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Abstract 

Magnetic resonance imaging (MRI) studies have shown subtle differences of brain anatomy between 

people with major depressive disorder (MDD) and healthy controls, but few studies have specifically 

examined brain anatomical asymmetry in relation to this disorder, and results from those studies 

have remained inconclusive. Asymmetry is a subtle but pervasive aspect of the human brain, and it 

may be altered in several psychiatric conditions. At the functional level, some 

electroencephalography studies have indicated left fronto-cortical hypo-activity and right parietal 

hypo-activity in depressive disorders, so that aspects of lateralized anatomy might also be affected. 

In the current study, we investigated 2256 individuals with MDD and 3504 controls, from 31 separate 

datasets, for differences in the laterality of thickness and surface area measures of 34 cerebral 

cortical regions. We also investigated volume asymmetries of eight subcortical structures, in 2540 

MDD individuals and 4230 controls, from 32 datasets. T1-weighted MRI data were processed with a 

single protocol using FreeSurfer software and the Desikan-Killiany atlas. The unprecedented sample 

size provided 80% power to detect effects of the order of Cohen’s d = 0.1. However, the largest effect 

size of MDD diagnosis was Cohen’s d = 0.085 for the thickness asymmetry of the superior temporal 

cortex, which was not significant when adjusting for multiple testing. Asymmetry measures were also 

not significantly associated with medication use, acute versus remitted status, first episode versus 

recurrent status, or age at onset. Altered brain macro-anatomical asymmetry may therefore be of 

little relevance to MDD aetiology in most cases. 

Keywords: laterality, left-right asymmetry, major depressive disorder, MRI   
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Introduction 

Major Depressive Disorder (MDD) is a common and debilitating psychiatric disorder, characterized by 

a persistent feeling of sadness or a lack of interest in outside stimuli (DSM-V) (1). The disorder is 

often characterized by recurrent episodes and can become a chronic condition (2). Worldwide, 

lifetime prevalence varies considerably. A WHO World Mental Health survey across 18 countries 

found an average lifetime prevalence ranging from 6.6% in Japan to 21.0% in France, with an average 

lifetime prevalence of 14.6% across high-income countries (3). 

Much of the neurobiology of MDD is unknown, but subtle alterations of brain structure may be 

involved, and various MRI-based studies have observed regional brain differences between MDD 

individuals and healthy controls. A recent review of the literature by Zhang (4) described various 

possible structural alterations in the brains of MDD individuals, such as case-control differences in 

the thickness of the medial orbitofrontal cortex and inferior parietal gyrus. However, it was also 

noted that the results of structural MRI studies in MDD have often been inconsistent (4). This  

inconsistency is likely due to the use of small study sample sizes in relation to subtle effects, and also 

heterogeneity among studies in terms of clinical characteristics and methodological aspects. For 

example, hardware and software differences between scanners and distinct data processing 

pipelines can contribute to heterogeneity (5). 

In the ENIGMA (Enhancing Neuro-Imaging Genetics through Meta-Analysis) consortium 

(http://enigma.ini.usc.edu), researchers from around the world collaborate to analyse many separate 

datasets jointly, and to reduce some of the technical heterogeneity by using harmonized MRI 

preprocessing protocols. Two recent studies by the ENIGMA consortium’s MDD working group 

showed differences in cerebral cortical and subcortical brain structures between more than 1700 

MDD individuals and 7000 controls. Relative to controls, MDD individuals had significantly smaller 

hippocampal volumes (6). In addition, adults with MDD had thinner cortical grey matter than 

controls in the orbitofrontal cortex, anterior and posterior cingulate cortex, insula and temporal 

lobes (7), and adolescent MDD individuals had a lower total cortical surface area than age-matched 

controls, driven particularly by regional reductions of the medial orbitofrontal cortex and superior 

frontal gyrus, as well as primary and higher-order visual, somatosensory and motor surface areas (7).  

Left-right asymmetry is an important aspect of human brain organization, that may be altered in 

various psychiatric and neurocognitive conditions, including schizophrenia, autism and dyslexia (8-

10). There are indications that altered brain asymmetry might also play a role in MDD. On a 

functional level, EEG studies have reported that asymmetry in frontal brain resting activity differs 

between MDD individuals and healthy controls, although not always in a consistent direction, and 
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moderated by age and sex (see e.g. (11-14), reviewed in (15, 16)). Such findings have led to the 

development of stimulation protocols targeted at the left dorso-lateral prefrontal cortex, which are 

now used in the clinic for the treatment of MDD (17). Moreover, a recent review considered studies 

based on dichotic listening, visual hemifield analysis, electrophysiology, and neuroimaging, and 

concluded that there was evidence for reductions of left frontal and right parietotemporal function in 

depressive disorders (18). A reduction of left frontal activity is in accordance with 

approach/withdrawal models of MDD, in which the normal balance of left frontal activity underlying 

positive reactions to positive stimuli, and right frontal activity underlying negative reactions to 

negative stimuli, might be disturbed (19, 20). 

Some of the average brain anatomical differences between MDD individuals and controls, described 

in the review by Zhang et al.(4), involved only one of the two hemispheres. Zhang et al. concluded 

that the right medial orbitofrontal cortex was often found to be thinner in MDD individuals than 

controls, while the volumes of the left middle frontal gyrus and the right thalamus were lower in 

MDD individuals (4). The ENIGMA consortium study of the cerebral cortex found, in adults, that the 

thickness of the inferior temporal gyrus and caudal anterior cingulate was significantly thinner in 

MDD individuals only on the right side, but not on the left (7). However, in these analyses it was not 

tested whether effect sizes of diagnosis were significantly different on the left and right sides, nor 

was asymmetry quantified as a trait in its own right. Rather, the unilateral patterns were reported on 

the basis that one hemisphere achieved statistical significance against the null hypothesis of no 

effect of diagnosis, and the other side did not. Such patterns can reflect insufficient statistical power 

to detect small but uniform bilateral effect sizes, and do not necessarily indicate differences in brain 

laterality per se. Furthermore, to analyze asymmetry alterations in MDD, a post hoc statistical 

comparison of the left and right-sided effect sizes reported by the previous studies would not yield 

the same level of statistical power as can be provided by utilizing the individual-level paired left and 

right data. Meanwhile the ENIGMA study of subcortical volumes did not consider left and right 

hemisphere measures separately, as they were combined together for bilateral averages (6). 

Brain structural asymmetry in MDD has only been investigated in a small number of individual 

studies with limited sample sizes. These include a study of grey matter volume of the dorsolateral 

prefrontal cortex in 39 treatment-naive MDD individuals, 31 medicated MDD individuals, and 49 

controls, in which the treatment-naive individuals had increased rightward asymmetry (i.e., the 

extent of right>left asymmetry was larger) relative to controls (21). Another study reported that the 

frontal lobe volume was on average less rightward asymmetric in MDD individuals (N=34) than in 

controls (N=30) (22). No large-scale studies of brain asymmetry in MDD have been performed to 

date. 
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To systematically investigate structural asymmetries in the brains of MDD individuals vs healthy 

controls, we used data available through the ENIGMA consortium’s MDD Working Group, and 

targeted brain regional and global hemispheric lateralities as assessed by the asymmetry index 

AI=(Left-Right)/(Left+Right). In healthy populations, some regional brain asymmetries show mean sex 

differences (23, 24). In addition, MDD is often reported to be more common in women than men; for 

example, a sex ratio of 1.6:1 was found in a Canadian survey (25). The disorder can also present 

differently in men and women (25, 26). These observations prompted us to perform secondary -

analyses separately by sex. Furthermore, some structural brain differences between MDD individuals 

and controls were found to be distinct between adolescent and adult groups (see above)(7). 

Asymmetries of the brain also change with age in healthy populations, for some subcortical (23) and 

cortical regions (24). We therefore carried out secondary analyses in separate subgroups of MDD 

individuals and controls under and over age 21 years at the time of scanning. As MDD is a clinically 

heterogeneous disorder, we also tested whether structural brain asymmetries are different in 

medicated versus non-medicated MDD individuals, acute MDD individuals versus those in remission, 

first episode MDD individuals versus those with recurrent episodes, or in relation to age at onset of 

the disorder.   

Methods 

Datasets 

For this study, we pooled individual-level data from 32 non-overlapping datasets collected around 

the world, of which one dataset included only subcortical volumes, and all others had both 

subcortical and cerebral cortical measures. See Online supplement Table S1 for the geographic 

locations and demographics of the different samples. All participating sites obtained approval from 

local institutional review boards and ethics committees, and all study participants provided written 

informed consent. 

In total, the combined dataset for cortical measures contained 2256 MDD individuals and 3504 

controls after local quality control at each centre (see below), but before central quality control, 

which was performed specifically for the present study (further explained below). The combined 

dataset for subcortical measures consisted of 2540 cases and 4230 controls, before central quality 

control. Eleven of the study centres contributing to this analysis were also involved in the previous 

study of cortical differences between MDD individuals and controls (7), while eight of the current 

study centres also contributed to the previous ENIGMA MDD subcortical study (6). The mean age at 

sampling across datasets was 37.1 years (s.d. 16.1) for MDD individuals and 39.0 (s.d. 17.3) for 

controls, respectively. Of the MDD individuals, 36% were male, and of the controls 47% were male. 
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Descriptive information per dataset is presented in Online supplement Table S1, and diagnostic 

instruments are described in Online supplement Table S2. Data on antidepressant medication use at 

time of scanning, recurrent episodes, acute versus remitted status, and age of MDD onset can be 

found per dataset In Online supplement Table S3. 

Image processing 

Structural T1-weighted brain MRI scans were acquired at each study site. Images were acquired at 

different field strengths (1.5 T or 3 T), and with various acquisition parameters as shown in Online 

supplement Table S4. All sites then applied harmonized processing and quality control protocols 

developed or adopted by the ENIGMA consortium (http://enigma.ini.usc.edu/protocols/imaging-

protocols). The data used in the current study were left and right volumes of eight bilaterally paired 

subcortical structures (strictly seven subcortical structures plus the lateral ventricles), and thickness 

and surface area measures for each of 34 bilaterally paired cortical regions, the latter as defined with 

the Desikan-Killiany atlas (27). In addition, the average cortical thickness and total surface area per 

entire hemisphere were analysed. Subcortical segmentation and cortical parcellations were 

performed with the freely available and validated software FreeSurfer (versions 5.1 or 5.3) (28, 29). 

Parcellation of cortical grey matter regions were visually inspected and statistically evaluated for 

outliers following the standardized ENIGMA protocol (http://enigma.ini.usc.edu/protocols/imaging-

protocols). 

Data preparation, visualization and statistical analysis 

De-identified data were sent from all datasets to a central analysis team. As a measure of asymmetry 

for each bilaterally paired measure, we then calculated the asymmetry index: AI=(L-R)/(L+R), where L 

and R are the left and right measures, respectively. Thus, positive and negative AI values indicate 

leftward and rightward asymmetry, respectively. It is important to note that in the definition of the 

AI, the difference (i.e., L-R) was normalized by use of the bilateral measure as denominator (i.e., L+R), 

such that the measure does not scale with the overall magnitude of L and R. For this reason, we did 

not adjust for intracranial volume in our analyses. Furthermore, we were interested to detect the full 

extent of any case-control effects on AIs, without removing variance in the AIs that might be 

correlated with other brain measures potentially affected in MDD. 

Quality control at the sites had excluded individual datapoints. Centrally, subjects with more than 

four entries missing for the eight subcortical volumes were excluded from the analysis of subcortical 

regions, as having possibly unreliable subcortical data. Similarly, subjects with more than eight 

missing values out of 34 regional cortical thickness measures were removed altogether from the 

analysis of cortical thickness, and likewise for surface area measures. Exclusion of subjects by this 

http://enigma.ini.usc.edu/protocols/imaging-protocols
http://enigma.ini.usc.edu/protocols/imaging-protocols
http://enigma.ini.usc.edu/protocols/imaging-protocols
http://enigma.ini.usc.edu/protocols/imaging-protocols
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step varied from 1% of both MDD individuals and controls for the subcortical data, up to 3% of 

controls for the surface area data. The total remaining numbers were, 3399 controls and 2217 MDD 

individuals for the cortical surface areas, 3427 controls and 2229 MDD individuals for the cortical 

thickness values, and 4185 controls and 2517 MDD individuals for the subcortical volumes. The 

numbers of individual missing values then varied by structure: from 0.16% missing values for the 

surface area of the lateral orbitofrontal cortex to 14.3% missing values for the surface area of the 

entorhinal cortex: Full numbers can be found in Online supplement Table S5. 

To prevent large effects of possible outliers, all AIs were winsorized to 2.2 times the inter-quartile 

range, as recommended in (30). Frequency histograms of each AI are shown in Supp. Figure 1. The 

per-dataset means for each AI were computed, and multidimensional scaling-plots were created 

separately for cortical thickness AIs, cortical surface AIs, and subcortical volume AIs, to visualize 

whether any datasets were obvious outliers in terms of their population-level laterality, as 

considered over multiple regions.  

Using individual-level data from all available datasets, for each structure separately, a linear mixed 

model was fitted using R (version 3.4.0), with AI as the dependent variable, and Sex, Age, Age2 and 

Diagnosis (MDD or control) as fixed factors, with ‘dataset’ as a random factor (random intercept). As 

Age and Age2 are highly correlated, we made use of the poly()-function in R for these two predictors, 

which created a pair of uncorrelated variables to model age effects (so-called orthogonal 

polynomials)(31), where one variable was linear and one non-linear’. Model fit was checked visually 

by inspection of the plots of residuals vs fitted values, and the QQ plots for the residual values. 

Cook’s distance plots by dataset (R command CookD (lme_model, group="dataset") were used to 

visualize whether any of the datasets were obvious outliers at the level of individual structures. To 

interpret the results of our analysis, we used a false discovery rate (FDR) of 0.05 within all AIs of a 

given structural measure, so separately within 35 cortical thickness AIs, 35 cortical surface area AIs, 

and eight subcortical volume AIs. A global FDR assessment was also planned, over all AIs tested in the 

main analysis of all subjects, but no effects of diagnosis on AIs proved significant within the separate 

FDR corrections (see Results), so that a global assessment was not needed. We calculated Cohen’s d 

for the effect size of diagnosis on each AI, as t*sqrt(1/n1 + 1/n2), where n1 and n2 are the sample 

sizes of the MDD individuals and the controls respectively, and t is the t statistic for the diagnosis 

term in the model for a given AI. Brain anatomical figures were generated using Freesurfer functions 

and triangular surface plotting (trisurf) in Matlab R2015b, with the Cohen’s d statistics for cortical 

regions projected onto the pial surface. 
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We used the pwr() command in R to calculate a priori the minimal effect size that we had 80% power 

to detect with the available data. (As each linear model included multiple predictor variables, 

including a random effect, the a priori power could not be computed exactly, but this calculation 

assumed the use of simple t-tests to provide a useful indication). For the cortical measures we set a 

significance level of 0.001 (roughly 0.05/35 in the context of multiple testing over all 34 regional AIs 

and one global hemispheric AI). This showed that the indicative minimum effect at 80% power was 

Cohen’s d=0.112. For the subcortical AIs (corrected at 0.05/8=0.006), the indicative minimum effect 

at 80% power was d=0.090.  

For secondary analysis of the effects of MDD diagnosis on AIs within demographic subsets, we 

separated the data into females only, males only, individuals ≤ 21 years of age or individuals >21 

years at the time of scanning. The same linear mixed model as above was applied to each of these 

subsets separately, except that the factor ‘sex’ was not included for the male- or female-only 

subsets.  

Secondary analyses of AIs in relation to clinical variables were carried out within MDD individuals 

only (see Supp. Table S3). For binary clinical variables (recurrent versus first episode, medicated 

versus un-medicated with antidepressants at time of scanning, acute versus remitted), we used the 

same linear mixed model approach described above, except now replacing the diagnosis status with 

the binary clinical variable in question. For this purpose we only included datasets with at least ten 

MDD individuals of each subgroup. Age at onset within MDD individuals was tested as a linear effect 

on AIs, otherwise using the same linear mixed model as for the main analysis. See Supp. Tables S6a-c 

and S7a-c for the sample sizes used for each linear mixed model in these secondary analyses. FDR 

adjusted p-values are presented, for the 8 (subcortical) or 35 (cortical) AIs within each separate 

analysis. 

Results 

MDS-plots based on per-dataset AI means showed that none of the datasets were extreme outliers, 

viewed across all brain structures (Supp. Figure 2). 

In the main analysis (all MDD individuals versus controls), no significant effects of diagnosis were 

found for any of the cortical thickness, cortical surface or subcortical volume AIs, after multiple 

testing correction (Tables 1-3, Table S5). The subset analyses by age and sex also showed no 

significant effects of diagnoses on AIs (Tables 1-3, Table S5). A small number of nominal (unadjusted) 

P values for effects of diagnosis on AIs were below 0.01, but none survived FDR correction for 

multiple comparisons. The strongest effect of diagnosis on asymmetry in the main analysis was for 
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the superior temporal gyrus thickness asymmetry, with an unstandardised effect of diagnosis on AI 

(i.e. the mean AI difference between cases and controls after adjustment for the other model effects) 

of 0.002, nominal (unadjusted) p=0.003, Cohen’s d = 0.085. For this region, the right surface area was 

larger than the left in controls, and also in cases but to a lesser extent (Table S5). Similar effects were 

found for the caudal anterior cingulate thickness AI (Cohen’s d = 0.079; L>R in controls and more so 

in cases) and the cuneus surface area asymmetry (Cohen’s d = -0.081; R>L in controls and more so in 

cases)(Table S5). Some of the subset analyses also produced nominally significant effects, such as for 

hippocampal volume asymmetry in males only (Cohen’s d = -0.112) (Tables 1-3, Table S5). However, 

in the context of multiple testing, these cannot be considered reliable effects. Full model results are 

included in Table S5. 

We visualized the Cohen’s d values from the main analyses (all subjects combined, i.e. the left-most 

columns of Tables 2 and 3) against a cortical brain image, to help assess whether any multi-region 

patterns were discernible which might have spanned neighbouring regions, or corresponded with the 

frontal-occipital or dorso-ventral axes (Figure 1). No clear patterns were visible.  

The analysis of clinical variable effects on AIs within MDD individuals (Supp. Tables 6abc-7abc) 

showed only one significant P value <0.05 after multiple testing adjustment: the cortical thickness of 

the fusiform gyrus was more rightward asymmetric in persons using antidepressants at time of 

scanning (adjusted p-value 0.046). However, this p-value was only adjusted within this particular 

analysis (i.e., 35 cortical thickness AIs tested for effects of medication use) and should be interpreted 

with care, given the degree of study-wide testing involved. Full results from these analyses can be 

found in Supp. Tables 6abc-7abc. 

Discussion 

In this study, no significant differences of brain structural asymmetry were found between 

individuals with MDD and unaffected controls, for any cerebral cortical or subcortical asymmetry 

measure, in an unprecedented sample size of over 5,000 subjects. Power analysis indicated that we 

had 80% power a priori to detect a case-control Cohen’s d of roughly 0.1 for a given AI, in the main 

analysis. However, the strongest effect of diagnosis involved Cohen’s d = 0.085 for the superior 

temporal gyrus thickness AI, which was too subtle to be statistically significant when considering 

multiple testing, even with this large sample size (adjusted P value of 0.104). There were similarly 

small and non-significant changes of caudal anterior cingulate thickness asymmetry (Cohen’s d = 

0.079) and cuneus surface area asymmetry (Cohen’s d =  -0.081). We are not aware of previous 

findings in the literature which are concordant with these effects. If differences in the asymmetry of 

brain structures between individuals with MDD and unaffected controls do exist, they were too small 
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to be detected reliably in this analysis. Our study illustrates the importance of taking large-scale and 

systematic approaches to the study of brain-disorder associations. 

We found no support for alterations of asymmetry that are consistent with those reported in two 

previous, small studies (see Introduction) of the dorsolateral prefrontal cortex (21) or frontal lobe 

(22). In our data, sub-regions that are part of the dorsolateral prefrontal cortex showed merely 

tentative case-control differences for cortical surface area, in opposite directions across sub-regions 

(Figure 1). It may therefore be that the earlier studies reported false positive findings in the context 

of small datasets, although the cortical atlas that we used did not have a perfect equivalent for the 

measures defined in these studies, and we did not consider grey matter volumes as such. Rather, we 

studied regional cortical thicknesses and surface areas as distinct measures, which together drive 

grey matter volumetric measures, but have been shown to vary relatively independently (32), such 

that separate analyses are well motivated.  

The possibility remains that altered brain functional or structural asymmetry might be related, as 

cause, correlate or effect, to MDD in some etiological subgroups of individuals. The previous ENIGMA 

consortium analyses of brain structural changes in MDD (in which asymmetry was not investigated; 

see Introduction) found case-control differences particularly in the context of multiple episodes of 

depression and/or in relation to age of onset of depression (6, 7). One possibility is therefore that 

brain changes in MDD may be driven by long-term stress associated with the disorder. Following our 

main analysis, we sub-divided the data by sex and age groups, and we also analyzed various clinical 

variables within MDD individuals (recurrent versus first episode, on antidepressant medication versus 

antidepressant-free at time of scanning, acute versus remitted, age at onset), but found no 

convincing evidence for effects within these subgroups. Sample sizes for these secondary analyses 

were reduced relative to the main analysis, due to either subsetting or limited availability of clinical 

variables (Supp. Tables S6a-S7c), while multiple testing for these secondary analyses was substantial. 

We found one tentative effect involving thickness asymmetry of the fusiform gyrus, with respect to 

medication status of MDD individuals (FDR adjusted P= 0.046). In a previous study, medication naïve 

persons with MDD (N=37) showed a greater thickness of the left fusiform gyrus than healthy controls 

(N=41)(33), while in our analysis, MDD individuals using antidepressant medication had a rightward 

change of thickness asymmetry of the fusiform cortex compared to MDD individuals that were not 

using antidepressants at time of scanning. Given the degree of multiple testing in our secondary 

analyses, and that this finding has no previous support in the literature, we regard it as tentative. 

Furthermore, we had no systematic information on past use of medication or other treatments, nor 

dose levels at the time of scanning, both of which may relate to disorder duration and severity, such 

that this finding must be interpreted with caution. We did not have information on other diagnostic 
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subtypes such as melancholia or atypical depression, which may be important with respect to the 

biological heterogeneity of MDD, and will need further research. 

While we did not find case-control differences of brain structural asymmetry in this study, functional 

asymmetries may still play an important role in MDD. Relations between structural and functional 

variability of the brain are subtle and complex (34-37). As mentioned in the introduction, various 

studies of depression have reported case-control differences in the asymmetry of frontal 

electrophysiological patterns (11, 14). The number of pyramidal cells, the number of synapses per 

cell, and their firing patterns are thought to influence cortical EEG recordings (38). A difference in the 

number of pyramidal cells may also affect cortical thickness (39). In fact, an inverse relation between 

cortical thickness and EEG alpha power has been reported for some cortical regions (40). However, a 

recent meta-analysis of frontal alpha asymmetry as a diagnostic marker in depression (16 studies, 

MDD: n = 1883, controls: n = 2161) found no significant difference between individuals with MDD 

and controls (16). Other reviews also point to inconsistencies or problems in studies of frontal alpha 

asymmetries in depression (15, 41), although most have been studies of the resting state, while there 

is evidence that EEG differences are stronger during cognitive or emotional processing tasks (42, 43). 

A recent study which made use of resting state fMRI reported that certain bilateral changes, which 

were found between 709 MDD individuals and 725 controls, would require a minimum of 400 

individuals per group to be detectable, and also that brain–clinical variable relationships exhibited 

poor cross-centre reproducibility (44). Clearly, large scale studies are necessary for brain imaging 

research into disorder associations, to reach reliable conclusions.  

As regards asymmetry specifically, it is unclear how altered functional laterality might relate to MDD 

in terms of cause, effect, or correlation due to shared underlying factors. The average form of human 

brain laterality is probably established in the embryo, as indicated by in utero behavioural data (45, 

46), as well as neuroanatomical studies of foetuses (47, 48), and gene expression analysis in which 

left and right-sided samples from the embryonic central nervous system are contrasted (49-51). The 

typical form of human brain asymmetry is characterised by left-hemisphere language dominance (in 

more than 85% of people) (52), right-handedness (also roughly 85% of people) (53), and a particular 

anatomical pattern involving both subcortical and cerebral cortical features (23, 24). However, 

human brain laterality is also highly variable between individuals. Factors that cause variation around 

the average form are largely unknown, and heritability estimates are generally low to modest for 

both functional and structural aspects, while age and sex have significant but subtle effects (10, 23, 

24). 
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We did not consider handedness as a factor in our models, as handedness did not show an effect on 

brain anatomical laterality in an analysis of over 17,000 subjects from healthy control and population 

datasets, also performed by the ENIGMA consortium (24). Data on handedness were limited for 

many of the datasets in the present study. 

In a multi-centre study such as ours, the between-centre variability may result in reduced statistical 

power relative to an equally sized single-centre study, but no single centre has been able to collect 

such large samples alone. In addition, multi-centre studies can be representative of real-world 

heterogeneity, with potentially more generalizable findings than single-centre studies (54). 

Conclusions 

Although the  present study examined a large sample size, with 80% power a priori to detect case-

control differences in the order of Cohen’s d=0.1, we found no significant differences between 

individuals with MDD and controls in asymmetries of cerebral cortical thickness and surface area 

measures, nor for subcortical volume asymmetries. Our study illustrates how high-powered and 

systematic studies can yield clearer findings in human clinical neuroscience, where previous studies 

had provided a mixed picture. 
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Figure Legends 

Figure 1. Effect sizes (as Cohen’s d) for regional asymmetry differences in cortical thickness and 

surface area, between MDD individuals and unaffected controls. A positive effect means that 
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individuals with MDD were more leftward/less rightward asymmetrical than controls. From top to 

bottom: lateral, medial, inferior, fronto-lateral views. Note that all Cohen’s d values ranged from -

0.081 to 0.085, and that none of the differences between individuals with MDD and controls were 

significant after adjustment for multiple testing across regions.  
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Tables 

 

Table 1 Cohen’s d and p-values for the effects of diagnosis on AIs of subcortical volumes. A positive effect means that cases are more leftwards/less rightwards asymmetrical than controls. 

 All Males Females > 21 years ≤ 21 years 

Region d p d p d p d p d p 

accumbens 0.0009 0.972 -0.026 0.541 0.023 0.492 0.012 0.679 -0.004 0.948 

amygdala 0.0163 0.523 0.041 0.324 0.001 0.986 0.009 0.759 0.029 0.646 

caudate -0.0159 0.534 -0.018 0.654 -0.011 0.737 -0.008 0.771 -0.072 0.258 

hippocampus -0.0414 0.105 -0.112 0.007 -0.003 0.928 -0.037 0.187 -0.029 0.652 

lateral ventricles 0.0584 0.021 0.057 0.168 0.059 0.072 0.046 0.106 0.089 0.156 

pallidum -0.0224 0.391 -0.088 0.037 0.009 0.782 -0.003 0.930 -0.087 0.186 

putamen -0.0278 0.286 -0.099 0.018 0.012 0.723 -0.025 0.382 -0.026 0.691 

thalamus 0.0010 0.969 0.019 0.640 -0.016 0.631 0.002 0.934 -0.029 0.647 
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Table 2 Cohen’s d and p-values for the effects of diagnosis on AIs of cortical surface areas. A positive effect means that cases are more leftwards/less rightwards asymmetrical than controls. 

 

 All Males Females > 21 years ≤ 21 years 

Region d p d p d p d p d p 

total surface area 0.017 0.543 -0.035 0.475 0.052 0.188 0.017 0.580 0.069 0.295 

banks sts 0.004 0.879 0.009 0.858 -0.010 0.812 -0.013 0.680 0.072 0.300 

caudal anterior cingulate -0.022 0.434 -0.079 0.109 -0.012 0.763 -0.030 0.336 0.015 0.817 

caudal middle frontal 0.058 0.036 -0.024 0.634 0.104 0.009 0.044 0.152 0.139 0.035 

cuneus -0.081 0.003 -0.124 0.012 -0.051 0.201 -0.071 0.022 -0.047 0.480 

entorhinal -0.005 0.864 0.068 0.195 -0.029 0.498 -0.008 0.803 -0.009 0.888 

frontal pole -0.045 0.102 -0.044 0.371 -0.056 0.158 -0.027 0.379 -0.126 0.057 

fusiform -0.002 0.944 0.060 0.241 -0.041 0.309 0.030 0.341 -0.122 0.065 

inferior parietal -0.031 0.273 0.008 0.877 0.007 0.862 -0.044 0.159 0.028 0.668 

inferior temporal 0.037 0.185 0.057 0.246 0.035 0.379 0.029 0.343 0.085 0.197 

insula 0.046 0.098 0.072 0.141 0.013 0.744 0.065 0.035 0.008 0.899 

isthmus cingulate 0.003 0.918 0.068 0.166 0.055 0.167 0.004 0.890 0.039 0.553 

lateral occipital 0.000 0.986 0.033 0.500 -0.018 0.652 -0.003 0.930 0.029 0.659 

lateral orbitofrontal 0.004 0.891 0.034 0.488 -0.015 0.713 0.003 0.923 0.001 0.982 

lingual 0.010 0.730 -0.022 0.649 0.069 0.080 -0.003 0.913 0.069 0.297 

medial-orbitofrontal -0.019 0.503 0.025 0.612 -0.036 0.369 -0.045 0.152 0.082 0.212 

middle temporal -0.042 0.140 0.008 0.868 -0.099 0.016 -0.047 0.139 -0.038 0.578 

para-central 0.031 0.261 0.020 0.689 0.030 0.463 0.041 0.190 0.027 0.686 

parahippocampal -0.003 0.925 0.051 0.303 0.005 0.901 -0.028 0.372 0.078 0.239 

pars opercularis 0.023 0.409 0.013 0.794 0.024 0.541 0.009 0.757 0.051 0.440 

pars orbitalis 0.022 0.420 -0.014 0.773 0.022 0.571 0.019 0.526 0.023 0.727 

pars triangularis 0.006 0.841 -0.021 0.671 -0.015 0.701 -0.001 0.978 -0.001 0.990 

pericalcarine -0.031 0.265 0.018 0.718 -0.036 0.372 -0.025 0.424 -0.015 0.826 
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post-central -0.021 0.447 0.029 0.554 -0.013 0.744 -0.020 0.518 -0.001 0.985 

posterior cingulate -0.044 0.110 -0.060 0.216 -0.046 0.243 -0.046 0.136 -0.004 0.947 

pre-central 0.038 0.172 0.063 0.206 0.022 0.578 0.045 0.144 0.059 0.370 

pre-cuneus 0.005 0.851 -0.047 0.341 0.071 0.072 -0.021 0.498 0.084 0.202 

rostral anterior cingulate 0.014 0.626 -0.064 0.198 0.045 0.266 0.018 0.566 -0.005 0.941 

rostral middle frontal -0.062 0.026 -0.094 0.055 -0.026 0.506 -0.073 0.017 -0.005 0.944 

superior frontal 0.064 0.021 0.107 0.032 0.047 0.242 0.061 0.050 0.061 0.358 

superior parietal -0.020 0.463 -0.121 0.014 0.040 0.316 -0.015 0.620 -0.021 0.748 

superior temporal 0.017 0.565 -0.052 0.309 0.052 0.206 0.009 0.789 0.029 0.676 

supra-marginal 0.038 0.177 0.030 0.558 0.031 0.441 0.064 0.043 -0.093 0.166 

temporal pole -0.003 0.908 0.079 0.112 0.003 0.950 -0.016 0.609 0.041 0.530 

transverse temporal 0.008 0.770 -0.076 0.117 -0.018 0.651 0.017 0.569 -0.046 0.487 
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Table 3. Cohen’s d and p-values for the effects of diagnosis on AIs of cortical thickness. A positive effect means that cases are more leftwards/less rightwards asymmetrical than controls. 

 All Males Females > 21 years ≤ 21 years 

Region d p d p d p d p d p 

average thickness 0.028 0.307 0.070 0.111 -0.005 0.893 0.024 0.431 0.055 0.400 

banks sts 0.016 0.582 0.011 0.810 0.014 0.711 0.049 0.122 -0.103 0.134 

caudal anterior cingulate 0.079 0.004 0.083 0.059 0.077 0.030 0.070 0.021 0.097 0.142 

caudal middle frontal 0.017 0.537 -0.008 0.859 0.036 0.314 0.009 0.771 0.056 0.392 

cuneus -0.027 0.325 -0.020 0.655 -0.025 0.477 -0.019 0.529 -0.029 0.660 

entorhinal 0.010 0.733 0.018 0.691 0.006 0.868 0.004 0.894 0.046 0.492 

frontal pole 0.016 0.563 0.054 0.215 -0.018 0.609 0.020 0.513 0.051 0.442 

Fusiform 0.002 0.954 0.022 0.614 -0.009 0.802 0.004 0.905 -0.008 0.909 

inferior parietal -0.052 0.057 -0.048 0.273 -0.045 0.209 -0.050 0.104 -0.070 0.290 

inferior temporal 0.048 0.080 0.071 0.109 0.028 0.430 0.045 0.140 0.037 0.579 

Insula 0.005 0.850 0.039 0.378 -0.018 0.614 -0.003 0.924 0.039 0.560 

isthmus cingulate -0.017 0.527 -0.009 0.831 -0.033 0.348 -0.018 0.561 -0.064 0.328 

lateral occipital -0.013 0.645 -0.087 0.048 0.045 0.202 -0.027 0.370 0.022 0.738 

lateral orbitofrontal 0.044 0.108 0.068 0.119 0.033 0.350 0.058 0.056 0.049 0.456 

Lingual 0.019 0.482 -0.027 0.544 0.051 0.152 0.035 0.246 -0.030 0.648 

medial-orbitofrontal -0.053 0.054 -0.091 0.040 -0.021 0.562 -0.032 0.289 -0.076 0.249 

middle temporal -0.008 0.766 -0.019 0.676 -0.006 0.865 -0.003 0.926 -0.067 0.321 

para-central 0.001 0.983 0.062 0.160 -0.037 0.299 0.001 0.966 0.034 0.602 

parahippocampal 0.032 0.245 0.096 0.029 -0.002 0.946 0.038 0.215 0.064 0.336 

pars opercularis -0.041 0.135 -0.091 0.038 -0.024 0.494 -0.065 0.032 0.096 0.145 

pars orbitalis -0.010 0.714 -0.013 0.770 -0.011 0.765 -0.020 0.511 0.069 0.300 

pars triangularis -0.004 0.891 0.017 0.693 -0.024 0.501 -0.006 0.832 0.053 0.423 

pericalcarine 0.008 0.768 -0.013 0.772 0.025 0.484 0.012 0.693 -0.030 0.648 

post-central 0.047 0.091 0.063 0.151 0.026 0.461 0.044 0.149 0.064 0.330 

posterior cingulate 0.038 0.165 0.055 0.211 0.027 0.444 0.041 0.176 0.029 0.660 

pre-central 0.026 0.336 0.011 0.800 0.025 0.475 0.016 0.592 0.044 0.509 
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pre-cuneus -0.051 0.063 -0.007 0.881 -0.076 0.033 -0.055 0.070 -0.019 0.777 

rostral anterior cingulate -0.007 0.808 0.031 0.483 -0.027 0.451 -0.016 0.600 0.063 0.341 

rostral middle frontal -0.030 0.268 -0.039 0.378 -0.036 0.309 -0.021 0.493 -0.045 0.492 

superior frontal -0.011 0.691 0.063 0.153 -0.059 0.098 -0.008 0.781 0.028 0.674 

superior parietal 0.004 0.872 0.081 0.066 -0.047 0.188 0.011 0.711 -0.032 0.629 

superior temporal 0.085 0.003 0.090 0.049 0.071 0.056 0.068 0.033 0.133 0.051 

supra-marginal 0.021 0.445 0.077 0.084 -0.016 0.651 0.011 0.712 0.029 0.667 

temporal pole -0.010 0.730 -0.024 0.581 0.009 0.804 -0.003 0.924 -0.033 0.618 

transverse temporal 0.037 0.174 0.078 0.078 0.008 0.825 0.019 0.537 0.111 0.092 
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Figure 1 

 


