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Abstract: Flywheel energy storage systems (FESS) are one of the earliest forms of energy storage
technologies with several benefits of long service time, high power density, low maintenance,
and insensitivity to environmental conditions being important areas of research in recent years.
This paper focusses on the electrical machine and power electronics, an important part of a flywheel
system, the electrical machine rotating with the flywheel inertia in order to perform charge-discharge
cycles. The type of machine used in the electrical drive plays an important role in the characteristics
governing electrical losses as well as standby losses. Permanent magnet synchronous machine
(PMSM) and induction machines (IM) are the two most common types of electric machines used in
FESS applications where the latter has negligible standby losses due to its lower rotor magnetic field
until energised by the stator. This paper describes research in which the operational and standby
losses of a squirrel-cage induction machine-based flywheel storage system (SCIM-FESS) are modelled
as a system developed in MATLAB/Simulink environment inclusive of the control system for the
power electronics converters. Using the proposed control algorithm and in-depth analysis of the
system losses, a detailed assessment of the dynamic performance of the SCIM-FESS is performed for
different states of charging, discharging, and standby modes. The results of the analysis show that,
in presence of system losses including aerodynamic and bearing friction losses, the SCIM-FESS has
satisfactory characteristics in energy regulation and dynamic response during load torque variations.
The compliance of FESS and its conversion between the generating and motoring mode within
milliseconds show the responsiveness of the proposed control system.

Keywords: flywheel energy storage; squirrel cage induction machine; loss analysis;
field-oriented control

1. Introduction

Cleaner production of energy is urgently needed in today’s world due to the concerns about global
warming and growing population. This need has allowed widespread use of distributed generation
(DG) and renewable energy sources (RES) integrated to electricity networks [1]. However, due to
their dependency on seasonal variations, RES are not completely reliable and stable and cannot be
used as the only primary source of energy. Additionally, if renewable sources of energy are added
into microgrids powered previously only by fossil fired engines, this intermittency combined with
fluctuation in demand leads to further stability challenges. Energy storage systems (ESS) offer a
solution, which can mitigate the effects of RES intermittency by providing a balance between electrical
supply and demand [2,3]. ESS can also reduce the power rating of the generating engine to meet peak
demand and enables power production to meet average demand and reducing generation cost [4]. Also,
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there are various solutions proposed to ensure network stability and reliability with RES including
demand management, interconnection with external grids, and ESS [5].

There are ranges of systems involved in energy storage process, which can convert, store and
deliver energy on demand. Performance of these systems depends on the amount of energy they
can store, the storage time and delivery of energy with minimum losses [6]. Therefore, high power
capability, high efficiency, low capital cost and environmentally friendly attributes improve the value
of ESS [7].

A FESS is an assembly of a rotating mass, electrical machine, power electronics converter, bearing
system and containment. The design of the rotor used in FESS depends on the materials from which
they are made. Solid disk or solid cylinder are made from isotropic materials like steel. Rim type or
hollow cylinder flywheel rotors are constructed from non-isotropic material like composite carbon
fiber. Solid disk or solid cylinder flywheel rotors have simple construction and are commonly used [8].
Solid rotor flywheels exhibit less displacement from axes due to centrifugal forces hence simplifying
flywheel attachment to the shaft and with electrical machine [9]. Schematic diagram of solid rotor
FESS is shown in Figure 1.
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Figure 1. Structure of solid disk FESS. 
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design, the rotor of electric machine is outside of the stator which enables very high-speed design [9]. 
Integrated hollow flywheels attain high speeds, have more specific energy, less cost, occupy less 
space and contain less windage losses. However, shaftless hollow flywheel design faces challenges 
such as heating issues, strength of the rotor materials and suspension of the rotor [9,11]. Schematic 
diagram of integrated hollow flywheel is shown in Figure 2. This configuration holds an axial type 
PMSM with two PM rotors and a single stator. In addition, there are some other configurations 
including the type in which the flywheel and the rotor of the electric machine are combined together 
as addressed in [12] 
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Carbon fibre-reinforced composite rim type or hollow cylinder flywheel rotor assembly contains
the hub and the flywheel rim, which are mounted together on the metallic shaft [10]. Due to
mismatching of strains of hub and the flywheel rim material, attachment of the composite flywheel
to the shaft is an issue, due to this issue, integrated hollow flywheel design is introduced recently,
in which electric machine and bearing system are integrated in the hub of the flywheel [11]. In this
design, the rotor of electric machine is outside of the stator which enables very high-speed design [9].
Integrated hollow flywheels attain high speeds, have more specific energy, less cost, occupy less space
and contain less windage losses. However, shaftless hollow flywheel design faces challenges such as
heating issues, strength of the rotor materials and suspension of the rotor [9,11]. Schematic diagram of
integrated hollow flywheel is shown in Figure 2. This configuration holds an axial type PMSM with
two PM rotors and a single stator. In addition, there are some other configurations including the type
in which the flywheel and the rotor of the electric machine are combined together as addressed in [12].
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With fast response time, relatively high-energy density and high-power capability, flywheel energy
storage systems (FESS) offer an attractive energy storage solution [13]. FESS is highly suitable for
applications where a large number of daily charge-discharge cycles as required for power smoothing,
renewable energy integration, stability and power quality improvement [14]. FESS and battery energy
storage systems (BESS) can be strong competitors against each other for a number of applications [15],
with FESS being best suited and leading the competition for short term and high-power applications.
Unlike FESS, performance of BESS is affected by many factors and importantly the temperature
dependency [15]. Hence, the BESS is less favorable in countries where temperatures are high throughout
the year. BESS cannot withstand high charge-discharge rates and requires quite a large volume to store
a larger amount of energy [16]. Moreover, the research findings in [17] show that the probability of a
battery storage failure is seven times more likely than that of a flywheel storage which makes BESS
less reliable than FESS. However, costs of BESS have reduced significantly in recent years and have the
added advantage of durations of around one to two hours so may provide power for longer periods.
On the other hand, the cost of flywheels needs to reduce significantly and this is possible with lower
cost design and volume manufacture [18].

Recently, FESS technology has been implemented in many applications such as UPS, aerospace,
transport, power levelling, wind power and frequency regulations. FESS has been successfully used to
secure critical loads during power outages in the microgrid environment [17]. In [19], a low speed FESS
has been used as a hybrid UPS composed of an engine generator and a flywheel to improve voltage
fluctuations of less than 2%. To support emergency loads when main grid supply is disconnected,
a successful utilisation of a FESS used as a UPS instead of BESS is reported in [20]. As an alternative to
batteries, the flywheel technology has been used for removing DC voltage ripples [21], short-term ride
through [22], fast balancing of power in microgrids [23], and islanded solar PV systems [24].

The electrical machine is a key part of a FESS which performs the charge-discharge cycles and
can be responsible for major losses in the process. The choice of electrical machine must be carefully
made according to the application requirements. Machines commonly used in FESS are induction
machines (IM), permanent magnet synchronous machines (PMSM), switched reluctance machines
(SRM) and homopolar synchronous machines (HSM). SRM have robust design, fault tolerant capability
and ability to operate in high temperature environments; however, it is less commonly used because of
its complex torque current and high current ripples [25]. Due to the use of electromagnets, SRM can
be completely demagnetised [6] that would lead to no idling losses at zero torque (no load) [26].
Highly nonlinear behavior of SRM makes selection of suitable control gains difficult and this makes
design of control system challenging and problematic [27]. In the generator mode, SRM require
excitation to produce power [25] produced by means of electronic converter [28], but it will result in
extra losses. PMSM is used in high-speed applications due to its very high efficiency while the IM,
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due to its rugged construction, is used for high power applications [29]. A challenge for IM is the
mechanical design in high-speed application, which can be overcome by using appropriate solid-rotor
topologies such as slotted solid rotor, coated solid rotor, caged solid rotor and smooth solid rotor [25].
Homopolar synchronous machines (HSM) are used for long-term energy storage in high speed and
high efficiency applications. HSM have robust rotor design and due to their lower standby losses
compared to PMSM, they can be used an alternative to PMSM in high-speed applications [25,30].
However, the main disadvantage is the difficult design of HSM due to its complex magnetic flux paths
and geometry [31].

Many researchers have studied induction machine-based FESS, but a thorough analysis of the
performance of IM in FESS is lacking [32–36]. An IM-based FESS and its associated control strategies
for wind energy system applications is presented in [37] and performance analysis of an IM-FESS for
use as a UPS for compensation of momentary voltage drops is discussed in [38]. However, analysis
of the IM losses as well as the methods for determination of flywheel idling losses is neglected in
both papers. Authors in [39] discuss the model and control of an induction machine for flywheel
applications focusing on frequency regulation, however, the dynamic performance of the IM and
analysis of the control system is lacking. The research in [40] discusses a simple flywheel storage
system for DC microgrid proposing an open loop volt/hertz control system governing the energy flow
of the FESS. However, the volt/hertz control system is inefficient to achieve high performance [41] since
the FESS is a dynamic system and needs efficient control system to achieve dynamic stability and fast
flow of the energy.

In this paper, a model for an induction machine driven flywheel storage system has been developed
and described with detailed simulation results presented. A detailed loss analysis of the IM has been
studied and embedded in the model as developed in MATLAB/Simulink. In addition, the performance
of the machine is analysed for motoring and generating modes controlling the charge-discharge cycles
of the flywheel storage. Following the introduction, a brief background of the flywheel history along
with its theory and structure are described in Section 2. The loss analysis of the system as described
including standby losses and operational losses are studied in Section 3. A detailed analysis of the
proposed control strategies and development of the model of IM driven flywheel system is presented
in Section 4. The analysis of results is presented in Section 5. The results are discussed and conclusion
is made in Section 6.

2. Flywheel Theory and Structure

2.1. Background

FESS is a device with a rotating mass that can maintain its inertia to store energy in the form
of kinetic storage. Flywheels are one of the early forms of mechanical storage systems in history
and were first used in boats, steam engines and trains during the industrial revolution in the 18th
century [42]. During the 1950s flywheels were used to build gyro buses [43], first generation FESS
comprised of a large steel wheel attached to an axle. After advancement in materials in 1970s, the light
and high tensile strength carbon composite rotors were used in FESS [44]. Successful research and
advancement in magnetic materials, magnetic bearings and modern power electronics have made it
possible for flywheel technology to compete with other energy storage systems and specifically with
electro chemical batteries and super capacitors [45]. A modern steel rotor flywheel with a weight of 1t
can run at peripheral speed of 500 m/s compared to the flywheels used in stationary steam engines
during the industrial age, which could barely exceed the peripheral speed of 20 m/s, modern flywheels
can store up to 25 kWh of useable energy when compared to the industrial age flywheels that weighed
50 tons and could store 5 kWh of energy [8]. Modern flywheels can achieve high round trip efficiency
of more than 90% with frictional losses of less than 3% of energy per hour and lifetime of over 20 years
with high power and energy density, if a low-pressure vacuum is maintained, carbon fiber flywheels can
reach up to rotational speeds of 100,000 RPM [46,47]. It can be used as a power buffer to considerably
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reduce peak currents drawn from any other storage system such as BESS that results in improving
life of the battery [13]. Flywheel technology can replace battery systems in aerospace applications as
it has been found that FESS would be 35% lighter and 55% smaller compared to BESS for EOS-AMI
type spacecraft [48]. Flywheels are commonly used for ride through applications mainly to improve
power quality. Flywheels have also been used for voltage regulation [34] and spinning reserves for
sensitive loads in data centers [17]. They are integrated to solar photovoltaic (PV) system for load
levelling [49], harmonic compensation [35], high power UPS system for plasma experiments [50],
and in the distribution network to improve power reliability [36].

2.2. Components of FESS

A flywheel storage system works in three modes of acceleration, standby and deceleration.
The structure of FESS consists of a bearing system, motor/generator set, flywheel rotor, power electronics
and a low-pressure vacuum containment. All these components together determine the overall efficiency
of the FESS and are briefly described in this section.

2.2.1. Flywheel Rotor

The rotor of the flywheel is a rotating mass m (kg) with inertia J (kg·m2) that spins at an angular
velocity of ω (rad/s) and stores kinetic energy E (joules) as given by Equation (1).

E =
1
2

Jω2 (1)

The useable stored kinetic energy of a flywheel spinning between a minimum and maximum
velocity of ω is given by:

E =
1
2

J(ω2
max −ω

2
min) (2)

where the moment of inertia J is a function of flywheel geometry and mass. In case of a disc type
flywheel with mass m (kg), density ρ (kg/m3) and length l (m), the angular velocity can be expressed
by Equation (3):

ω =
2
r

√
E
ρπl

(3)

Therefore, the stored energy is expressed by Equation (4) [51].

E =
1
4

mr2(ω2
max −ω

2
min) (4)

In the case of a cylindrical type flywheel with an inner radius r1 and outer radius r2, the stored
kinetic energy is given by Equation (5).

E =
1
4

m(ω2
max −ω

2
min)

(
r2

2 − r2
1

)
(5)

2.2.2. Electric Machines

The electrical machine is coupled with the flywheel and acts as a motor to accelerate and charge
the flywheel transforming electrical energy into kinetic energy when positive torque is applied on
the mechanical shaft. The same machine can function as a generator to decelerate and discharge the
flywheel to transform kinetic energy into electrical energy with a negative torque. Desirable features
for an electrical machine to be used in FESS are high efficiency, low standby losses and low cost.
Advantages and drawbacks of commonly used electrical machines in FESS are presented in Table 1.
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Table 1. Advantages and drawbacks of commonly used electrical machines in FESS [13,25,47,52,53].

SCIM PMSM SRM

Advantages

Rugged construction Simple rotor design Robust simple structure

No risk of
demagnetization

High power, high load
and high torque density High power density

Low cost
Easy to install and

maintain due to
smaller size

Low cost

High efficiency (93.4%) Very high efficiency
(95.5%) High efficiency (93%)

No idling losses due to
its lower rotor magnetic
field at zero torque value,

consequently this
reduces a total electrical

loss of IM

No field winding losses
due to use of

permanent magnets
No idling losses

High torque and high
power capability

Suitable to operate in low
pressure vacuum with
negligible rotor losses

Wide speed range

Drawbacks

Difficult mechanical
design for high

speed applications

Risk of sudden
demagnetization

Significant rotor eddy
current losses due to the

time varying
magnetic field

Difficult to operate in
absolute vacuum due to

complex heat
transfer system

Due to use of permanent
magnets, PMSM have
low tensile strength

High torque and
current ripples

Limited speed and
larger volume High cost Difficult to

regulate speed

Copper losses in
electromagnets during
field excitation due to
high inrush currents

Idling losses at zero
torque due to presence of

magnetic field

High losses due to need
of excitation

2.2.3. Bearing Systems

The bearing system supports the rotor and allows the flywheel to spin freely. The selection of
bearing system depends on many factors but importantly on its lifetime, weight and level of acceptable
losses [54]. There are two types of bearings commonly used in FESS: (1) mechanical bearings and
(2) magnetic bearings. Mechanical bearings are simple in structure but have major losses due to
friction and deterioration of lubricants and they require maintenance such as lubrication replacement.
Magnetic bearing systems work using magnetic levitation and do not have any contact with the
mechanical shaft of the flywheel. They are stable but low loss bearing systems due to less friction and
are suitable for high-speed applications in FESS [55]. Magnetic bearings that use permanent magnets
for levitation are called passive magnetic bearings whereas active bearings are the type that make use
of a feedback system with electrical coils [56]. Active magnetic bearings require continuous power for
energisation of the magnetic levitation system [13].

The combined use of magnetic and mechanical bearing in FESS can make the system more stable,
cost effective and less complex; an example of such system is discussed in [57]. Another type of bearing
called spiral groove bearing (SGB) is low loss bearing system, used for low speed applications of less
than 10 m/s. SGB is used in combination with magnetic bearing for flywheels with larger storage
capacity and less frequency vibrations of the rotor [58]. A technique has been developed by Argonne
National Laboratory to produce high-temperature superconducting (HTS) bearing system to reduce
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rotational losses to less than 2% per day of stored energy. Compared to magnetic and mechanical
bearing, HTS bearings incur half of the rotational loss of conventional mechanical bearings [59].

2.2.4. Power Electronics Interface

The electrical machine is connected to a power electronics converter interface in order to make
power flow from the electrical grid to the FESS and back to the grid during the acceleration and
deceleration of the flywheel. Bi-directional converters help exchange power between the grid and
FESS by controlling the operation of the electrical machine. The power electronics converter, which is
near to electrical machine, controls rotor magnetic flux and speed of the electrical machine with a
suitable modulation technique to produce the gate pulses for the converter. An AC-DC converter (grid
side converter) with suitable modulation technique is used to maintain a constant DC-link voltage by
following grid side reference currents to control flow of active and reactive power [14]. The design
of the converter and its switching technique are responsible for the power quality of the system
considering that nearly sinusoidal stator currents, low total harmonic distortion THD (less than 5%)
and stable DC-link voltage are the factors affecting the power quality in FESS [60]. The combination of
AC-DC-AC power converters is called the back-to-back (BTB) configuration and is the most widely
used topology in FESS applications [53]. Oliveira in [61] has discussed implementation and control of
AC-DC-AC in FESS. A new DC-DC boost inverter topology used for low speed flywheels is proposed
in [62]. Different topologies of power electronics converters used in FESS are discussed in details
in [25].

2.2.5. Containment

The flywheel rotor must be enclosed in containment casing for the purpose of safety and reducing
aerodynamic losses. The containment could prevent collateral damage which can happen due to the
bearing failure releasing the rotor or rotor failure itself or growth of a crack in case of solid steel rotor
flywheel. A fatigue crack may grow to cause the rotor to break in large fragments and can cause
huge damage to surroundings. In the case of carbon composite flywheel rotors, failure occurs due to
circumferential fractures of rotor in layer or propagation of cracks in the rotor. This can cause the rotor
to disintegrate into rings or may result into the fragments and powder of carbon fiber that is highly
flammable [63]. The rapid disintegration of a composite rotor can also lead to a very high-pressure
build up only contained by thick casing or bunkering. In order to increase further safety of solid
steel and carbon composite flywheels, they are installed in underground bunkers [46]. This can be
eliminated by use of laminated steel designs which greatly limit any rotor failure to small energy
release. If the casing is not sufficiently good, horizontal axle FESS has more possibility of mass center
displacement than vertical axle FESS that causes instability of the rotor [13]. The aerodynamic losses
are reduced by creating a low-pressure environment for the rotor in the containment. Depending on
the peripheral speed of the flywheel, containments are made of high strength steel or composite
materials [53]. For higher speed flywheels, containment is filled with helium or completely evacuated
in order to reduce rotor stress and windage losses, considering that the windage losses are negligible
for less than 1 mbar pressure [59].

3. Loss Calculation of IM Driven FESS

There are different losses in a FESS including power converter losses, stator losses and rotor
losses all of which fall into the category of electrical losses and contribute to the conversion efficiency.
The mechanical losses of the system are mainly due to the bearing losses and aerodynamic or windage
losses. The power balance Equation for squirrel cage induction machine FESS (SCIM-FESS) is given by
Equation (6).

Pout = Pag − Prcl − Pr f e − Pmech (6)
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where:
Pag = Pin − Pscl − Ps f e (7)

Pout = Pin − Pscl − Prcl − Pr f e − Ps f e − Pmech (8)

Pin = Pout + Pscl + Prcl + Pr f e + Ps f e + Pbearing + Pwindage (9)

where Pag is the power transferred from stator to rotor of IM across the air-gap, Pin is the input
power, Pout is total output power, Pscl is stator copper loss of IM, Prcl is rotor copper loss of IM,
Pr f e and Ps f e are core losses in the rotor and stator, Pbearing and Pwindage are bearing and windage losses
of FESS, respectively.

3.1. SCIM-FESS Design and Parameters

In this research, the considered flywheel system is a cylindrical rotor type made of steel laminates
and operated in very low-pressure vacuum running between a speed range of 10–20 krpm. The type of
bearings used are single row radial ball bearings with micro drip type of lubrication. Table 2 shows the
parameters of the electrical machine and other necessary parameters used in SCIM-FESS system design.
The detailed calculation and analysis of the switching and conduction losses in power electronics
converters are not carried out here but assumed with a fixed value not to exceed more than 2% of the
total energy produced in one cycle. This is added to the electrical and mechanical losses when the total
system losses are calculated.

Table 2. Values of coefficients and parameters of SCIM-FESS.

Parameter Value

Stator Resistance (Rs) 11.85 mΩ
Rotor Resistance (Rr) 9.29 mΩ
Stator leakage inductance (Lls) 0.2027 mH
Rotor leakage inductance (Llr) 0.2027 mH
Mutual Inductance (Lm) 9.295 mH
Rated magnetic flux (λm) 0.75 Weber
Power rating 100 kW
Nominal torque 90 N·m
Maximum speed 20 krpm
Minimum speed 10 krpm
Switching frequency 20 kHz
DC bus voltage 600 V
Air density (ρ) 0.0011 kg/m3

Air dynamic viscosity (µ) 1.91 × 10−5 kg/m·s
Flywheel rotor outer diameter (Dr0) 0.4 m
Shaft diameter (Ds) 0.025 m
Bearing design factor (fL) 0.0005
Kinematic oil viscosity (V0) 130 × 106 m2/s
Lamination thickness (t) 0.15 mm
Conductivity of electrical steel (σ) 2.08 × 106 Siemens/m
Density of electrical steel (ρ) 7650 kg/m3

3.2. Electrical Losses

The electrical losses in FESS are mainly the due to the stator and rotor losses in the motor/generator
set. The stator electrical losses are the combination of copper losses (Pscl) in the stator winding and
core losses (Pcore) in the stator core. The stator copper losses are proportional to the square of the RMS
magnitude of stator currents Is and is dependent on the value of the stator resistance Rs. Core losses
(eddy current and hysteresis losses) is the function of electrical angular frequency fe and maximum
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magnetic flux density Bm. Equation (10) presents the general relation of core losses in the electrical
machine while the total electrical losses in the stator of IM are given by Equation (11).

Pcore =
(
Khys fe + Ke f 2

e

)
B2

m (10)

Pstator = 3I2
s Rs +

(
Khys fe + Ke f 2

e

)
B2

m (11)

where Khys is the Steinmetz co-efficient, Bm is peak magnetic flux density and Ke is a constant factor as
given by Equation (12) [64].

Ke =
π2t2σ

6ρ
(12)

where t is the thickness of laminations, σ is electrical conductivity and ρ is the density of the
electrical steel.

The rotor copper losses (Prcl) are also a combination of copper and rotor iron losses (Pcore) and are
given by Equation (13).

Protor = 3I2
r Rr +

(
Khys fsl + Ke f 2

sl

)
B2

m (13)

where, fsl = s fe, s is the slip, Rr is rotor resistance and Ir is the RMS magnitude of rotor currents in one
phase of the rotor.

For calculation of Steinmetz coefficient (Khys), Equation (10) is divided by the term feB2
m to create

a linear relationship.
Pcore

feB2m
= (x + y fe) (14)

where, x = Khys and y = Ke which can be simply calculated by substituting the values of parameters
(t, ρ and σ) into Equation (12) provided in Table 2 giving y = 3.34× 10−3 Hz. The value of x can be
calculated by linear fitting of Equation (14) for the best approximation of the data.

The stator and rotor core of the IM are assumed to be made of electric steel M470-50HP.
Manufacturer’s core loss data for M470-50HP is shown in Table 3 where the core loss data for
specific electrical frequencies of 50 Hz, 100 Hz, 200 Hz and 400 Hz is provided. The electrical frequency
of SCIM-FESS presented in this paper at 20 krpm is 333 Hz that lies between 200 Hz and 400 Hz.
Therefore, the values of Bm at 333 Hz is approximated between 0.6–0.7 Tesla as calculated based on the
methodology discussed in [65].

Table 3. Manufacturer’s loss data for M470-50HP electrical steel. Adapted with permission from [66],
Cogent Power Inc., 2019.

Bm (T) W/kg at 50 Hz W/kg at 100 Hz W/kg at 200 Hz W/kg at 400 Hz

0.1 0.03 0.07 0.23 0.58
0.2 0.13 0.29 0.84 2.14
0.3 0.26 0.61 1.71 4.37
0.4 0.43 1.00 2.78 7.17
0.5 0.63 1.46 4.03 10.6
0.6 0.85 1.98 5.48 14.7
0.7 1.09 2.55 7.12 19.6
0.8 1.34 3.19 9.02 25.4
0.9 1.62 3.91 11.2 32.4
1 1.94 4.71 13.7 40.6

Substituting the values of x and y in Equation (14), the relation of Pcore can be written as:

Pcore =
(
0.0487 fe + 1.4× 10−3 fe

)
(15)
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Using Equation (15) and substituting the values of resistances into Equations (11) and (13), the total
electrical losses of the stator and rotor are given by:

Pstator =
(
0.099I2

s

)
+

(
0.048 fe + 1.4× 10−3 fe

)
(16)

Protor =
(
0.027I2

r

)
+

(
9.6× 10−4 fe + 2.8× 10−4 fe

)
(17)

3.3. Mechanical Losses

3.3.1. Windage Loss

The windage losses in a FESS are due to the friction between the rotating surfaces and the
surrounding medium, which is air in most cases. The windage loss increases with increase of the
flywheel speed and is proportional to the cube of the flywheel angular velocity [67]. The windage
losses of the FESS housed in a containment for the pressure of >100 Pa is given by Equation (18).

Pw =
1
64

Cmω
3ρ

(
D5

r0 −D5
r1

)
(18)

where Cm = 3.87
√

Re
is the torque coefficient, Re is the Reynolds number and is given by Re =

√
ρωD2

r0
4µ ,

ρ is the coolant density and µ is the dynamic viscosity of air [3].
For the high-speed rotor flywheels operating in low air pressure environments (0.1 Pa to 10 Pa),

windage losses of the FESS is given by Equation (19) [68].

Pw =
P
2

√
2π
RT

ω2a4 (19)

where, P is the gas pressure, a is radius of the rotor disk and R is the gas constant. By substituting values
of parameters (Re and Cm) and coefficients from Table 2 in Equations (18) and (19). The simplified
Equations for windage losses can be written as:{

Pw = 4.5× 10−7ω2.5 P ≥ 100
Pw = 6.6× 10−6ω2 P ≤ 10

(20)

3.3.2. Bearing Losses

The bearing losses are usually calculated using the empirical methods as recommended by the
bearing manufacturers. However, due to the complexity of the empirical method, in this paper the
bearing power losses are calculated using the analytical method. Considering the rotating contacts, the
bearing losses in FESS can be defined by Equation (21) [69].

tb = tl + tv + t f (21)

where, tl is the torque due to an applied load and depends on the type of the load and design of bearing,
t f is end flange friction torque which is only applicable in roller type bearings and is negligible in ball
bearings, and tv is the torque due to viscous friction that is dependent on the speed and property of the
lubricant used. The values for tl and tv can be calculated using Equations (22) and (23), respectively [70].

tl = flFbDp (22)

tv = 10−7 f0(v0n)
2
3 D3

p v0n ≥ 2000

tv = 160× 10−7 f0(v0n)
2
3 D3

p v0n < 2000

 (23)
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where fl is the design dependent factor and is defined by Equation (24).

fl = z
( Fs

Cs

)y
(24)

where Cs is static load rating defined by the manufacturer’s datasheets and Fs the static equivalent load.
The values of z and y depend on the type and contact angle of the bearing as given in Table 4. Fb is
load on the bearing, Dp is the pitch circle diameter (m), n is the bearing speed (rpm), v0 is kinematic oil
viscosity (centistokes) and f0 is a lubrication factor which depends on type of bearing and lubrication.

Table 4. Values of z and y. Adapted with permission from [69], Taylor and Francis Group LLC, 2019.

Bearing Type Nominal Contact Angle (Degrees) z y

Radial deep-groove 0 0.0004–0.0006 0.55
Thrust 90 0.0008 0.33

Double-row self-aligning 10 0.0003 0.4
Angular-contact 30–40 0.001 0.33

The power losses of the ball bearing can be simply defined in terms of the bearing torque and
speed as presented in Equation (25) [71].

Pbearing = (tl + tv)ω (25)

Substituting the values of the parameters from Tables 2 and 3, Equation (25) can be simplified as:

Pbearing = 0.013ω+ 2.67× 10−4ω1.66 (26)

3.3.3. Stray Losses

Stray losses are caused by the magnetic flux leakages of an electrical machine and can be categorised
as the stator and rotor stray losses. Due to very little changes in the magnetic flux distribution of the IM
stator from no load to full load, stray load losses in the stator of the IM can be neglected. Stray losses in
the rotor of IM is a function of the frequency and depends on the rotor slip. In a squirrel cage induction
machine (SCIM) with small slip, rotor stray losses are very small and can be neglected [72]. However,
during normal operation where the IM operates at full or partial load, these losses cannot be neglected
and can be estimated using Equation (27) as recommended by IEEE standards for calculating stray
losses in electrical machines [73].

Pstray = 0.005
P2

g

Pr
(27)

where Pg is the generated power or output power of the machine and Pr is the rated power.

4. Design and Control of SCIM-FESS

The general schematic of the model discussed in this paper is presented in Figure 3. The flywheel
rotor coupled with the SCIM is modelled as an inertia added to the shaft of the SCIM. The dynamics of
SCIM-flywheel can be analysed and represented by Equation (28).

J0
dω
dt

= Te − Bω (28)

where Te (N·m) is the electromechanical torque, ω (rad/s) is the angular velocity of the flywheel, J0 is
the combined inertia (J0 = JSCIM + J f lywheel) of the IM and flywheel rotor (kg·m2) and B is the damping
coefficient (N·m·s/rad).
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The dynamic equations of the stator and rotor voltages of the SCIM are presented in
Equations (29) and (30), respectively. For the ease of analysis and modelling of the control schemes,
time varying sinusoidal quantities are transformed into d-q synchronous rotating frame by Park’s
transformation. A detailed analysis and description of the dynamic model of SCIM is discussed in [74].{

vds = Rsids −ωeλqs +
d
dtλds

vqs = Rsiqs +ωeλds +
d
dtλds

(29)

{
0 = Rridr − (ωe −ωr)λqr +

d
dtλdr

0 = Rriqr + (ωe −ωr)λdr +
d
dtλqr

(30)

where, Rr and Rs are rotor and stator resistances (ohms), vdqs is the stator voltage in d-q reference frame
(V), λdqr and λdqs are rotor and stator magnetic flux linkages in d-q reference frame (Wb), idqr and idqs
are rotor and stator currents in d-q reference frame (A), and ωe is the stator electrical speed (rad/s).
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Figure 3. Schematic diagram of FESS.

The three-phase currents and the power flow from the electric grid are controlled by a
vector-controlled grid side converter (GSC). The GSC acts as a rectifier or an inverter during acceleration
and deceleration modes, respectively. Also, it regulates the DC-link voltage and the reactive currents
exchanged with the electric grid. The speed and position of the flywheel are controlled by the machine
side converter (MSC) that is connected to the GSC through a DC-link capacitor.

The three-phase currents of the machine and grid, the DC-link voltage and the position and
speed of flywheel shaft are measured quantities, which are inputs to the measurement and control
block. The control block calculates the position of the shaft and compares the measured quantities
with reference values to generate the gates pulses for GSC and MSC. During acceleration mode of the
flywheel when power is consumed from the electric grid, the GSC acts as a rectifier and MSC acts as
an inverter. When the flywheel reaches its reference speed value, no energy conversion occurs and
it switches to standby mode, during which, the flywheel runs at an optimum speed except for the
marginal speed decrease due to standby losses. In contrast, when a disturbance occurs in an electric
grid, the flywheel starts to decelerate (discharge), the GSC acts as an inverter and MSC operates as
a rectifier.

4.1. Control Structure of SCIM-FESS

Important quantities to be controlled in a FESS are the DC-link voltage (Vdc), electromagnetic
torque (Te), speed (ωm) and position of the rotor magnetic flux vector (θe) during acceleration and
deceleration of the flywheel when operating within a specified range of speed. Field oriented control
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(FOC) and space vector pulse width modulation (SVPWM) have been utilised to control the gate pulses
of MSC and GSC. Figure 4 shows a detailed control structure of both converters.Appl. Sci. 2019, 9, x 13 of 27 
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squirrel-cage induction machine-based flywheel storage system (SCIM-FESS).

4.1.1. Machine Side Converter Control

The FOC controls the torque producing current (iq) and magnetic flux producing current (id)
separately leading to a simple control structure as of a DC machine with less uncertainty of parameter
variations [75]. As shown in Figure 4, the feedback loop is formed by measuring three-phase stator
currents, which are then transformed into the synchronous d-q reference frame by Park’s transformation.
DC stator currents ids and iqs are compared with reference currents ids

∗ and iqs
∗ using PI current controllers

which will produce reference voltage signals vds
∗ and vqs

∗ for generating gate pulses for MSC by
SVPWM modulator. Flux estimator calculates the actual magnitude of rotor magnetic flux using
Equation (31) which is then compared with the reference flux. Reference d-q axis currents i∗ds and
i∗qs are calculated using Equations (32) and (33) respectively by currents (id and iq) calculator blocks.
Calculated reference values of stator currents in synchronous d-q reference frame are compared with
actual stator currents to produce reference voltages (Vdre f and Vqre f ). The rotor flux angle is a crucial
parameter in this control technique and it is used to determine the position of rotor flux in IM as
calculated using Equations (34) and (35).

λest =
Lmid

1 + sTr
(31)

i∗ds =
λd
Lm

(32)

i∗qs =
2
3
·
2
P
·

Lr

Lm
·

T∗e
λest (33)
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θe =

∫
(ωm +ωsl)dt (34)

ωsl =
i∗qs

i∗ds
·

1
Tr

(35)

whereλest is an estimated flux,λd is d-axis rotor magnetic flux linkage, T∗e is the reference electromagnetic
torque produced by PI controller, Lm and Lr is mutual inductance and rotor inductance respectively,
ωsl is the slip frequency, Tr is the rotor time constant, i∗ds and i∗qs are the reference stator currents.

4.1.2. Grid Side Converter Control

A direct vector control scheme is used to control id and iq in order to regulate the DC-link voltage
during the charge, discharge and standby modes of the flywheel (Figure 4). Input variables to the
controller are three phase currents (iabc), three-phase voltages (vabc), grid frequency (ω) at the point
of grid connection and DC-link voltage (Vdc). The reference input variables to the controller are
reference DC-link voltage (V∗dc) and d-axis reference current (i∗ds), which is produced by a DC voltage
regulator. The compensator term (ωλdqs = ωLgidqs) eliminates coupling between d-q axis components
and also reduces the error in the reference voltage (v∗ds) produced by P-I regulator in order to accurately
produce command voltage for modulation and generation of gating signals for switching devices.
Using reference voltages, (v∗ds and v∗ds) the controller produces the set point values of voltages in the
stationary reference frame (v∗αβ) at the terminals of the IGBT voltage source converter to produce PWM
switching pulses at the desired frequency. For simplification of control system d-axis component of
two-phase system is oriented to the direction of grid voltage vector, therefore the grid side voltage
(vs) is equal to d-axis voltage (vd) of two phase coordinate frame (vs = vd) and q-axis component is
gained as vq = 0 [76]. The angle for transforming three-phase currents (iabc) into d-q reference frame is
provided by phase locked loop (PLL) at grid frequency. The control strategy of the GSC is shown in
Figure 4 and is governed by Equations (36) [77].

Lg
dids
dt = −Rgids +ωλqs + vs − v∗ds

Lg
diqs
dt = −Rdiqs −ωλds − v∗qs

 (36)

where Lg and Rg are grid side inductance and resistance, vs is grid side voltage. In this control
strategy, a unity power factor is assumed, therefore, iq = 0 and id,re f are generated by a PI controller by
comparing the reference and measured dc voltage (Vdc).

5. Results and Analysis

In reference to the dynamic equations and control structure presented in the above sections,
the model of SCIM-FESS is developed in MATLAB/Simulink environment as shown in Figure 5.
The mathematical relations developed for mechanical and electrical losses as well as the power
electronics losses are also embedded in the model to account for the system losses. The SCIM-FESS is
set to run for 20 min and dynamic analysis is performed during acceleration and deceleration states
within a speed range of 10–20 krpm. During the acceleration state, a positive torque of 90 N·m is
applied to charge the flywheel. During the deceleration mode, a negative torque of 90 N·m is applied
where the flywheel delivers energy to the electric grid. The SCIM-FESS is designed to deliver 5 kWh of
useable energy during which the DC-link voltage is set to 600 V and maintained by the GSC and MSC
during different states of operation.
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5.1. Acceleration Mode

The flywheel starts to accelerate when a positive torque of 90 N·m is applied and is fully charged
in approximately 2.17 min. Then, at t = 130.2 s, the flywheel transfers to standby mode in 0.06 s when
the mechanical torque and stator currents drop to zero—Allowing the flywheel to run idle with a
stored energy of 5 kWh. Figure 6 presents the results of energy storage and percentage state of charge
(% SoC) of the flywheel. During the transition from charging to standby mode, three-phase currents
reduce to zero smoothly with no major current spikes or waveform distortions as shown in Figure 7.
The system is left on standby mode for a long period of time (t = 130.2–1200 s) to show the flywheel
fast charging and idling losses.
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During the standby mode, the flywheel speed and SoC are decreased due to the system losses
including the aerodynamic and bearing friction losses. The copper losses are zero because currents stop
flowing in the stator of the IM during the standby mode due to the use of electromagnets in the stator
windings. During the standby mode, the flywheel state of charge drops to 96.5% due to self-discharge
giving about 215 Wh of energy losses which is 4.3% of the total stored energy. Total power loss (p.u.)
in standby mode is calculated by ratio between change in kinetic energy of the flywheel

(
∆KE f lywheel

)
in Joules over the period of (∆t) in second, with respect to the rated kinetic energy of the flywheel
(KErated FESS) in Joules, as expressed by Equation (37) [78]. Calculation of power loss gives 9.5% of total
power lost over the period of 20 min.

%Ploss =
(∆KEFESS)

∆t×KErated FESS
× 100 (37)

5.2. Deceleration-Acceleration Mode at Constant Torque

To analyse the flywheel performance during acceleration and deceleration states, different
charge-discharge operations are performed during the period of 20 min. A constant torque operation is
performed here to show the system responsiveness due to step torque variations that can be accounted
for the load variations in real life situations. Therefore, the flywheel is initially charged for 130.2 s,
then switched to standby mode for 300 s before starting to discharge due to a negative torque of 90
N·m applied at t = 430 s (Figure 8). In order to test the dynamic stability of the SCIM-FESS model,
multiple operations where performed by accelerating and decelerating the flywheel. At t = 530 s,
the flywheel starts charging for 100 seconds before the charging torque is reversed to decelerate the
flywheel at t = 630 s. Then the flywheel goes into the standby mode (t = 720 s) and spins with 22%
of SoC and 0.4 kWh of stored energy. Different charging and discharging states of the flywheel and
corresponding three-phase currents and torque waveforms are shown in Figure 8. Magnified images
of three-phase stator currents and torque are shown in Figure 9 where it can be seen that IM smoothly
switches from generating to motoring mode in less than 5 m s without any spikes or transients in
the current waveforms showing the compliance and better performance of the machine side control
system (MSC).
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5.3. Deceleration-Acceleration Mode at Variable Torque

In this section the model is simulated to run at different values of torque (variable torque) for
a real-life application such as transport or during variable loads on the electric grid. The flywheel
is initially charged by a positive torque (90 N·m) for 50 s and then the torque is reduced to 70 N·m
where the flywheel speed is reduced and the charging rate is slowed down as shown in Figure 10.
At t = 80 s the torque is further reduced to 50 N·m and the flywheel charges slower than before with
reduced three-phase currents. It can be seen from Figures 10 and 11 that SCIM-FESS operates stably
under different load conditions and the three-phase currents and speed of the flywheel comply with
the torque variations during acceleration and deceleration modes.
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Figure 12 shows DC-link voltage at a reference value of 600 V during acceleration and deceleration
at different torque values. It can be seen that voltage remains stable at a reference value of 600 V and
varies ±2 V from the reference value as shown in a magnified view in Figure 12. Better regulation and
stability of DC voltage under different load conditions (torques values) exhibits the better performance
of the GSC controller as discussed in Section 4.1.2.



Appl. Sci. 2019, 9, 4537 19 of 26

Appl. Sci. 2019, 9, x 19 of 27 

 
Figure 10. (a) Variable torque values; (b) Three phase currents at variable toque values; (c) Magnified 
view of change in torque command; (d) Magnified view of currents at ݐ = 50 s. 

 
Figure 11. (a) % SoC of the flywheel at different torque; (b) Energy stored in the flywheel at different 
times. 

Figure 12 shows DC-link voltage at a reference value of 600 V during acceleration and 
deceleration at different torque values. It can be seen that voltage remains stable at a reference value 
of 600 V and varies ±2 V from the reference value as shown in a magnified view in Figure 12. Better 
regulation and stability of DC voltage under different load conditions (torques values) exhibits the 
better performance of the GSC controller as discussed in Section 4.1.2. 

(a) (b) 

(c) (d) 

(a) (b) 

Figure 11. (a) % SoC of the flywheel at different torque; (b) Energy stored in the flywheel at
different times.

Appl. Sci. 2019, 9, x 20 of 27 

 

Figure 12. DC-link voltage during different states of operation and variable torque values. 

5.4. SCIM-FESS Losses 

The mechanical losses of the FESS are calculated based on the derived equations and the 
methods described in Section 3. The stray losses (eddy current and core losses) as well as the bearing 
and windage losses of the flywheel system as a function of the rotational speed is shown in Figure 
13. Since the bearing loss is a function of the speed and the load on the bearing, and the windage loss 
is dependent on the speed and pressure of the flywheel rotor containment, these losses are lower in 
comparison to the stray losses (nearly 1.8 kW at 20,000) and are not related to the power rating of the 
motor/generator. For the maximum rated speed of 20,000 rpm, the bearing friction loss is 
approximated as 110 W and the windage loss at the atmosphere pressure level is about 90 W, giving 
a total of 200 W for combined windage and bearing losses. However, the system losses need to be 
kept at a minimum and particularly the standby losses, which is directly affected by the aerodynamic 
and bearing losses. Therefore, if the pressure level is kept below 10 Pa and the speed is maintained 
at 20,000 rpm, the windage losses will be 60% reduced as compared to the case of atmospheric 
pressure (Figure 13c).  

Stator and rotor specific core losses of SCIM-FESS are shown in Figure 14. The core losses occur 
in largest fraction in the stator of the IM because at low slip, the IM operates at nearly synchronous 
speed and the relative speed of magnetic fields over the rotor surface are slow, therefore, rotor core 
losses are very small compared to stator core losses [79].  

As shown in Figure 14a, the specific core losses increase exponentially with increase in speed 
and magnetic flux density. The stator specific core losses are not significant for values of magnetic 
flux density up to 1 Tesla and 3 krpm speed. However, the specific core losses in stator of IM increase 
significantly above 3 krpms and even at 0.648 Tesla, the power losses due to hysteresis and eddy 
currents in stator core of IM operating at 20 krpm is 16.48 W/kg. Rotor specific core losses of IM are 
shown in Figure 14b and it can be seen that rotor specific core losses increases exponentially with 
increase in maximum magnetic flux density. However, even at a high speed of 20 krpm, the rotor 
specific core losses are not significant. 

Figure 12. DC-link voltage during different states of operation and variable torque values.

5.4. SCIM-FESS Losses

The mechanical losses of the FESS are calculated based on the derived equations and the methods
described in Section 3. The stray losses (eddy current and core losses) as well as the bearing and
windage losses of the flywheel system as a function of the rotational speed is shown in Figure 13.
Since the bearing loss is a function of the speed and the load on the bearing, and the windage loss
is dependent on the speed and pressure of the flywheel rotor containment, these losses are lower
in comparison to the stray losses (nearly 1.8 kW at 20,000) and are not related to the power rating
of the motor/generator. For the maximum rated speed of 20,000 rpm, the bearing friction loss is
approximated as 110 W and the windage loss at the atmosphere pressure level is about 90 W, giving a
total of 200 W for combined windage and bearing losses. However, the system losses need to be kept
at a minimum and particularly the standby losses, which is directly affected by the aerodynamic and
bearing losses. Therefore, if the pressure level is kept below 10 Pa and the speed is maintained at
20,000 rpm, the windage losses will be 60% reduced as compared to the case of atmospheric pressure
(Figure 13c).
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Stator and rotor specific core losses of SCIM-FESS are shown in Figure 14. The core losses occur in
largest fraction in the stator of the IM because at low slip, the IM operates at nearly synchronous speed
and the relative speed of magnetic fields over the rotor surface are slow, therefore, rotor core losses are
very small compared to stator core losses [79].

As shown in Figure 14a, the specific core losses increase exponentially with increase in speed and
magnetic flux density. The stator specific core losses are not significant for values of magnetic flux
density up to 1 Tesla and 3 krpm speed. However, the specific core losses in stator of IM increase
significantly above 3 krpms and even at 0.648 Tesla, the power losses due to hysteresis and eddy
currents in stator core of IM operating at 20 krpm is 16.48 W/kg. Rotor specific core losses of IM are
shown in Figure 14b and it can be seen that rotor specific core losses increases exponentially with
increase in maximum magnetic flux density. However, even at a high speed of 20 krpm, the rotor
specific core losses are not significant.

The copper loss in the IM is directly proportional to square of the current and is a function of
current and resistance. Copper losses in the stator and rotor of the IM are measured by simulating the
copper loss models (Equations (16) and (17)) in MATLAB/Simulink software. The SCIM-FESS dynamic
performance was analysed at different torque magnitudes in order to demonstrate copper losses at
different values of three phase currents. The system was operated with initial positive torque of 50 N·m
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for 50 s in charging mode and then the torque was increased to its maximum rated value of 90 N·m
for 30 s. When the flywheel was at standby mode (t = 80 s), there were no currents flowing through
the rotor and stator windings of the IM as shown in Figure 15a,b. At t = 100 s, the IM operated as a
generator and flywheel started discharging for 20 s until switching back to standby mode at t = 120 s.
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The rotor and stator copper losses vary with currents as torque is varied on the shaft of the IM
(Figure 15c). Stator copper losses at maximum three-phase current is 657 Watts and it decreases to
zero when torque from the shaft of IM is removed. Rotor copper losses at maximum three-phase rotor
current is 388 Watts and the combined total copper losses of the IM at maximum three-phase current
and maximum operating torque is 1.045 kW.

As a comparison to the loss model of the SCIM-FESS presented in this research, the performance
analysis of a PMSM-FESS for the same system rating (100 kW, 5 kWh and 10–20 krpm) is presented in
reference [29]. It is shown that the IM draws high inrush current at the starting but operates normally
during the transition periods between charge-discharge states. For the case of PMSM, it starts normally
with no major inrush currents but has higher standby losses. In contrary, IM do not use permanent
magnets and has not standby electrical losses.

6. Discussion and Conclusions

This paper presented the analysis of the dynamic performance of a squirrel-cage induction machine
integrated to a flywheel storage with a developed model in MATLAB/Simulink. The structure of the
control system as well as the comprehensive loss model consisted of the electrical, mechanical and
power electronics losses were also discussed and embedded in the model. A detailed simulation model
of a 100 kW IM drive was presented and analysed in different states of charging, discharging and
standby modes.

The presented results show the analysis of an induction machine driven flywheel storage system
during different modes of operation including constant and variable torque conditions. The dynamic
performance of the system was analysed for the two general cases of constant power and constant
torque operations and the results of the analysis were presented. The SCIM-FESS was operated
within a speed range of 10–20 krpm at a shaft torque of 90 N·m storing 5 kWh of energy in 2.17 min.
The presented system with the proposed control system and parameters of the machine, can store
more energy at higher speed (more than 20 krpm) at the expense of higher windage losses. When the
torque on the flywheel is zero during standby mode, an energy loss of 215 Wh occurs in a period
of approximately 18 min where the flywheel speed reduces to 19,480 rpm due to the windage effect
and frictional component of the bearing torque. The standby losses of the system can be reduced by
maintaining a low vacuum and using a better technology for the bearing system such as magnetic
bearing but this will increase the cost of the system. Aerodynamic drag of the rotor can be reduced
by housing the rotor in low a vacuum chamber, and can reduce the losses considerably as shown
in Figure 13. Copper and iron losses in the stator of IM are negligible during standby mode as no
currents flow in the stator of the IM (Figure 15) and, therefore, no magnetic field exists due to use of
electromagnets in the stator windings. This is a significant advantage of IM over PMSM as it reduces
total losses of the system providing better efficiency.

Stable operation of the system implies that the use of the proposed control system in IM drive
provides better performance and quick reversal electromagnetic torque during the transition from
generating to motoring mode and vice versa. Operation scenarios of FESS presented in Sections 5.2
and 5.3 are the benchmarks for flywheel applications in transport and in an electric grid under different
load conditions. The presented results show a realistic system with drag losses working stably in
different conditions which justifies the proper working of control systems proposed in the paper. Also,
the SCIM-FESS can be explored and analysed for use with a renewable energy source and a diesel
generator set which can be used for energy management and ride through applications. This can
improve the efficiency of the intermittent renewable energy source and save fuel costs of the associated
diesel generator set.

The results of the analysis show that the SCIM-FESS has satisfactory characteristics in energy
regulation and dynamic response during load torque variations. SCIM drive system makes use of the
vector control technique to control power electronics converters in order to follow the reference value
commands of torque, speed and voltage. The machine side field-oriented control system provides
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quick reversal of magnetic field at the time when torque is reversed and the IM switches from generator
to motor mode in less than 5 ms (Figure 9b). This can be a benefit in applications requiring fast
response and involving critical loads such as in data centers. The vector controller of grid converter
maintains a constant dc voltage during different load scenarios, which helps to improve the stability
at the point of connection when the flywheel is integrated with renewable sources in an electric grid.
Further research on this model will focus on making use of a SCIM-FESS in electric grid incorporating
wind energy system.
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