfm in 2013. Their result (in
number of miles required) is shown in boldface in Table. I.

In the Bayesian approach, posterior confidence depends
on observations: in order to compare with the RAND study
result, we thus postulate an observed number of fatalities
consistent with the RAND study analysis. As an example,
we consider that, given a pfm equal to the above confidence
bound, and driving the number of miles found necessary in
the RAND study, the expected number of fatalities would be
k = 8.72e−9 × 4.97e9 ≈ 43 (where 8.72e−9 is a reliability
claim obtained from 4.97e9 fatality free miles in the RAND
model). We thus assume 43 fatalities and show in column
1 of Table I the miles required by the Bayesian approaches,
including CBI, Uniform and Jeffreys priors. In addition to the
purpose of comparison, this case also represents a long term
scenario in which, as popularity and public use of AVs grow,
the count of fatal accidents progressively reaches high values.
We show what evidence would then be needed to reassure the
public that reliability claims are still being met.

For a short term scenario, as a second example, the last
column of Table I shows the corresponding results, if only
one fatality occurs. Again, we compare the results of classical
hypothesis testing, CBI and using other Bayesian priors.

All of the examples in Table I “agree”: the miles needed to
make these claims are prohibitively high. However, given the
CBI prior beliefs, the CBI numbers require 10∼20 times more
miles than the rest if 43 fatalities are seen. The number at the
bottom of column 1 represents the miles needed to demonstrate
that, after fatalities consistent with pfm= 8.72e−9, there is
only a 5% chance of the true pfm being worse than that. The
difference from the RAND results may seem large, but it is in
the interest of public safety: CBI avoids implicit, unwittingly
optimistic assumptions in the prior distribution.

We recall that with no fatalities, the CBI example does offer
a sound basis for achieving high confidence with substantially
fewer test miles than the RAND approach requires (e.g. 69 vs
275 million miles).

Q3: How many more fatality-free miles need to be driven

p=8.72e-9, k=43 p=4.12e-9, k=1

Classical 4.97e9 2.43e8
Uniform priors 6.40e9 1.15e9
Jeffreys priors 6.33e9 9.48e8
CBI with θ = 0.9 7.89e10 3.88e9

TABLE I: Miles needed to support a pfm claim p with 95% confi-
dence, with k fatalities.

to compensate for one newly observed fatality?
This question relates to a plausible scenario in the case of

accidents6: an AV has been driven for n1 fatality-free miles,
justifying a pfm claim, say p (with a fixed confidence c), via
CBI based on this evidence and some given prior knowledge.
Then suddenly a fatality event happens. Instead of redesigning
the system (as no evidence exists to point to a technical/AI
control design fault), the company still believes in its prior
knowledge, attributes the fatality to “bad luck” and asks to be
allowed more testing to prove its point. If the public/regulators
accept this request, it is useful to know how many extra
fatality-free miles, say n2, are needed to compensate for the
fatality event, so that the company can demonstrate the same
reliability p with confidence c.

To answer this, apply the CBI model in two steps (fixing
the confidence level c and prior knowledge θ): (i) determine
the claim [X6p ] that n1 will support with k=0 (i.e. fix k, n
& solve (3) for p). (ii) determine the miles that support the
claim [X6p ] upon seeing k=1 (i.e. fix k, p & solve (3) for
n). Then n2 =n − n1 more fatality-free miles are needed to
compensate for the fatality; we plot some scenarios in Fig. 4.

Fig. 4: Fatality-free miles needed to compensate one newly observed
fatality given n1 fatality-free miles has been driven before.

The solid curve in Fig. 4 shows a uni-modal pattern,
decreasing as n1 approaches the value n∗ = 1.06e11 (with
a corresponding p value, p∗ = 1.16e−10, derived from the 1st
step), then increasing again with an asymptote of n2 = 1/ε,
as n1 goes to infinity. A complete formal analysis deriving p∗

and the asymptote of n2 = 1/ε is in Appendix B.
Intuitively, the more fatality-free miles were driven, the

higher one’s confidence in reliability; and thus, the more miles
needed to restore that confidence after a fatality occurs. But,
if n1 was such as to allow confidence in a claim close to p1,
then after the fatality, a much smaller n2 is needed to be able
to claim p1 again. As n1 tends to infinity, interestingly, there

6A recent example is the Uber AV crash in Arizona.



is a ceiling on the required n2, for all values of c and θ. We
note that the shape of the curve (including the asymptote on
the right) is invariant with respect to c and θ.

IV. SRGMS FOR dpm PREDICTIONS

Whilst the previous sections focused on very rare events
like fatalities and crashes, in this section we focus on a
metric for a more frequent event, often reported for AV
road testing data: disengagements per mile (dpm). Several
descriptive statistical studies for dpm exist: e.g., Banerjee
and co-authors, using large-scale AV road testing data, show
negative correlation between dpm and cumulative miles driven
over three years, but still not reaching AV manufacturers’
targets despite millions of miles driven [8]. As part of road-
test planning, any forecast of future dpm must account for this
trend of apparent improvement.

The idea behind Software Reliability Growth Models
(SRGMs) is that each fault contributes to causing failures
stochastically during operation. When a failure occurs, the
software is updated in an attempt to fix that fault, then use of
the software, or testing, resumes until the next failure reveals
another fault. During this fault-finding and fixing process,
recorded inter-failure times are used to calibrate probabilistic
models so as to extrapolate the trend, in probabilistic terms,
e.g. predicting the mean, or median, time to the next failure.

Many SRGMs have been developed, based on different
assumptions (e.g. how much each fault contributes to the
overall failure rate). Comparing them by how plausible their
assumptions seem has not proven good guidance, and no single
SRGM proved universally accurate [42]. As an alternative,
techniques were proposed [43] to assess and compare SRGMs’
prediction accuracy over the history of a specific product. One
could thus choose which SRGM to trust, or even “recalibrate”
them to improve predictions for that system. Thus, the best
practice is to apply multiple SRGMs to the failure data of
the system under study, recalibrating them as appropriate, and
compare the prediction accuracy, so that we can gradually
learn which SRGM seems to be best for the current prediction
needs [13].

Statistical properties of AVs, such as dpms, exhibit growth,
as training/self-learning is applied after failures occur. We
apply various SRGMs to disengagement data, and assess
the models’ predictive accuracy. The latter seems even more
necessary for AVs, with their ML-based systems, than for
conventional software-based systems, as knowledge of AVs’
learning mechanisms is so imperfect (and often not available
to third-party assessors) that we cannot choose a priori the
most fit SRGM for a given AV.

A. Applying SRGMs to Waymo AVs Data

The California AV Testing Regulations require annual re-
ports on disengagements from every manufacturer authorised
to test AVs on public roads. We applied SRGMs to the data
reported from Waymo covering 51 months of testing, available
from Waymo7 at the time of writing. We use PETERS, a state-

7www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/testing

of-the-art toolset that implements 8 SRGMs, recalibration,
comparison and visualisation techniques. We select the most
trustworthy SRGM to predict, after each failure (i.e. disen-
gagement), the median miles to next disengagement (MMTD),
based on the series of previous inter-failure mile data.

In Fig. 5A,C,E,F, the 528 failures in Waymo’s disengage-
ment data are indexed in chronological order on the x-axis8.
Fig. 5A shows the successive MMTD predictions (for a better
illustration, we show the results of 5 out of the 8 SRGMs im-
plemented in PETERS)9. As is common, the SRGMs disagree:
GO is more optimistic; LV and Li are more pessimistic. To
check whether they are objectively optimistic or pessimistic,
we use PETERS’ u-plot feature. U-plots show how “unbiased”
a set of predictions is: how close the confidence associated to
each prediction is to its actual probability of being correct. A
point on a u-plot, for a value x on the x axis, indicates the
fraction of predictions for which the predicted probability of
the inter-failure miles that were observed was no greater than
x. The better calibrated a set of predictions is, the closer the
u-plot will be to the diagonal [43].

Fig. 5B shows that most SRGMs proved indeed system-
atically too optimistic or pessimistic. The MO predictions
seem the best calibrated; however, a good u-plot does not
guarantee an SRGM is accurate (or useful) in every way. Next,
to reduce bias, we “recalibrate” all models. Recalibration may
improve prediction accuracy (in Fig. 5, the # suffix identifies a
recalibrated model). Fig. 5C shows that recalibration reduced
the disagreement between MMTD predictions. Fig. 5D shows
that recalibration drastically reduced bias for most SRGMs
(MO# has slightly more pessimistic bias than MO).

To compare these series of predictions by overall accuracy,
we use PLR-plots (Fig. 5F). Suppose that two predictors
(SRGMs), A and B, give probability density functions ĝAj (·)
and ĝBj (·) for the unknown miles to the next failure, given
the series of inter-failure miles up to failure j. When a failure
does happen, at mj+1, if A is the more accurate predictor,
then the ratio ĝAj (mj+1)/ĝ

B
j (mj+1) tends to be larger than 1.

The PLR of A relative to B (“A:B” in Fig. 5F) is defined as
the running product of such ratios,

∏k
1

(
ĝAi−1(mi)/ĝ

B
i−1(mi)

)
.

If it consistently increases, then A is generally more accurate
than B. The PLR-plots in Fig. 5F show that, the four SRGMs
that roughly agreed in the MTTD predictions in Fig.5C were,
after the 400th failure, generally more accurate (by the same
amount: same slope of their PLR-plots) than GO#, an outlier
towards optimism in Fig.5C. For this data set, the best estimate
of current MMTD (Fig. 5C) is thus about 7-8000 miles.
SRGMs are not suitable for deciding whether a safety-critical
system satisfies requirements (like those for AVs) of very low
rates of serious failures. Even if a SRGM’s “accuracy” and

8The raw data are numbers of disengagements, and miles driven, per month;
PETERS requires a sequence of inter-failure miles. We preprocessed the
raw data by generating random points in a Poisson Process for each month,
repeating to check sensitivity of the results to this manipulation.

9We chose a set with different enough results to illustrate the method.
The abbreviations represent, in order, the SRGMs known as Goel-Okumoto,
Duane, Musa-Okumoto, Littlewood, Littlewood-Verrall [43].



Fig. 5: MMTD predictions (A, improved in C), u-plots (B and
D), PLR plots for SRGMs (and recalibrated SRGMs), applied to
Waymo’s 51-month dataset. The SRGMs (plots in A and C) extract
predictions about how the trends will continue from the raw data (E);
their predictive accuracy can be judged using the other plots.

“calibration” properties have proved good, this cannot give
high confidence in the one prediction that matters, the one
after the latest change; that change could have departed from
the previous trend – even radically increasing the failure rate –
but the SRGM would not “notice” until the next failure. Yet,
SRGMs can be a practical management tool for predicting
future inter-event intervals, given large amounts of data, as
is the case here for dpm. By contrast, the CBI developed
in Section III provides a rigorous approach for safety claims
about AVs in scenarios with rare failures.

V. RELATED WORK

CBI was initially developed for assessing the reliability of
conventional safety-critical software in [23]. Several exten-
sions, e.g. [24]–[26], [38], have been developed, considering
different prior knowledge and objective functions. CBI has
recently been used for estimating catastrophic failure related
parameters in the runtime verification of robots [44].

For conventional software, many SRGMs have been devel-
oped [45]. To the best of our knowledge, the only SRGM
developed specifically for ML-based software is [46], in which
the MO-model was modified to incorporate certain features of

AI software. Differently from [46], our approach is to not trust
any specific SRGM, but to assess forecast accuracy, improve
forecasts, and identify the best SRGMs for the given data.

Studies in [8], [10]–[12], [36] provide descriptive statistics
on AV safety and reliability. Both [9] and [4] conclude that
road testing alone is inadequate evidence of AV safety, and
argue the need for alternative methods to supplement public
road testing. We agree, and our CBI approach provides a
concrete way to incorporate such essential prior knowledge
into the assessment.

VI. CONCLUSIONS & FUTURE WORK

The use of machine learning (ML) solutions in safety-
critical applications is on the rise. This imposes new challenges
on safety and reliability assessment. For ML systems, the in-
ability to directly verify that a design matches its requirements,
by reference to the process of deriving the former from the lat-
ter, makes it even harder (compared to conventional software)
to estimate the probabilities and consequences of failure [47].
Thus, we believe, increased reliance on operational testing to
study failure probabilities and consequences is inevitable.

In the case of AVs, the problem is also one of demonstrat-
ing “ultra-high reliability” [13], for which it is well-known
that convincing arguments based on operational testing alone
are infeasible. While Bayesian inference supports combining
operational testing with other forms of evidence, this latter
evidence would need to be such as to support very strong prior
beliefs. Use of safety subsystems – not relying on the AV’s
core ML-based systems – that are verifiable with conventional
methods so as to support stronger prior beliefs (than can be
had for the ML-based primary system), provides part of the
solution. How to support prior beliefs strong enough to give
sufficient posterior confidence in the kind of dependability
levels now desired for AVs remains an unsolved problem.

Our CBI approach removes the other major difficulty with
these problems, that of trusting more detailed prior beliefs than
the evidence typically allows one to argue. One can, thus, take
advantage of Bayesian combination of evidence (even given
few or no failures) while avoiding possible optimistic bias.
This does not solve all of the problems of assessing “ultra-high
dependability”, but it does allow one to trust Bayesian infer-
ence; which will deliver enough confidence when requirements
are not so extreme (cf Fig. 3). For non-ultra-high reliability
measures that exhibit growth due to “learning” over time,
SRGMs, with accuracy validation/recalibration techniques, are
useful (at least to derive prior beliefs for inference about
reliability of a current version of the AV).

We demonstrate CBI and SRGM methods on one of the
most visible examples of an ML-based system with safety-
assessment challenges – autonomous vehicles. To recap, the
main contributions of this paper are:

a) for the assessment of constant, low event rates – which
is a crucial need for safety claims about AVs – we propose
the “conservative Bayesian inference” (CBI) approach. This
approach will be most useful when there are sound bases
for prior beliefs, e.g. through safety-oriented architectures in



which the ML-based system functions are paired with non-
ML safety subsystems, where such safety subsystems are
sufficient to avoid accidents and can be rigorously verified.
Being a Bayesian approach, CBI allows one to “give credit”
for this essential evidence. It can thus contribute to overcoming
the challenges of supporting extreme reliability claims; while
its conservatism avoids the potential for dangerous errors in
the direction of optimism, inherent in common shortcuts for
applying Bayes in these cases.

b) for extrapolating past disengagement trends, we demon-
strate an application of SRGMs to real AV data, with the
methods introduced by [28], [48]. Like previous studies on
SRGMs, this example emphasises the importance of continu-
ously evaluating forecasting accuracy, as various applications
have shown that no particular SRGM should be expected to
always give the “best” predictions. Even when an SRGM is
shown to outperform others, so far, in a sequence of forecasts,
such dominance has been known to change with further
observations. We also illustrate how systematic shortcomings
in past predictive accuracy can be used to, possibly, im-
prove the performance of these models by using recalibration
techniques. This is important with AV reliability data, given
AVs’ evolving/learning nature and the need to drive under
(constantly) changing conditions/environments. The methods
for evaluation and recalibration are very general; in principle,
they may be applied more widely to point processes.

In future work, we plan to explore: (a) methods for rigorous
claims based on road testing in diverse environments (e.g.
cities, traffic regimes; including the case that road testing
is “stratified” with more testing in those conditions that are
expected to be more challenging, while the scenario considered
here is of testing that statistically matches expected use); (b)
assessing any alternative models for reliability growth in ML-
based systems, in case they prove to deliver more accurate
predictions, and studying their possible role in arguments for
high reliability; (c) adapting CBI extensions to support sound
decisions about the progressive introduction of AVs [24].

Although we have focused on the “hot” area of AVs, our
discussion and the novel CBI theorems are more generally
applicable. We see them as especially useful now for ML-
based systems with critical applications, although not with ex-
treme requirements, since assurance in these systems must rely
on combinations of statistical evidence with other verification
methods that are, as yet, not well-established.

APPENDIX

A. Statement And Proof of CBI Theorem 1

Problem: Consider the set D of all probability distributions
defined over the unit interval, each distribution representing
a potential prior distribution of pfm values for an AV. For
0 < pl < ε 6 1, we seek a prior distribution that minimises
the posterior confidence in a reliability bound p ∈ [pl, 1], given
k fatalities have occurred over n miles driven and subject to

constraints on some quantiles of the prior distribution. That is,
for θ ∈ (0, 1], we solve

minimise
D

Pr(X 6 p | k&n)

subject to Pr(X 6 ε) = θ, Pr(X > pl) = 1

Solution: There is a prior in D that minimises the posterior
confidence: the 2-point distribution

Pr(X = x) = θ1x=x1
+ (1− θ)1x=x3

where pl 6 x1 6 ε < x3 , and the values of x1 and x3 both
depend on the model parameters (i.e. pl, ε, p) as well as k and
n. Using this prior, the minimum posterior confidence is

xk1(1− x1)n−kθ
xk1(1− x1)n−kθ + xk3(1− x3)n−k(1− θ)

1p>ε (4)

where 1S is an indicator function – it is equal to 1 when S is
true and 0 otherwise.

Proof. The proof is constructive, starting with any feasible
prior distribution and progressing in 3 stages, each stage
producing priors that give progressively worse posterior con-
fidence than in the previous stage. In more detail, assuming
ε 6 p (the argument for p < ε is analogous):

1) First we show that, for any given feasible prior distribu-
tion in D, there is an equivalent feasible 3-point prior
distribution. “Equivalent”, in that the 3-point distribution
has the same value for the posterior confidence in p
as the given feasible prior. Consequently, we restrict
the optimisation to the set D∗ of all such 3-point
distributions;

2) For each prior in D∗, there exists a 2-point prior
distribution with a smaller posterior confidence in p.
Consequently, we restrict the optimisation to the set D∗∗
of all such 2-point priors;

3) A monotonicity argument determines a 2-point prior in
D∗∗ with the smallest posterior confidence in p.

Stage 1: Assuming ε 6 p, note that for any prior distribution
F ∈ D, we may write

Pr(X 6 p | k&n) = T

T +
∫ 1

p+
xk(1− x)n−kdF (x)

(5)

where T =
∫ ε
pl
xk(1−x)n−kdF (x) +

∫ p
ε+
xk(1−x)n−kdF (x).

The mean-value-theorem for integrals ensures that three points
exist, x1 ∈ [pl, ε], x2 ∈ (ε, p] and x3 ∈ (p, 1], such that (5)
becomes (denote

∫ p
ε+

dF (x) = β):

xk1(1− x1)n−kθ + xk2(1− x2)n−kβ
xk1(1−x1)n−kθ+xk2(1−x2)n−kβ+xk3(1−x3)n−k(1−θ−β)

(6)

By establishing (6) we have established that, for any given
prior distribution one might start off with, there exists an
equivalent 3-point prior distribution. Thus, we restrict the
optimisation to D∗, the set of all of these equivalent priors.



Stage 2: Next, for each prior in D∗, there is a 2-point
prior distribution that is guaranteed to give a smaller posterior
confidence in p. To see this for any given prior in D∗ with
posterior (6), treat all of the other variables as fixed (i.e. the
“x”s and θ) and consider which of the allowed values for β,
given these fixed values of the other variables, guarantees a
distribution that reduces the posterior confidence. The continu-
ous differentiability of rational functions – of which (6) is one
– allows the partial derivative of (6) w.r.t. β to show us the
way to do this. The partial derivative of (6) with respect to β
is always positive, irrespective of the fixed values the xis take
in their respective ranges. So, to minimise (6), we set β = 0.
This gives the attainable lower bound (7), attained by the 2-
point prior distribution with probability masses θ at x = x1,
and 1 − θ at x = x3. Therefore, we restrict the optimisation
to D∗∗ – the set of all such priors.

Pr(X6p | k&n) > xk1(1− x1)n−kθ
xk1(1− x1)n−kθ+xk3(1− x3)n−k(1− θ)

=
1

1 +
(
xk
3 (1−x3)n−k

xk
1 (1−x1)n−k

)
1−θ
θ

(7)

Stage 3: To minimise (7) further (and, thereby, obtain
optimal priors in D∗∗), we maximise xk3(1 − x3)

n−k and
minimise xk1(1 − x1)n−k over the allowed ranges for x1, x3.
The problem is now reduced to a simple monotonicity analysis
given different values of the other model parameters, as
follows. Since xk(1 − x)n−k is bell-shaped over [0, 1] with
a maximum at x = k/n, the following defines 2-point priors
that solve the optimisation problem (depicted in Fig 6):
• When 0 6 k/n 6 pl:

to minimise xk1(1 − x1)n−k, subject to x1 ∈ [pl, ε],
we set x1 = ε;

to maximise xk3(1− x3)n−k, subject to x3 ∈ (p, 1],
we set x3 = p.

• When pl < k/n 6 ε, and pkl (1−pl)n−k > εk(1− ε)n−k:
to minimise xk1(1 − x1)n−k, subject to x1 ∈ [pl, ε],

we set x1 = ε;
to maximise xk3(1− x3)n−k, subject to x3 ∈ (p, 1],

we set x3 = p.
• When pl < k/n 6 ε, and pkl (1−pl)n−k < εk(1− ε)n−k:

to minimise xk1(1 − x1)n−k, subject to x1 ∈ [pl, ε],
we set x1 = pl;

to maximise xk3(1− x3)n−k, subject to x3 ∈ (p, 1],
we set x3 = p.

• When ε < k/n 6 p:
to minimise xk1(1 − x1)n−k, subject to x1 ∈ [pl, ε],

we set x1 = pl;
to maximise xk3(1− x3)n−k, subject to x3 ∈ (p, 1],

we set x3 = p.
• When p < k/n 6 1:

to minimise xk1(1 − x1)n−k, subject to x1 ∈ [pl, ε],
we set x1 = pl;

to maximise xk3(1− x3)n−k, subject to x3 ∈ (p, 1],
we set x3 = k/n.

Each prior above has the form (4) for Pr(X 6 p | k&n).

All of the foregoing proves Theorem 1 for ε 6 p. Begin the
optimisation again, but now assuming p < ε. For any feasible
prior F ∈ D, the objective function Pr(X 6 p | k&n) can be
written as

L

L+
∫ ε
p+
xk(1− x)n−kdF (x) +

∫ 1

ε+
xk(1− x)n−kdF (x)

(8)

where L =
∫ p
pl
xk(1 − x)n−kdF (x). As before, the mean-

value-theorem ensures the existence of three points x1, x2, x3
in the ranges: x1 ∈ [pl, p], x2 ∈ (p, ε], x3 ∈ (ε, 1] such that (8)
becomes (denote

∫ p
pl
dF (x) = γ, where 0 6 γ 6 θ):

L′

L′ + xk2(1− x2)n−k(θ − γ) + xk3(1− x3)n−k(1− θ)
(9)

where L′ = xk1(1− x1)n−kγ.
The derivative of (9) with respect to γ is always positive,

irrespective of the fixed values the xis can take in their allowed
ranges. So, to minimise (9), we simply set γ = 0. Thus, (9) has
an attainable bound of 0 when p < ε, and the corresponding
prior distribution that attains this is still a 2-point one with
probability masses at x = x2 and x = x3, regardless of what
fixed values x2 and x3 take in their allowed ranges.

B. Formal Analysis for Q3 in Sec. III-B

We seek to understand what happens when n1 fatality-
free driven miles support a pfm claim p with confidence c.
And, upon seeing a fatality after n1 miles, understanding
how many more fatality-free miles n2 are needed to maintain
support for the claim. So, what follows is an analysis of
the asymptotic “large n” behaviour implied by the worst-case
posterior confidence (3) in Theorem 1. Assume c and θ are
given in the practical case when c > θ.

Let n∗ denote the number of miles that satisfies ε(1 −
ε)n

∗−1 = pl(1 − pl)
n∗−1. So, from appendix A above, for

n < n∗ we have x1 = pl, and for n > n∗ we have x1 = ε.
Note that n∗ is independent of c and θ, so this number of
miles will be the same no matter what levels of confidence
one is either interested in, or has prior to road testing.

Now, using (3), we may write the number of miles driven
as a function of the remaining problem parameters. That is,
for ε < p 6 1,

n(c, p, θ, x1, k) := k +

k log(x1/p) + log( θ(1−c)c(1−θ) )

log( 1−p
1−x1

)

 (10)

where we have assumed that the values of n ensure k/n 6 p
holds. In particular, for k = 1, let p∗ uniquely satisfy

n∗ = 1 +

 log(x1/p
∗) + log( θ(1−c)c(1−θ) )

log( 1−p
∗

1−x1
)

 (11)

where x1 = pl, ε both result in the same n∗ value, by the
definition of n∗. So, for p > p∗, we must have x1 = pl. And,
for ε < p 6 p∗, we have x1 = ε.



Fig. 6: The 5 possible cases of two-point prior distributions that minimise (5). Notice the important role of where k/n lies.

If, for otherwise fixed parameter values, we denote ñ the
number of miles according to (10) when k = 1, and n1 the
number of miles when k = 0, then the number of additional
miles n2 needed upon seeing a fatality immediately after n1
miles is n2 := ñ− n1.

Suppose then, that p > p∗ and let p tend to p∗ from above.
The following limits follow from the continuity of n in (10):

1) If a fatality is observed (so k = 1) then, as p tends to
p∗ from above, we have x1 = pl, and the number of
miles that are needed to be driven to support a claim in
p – with confidence c using prior confidence θ in the
engineering goal ε being met – is

lim
p↓p∗

ñ = lim
p↓p∗

n(c, p, θ, pl, 1)

= n(c, lim
p↓p∗

p, θ, pl, 1) = n(c, p∗, θ, pl, 1) = n∗

2) If no fatalities are observed (so k = 0) then, as p tends
to p∗ from above, the number of fatality-free miles that
are needed to be driven to support a claim in p – with
confidence c using prior confidence θ in the engineering
goal ε being met – is

lim
p↓p∗

n1 = lim
p↓p∗

n(c, p, θ, ε, 0) = n(c, lim
p↓p∗

p, θ, ε, 0)

= n(c, p∗, θ, ε, 0) =
log( θ(1−c)c(1−θ) )

log( 1−p
∗

1−ε )

Recall, from appendix A, that x1 = ε must hold here
for all p when k = 0.

3) so, using these last two results, the number of extra miles
needed is

lim
p↓p∗

n2 = n∗ −
log( θ(1−c)c(1−θ) )

log( 1−p
∗

1−ε )
(12)

Alternatively, suppose p < p∗ and let p tend to ε from
above. The following limits also follow from (10):

1) If a fatality is observed (so k = 1), then as p tends
to ε from above, we have x1 = ε, and the number of
miles that are needed to be driven to support a claim in

p – with confidence c using prior confidence θ in the
engineering goal ε being met – is

lim
p↓ε

ñ = lim
p↓ε

n(c, p, θ, ε, 1) = n(c, lim
p↓ε

p, θ, ε, 1) =∞

2) If no fatalities are observed (so k = 0) then, as p tends
to ε from above, the number of fatality-free miles that
are needed to be driven to support a claim in p – with
confidence c using prior confidence θ in the engineering
goal ε being met – is

lim
p↓ε

n1 = lim
p↓ε

n(c, p, θ, ε, 0) = n(c, lim
p↓ε

p, θ, ε, 0) =∞

3) the last two results show that both ñ and n1 grow
without bound, however the number of extra miles
needed is bounded above, since (by L’Hospital’s rule)

lim
p↓ε

n2 = lim
p↓ε

(ñ− n1)

= lim
p↓ε

(n(c, p, θ, ε, 1)− n(c, p, θ, ε, 0))

= 1 + lim
p↓ε

(
log(ε/p)

log( 1−p1−ε )

)

= 1 + lim
p↓ε

(1/p)

1/(1− p)
= 1 +

1− ε
ε

= 1/ε (13)

Note that, like n∗, this limit is independent of c and θ.
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[10] F. Favarò, S. Eurich, and N. Nader, “Autonomous vehicles’ disengage-
ments: Trends, triggers, and regulatory limitations,” Accident Analysis
& Prevention, vol. 110, pp. 136 – 148, 2018.

[11] V. V. Dixit, S. Chand, and D. J. Nair, “Autonomous vehicles: Disen-
gagements, accidents and reaction times,” PLOS ONE, vol. 11, no. 12,
pp. 1–14, 2016.

[12] C. Lv, D. Cao, Y. Zhao, D. J. Auger, M. Sullman, H. Wang, L. M. Dutka,
L. Skrypchuk, and A. Mouzakitis, “Analysis of autopilot disengagements
occurring during autonomous vehicle testing,” IEEE/CAA Journal of
Automatica Sinica, vol. 5, no. 1, pp. 58–68, Jan. 2018.

[13] B. Littlewood and L. Strigini, “Validation of ultra-high dependability for
software-based systems,” Comm. of the ACM, vol. 36, pp. 69–80, 1993.

[14] R. W. Butler and G. B. Finelli, “The infeasibility of quantifying the
reliability of life-critical real-time software,” IEEE Transactions on
Software Engineering, vol. 19, no. 1, pp. 3–12, Jan. 1993.

[15] B. Littlewood and J. Rushby, “Reasoning about the reliability of diverse
two-channel systems in which one channel is ‘possibly perfect’,” IEEE
Tran. on Software Engineering, vol. 38, no. 5, pp. 1178–1194, 2012.

[16] Waymo, “Waymo safety report: On the road to fully self-driving,”
Tech. Rep., 2018. [Online]. Available: https://storage.googleapis.com/
sdc-prod/v1/safety-report/SafetyReport2018.pdf

[17] A. Shashua and S. Shalev-Shwartz, “A plan to develop safe
autonomous vehicles. And prove it,” Intel Newsroom, p. 8, 2017.
[Online]. Available: https://newsroom.intel.com/newsroom/wp-content/
uploads/sites/11/2017/10/autonomous-vehicle-safety-strategy.pdf

[18] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated testing of
deep-neural-network-driven autonomous cars,” in the 40th Int. Conf. on
Software Engineering, New York, NY, USA, 2018, pp. 303–314.

[19] M. Kamali, L. A. Dennis, O. McAree, M. Fisher, and S. M. Veres,
“Formal verification of autonomous vehicle platooning,” Science of
Computer Programming, vol. 148, pp. 88 – 106, 2017.

[20] M. Fisher, E. Collins, L. Dennis, M. Luckcuck, M. Webster, M. Jump,
V. Page, C. Patchett, F. Dinmohammadi, D. Flynn, V. Robu, and X. Zhao,
“Verifiable self-certifying autonomous systems,” in IEEE Int. Symp. on
Software Reliability Engineering Workshops, 2018, pp. 341–348.

[21] P. Koopman and B. Osyk, “Safety argument considerations for public
road testing of autonomous vehicles,” in WCX SAE World Congress
Experience. SAE International, Apr. 2019.

[22] P. Popov and L. Strigini, “Assessing asymmetric fault-tolerant software,”
in the 21st Int. Symp. on Software Reliability Engineering. San Jose,
CA, USA: IEEE Computer Society Press, 2010, pp. 41–50.

[23] P. Bishop, R. Bloomfield, B. Littlewood, A. Povyakalo, and D. Wright,
“Toward a formalism for conservative claims about the dependability of
software-based systems,” IEEE Transactions on Software Engineering,
vol. 37, no. 5, pp. 708–717, 2011.

[24] L. Strigini and A. Povyakalo, “Software fault-freeness and reliability
predictions,” in Computer Safety, Reliability, and Security, ser. LNCS,
vol. 8153. Springer Berlin Heidelberg, 2013, pp. 106–117.

[25] X. Zhao, B. Littlewood, A. Povyakalo, L. Strigini, and D. Wright,
“Modeling the probability of failure on demand (pfd) of a 1-out-of-2
system in which one channel is “quasi-perfect”,” Reliability Engineering
& System Safety, vol. 158, pp. 230–245, 2017.

[26] X. Zhao, B. Littlewood, A. Povyakalo, and D. Wright, “Conservative
claims about the probability of perfection of software-based systems,” in
26th Int. Symp. on Software Reliability Eng. IEEE, 2015, pp. 130–140.

[27] D. R. Miller, “Exponential order statistic models of software reliability
growth,” IEEE Tran. on Software Eng., vol. 12, no. 01, pp. 12–24, 1986.

[28] S. Brocklehurst and B. Littlewood, “Techniques for prediction analysis
and recalibration,” in Handbook of Software Reliability Eng., M. Lyu,
Ed. McGraw-Hill & IEEE Computer Society Press, 1996, pp. 119–166.

[29] IEC, IEC61508, Functional Safety of Electrical/ Elec-
tronic/Programmable Electronic Safety Related Systems, 2010.

[30] CENELEC, EN50129, Railway Applications-Communication, Signalling
and processing Systems-Safety Related Electronic Systems for Sig-
nalling, 2003.

[31] C. Atwood, J. LaChance, H. Martz, D. Anderson, M. Englehardt,
D. Whitehead, and T. Wheeler, “Handbook of parameter estimation for
probabilistic risk assessment,” U.S. Nuclear Regulatory Commission,
Washington, DC, Report NUREG/CR-6823, 2003.

[32] L. Strigini and B. Littlewood, “Guidelines for statistical testing,” City
University London, Project Report PASCON/WO6-CCN2/TN12, 1997.

[33] G. Walter, L. J. M. Aslett, and F. P. A. Coolen, “Bayesian nonpara-
metric system reliability using sets of priors,” International Journal of
Approximate Reasoning, vol. 80, pp. 67–88, 2017.

[34] P. Bishop and A. Povyakalo, “Deriving a frequentist conservative
confidence bound for probability of failure per demand for systems with
different operational and test profiles,” Reliability Engineering & System
Safety, vol. 158, pp. 246–253, 2017.

[35] L. V. Utkin and F. P. A. Coolen, “Imprecise probabilistic inference for
software run reliability growth models.” Journal of Uncertain Systems.,
vol. 12, no. 4, pp. 292–308, 2018.
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