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A. Proofs of the results from Section 4.1, Inventory Management Optimiza-

tion

In order to prove Proposition 4.1, we will need the following Lemmas.

Lemma A.1. Suppose τ [0, t] is a (compound) process specified by Equation (1) of the

paper and g(t) is a given lower boundary. For a fixed r > 1 and total number of units

W , let h(t) ∈ Hr and h
′
(t) ∈ Hr have jumps at the instants t1, ..., tr, with jump sizes,

correspondingly W1, ..., Wi−1, Wi, Wi+1, ..., Wj−1, Wj , Wj+1, ..., Wr and W1, ...,

Wi−1, W
′
i , Wi+1, ..., Wj−1, W

′
j , Wj+1, ..., Wr, i = 1, ..., r − 1, j = 2, ..., r, such that

W1 + ...+Wi + ...+Wj + ...+Wr = W and W1 + ...+W
′
i + ...+W

′
j + ...+Wr = W .

(i). If Wi ≥W
′
i and Wj ≤W

′
j , then

P (g(t) ≤ τ [0, t] ≤ h(t), 0 ≤ t ≤ z) ≥ P (g(t) ≤ τ [0, t] ≤ h′(t), 0 ≤ t ≤ z). (A.1)

(ii). If Wi ≤W
′
i and Wj ≥W

′
j , then

P (g(t) ≤ τ [0, t] ≤ h(t), 0 ≤ t ≤ z) ≤ P (g(t) ≤ τ [0, t] ≤ h′(t), 0 ≤ t ≤ z). (A.2)
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Proof. Proof of Lemma A.1: Let us introduce the function

S(W1, ...,Wr)

= W1(t2 − t1) + (W1 +W2)(t3 − t2) + ...+ (W1 + ...+Wr−1)(tr − tr−1)

+ (W1 + ...+Wr)(z − tr)

= zW −W2t2 − ...−Wrtr,

(A.3)

which defines the area under the function h(t). Clearly, if Wi ≥W
′
i and Wj ≤W

′
j , then

S(W1, ...,W
′
i , ...,W

′
j , ...,Wr) ≤ S(W1, ...,Wi, ...,Wj , ...,Wr)

from which (A.1) follows directly, since the set of non-crossing trajectories of the process

τ [0, t] increases as the area function S(·) increases. Similarly, (A.2) holds since

S(W1, ...,W
′
i , ...,W

′
j , ...,Wr) ≥ S(W1, ...,Wi, ...,Wj , ...,Wr),

if Wi ≤W
′
i and Wj ≥W

′
j .

Lemma A.2. Suppose τ [0, t] is a (compound) process specified by Equation (1) of the

paper and g(t) is a given lower boundary. For a fixed r > 1 and total number of units W ,

let h(t) ∈ Hr and h
′
(t) ∈ Hr have jumps of sizes W1, ..., Wr (with W = W1 + ...+Wr)

at the instants, correspondingly t1, ..., ti−1, ti, ti+1, ..., tr and t1, ..., ti−1, t
′
i, ti+1, ..., tr,

i = 1, ..., r, such that 0 = t1 < ... < ti−1 < ti < ti+1 < ... < tr and 0 = t1 < ... < ti−1 <

t
′
i < ti+1 < ... < tr.

(i). If ti ≤ t
′
i, then

P (g(t) ≤ τ [0, t] ≤ h(t), 0 ≤ t ≤ z) ≥ P (g(t) ≤ τ [0, t] ≤ h′(t), 0 ≤ t ≤ z). (A.4)

(ii). If ti ≥ t
′
i, then

P (g(t) ≤ τ [0, t] ≤ h(t), 0 ≤ t ≤ z) ≤ P (g(t) ≤ τ [0, t] ≤ h′(t), 0 ≤ t ≤ z). (A.5)

2



Proof. Proof of Lemma A.2: Similarly as in (A.3), we define the function

S(t1, ..., tr)

= W1(t2 − t1) + (W1 +W2)(t3 − t2) + ...+ (W1 + ...+Wr−1)(tr − tr−1)

+ (W1 + ...+Wr)(z − tr)

= zW −W2t2 − ...−Wrtr,

which gives the area under the function h(t). Clearly, if ti ≤ t
′
i, then

S(t1, ..., t
′
i, ..., tr) ≤ S(t1, ..., ti, ..., tr)

from which (A.4) follows directly, since the set of non-crossing trajectories of the process

τ [0, t] decreases as the area function S(·) decreases. Similarly, (A.5) holds since

S(t1, ..., t
′
i, ..., tr) ≥ S(t1, ..., ti, ..., tr)

if ti ≥ t
′
i.

Lemma A.3. Suppose τ [0, t] is a (compound) process specified by Equation (1) of

the paper and g(t) is a given lower boundary. For a fixed r > 1 and total number

of units W and for an appropriately chosen 0 < ε � 1, there exists a (closed) domain

D(t2, ..., tr,W2, ...,Wr), such that for the functions h̄(t) ∈ Hr with {t2, ..., tr,W2, ...,Wr} ∈

D(t2, ..., tr,W2, ...,Wr), and h̃(t) ∈ Hr with {t2, ..., tr,W2, ...,Wr} /∈ D(t2, ..., tr,W2, ...,Wr),

0 = t1 < t2 < ... < tr < z, we have

P (g(t) ≤ τ [0, t] ≤ h̄(t), 0 ≤ t ≤ z) ≥ 1− ε > P (g(t) ≤ τ [0, t] ≤ h̃(t), 0 ≤ t ≤ z). (A.6)

Proof. Proof of Lemma A.3: From Lemmas A.1 and A.2, it is not difficult to see that

P (g(t) ≤ τ [0, t] ≤ h(t), 0 ≤ t ≤ z) is a monotone increasing/decreasing function of

Wi, i ∈ {1, ..., r}, and of ti, i ∈ {2, ..., r}. Therefore, there exists a hyper-surface in
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the space (t2, ..., tr,W2, ...,Wr) that will determine a domain D(t2, ..., tr,W2, ...,Wr) for

which (A.6) holds.

The result of Lemma A.3 is illustrated in Figure 1 given in Section 4.1.1 of the paper.

We are now in a position to prove Proposition 4.1 of the paper.

Proof. Proof of Proposition 4.1 of the paper: From Lemma A.3 it follows that there exist

sequences W1,W2, ...,Wr, with W1 +W2 + ...+Wr = W , and t2, ..., tr, such that the con-

straint (19) is satisfied. Moreover, from Lemmas A.1, A.2 and definition (17) of the paper

(compare with (A.3)), it can be seen that TC(z, r) is a monotone decreasing function of

ti, i ∈ {2, ..., r} and also a monotone increasing/decreasing function of Wi, i ∈ {1, ..., r}.

Hence, a unique solution to Problem 4.1 of the paper is attained. In fact, the latter is

at the boundary of the domain, D(t2, ..., tr,W2, ...,Wr) defined by constraint (19), (cf.,

Lemma A.3) which restricts the 2(r − 1)-dimensional surface TC(z, r).

B. Graphical Illustrations and Sensitivity Analysis of the Solution to Prob-

lem 4.1 of Section 4.1, Inventory Management Optimization

In Figure B.1, we have illustrated graphically the solution of Problem 4.1 in the paper

based on Example 4.1 therein, given by the optimal replenishment function hopt(t) with

r∗ = 2, W ∗1 = 22, W ∗2 = 13, t∗1 = 0, t∗2 = 0.47. The latter is plotted together with

500 simulated trajectories of the demand process τ [0, t]. As is required by the non-exit

probability constraint (19) of the paper, approximately 10% of all the trajectories cross

either the (optimal) upper boundary hopt(t) or the lower boundary g(t). As can be seen

from Figure B.1 in the rest of the cases, the trajectories are non-crossing and fill in the

entire corridor between the boundaries as one would expect from an optimal solution

with respect to the cost function as specified in Problem 4.1 of the paper.

Next, we perform a short sensitivity study of the optimal solution of Problem 4.1

of the paper with respect to the holding costs parameter, ch, and the shipment costs

function, cs(r).
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Figure B.1: Graphical Illustration of the Solution to Problem 4.1 of the Paper Based on Example 4.1
of the Paper, Given by hopt(t) with r∗ = 2, W ∗1 = 22, W ∗2 = 13, t∗1 = 0, t∗2 = 0.47 Plotted Together with
500 Trajectories of the Poisson-Logarithmic Demand Process τ [0, t].

Example B.1. Assume all the parameters are as in Example 4.1 of the paper, except

for the holding costs parameter, ch, which is now increased to ch = 1.5 (from ch = 0.9

as in Example 4.1 of the paper). The optimal solutions to Problem 4.1 of the paper for

fixed values of r = 1, 2, ..., 5 are presented in Table B.1.

Table B.1: Optimal Solutions to Problem 4.1 of the Paper for Fixed Values of r = 1, 2, ..., 5, for Model
Parameters as in Example 4.1 of the Paper, and Examples B.1 and B.2.

r TCopt − Ex.4.1 TCopt − Ex.B.1 TCopt − Ex.B.2 Optimal Solutions

1 48.5 69.5 55.5 W = W ∗1 = 35;
t∗1 = 0;

2 46.501 63.835 57.001 W ∗1 = 22, W ∗2 = 13;
t∗1 = 0, t∗2 = 0.47;

3 47.188 63.58 59.788 W ∗1 = 17, W ∗2 = 10, W ∗3 = 8;
t∗1 = 0, t∗2 = 0.28, t∗3 = 0.61;

4 47.895 63.825 61.895 W ∗1 = 16, W ∗2 = 7, W ∗3 = 6, W ∗4 = 6;
t∗1 = 0, t∗2 = 0.23, t∗3 = 0.46, t∗4 = 0.68;

5 48.567 64.245 63.617 W ∗1 = 14, W ∗2 = 6, W ∗3 = 5, W ∗4 = 5, W ∗5 = 5;
t∗1 = 0, t∗2 = 0.17, t∗3 = 0.34, t∗4 = 0.52, t∗5 = 0.71.
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As can be seen from the third column in Table B.1, the optimal number of shipments

is now r∗ = 3, with optimal replenishment amounts, W ∗1 = 17, W ∗2 = 10, W ∗3 = 8, at

optimal times t∗1 = 0, t∗2 = 0.28, t∗3 = 0.61. In other words, as the holding cost per unit

of time per unit of product, ch, increases, the optimal number of shipments increases.

This is natural to expect as it is now more costly to keep units in stock, so it is optimal

to have an extra shipment at a later time, t∗3 (compared to Example 4.1 of the paper).

Note that changes in the parameters of the costs functions do not affect the location of

the optimal solution in the domain D(t2, ..., tr,W2, ...,Wr) but only the optimal number

of shipments r∗ and the value of TCopt(z = 1, r∗).

The sensitivity of the optimal solution with respect to the shipment costs function,

cs(r), is illustrated by the following example.

Example B.2. Assume all parameters are as in Example 4.1 of the paper, except for the

shipment costs function, cs(r), which is now increased to c1 = 0.4, c2 = 0.2, c3 = 0.12,

c4 = 0.08, ci = 0.06, i = 5, 6, ..., (from c1 = 0.2, c2 = 0.1, c3 = 0.06, c4 = 0.04, ci = 0.03,

i = 5, 6, ..., as in Example 4.1 of the paper). The optimal solutions to Problem 4.1 of

the paper for fixed values of r = 1, 2, ..., 5 are presented in Table B.1 (see the last two

columns therein).

As can be seen, the optimal number of shipments is now r∗ = 1, with optimal

replenishment amount W ∗1 = 35 at optimal time t∗1 = 0. Again, this is natural to expect,

as the optimal number of shipments has decreased to only a single shipment due to the

increased shipment costs.

C. Application of the Proposed FFT-Based Method in Computing Non-Exit

Probabilities for Brownian Motion and Double-Barrier Option Pricing

Computing DB(non-)C probabilities for Brownian motion has attracted consider-

able attention in the applied probability literature where approximation schemes have

been developed for the case of (piece-wise) linear boundaries (Borovkov & Novikov 2005,

Wang & Pötzelberger 2007, Ycart & Drouilhet 2016), strictly continuous boundaries (Fu
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& Wu 2010) and a numerical approximation method for general boundaries based on

direct convolution (Khmaladze & Shinjikashvili 2001). Our purpose in this section is to

demonstrate that the proposed FFT-based method can be viewed as a significant en-

hancement of the approach taken by the latter authors, achieving much better efficiency

in computing DB(non-)C probabilities for general, possibly discontinuous boundaries.

This is illustrated in particular on three examples, Example C.1 on DBC probabilities

and Examples C.2 and C.3 on double-barrier option pricing with jump discontinuities

in the barriers.

C.1. Computing DB(non-)C Probabilities for Brownian Motion for General Boundaries

We will be concerned here with computing the DB(non-)C probability for a standard

Brownian motion, {Bt}, t ≥ 0, of the type

P (α(t) < Bt < β(t), 0 ≤ t ≤ T ), (C.1)

where α(t) < β(t), ∀t, with α(0) < 0 < β(0), are real-valued functions, possibly with

jump discontinuities. The DB(non-)C probability in (C.1) can be approximated through

the DB(non-)C probability in terms of a Poisson process, i.e.,

P

(
α(t) <

ξ(t)− λt√
λ

< β(t), 0 ≤ t ≤ z

)
λ→∞−−−→ P (α(t) < Bt < β(t), 0 ≤ t ≤ z), (C.2)

where ξ(t) is a Poisson process with intensity rate λ and where (C.2) follows based on

the fact that
ξ(t)− λt√

λ
, t ∈ [0,+∞)

converges in distribution to Bt as λ → ∞ (see e.g., Shorack & Wellner 1986). It can

directly be seen that (C.2) can be rewritten as

P (α(t) < Bt < β(t), 0 ≤ t ≤ z) ≈ P (
√
λα(t) + λt < ξ(t) <

√
λβ(t) + λt, 0 ≤ t ≤ z),

(C.3)
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which is of the type P (g(t) ≤ τ [0, t] ≤ h(t), 0 ≤ t ≤ z), noting that τ [0, t] defined as

in Equation (1) of the paper equals ξ(t) when P (Xk = 1) = 1 for all k = 1, 2, ..., ξ(t),

i.e., τ [0, t] = ξ(t), with g(t) =
√
λα(t) + λt and h(t) =

√
λβ(t) + λt. Therefore, we can

efficiently compute the probability in (C.3) using the proposed FFT-based algorithm

which will be illustrated by the following Example C.1.

Example C.1. We consider the DBC probabilities for a Brownian motion with different

boundaries α(t) and β(t), t ∈ [0, 1] (z = 1) summarized in Table C.1, and compute the

approximate probability on the right hand side of (C.3) following the proposed FFT-

based method.

Table C.1: Example C.1 - DBC Probabilities for Brownian Motion, Approximated Using the FFT-
Based Method with Different Values of λ and Using Fu & Wu (2010)’s Method. Numbers in () Are the
Computation Times in Seconds.

α(t), β(t) λ = 10000 λ = 100000 λ = 1000000 Fu & Wu (2010)

± exp(−t) 0.984018 (0.2) 0.984312 (6.2) 0.984405 (183) 0.984439
±(1 + t− t2) 0.510010 (0.4) 0.510873 (10.8) 0.511156 (352) 0.511254
±
√
t+ 1 0.390155 (0.4) 0.391035 (11.3) 0.391312 (369) 0.391403

±(1 + t) 0.179997 (0.5) 0.180555 (14.0) 0.180731 (469) 0.180803

Our results are summarized and compared to those obtained by Fu & Wu (2010). As

shown in Table C.1, as λ increases, the DBC probabilities for a Poisson process (with

boundaries g(t) and h(t)) do converge to the DBC probabilities for a Brownian motion

(as suggested by (C.3)). When λ = 100000, our FFT-based algorithm can approximate

the boundary-crossing probabilities for a Brownian motion up to three decimal places

within 6-14 seconds, as can be seen in the fourth column of Table C.1.

C.2. Multi-Step Double-Barrier Option Pricing

The problem of pricing double-barrier options is considered by many authors among

which Kunitomo & Ikeda (1992), Geman & Yor (1996), Pelsser (2000), Feng & Linetsky

(2008), Cai et al. (2009), Fusai et al. (2016) in the case of constant barriers, Guillaume

(2010) for piece-wise constant barriers and Borovkov & Novikov (2005) for arbitrary
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time-dependent barriers. Similarly, here we are interested in pricing double-barrier op-

tions assuming general, possibly curvilinear, barriers allowing discontinuities. More pre-

cisely, we consider the pricing of a kick-out (double) barrier call option with maturity T ,

spot interest rate rt > 0, strike price KT , and general time-dependent upper and lower

barriers G±(t), such that G−(t) < G+(t), t ≤ T , where the underlying asset follows a

price process {St}, t ≥ 0 with a deterministic volatility σt > 0 (with σ2 :=
∫ T
0 σ2t dt <∞).

Note the kick-out (double) barrier call option is exercisable when the underlying asset

price St stays within the corridor between G−(t) and G+(t) for 0 ≤ t ≤ T . Borovkov

& Novikov (2005) show that the fair price of the kick-out (double) barrier call option,

in a Black-Scholes setting, is expressed through certain DB(non-)C probabilities for a

standard Brownian motion of the type (C.1). More precisely, according to Proposition 1

of Borovkov & Novikov (2005), if the time is suitably transformed such that the volatility

is constant over [0, T ], the fair price of the kick-out (double) barrier call option is of the

same structure as the Black-Scholes formula for the European call option, namely it is

S0p1 −KT exp

{
−
∫ T

0
rsds

}
p0, (C.4)

where

p1 = P (f−(t) < σBt + σ2t < f+(t), 0 ≤ t ≤ T ; σBT + σ2T > F ),

p0 = P (f−(t) < σBt < f+(t), 0 ≤ t ≤ T ; σBT > F ),

F = ln(KT /S0) +
1

2
σ2T −

∫ T

0
rsds,

f±(t) = ln(G±(t)/S0) +
1

2
σ2t−

∫ t

0
rsds, 0 ≤ t ≤ T.

(C.5)

Clearly, the DB(non-)C probabilities, p0 and p1 in (C.5), are of the type as in (C.1),

with the boundaries αi(t) and βi(t), i = 0, 1, accordingly expressed as

α0(t) =
f−(t)

σ
, β0(t) =

f+(t)

σ
,

α1(t) =
f−(t)− σ2t

σ
, β1(t) =

f+(t)− σ2t
σ

.

(C.6)
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Therefore, in order to price the kick-out (double) barrier call option using (C.4), it

suffices to calculate the DB(non-)C probabilities for a Brownian motion, p0 and p1 in

(C.5). The latter can be approximated following (C.3), with g(t) =
√
λαi(t) + λt and

h(t) =
√
λβi(t) + λt, where αi(t) and βi(t) for i = 0, 1, are defined as in (C.6).

In the following examples, we apply approximation (C.3) and the FFT-based method

to estimate the probabilities p0, p1 in (C.5), and price kick-out barrier call options with

general barriers allowing jump discontinuities, using (C.4). More precisely, we consider

the so-called (multi-) step double-barrier options in which the barriers are piecewise

constant functions with arbitrary number of jumps (i.e., steps). Such options are popular

in over-the-counter markets, as noted by Guillaume (2010). Hence, the author derives

a close-form pricing formula in the special case when the upper and lower barriers have

a single jump discontinuity (i.e., have two steps) and notes the prohibitive difficulties

in obtaining such formulas for two or more jumps in the barriers. In what follows, we

consider two examples of two-step and three-step double-barrier options and highlight

the applicability of our FFT-based method to pricing general multi-step double-barrier

options.

Example C.2. Consider a two-step kick-out double-barrier call option with maturity

T = 0.5, rt = 0.03, KT = 120, S0 = 100, σt = 0.15, as specified by Guillaume (2010).

The upper barrier G+(t) is defined as

G+(t) = U1 + (U2 − U1)1{t1≤t≤T},

whereas the lower barrier G−(t) is defined as

G−(t) = D1 + (D2 −D1)1{t1≤t≤T}.

Let U1 = 125, D1 = 75, U2 = 130, D2 = 70, t1 = 0.25. Using the approach described

earlier, we estimate the price of this two-step double-barrier call option and compare it

with the price obtained by Guillaume (2010) (cf., Table C.2).
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A possible Brownian bridge simulation-based pricing approach, for the general case

of a multi-step kick-out double-barrier option, is briefly outlined in Guillaume (2010).

It can be seen that the speed and accuracy of this method depends on the number of

jumps in the barriers and whether they jump at the same times. However, no numerical

implementation and examples are provided by the author. In the next example, we

illustrate our FFT-based approach in pricing such multi-step kick-out double-barrier

call options, noting that its efficiency does not depend on the number of jumps in the

barriers and their locations.

Example C.3. We consider a three-step kick-out double-barrier call option with ma-

turity T = 0.5, rt = 0.03, KT = 120, S0 = 100, σt = 0.15. The upper barrier G+(t) is

defined as

G+(t) = U1 + (U2 − U1)1{t1≤t≤t2} + (U3 − U2)1{t2≤t≤T},

whereas the lower barrier G−(t) is defined as

G−(t) = D1 + (D2 −D1)1{t1≤t≤t2} + (D3 −D2)1{t2≤t≤T}.

Let U1 = 125, D1 = 75, U2 = 130, D2 = 70, U3 = 135, D3 = 65, t1 = 0.25, t2 = 0.375.

We estimate the price of this double-barrier call option using the proposed FFT-based

method and the results are summarized in Table C.2. For comparison, we have also

estimated the price using Monte Carlo (MC) simulation.

Table C.2: Examples C.2 and C.3 - The Price of a Two/Three-Step Kick-Out Double Barrier Call
Option Approximated Using the FFT-Based Method with Different Values of λ and the Prices Obtained
by Guillaume (2010) and MC Simulation. Numbers in () Are the Computation Times in Seconds.

λ = 100000 λ = 1000000 λ = 4000000 Option Price

Example C.2 0.122126 (18) 0.108027 (612) 0.108302 (5067) 0.1086 Guillaume (2010)
Example C.3 0.18918 (20) 0.175522 (619) 0.175935 (5211) 0.180072 MC simulation

It can be seen from Table C.2 that as λ increases, the price estimated by applying the

proposed FFT-based method to approximate the probabilities p0, p1 in (C.5) using (C.3)

converges up to three digits after the decimal. We note however that the accuracy of the
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“true” price, 0.1086 (and the method) due to Guillaume (2010), has not been commented

upon by the author. Furthermore, for the three-step double-barrier option, the simulated

price 0.180072 has been obtained by simulating discretized Brownian motion trajectories

with a time step, 10−3. It is an average of 10 runs, each with 104 simulated trajectories,

and is obtained at a relatively high computational cost. Its standard deviation based

on the 10 runs is 0.0117, which confirms the relatively poor performance of the MC

simulation.

Our purpose here has been to demonstrate that FFT-based option pricing method

can achieve reasonable rate of convergence (up to three digits in this example) in reason-

able time. However, its efficiency (time and accuracy) can be significantly improved by

implementing multi-core processing combined with using GPUs, as well as a continuity

correction in (C.3), which is outside the scope of this paper.
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