
              

City, University of London Institutional Repository

Citation: Renshaw, A. E. & Haberman, S. (2007). On simulation-based approaches to risk 

measurement in mortality with specific reference to Poisson Lee-Carter modelling (Actuarial 
Research Paper No. 181). London, UK: Faculty of Actuarial Science & Insurance, City 
University London. 

This is the unspecified version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/2313/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Cass means business
 

 

  
  Faculty of Actuarial  
  Science and Insurance 

 
 

On Simulation-based 
Approaches to Risk 
Measurement in Mortality with 
Specific Reference to Poisson 
Lee-Carter Modelling. 
 
 
Arthur Renshaw and  
Steven Haberman. 

  

 
Actuarial Research Paper 

No. 181 
 
 

           May 2007 
 
   ISBN  978-1-905752-10-2 
 

 
  Cass Business School 
  106 Bunhill Row 
  London EC1Y 8TZ 
  T +44 (0)20 7040 8470 
  www.cass.city.ac.uk 
 



 
 
 
 
 
 
 
 
 
 
“Any opinions expressed in this paper are my/our own and not 
necessarily those of my/our employer or anyone else I/we have 
discussed them with.  You must not copy this paper or quote it without 
my/our permission”. 

 



 1 

On simulation-based approaches to risk measurement in mortality with specific 

reference to Poisson Lee-Carter modelling. 
 

A.E. Renshaw, S. Haberman 
 

Cass Business School, City University, London, EC1Y 8TZ, UK 

 
Abstract 

 
 This paper provides a comparative study of simulation strategies for assessing risk in mortality 
rate predictions and associated estimates of life expectancy and annuity values in both period and 
cohort frameworks. 
 
Keywords: Poisson modelling; Over-dispersion; Joint modelling; Negative binomial modelling; 
Mortality projections; Mortality statistics; Simulated risk 
 
 
 
1. Introduction 

 
The trend in many countries to reform public sector pension provision and 

encourage more private sector provision plus the widespread shift within private 
sector pension provision towards more defined contribution schemes at the expense of 
defined benefit schemes both mean, that, in the future, we can expect an increased 
demand for post retirement annuity-type products. 

From the viewpoint of insurance companies (and other providers) selling 
annuity polices involves risk because of their exposure to uncertain future interest 
rates and mortality rates.  In this paper, we consider the second source of risk and the 
need for effective risk measurement (and risk management) techniques. 

Simulation techniques have been suggested in the literature as a means of 
measuring risk, when modelling dynamic mortality rates and their impact on future 
predictions of life expectancy and annuity values, because of the general intractability 
of applying theoretical methods.  We give further consideration to three such 
simulation strategies (denoted A, B, C) which have been applied recently to Poisson 
Lee-Carter (bilinear) modelling and extrapolation.  Strategy A (semi parametric 
bootstrap) is suggested in Brouhns et al. (2002) and illustrated (and compared with 
Strategy B) in Brouhns et al. (2005).  Strategy B (parametric Monte-Carlo) is 
described and illustrated in Brouhns et al. (2002).  Strategy C (residual bootstrap) is a 
variant on the method described and illustrated in Koissi et al. (2006). 

In addition to gaining further insight into the relative merits of these 
competing simulation strategies, we expand the methodology in order to allow for 
possible over-dispersion: modelled as a second moment property which, therefore, has 
implications for risk measurement.  The scene is set and illustrated in Section 2 with 
reference to a simple single parameter model, and the resulting simulations compared 
with maximum likelihood theory.  The strategies are further developed and illustrated 
in Sections 3 & 4 with reference to the Gompertz law and to Makeham’s second law 
of mortality respectively.  Here static age-specific life expectancy and annuity 
prediction limits, simulated under the different strategies, are compared.  Comparison 
with maximum likelihood theory is again possible.  Dynamic Poisson Lee-Carter 
based predictions are illustrated in Section 5.  In addition to representing time as a 
parameterised factor, we reconsider the possibility of formulating time as a linear 
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variable (Renshaw and Haberman (2003a & c)) and investigate the implications for 
risk measurement.  Additional consideration is given to aspects of parametric 
simulation Strategy B in Section 6, to the impact of extra provision for variable 
dispersion through joint modelling on simulation Strategies A and C in Section 7, and 
to the impact of switching to negative binomial modelling on simulation Strategies A 
and C in Section 8.  A comparative assessment is made with a non-simulation method 
of assessing risk in life expectancy predictions (Denuit 2006) in Section 9.  Section 10 
provides a discussion of the results and presents some concluding comments. 

We conventionally refer to interval estimates as confidence intervals (CIs), 
unless extrapolation is involved in their construction, as with statistics computed by 
fixed cohort (Sections 5 to 9), when we refer to prediction limits.  
 
 
 

2. Single parameter model 

 
We illustrate the methodology in this section by considering a single 

parameter model in the context of a well-known data set. In an investigation to test 
whether the impact points of flying-bombs during World War II tended to be grouped 
in clusters, Clarke (1946) divides an area of 144 sq. km. in south London into n = 576 
squares of ¼ sq. km., and makes a count of the number of impact points in each 
square.  The (grouped) results are as summarised in the first two rows below: 
 

Number of impacts per square id  0 1 2 3 4 7  

Number of squares or frequency if  229 211 93 35 7 1  

Predicted number of squares if̂  227 211 99 31 7 2  

Deviance residual ir  -1.3655 0.0693 0.9579 1.6962 2.3486 4.0111  

 
Modelling the number of impacts iD  per square i (= 1, 2,…, n) as independent 

identically distributed Poisson random variables )(Poi~ µii eD , with an assumed 
single unit of exposure to the risk of impact, the same for all squares )1( i  ei ∀= , 
gives 
 

9323.0ˆ ===µ � ndd
i

i . 

 
The frequency distribution predicted by the fitted model and recorded (to the nearest 
whole number) in the third row of the above table, is indicative of a good fit. 

The associated (classical) inference is standard.  Thus, µ  is estimated by 
maximising the log likelihood 
 

( ) .constloglog +µ−µ=�
i

ii edL  

 
so that trivially the fitted values d d i =µ= ˆˆ , with (minimum) variance 
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where 2/1 α′−z  is the usual standard normal deviate. 
 Under the alternative canonical parameterisation (log link) α=µlog , which 
forms the basis of more complex parameterised structures and the second of the 
simulation strategies considered below.  Hence, dlogˆ =α  with variance 
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which is the inverse 1−

�  of the information matrix � . 
 We focus on the construction of CIs for µ  by simulation and consider three 
possible strategies.  At each simulation j (= 1, 2, …, N) 
 

A: simulate responses i  d
j

i ∀)(  by sampling )ˆ(Poi id  

     and compute )( jµ  by fitting )(Poi~ )()( jj

iD µ . 
 
 B: randomly generate a standard normal deviate )1,0(N~)( jε  

     to simulate the parameter as )()( .
ˆlog

1ˆ jj

n
ε

α
φ+α=α  

     and compute )()( exp jj α=µ . Here, φ  is the optional scale parameter. 
 

C: simulate responses i  d
j

i ∀)(  by sampling }{ id  with replacement 

     and compute )( jµ  by fitting )(Poi~ )()( jj

iD µ . 
 
After N = 5,000 (say) such simulations using each strategy in turn, compute the 

N  N 100)1(and100 22
α′α′ −  order statistics of }{ )( jµ  to give a two-sided %100)1( α′−  

CI for µ , together with the median µ~  to compare with µ̂ . 
For comparison purposes, we record both the theoretical based 95% CI for µ , 

together with the simulated 95% CIs and median based on 5,000 simulations, under 
each strategy in the table below and note the exceptionally close agreement between 
corresponding figures. 
 

m.l.e. 
95% C.I. 

Simulation 

Strategy A 
Simulation 

Strategy B 
Simulation 

Strategy C 
 
9323.0ˆ =µ  

(0.853, 1.011) 

 
9323.0~ =µ  

(0.856, 1.012) 

 
9325.0~ =µ  

(0.857, 1.016) 

 
9323.0~ =µ  

(0.854, 1.016) 
 

Here, under simulation Strategy A, µ= ˆˆ  d i , while as a consequence of the final 

fitting stage in Strategies A and C, nd
i

j

i

j �=µ )()( . 
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Under Strategy B, the parameter α  is simulated on scaling the standard 
normal deviate by the standard error of α̂ , before centring on α̂ .  In addition it is 
possible to allow for dispersion in the data under this strategy through the 
incorporation of an optional scale parameter φ  (>0).  The theoretical justification for 
including φ  is given in Section 5.  For the Poisson distribution (without dispersion), 
we set 1=φ . 
 Strategy C is the basic bootstrap for targeting the mean, described in Chapter 2 
of Efron and Tibshirani (1993): subject to a different (but equivalent) treatment of the 
simulated }{ )( jµ , using order statistics.  It is necessary in this paper for us to take a 
different perspective of this strategy by sampling residuals, in order to be able to 
manage more general parametric structures.  We follow Chapter 9 (and Section 9.4 in 
particular) of Efron and Tibshirani (1993) on bootstrapping residuals in regression 
models, making the necessary changes to the subsequent mapping of bootstrap 
residuals into bootstrap responses.  These changes are needed in order to match with 
the Poisson error assumption, as opposed to the additive error structure, implied by 
equation (9.26) of Efron and Tibshirani (1993).  Then the residual bootstrap version 
of Strategy C reads as follow: 
 

C: simulate residuals i  r
j

i ∀)(  by sampling }{ ir  with replacement, then 

     map the bootstrap residuals to responses  i  dr
j

i

j

i ∀)()(
�  

     and compute )( jµ  by fitting )(Poi~ )()( jj

iD µ . 
 

Bootstrap deviance residuals are mapped by solving the relationship 
 

( ) ( )ii

i

i

iiii dd
d

d
dddr ˆ

ˆ
log2ˆsign −−

�
�

�

�

�
�

�

�
−=       (1) 

 
for id  when )( j

ii rr = .  Therefore, suppressing the suffix i for clarity of notation, and 
using the prefix * (instead of j) to denote bootstrap values, this implies that we require 
the appropriate root *

d  of 
 
 ( ) 0,ˆˆ1log)(g ≥−+= d  cad-ddd

*        (2) 
 

where d
r

c  da
* ˆ

2
ˆ,ˆlogˆ

2*

−== , when mapping **
dr � .  The derivatives of g 

 

 00
1

)(,ˆlog)(g >∀>=′′−=′ d   
d

dg   add   

 
imply that dd ˆ=  is a minimum and that the graph of g(d) vs. d (d >0) is concave.  
There are either one or two roots in this range.  The required root is determined by the 
sign of the residual *r  and lies to the right of the minimum ( dd ˆ> ) when *r  > 0, and 
to the left of the minimum ( dd ˆ< ) when *r  < 0.  The root is readily determined by 
Newton-Raphson using starting values for d, which accord with the above constraints, 
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within the limits of the domain }0:{ ≥dd .  Note the two special cases 0<*
r , 0ˆ >*

c  

and dr
* ˆ2−= , 0ˆ =*

c , each of which implies 0=*
d  is the required root. 

 The process is illustrated in Fig.1, with each frame corresponding to a 
different entry in the tabulated data above.  Restoring the suffix i, the bootstrap 
residual mapping, *

i

*

i dr � , takes the special form i

*

i dr � , which involves the 
mapping of bootstrap residuals to matching observations as a consequence of the 
simplicity of the model structure based on a single location parameter µ . 
 
 
 
3. A two parameter model (Gompertz�s law) 

 
 In order to take the development further, we take a well-known data set from 
the mortality literature and apply a model, which can be presented in a linear form. In 
a study to graduate the UK pensioners’ widows’ 1979-82 mortality experience Forfar 
et al. (1988) apply Gompertz’s law.  A short extract of the raw data ),( xx e d  
comprising the respective number of deaths and matching exposures to the risk of 
death at age x, together with the graduated force of mortality xµ̂ , the expected number 

of deaths xd̂  predicted by the model, in addition to the deviance residuals xr , is 
recorded below: 
 

x  
xe  xµ̂  xd  

xd̂  xr  

20 4.0 .00038219 0 0.00 -0.0553 
30 36.0 .00090617 0 0.03 -0.2554 
40 115.5 .00214854 0 0.25 -0.7045 
50 378.5 .00509423 3 1.93 0.7132 
60 1029.0 .01207848 14 12.43 0.4368 
70 941.0 .02863823 21 26.95 -1.1925 
80 323.5 .06790162 25 21.97 0.6332 
90 30.5 .16099560 6 4.91 0.4750 

100 1.0 .38172269 0 0.38 -0.8738 
 
The complete table (Forfar et al. (1988) Table 15.5 (& 15.1)) is given by individual 
year of age from 17 to 108, and we note that the bulk of the exposure lies in the age 
range 45 to 90. 
 Graduation proceeds by modelling the number of deaths as independent 
Poisson responses )(Poi~ xxx eD µ  where xx β+α=µlog  (which is a re-

parameterisation of Gompertz’s law x

x Bc=µ ).  The parameters θθθθ  = T),( βα  are 
estimated first using numerical methods in order to maximise the log likelihood 
 

( ) constloglog x +µ−µω=�
x

xxxx edL       (3) 

 
followed by the computation of 
 

xxxx ed  x µ=β+α=µ ˆˆ),ˆˆexp(ˆ . 
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Zero/one weights xω  are included in the formulation so that we can deal with 
empty/non-empty data cells.  The variance-covariance matrix of the parameter 
estimates is the inverse 1−

�  of the information matrix 
 

� = 
�
�
�

	




�
�
�

�



ωω

ωω

��

��

x

xx

x

xx

x

xx

x

xx

dxdx

dxd

ˆˆ

ˆˆ

2
, 

 
comprising�the (expectations of the) second order partial derivatives of Llog−  with 
respect to the two parameters. 
 We focus on the simulation of CIs for the age-specific force of mortality xµ , 
life expectancy )(xe  and level immediate annuity )(xa  with given discount factor v 
(and fixed rate interest), where 
 

 
x

i

i

ix

x

i

ixix

l

vl

xa  
l

ql

xe

��
≥

+
≥

++

=
−

= 10
2
1

)(ˆ,
)ˆ1(

)(ˆ  

 
and 
 
 xxxxx lql  q )ˆ1(),ˆexp(1ˆ 1 −=µ−−≈ + . 
 
We use the same three simulation strategies, which are generalised to read as follows: 
At each simulation j 
 

A: simulate responses )( j

xd  by sampling nx xxx x  d ,...,,),ˆ(Poi 21=∀ , 

     then compute )( j

xµ  by fitting )(Poi~ )()( j

xx

j

x eD µ x ∀   
     before computing the statistics of interest. 

 
 B: randomly generate a pair of N(0,1) deviates )( jεεεε T)(

2
)(

1 ),( jj εε=  

     to simulate parameters according to += θθθθθθθθ ˆ)( j φ )( jεεεε�  
     where �  is the Cholesky factorisation (‘square root’) matrix of the  
     variance-covariance matrix 1−

� , φ  is the optional scale parameter 
     before computing )( j

xµ  (here x  x
jjj

x ∀β+α=µ )exp( )()()( )  
     and the statistics of interest. 

 
C: simulate residuals x  r

j

x ∀)(  by sampling }{ xr  with replacement, 

     map the bootstrap residuals to responses  x  dr
j

x

j

x ∀)()(
�  

     then compute )( j

xµ  by fitting )(Poi~ )()( j

xx

j

x eD µ  
     before computing the statistics of interest. 

 
Subject to centring x at age 70 and scaling (dividing) by 50, the parameter 

estimates, variance-covariance matrix and Cholesky factorisation are as follows: 
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3166.4ˆ,5530.3ˆ =β−=α    

�
	



�
�



−

−
=−

038653.0001907.0
001907.0001539.01

���

���
� , �

	



�
�



−
=

19050.004862.0
003923.0

���

���
� . 

 
The simulated median and two-sided 95% (percentile based) CIs for the force of 
mortality, life expectancy and 4% fixed rate annuity at ages (x = 45, 65, 75), using all 
three strategies (with N = 5,000) are depicted in Fig 2.  In addition, the age-specific 
force of mortality, life expectancy and annuity value based on model estimates 
(m.l.e.) are also depicted for comparison.  Here, the 95% CI for the force of mortality 
is based on the close approximation 
 
 )}ˆ(E2exp{)ˆ(Var)ˆ(Var xxx ηη≈µ  where xx β+α=η ˆˆˆ , 
 
and the 95% CIs for life expectancy and annuity values are based on the approximate 
expressions for the respective variances 
 

 
2

0

)(ˆ

ˆ

ˆ
)}(ˆ{Var ��

�

�
��
�

� +
�
�

�

�

�
�

�

�
≈ +

≥ ++

+�
x

jx

j
i

jxjx

jx

l

jxel

ep

q
xe      (4) 
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+�
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jx

l

jxavl

ep

q
xa     (5) 

 
with initial exposures xx

i

x dee 2
1+≈  (e.g. Benjamin and Pollard (1980), Chapter 17). 

 
We note the following: 

1. The simulated histograms (not shown) underpinning the CIs are essentially 
symmetric throughout.  In addition, the upper and lower simulated percentiles 
displayed are effectively the same as the 95% (two-sided) confidence limits 
calculated using the simulated mean and variance. 

2. Within each frame, the degree of vertical alignment of the central measures 
(medians and maximum likelihood point estimate) indicates the extent of the 
agreement between the respective first moment estimated targets.  In this 
respect, Strategies A and B are closely aligned with each other and with the 
maximum likelihood estimate in all cases. 

3. The reason for the inconsistent alignment under Strategy C is the presence of 
bias in the residuals due to the paucity of exposure at ages (with zero deaths) 
below age 45: this gives rise to a run of small negative residuals which is 
unrepresentative of the randomly distributed residuals pertaining to the 
remainder of the age range. 

4. Within each frame, the widths of the prediction intervals are essentially the 
same under Strategies A and B and are in agreement with the width of the 
m.l.e. CI in the case of the force of mortality (1st column).  The m.l.e. CIs are 
consistently wider than their simulated counterparts for life expectancy (2nd 
column) and the annuity (3rd column).  Under Strategy C the intervals are 
marginally narrower throughout. 
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5. Frames depicting the force of mortality (1st column) are not drawn to the same 
scale for practical reasons.  Allowing for the relative magnitude of xµ , the 
coefficient of variation (relative error) is observed to decrease with increasing 
age, on the basis of the following representative (Strategy A) values: 

 
Age 45 65 75 

Coefficient of variation 0.114 0.048 0.040 
 
6. Frames depicting life expectancy (2nd column) and the fixed rate annuity using 

a 4% interest rate (3rd column) are presented on the same respective scales and 
may be compared column-wise.  On this evidence, there is no obvious 
emerging pattern in the interval widths with age. 

 
 Simulation Strategies A and C are conducted with due attention to the vector 
of weights xω , ensuring that any empty data cells are preserved as such, at each stage 
of the simulation process. 

Under Strategy C, the mapping of bootstrap residuals )()( j

x

j

x dr �  is as 

described in Section 2 with x replacing the suffix i, resulting in x

j

x dd ≠)(  in general.  
We remark that this mapping is invariant to the scaling of residuals (by φ ).  Thus 
simulation Strategy B would appear to be the only one of the three strategies 
considered, which is sensitive to the inclusion of a scale parameter.  In this example, 
we again set 1=φ , but we illustrate and discuss the effects of both estimating and 
generalising φ  as a function of age x, in later sections. 
 
 
4. A four parameter non-linear model (Makeham�s second law) 
 
 In this section, we illustrate the approach for a model, which is non-linear and 
involves 4 parameters. In a study to graduate the UK male assured lives 1979-82 
mortality experience (based on policy counts and policy duration 5+ years), Forfar et 

al. (1988) apply the enhanced Makeham formula 
 
 )exp( 1010 xxx β+β+α+α=µ . 
 
Using the same notation as Section 3, an extract of the data ),( xx e d  adjusted before 
modelling to allow for duplicated policies, together with the model estimates, are as 
follows: 
 

x xe  xµ̂  xd  
xd̂  xr  

15 238.0 .0011916 1.00 0.28 1.0429 
25 85112.7 .0006721 61.86 57.20 0.6081 
35 363515.5 .0006714 278.06 244.07 2.1280 
45 316713.0 .0019716 607.78 624.43 -0.6692 
55 259981.3 .0065332 1713.17 1698.51 0.3553 
65 73385.6 .0192716 1369.34 1414.26 -1.2007 
75 14496.5 .0525103 801.39 761.22 1.4434 
85 2981.0 .1371462 386.52 408.84 0.6698 
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The adjustment to the numbers of deaths and matching exposures by dividing both 
quantities by the so-called variance ratios based on duplicated policy counts, is as 
described in Forfar et al. (1988) and need not directly concern us here.  The complete 
table (Forfar et al. (1988) Table 17.9 with additional reference to Tables 17.6 & 17.8) 
is given by individual year of age from 10 to 90.  We note that there is a relative 
scarcity of exposure below age 20. 
 The parameters θθθθ  = ( )T

1010 ,,, ββαα  are estimated by maximising the Poisson 

log likelihood (3) and  xxx r  d andˆ,µ̂  computed subsequently.  One possible method of 
fitting through linearisation is by declaring a GLM with 
 
 Poisson responses xx ed , expectation xµ , weights xx e=ω , identity link 
 
and conducting the iterative linear fitting routine: 
 

Set the starter value )say(0005.01  i =ρ=ρ  

 ↓  
Estimate the parameters ( )γβαα ,,, 10  by fitting  

xx

x
ii xx

ρρ γ+β+α+α=µ ee10  

↓  
Compute βγ+ρ=ρ +

ˆˆ1 ii  to update iρ  

↓  
Stop when }{ iρ  converges 

 
Here ρ  is an auxiliary parameter (assumed known, so that the expression for xµ  is 
linear in the other four parameters), while the iterative routine is based on a 
linearisation method for fitting non-linear parameters in the covariates of a GLM 
(Section 11.4, McCullagh and Nelder (1989); Section 6, Renshaw (1991)).  
Convergence is rapid with 10 ˆ,ˆ αα   as given in the limit, and )0ˆ(,ˆ,ˆlogˆ

10 =γρ=ββ=β   i  
in the limit.  Details of the symmetric information matrix are as follows: 
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�  

 
Subject to the same centring and scaling of x (Section 3), the parameter estimates and 
Cholesky factorisation of the variance-covariance matrix 1−

�  are as follows: 
 

595709.4ˆ,329023.3ˆ,004319.0ˆ,003788.0ˆ
1010

=β−=β−=α−=α        
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The equivalent simulations (Section 3), depicting the median and 95% (percentile) 
CIs for the force of mortality, life expectancy and 4% fixed rate annuity (x = 45, 65, 
75), using all three strategies, plus maximum likelihood estimates, (including CIs for 
life expectancy and annuities using (4) and (5)), are presented in Fig 3.  We note the 
following: 

1. As in Section 3, we have not shown any of the simulated histograms, which 
are symmetrical throughout: a feature reflected in the symmetry of the CIs. 

2. Within each frame, the close vertical alignment (including that under Strategy 
C), of the central measures (medians and maximum likelihood estimate). 

3. Within each frame, prediction intervals under Strategies A and B are 
essentially the same, and marginally narrower than those under Strategy C. 
The m.l.e. CIs are marginally wider still, in general. 

4. The comparative narrowness of the CIs compared with their counterparts in 
the UK pensioners widow study (Fig 2).  This is further reflected in a typical 
comparison of the coefficient of variation for xµ  under the respective studies: 

 
Age 45 65 75 

Male assured lives 0.0092 0.0052 0.0069 
Pensioners� widows 0.114 0.048 0.040 

Force of mortality: coefficient of variation (Strategy A) 
 

5. As before, frames depicting life expectancy (2nd column) and the 4% fixed rate 
annuity (3rd column) are presented on the same respective scales and can be 
compared column-wise, with no evidence of an emerging age pattern in the 
interval widths. 

 
 
 
5. Multiple parameter non-linear age-period models 

  
This study features the UK male pensioner 1983-2003 mortality experience 

illustrated in Fig 4.  Here we have plotted the log crude mortality rates (continuous 
profiles) against period ntttt ,...,, 21=  for selected ages in the range kxxxx ,...,, 21= , 
using data ( )xtxt ed ,  comprising the respective number of deaths and matching 
exposures to the risk of death at age x in calendar year t.  Ages range from 51 to 104 
with roughly 95% of the total exposure in the age range 62-89 and 95% of the total 
deaths in the range 66-93.  The rectangular data set is an updated version, with 
expanded age range, of the UK male pensioner 1983-94 experience modelled 
previously (Renshaw and Haberman (2003b)).  We note that about 5% of the data 
cells are empty. 
 The numbers of deaths are modelled as independent Poisson responses 

)(Poi~ xtxtxt eD µ  when targeting the force of mortality xtµ .  We are interested in the 
following parametric structures: 
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 0,1;log:LC =κ=βκβ+α=µ � nt

x

xtxxxt       ,     (6) 

 
 .1,0);()(log:LP

1 � =β=γ=γ−γ+−β+α=µ
x

xttntnxxxt    t  t t  t  
n

   (7) 

 
The non-linear (LC) structure is that generally attributed to Lee and Carter (1992) 
(subject to a change in their usual parameter constraints: see Section 6), while the 
linear Poisson (LP) structure has been suggested and used previously in a similar 
context by Renshaw and Haberman (2003a).  The structures are characterised by 
writing 
 
 1),(F);,(F)exp( =α=µ nxxt tx  tx .       (8) 
 
In the spirit of historical CMI Bureau practice (e.g. CMI (1999)), we interpret (8) as 
the product of a static life-table )exp( xα  summarising the over-all main age effects 
with regard to the calendar year nt , and a mortality reduction factor F encapsulating 
age-specific dynamic adjustments. 
 The structures are fitted by maximising the log likelihood expression (3) in 
which x is replaced by x,t (or minimising the current model deviance ( )

fLLlog2−  

where fL  is the likelihood of the full or saturated model: characterised by equating 
the fitted and actual numbers of deaths).   We use an iterative method described in 
Renshaw and Haberman (2006) when fitting LC and the software package GLIM 
(Francis et al. (1993)) when fitting LP.  The model fitting of LC is discussed further 
in Section 6.  For LP model fitting, the constraints 0

1
=γ=γ

ntt  apply and the 

resulting xβ̂  are scaled (together with the compensating scaling of the multiplicative 

terms )( ttn − ), to comply with the auxiliary constraint 1=β�
x

x .  This approach to 

LP model fitting, in which both components of xtµ  (equation (8)) are fitted 
simultaneously, differs from the two-stage model fitting approach discussed in 
Renshaw and Haberman (2003a).  The fitted log mortality rates xtµ̂log  under both 
structures have been superimposed in Fig 4.  The underpinning parametric structures 
are depicted in Fig 5, in which we have superimposed the respective parameter 
estimates under both structures (LH frames) and plotted their differences in the 
matching RH frames: the imposition of equivalent parameter constraints under LC 
and LP modelling provides the basis for parameter comparisons.  (We refer loosely to 

ttnt −=κ  under LP modelling as parameters here). 
 The extra term involving tγ  under LP modelling ensures that the annual actual 
and expected total deaths are the same, (in addition to improving the quality of the 
fit).  The estimates of tγ  and )( ttnt −γ  are depicted in Fig 6a, together with the 
differences between the actual and expected total deaths in each year under both 
models, in Fig 6b.  It is desirable that such differences are zero, as in the construction 
of static life tables, while special provision for achieving this by adjusting the sˆ

tκ  
after fitting, is advocated in the original LC model (Lee and Carter (1992)).  However, 
such differences are much smaller in practice under the Poisson formulation of LC, 
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compared with the original Gaussian formulation, while pattern-free differences are 
indicative of a good fit.  The small reported deviations from zero under LP modelling 
(RH frame Fig 6b) are directly attributable to the paucity of exposure at ages 103 and 
particularly 104.  Residual plots under LC modelling are similar to those under LP 
modelling (Fig 7) and hence, have not been presented.  Both sets of residual plots are 
therefore supportive of the respective model structures.  In particular, the residual plot 
against year of birth, together with further diagnostic plots designed to detect residual 
cohort effects (not shown), fail to identify any obvious residual systematic cohort 
effect. 
 Mortality rates are extrapolated according to 
 

0),,(F)ˆexp(s >+α=µ +   sstx nxtx, n
�  

 
where 
 
 ( ) 0,ˆˆexp),(F:LC >βθ=+   ssstx  xn ; )(ˆˆ

11
ttnt −κ−=θ  

 
0),ˆexp(),(F:LP >β−=+   ssstx  xn  

 
when forecasts are generated by applying a random walk with drift parameter θ  to the 
time series { tκ̂ } under LC modelling.  (We note that, when the random walk with 
drift is the preferred time series, selected here by testing for the best ARIMA model 
for { tκ̂ }, forecasts are generated by extrapolating the straight line joining the two 
extremes )ˆ,(

11 tt κ  and )ˆ,(
ntnt κ  of the time series, with 0ˆ =κ

nt
).  Thus, under this 

special case, it is only necessary to resort to the use of a standard time series package 
in order to establish the appropriateness of the random walk with drift: refitting the 
time series to generate forecasts at each simulation is redundant.  Under LP 
modelling: referring to equation (7) and Fig 6a, we extrapolate )(ˆ t tnx −β  while 
setting the extrapolation of )(ˆ t  tnt −γ  to zero. 

We investigate age-period specific life expectancies )(tex  and age-period 
fixed rate annuities )(tax  with discount factor v, under both the cohort method of 
computing: 
 

 
)(

)(
)(ˆ,

)(

)}(ˆ1){(
)(ˆ 10

2
1

tl

vitl

ta  
tl

itqitl

te
x

i

i

ix

x

x

i

ixix

x

��
≥

+
≥

++ +
=

+−+
=    (9) 

 
where 
 
 )()}(ˆ1{)1(),ˆexp(1)(ˆ 1 tltqtl  tq xxxxtx −=+µ−−≈ + , 
 
and the period method of computing, in which the variation in t in the above 
expressions is suppressed, as in Section 3. 

The simulation strategies are as described in Section 3, subject to the 
replacement of the suffix x by the suffix x,t and the insertion of an extra step, when 
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required, involving the extrapolation of tx,  
j

xt ∀µ )(  with respect to t, prior to 
computing the statistics of interest.  For simulation Strategy B the parametric vector 
basis θθθθ  comprises 2k + n – 2 components 
 

( )TTTT ,,:LC txx κκκκββββααααθθθθ =  with 0,1
1

=κ=β
ntx       (10) 

 
( )TTTT ,,:LP txx γγγγββββααααθθθθ =  with 0,0

1
=γ=γ

ntt       (11) 
 
and the variance-covariance matrix is computed as the inverse of the information 
matrix,  (based in turn on the second order partial derivatives of Llog− ).  Under LC 
modelling, details of the information matrix are given in Appendix A.  Under LP 
modelling, since period effects are treated deterministically, the terms ttnt −≡κ  do 
not feature as explicit components of θθθθ , while the variance-covariance matrix is 
readily available from standard linear regression packages, such as GLIM.  Details of 
the information matrix are given in Appendix B.  It is then necessary to scale the 
simulated xβ , (coupled with the compensating scaling of the multiplicative tκ  or 

)( ttn −  terms, as the case may be), in order to comply with the constraint 1=β�
x

x . 

 The justification for the introduction of dispersion into the Poisson modelling 
assumption comes from the following: 
 

( ) uu  
D

D  eD
xt

xt

xtxtxtxt =
ω

φ=µ= V;
)}(E{V

)(Var,)(E   (12) 

 
with positive scale parameter φ  (>1 for over-dispersion), zero-one prior weights xtω , 
and the characteristic Poisson variance function V(u) = u.  The fitted structure 
minimises the model deviance 
 

( ) � �
−

ωφ=φ−=
xt

d

d

xt

xtf

xt

xy

u
u

ud
LLD

~
d

)(V
2log2 , xt

~
µ= xtxt ed              (13) 

 
resulting only in the scaling of the variance-covariance matrix by the factor φ  (which 
is estimated as the model deviance divided by the number of degrees of freedom). 
 We compare and display the simulated predictions for the UK male pensioners 
experience, for the force of mortality, life expectancy and a 4% fixed rate life annuity, 
as follows-   
 

Age (x) Period (t) 
xtµ  )(),( ta  te xx  

65 2003 Fig 8a Fig 9 
75 2003 Fig 8b Fig 10 
65 2012 Fig 8c Fig 11 

 
For each of the three age-period combinations, the results are summarised by 
depicting the 2.5, 50, 97.5 percentiles based on 5,000 simulations, under the following 
cross-classification- 

1. Simulation strategy A, B or C (within each frame Figs 8-11) 
2. LC or LP modelling (respective LH or RH frames Figs 8-11) 
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3. Computation by period or cohort (alternative rows Figs 9-11).  
Within each frame the percentiles are depicted for each simulation strategy together 
with the relevant model based estimate (m.l.e).  In addition, under simulation strategy 
B we present the order statistics both with (outer extremes) and without (inner 
extremes) a scale parameter φ .  Here 386.1ˆ =φ  under LC Poisson modelling with 

dispersion and 373.1ˆ =φ  under LP modelling with dispersion.  Obviously mortality 
rate extrapolation is redundant under the fixed period computations for 2003.  The 
scales in adjacent frames are chosen consistently throughout to facilitate comparison, 
with LC modelling on the left and LP modelling on the right.  Life expectancy and 
annuity simulations (Figs 9-11) by period or by cohort are represented in alternative 
rows of frames and the scales are set consistently throughout all age-period simulation 
studies for comparison.   

Focusing on the results for age 65, period 2003 in the first instance (Figs 8a & 9) 
and comparing like with like, we note the following: 

1. The close vertical alignment of the simulated and estimated central measures 
throughout. 

2. The sighting of this vertical alignment, relative to the abscissa, in adjacent 
frames, is indicative of the exceptional close agreements between first moment 
predictions under LC and LP modelling. 

3. Under LC modelling (LH frames), Strategy B (with 1=φ ) generates 
marginally greater risk than Strategy A.  This runs counter to the findings 
reported by Brouhns et al. (2005) in their case studies. 

4. Strategies A and C generate (roughly) the same amount of risk within each 
frame. 

5. Comparing like with like, Strategies A and C generate (roughly) the same 
amount of risk under LC and LP modelling (adjacent frames). 

6. The introduction of the free-standing scale parameter increases the degree of 
risk by a noteworthy amount, under Strategy B. 

7. Computation of life expectancy and annuities by cohort generates greater risk 
than computation by period, manifested in the respective wider confidence and 
prediction intervals (comparison of vertically adjacent frames in each part of 
Fig 9) and reflecting the greater uncertainty due to extrapolation. 

This list of findings also applies to each of the other two reported simulation 
studies: age 75, period 2003 (Figs 8b & 10) and age 65, period 2012 (Figs 8c & 11).  
On comparing like with like for comparative ages 65, 75; fixed period 2003 (Figs 9 & 
10), the confidence and prediction intervals are marginally wider in absolute terms at 
age 65 compared with age 75.  Similarly, on comparing like with like for comparative 
periods 2003, 2012; fixed age 65, the wider 2012 confidence and prediction intervals 
are a measure of the increased risk that arises from 9 years of extrapolation generated 
by these methods.  The life expectancy (period) Strategy B prediction interval, age 65, 
period 2012 (Fig 11, top LH frame), also features in Fig 14 as part of a further 
comparative study described in Section 9.  
 
 
 
6. Simulation Strategy B under LC Poisson modelling: effect of constraints 
 
 In this section, we consider the effects on Strategy B of the choice of the 
identifiability constraints, which are used in the specification of the Lee-Carter model. 
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The LC non-linear predictor txxxt κβ+α=η  (and hence the fitted numbers of deaths 

xtd̂  and deviance )ˆ,( xtxt d dD ) is invariant under the two transformations 
 

{ } { } { } { }c  c    c c   txxxtxxtxxtxx +κββ−ακβακβακβα ,,,,,,,,, ��  
 
for any non-zero constants c.  Thus under the iterative fitting process (Renshaw and 
Haberman (2006)), we adopt the usual LC constraints, which are then mapped 
accordingly 
 

0,10,1 =κ=β=κ=β ��� nt

x

x

t

t

x

x   �  

 
using the second of these transformations.  Alternatively, it is possible to incorporate 
the right hand set of constraints directly into the core of the fitting algorithm. 

The Cholesky decomposition �  of the variance-covariance matrix 1−
�  

proceeds under the premise that the information matrix �  is constructed first on the 
basis of 2k + n – 2 free standing parameters, given the need for two constraints to 
identify the parametric structure.  Consequently, given that the choice of constraints is 
not unique, we investigate whether the choice of constraints has a material effect on 
the resulting simulations.  Recall that for LC Poisson modelling, simulation Strategy 
B reads as follows: 
 

Change to a designated set of constraints and construct �  and hence 
�  accordingly. 

 Simulate a set of free standing parameters += θθθθθθθθ ˆ)( j φ )( jεεεε�  and 

 expand )( jθθθθ  by inserting the two constrained parameters. 
 Change to the constraints � =κ=β

x

j

t

j

x n
 0,1 )()(  before extrapolating 

 and computing the statistics of interest. 
 
We consider the following alternative pairs of constraints: 
 

Version 1: 0,1
1

=κ=β
ntx   together with Appendix A 

 Version 2: �
≠

κ−=κ=β
n

n

tt

ttx  ,1
1

 together with Appendix C 

Version 3: 0,1
11

=κ=β tx   together with Appendix A with suitably 
       adjusted domains in the component blocked matrices 

 
and display the simulated predictions based on the UK male pensioners (age 65, year 
2003) experience in Fig 12.  Version 1 is as described and presented in Section 5, and 
we have the same scales in the individual frames to match those in the left hand 
frames in Figs 8a and 9 to facilitate visual comparisons.  Version 2 is as described by 
Brouhns et al. (2002).   The varying magnitudes of the percentile based confidence 
and prediction intervals under the different versions are a cause for concern.  In 
addition, we find that a further version based on the constraints 
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0,1
1

1
=κβ−=β �

≠
nt

xx

xx  , which would thereby eliminate the need to change to a 

designated set of (different) constraints, generated totally unrealistic intervals. 
Such diverse results are directly attributable to the over parameterisation 

present in the model rather than the non-linearity of the parametric structure.  For 
example, this situation does not arise in the case of Makeham’s second law (Section 
4) where the structure is non-linear but not over-parameterised.  Further, the situation 
has been found to arise in other examples (details omitted): in the application of 
simulation Strategy B in a re-analysis of the average cost of claims for privately 
owned, insured cars, cross-classified by three factors (policyholder’s age, car group 
and vehicle age), with the main effects of all three factors modelled as an over 
parameterised generalised linear model (McCullagh and Nelder (1989) pp296-300). 
 
 
 
7. Simulation Strategies A and C: effect of variable scale parameters 
 
 Since the constant scale parameter φ  fails to impact on the CIs generated 
under simulation Strategies A and C, in this section, we investigate the consequences 
of reformulating the scale parameter as a function of age (and possibly period) xtφ .  
Under such a formulation, fitting is possible by so-called joint modelling comprising 
the following: 
 
 Stage 1: Model xtD  as independent Poisson responses 

  
{ } ( ) uu  

D
D  eD

xt

xt

xtxtxtxtxt =
ω

φ=µ= V;
)(EV

)(Var,)(E  

 with  variable dispersion xtφ , the log link 
  { } xtxtxt eD µ+= loglog)(Elog  
 and the LC or LP parametric structures (6) or (7). 
 

We then define 
{ }

)(E
)(E 2

xt

xtxt

xtxt
D

DD
R

−
ω= , the resulting squared Pearson residuals. 

 
 Stage 2: Model xtR  as independent gamma responses 

  
{ } ( ) 2V;

)(EV
)(Var,)(E uu  

R
R  R

xt

xt

xtxtxt =
ω

τ=φ=  

 with scale parameter τ , the log link 
  LG: xxt ς=φlog  
 and linear parametric structure in age effects, denoted (LG). 
 

The joint process is implemented by iteratively fitting each stage in sequence, 
terminating with the convergence of both deviances.  Stage 1 residuals form Stage 2 
responses while Stage 2 fitted values form the Stage 1 weights xtxt φω , where xtω  
are the zero-one empty data cell indicators.  Typical starting values are xtxt ω=φ .  
The choice of Stage 2 gamma distribution is consistent with Stage 1 normally 
distributed residuals.  Alternatively, Stage 1 squared deviance residuals can be used 
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instead of squared Pearson residuals, leading to the same results, where xtxtR φ≈)(E .  
For primary references and further background details on joint modelling in a 
mortality setting, we refer the interested reader to Renshaw (1992). 
 We begin the analysis by refitting the UK male pensioner mortality experience 
to both the LC/LG and LP/LG joint models.  The resulting Stage 1 parameter 
estimates, including the first moment structures of the joint processes, together with 
the Stage 1 deviance residual plots, are as depicted in Section 5 (Fig 5, Fig 6a, Fig 7).  
However, under LP/LG modelling, the so-called Poisson trick no longer applies (due 
to the variability in φ ) so that, as with LC/LG modelling, the actual and expected 
total deaths in each period are not the same (see Fig 13a).  (Nevertheless, the term in 

tγ , expression (7), is retained to improve the quality of fit). 

 The Stage 2 parameter estimates ( ) xxxt   ς=φ=φ ˆexpˆˆ , encapsulating the second 
moment structure of the joint processes, are depicted in Fig 13a.  Here, in both 
frames, we have superimposed the results obtained under LC/LG and LP/LG 
modelling for comparison.  Noting the convex shape of the near identical xφ̂  age 
profiles, we observe that under dispersion )1( <φ x ) occurs at the age extremities, 
coinciding with the paucity of exposure to the mortality risk. 
 We repeat the age 65, period 2003, simulation Strategies A and C under both 
LC/LG and LP/LG joint modelling, displaying the 2.5, 50, 97.5 (N = 5,000) 
percentiles for life expectancy and 4% fixed rate annuity predictions, computed by 
period and by cohort (Fig 14).  For comparison, the equivalent results from Section 5 
(Fig 8), obtained under LC or LP single stage modelling are displayed alongside, 
using the same abscissae (Fig 8) for consistency.  (The third set of intervals, relate to 
LC or LP negative binomial modelling and are explained separately in the next 
section). 
 The consistent small lateral displacements of the medians under joint 
modelling are due solely to the switch from single to joint modelling and occur to the 
same extent when joint modelling is conducted with a constant dispersion ( ς=ς x ): 
and we note that the constant dispersion models generate confidence and prediction 
intervals of similar widths to those generated under single stage modelling (results not 
depicted).  Thus the appreciable increase in interval widths under joint modelling 
relative to single stage modelling is directly attributable to the second moment age 
variable dispersion parameters ( xx φ⇔ς ).  When implementing Strategy A, the 
simulated responses are approximated by sampling the Poisson distribution, which 
may explain the narrower confidence and prediction intervals, compared with 
Strategy C.  (A way of avoiding this approximation, under suitable conditions, is 
discussed in Section 10).  Skewness is also a noteworthy feature of the intervals, 
especially under LC/LG joint modelling. 
 
 
 
8. Simulation Strategies A and C under negative binomial modelling 
 
 Li et al (2006), (see also Delwarde et al (2007)) present the case for enhancing 
risk measurement under simulation Strategy A, by switching from the Poisson to a 
negative binomial response LC model as defined by (12), with no scale factor )1( =φ  
and a characteristic variance function 2)(V uuu xλ+= .  Both the first moment non-
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linear LC parameters (6) and second moment parameters { }xλ  are estimated in a 
single stage: by optimising the negative binomial likelihood. 
 A key difference between Poisson and negative binomial modelling concerns 
the nature of their distribution functions.  While the former is a member of the 
exponential family of distributions, the latter is not: consequently the simple 
relationship )log(2 LD −∝ , connecting the deviance D to the likelihood L no longer 
holds.  Thus, for the negative binomial distribution, on evaluating the integral 
expression (13) 
 

 �
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and, (on adopting expression (22) of Li et al (2006)), the kernel of the log likelihood 
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where, under ( )txxxtxtxtxt eed κβ+α=µ= exp

~
:LC .  On comparing the kernel of D 

with Llog , the expressions differ (apart from their sign) only in respect of the 
additional first term in Llog  involving only the second moment parameters 
(otherwise LD log2−∝ ).  Hence, the updating relationships for the first moment 
parameters used in fitting the LC structure, are derived from either the model 
deviance or likelihood viz 
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reducing to the more familiar updating relationships for Poisson LC (e.g. Table 1 
Renshaw and Haberman (2006)) in the limit x  x ∀=λ 0 , for which xtxtxt ddd ˆ== ��� ). 
 Model fitting by optimising the deviance D (the GLM approach) is only 
possible when the set of second moment parameters { }xλ  are known: a feature we 
exploit when implementing simulation Strategies A and C.  In order to fit the 
structures in the first instance, we follow Li et al (2006) in optimising the likelihood L 
on the basis of their further updating relationship, adopted to read 
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 Updating relationships (14) with ttnt −=κ̂ , together with the relationship 
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are used to fit the LP structure in the first instance. 
 In implementing simulation Strategy A, we use the rejection method (Section 
7.3 pp 281-286 Press et al (1997)) for generating random deviates from the (fitted) 
negative binomial probability function (suppressed suffices) 
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The implementation of simulation Strategy C is as described in Section 2, 

subject to the matter of detail.  Thus, here, we follow Section 2 and require the 
appropriate root *

d  of 
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where ( )ddb ˆˆ1logˆlogˆ λ+−= , ( )d
r

c
*
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ˆ
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2
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λ
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note the derivatives of ( )dg : 
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which imply that ( )dg  is concave with a minimum at d̂ .  We note that the details 
reduce to those of Section 2 when 0=λ . 
 The simulation strategies (A and C) are conducted on the basis of updated first 
moment parameters, optimum deviance, subject to fixed xλ̂ , resulting in an 
appreciable reduction in computer time, compared with the updating of first and 
second moment parameters and the optimisation of the likelihood, at each simulation.  
(Exercises comparing the two approaches are found to generate identical simulations). 
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 We begin a comparative study with Sections 5 and 7 by refitting the UK male 
pensioner mortality experience using the respective LC and LP negative binomial 
model.  As anticipated, the patterns in the fitted first moment parameters and deviance 
residual plots are as depicted in Section 5 (Fig 5, Fig 7) and are hence not reproduced.  
Both the actual minus expected annual death totals and the second moment parameter 
estimates { xλ̂ }, superimposed by model structure, LC or LP, are shown in Fig 13b.  

We note that the concave nature of the pattern in the xλ̂ s under negative binomial 
modelling is complementary to the convex nature of the pattern in the xφ s under joint 
modelling. 
 The comparative 2.5, 50, 97.5 (N = 5,000) simulated percentiles for (age 65, 
period 2003) life expectancy and 4% fixed rate annuity predictions, computed by both 
period and cohort under negative binomial modelling, are displayed alongside their 
counterparts under (single stage) Poisson modelling and Poisson joint modelling (Fig 
14).  The consistent small lateral displacements in the medians, in the opposite 
direction to the displacements under joint modelling, are a measure of the small 
change in the point predictions brought about by the change in modelling distribution.  
While the switch from (single stage) Poisson to negative binomial distribution results 
in consistently wider confidence and prediction intervals under simulation Strategy A, 
the equivalent intervals are essentially identical under Strategy C: the likely reason for 
which is discussed in Section 10.  Comparing like with like, the widths of the 
simulated intervals under LC and LP negative binomial modelling are effectively 
identical.  Both the pattern in the xλ̂ s and the increased width in intervals generated 
under LC negative binomial Strategy A simulations are consistent with the findings 
for the Canadian mortality experiences conducted by Li et al (2006). 
 
 
 
9. Life expectancy: comparison with a non-simulation approach 
 
 It is informative to compare, where possible, simulated life expectancy 
prediction intervals under LC modelling (specifically incorporating extrapolation by 
random walk with drift), with the theoretical prediction intervals, constructed by 
computing the order statistics for life expectancy predictions based solely on the 
extrapolation error in the random walk with drift.  This is now possible using 
formulae due to Denuit (2006).  Thus, for life expectancy computations by fixed 
(extrapolated) period stn +  (s > 0), order statistics are computed as 
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where θ̂  and σ̂  denote the respective estimated drift parameter and standard 
deviation in the time series { }nt t  t  t ...,,:ˆ 1=κ  modelled as a random walk with drift, 
and Φ  is the distribution function of the standardised normal variate.  Thus, typically, 
for fixed s (>0), when p = 0.5 so that 0)5.0(1 =Φ − , the median 
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Denuit (2006) also provides details of an equivalent formula for the order statistics for 
life expectancy )( nx te , relating to the most recently observed period, and computed 
along a particular extrapolated cohort. 
 We compare order statistics computed by these methods for the UK male 
pensioner experience with the same order statistics generated under (i) (single stage) 
Poisson based simulation Strategy B (Version 1, including the scale parameter φ ) and 
(ii) negative binomial based simulation Strategy A, in Fig 15.  Specifically, the 2.5, 
50, 97.5 percentiles for life expectancy predictions at age 65, computed by period, for 
(fixed) projected periods at 4 yearly intervals in the range 2004-2020 are depicted in 
the upper frame (Fig 15a), and the same percentiles for life expectancy predictions in 
the period 2003, computed by cohort, for ages at 5 yearly intervals in the range 65-85 
in the lower frame (Fig 15b).  Comparing like with like, we not the following: 

1. The theoretical median is more closely aligned with the simulated negative 
binomial median than the simulated Poisson median, with consistent 
staggering of alignments throughout. 

2. The theoretical prediction intervals are appreciably wider than both sets of 
simulated prediction intervals. 

3. Whereas the simulated negative binomial prediction intervals are consistently 
wider than their simulated Poisson counterparts, for fixed age with increasing 
age (computations by cohort- Fig 15a), the opposite is the case, for fixed age 
with increasing extrapolated calendar year (computations by period- Fig 15a). 

We comment on these results in the final section. 
 
 
 
10. Discussion and conclusions 
 
 Simulation Strategy C differs from that described and illustrated in Koissi et 

al. (2006) with respect to the method of mapping the bootstrap simulated residuals to 
responses.  Instead of solving equation (1) for )( j

id  when )( j

ii rr =  with fixed id̂ i ∀  

(and i = (x, t)), Koissi et al. (2006) elect to solve equation (1) for )(ˆ j

id  with fixed 

id i ∀ .  We do not follow this approach on the basis that it does not comply with the 
spirit of Chapter 9, Efron and Tibshirani (1993), and that it fails to simulate any 
variation when this approach is applied to the simple single parameter model of 
Section 2. 
 The use of deviance residuals in simulation Strategy C is appealing because 
the models are fitted on the basis of deviance optimisation.  (Note the parallel 
relationship between Pearson residuals and OLS fitting).  Further, the use of Pearson 
residuals in this context, as a possible alternative, is potentially problematic.  Thus, in 
the notation of Section 2, with residuals 
 

 uu  

d

dd
r

i

ii

i =
−

= )(V,
)ˆ(V

ˆ
 

 



 22 

replacing expression (1), the bootstrap residual mapping **
dr �  takes the form 

 

 drdd
** ˆˆ +=  

 
which has the potential to generate negative “Poisson” bootstrap responses (viz when 

0,ˆ 2 <=< min

*

min rr rd ). 
 A good fit resulting in a set of pattern free random residuals for sampling, 
repeatedly with replacements, is a basic requirement of Strategy C.  Where this is not 
the case, as in Section 3 (Fig 2), distortions can occur in the simulated histogram of 
the quantity of interest.  We have not however investigated in this paper, the likely 
magnitude and nature of the distortion, if any, when Strategy C is applied under LC 
modelling in the presence of residual cohort effects:  LC modelling being preferred on 
the (perceived) over-riding basis of its powerful predictive properties. 
 Expressions (4) and (5) used in the construction of approximate m.l.e. CIs for 
(fixed period) life expectancy and fixed rate annuities (Figs 2, 3, 9, 10) are based on 
the binomial assumption ( )x

i

xx qeD ,bin~  with independence x ∀ .  We make the 
parallel Poisson assumption ( )xxx eD µPoi~  to target xµ  with independence x ∀  
before computing xq , which does not materially contribute further to the approximate 
nature of these m.l.e. CIs.  Given that expressions (4) and (5) require a knowledge of 
the exposures, the formulae cannot be applied under dynamic extrapolation 
(computations by cohort (Figs 9, 10)). 
 In Section 4, when computing life expectancy and fixed rate annuities we have 
decided against extrapolating Makeham’s second law beyond age 90, given our 
primary objective of conducting a comparative study of the different simulation 
strategies.  Likewise, given the comparative nature of the aims of this study, we have 
chosen not to complicate matters by smoothing the parameter sets }{ xα  and }{ xβ  in 
Sections 5 to 9.  However, we do acknowledge that it is important to smooth both 
parameters sets for practical applications in order to avoid the projection into the 
future of age-specific irregularities in the }{ xα  and }{ xβ  sequences. 
 On comparing like with like in the Poisson age-period study of Section 5 (Figs 
8 to 11), LC and LP point and interval predictions differ materially only in respect of 
simulation Strategy B.  Under LP modelling the issue of over parameterisation occurs 
because of the inclusion of the terms in )( nt tt −γ  and is resolved by setting 

0
1

=γ=γ
ntt : the sole purpose of these terms is to improve the quality of fit (using the 

so-called Poisson trick- see Renshaw and Haberman (2003a)), while allowing the 
terms in )( nx tt −β  to capture the main age-specific (linear) period effects.  
Consequently, the choice of parameter constraints is resolved by this means.  Under 
LC modelling, however, we are uncertain how to resolve this issue of over 
parameterisation and we illustrate the effects of the constraints in Section 6.  Unless 
and until this issue is resolved, we believe that LC simulations based on Strategy B 
should be interpreted with caution. 
 The primary concern (see, for example, Li et al (2006) p 14 Section 6) that a 
constant scale parameter φ  fails to impact on Strategy A bootstrap intervals, is 
supported by the findings of Section 5 and extends also to Strategy C.  We note that a 
constant φ  does impact under parametric Strategy B, but we need a satisfactory 
resolution of the outstanding issue of over-parameterisation. 
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 We do not however subscribe to the assertion (Li et al (2006) p 14 Section 6), 
requiring internal consistency in the relationship between the probability function of 
the responses xtD  and their first two moments )(Varand)(E xtxt D  D  as a general 
principle of modern statistical modelling: Section 7 being a case in point.  We quote 
form the outer cover of McCullagh and Nelder (1989) ‘An important feature [of 
generalised linear and non-linear modelling] is that the principal conclusions depend 
only on [first and] second moment assumptions as opposed to the complete 
correctness of an assumed probability function. 
 Enhanced prediction intervals are obtained under Poisson joint modelling with 
age-specific scale parameters (Section 7: simulation Strategies A and C) and under 
negative binomial modelling (Section 8: simulation Strategy A).  In contrast with 
(single stage) Poisson modelling, both of these modelling approaches incorporate 
specific provision for targeting the second as well as first moment properties, which 
are subsequently reflected in one or both (joint modelling) of the simulation Strategies 
A and C. 
 Both the formation of the joint model (Section 7) and the implementation of 
simulation Strategy C (throughout) are distribution free.  However, simulation 
Strategy A requires a probability distribution function.  In applying Strategy A 
(Section 7), we approximated by using the Poisson probability function.  In the event 
of complete over-dispersion ( tx, xt ∀≥φ ,1 ), which is only partially the case (Fig 13, 
upper right frame), exact responses may be simulated under Strategy A using the two-
parameter probability function (suppressed suffices) 
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based on a re-parameterisation of the two-parameter Lagrangian Poisson distribution 
(e.g. Ter Berg (1996)): reducing to the Poisson probability function when 1=φ .  We 
are unable to assess the extent of the material effect, if any, of basing Strategy A on 
the Poisson approximation, for the male pensioner experience. 
 Under simulation Strategy C, the likely explanation as to why the confidence 
and prediction intervals are not enhanced under negative binomial modelling, 
compared with (single stage) Poisson modelling, is because of the very small values 
of xλ  in the body of the data and age range (Fig 13, lower right frame).  Thus, in the 
limit 0→λ , for which 
 

 ( ) ( ) dd  d =λ+
λ

=λ+
→λ→λ

1log
1

lim,01loglim
00

, 

 
expression (15), used to map bootstrap negative binomial deviance residuals to 
responses, reduces to expression (2), used to map bootstrap Poisson residuals. 
 In Section 9, we have compared LC simulated prediction intervals for life 
expectancy predictions, with their theoretical equivalents based on the order statistics 
of the extrapolation error in the random walk with drift: providing evidence that the 
theoretical prediction intervals are appreciably wider than any of their simulated 
counterparts, including negative binomial and joint modelling.  Obviously, here, the 
application of the theoretically based approach (Denuit (2006)), which is restricted to 
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LC life expectancy predictions with extrapolation confined to the random walk with 
drift, is less versatile than the simulation approaches.  Simulation methods for 
assessing mortality risk in Poisson LC models are used, in part, in the belief that they 
capture both model fitting and extrapolation error (Brouhns et al. (2002)).  
Consequently, for life expectancy predictions, it is difficult to reconcile this belief 
given the narrower prediction intervals generated by these, and like simulation 
methods, when compared with the wider prediction intervals generated by the non-
simulation method predicated solely on extrapolation error. 

While the bootstrap is a computer-based method of statistical inference, 
typically used to simulate confidence intervals, the precedence and basis for using the 
bootstrap to simulate (LC and LP) prediction intervals, requires further investigation.  
For example, under LC modelling, on adapting Section 8.5 of Efron and Tibshirani 
(1993) to simulate the random walk with drift for the time series { }tκ̂  of Section 5, 
we compare the theoretical based details of the estimated drift parameter and 2013 
predicted time series, with their respective simulated counter-parts (N = 5,000) below: 
 

 
 
 

Estimated drift parameter 
95% confidence interval 

Predicted (2013) time series 
95% prediction interval 

Theoretical )54.0,60.2(57.1ˆ −−−=θ     )18.1,30.30(74.152013 −−−=κ    �  

Simulated )61.0,60.2(58.1
~

−−−=θ     )12.6,95.25(79.152013 −−−=κ    �  
 
Thus, while there is close agreement between the theoretical and simulated estimated 
drift parameter and its confidence intervals, the theoretical prediction interval for the 
time series is materially wider that its simulated counter part. 

In conclusion, we highlight the following: 
• Unless there are compelling reasons for selecting a particular set of constraints 

when identifying the non-linear (or linear) structure of an over-parameterised 
model, such as LC, simulation Strategy B should not be used for risk 
assessment purposes, since different choices of constraints result in widely 
differing simulated confidence and prediction interval widths. 

• Negative binomial and Poisson joint modelling incorporate extra provision for 
targeting second moment properties, compared to (single stage) Poisson 
modelling.  This is reflected in wider simulated confidence and prediction 
intervals under Strategy A (both approaches) and Strategy C (joint modelling 
only), than would otherwise be the case.  Strategy C fails to simulate wider 
intervals under negative binomial modelling for the reason discussed.  Further 
reported case studies would be of interest in this respect. 

• LC modelling allows for greater variability in the period component than LP 
modelling.  We have compared confidence and prediction intervals under LC 
modelling and extrapolation by random walk with drift, with matching 
intervals under LP modelling and linear extrapolation.  For Strategies A and C, 
in combination with all three modelling approaches (single and joint Poisson, 
negative binomial), none of the matching simulated prediction intervals are 
(materially) wider in absolute terms under LC modelling compared with LP 
modelling: possibly suggesting a failure to capture the full magnitude of the 
time series forecast error under LC modelling, thereby endorsing the findings 
of Section 9. 
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Appendix A 
 
 Details of the information matrix �  under LC modelling, subject to the 
parameter specification and constraints (10) are as follows: 
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Appendix B 
 
 Details of the information matrix �  under LP modelling, subject to the 
parameter specification and constraints (11) are as follows: 
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Appendix C 
 
 Details of the information matrix �  under LC modelling, subject to the 
constraints �

≠

κ−=κ=β
n

n
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 are as follows: 
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!Fig 1. Graphs of g(d) vs d, for each residual r*, mapping r* -> d*, by selecting!

!the relevant root of g(d), conditional on the sign of r*. A special case!

in which r* -> d with a minimum at d = 0.9323 in each frame.
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!Fig 2. U K  pensioners widows 1979-82: simulated 2.5, 50, 97.5 percentiles for!

each strategy, with max imum lik elihood estimates (m.l.e) and 95%  C Is.

!Force of mortality (1st column), life ex pectancy (2nd column), 4%  fix ed rate!

!annuity (3rd column); by age 75 (1st row), 65 (2nd row), 45 (3rd row).!
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!Fig 3. U K  male assured lives 1979-82: simulated 2.5, 50, 97.5 percentiles for!

each strategy, with max imum lik elihood estimates (m.l.e) and 95%  C Is.

!Force of mortality (1st column), life ex pectancy (2nd column), 4%  fix ed rate!

!annuity (3rd column); by age 75 (1st row), 65 (2nd row), 45 (3rd row).!
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!Fig 4. U K  male pensioners: crude &  fitted log(mortality rates) vs. year by age.!

!Ages 65, 70, 75 ..., 95 left frame, ages 67, 72, 77, ..., 97 right frame.!

1985 1990 1995 2000 2005

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

year

lo
g

(m
o

rt
a

lit
y
 r

a
te

)

65 yrs

70 yrs

75 yrs

80 yrs

85 yrs

90 yrs

95 yrs

1985 1990 1995 2000 2005

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

year

lo
g

(m
o

rt
a

lit
y
 r

a
te

)

crude

L C

L P

1985 1990 1995 2000 2005

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

year

lo
g

(m
o

rt
a

lit
y
 r

a
te

)

67 yrs

72 yrs

77 yrs

82 yrs

87 yrs

92 yrs

97 yrs

1985 1990 1995 2000 2005

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

year

lo
g

(m
o

rt
a

lit
y
 r

a
te

)

crude

L C

L P

32



33

Fig 5. Fitted L C  and L P  models: superposition of "parameter" estimates.
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!(a) L P  modelling: gamma estimates (left),gamma related estimates (right)!

(b) L C  and L P  modelling: actual minus fitted annual total deaths

Fig 6. L P  and L C  model fitting: further details.
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Fig 7. L P  modelling: deviance residual plots
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(a) Force of mortality- age 65, year 2003

(b) Force of mortality- age 75, year 2003

(c) Force of mortality- age 65, year 2012

!Fig 8. U K  male pensioners: comparison of simulated 2.5, 50, 97.5 percentiles and!

!m.l.e. estimates. S trategy B  displays are with/without a scale parameter.!
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!Fig 9. U K  male pensioners: comparison of simulated 2.5, 50, 97.5 percentiles and!

!m.l.e. estimates. S trategy B  displays are with/without a scale parameter.!

(a) L ife ex pectancy, age 65, year 2003

(b) 4 percent fix ed rate life annuity, age 65, year 2003
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!Fig 10. U K  male pensioners: comparison of simulated 2.5, 50, 97.5 percentiles!

!and m.l.e. estimates. S trategy B  displays are with/without a scale parameter.!

(a) L ife ex pectancy, age 75, year 2003

(b) 4 percent fix ed rate life annuity, age 75, year 2003
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!Fig 11. U K  male pensioners: comparison of simulated 2.5, 50, 97.5 percentiles!

!and m.l.e. estimates. S trategy B  displays are with/without a scale parameter.!

(a) L ife ex pectancy, age 65, year 2012

(b) 4 percent fix ed rate life annuity, age 65, year 2012
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!Fig 12. U K  male pensioners: comparison of S trategy B  simulated 2.5, 50, 97.5!

!percentiles, with and without a scale parameter, under L C  modelling with

!different versions of the information matrix , (V ersion 1 as in Figs 8-11).!

(a) Force of mortality, age 65, year 2003

(b) L ife ex pectancy, age 65, year 2003

(c) 4 percent fix ed rate life annuity, age 65, year 2003

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020 0.022 0.024
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L C : mu(65,2003)

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020 0.022 0.024
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L C : mu(65,2003)

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020 0.022 0.024
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L C : mu(65,2003)

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020 0.022 0.024
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L C : mu(65,2003)

V ersion 1

V ersion 2

V ersion 3

m.l.e.

19.6 19.8 20.0 20.2 20.4 20.6 20.8 21.0 21.2 21.4 21.6 21.8 22.0 22.2 22.4 22.6
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L C : e(65,2003) computed by cohort

19.6 19.8 20.0 20.2 20.4 20.6 20.8 21.0 21.2 21.4 21.6 21.8 22.0 22.2 22.4 22.6
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L C : e(65,2003) computed by cohort

19.6 19.8 20.0 20.2 20.4 20.6 20.8 21.0 21.2 21.4 21.6 21.8 22.0 22.2 22.4 22.6
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L C : e(65,2003) computed by cohort

19.6 19.8 20.0 20.2 20.4 20.6 20.8 21.0 21.2 21.4 21.6 21.8 22.0 22.2 22.4 22.6
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L C : e(65,2003) computed by cohort

V ersion 1

V ersion 2

V ersion 3

m.l.e.

17.0 17.2 17.4 17.6 17.8 18.0 18.2 18.4 18.6 18.8 19.0 19.2 19.4 19.6 19.8 20.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L C : e(65,2003) computed by period

17.0 17.2 17.4 17.6 17.8 18.0 18.2 18.4 18.6 18.8 19.0 19.2 19.4 19.6 19.8 20.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L C : e(65,2003) computed by period

17.0 17.2 17.4 17.6 17.8 18.0 18.2 18.4 18.6 18.8 19.0 19.2 19.4 19.6 19.8 20.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L C : e(65,2003) computed by period

17.0 17.2 17.4 17.6 17.8 18.0 18.2 18.4 18.6 18.8 19.0 19.2 19.4 19.6 19.8 20.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L C : e(65,2003) computed by period

V ersion 1

V ersion 2

V ersion 3

m.l.e.

12.0 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 14.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L C : a(65,2003) computed by cohort

12.0 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 14.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L C : a(65,2003) computed by cohort

12.0 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 14.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L C : a(65,2003) computed by cohort

12.0 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 14.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L C : a(65,2003) computed by cohort

V ersion 1

V ersion 2

V ersion 3

m.l.e.

11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12.0 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 13.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L P : a(65,2003) computed by period

11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12.0 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 13.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L P : a(65,2003) computed by period

11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12.0 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 13.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L P : a(65,2003) computed by period

11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12.0 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 13.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L P : a(65,2003) computed by period

V ersion 1

V ersion 2

V ersion 3

m.l.e.

40



41

!(a)  P oisson joint modelling: L C /L G and L P /L G structures, superimposed detail!

!(b)  N egative binomial modelling: L C  and L P  structures, superimposed detail!

Fig 13. L eft frames: actual minus ex pected annual total deaths.

U pper right frame: P oisson joint modelling scale parameters.

L ower right frame: negative binomial variance function parameters.
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!Fig 14. U K  male pensioners: comparison of P oisson joint &  single models and!

the negative binomial model; simulated 2.5, 50, 97.5 percentiles.

(a) L ife ex pectancy, age 65, year 2003

(b) 4 percent fix ed rate life annuity, age 65, year 2003
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(a) computations by period, age 65, various periods (t > 2003).

(b) computations by cohort, period 2003, various ages (x ).

Fig 15. U K  male pensioners: predicted life ex pectancies. L C  structure.

C omparison 2.5, 50, 97.5 precentiles: (i) S trategy B , P oisson with

scale parameter (version 1). (ii) S trategy A, negative binomial.

(iii) T heoretical based counterpart.
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