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Emotions are a vital component of social communication, carried across a range of modalities and
via different perceptual signals such as specific muscle contractions in the face and in the upper
respiratory system. Previous studies have found that emotion recognition impairments after brain
damage depend on the modality of presentation: recognition from faces may be impaired whereas
recognition from voices remains preserved, and vice versa. On the other hand, there is also evidence
for shared neural activation during emotion processing in both modalities. In a behavioral study, we
investigated whether there are shared representations in the recognition of emotions from faces and
voices. We used a within-subjects design in which participants rated the intensity of facial
expressions and nonverbal vocalizations for each of the 6 basic emotion labels. For each participant
and each modality, we then computed a representation matrix with the intensity ratings of each
emotion. These matrices allowed us to examine the patterns of confusions between emotions and to
characterize the representations of emotions within each modality. We then compared the repre-
sentations across modalities by computing the correlations of the representation matrices across
faces and voices. We found highly correlated matrices across modalities, which suggest similar
representations of emotions across faces and voices. We also showed that these results could not be
explained by commonalities between low-level visual and acoustic properties of the stimuli. We thus
propose that there are similar or shared coding mechanisms for emotions which may act indepen-
dently of modality, despite their distinct perceptual inputs.
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Nonverbal expression of emotions has important evolutionary
implications for survival as well as for communication (Darwin,
1965/1872; Hampson, Van Anders, & Mullin, 2006). We need to
rapidly classify emotions to recognize threat, assess social situa-
tions, and behave accordingly—for example, by protecting our
offspring from enemies. Previous studies have shown that, al-
though emotions are highly complex, we can perceive and reliably
classify basic emotions via different cues and in different modal-
ities, such as faces (Ekman & Friesen, 1971; Smith, Cottrell,

Gosselin, & Schyns, 2005), bodies (De Gelder, 2006), and voices
(Belin, Fillion-Bilodeau, & Gosselin, 2008; Sauter, Eisner, Calder,
& Scott, 2010).

Yovel and Belin (2013) have proposed that, despite their dif-
ferent sensory inputs, faces and voices might be processed using
similar coding mechanisms during identity recognition. They re-
viewed cognitive, developmental, and neural evidence to show that
there are many similarities between the representations of person
identity from faces and voices, suggesting that there might be
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unified coding principles across the visual and auditory modalities.
These unified coding principles could, for example, explain how
ratings of characteristics such as information about height, or
masculinity and femininity, can correlate and be matched across
independent face and voice stimuli (Smith, Dunn, Baguley, &
Stacey, 2016). Behavioral studies of individual differences have
also found significant (though not high) correlations between
adults’ visual and vocal emotion recognition abilities (Borod et al.,
2000; Palermo, O’Connor, Davis, Irons, & McKone, 2013). There
is little knowledge, however, about whether emotions from faces
and emotions from voices are also represented using similar cod-
ing mechanisms.

Processing Similarities

Similarities in emotion recognition between faces and voices
could occur because there are similar neural coding mecha-
nisms across modalities, even if they are implemented in dif-
ferent regions of the brain (comparable to what happens in
person identity recognition, as suggested by Yovel & Belin,
2013). Alternatively, it is possible that emotional stimuli from
different modalities are, at least in part, processed in the same
brain regions and share the same neural mechanisms, irrespec-
tive of whether these regions process all emotions or just one
emotion (Calder & Young, 2005).

There is some consistent evidence from past studies pointing to-
ward the latter possibility of modality-independent brain areas that
show similar processing for both faces and voices. For example, the
amygdala is commonly associated with the recognition of a range of
emotions in both faces (Adolphs, Tranel, Damasio, & Damasio, 1995;
Adolphs, Tranel, & Damasio, 2001; Fitzgerald, Angstadt, Jelsone,
Nathan, & Phan, 2006) and voices (Fecteau, Belin, Joanette, &
Armony, 2007; Phillips et al., 1998; Scott et al., 1997). Furthermore,
the right somatosensory cortex has been implicated both in the dis-
crimination of facial emotions (Adolphs, Damasio, Tranel, Cooper, &
Damasio, 2000; Pitcher, Garrido, Walsh, & Duchaine, 2008) and
vocal emotions (Adolphs, Damasio, & Tranel, 2002; Banissy et al.,
2010). The superior temporal sulcus is not only involved in processing
facial expressions of emotion (Engell & Haxby, 2007) but also in
processing emotional vocalizations (Fecteau et al., 2007). In addition,
the medial prefrontal cortex and the left superior temporal sulcus
show highly correlated activity patterns during emotion recognition
from faces, voices and bodies in healthy adults (Peelen, Atkinson, &
Vuilleumier, 2010).

Studies that tested the same patients in both modalities also
support the idea that facial and vocal emotion recognition share
the same neural mechanisms. For example, patients with medial
temporal lobe epilepsy have impaired recognition of facial as
well as vocal expressions of emotion (Bonora et al., 2011).
Similarly, patients with ventral frontal lobe damage show im-
pairment in emotion identification across facial and vocal ex-
pressions—although not all patients exhibit this association
(Hornak, Rolls, & Wade, 1996). Interestingly, a meta-analysis
suggested that patients with Parkinson’s disease have difficul-
ties recognizing emotions from both voices and faces (Gray &
Tickle-Degnen, 2010). Finally, emotion recognition is often
impaired for faces and voices in autism (Philip et al., 2010),
schizophrenia (Simpson, Pinkham, Kelsven, & Sasson, 2013),
and in recently detoxified alcoholics (Kornreich et al., 2013),

suggesting the existence of a core emotion network rather than
separate modality-specific processes.

There are several reasons why modality-independent mechanisms
of emotion recognition would occur. One possibility is that these
support the rapid detection of negative emotions or, more generally,
all emotional signals, which may aid survival. Indeed, ERP studies
have reported fast responses to emotional faces (Eimer & Holmes,
2007; Kiss & Eimer, 2008; Liddell, Williams, Rathjen, Shevrin, &
Gordon, 2004) as well as emotional voices (Sauter & Eimer, 2010), at
around 150 to 200 ms post stimulus onset. Alternatively, modality-
independent mechanisms could also be related to abstract or higher-
level conceptual representations of emotion categories (Scherer,
2009). For example, Skerry and Saxe (2014) have recently suggested
that such representations, related to the appreciation of the causes of
events, are implemented in the medial prefrontal cortex.

Finally, similarities in emotion recognition across modalities
may also originate from perceptual similarities and interdepen-
dence of physical features during emotion production. For exam-
ple, Ohala (1980) suggested that smiling in the animal and human
face may have originated as a way of modulating the resonant
properties of vocalizations to sound more infantile or submissive,
and thus avoid attack. Therefore, the upward retraction of the lip
corners and the accompanying changes in vocal tract resonance
may have a common origin.

Processing Dissimilarities

Emotion recognition involves several processes, from perceptual
analysis of individual features to the global categorization of an
emotion (Calder & Young, 2005; Haxby, Hoffman, & Gobbini, 2002;
Scherer, 2009). It is possible that some of these processes are shared
or have similar coding mechanisms across modalities, whereas others
do not. At the sensory level, signals from the voice and from the face
are indeed quite different. Within voices, each of the basic emotions
has a unique acoustic profile of pitch, amplitude, and spectral cues
(Sauter et al., 2010). These properties result from the interaction of
laryngeal activity and configurations of the vocal tract. In contrast,
facial emotion recognition is based on configural changes within the
face initiated by movements of face muscles (Ekman & Friesen,
1976). Different combinations of contracted face muscles presented in
specific temporal orders, such as the early wrinkled nose followed by
raised upper lip during disgust expressions, allow for an emotion-
specific profile which can be reliably discriminated from other emo-
tional facial expressions (Jack, Garrod, & Schyns, 2014). Further,
emotions like happiness produce large scale cues in the face, such as
an open mouth showing teeth, which aid rapid recognition within the
visual domain. The striking perceptual feature of teeth may guide
visual search and lead to fast detection of happiness (Horstmann,
Lipp, & Becker, 2012). For expressions of laughter, it has recently
been reported that information from auditory cues guided perception
of audio-visual stimuli (Lavan & McGettigan, 2016). Therefore, per-
ceptual features in one modality may be more salient than in another
modality and hence, emotion processing could be modality-specific.

Supporting the idea of modality-specific emotion recognition, and
in contrast to the results reviewed above, some patient studies have
shown that the faces and voices can be independently affected. For
example, although the amygdala is often involved in the processing of
fear in faces (e.g., Adolphs et al., 1995), it has been shown that an
intact amygdala is not necessary for the processing of fearful prosody
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(Bach, Hurlemann, & Dolan, 2013; but see Scott et al. [1997] who
also used nonspeech emotional vocalizations). Similarly, although
Huntington’s disease can impair recognition of disgust in both faces
and voices (Sprengelmeyer et al., 1996), a study of preclinical carriers
of Huntington’s disease found impairments in recognizing disgust in
faces but not in voices (Sprengelmeyer, Schroeder, Young, & Epplen,
2006).

Despite providing support for independent neural systems under-
lying recognition of facial and vocal expressions of emotion, these
results do not provide direct evidence regarding whether there are
similar coding principles or mechanisms across modalities. Further-
more, the degree of cross-modality similarity may differ across emo-
tions. For example, whereas perceived fear may activate the amygdala
irrespective of modality, perceived disgust may activate the insula
only with faces, and not with voices (Phillips et al., 1998).

The Present Study

This brief review shows that, despite extensive research on
recognition of emotions from faces and voices, it remains unclear
whether these processes rely on modality-specific computations or
shared, modality-independent mechanisms. A major limitation of
previous research is that emotion recognition has mostly been
studied separately across faces and voices, in different groups of
participants. Consequently, in the present study, we examined
whether facial and vocal emotion recognition have similar coding
mechanisms using a within-subjects design. This allowed us to
directly compare the behavioral emotion recognition profiles
across modalities. Participants were presented with emotional
faces and nonverbal affect vocalizations and rated the intensity of
each stimulus for each of the six basic emotions (happiness,
sadness, anger, fear, surprise, and disgust; Ekman & Friesen, 1975;
Ekman & Keltner, 1970). Our analyses then characterized how
emotions are represented within each modality, and examined how
similar these representations are across modalities.

As has been done before, we characterized the content of repre-
sentations within each modality using matrices constructed from be-
havioral rating profiles for all six emotions (e.g., Adolphs et al., 1995,
1999; Belin et al., 2008; Juslin & Laukka, 2001; Sauter et al., 2010).
We call these matrices representation matrices—they allow us to look
at the confusions between all pairs of emotions, and we assume that
two emotions which are often confused have more similar represen-
tations than two emotions that are never confused. Next, we compared
the representations across modalities by correlating the representation
matrices for faces with the representation matrices for voices. A high
correlation would indicate that the representations have similar struc-
ture or content across modalities. In other words, if there are similar
coding mechanisms for faces and voices, we expect to see that those
emotions that are confused in faces are also confused in voices, in line
with the idea of a general, modality-independent processor.

Our approach is based on recent analyses of cognitive and percep-
tual representations in the brain using Representational Similarity
Analyses (RSA; Kriegeskorte, Mur, & Bandettini, 2008; Kriegeskorte
et al., 2008; Kriegeskorte & Kievit, 2013). Here, we applied similar
methods to our behavioral data to be able to compare representations
across modalities. This approach has the major advantage of allowing
us to compare visual and auditory representations without requiring
one-to-one correspondence between specific stimuli or emotions in
the two modalities (Kriegeskorte, Mur, & Bandettini, 2008).

Method

Participants

Participants were 54 British adults recruited through the participant
pool at Brunel University, and through social networks. All partici-
pants were tested on the paper-based 60-item Raven’s Standard Pro-
gressive Matrices (Raven, Raven, & Court, 1998). We excluded nine
participants whose scores were below the 10th percentile on this test,
according to age specific norms (Raven, Raven, & Court, 2000). On
inspection, the low performance seemed to be due to a lack of
attention paid to the task, and therefore we decided to exclude all data
from these participants before any analyses. The final sample con-
sisted of 45 participants (15 male, 30 female), aged between 18 and 61
(M � 30.8, SD � 16.81), with an average Raven’s score of 48.78
(SD � 4.41) of 60 possible correct answers. Participants presented
different educational backgrounds: secondary education and below
(N � 15), undergraduate (N � 24) and postgraduate level (N � 6). All
participants reported normal or corrected-to-normal vision and hear-
ing. The study was approved by the Ethics Committee of the Depart-
ment of Psychology, Brunel University, and all participants gave
informed consent to participate.

Materials

The Emotion Judgment Task was programmed on the PsychoPy
software in Python (Peirce, 2007) running on an Acer ASPIRE
5735 laptop (15.6 in.; resolution 1,366 � 768 pixels; refresh rate
60 Hz) and voices were presented via closed-back, on-ear head-
phones (Sennheiser HD 202). The task contained both face and
voice stimuli exhibiting the six basic emotions of happiness, sad-
ness, anger, fear, surprise, and disgust (Ekman & Keltner, 1970).

Faces were displayed by two male (identity JJ and EM) and two
female (identity C and SW) white Caucasian actors from the
Ekman Pictures of Facial Affect series (Ekman & Friesen, 1975),
making a total of 24 pictures (one stimulus per emotion, per actor).
The size of the pictures on the screen was 6 � 8 cm. Viewing
distance was not formally controlled but was approximately set to
50 cm. From a viewing distance of 50 cm, pictures thus subtended
6.87° � 9.15° of visual angle. The voice stimuli consisted of
nonverbal affect bursts and were selected from the Montreal Af-
fective Voices (Belin et al., 2008). Stimuli were produced by two
male (identity 42 and 55) and two female (identity 45 and 53)
white Caucasian French-Canadian actors, making a total of 24
sounds (one stimulus per emotion, per actor). Sounds consisted of
vocal, nonverbal, affect expressions such as laughter or moans
based on the vowel /ɑ/ and were presented for the full duration of
the stimulus. The mean durations of the vocal stimuli used in the
present study were 1,267 ms for happiness, 2039 ms for sadness,
971 ms for anger, 621 ms for fear, 378 ms for surprise, and 1010
ms for disgust. The face and voice stimuli have previously been
validated and show high emotion recognition rates (Belin et al.,
2008; Ekman & Friesen, 1975).

Design and Procedure

We used a within-subjects design, in which each participant was
tested on emotion judgments for both faces and voices. There were
four blocks in the Emotion Judgment Task, two with face stimuli
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and two with voice stimuli. Each block contained stimuli from one
male and one female actor portraying each of the six emotions.1

Blocks were presented in the following order: voices (V1), faces
(F1), voices (V2), faces (F2). Faces were presented in the center of
the display and remained until the participant made their response.
For each trial, participants had to rate the intensity of the displayed
emotion on a 7-point Likert-scale ranging from not happy/sad/ . . .
at all � 1, to extremely happy/sad/ . . .; � 7. Each stimulus was
rated with respect to each of the six basic emotions. Thus, within
a block, each stimulus was repeated six times, each time with a
different label. Overall, there were 72 trials in each block (6
emotions � 2 sex � 6 labels). The 72 trials were presented in
random order and no trial was repeated across different blocks. A
similar design of rating tasks was used by Adolphs et al. (1995,
2000) to assess emotion recognition in faces.

Participants completed a short practice session, followed by the
Emotion Judgment Task and the Raven’s Matrices. Each task
lasted less than 25 min and the order of tasks was counterbalanced.
No definitions of emotions were provided. Finally, all participants
were debriefed; psychology undergraduate students received cred-
its as part of their course requirement.

Data Analysis

Our first analysis compared the participants’ overall task per-
formance for rating faces and voices. Previous research has sug-
gested comparable task-difficulty for nonverbal affect vocaliza-
tions and facial expressions (Hawk, van Kleef, Fischer, & van der
Schalk, 2009), whereas emotions recognized from speech prosody
showed higher error rates (see also Sauter, Panattoni, & Happe,
2013). For the present sample and stimuli, we computed means
and standard deviations for three dependent measures, separately
for faces and voices: (a) mean RTs for target emotions (i.e., trials
in which the emotion label matched the emotion shown in the
stimulus), (b) mean perceived intensity ratings of target emotions,
and (c) mean accuracy (we considered a response as ‘correct’
when the label corresponding to the target emotion received the
highest intensity rating compared with all the other labels. For
more details on this procedure, see Kornreich et al., 2013). We
then used paired t tests to compare overall performance across
modalities for each dependent variable.

Our main analysis, however, aimed to compare the structure of
representations of emotional faces and emotional voices. To char-
acterize the representations of emotions for faces and voices sep-
arately, we computed representation matrices separately for each
modality. These matrices of behavioral ratings and other confusion
matrices are widely used in research in emotion recognition (e.g.,
Adolphs et al., 1995, 1999; Banse & Scherer, 1996; Belin et al.,
2008; Calder, Burton, Miller, Young, & Akamatsu, 2001; Juslin &
Laukka, 2001; Sauter et al., 2010). Our matrices included the
responses using all emotion labels for each type of stimulus.
Specifically, we analyzed the mean intensity ratings for each of six
labels given to each type of emotional stimulus, resulting in 36
conditions. In each matrix, each cell shows the mean intensity
rating for one emotion label given to one emotion stimulus. We
computed these representation matrices for each participant and
also the mean across participants.

We then compared the representations across modalities by
correlating the representation matrices for faces with the represen-

tation matrices for voices. We thus transformed each matrix into a
single vector (or rating profile) and investigated the correlations of
these using methods commonly applied in the analysis of fMRI
neural response patterns (Haxby et al., 2001; Kriegeskorte, Mur, &
Bandettini, 2008; Kriegeskorte et al., 2008). In addition to com-
paring representations across modalities, we also wanted to test the
reliability of the responses within each modality. This provided us
with a measure of the stability of the representations within each
modality, and also allowed us to estimate the maximum correlation
that we could expect between the rating profiles. We thus com-
puted correlations of rating profiles within- and across-modalities,
to respectively examine the reliability of the responses within the
same modality, and investigate the information shared across mo-
dalities. To be able to conduct these comparisons, we did a
split-half analysis of the data. In other words, we divided the data
for each participant and each modality in two separate and inde-
pendent data sets: the first two presentation blocks formed the first
half, whereas the third and fourth presentation block formed the
second half. Hence, each half contained the same number of
stimuli per emotion label and emotion category. This split-half
analysis provided us with four data sets for each participant: two
data sets with average intensity ratings for each label and each
emotion for faces (F1 and F2), and two data sets with average
intensity ratings for each label and each emotion for voices (V1
and V2). To examine the similarity of emotional response profiles,
we then computed the correlations between the rating profiles
within same modality (F1 vs. F2 and V1 vs. V2) and across
modalities (F1 vs. V1).

Results

Overall Task Difficulty

Our first analysis compared overall task difficulty for recogniz-
ing emotional faces and voices, examining three dependent mea-
sures: (a) mean RTs for target emotions (although it would be
difficult to interpret differences in RTs between the modalities,
given the very different nature of the stimuli), (b) mean perceived
intensity ratings of target emotions, and (c) mean accuracy. For
RTs, the means were similar across faces (M � 3.94, SD � .97)
and voices (M � 4.08, SD � 1.04), and a paired t test showed no
significant difference across modalities, t(44) � �.79, p � .434.
For mean intensity ratings of target emotions, the mean was
slightly higher for faces (M � 5.80, SD � .56) than for voices
(M � 5.52, SD � .64), and a paired t test showed that this
difference was significant, t(44) � 3.34, p � .002. For accuracy,
emotional faces (M � .74, SD � .10) were perceived more
accurately than emotional voices (M � .67, SD � .12), and this
difference was significant, t(44) � 4.35, p � .001. Therefore, these
results showed that emotional faces received significantly higher
intensity ratings than emotional voices, and were also perceived
more accurately.

1 Different actors were presented in all the different blocks to make them
independent. This was crucial to be able to perform the split-half analysis
that we describe below.
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Comparing the Structure of Representations of
Emotional Faces and Emotional Voices

For our main analysis, looking at the structure of representations
of emotional faces and emotional voices, we first computed rep-
resentation matrices separately for faces and voices to characterize
how emotions are represented within each modality. These repre-
sentation matrices were based on the mean intensity ratings for
each type of emotion label given to each of the six emotions.
Figure 1 shows the mean representation matrices (averaged across
participants) for faces and voices separately. These matrices reveal
interesting similarities between modalities. For example, for both
faces and voices, happiness is not usually confused with other
emotions, whereas fear and surprise are often confused. More
generally, the response profiles for each emotion stimulus are very
similar across modalities. In other words, the relationships be-
tween emotions recognized from facial expressions appear to be
very similar to the relationships between emotions recognized
from vocal expressions. Figure 2 shows these similarities more
clearly, in which each graph presents one emotion, and the mean
rating profile across all six labels for that emotion, separately for
faces and voices.

We next quantified these similarities across modalities by com-
puting the correlations between the representation matrix (or rating
profile) for facial stimuli and the representation matrix for vocal
stimuli, separately for each participant. Note that this analysis does
not depend on the magnitude of the ratings, but on the relationship
between the ratings given to all emotion labels. Similar methods
have been used previously to analyze behavioral responses to
emotional stimuli (Adolphs et al., 2000, 2002; Nummenmaa,
Glerean, Hari, & Hietanen, 2014) and to analyze fMRI neural
response patterns (Haxby et al., 2001; Kriegeskorte, Mur, & Ban-
dettini, 2008; Kriegeskorte et al., 2008). For this analysis, and to
perform within-modality and across-modalities comparisons, we
divided the data for each participant in four independent data sets:
two data sets with average intensity ratings for each label and each
emotion for faces (F1 and F2), and two data sets with average
intensity ratings for each label and each emotion for voices (V1
and V2). We then computed the correlations between representa-
tion matrices (or rating profiles) within same modality (F1 vs. F2
and V1 vs. V2) and across modalities (F1 vs. V1).2

We first computed the mean correlations across participants.
Because correlations are usually not normally distributed, correla-
tion scores were first Fisher z-transformed. After computing the
mean of the z-transformed scores, we computed the inverse trans-
formation of the mean value to obtain more interpretable values
between �1 and 1 (for the same procedure, please see Adolphs et
al., 1995, 1999). We applied this same procedure to all instances in
which we computed the mean of correlation values. The mean
correlation across participants of the representation matrices for
face stimuli (F1 vs. F2) was r � .82 (SD � 0.23), which shows that
about 67% of the variance in the representation matrices of one
half of the face stimuli can be predicted by the representation
matrices of the other half of the stimuli (individual and mean
correlations are shown in Figure 3). We then aimed to determine
whether these correlations were significantly different from zero.
For this, we used the nonparametric Wilcoxon signed-ranks test,
which tests whether the vector of correlations comes from a
distribution of values in which the median is zero. Crucially, all

rank tests were computed with raw, nontransformed correlations.
The signed ranks test showed that the F1 versus F2 correlations
were significantly different from zero (z � 5.84, p � .001). For
voices, the average correlation of the representation matrices (V1
vs. V2) was r � .74 (SD � 0.26; i.e., about 55% of variance),
which was also significantly different from zero (z � 5.84, p �
.0013). These results show high test–retest reliability of the repre-
sentations of emotions within each modality. Critically, the repre-
sentation matrices were also highly correlated across modalities.
The mean correlation between the matrices of face and voice
stimuli (F1 vs. V1) was r � .71 (SD � 0.24), which shows that
about 50% of the variance in the representation matrices of faces
can be predicted by the representation matrices of voices (and vice
versa).4 Again, these correlations were significantly different from
zero (z � 5.84, p � .001). Hence, the results suggest that the
perception of confusions or distinctions between emotions largely
overlaps across the visual and auditory modalities.

To compare the within- and across-modalities correlations, we
conducted a repeated-measures ANOVA with contrasts (3 levels:
F1 vs. F2, V1 vs. V2, F1 vs. V1) as the within-subject variable. We
used the z-transformed correlations in the ANOVA. The repeated-
measures ANOVA revealed a significant main effect for contrast,
F(2, 88) � 38.45, p � .001, �2 � .47. Pairwise comparisons
revealed that the correlations of the representation matrices of
faces (F1 vs. F2) were significantly higher than the correlations of
the representation matrices of voices (V1 vs. V2) and higher than
the correlations of the matrices across modalities (F1 vs. V1), both
p � .001. Interestingly, correlations of the representation matrices
across the two modalities were not significantly different from the
correlations of the representation matrices of voices (p � .182).
These results show that the representations of emotions from faces
are more reliable across different stimuli than the representations
of emotions from vocal expressions. Overall, the representations of
faces seem to have some unique information that is not shared with
voices, given that there are higher correlations for within-modality
rather than across-modalities comparisons. However, the structure
of representations of vocal expressions of emotion largely overlaps
with the representations of facial expressions of emotion because
these across-modality correlations are not significantly higher than
the within-modality correlations.

To demonstrate that the high correlations of representation
matrices within-modalities (F1 vs. F2, V1 vs. V2) and across-
modalities (F1 vs. V1) were not solely driven by the presence of
matching target-emotions (i.e., the diagonals in these matrices), we

2 We also correlated other data-split possibilities, that is, F2 versus V2,
F1 versus V2, and F2 versus V1, and we obtained similar results to the ones
presented here (see Appendix 1).

3 Please note that the results of most of the Wilcoxon signed-ranks test
were the same (i.e., z � 5.84). This is because this is a test based on the
sum of all positive ranks. Therefore, if all 45 participants had correlation
scores above zero, the sum of all possible positive ranks is the same (T� �
1035), independently of the exact correlation values, and then z � 5.84 (for
more details, please see Siegel & Castellan, 1988). We additionally note
that all the same comparisons were significant when we used one-sample
t tests.

4 We also used Spearman correlations, and the mean correlations were
F1 versus F2 � .77, V1 versus V2 � .70, and F1 versus V1 � .65.
Wilcoxon signed-ranks test showed that all correlations are significantly
higher than zero (all p � .001).
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ran the same correlation analyses again, but this time we excluded
the diagonals of all matrices. Again, to compute means across
participants, we used z-transformed correlations and here we report
the mean values after they had been transformed back to values
between �1 and 1. The mean correlation across participants of the
representation matrices (without diagonal) for face stimuli (F1 vs.
F2) was r � .68 (SD � 0.28; the Wilcoxon signed-ranks test
comparing the raw, nontransformed, correlations to zero was z �
5.84, p � .001) and for voice stimuli (V1 vs. V2) was r � .59
(SD � 0.27; z � 5.84, p � .001). Finally, the mean correlation of

the representation matrices across modalities (F1 vs. V1) was r �
.51 (SD � 0.25; z � 5.83, p � .001). This correlation is lower than
in the previous analysis, but still suggests that the structure of
representations of emotions largely overlaps across the visual and
auditory modalities. Individual and mean correlations are shown in
Figure 4.

Further, we repeated the repeated-measures ANOVA with con-
trasts (3 levels: F1 vs. F2, V1 vs. V2, F1 vs. V1) as the within-
subject variable, this time without the diagonal target emotions. As
before, we used the z-transformed correlations in the ANOVA.

Figure 1. Representation matrices for faces and voices with mean intensity ratings across participants. Each
cell shows the mean intensity rating for one emotion label (x axis) given to one type of emotion stimulus (y axis).
Ha � happiness; Su � surprise; Fe � fear; Sa � sadness; Di � disgust; An � anger. See the online article for
the color version of this figure.

Figure 2. Mean emotion rating judgments and standard errors (SE) for
each of the six emotions presented, split by modality. The word at the top
of each plot shows the emotion of the stimulus presented, and the x axis
shows the six emotion labels. Ha � happiness; Su � surprise; Fe � fear;
Sa � sadness; Di � disgust; An � anger. The solid black line represents
Faces and the dotted grey line represents Voices.

Figure 3. Correlations of the representation matrices (or rating profiles)
of emotional stimuli either within the same modality (F1 vs. F2 and V1 vs.
V2) or across different modalities (F1 vs. V1). Each black empty circle
represents one participant, and the red filled circles with a line indicate the
mean correlations across participants. See the online article for the color
version of this figure.
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The repeated-measures ANOVA revealed a significant main effect
for contrast, F(2, 88) � 17.74, p � .001, �2 � .29. Pairwise
comparisons revealed that the correlations of the representation
matrices of faces (F1 vs. F2, without diagonal) were significantly
higher than the correlations of the representation matrices of
voices (V1 vs. V2, without diagonal; p � .01) and higher than the
correlations of the representation matrices across modalities (F1
vs. V1, without diagonal; p � .001). Again, correlations of the
representation matrices across the two modalities were not signif-
icantly different from the correlations of the representation matri-
ces of voices (p � .086). By removing the target emotions, we
found that there was more overlap of emotion rating profiles in the
within-modality conditions compared with the between-modalities
condition (though this difference was not significant for voices),
which suggests that some of the representational content is
modality-specific. Yet, the emotion rating profiles across modali-
ties are still moderately to highly correlated, suggesting that a large
proportion of the information is shared across faces and voices,
even after removing the diagonals in the representation matrices.

Comparing Individual Representations to Mean
Representations Across Individuals

Finally, we compared individual representations of emotions
with the average representations from the rest of the participants.
This allowed us to determine whether the high correlations we
observed within and across modalities were related to idiosyncra-
sies of each participant’s representations (or even related to spe-
cific ways in which they responded during our task), or whether
they were related to representations of emotions that had similar
structure across individuals. We therefore correlated each individ-
ual’s representation matrices to matrices averaged across all the
other participants. Here, we report results for the same compari-

sons as the ones shown in Figure 4, and thus after removing the
diagonals from all matrices. The mean correlation (as before, we
computed the mean based on z-transformed correlations, and here
we report the mean values after being transformed back to values
between �1 and 1) of each participant’s representation matrix for
faces (F1, with half of the stimuli) with the mean matrix for faces
across all the other participants (MF2, with the other half of the
stimuli) was r � .69 (SD � 0.25; the Wilcoxon signed-ranks test
comparing nontransformed correlations to zero was z � 5.83, p �
.001). Similarly, the mean correlation of each participant’s repre-
sentation matrix for voices (V1) with the mean matrix for voices
across all the other participants (MV2) was r � .64 (SD � 0.23;
z � 5.84, p � .001). Finally, the mean correlation of each partic-
ipant’s representation matrix for faces (F1) with the mean matrix
for voices across all the other participants (MV1) was r � .55
(SD � 0.20; z � 5.83, p � .001), and the mean correlation of each
participant’s representation matrix for voices (V1) with the mean
matrix for faces across all the other participants (MF1) was r � .54
(SD � 0.20; z � 5.84, p � .001). These results show that
representations of emotions for facial and vocal expressions have
a similar structure across individuals (see Figure 5). These simi-
larities explained a substantial portion of the variance in individual
profiles (on average, between 30% and 48% of the variance).
However, in all the comparisons, there were still large amounts of
unexplained variance. This unexplained variance could be related
to individual differences in emotion representation. In the future, it
will be very interesting to explore potential factors that may
contribute to these individual differences.

Comparing Behavioral Representations to
Representations of Low-Level Properties of the Stimuli

Confusions between different emotions are often attributed to
similar perceptual features within one modality, such as image-

Figure 4. Correlations of the representation matrices (or rating profiles)
of emotional stimuli either within the same modality (F1 vs. F2 and V1 vs.
V2, both without diagonal) or across different modalities (F1 vs. V1,
without diagonal). Each black empty circle represents a participant, and the
red filled circles with a line indicate the mean correlations across partici-
pants. See the online article for the color version of this figure.

Figure 5. Correlations of the representation matrices (or rating profiles)
of emotional stimuli either within the same modality (F1 vs. MF2 and V1
vs. MV2, both without diagonal) or across different modalities (F1 vs.
MV1 and V1 vs. MF1, both without diagonal). These correlations were
computed between an individual representation matrix and the mean rep-
resentation matrix of all other participants. M indicates mean across par-
ticipants. Each black empty circle represents a participant, and the red
filled circles with a line indicate the mean correlations across participants.
See the online article for the color version of this figure.
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based properties in faces (Calder et al., 2001), muscle configura-
tions in faces (Jack et al., 2014), or acoustic properties in voices
(Banse & Scherer, 1996; Juslin & Laukka, 2001; Sauter et al.,
2010). In a similar view, Juslin and Laukka (2003) found several
similarities between the patterns of emotion perception across
voices and music, and suggested that those could be largely ex-
plained by similarities of acoustic cues. It is therefore important to
examine whether the high correlations that we observe between the
rating profiles across modalities could be explained by the visual
and acoustic properties of the stimuli.

It is possible that the visual and acoustic properties of the stimuli
are themselves correlated across modalities, as a result of interde-
pendence between the activation of face and vocal tract muscula-
ture during emotion expression (e.g., Ohala, 1980). On the other
hand, if the behavioral correlations are not due to the acoustic or
visual properties of the stimuli, it could be that they result from
modality-independent processes, such as abstract representations
of emotions (e.g., Scherer, 2009; Skerry & Saxe, 2014). To dis-
tinguish between these two possibilities, we carried out analyses of
the low-level (visual and acoustic) properties of the emotional
stimuli and obtained representation matrices for each visual and
acoustic cue. We then computed partial correlations between the
behavioral matrices, while removing the variance due to each
visual and acoustic cue. We next describe these analyses in detail.

Visual analysis of faces. First, we carried out an analysis of
the visual properties of the faces. For this, we based our methods
on Calder et al. (2001), who examined whether principal compo-
nent analyses (PCA) of images of emotional faces supported facial
expression recognition. The authors found that it was possible to
categorize the different emotions based on the outputs of the PCA.
Critically, the pattern of miscategorizations was similar to that of
human observers. These results showed that linear analysis of the
visual information present in images of facial expressions allows
the categorization of emotions in a manner that is consistent to
human performance.

Here, we based our analysis on the same visual properties that were
used by Calder et al. (2001). Specifically, Calder et al. (2001) in-
cluded three data sets in which they conducted the PCAs: (a) full
images, corresponding to the greyscale pixel values of full face
images that had been modified to have the eyes aligned to the same
position; (b) shape-free images, corresponding to the greyscale pixel
values of face images that had been modified to have the same
average-shape, and (c) shape-only, which corresponded to the x and y
coordinates of 35 anatomical feature points on the face. The best
results, in terms of accurate categorization of emotions, were obtained
by combining the visual information from shape-free images and
shape-only coordinates.

Like Calder et al. (2001), our analyses of visual information
considered three separate data sets, each related to a different
visual property. The first dataset consisted of pixel values of the
face images, after we had aligned the position of the eyes. The
second dataset consisted of pixel values of the face images, after
we had aligned all images to have all anatomical features in the
same position. The third dataset consisted of vectors of the x and
y coordinates of 49 features in the face (Calder et al. [2001] did not
specify the 35 features that they used, and here we used 49 features
that could be clearly identified). We then created several repre-
sentation matrices, each based on one specific visual property.

To prepare all the face stimuli for each dataset, we used Psy-
chomorph (Tiddeman, Stirrat, & Perrett, 2005). As a first step, we
removed external features of the faces, such as hair and ears. Then,
all stimuli were aligned to have the eyes in the same position (the
coordinates of the eyes were based on the average of all the face
images). There was no further processing for the images in the first
dataset. For the images in the second dataset, we started with the
images from the first dataset and created an average of all the
images. We then transformed each image to have the same shape
(i.e., the same shape coordinates) as the average image. The third
dataset consisted of the x and y coordinates of 49 points in the face
(using the same images from the first dataset); each point corre-
sponded to a clear anatomical landmark.

We next computed representation matrices based on each of
these three data sets. For this, we needed to compute the similarity
across pairs of faces within each dataset. Therefore, separately for
each dataset, we computed Euclidean distances5 between each pair
of faces. Specifically, for the first two data sets, we computed the
Euclidean distances between vectors consisting of the pixel values
corresponding to each image. We used the same oval to mask for
each face (to avoid including the contours of the face), and the
vectors only included the greyscale values inside the oval. The
similarity between two faces thus consisted of the Euclidean
distance between two such vectors. For the third dataset, Euclidean
distances were computed using the coordinates of the positions of
the 49 features in the face as vectors. We transformed the x and y
coordinates for each image in a single vector by concatenating the
y coordinates after the x coordinates (Calder et al., 2001), and then
computed the Euclidean distance between each pair of vectors
corresponding to each pair of faces.

In addition to using Euclidean distances to examine the simi-
larity of the positions of face features (third dataset), we also
conducted Procrustes analysis, which specifically allows the com-
parisons of the shapes of two objects (Bookstein, 1991; Rohlf &
Slice, 1990). Procrustes analysis consists of the linear transforma-
tion (translation, scaling, and rotation) of the shape of one object
to best match the shape of another object. As a measure of
similarity, we then used the sum of the squared errors between the
transformed (superimposed) shapes. This approach has previously
been used to compare the shapes of body parts, such as hands
(Longo & Haggard, 2010) and faces (e.g., Fink et al., 2005; Pound,
Penton-Voak, & Brown, 2007; Pound et al., 2014). We used
Matlab version 8.2.0.701 (Mathworks, Natick, MA) to carry out
the Procrustes analysis. The data for each face consisted of the x and
y coordinates of the same 49 features that we used in the previous
analysis. Then, for each pair of faces, we transformed the shape (i.e.,
positions of features) of the first face to match the shape of the second
face, and computed the Procrustes dissimilarity between the resulting
transformed shapes.6

We computed the similarity of each pair of images by using all
four methods described above. We only compared the images of
faces with the same identity (i.e., identity of the person shown on

5 Given that we compute Euclidean distances, it would be more natural
to describe the dissimilarity between faces. However, to be consistent with
the previous sections, we have used the term similarity throughout.

6 As for Euclidean distances, zero means that the two shapes are the
same, and higher values indicate more dissimilar shapes. For consistency,
we will again use the term similarity instead of dissimilarity.
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the image), and then averaged all the matrices across different
identities. We therefore created four representation matrices of
visual properties of the stimuli: (a) Full images: representation
matrix based on the Euclidean distances between vectors consist-
ing of pixel values of the full images which had all eyes aligned,
(b) Shape-Free images: representation matrix based on the Euclid-
ean distances between vectors consisting of pixel values of shape
free images, (c) Shape-49: representation matrix based on Euclid-
ean distances between vectors consisting of the coordinates of 49
facial features, (d) Shape-49-Procrustes: representation matrix
based on Procrustes analysis. These four representation matrices
are shown in Appendix 2.

Acoustic analysis of voices. The analysis of the acoustic prop-
erties of the voices was based on methods used by Sauter et al. (2010),
who showed that the linear analysis of acoustic properties of nonver-
bal emotional expressions of emotion could support categorization of
emotions in a psychologically plausible manner. In other words, it is
possible to categorize emotions purely based on the analysis of
acoustic properties of the stimuli, and the pattern of miscategoriza-
tions is consistent with errors made by human observers.

For the present study, we aimed to examine the similarity
between vocal expressions of individual emotions based on their
acoustic properties alone. For each stimulus, we therefore ex-
tracted the same 10 acoustic properties used by Sauter et al.
(2010), including measures of fundamental frequency (F0), spec-
tral properties, amplitude, and periodicity: (1) total duration (sec-
onds), (2) amplitude: standard deviation (dB), (3) mean intensity
(dB), (4) number of amplitude onsets, (5) F0 minimum (Hz), (6)
F0 maximum (Hz), (7) F0 mean (Hz), (8) F0 standard deviation
(Hz), (9) spectral center of gravity (Hz), and (10) standard devia-
tion of the spectrum (Hz). We additionally extracted four other
acoustic properties to further describe the periodicity of these
vocalizations: (11) mean harmonics-to-noise-ratio (dB), (12) jitter,
(13), percentage of unvoiced segments, and (14) shimmer. These
acoustic properties are described in more detail in Appendix 3. For
each vocal stimulus, we extracted these acoustic properties using
PRAAT (Boersma & Weenink, 2015).

We then created representation matrices based on each of these
acoustic properties by computing the similarity across pairs of
vocal stimuli. For each acoustic property, and for each pair of
stimuli, we computed the Euclidean distance between the single
values for that property.7 Similar to the analysis of face stimuli, we
only compared pairs of stimuli belonging to the same person
identity, and then averaged all the matrices across different iden-
tities. We therefore created 14 representation matrices, each cor-
responding to an acoustic property. These 14 representation ma-
trices are shown in Appendix 3.

Behavioral matrices. To be able to compare the visual and
acoustic representation matrices with the behavioral representation
matrices, all matrices needed to be symmetric. Furthermore, there
should be a one-to-one correspondence between the entries in all
the matrices. However, while the representation matrices of acous-
tic and visual properties are symmetric (Appendices 2 and 3 of
supplementary material), the behavioral matrices that we used
above (see Figure 1) were not symmetric across the diagonal. We
therefore needed to change the format of the behavioral represen-
tation matrices by computing them in a new manner, comparable
with the way in which the representation matrices for the low-level
properties were constructed. Briefly, we computed the similarity of

each pair of emotional stimuli using the six emotion labels as
features. This procedure is also comparable with the way in which
representational matrices are computed in fMRI studies (e.g.,
Kriegeskorte, Mur, & Bandettini, 2008, Kriegeskorte et al., 2008),
in which voxels are the features; see also Skerry and Saxe (2015)
who recently used a comparable method to compute similarities of
behavioral ratings of emotions. More specifically, we computed a
representation matrix for each participant, each modality, and each
person identity. Each identity was represented by six separate
stimuli, each corresponding to one emotion. Each stimulus was
rated for six different emotion labels. Therefore, within each
modality and for each pair of stimuli of the same identity, we
computed the Euclidean distance between the two vectors consist-
ing of the ratings for the six emotion labels (i.e., vectors consisting
of six rating values).8 This analysis resulted in four representation
matrices for faces and four representation matrices for voices for
each participant. We then averaged all representation matrices
within the same modality, which resulted in one representation
matrix for emotional faces and one representation matrix for
emotional voices for each participant (Appendix 5 also shows
results of all the same analyses as described below but using
nonaveraged matrices for each modality). Crucially, computing the
matrices in this manner does not change the previous conclusions,
as can be seen in Appendix 4. Appendix 4 shows the mean
representation matrices for judgments from faces and voices and
also includes the same analyses that had been done for Figures 3
and 4 but now using the new behavioral matrices. These analyses
demonstrate that the results are similar using the new matrices.
Correlations between the matrix for faces and the matrix for voices
(only the lower triangular part of each matrix) for each individual
can be seen in Figure 6A (last column). The mean correlation for
all participants was r � .60 (SD � 0.34; the result of the Wilcoxon
signed-ranks test comparing nontransformed correlations to zero
was z � 5.81, p � .001).

Accounting for low-level properties. For each participant,
we first correlated the four representation matrices for visual
properties with the behavioral representation matrices for emo-
tional faces. Figure 6A shows the individual correlations, as well
as the means across all participants. The results showed that none
of the visual properties strongly predicted participants’ behavioral
responses. Only the two representation matrices with shape infor-
mation correlated with the behavioral matrices for faces signifi-
cantly above zero. The mean correlation of the representation
matrix using Euclidean distances between shape vectors (Shape-
49) and the behavioral matrices was r � .11 (SD � 0.18), which
was significantly above zero (z � 3.43, p � .001). The mean
correlation of the representation matrix using Procrustes distances
between shape vectors (Shape-49-Procrustes) and the behavioral
matrices was r � .25 (SD � 0.19) and again, these correlations

7 We also built a representation matrix using all the acoustic properties
at the same time. In other words, each stimulus was represented by a vector
composed of all the values for all acoustic properties. This representation
matrix, however, was not correlated with behavior, and therefore we do not
show this analysis here.

8 Please note that it is also possible to use correlations to compute
similarities between the two vectors, but we used Euclidean distances to
keep it consistent with the analyses of the acoustic properties, in which it
would not be possible to compute correlations because there was one single
value for each stimulus.
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were significantly above zero (z � 5.37, p � .001). This latter
representation matrix seemed to be the best predictor of the be-
havioral ratings of emotional faces.

In a second step, we computed partial correlations between the
individual representation matrices for faces and voices, while
controlling for the representation matrices for each visual property.
Figure 6B shows that these partial correlations were still very high
(all mean r � .61; Wilcoxon signed-ranks test comparing corre-
lations to zero: all z � 5.80, all p � .001), and therefore the visual
properties that we considered here do not seem to account for the
crossmodal behavioral correlations.

We also conducted similar analyses for the acoustic properties,
by computing the correlations between each of the 14 representa-

tion matrices for acoustic properties and the behavioral represen-
tation matrices for emotional voices for each participant. Figure
7A shows the individual correlations as well as the means across
participants. The results showed that several of the acoustic prop-
erties describing amplitude, periodicity, and spectral properties of
the vocalizations (acoustic cues 1 to 4, and 10 to 14, see Appendix
3) were good predictors of participants’ behavior (all mean r �
.22; Wilcoxon signed-ranks test comparing correlations to zero: all
z � 4.79, all p � .001). However, the correlations between the
representation matrices for acoustic cues 5 to 9 and the behavioral
matrices for voices were not significantly above zero.

Finally, we computed partial correlations between the indi-
vidual behavioral representation matrices for faces and voices,

Figure 6. Analysis of low-level visual properties. Panel A shows correlations of representation matrices using visual
properties of the images (1: Full images, 2: Shape-Free images, 3: Shape-49, 4: Shape-49-Procrustes) and the behavioral
matrices for faces. Each circle shows the corrrelation for one participant, and the red full circle shows the mean across
participants. The matrices using shape information seem to be the best predictors of behavior. The last column in Panel A
shows the correlations of the representation matrices for emotional faces and emotional voices. Panel B shows the partial
correlations between the representation matrices for faces and the representation matrices for voices, while controlling for
each of the visual properties. Each circle shows the partial corrrelation for one participant, and the red full circle shows the
mean across participants. All partial correlations are still high, even after controlling for the variance of the visual properties
of the images. See the online article for the color version of this figure.
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while controlling for the representation matrices for each acous-
tic cue. Figure 7B shows that these partial correlations were still
quite high (all mean r � .44; Wilcoxon signed-ranks test
comparing correlations to zero: all z � 5.41, all p � .001), and
therefore the acoustic properties that we considered here did not
account for most of the crossmodal behavioral correlations. In
other words, although the acoustic properties account for sig-
nificant amounts of variance of the behavioral representation
matrices of emotional voices, they do not seem to account for
most of the shared variance between emotional faces and emo-
tional voices.

It is possible, however, that our averaging of the representation
matrices of low-level properties across different stimuli may have
distorted the results. In particular, the matrices could be quite different
for distinct identities and, therefore, the mean matrices that we used
(in which we averaged representation matrices of different identities
of the stimuli) would be noninterpretable and distort the results.
Therefore, we performed separate analyses without averaging the
representation matrices across different identities. In these analyses,
each entry to a representation matrix was a stimulus, resulting in a
24-by-24 matrix. These analyses are shown in Appendix 5. Appendix
5 shows that the results using these nonaveraged matrices were

Figure 7. Analysis of low-level acoustic properties. Panel A shows correlations of representation matrices
using acoustic properties of the images (A1: Total duration; A2: Amplitude SD; A3: Mean intensity; A4: Numbe
of amplitude onsets; A5: F0 minimum; A6: F0 maximum; A7: F0 mean; A8: F0 SD; A9: Spectral center of
gravity; A10: Spectral SD; A11: Mean HNR; A12: Jitter; A13: Percentage of unvoiced segments; A14: Shimmer
— see Appendix 2 for description of each of these properties) and the behavioral matrices for voices. Each circle
shows the corrrelation for one participant, and the red full circle shows the mean across participants. The last
column in Panel A shows the correlations of the representation matrices for emotional faces and emotional
voices. Panel B shows the partial correlations between the representation matrices for voices and the represen-
tation matrices for faces, while controlling for each of the acoustic properties. Each circle shows the partial
corrrelation for one participant, and the red full circle shows the mean across participants. All partial correlations
are still high, even after controlling for the variance of the acoustic properties of the sounds. See the online article
for the color version of this figure.
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comparable to the results described above, and therefore the averaging
procedure did not seem to distort the results.

To this point, our analyses suggested that single low-level
visual or acoustic properties do not account for the majority of
the shared variance between the representation matrices of
emotional faces and emotional voices. However, it is possible
that a combination of the low-level properties would be able to
better account for this shared variance. We therefore carried out
multiple regressions to remove the variance accounted for by
multiple low level properties from the behavioral representation
matrices. There are, however, a couple of important caveats
when conducting these analyses. First, several of the predictors
were highly correlated (Appendix 6 has a correlation matrix of
all the low-level properties used here). Second, there were many
predictors and very few data points per regression. In fact,
because of this, it was impossible to conduct multiple regres-
sion with all the acoustic predictors using the average repre-
sentation matrices. Therefore, we conducted multiple regres-
sions using the 24-by-24 nonaveraged representation matrices.
The results of these analyses are described in Appendix 7 and
show that, even when accounting for multiple visual properties
of the faces or acoustic properties of the voices, the correlations
across faces and voices did not substantially decrease.

We conclude that the visual and acoustic properties of the
stimuli do not seem to account for most of the shared variance
between the representations of emotional faces and emotional
voices. We note, however, that some of the partial correlations
decreased when controlling for the low-level properties, espe-
cially when controlling for acoustic properties (see Figure 7 and
Appendix 7). This suggests that some of the acoustic properties
of the voices may account for some of the shared variance in the
ratings of emotions, and it will be interesting to systematically
examine the role of these acoustic properties in future studies.
Furthermore, the correlation matrix in Appendix 6 also suggests
that the representation matrices for some of the visual and
acoustic properties are correlated, even if those correlations are
low. This could be a result of the interdependence between
vocal production and change in facial muscles (Ohala, 1980), or
could be more generally related to the idea that faces and voices
may carry redundant signals, leading to more accurate judg-
ments (Smith et al., 2016). It will be interesting to explore this
in future studies, using a greater diversity of stimuli, and an
even wider selection of acoustic and visual properties—it would
be particularly interesting to conduct these analyses of low-
level properties using voices and faces of the same actors, as
this would control for extra variability that was introduced by
having different people posing the vocal and facial emotions.

Discussion

In this study we aimed to compare the representations of emotions
across faces and voices. We used an approach based on Representa-
tional Similarity Analysis (Kriegeskorte, Mur, & Bandettini, 2008,
Kriegeskorte et al., 2008; Kriegeskorte & Kievit, 2013). Briefly, we
examined the structure or geometry of the representations within each
modality by computing representation matrices for faces and voices
separately, and then we compared the representations across modal-
ities by correlating these matrices. Our results showed high correla-
tions between the representation matrices for faces and the represen-

tation matrices for voices, which suggest similar representations of the
six basic emotions across modalities. In other words, participants
associated specific emotion-stimuli with specific emotion-labels, and
this pattern was consistent within, as well as across modalities. We
also found that the structure of these representations is quite similar
across individuals, though there was also unique variance for each
individual. In the future, it will be very interesting to determine
variables that may contribute to individual differences in emotion
representation profiles.

We also examined whether the shared variance between represen-
tations of facial and vocal expressions of emotion could be explained
by the physical properties of the stimuli. Specifically, we computed
representation matrices for the faces and the voices based on their
physical properties. For faces, we used texture and shape information,
based on the analysis of facial expressions by Calder et al. (2001). For
the voices, we used acoustic properties related to fundamental fre-
quency, spectral properties, amplitude, and periodicity of the vocal-
izations, based on the analysis of vocal expressions by Sauter et al.
(2010). Correlations of the representation matrices based on physical
properties of the stimuli with the behavioral representation matrices
showed that they could account for some of the variance within each
modality. However, when we removed the variance explained by
these low-level properties, there were still moderate (and significant)
correlations between behavioral representations of emotional faces
and emotional voices.

Our results extend previous studies showing that individual
differences in vocal emotion recognition are correlated with indi-
vidual differences in facial emotion recognition (Borod et al.,
2000; Palermo et al., 2013). These past studies, however, had only
focused on the overall ability to recognize emotions in each
modality. Conversely, here we focused on the full representations
of the six basic emotions to demonstrate that their representational
structure or geometry is similar across faces and voices, suggesting
similar or shared mechanisms across modalities.

Despite these similarities across modalities, we also found some
differences between face and voice emotion recognition. These can
be seen in the higher correlations of the representation matrices
within modalities than the correlations across modalities (though
this was only significant for face matrices). The higher within-
modality correlations show that there is modality-specific infor-
mation in these representation matrices that is not shared across
modalities. The modality-specific representational content could
be related to the physical properties of the stimuli themselves.

Based on the present findings, and in line with previous behav-
ioral studies (Borod et al., 2000; Palermo et al., 2013), we suggest
that emotions may be largely categorized by modality-independent
mechanisms. Confusions between different emotions are often
attributed to similar perceptual features within one modality, such
as image-based properties in faces (Calder et al., 2001), muscle
configurations in faces (Jack et al., 2014), or acoustic properties in
voices (Banse & Scherer, 1996; Juslin & Laukka, 2001; Sauter et
al., 2010). In a similar view, Juslin and Laukka (2003) found
several similarities between the patterns of emotion perception
across voices and music, and suggested that these could largely be
explained by similarities of acoustic cues. However, our findings
suggest that explanations based on low-level visual or auditory
perceptual features may be incomplete. Instead, emotion recogni-
tion may also depend on modality-independent processes.

923EMOTION REPRESENTATION IN FACES AND VOICES



These modality-independent processes could be rooted in top-
down mechanisms. For example, rapid responses to emotional
compared with neutral stimuli are seen for both faces (e.g., Eimer
& Holmes, 2007) and voices (Sauter & Eimer, 2010). There could
also be modality-independent representations consisting of ab-
stract representations of emotions, for example linked to the ap-
praisal of situations or events that cause the various emotions
(Scherer, 2009; Skerry & Saxe, 2014, 2015). In a similar view, the
same semantic representation of emotion categories may be acti-
vated across different types of stimulus presentation formats, as
has previously been shown for objects depicted in pictures or as
written words (Shinkareva, Malave, Mason, Mitchell, & Just,
2011). This explanation could also be related to the specific task
we used, which may have relied on the semantic use of emotion
categories or labels. Future studies could test whether similarities
across modalities still hold up when using tasks that do not rely on
labels or categorical contexts, such as perceptual matching tasks.

Our findings are also compatible with studies suggesting that
modality-independent mechanisms could be implemented in mul-
timodal brain regions. For example, it seems reasonable that spe-
cific subcortical structures such as the amygdala process emotions
independently of modality (Phillips et al., 1998). It is also possible
that a wider network of structures is active during emotion recog-
nition (Peelen et al., 2010; Skerry & Saxe, 2014) despite the great
perceptual differences in sensory inputs from faces and voices.
Again, this may be irrespective of whether individual brain regions
are emotion-specific or not. However, it is also possible that the
two modalities are processed in separate regions that are modality
specific, but which have similar coding mechanisms. In either
case, we suggest that Yovel and Belin’s (2013) proposal of com-
mon underlying coding mechanisms for recognizing person-
identity from faces and voices may also apply to recognizing
emotions from faces and voices.

What could be the benefit of modality processing similarities
during emotion recognition? In everyday life, emotions in faces or
voices may not always be expressed in isolation. In other words, it is
very common that emotions are expressed simultaneously across
modalities. For the integration of signals across modalities, Hagan et
al. (2009) found increased activity in posterior regions of the superior
temporal sulcus (STS) during the combined processing of fearful
static facial expressions and nonverbal emotion vocalizations, com-
pared with unimodal presentations. Further, Kreifelts, Ethofer, Shio-
zawa, Grodd, and Wildgruber (2009) reported a functional segrega-
tion of emotion processing in the STS, with specific parts of the STS
being either sensitive to faces or to voices. Interestingly, parts of the
STS that spatially overlapped between face and voice-selective re-
gions were active during audio-visual emotion recognition. This
shared use of neural structures, such as the STS, as well as the current
behavioral processing similarities during emotion recognition across
faces and voices may be purposefully linked to facilitate the integra-
tion of information from several modalities.

Alternatively, everyday exposure to multimodal emotion ex-
pressions may have strengthened our associations of emotion
representations from individual modalities so that the recognition
from one modality is associated with the recognition from another
modality. In line with this, there may be physical interdependence
between the activation of face and vocal tract musculature during
emotion expression. As Ohala (1980) suggested, the retraction of
the corners of the mouth—which typically accompanies a smile—

causes an increase in the frequency range of sounds, which typically
makes them resemble infantile vocalizations. Similarly, muscular
activation of the mouth and tongue, which reflect functionally adap-
tive behaviors such as vomiting, not only creates the typical face
expression of disgust but also modifies configural properties in the
upper vocal tract, creating typical vocal expressions of disgust
(Scherer, 1994). However, according to this view, we would have
expected that the low-level properties of the stimuli would have
accounted for a larger proportion of the shared variance across faces
and voices. This was not the case here, but future studies using facial
and vocal expressions posed by the same actors, and additional visual
(e.g., looking at muscle activity of the face over time) and acoustic
properties (e.g., considering the time-course of the sound, and not just
taking a mean value) could further probe this hypothesis. Finally, it
could be that confusions between emotions emerge because of shared
physiological responses across specific pairs of emotion, and the
associated perception of those responses (James, 1884; Nummenmaa
et al., 2014). In this view, the modality in which the stimuli are
presented does not affect the physiological responses.

In our study, to characterize the structure of representations of
emotional stimuli, we initially used the intensity ratings of differ-
ent emotion labels for each emotional stimulus, as done in previous
studies (e.g., Adolphs et al., 1995, 1999; 2000; Calder et al., 2001;
Sauter et al., 2010). Furthermore, in our analyses comparing the
behavioral representations to representations of low-level proper-
ties of the stimuli, we additionally used euclidean distances be-
tween the vectors of intensity ratings (on the six emotion labels)
for each stimulus. However, a more standard method of charac-
terizing the structure of representations is to use pairwise similarity
judgments (i.e., where participants rate the similarity between two
stimuli). Kriegeskorte and Mur (2012) have also recently proposed
the multiple arrangement method, in which participants arrange
multiple stimuli in two-dimensional space according to their per-
ceived similarities. In this latter approach, the similarities are
inferred from the distances between stimuli. For visual stimuli, the
multiple arrangement method is substantially faster than acquiring
pairwise similarity judgments, but may incur additional working
memory demands for auditory stimuli. Nonetheless, we think that
it would be very interesting in future work to compare our current
approach with the outcomes of pairwise similarity judgments and
the multiple arrangement method.

Overall, the present behavioral study demonstrates interesting
parallel representations for recognizing emotions displayed in
static faces and vocal affect bursts. Possible (and nonmutually
exclusive) explanations for this include modality-independent
higher level representations, underlying shared neural networks, or
the interdependence of facial and vocal musculature during emo-
tion production. In our study, for the static faces as well as for
nonverbal affect bursts, emotions were portrayed in iconic and
prototypical ways, which are relatively easy to recognize across
both modalities. For future studies, it would be interesting to
compare iconic emotion expressions portrayed by actors in a
prototypical manner with more spontaneous and authentic expres-
sions of emotion. Further, it may be interesting to extend this
approach to include dynamic face or body expressions from a
larger variety of actors to investigate whether the present claims of
modality-independent emotion processing hold up to a wider range
of stimuli. To control for sources of variability related to the
identity of the people posing the emotions, it would also be
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informative to compare the representations of emotions from facial
and vocal stimuli generated by the same actor. Finally, future
studies investigating the origin, development, and neural correlates
of these similarities could provide a deeper insight into the com-
mon mechanisms between facial and vocal emotion processing.
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Appendix 1

Correlations of Response Profiles Across Modalities

In the main text, we presented results for the correlation of F1
versus V1. The mean correlation between ratings of F1 versus V1
was r � .82 (SD � 0.24). Correlations of the other splits of the
data led to very similar results. The mean correlation between
ratings of F1 versus V2 was r � .67 (SD � 0.23), the mean
correlation between ratings of F2 versus V1 was r � .76 (SD �
0.31), and the mean correlation between ratings of F2 versus V2
was r � .73 (SD � 0.27). All these correlations were significantly
different from zero (all p � .001).

Similar results were observed when we removed the diagonal.
The mean correlation between ratings of F1 versus V1, without
diagonal, was r � .51 (SD � 0.25), and correlations of the other
splits of the data led to very similar results. The mean correlation
between ratings of F1 versus V2 was r � .45 (SD � 0.24), the
mean correlation between ratings of F2 versus V1 was r � .61
(SD � 0.34), and the mean correlation between ratings of F2
versus V2 was r � .54 (SD � 0.28). All these correlations were
significantly different from zero (all p � .001).

We also performed analyses in which we did not do any aver-
aging of ratings per block. We did this by splitting all the emotion
ratings by identity of the stimulus. There were four identities for
the faces and four identities for the voices, so we obtained a
representation matrix or rating profile for each of these identities
(four for faces and four for voices). We then performed correla-
tions across all possible splits of the data, both for within-modality
correlations, and across-modality correlations. For the within-
modality correlations, there were six possible combinations of
splits of the data. For the across-modalities correlations, there were
16 possible combinations of splits of the data. Figures A1-1 and
A1-2 show the results of these analyses.

(Appendices continue)

Figure A1-1. Correlations of representation matrices for faces and voices,
using separate matrices for each identity. There were four face matrices and
four voice matrices for each participant. Each circle shows the mean
correlation across all participants for one combination of two of those
matrices. There were six possible combinations of splits of the data for the
within-modality correlations (FF are the within-modality correlations for
faces and VV are the within-modality correlations for voices) and there
were 16 possible combinations for the across-modalities correlations (FV).
FF correlations ranged between .68 and .72 (all z � 5.84, all p � .001). VV
correlations ranged between .52 and .71 (all z � 5.78, all p � .001). FV
correlations ranged between .52 and .67 (all z � 5.78, all p � .001). As
expected, these correlations are lower that the ones presented in the main
text and above, as we do not perform any averaging across trials, and
therefore the representation matrices are more stimuli-specific. Neverthe-
less, all mean correlations were of medium size (and showing substantial
amount of shared variance) and all significantly different from zero.
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Appendix 2

Representation Matrices for Visual Properties of the Emotional Faces

Figure A1-2. Correlations of representation matrices for faces and voices (without using the diagonals of the
matrices), using separate matrices for each identity. This is the same analysis as done for Figure A1-1, but here
the diagonals were removed. FF correlations ranged between .51 and .55 (all z � 5.76, all p � .001). VV
correlations ranged between .39 and .52 (all z � 5.69, all p � .001). FV correlations ranged between .27 and
.52 (all z � 5.32, all p � .001). As expected, these correlations are lower that the ones presented in the main
text and above, as we do not perform any averaging across trials, and therefore the representation matrices are
more stimuli-specific. Nevertheless, all mean correlations were of small to medium size (and showing substantial
amount of shared variance) and all significantly different from zero.

Figure A2-1. Mean representation matrices for each of the visual properties. 1: Full images, 2: Shape-Free
images, 3: Shape-49, and 4: Shape-49-Procrustes. See main text for more details about how these matrices were
computed. Ha � happiness, Su � surprise, Fe � fear, Sa � sadness, Di � disgust, An � anger. See the online
article for the color version of this figure.

(Appendices continue)
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Appendix 3

Acoustic Properties of the Emotional Voices

We analyzed 14 acoustic properties and here we provide a brief
description of each: (a) total duration (in seconds, defined as the
interval between the first zero-crossing of the onset to the final
zero crossing after the offset of the vocalization), (b) amplitude:
standard deviation (in pascal, defined as the variability in the
amplitude profile over the duration of the sound), (c) mean inten-
sity (in dB, defined as the average intensity of the vocalization
relative to the auditory threshold), (d) number of amplitude onsets
(the amplitude onsets were manually labeled to describe the struc-
ture of the sounds’ threshold (e.g., laughter has multiple onsets
whereas a scream typically only has one amplitude onset), (e) F0
minimum (in Hz, defined as the lowest F0 measurement within a
vocalization, which was manually labeled to reduce the impact of
doubling/halving error on these measures), (f) F0 maximum (in Hz,
defined as the highest F0 measurement within a vocalization,
which was manually labeled to reduce the impact of doubling/
halving error on these measures), (g) F0 mean (in Hz, computed
using the auto-correlation method in PRAAT. F0 floor was set at

75 Hz and the F0 ceiling at 1000 Hz to include potentially
high-pitched vocalizations such as screams and laughter), (h)
F0 standard deviation (in Hz, defined as the standard deviation
of the F0 mean), (i) spectral center of gravity (in Hz, measure
for the mean height of the frequencies for each vocalization,
which captures the weighting of energy in the sound across the
frequency range), (j) standard deviation of the spectrum (in Hz,
measure describing the dispersion of spectral energy across the
frequency range), (k) mean harmonics-to-noise-ratio (in dB,
defined as the mean ratio of quasi periodic to nonperiod signals
across time segments), (l) jitter (in dB, defined as the average
absolute difference between consecutive periods, divided by the
average period, i.e., microfluctuations in the duration of each
period), (m), percentage of unvoiced segments (percentage of
frames lacking harmonic structure), and (b) shimmer (in dB,
defined as the average absolute difference between the ampli-
tudes of consecutive periods, divided by the average ampli-
tude).

(Appendices continue)
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Figure A3-1. Mean representation matrices for each of the acoustic properties. See main text for more details
about how these matrices were computed. Ha � happiness, Su � surprise, Fe � fear, Sa � sadness, Di �
disgust, An � anger. See the online article for the color version of this figure.

(Appendices continue)
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Appendix 4

New Behavioural Representation Matrices

(Appendices continue)

Figure A4-1. Mean representation matrices for the behavioral ratings of emotional faces and voices. For
each pair of stimuli, we computed the Euclidean distance between the ratings on the six emotion labels that
were given to each stimulus (i.e., we computed the Euclidean distance of two vectors, each with ratings on
six emotion labels). For each participant, we averaged the matrices of different identities of the stimuli,
separately for faces and voices. For this figure only, we averaged the matrices across all the participants.
Ha � happiness, Su � surprise, Fe � fear, Sa � sadness, Di � disgust, An � anger. See the online article
for the color version of this figure.
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Appendix 5

Analysis of Low-Level Properties Using Non-averaged Matrices

For each of the visual properties that we considered, and each
pair of stimuli, we computed the Euclidean distance between the
respective feature vectors (described in section 4.1 of the main
text), resulting in four 24-by-24 representation matrices. We then
computed the behavioral representation matrices for faces in the
same manner: for each participant, and each pair of stimuli, we
computed the Euclidean distance between the respective feature
vectors (each vector consisting of ratings on six emotion labels),
resulting in a 24-by-24 matrix per participant. We note that each
entry in the visual representation matrices corresponds to one
stimulus, which matches exactly the same stimulus on the face
behavioral representation matrix. Figure A5-1 shows correlations
and partial correlations using these large, non-averaged matrices.
Briefly, these results show that not averaging across representation
matrices of faces produced results largely comparable to the ones

that we described in the main text, using averaged matrices (com-
pare Figure A5-1 with Figure 6).

Similarly, for each of the 14 acoustic properties that we considered,
and each pair of stimuli, we computed the Euclidean distance between
the respective feature vectors (described in section 4.2 of the main text
and Appendix 3, and each corresponding to a single value on an
acoustic property), resulting in fourteen 24-by-24 representation ma-
trices. We then computed behavioral representation matrices for
voices, again comparing each pair of stimuli (using the same proce-
dure as above for faces). Figure A5-2 shows correlations and partial
correlations using these large, non-averaged matrices. In a similar
manner as it was found for faces, the results show that not averaging
across representation matrices of voices produced results largely com-
parable with the ones we described before, using averaged matrices
(compare Figure A5-2 with Figure 7).

(Appendices continue)

Figure A4-2. Individual correlations of representation matrices within- (F1 vs. F2, V1 vs. V2) and across-
modalities (F1 vs. V1) for the new behavioral matrices. For this analysis, which was conducted in the same
manner as the main analysis in the manuscript (section 2 of the Results) we averaged matrices within each block
of stimuli, resulting in four representation matrices per individual: F1, F2, V1, and V2. This is the same analysis
as the ones shown in Figures 3 and 4 of the main text, but using the new matrices. All correlations were only
computed with the lower triangular part of the matrices. Means across participants are shown in red (to compute
these means, we first z-transformed all individual correlations, then averaged the transformed values, and finally
reverse transformed the mean to a value between �1 and 1). The mean correlation of the representation matrices
for face stimuli (F1 vs. F2) was r � .65 (SD � .27; the result of the Wilcoxon signed-ranks test comparing
nontransformed correlations to zero was z � 5.84, p � .001). The mean correlation of the representation matrices
for voice stimuli (V1 vs. V2) was r � .56 (SD � .34; z � 5.65, p � .001). The mean correlation of the
representation matrices across modalities (F1 vs. V1) was r � .48 (SD � .32; z � 5.68, p � .001). These results
are comparable to the ones shown in Figure 4, and suggest that this new method of computing similarities across
behavioral responses yields very similar results to the previous method. In the main text, Figures 6 and 7 also
present correlations of representation matrices across modalities, but those matrices were averaged across all
stimuli for each modality. Appendix 5 shows correlations across modalities without any averaging. See the
online article for the color version of this figure.
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Figure A5-1. Analysis of low-level visual properties using 24-by-24, non-averaged matrices. Panel A shows
correlations of representation matrices using visual properties of the images (1: Full images, 2: Shape-Free
images, 3: Shape-49, 4: Shape-49-Procrustes—see main text for description of each of these properties) and the
behavioral matrices for faces. Each circle shows the correlation for one participant, and the red full circle shows
the mean across participants. Each representation matrix consisted of a 24-by-24 matrix in which each entry was
a stimulus. Three of the matrices describing low-level visual properties correlated with the behavioral matrices
for faces significantly above zero: Shape-Free (mean r � .03; z � 2.92, p � .0035), Shape-49 (mean r � .21;
z � 5.84, p � .001), and Shape-49-Procrustes (mean r � .24; z � 5.84, p � .001). Despite the significant
correlation between the Shape-Free images and the behavioral matrices for faces, the effect size was very small.
Conversely, like for the analysis presented in Figure 6, the matrices using shape information seem to be better
predictors of behavior. The last column in gray shows the correlation of the behavioral matrix for faces and the
behavioral matrix for voices for each participant. The mean correlation across participants was r � .48 (z � 5.84,
p � .001). Please note that these correlations were computed still using 24-by-24 matrices, but in the case of
these correlation across modalities, there is not a perfect correspondence between the entries on face and voice
matrices, given that the identity of the faces are not the same as the identities of the voices. Therefore, we
arbitrarily matched the identities of faces with the identities of voices. Nevertheless, we presented these
correlations here for completeness, and because it is important to compare these correlations to the partial
correlations in panel B. Panel B shows the partial correlations between the representation matrices for faces and
the representation matrices for voices, while controlling for each of the visual properties. Each circle shows the
partial correlation for one participant, and the red full circle shows the mean across participants. All partial
correlations were still high, even after controlling for the variance of the visual properties of the images (all mean
r � .47; all z � 5.84, all p � .001). Please note again that, in this case, we were using partial correlations of
two 24-by-24 behavioral matrices in which the entries did not match entirely, that is, they matched on the
emotion of the stimulus but not on their identity. See the online article for the color version of this figure.

(Appendices continue)
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Figure A5-2. Analysis of low-level acoustic properties using 24-by-24, non-averaged matrices. Panel A shows
correlations of representation matrices using acoustic properties of the sounds (A1: Total duration, A2:
Amplitude SD, A3: Mean intensity, A4: Number of amplitude onsets, A5: F0 minimum, A6: F0 maximum, A7:
F0 mean, A8: F0 SD, A9: Spectral center of gravity, A10: Spectral SD, A11: Mean HNR, A12: Jitter, A13:
Percentage of unvoiced segments, A14: Shimmer—see Appendix 2 for description of each of these properties)
and the behavioral matrices for voices. Each circle shows the correlation for one participant, and the red full
circle shows the mean across participants. Each representation matrix consisted of a 24-by-24 matrix in which
each entry was a stimulus. Matrices describing low-level acoustic properties A1, A2, A3, A4, A10, A11, A12,
A13, and A14 correlated with the behavioral matrices for voices significantly above zero (all mean r � .10; all
z � 5.37, all p � .001). The last column in gray shows the correlation of the behavioral matrix for faces and the
behavioral matrix for voices for each participant. The mean correlation across participants was r � .48 (z � 5.84,
p � .001). Please note that these correlations were computed still using 24-by-24 matrices, but in the case of
these correlation across modalities, there is not a perfect correspondence between the entries on face and voice
matrices, given that the identity of the faces are not the same as the identities of the voices. Therefore, we
arbitrarily matched the identities of faces with the identities of voices. Nevertheless, we presented these
correlations here for completeness, and because it is important to compare these correlations to the partial
correlations in panel B. Panel B shows the partial correlations between the representation matrices for faces and
the representation matrices for voices, while controlling for each of the acoustic properties. Each circle shows
the partial correlation for one participant, and the red full circle shows the mean across participants. All partial
correlations were still high, even after controlling for the variance of the acoustic properties of the images (all
mean r � .39; all z � 5.84, all p � .001). Please note again that, in this case, we were using partial correlations
of two 24-by-24 behavioral matrices in which the entries did not match entirely, that is, they matched on the
emotion of the stimulus but not on their identity. See the online article for the color version of this figure.

(Appendices continue)
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Appendix 6

Correlation of All Low-Level Representation Matrices

(Appendices continue)

Figure A6-1. Correlations between representation matrices of low-level properties. Each entry to this matrix is
a representation matrix of an acoustic (A) property of the emotional voices, or of a visual (V) property of the
emotional faces. All representation matrices for each property are the mean of the representation matrices for all
identities of the stimuli. A1: Total duration, A2: Amplitude SD, A3: Mean intensity, A4: Number of amplitude
onsets, A5: F0 minimum, A6: F0 maximum, A7: F0 mean, A8: F0 SD, A9: Spectral center of gravity, A10:
Spectral SD, A11: Mean HNR, A12: Jitter, A13: Percentage of unvoiced segments, A14: Shimmer, V1: Full
images, V2: Shape-Free images, V3: Shape-49, V4: Shape-49-Procrustes. See main text for details of how these
representation matrices were computed. See the online article for the color version of this figure.
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Appendix 7

Controlling for Multiple Low-Level Properties of the Stimuli

For the emotional faces, we conducted multiple regression for
each participant, in which the outcome was the behavioral repre-
sentation matrix for faces, and the predictors were the four repre-
sentation matrices of visual properties of the faces (we also con-
ducted separate analyses combining just some of the predictors).
After removing the variance from the visual properties, we corre-
lated the remaining residuals with the behavioral representation
matrix for voices. The results of these analyses are in Figure A7-1,
which shows that even when accounting for multiple visual prop-
erties of the stimuli, the correlations across faces and voices did
not substantially decrease.

Similarly, for emotional voices, we conducted multiple regres-
sion for each participant, in which the outcome was the behavioral
representation matrix for voices, and the predictors were the 14
representation matrices of acoustic properties of the faces (we also
conducted separate analyses combining just some of the predic-
tors). After removing the variance from the acoustic properties, we
correlated the remaining residuals with the behavioral representa-
tion matrix for faces. The results of these analyses are in Figure
A7-2, which shows that even when accounting for multiple acous-
tic properties of the stimuli, the correlations across faces and
voices did not substantially decrease.

(Appendices continue)

Figure A7-1. Controlling for multiple low-level visual properties of the faces using multiple regression. The
multiple regressions were done for each participant, and we conducted three separate analyses: the first analysis
(All visual) regressed out all four representation matrices of visual properties, the second analysis (V2 and V3)
regressed out the representation matrix based on shape-free information (Shape-Free images) and the one based
on vectors with coordinates (Shape-49), and the third analysis (V2 and V4) regressed out the representation
matrix based on shape-free information (Shape-Free images) and the one based on Procrustes distances
(Shape-49-Procrustes). All these analyses were performed on non-averaged 24-by-24 matrices. After removing
the variance accounted for by these visual properties, we correlated the residuals with the behavioral matrices
for voices. Each circle shows the individual correlations, and the red filled circles show the mean correlations
across participants. It is clear that even after removing the variance of multiple visual properties, there was not
a substantial decrease of the correlations between representation matrices for emotional faces and emotional
voices (all mean r � .47; all z � 5.84, all p � .001). For comparison, the mean correlation between the matrices
for faces and the matrices for voices (without any regressions) was r � .48 (z � 5.84, p � .001). Please note
that in this case we correlated two 24-by-24 behavioral matrices (Faces-residuals vs. Voices) in which the entries
did not match entirely, that is, they matched on the emotion of the stimulus but not on their identity. See the
online article for the color version of this figure.
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Figure A7-2. Controlling for multiple low-level acoustic properties of the voices using multiple regression. The
multiple regressions were done for each participant, and we conducted three separate analyses: the first analysis
(All acoustic) regressed out all 14 representation matrices of acoustic properties, the second analysis (9
predictive) regressed out the representation matrices that had been shown to significantly predict behavior (A1,
A2, A3, A4, A10, A11, A12, A13), and the third analysis (5 other) regressed out the representation matrices that
had been shown to not predict behavior (A5, A6, A7, A8, A9). All these analyses were performed on
non-averaged 24-by-24 matrices. After removing the variance accounted for by these acoustic properties, we
correlated the residuals with the behavioral matrices for faces. Each circle shows the individual correlations, and
the red filled circles show the mean correlations across participants. After regressing out all 14 acoustic cues (All
acoustic), the mean correlation between the residuals of the voice matrices and the face matrices was r � .35;
z � 5.84, p � .001. For the second analysis (9 predictive), the mean correlation was r � .36; z � 5.84, p � .001.
For the third analysis (5 other), the mean correlation was r � .46; z � 5.84, p � .001. For comparison, the mean
correlation between the matrices for faces and the matrices for voices (without any regressions) was r � .48 (z �
5.84, p � .001). These results show that the correlations for the first two analyses decreased slightly after
removing the variance of multiple acoustic properties. However, most of the variance shared between the
representation matrices for emotional faces and emotional voices was not accounted for by these acoustic
properties. Please note that in this case we correlated two 24-by-24 behavioral matrices (Voices-residuals vs.
Faces) in which the entries did not match entirely, that is, they matched on the emotion of the stimulus but not
on their identity. See the online article for the color version of this figure.
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