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Abstract

Despite their effectiveness, linear models for realized variance neglect measurement errors on inte-

grated variance and exhibit several forms of misspecification due to the inherent nonlinear dynamics

of volatility. We propose new extensions of the popular approximate long-memory HAR model apt to

disentangle these effects and quantify their separate impact on volatility forecasts. By combining the

asymptotic theory of the realized variance estimator with the Kalman filter and by introducing time-

varying HAR parameters, we build new models that account for: (i) measurement errors (HARK), (ii)

nonlinear dependencies (SHAR) and (iii) both measurement errors and nonlinearities (SHARK). The

proposed models are simply estimated through standard maximum likelihood methods and are shown,

both on simulated and real data, to provide better out-of-sample forecasts compared to standard HAR

specifications and other competing approaches.
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1 Introduction

Estimating and forecasting the volatility of financial markets is a prominent topic in theoretical and applied

finance. Andersen and Bollerslev (1998) were the first to advocate the use of realized variance computed

from high-frequency data as an accurate proxy of the latent integrated variance. Linear reduced-form

specifications for time series of realized variance are widely recognized today as being extremely powerful

in predicting financial volatility (Andersen et al. 2003). However, the vast majority of these dynamic spec-

ifications ignore two key aspects: (i) realized variance is a noisy estimate of the true integrated variance

and (ii) volatility dynamics are highly nonlinear. In particular, the HAR model of Corsi (2009), one of the

most popular dynamic specification for realized volatility, suffers from three main forms of misspecification

when estimated on realized variance series: (a) biased OLS estimates (Bollerslev et al. 2016a); (b) auto-

correlated and highly heteroskedastic residuals (Corsi et al. 2008); (c) time-varying OLS coefficients (Chen

et al. 2010). While (a) is related to measurement errors, (b) and (c) are due to nonlinear dependencies,

i.e. deviations of the true underlying volatility dynamics from the linear HAR specification.

In this work, we aim to disentangle and quantify the impact of measurement errors and nonlinearities

on volatility forecasts provided by the HAR. The strategy adopted here is a step-by-step approach. We

first devise different HAR extensions aimed to account separately for each effect. Then, we combine the

different approaches in a single model that takes into account all the effects. In doing so, we can quantify

the forecast gains resulting from removing each form of misspecification. The specific choice of the HAR

model is not restrictive, as the same approach can be applied to any linear specification for realized variance.

As a first step, we write the HAR in a linear state-space representation where the time-varying variance

of the measurement error is related to realized quarticity, as prescribed by the asymptotic theory of realized

variance (Barndorff-Nielsen and Shephard 2002). The Kalman filter allows to easily estimate bias-corrected

HAR parameters and incorporates the effect of measurement errors through a time-varying Kalman gain.

We name this model HAR-Kalman (HARK). The HARK corrects HAR forecasts based on the uncertainty

with which volatility is measured. It provides more conservative forecasts when current volatility estimates

are noisy and, in contrast, generates more responsive forecasts when volatility is measured with a good

accuracy.

Compared to the HAR, the HARlog, i.e. the HAR estimated on log(RVt) series, provides a better

dynamic specification for realized variance (see e.g. Corsi et al. 2008). However, even on log(RVt) series,

residuals feature significant heteroskedasticity. In addition, OLS coefficients tend to change significantly

when estimating the model on different time windows. These empirical findings reveal that realized variance

series are far from being generated by a linear process. We devise an HARlog extension that features

heteroskedastic errors and time-varying coefficients. In particular, following Creal et al. (2013), we adopt
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an observation-driven approach where parameters evolve based on the score of the conditional likelihood.

The resulting model, the Score-HAR (SHAR), is nonlinear in nature and features i.i.d. standardized

residuals when estimated on real data. It is worth underlying that, even if the nonlinearities captured by

the SHAR are related to heteroskedasticity and time-varying coefficients, this specification can describe

more general forms of nonlinear dependencies. Indeed, Blasques et al. (2014) showed that general nonlinear

autoregressive models1 can be equivalently represented as linear autoregressive models with time-varying

parameters. They proved that this formulation is optimal from an information theoretic perspective,

provided that parameters are driven by the score of the conditional likelihood. This result is confirmed by

our empirical results, which show that the SHAR performs well compared to other nonlinear specifications,

like the HARST model of McAleer and Medeiros (2008).

As a final step, we combine together the HARK and the SHAR to obtain a more general model,

the SHARK, that accounts for all forms of misspecification. In particular, we let the parameters of

the HARK evolve through an observation-driven update scheme. The resulting model is conditionally

Gaussian and can be handled by the Kalman filter. As underlined by Harvey (1991), this method allows to

introduce nonlinearities into a linear state-space representation while still maintaining a closed form for the

likelihood function. Parameters are driven by the score of the conditional likelihood, and thus estimation

can be performed as described by Delle Monache et al. (2016). As the HARK, the SHARK can handle

measurement errors, but also accounts for heteroskedasticity and time-varying parameters. As the SHAR,

the SHARK accounts for nonlinear dependencies, but provides more responsive time-varying parameters,

since static parameters are not bias attenuated by measurement errors.

Our empirical analysis, performed on both index future and individual stock data, provides strong

evidence that the effects captured by the HARK, SHAR and SHARK are relevant for forecasting volatility.

As a matter of fact, the three models are always included in the model confidence set of Hansen et al.

(2011), while the HARlog and other competing models feature much lower p-values and are excluded in the

vast majority of the cases. Interestingly, we found that the SHAR and the SHARK tend to outperform

the benchmark models even if the former are estimated on a fixed window and the latter are estimated on

a rolling window. Indeed, the SHAR and the SHARK have built-in time-varying HAR coefficients, which

automatically adapt to changes in the persistence of volatility. This is true even if the static parameters

of the two models are not re-estimated over time.

Comparing the relative forecast gains among our models, we obtain that, from a forecasting perspective,

measurement errors are relevant when realized variance is computed at small and intermediate sampling

frequencies. We also find that the corresponding forecast gains slightly increase with the forecast horizon.

1Nonlinear autoregressive models have the general form yt = φ(Yt−1,Θ) + ut, where φ(·) is a nonlinear function of past

observations Yt−1 = {yt−1, yt−2, . . . }, Θ is a set of parameters and ut is a zero-mean sequence of independent innovations.
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The impact of heteroskedasticity is always relevant, especially at long forecast horizons. Finally, time-

varying parameters provide statistically significant forecast gains that are independent from the sampling

frequency and slightly increase with the forecast horizon.

The problem of taking into account the effect of measurement errors on realized variance forecasts was

recently tackled by Bollerslev et al. (2016a), who devised the HARQ model. The main idea is to augment

the HAR with a term proportional to lagged RVt’s that also depends on realized quarticity. The new term

adjusts HAR forecasts based on the current level of uncertainty on realized variance. Our approach differs

in several aspects. First, assuming an HAR plus noise as a DGP for the realized variance, the Kalman

filter provides MVLUE estimates (see e.g. Durbin and Koopman 2012) and corrections due to measurement

errors are independent from the level of heteroskedasticity of the noise. Second, forecasting gains provided

by the HARQ may in principle be imputable to potential nonlinear dependencies captured by the correction

term, as recently pointed out by Cipollini et al. (2017), or result from a mixture of measurement errors

and nonlinearity. Instead, our approach allows to quantify the separate effect of estimation errors, after

disentangling it from nonlinearities.

Our work is also related to that of Asai et al. (2012), who employed a state-space representation

to account for measurement errors. However, the error variance in their work is homoskedastic and is

not related to realized quarticity. Bekierman and Manner (2018) proposed a modification of the HARQ

model by allowing the daily coefficient of the HAR to be driven by a latent Gaussian process. This

specification is nested into our SHAR model, which has also time-varying weekly and monthly coefficients

and heteroskedastic innovations. The HAR model has been extended into several directions. For instance,

McAleer and Medeiros (2008) proposed a smooth transition HAR specification to capture different volatility

regimes. Andersen et al. (2007) and Patton and Sheppard (2015) showed how to improve predictability

by separating continuous and jump components, and by separating the volatility of positive and negative

returns, respectively. Corsi and Renò (2012) included the effect of leverage. Our formulation can easily

be extended to include these new covariates in the state-space representation. For instance, in the online

appendix, we show how to include leverage in the HARK, SHAR and SHARK models. Finally, Chen et al.

(2018) proposed a non-parametric time-varying HAR specification. Other examples of nonlinear models

for realized variance are the class of MEM models developed by Engle (2002), Engle and Gallo (2006),

Cipollini et al. (2017).

All our three HAR extensions are formulated on log(RVt) series. Therefore, when forecasting, one needs

to take into account the Jensen inequality. We devise simple methods to compute bias-corrected one-step

and multi-steps ahead forecasts.

The rest of the paper is organized as follows. Section 2 introduces the main concepts and describes all the

details related to the estimation of our three HAR extensions; in Section 3, we provide empirical evidence
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on the relevance of the effects captured by our models; finally, Section 4 concludes. Complementary results

and proofs are reported in the online appendix.

2 Theoretical framework

2.1 Asymptotic theory of realized variance estimation

Let Ps denote the asset price at time s. We assume that the log-price Xs = log(Ps) evolves according to

a Brownian semimartingale process:

dXs = µsds+ σsdWs (1)

where µs and σs are drift and instantaneous volatility processes satisfying the usual assumptions, and Ws

is a Wiener process. The day t integrated variance of Xs is defined as:

IVt =

∫ t

t−1
σ2(s)ds (2)

where the unit time interval corresponds to one trading day. Note that IVt turns out to be equal to the

quadratic variation of Xs computed on the interval [t− 1, t] (see e.g. Protter 1992).

The day t realized variance is defined as:

RVt =
M∑
i=1

r2
i,t (3)

where the intraday returns ri,t = Xt−1+i∆ −Xt−1+(i−1)∆, i = 1, . . . ,M are computed on M intraday time

intervals of length ∆ = 1/M . The econometric theory of Barndorff-Nielsen and Shephard (2002) suggests

that, as the intraday period ∆ goes to zero, the estimation error is mixed normal distributed:

RVt = IVt + εt, εt ∼ MN(0, 2∆IQt) (4)

where IQt =
∫ t
t−1 σ

4(s)ds is the integrated quarticity of the underlying semimartingale process. IQt can

consistently be estimated using the realized quarticity estimator:

RQt =
M

3

M∑
i=1

r4
i,t (5)

For later convenience, we also report the asymptotic distribution of log(RVt). Using the delta method,

it is immediate to see that, as ∆→ 0:

log(RVt) = log(IVt) + ξt, ξt ∼ MN

(
0, 2∆

IQt
IV 2

t

)
(6)

A consistent estimator Vt of the variance of ξt can be obtained by replacing IVt and IQt with their consistent

estimators (3), (5), namely:

Vt =
2

3

∑M
i=1 r

4
i,t

(
∑M

i=1 r
2
i,t)

2
(7)
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As pointed out by Barndorff-Nielsen and Shephard (2002), this finite sample approximation is quite

accurate even at moderate values of M , where the approximation (4) is instead less reliable. Note that

jumps and microstructure effects have not been considered. In order take them into account, it is sufficient

to replace RVt and RQt with robust estimators. However, our general approach remains unchanged.

2.2 Reduced-form models for volatility estimation and forecasting

If one neglects the measurement error term in eq. (4), then RVt = IVt and the integrated variance is

observable. This assumption is at the basis of the reduced-form specifications that have been employed in

last years to model and forecast volatility using time series of realized variance.

One of the most popular linear specification is the approximate long-memory HAR model of Corsi

(2009). The HAR reads2:

RVt+1 = β0 + β1RVt + β2RVt−1|t−4 + β3RVt−5|t−21 + ηt+1 (8)

where ηt+1 are i.i.d. innovations and RVt1|t2 denotes the average of daily RV’s from day t1 to day t2.

Formally, the HAR is not a long-memory process. However, the aggregation of volatilities at short and

long time-scales leads to a slowly decaying autocorrelation function that closely resembles the one observed

on real financial data. The model can be simply estimated by OLS and provides out-of-sample forecasts

that have been proved to perform as well as those of long-memory ARFIMA models (Corsi 2009). Given

the simplicity and effectiveness of the HAR, we use it as a basis for our modeling framework and empirical

work. However, any linear specification for RVt is susceptible of treatment within this framework.

2.3 Measurement errors

The main effect of the measurement error term in eq. (4) is the well-known attenuation bias of OLS

coefficients in presence of latent regressors (see e.g. Wansbeek and Meijer 2000). As a consequence, the

estimated model features lower persistence and volatility forecasts are less accurate. Recently, there was an

increased interest in examining the effect of measurement errors on HAR forecasts. Bollerslev et al. (2016a)

suggested to augment the HAR with a term depending on realized quarticity. The latter underrates RV

forecasts in case estimation errors are large, and generates more responsive forecasts when errors are small.

Their HARQ model reads:

RVt+1 = β0 + (β1 + β1QRQ
1/2
t )RVt + β2RVt−1|t−4 + β3RVt−5|t−21 + ηt+1 (9)

If β1Q < 0, the term β1QRQ
1/2
t corrects RVt+1 based on the degree of uncertainty with which RVt is

measured. Similar correction terms can be included in the weekly and monthly regressors.

2Note that this HAR specification is identical to that in Patton and Sheppard (2015) and Corsi et al. (2013). We use it

throughout the paper.
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In order to examine the effect of the correction provided by the HARQ, we simulate IVt using an HAR

specification and contaminate the simulated observations with a white noise term:

RVt = IVt + εt (10)

IVt+1 = β0 + β1IVt + β2IVt−1|t−4 + β3IVt−5|t−21 + ηt+1 (11)

where εt ∼ NID(0, ht) and ηt+1 ∼ NID(0, q) are measurement and model disturbances with E[εt, ηt] = ρ.

Observations are simulated by first sampling IVt, t = 1, . . . , 22, from a lognormal distribution with mean

and variance given by the unconditional mean and variance of the process (11), and then iteratively

applying eq. (10) and (11). Since the HARQ relies on having an heteroskedastic measurement error, we

model dynamically ht through a GARCH process:

zt =
√
htζt (12)

ht+1 = ω + γz2
t + νht (13)

where ζt ∼ NID(0, 1). We define the signal-to-noise ratio as δ = q(1 − γ − ν)/ω, and in this example we

set ρ = 0.4, q = 0.1, γ = 0.01, ρ = 0.95 and ω = q(1− γ − ρ), such that δ = 1. The remaining parameters

are set as β0 = 1, β1 = 0.5, β2 = 0.2, β3 = 0.1.

After generating T = 1000 observations for N = 1000 Monte-Carlo repetitions, the simulated RVt and

ht are used to estimate3 the HAR and HARQ models. In Figure (1), we plot kernel density estimates of

zi = θ̂i− θi, where θi, θ̂i, i = 1, . . . , 4, denote the parameters of the HAR specification in eq. (11) and their

estimates obtained using the HAR and HARQ models. In both cases, the coefficient β1 of RVt exhibits

a strong negative bias. However, the bias is lower in the HARQ, which in turn is more persistent than

the standard HAR model. The other two coefficients are instead less biased, since measurement errors are

smoothed out when averaging lagged RVt ’s.

Note that the estimated HARQ coefficient β1Q depends on the level of heteroskedasticity of εt. If ht

is homoskedastic, β1Q is not identifiable, even in presence of large measurement error variance. If ht is

time-varying, larger variations are related to larger estimates of β1, which lead to better forecasts over the

standard HAR model.

2.4 The HARK model

The Kalman filter provides a natural way of recovering consistent and unbiased estimates of the HAR

coefficients when observations of IVt are contaminated by noise. Let Ft be the σ-field generated by RVt

3On real data ht is not available and is replaced by the RQt estimator in eq. (5).
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and RQt. Let us consider the following linear state-space representation:

RVt = Zαt + εt, εt ∼ NID(0, ht) (14)

αt+1 = c+ Tαt + ηt, ηt ∼ NID(0, Q) (15)

where we have introduced the 22× 1 state vector and the 22× 22 transition matrix:

αt+1 =


IVt+1

IVt
...

IVt−20

 , T =



β1,
1
4β2

4 terms︷︸︸︷
· · · 1

4β2,
1
17β3

17 terms︷︸︸︷
· · · 1

17β3

1 0 · · · · · · · · · 0 0

0
. . .

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 · · · · · · · · · · · · 1 0



(16)

together with the 22× 1 vector of constants and the 22× 22 covariance matrix:

c =


β0

0
...

0

 , Q =


q 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

 (17)

The 22-dimensional row vector Z = (1, 0 . . . , 0) selects the first element of αt+1. The variance of the

measurement error ht is assumed to be measurable with respect to the information set Ft.

Model (14), (15) is a linear Gaussian state-space representation that can be estimated through standard

maximum likelihood methods using the Kalman filter (see e.g. Durbin and Koopman 2012). The latter

allows to recursively compute the conditional mean at+1 = E[αt+1|Ft] and the conditional variance Pt+1 =

Var[αt+1|Ft] of the state vector αt. The log-likelihood can be computed as:

logL(RV1, . . . , RVT |Φ) = −22

2
T log(2π)− 1

2

T∑
t=1

(
log |Ft|+ v′tF

−1
t vt

)
(18)

where vt = RVt −Zat is the prediction error, Ft = ZPtZ
′ + ht is the corresponding covariance matrix and

Φ = {β0, β1, β2, β3, q} is the set of parameters of the model. In Section (D) in the online appendix, we

report the Kalman filter recursions to compute at and Ft. Parameters are estimated by maximizing the

log-likelihood through a quasi-Newton algorithm:

Φ̂ = argmax
Φ

logL(RV1, . . . , RVT |Φ) (19)

In order to select a proxy for the variance ht of the measurement error term in eq. (14), we rely on the

asymptotic theory of Barndorff-Nielsen and Shephard (2002) in eq. (4) and use the realized quarticity
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estimator in eq. (5). In Section (3.4), we will examine more flexible specifications for ht to test deviations

from this assumption.

The one-step-ahead prediction in the Kalman filter is given by at+1 = c + Tat + Ktvt, where Kt =

TPtZ
′F−1
t is the Kalman gain. If the error variance ht is large, meaning that RVt is estimated with large

uncertainty, the predicted variance is penalized by a small gain. In contrast, if ht is small, meaning that

RVt is estimated with great accuracy, the predicted variance turns out to be more responsive to RVt. We

name this model HAR-Kalman (HARK).

Figure (2) shows kernel density estimates of the pivotal HARK statistics obtained using the same data

generating process of Section (2.3). As done with the HARQ in the previous experiment, we use the true

measurement error variance ht to estimate the HARK. The estimates provided by the HARK are unbiased

and distributed according to a normal, as predicted by the econometric theory on linear state-space models.

The estimation of the model is very fast, since system matrices are sparse.

It is important to examine whether improvements in parameter estimates translate into better out-

of-sample forecasts. For different values of the signal-to-noise ratio δ, we generate N = 250 Monte-Carlo

realizations of model (10), (11) with T = 2000 observations. The latter 1000 observations are predicted

using a rolling window of 1000 observations. In Figure (3), we show the out-of-sample MSE of HARQ and

HARK models relative to the MSE of the HAR model, for different values of the signal-to-noise ratio δ. As

expected, there are large forecast gains when δ is small, since the observations of the underlying volatility

process are mainly dominated by noise. However, the MSE provided by the HARK is always lower than

that of the HARQ. This is not surprising, as the HARQ model is misspecified when the true DGP is the

one in eq. (10), (11), while the HARK provides the correct specification4.

2.5 The SHAR model

The DGP (10), (11) used in the previous analysis takes into account the effect of measurement errors when

forecasting IVt, but is characterized by a linear transition equation. In order to understand whether a

linear specification fits well real data, we consider high-frequency futures prices of the S&P 500 market

index and compute daily series of realized variance by summing squares of 5-min returns. The resulting

time-series is shown in Figure (4) and includes 4259 observations, from 03-01-1995 to 21-06-2013.

It is known that the HARlog, i.e. the HAR estimated on log(RVt) series, features less heteroskedastic

residuals (see e.g. Corsi et al. 2008). This is evident from figure (5), which shows the OLS residuals of

4Note that the standard linear Gaussian representation in eq. (14), (15) assumes that the two disturbances εt and ηt are

uncorrelated. The Kalman filter can easily be extended to include correlated measurement and innovation disturbances, see

e.g. Simon (2006). However, this modification does not lead to significant out-of-sample forecast gains on real data. For

simplicity, we thus consider the standard linear-Gaussian representation with uncorrelated disturbances.
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HAR and HARlog, and from figure (6), which shows the sample autocorrelation function of residuals and

squared residuals of the two models. Compared to the HAR, the residuals of the HARlog are uncorrelated,

while squared residuals have weaker serial correlation.

As a consequence, being the HARK based on a linear state-space representation, it is convenient to

formulate it on logRVt, rather then on RVt. The only modification to the formulation in Section (2.4)

is that we now rely on the asymptotic distribution of logRVt and, consequently, the measurement error

variance ht is computed using eq. (6) and (7). It is useful to investigate whether the weaker misspecification

of the HARlog model translates into superior out-of-sample forecasts compared to the HAR model on RVt.

In the empirical application in Section (3), we show that the HARlog outperforms the HAR, with forecast

gains that are statistically significant for all the time-series under investigation. A similar result is found in

the simulation study in Section (A) of the online appendix, where we consider a DGP that closely resembles

real financial time-series.

We can write the HARlog model as:

RV l
t+1 = β0 + β1RV

l
t + β2RV

l
t−1|t−4 + β3RV

l
t−5|t−21 + ηt+1, ηt+1 ∼ NID(0, q) (20)

where RV l
t = log(RVt), and RVt−1|t−4, RVt−5|t−21 are built as in the HAR, but are computed through

log(RVt). The heteroskedasticity featured by the HARlog suggests that this residual misspecification can be

removed by introducing a time-varying conditional variance for the innovations ηt. The HARlog coefficients

are also unstable over time. Figure (7) shows the dynamics of β0, β1, β2, β3 obtained by estimating the

HARlog on daily realized variances of S&P500 future prices using a rolling window of 1000 observations.

Variations over time of the estimated coefficients are significant and suggest that volatility forecasts might

be improved by modeling dynamically the HARlog coefficients.

We consider the following HARlog model with time-varying parameters:

RV l
t+1 = β0,t+1 + β1,t+1RV

l
t + β2,t+1RV

l
t−1|t−4 + β3,t+1RV

l
t−5|t−21 + ηt+1, ηt+1 ∼ NID(0, qt+1) (21)

Score-driven models, introduced by Creal et al. (2013) and Harvey (2013), provide a useful methodological

framework to model time-varying parameters. In this class of observation-driven models, parameters change

over time based on the score of the conditional density. We define the vector of time-varying parameters

at time t as:

ft =
(
β0,t, β1,t, β2,t, β3,t, log qt

)′
The next value ft+1 is determined by the following update rule:

ft+1 = ω +Ast +Bft (22)
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where st is the scaled score vector:

st = (It|t−1)−1∇t, ∇t =

[
∂log p(RV l

t |ft,Bt−1,Θ)

∂f ′t

]′
, It|t−1 = E[∇t∇′t]

and Bt denotes the information set generated by current and past observations of RVt. The inverse of

the information matrix It|t−1 is introduced to correct for the curvature of the likelihood function. The

vector Θ = {ω, vec(A), vec(B)} denotes the set of the static parameters of the model. The conditional

log-likelihood is given by:

log p(RV l
t |ft,Bt−1,Θ) = −1

2

(
log qt +

(RV l
t − µt|t−1)2

qt

)
(23)

where µt|t−1 is the conditional mean:

µt|t−1 = E[RV l
t |ft,Bt−1] = β0,t + β1,tRV

l
t−1 + β2,tRV

l
t−2|t−5 + β3,tRV

l
t−6|t−22 (24)

The static parameters Θ are estimated by numerically optimizing the log-likelihood function:

Θ̂ = argmax
Θ

logL(RV l
1 , . . . , RV

l
T |Θ) (25)

where logL(RV l
1 , . . . , RV

l
T |Θ) is computed as:

logL(RV l
1 , . . . , RV

l
T |Θ) =

T∑
t=1

log p(RV l
t |ft,Bt−1,Θ) (26)

We denote model (21), equipped with the update rule in eq. (22), as Score-HAR (SHAR) model. In Section

(E) in the online appendix, we will recover formulas for ∇t and It|t−1. Note that, if we set ft = log qt, i.e.

if we neglect dynamics in the HAR coefficients, we obtain the heteroskedastic HAR model of Corsi et al.

(2008) as a particular case of the SHAR model.

As shown by Blasques et al. (2014), autoregressive models with time-varying coefficients can be em-

ployed as alternative representations for general nonlinear autoregressive models. This result implies that

the SHAR can capture more general forms of nonlinear dependencies. Indeed, in the empirical analysis

in Section (3), we show that the SHAR performs well compared to the HARST model of McAleer and

Medeiros (2008), which is a nonlinear smooth transition HAR specification with multiple volatility regimes.

In order to examine whether the SHAR is able to remove the misspecification of the HARlog, we look at

the standardized residuals η̂t = (RV l
t − µt|t−1)/

√
qt obtained by estimating the model on the same sample

used in the previous analysis. Figure (8) shows sample autocorrelations of η̂t and η̂2
t , while Figure (9)

shows kernel density estimates of η̂t. The weak heteroskedasticity of HARlog residuals in Figure (6) has

now disappeared and η̂t is i.i.d. Slight deviations from normality in the tails are imputable to the huge

spikes observed during the 2008-2009. Similar results are obtained by estimating the SHAR on individual

stock data.
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2.6 The SHARK model

The HARK accounts for measurement errors when estimating and forecasting volatility with an HARlog

specification. However, the HARlog exhibits heteroskedastic residuals and time-varying coefficients. As

done with the SHAR, we can introduce time-varying parameters in the HARK in order to correct for its

residual misspecification. The new model reads:

RV l
t = Zαt + εt, εt ∼ NID(0, ht) (27)

αt+1 = ct + Ttαt + ηt, ηt ∼ NID(0, Qt) (28)

where the system matrices have the same form as in eq. (16), (17), but parameters β0,t, β1,t, β2,t, β3,t, qt

are now time-varying.

Score-driven models can be employed to model time-varying parameters in a linear Gaussian state-space

representation. Indeed, if one assumes that the time-varying system matrices ct, Tt and Qt are known given

past observations, the model is conditionally Gaussian and can still be handled by the Kalman filter. By

doing so, the model features nonlinear dynamics, but the state-space representation maintains a closed

form for the likelihood function. Creal et al. (2008) and Delle Monache et al. (2016) showed that, by

combining the Kalman filter and the score-driven filter, one obtains a unified filter for both the latent state

vector and the time-varying parameters. As in the SHAR, the latter are given by

ft =
(
β0,t, β1,t, β2,t, β3,t, log qt

)′
(29)

and follow the usual update rule:

ft+1 = ζ + Cst +Dft (30)

where st = (It|t−1)−1∇t. As shown by Delle Monache et al. (2016), ∇t and It|t−1 can be computed as5:

∇t = −1

2

[
Ḟ ′t(Int ⊗ F−1

t )vec(Int − vtv′tF−1
t ) + 2v̇′tF

−1
t vt

]
(31)

It|t−1 =
1

2

[
Ḟ ′t(F

−1
t ⊗ F−1

t )Ḟt + 2v̇′tF
−1
t v̇t

]
(32)

where vt and Ft are the Kalman filter prediction error and its covariance matrix. The two quantities vt

and Ft, are computed as an output of the Kalman filter with time-varying parameters. Instead, v̇t and Ḟt

denote derivatives of vt and Ft with respect to ft, namely v̇t = ∂vt/∂f
′
t and Ḟt = ∂vec(Ft)/∂f

′
t . They can

be computed through a parallel set of recursions that is reported in Section (G) in the online appendix.

The log-likelihood is conveniently computed in the prediction-error decomposition:

logL(RV l
1 , . . . , RV

l
T |Ω) = −22

2
T log(2π)− 1

2

T∑
t=1

(
log |Ft|+ v′tF

−1
t vt

)
(33)

5The notation is described in detail in the online appendix.
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where Ω = {ζ, vec(C), vec(D)} denotes the set of static parameters of the model. The time-varying

parameters are updated at each time step using eq. (30) and computing ∇t and It|t−1 through eq. (31),

(32). The static parameters are estimated by optimizing numerically the log-likelihood with a quasi-Newton

method:

Ω̂ = argmax
Ω

logL(RV l
1 , . . . , RV

l
T |Ω) (34)

We denote model (27), (28), equipped with the update rule in eq. (30), as Score-HAR-Kalman (SHARK).

As we will see in our empirical study in Section (3), compared to the SHAR, the SHARK provides more

responsive time-varying parameters, as they are not affected by the attenuation bias due to measurement

errors.

2.7 Forecast

In this Section, we provide guidelines for computing one-step and multi-step-ahead forecasts from our

models. Except for the HAR, all other models are estimated on log(RVt) series. Thus, when computing

forecasts of RVt, it is essential to take into account the bias generated by the logarithm transformation.

2.7.1 One-step-ahead

The one-step-ahead forecast of the HARlog model is simply computed using the moment generating function

of the normal distribution:

Et[exp(RV l
t+1)] = exp

(
β0 + β1RV

l
t + β2RV

l
t−1|t−4 + β3RV

l
t−5|t−21 +

q2

2

)
(35)

In the HARK, from the theory of linear Gaussian state-space models, we know that αt+1|Ft ∼ N(at+1, Pt+1).

Thus, using the moment generating function of the multivariate normal distribution, we have:

Et[exp(Zαt+1)] = exp

(
Zat+1 +

1

2
ZPt+1Z

′
)

(36)

Since the time-varying parameters in the SHAR and SHARK are one-step ahead predictable, we obtain

forecast formulas similar to those in eq. (35) and (36), respectively. In particular, in the case of the SHAR,

we have:

Et[exp(RV l
t+1)] = exp

(
β0,t+1 + β1,t+1RV

l
t + β2,t+1RV

l
t−1|t−4 + β3,t+1RV

l
t−5|t−21 +

q2
t+1

2

)
(37)

In the case of the SHARK, we obtain the same one-step-ahead forecast of the HARK in eq. (36), but at+1

and Pt+1 are computed with the Kalman filter with time-varying parameters given in the online Appendix

F.
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2.7.2 Multi-step-ahead

We provide closed form bias-corrected expressions for multi-step ahead forecasts of HARlog and HARK

models. In the SHAR and SHARK models, the presence of time-varying parameters does not allow for

similar closed form expressions. In this case, as suggested by Harvey (2013) and Creal et al. (2014),

we evaluate the conditional mean of the predictive density through simulations. This is easily done by

simulating recursively eq. (21), (22) for the SHAR and eq. (27), (28), (30) for the SHARK.

As done with the HARK, we write the HARlog model in a vectorial representation by introducing the

22-dimensional column vector RV
l
t = (RV l

t+1, RV
l
t , · · · , RV l

t−21)′. Eq. (20) can thus be written as:

RV
l
t+1 = cl + TlRV

l
t + ηt, ηt ∼ NID(0, Ql) (38)

where cl, Tl and Ql have the same structure as c, T and Q in Section (2.4), but contain the parameters of

the HARlog model. In the online appendix, we prove the following two propositions:

Proposition 1. The j-th step-ahead forecast of the HARlog model is given by:

Et[exp(ZRV t+j)] = exp

{
Z
[
(In + · · ·+ T j−1

l )cl + T jl RV
l
t

]
+

1

2
Z
[
Q+ · · ·+ T j−1Q(T j−1)′

]
Z ′
}

Proposition 2. The j-th step-ahead forecast of the HARK model is given by:

Et[exp(Zαt+j)] = exp

{
Z
[
(In + · · ·+ T j−2)c+ T j−1at+1

]
+

1

2
Z
[
T j−1Pt+1(T j−1)′ +Q+ · · ·+ T j−2Q(T j−2)′

]
Z ′
}

3 Empirical evidence

In order to test the proposed models on real time series, we use high-frequency data of both S&P500 market

index future and individual stock prices. The S&P500 sample is the same used in Section (2.5). It includes

4259 business days, from 03-01-1995 to 21-06-2013. Equity data are provided by Thomson Reuters and

comprise 18 frequently traded NYSE stocks. The sample goes from 03-01-2006 to 31-12-2014, spanning a

total of 2250 business days. Both datasets contain one-second transaction prices from 9:30 to 16:00.

Since one of the main purposes of our analysis is to assess the effect of measurement errors, we compute

realized variance at different sampling frequencies. We set M = 39, 78, 390, corresponding to sampling

10, 5, 1-minute returns6. Summary statistics of the series of realized variances are reported in the online

appendix.

6On S&P500 data, the average realized variance is approximately constant over different sampling frequencies. For M =

39, 78, 390, it is equal to 0.90, 0.92, 0.89, respectively, suggesting that microstructure effects are small. Therefore, the standard

realized variance estimator provides unbiased estimates of IVt for all the three sampling frequencies. Similar considerations

hold for individual stock data.
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We perform the out-of-sample analysis using both a static window (SW) and a rolling window (RW).

The length of the rolling window is 2000 days in both datasets. In the case of S&P500 data, we predict the

last 2259 observations, from December 2002 to June 2013. In the case of NYSE stock data, we predict the

last 250 observations, corresponding to all the business days of 2014. The in-sample analysis is performed

on the last 2259 observations on S&P500 data. In the case of NYSE stock data, the last 250 observations

are not sufficient to obtain a good inference. We thus perform the in-sample analysis on the last 1000

observations.

We used the following parsimonious specification for the dynamic equations (22), (30) in the SHAR

and SHARK:

ft+1 = ft +Ast (39)

ft+1 = ft + Cst (40)

where A and C are 5 × 5 diagonal matrices. The static parameters in the SHAR are the five diagonal

elements of A, that we denote by a1, a2, a3, a4, a5. Similarly, the static parameters in the SHARK are the

five diagonal elements of C, that we denote by c1, c2, c3, c4, c5. More flexible specifications are possible,

but they do not lead to superior out-of-sample forecasts.

The HARQ may provide negative RVt estimates. In that case, as suggested by Bollerslev et al. (2016b),

we replace the negative estimates with the average of past realized variances. As a benchmark, we include

an ARFIMA(1,d,1) with AR and MA parameters denoted by ψ and χ, respectively. We also include the

smooth-transition HAR (HARST) model of McAleer and Medeiros (2008) and the HAR∆J2±
model of

Patton and Sheppard (2015). The latter separates the daily volatility into a continuous component given

by the realized bipower variation, and two signed jump components. The ARFIMA and the HARST are

estimated on log(RVt), while the HAR∆J2±
is estimated on RVt. Indeed, in the latter case we did not find

a statistical significant forecast gain when taking the logarithm. As suggested by McAleer and Medeiros

(2008), we compute the forecast as a simple model average of the linear HARlog and the HARST. Moreover,

we use daily log-returns as a transition variable.

3.1 In-sample analysis

In tables (1)-(3), we report parameter estimates of HAR, HARQ, HARlog, HARK, SHAR, SHARK,

ARFIMA, HARST, HAR∆J2±
models on the whole S&P500 dataset, excluding the first 500 observations.

This pre-sample of 500 observations is used for initializing the time-varying parameters in the SHAR and

SHARK models. Specifically, The HARlog and the HARK are first estimated on the pre-sample, and the

estimated HAR coefficients are used as starting values for the time-varying parameters of the SHAR and

SHARK, respectively. As suggested by Patton (2011), we consider the MSE and QLIKE as loss measures.
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These two measures are indeed robust to measurement errors. We also report, on the last two lines, the

average MSE and QLIKE computed for the 18 NYSE assets.

We note that, for M = 39, the coefficient β1 estimated by the HARK is 0.5420± 0.0153, while that of

the HARlog is 0.4167 ± 0.0158, meaning that the former is correcting for the bias induced by estimation

errors. As M increases, the bias reduces and we observe that the two estimates become closer. The same

effect is observed on loss measures, with the relative difference between the two models being larger for

M = 39, and then reducing as M increases. We also note that the signal-to-noise ratio estimated by both

the HARK and the SHARK increases as M increases, since measurement errors become less relevant.

Figure (10), (11), (12), (13) show, for M = 39, 78, 390, filtered estimates of SHAR and SHARK time-

varying parameters in the whole S&P500 sample. We do not report the β2,t coefficient, as the estimated

parameters a3, c3 are close to zero for both the SHAR and the SHARK. We observe that the SHARK

provides more responsive estimates, especially for M = 39. As M increases, the parameters filtered by the

two models tend to show similar dynamics. Indeed, while the SHARK is able to filter out measurement

errors, SHAR estimates are bias-attenuated by the noise. In Figure (13), we see that both models capture

the residual heteroskedasticity that we observed in Figure (6). However, the time-varying variance esti-

mated by the SHAR is larger than that of the SHARK. This is another consequence of measurement errors.

Indeed, the SHAR does not disentangle the measurement error variance from that of model innovations,

and provides filtered variance estimates that include the contribution of both terms.

The coefficient β1Q of the HARQ is negative, in agreement with the empirical results of Bollerslev et al.

(2016a). Since the correction term in the HARQ accounts for measurement errors, as M increases, β1Q

should become smaller in absolute value. In contrast, for M = 390, it is still significantly different form

zero and it is close to the one computed for M = 39. This empirical finding is in agreement with what we

found in the simulation study in the online appendix, and indicates that the HARQ term can also capture

nonlinear dependencies.

Further insights related to the effect of measurement errors are given by the in-sample log-likelihoods.

As expected, the SHARK has the largest estimated log-likelihood for all M ’s, implying better in-sample

fit resulting from modeling both measurement errors and time-varying parameters. The estimated log-

likelihood of the HARK is larger than that of the SHAR for M = 39 and M = 78, where measurement

errors play a more relevant role.

3.2 Out-of-sample analysis

As underlined, the period used for the out-of-sample analysis on S&P500 data coincides with the last 2259

days, from December 2002 to June 2013. We divide this long period into two subsamples, the first spanning

from December 2002 to August 2008, and the second going from September 2008 to June 2013. The latter
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includes the 2008 financial crisis and is characterized by a larger volatility. We report average loss measures

computed in these two subsamples. On NYSE stock data, the out-of-sample analysis is instead performed

in the period between January and December 2014.

In our framework, the relative average loss between two models can be interpreted as the forecast gain

resulting from taking into account different forms of misspecification of the HAR. Given a generic loss

measure L(·), we define:

ϕhet =
E[L(HARlog)]

E[L(HAR)]
(41)

ϕ
(1)
tvp =

E[L(SHAR)]

E[L(HARlog)]
, ϕ

(2)
tvp =

E[L(SHARK)]

E[L(HARK)]
(42)

ϕ(1)
err =

E[L(HARK)]

E[L(HARlog)]
, ϕ(2)

err =
E[L(SHARK)]

E[L(SHAR)]
(43)

The first measure, ϕhet, quantifies the forecast gain resulting from removing part of the heteroskedas-

ticity of the HAR residuals. The other two measures, ϕ
(1)
tvp and ϕ

(2)
tvp, quantify the effect of modeling the

residual nonlinearities by introducing time-varying parameters. Finally, ϕ
(1)
err and ϕ

(2)
err assess the impact

of measurement errors. Table (4) shows the results of the out-of-sample analysis on S&P500 data, while

table (5) shows the results on NYSE stock data. The forecast gains defined in eq. (41)-(43) are instead

reported in tables (7), (8).

We first discuss the results obtained on S&P500 data. In the first subsample, from December 2002 to

August 2008, the SHARK provides the lowest MSE and QLIKE. The only exception is for M = 390. In

this case, the SHAR provides a slightly lower MSE, since measurement errors are less relevant. Except

for M = 390, where the HARQ has slightly lower MSE loss, the HARK always outperforms the latter in

terms of both MSE and QLIKE. Compared to the basic HARlog model, all the three extensions considered

here provide lower MSE and QLIKE. We also note that the HARST improves over the HARlog, but is

outperformed by the SHAR.

If one uses the QLIKE as a loss measure, the three HAR extensions and the HARST are the only

models belonging to the 90% model confidence set (Hansen et al. 2011), that we denote by M̂90%. If one

uses the MSE, the HARK and the SHARK are the only models included in M̂90% for M = 39, 78. For

M = 390, all the models but the ARFIMA are included if a rolling window is employed. If a static window

is used, only the SHAR and the SHARK are included. Finally, in most of the cases, the HARlog has lower

MSE and QLIKE compared to the HARQ.

In the second subsample, characterized by a larger volatility, the HARK and the SHARK often provide

the lowest loss measures. In particular, for M = 39, the HARK is the only model included in M̂90%. For

M = 78, the SHARK is also included if one considers the QLIKE as a loss measure. For M = 390, other
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nonlinear specifications like the SHAR and the HARST are also included. The volatility peaks observed

in this subsample are associated to a large uncertainty. The HARK and the SHARK are successful in

underrating volatility forecasts when variance estimates are affected by large measurement errors. This

mechanism explains the nice performance of the two models in this subsample.

On stock data, the HARK, SHAR and SHARK improve significantly over the HARlog, as indicated

by the two loss measures, and by the number of times each model is included in M̂90%. With only two

exceptions, the SHARK is always included in M̂90%, while the HARK and the SHAR are included more

frequently than the other benchmark models.

In the second subsample of &P500 data, and on NYSE stock data, the relative QLIKE of the HARQ

is larger than one. The performance of the HAR and the HAR∆J2±
on stock data also deteriorates

substantially compared to the HARlog. The reason is due to the estimation window including the 2008

financial crisis, which strongly affects the OLS estimates of the two models. The HARlog and all the other

models estimated on log(RVt) are instead less affected by these huge peaks.

The SHAR and the SHARK have built-in time-varying HAR parameters that adapt automatically to

changes in the persistence of volatility. As a consequence, when they are estimated on a static window,

the relative performance with respect to models with constant HAR parameters estimated on a rolling

window does not change substantially. Table 6 shows out-of-sample MSE and QLIKE obtained in the

first subsample of S&P500 data by estimating the SHAR and the SHARK on a static window, and the

remaining models on a rolling window. Compared to table (4), we see that the ranking of the models is

unchanged. Similar results are obtained in the second subsample and on NYSE stock data.

From tables (7), (8), we note that the two forecast gains ϕ
(1)
err and ϕ

(2)
err tend to approach one as M

increases, as one would expect from a model which exclusively accounts for measurement errors. On the first

subsample of S&P500 data, ϕ
(1)
err and ϕ

(2)
err are on average smaller for M = 78 than for M = 39. This result

suggests that the estimator of the noise variance in eq. (7) can provide less precise estimates of the true

variance when computed al lower frequencies. The forecast gains ϕhet resulting from taking into account

heteroskedasticity are substantial, especially in the second subsample of S&P500 data, characterized by

a larger volatility. On NYSE stock data, these forecast gains are slightly larger. Forecast gains resulting

from modeling the residual nonlinear dependencies through time-varying parameters are roughly equal to

2% on average, as can be seen by looking at the values of ϕ
(1)
tvp and ϕ

(2)
tvp in tables (7), (8).

Our empirical findings reveal substantial improvements resulting from correcting for the main types of

misspecification of the HAR. In particular, heteroskedasticity has deep impacts on HAR volatility forecasts,

especially when the model is estimated on turbulent periods. Measurement errors are relevant at small (1-

minute) and intermediate (5-minute) sampling frequencies, while modeling time-varying parameters results

in forecast gains which are roughly equal to 2%.
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We conclude this section by examining in more detail what kind of misspecification is captured by

the HARQ. We found, both on simulated and empirical data, that the HARQ can capture measurement

errors and nonlinear dependencies. In order to quantify the extent to which this happens, we regress

the out-of-sample forecast errors of the HARQ against the forecast errors provided by all other models.

Table (9) shows the R2 obtained from such regression on the first subsample of S&P500 data, for M =

39, 78, 390. The forecast errors of the HARQ are better described in terms of the forecast errors of the

SHARK, for M = 39, 78. At these sampling frequencies, the HARQ captures both measurement errors and

nonlinear dependencies. This is also confirmed by the fact that the R2 resulting from regressing against

the HARK and the SHAR is larger than the one resulting from regressing against the HARlog, which

neglects measurement errors and partly accounts for nonlinear dependencies. For M = 390, the largest R2

is the one obtained by regressing against the SHAR, while the relative difference between regressions onto

the HARlog and the HARK forecast errors is lower. This result is not surprising, since at large sampling

frequencies measurement errors become less important and the forecast gains provided by the HARQ are

entirely due to capturing nonlinear dependencies.

3.3 Longer forecast horizons

In this Section, we assess the effect of measurement errors and nonlinear dependencies on out-of-sample

volatility forecasts for longer time horizons. In particular, we choose a weekly (j = 5) and a monthly

(j = 22) forecast horizon.

Bias-corrected, multi-step-ahead forecasts of the HARK, SHAR and SHARK models can be evaluated

as described in Section (2.7). The multi-step-ahead forecasts of the HARST are computed by slightly mod-

ifying the formula of the HARlog to also include the nonlinear lags. In absence of a dynamic specification

for the quarticity term in eq. (9), longer horizon forecasts for the HARQ model can only be evaluated

directly, i.e. by replacing the daily RVt on the left-hand-side of eq. (9) with the variance aggregated at

different frequencies. Correspondingly, a correction term is introduced to adjust the lag at the specific fore-

cast horizon, as described by Bollerslev et al. 2016a. A similar approach is used to obtain multi-step-ahead

forecasts of the HAR∆J2±
model.

Table (10) shows the relative out-of-sample MSE and QLIKE obtained on S&P500 data. We compute

the loss measures in the period between December 2002 and June 2013, based both on a static and a rolling

window. Table (11) reports the forecast gains defined in eq. (41)-(43). The SHARK provides lowest MSE

and QLIKE in most of the cases, and it is always included in M̂90%. The ARFIMA, being a long memory

process, performs particularly well at long horizons, but is often outperformed by the SHARK. With only

one exception, the HARK and the SHAR outperform the HARlog and are included in M̂90% in most of

the cases. The HARQ improves over the HAR, but is outperformed by the HARlog, which provides better
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forecasts, especially on the monthly horizon.

Measurement errors have a similar effect as in daily forecasts, with ϕ
(1)
err and ϕ

(2)
err approaching one as

M increases. Note, however, that the forecast gains increase as j increases, since longer horizon forecasts

benefit from the higher persistence estimated by both the HARK and SHARK. A similar dependence on the

forecast horizon is observed when modeling nonlinear dependencies. Figure (14) shows MSE-based forecast

gains ϕhet, ϕ
(1)
err , ϕ

(1)
tvp, for j = 2, 4, . . . , 22 and M = 78. Both ϕ

(1)
err and ϕ

(1)
tvp exhibit a weak dependence on

j, with the two measures declining slowly as the forecast horizon increases. In contrast, ϕhet has a strong

declining pattern that is due to the accumulation of forecast errors over large horizons.

The statistical significance of these forecasting gains is jointly tested through a pairwise version of

the multi-horizon test recently proposed by Quaedvlieg (2019). In particular, as shown in table (12), we

find strong evidence of uniform superior predictive ability for ϕhet, by testing HAR−HARlog MSE losses,

and for ϕ
(1)
err , by testing HARlog−HARK MSE losses. In these two cases, the test achieves basically zero

p-values. For ϕtvp, the test rejects the null hypothesis at the 5% c.l. when testing HARlog−SHAR MSE

losses.

3.4 Robustness checks

The discussion in Section (2.5) showed that, even on logRVt series, the HAR is misspecified, since its resid-

uals are weakly heteroskedastic and parameters are time-varying. The HARK corrects HARlog forecasts

for measurement errors through the Kalman filter. However, being the latter based on a linear state-space

representation, it is useful to quantify the misspecification of the HARK due to the above-mentioned ef-

fects. The forecast gain ϕ
(2)
tvp in Eq. (42) is a possible indicator, since it quantifies the gain resulting from

modeling heteroskedasticity and time-varying parameters in the HARK.

Another possible method is to observe that the assumption ht = Vt in Section (2.5) is fair only if the

HARK is correctly specified. Thus, one can use a more flexible specification for ht and check, on real data,

the extent to which the latter deviates from the assumption based on correct specification. In particular,

we have examined the following dynamic specifications for ht:

1. ht = αVt + (1− α)Vt−1

2. ht = αVt + (1− α)mean(Vt)

3. ht = αVt + (1− α)median(Vt)

4. ht = βVt

where 0 ≤ α ≤ 1, β > 0 and mean(·) and median(·) denote the sample mean and median, respectively. In

the first case, ht is exponentially smoothed with past observations of Vt, and the parameter α indicates
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the level of smoothing. In the second and third case, if α < 1, ht is shrunk towards its mean or median

level. These two specifications can also be viewed as heteroskedasticity tests for ht, in the sense that, if

α > 0, we reject the null assumption that ht is homoskedastic, at a given confidence level. Finally, in the

last case, β is a scaling constant that fine-tunes ht in case the model is misspecified.

We estimated the HARK and the SHARK, with the dynamic specifications {1, 2, 3, 4} for ht, on the

S&P500 sample. For each specification involving the parameter α, the latter turns out to be very close to

one. For instance, for the specification 2, we found α = 0.999994, and similar values have been recovered

for the other specifications. This indicates that today’s Vt is the best proxy for ht and that there are not

significant advantages in using lagged Vt’s. Also, the null assumption of homoskedasticity for ht is rejected,

and this is in accordance with with what Bollerslev et al. (2016a) found on RVt series.

Table (13) shows maximum likelihood estimates of the parameter β, for M = 39, 78, 390. We note that

the estimated β is larger than one for the HARK, indicating significant departures from the assumption of

correct specification. In particular, the fact that the estimated signal-to-noise ratio turns out to be lower,

is due to deviations from the linearity assumption, which are spuriously interpreted by the Kalman filter

as an excess of noise. It is worth underling that these more flexible specifications do not lead to significant

out-of-sample improvements compared to the standard HARK model.

In the case of the SHARK, β is close to one for all the three sampling frequencies, in agreement with the

assumption of correct specification. This result is in accordance with what we found in Section (2.6) when

looking at the normalized residuals of the SHAR: implementing score-driven parameters in the HARlog

results in removing the misspecification due to heteroskedasticity. The SHARK, which in turn corrects

SHAR forecasts for measurement errors, provides the most complete specification for realized variance.

4 Conclusions

In this paper, we proposed new HAR extensions accounting for measurement errors and nonlinear depen-

dencies in volatility dynamics. In particular, by considering the HARlog as a starting point, we devised

three models that progressively capture the two effects. The HARK adjusts HARlog parameters for the

attenuation bias induced by measurement errors. This is done by correcting RVt forecasts through a

time-varying Kalman gain driven by realized quarticity. The SHAR has time-varying parameters and

features i.i.d. standardized residuals. Finally, the SHARK is a generalization of the HARK that allows

for time-varying parameters. It provides more responsive parameter dynamics, as they are not affected

by measurement errors. The relative improvement of a model compared to another can thus be used to

quantify the importance of removing each form of misspecification.

We provided simulation and empirical evidence that the effects captured by these new models are
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statistically significant, since they translate into superior out-of-sample forecasts compared to the basic

HARlog specification and other competing approaches. For instance, on real data, the analysis based on

the model confidence set includes our new extensions on the confidence set and excludes the remaining

models in the vast majority of the cases. Interestingly, the performance of the SHAR and the SHARK

does not change significantly when they are estimated on a static window or on a rolling window, since

they have built-in time-varying HAR coefficients which automatically adapt to changes in persistence.

As a final outcome of our analysis, we conclude that measurement errors are relevant at small and

intermediate sampling frequencies. Their corresponding forecast gains slightly increase with the forecast

horizon. Accounting for time-varying parameters provides statistically significant forecast gains. The latter

are independent from the sampling frequency, and slightly increase with the forecast horizon.

Acknowledgements

We are particularly grateful for suggestions we received from Francisco Blasques, Tim Bollerslev, Andrew
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Chen, Y., Härdle, W. K., Pigorsch, U., 2010. Localized realized volatility modeling. Journal of the American

Statistical Association 105 (492), 1376–1393.

Cipollini, F., Gallo, G., Otranto, E., Sep. 2017. On heteroskedasticity and regimes in volatility forecasting.

Working paper Available at https://ssrn.com/abstract=3037550.

Corsi, F., 2009. A simple approximate long-memory model of realized volatility. Journal of Financial

Econometrics 7 (2), 174.

Corsi, F., Fusari, N., Vecchia, D. L., 2013. Realizing smiles: Options pricing with realized volatility. Journal

of Financial Economics 107 (2), 284 – 304.

Corsi, F., Mittnik, S., Pigorsch, C., Pigorsch, U., 2008. The volatility of realized volatility. Econometric

Reviews 27 (1-3), 46–78.
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M = 39

HAR HARQ HARlog HARK SHAR SHARK ARFIMA HARST HAR∆J2±

β0 0.0879 -0.0402 -0.0372 -0.0309 -0.0421 0.0588

(0.0264) (0.0270) (0.0119) (0.0153) (0.0191) (0.0881)

β1 0.3460 0.7068 0.4167 0.5420 0.4281

(0.0160) (0.0284) (0.0158) (0.0338) (0.0201)

β2 0.3962 0.3110 0.3655 0.2944 0.3830 0.4695

(0.0229) (0.0229) (0.0219) (0.0445) (0.0287) (0.2238)

β3 0.1656 0.0947 0.1602 0.1165 0.1399 0.1602

(0.0229) (0.0227) (0.0203) (0.0308) (0.0198) (0.0973)

β1Q -0.0119

(0.0007)

a1, c1 2.2996 3.6931

(0.0794) (0.2418)

a2, c2 0.2300 0.5442

(0.0804) (0.0525)

a3, c3 0.0000 0.0001

(0.0000) (0.0002)

a4, c4 0.0001 0.1944

(0.0003) (0.0847)

a5, c5 1.5477 1.9583

(0.1651) (0.0415)

Signal-to-Noise 3.0487 3.7064

ψ 0.9630

(0.0125)

χ -0.8922

(0.0298)

d 0.3361

(0.0345)

N. of regimes 2

βBV 0.0354

(0.0055)

βJ+
0.4895

(0.2128)

βJ−
-1.3866

(0.2591)

MSE 2.2490 2.0464 2.2108 2.2037 2.1689 2.1617 2.2120 2.2333 2.0190

QLIKE 0.1844 0.6328 0.1847 0.1837 0.1822 0.1783 0.1880 0.1894 0.1974

−LogL · 10−3 1.8585 1.8716 1.8455 2.3658

MSE 5.7066 5.5769 6.3001 6.2670 6.1582 6.2732 6.2350 6.2869 5.2111

QLIKE 0.1772 0.1774 0.1732 0.1756 0.1739 0.1758 0.1748 0.1743 0.1769

Table 1: OLS estimates of HAR, HARQ, HARlog, HAR∆J2±
coefficients and maximum likelihood estimates of HARK, SHAR, SHARK,

ARFIMA, HARST parameters obtained on S&P500 data computed with 10-minute returns. Robust standard errors are indicated inside

parenthesis. We also show the in-sample MSE, QLIKE on S&P500 data and the average in-sample MSE, QLIKE on NYSE stock data.

The SHAR and SHARK parameters are multiplied by 100.
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M = 78

HAR HARQ HARlog HARK SHAR SHARK ARFIMA HARST HAR∆J2±

β0 0.0921 0.0127 -0.0307 -0.0270 -0.0367 0.0679

(0.0280) (0.0279) (0.0106) (0.0147) (0.0097) (0.0201)

β1 0.3249 0.5780 0.4500 0.5480 0.4637

(0.0159) (0.0237) (0.0157) (0.0299) (0.0311)

β2 0.4166 0.3211 0.3531 0.2914 0.3724 0.3839

(0.0232) (0.0236) (0.0214) (0.0367) (0.0125) (0.0265)

β3 0.1661 0.1309 0.1442 0.1147 0.1183 0.1498

(0.0236) (0.0232) (0.0193) (0.0276) (0.0200) (0.0189)

β1Q -0.0059

(0.0004)

a1, c1 2.0385 3.3315

(0.0629) (0.1300)

a2, c2 0.3252 0.5295

(0.0358) (0.0304)

a3, c3 0.0000 0.0000

(0.0002) (0.0013)

a4, c4 0.0020 0.2346

(0.0021) (0.0370)

a5, c5 1.9973 1.7019

(0.0632) (0.0368)

Signal-to-Noise 5.0582 6.0415

ψ 0.9566

(0.0158)

χ -0.8901

(0.0346)

d 0.3758

(0.0377)

N. of regimes 2

βBV 0.2684

(0.0190)

βJ+
0.2555

(0.1871)

βJ−
-1.0569

(0.2300)

MSE 2.1577 1.9766 2.1549 2.1587 2.1431 2.1542 2.1683 2.1658 2.0418

QLIKE 0.1536 0.5941 0.1532 0.1507 0.1501 0.1465 0.1564 0.1579 0.1514

−LogL · 10−3 1.6737 1.6851 1.6561 1.8153

MSE 5.5758 5.3013 5.9656 5.8987 5.8485 5.9093 5.8658 5.9708 5.4268

QLIKE 0.1452 0.1464 0.1400 0.1407 0.1401 0.1408 0.1412 0.1414 0.1458

Table 2: OLS estimates of HAR, HARQ, HARlog, HAR∆J2±
coefficients and maximum likelihood estimates of HARK, SHAR, SHARK,

ARFIMA, HARST parameters obtained on S&P500 data computed with 5-minute returns. Robust standard errors are indicated inside

parenthesis. We also show the in-sample MSE, QLIKE on S&P500 data and the average in-sample MSE, QLIKE on NYSE stock data.

The SHAR and SHARK parameters are multiplied by 100.
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M = 390

HAR HARQ HARlog HARK SHAR SHARK ARFIMA HARST HAR∆J2±

β0 0.0853 -0.0687 -0.0272 -0.0264 -0.0295 0.0632

(0.0257) (0.0246) (0.0091) (0.0138) (0.0091) (0.0188)

β1 0.3539 0.8679 0.4996 0.5428 0.5046

(0.0160) (0.0257) (0.0155) (0.0273) (0.2238)

β2 0.4166 0.2652 0.3442 0.3161 0.3665 0.4690

(0.0227) (0.0219) (0.0206) (0.0343) (0.0279) (0.0322)

β3 0.1429 0.0131 0.1056 0.0931 0.0865 0.1201

(0.0220) (0.0211) (0.0176) (0.0269) (0.0111) (0.0233)

β1Q -0.0104

(0.0004)

a1, c1 2.7082 2.8887

(0.2107) (0.0212)

a2, c2 1.0119 0.9008

(0.1249) (0.0139)

a3, c3 0.0000 0.0000

(0.0028) (0.0064)

a4, c4 0.1531 0.3086

(0.0298) (0.0093)

a5, c5 2.1238 1.7671

(0.1465) (0.0719)

Signal-to-Noise 16.5013 19.0204

ψ 0.9442

(0.0214)

χ -0.8706

(0.0446)

d 0.4102

0.0438

N. of regimes 2

βBV 0.1802

(0.0210)

βJ+
0.6952

(0.2063)

βJ−
-2.6893

(0.5010)

MSE 2.3724 1.9556 2.3027 2.3058 2.3188 2.2867 2.2887 2.3496 2.2198

QLIKE 0.1246 0.3402 0.1210 0.1194 0.1191 0.1174 0.1222 0.1244 0.1264

−LogL · 10−3 1.3861 1.3674 1.3540 1.5444

MSE 4.0100 3.8106 4.1341 4.1382 4.1397 4.0882 4.0984 4.1923 3.9311

QLIKE 0.1011 0.0997 0.0962 0.0966 0.0963 0.0960 0.0988 0.0985 0.0988

Table 3: OLS estimates of HAR, HARQ, HARlog, HAR∆J2±
coefficients and maximum likelihood estimates of HARK, SHAR, SHARK,

ARFIMA, HARST parameters obtained on S&P500 data computed with 1-minute returns. Robust standard errors are indicated inside

parenthesis. We also show the in-sample MSE, QLIKE on S&P500 data and the average in-sample MSE, QLIKE on NYSE stock data.

The SHAR and SHARK parameters are multiplied by 100.
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HAR HARQ HARlog HARK SHAR SHARK ARFIMA HARST HAR∆J2±

Dec. 2002 - Aug. 2008

M = 39

MSE
RW 1.0000 0.9897 0.9927 0.9699? 0.9758 0.9488? 0.9970 0.9868 0.9799

SW 1.0000 0.9823 0.9892 0.9668? 0.9712 0.9462? 0.9925 0.9821 0.9702

QLIKE
RW 1.0000 0.9037 0.8863 0.8765 0.8628? 0.8503? 0.8810 0.8798 0.9335

SW 1.0000 0.9043 0.8840 0.8701 0.8587? 0.8483? 0.8759 0.8629? 0.9312

M = 78

MSE
RW 1.0000 0.9714 0.9555 0.9284? 0.9430 0.9142? 0.9654 0.9555 0.9747

SW 1.0000 0.9685 0.9534 0.9232? 0.9311 0.9025? 0.9562 0.9533 0.9711

QLIKE
RW 1.0000 0.8689 0.7844 0.7668? 0.7706? 0.7421? 0.7792 0.7844 0.8996

SW 1.0000 0.8653 0.7823 0.7673? 0.7638? 0.7362? 0.7783 0.7820 0.8950

M = 390

MSE
RW 1.0000? 0.9595? 0.9781? 0.9636? 0.9502? 0.9527? 0.9964 0.9712? 0.9542?

SW 1.0000 0.9567 0.9770 0.9625 0.9440? 0.9452? 0.9981 0.9677 0.9556

QLIKE
RW 1.0000 0.9244 0.9022 0.8911 0.8795? 0.8725? 0.8991 0.8867? 0.8934

SW 1.0000 0.9240 0.9032 0.8897 0.8783? 0.8711? 0.8923 0.8832? 0.8922

Sep. 2008 - Jun. 2013

M = 39

MSE
RW 1.0000 0.9814 0.5778 0.5293? 0.5663 0.5619 0.5899 0.5732 1.0112

SW 1.0000 0.9688 0.5693 0.5173? 0.5610 0.5546 0.5761 0.5655 1.0855

QLIKE
RW 1.0000 1.1298 0.9438 0.9294? 0.9439 0.9403 0.9414 0.9411 1.0097

SW 1.0000 1.1270 0.9451 0.9244? 0.9405 0.9359 0.9386 0.9413 1.0115

M = 78

MSE
RW 1.0000 0.9428 0.6631 0.6300? 0.6661 0.6601 0.6720 0.6621 1.0565

SW 1.0000 0.9388 0.6630 0.6287? 0.6604 0.6551 0.6680 0.6623 1.0495

QLIKE
RW 1.0000 1.1087 0.9395 0.9230? 0.9381 0.9307? 0.9386 0.9346 0.9912

SW 1.0000 1.1032 0.9310 0.9162? 0.9390 0.9231? 0.9319 0.9301 0.9905

M = 390

MSE
RW 1.0000 0.9757 0.7256 0.7051? 0.7112? 0.7117? 0.7371 0.7216 1.0133

SW 1.0000 0.9680 0.7144 0.7028? 0.7067? 0.7081? 0.7187 0.7121? 1.0082

QLIKE
RW 1.0000 1.1103 0.9166 0.9097? 0.9120? 0.9077? 0.9238 0.9141 1.0195

SW 1.0000 1.1101 0.9078 0.9010? 0.9002? 0.8987? 0.9210 0.9061 1.0158

Table 4: Relative out-of-sample losses of HAR, HARQ, HARlog, HARK, SHAR, SHARK, ARFIMA, HARST, HAR∆J2±
on S&P500

data in the two subsamples [Dec. 2002 - Aug. 2008] and [Sep. 2008 - Jun. 2013]. We report losses computed both on a rolling window

(RW) and on a static window (SW). The presence of an asterisk indicates that the model is included in M̂90%.
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HAR HARQ HARlog HARK SHAR SHARK ARFIMA HARST HAR∆J2±

M = 39

MSE
RW 1.0000(3) 0.7651(5) 0.5639(5) 0.5433(14) 0.5488(14) 0.5351(18) 0.5548(5) 0.5629(5) 0.9182(3)

SW 1.0000(2) 0.7601(6) 0.5529(5) 0.5385(14) 0.5404(15) 0.5278(18) 0.5534(5) 0.5557(5) 0.9102(4)

QLIKE
RW 1.0000(3) 0.9579(3) 0.7366(10) 0.7295(14) 0.7221(16) 0.7167(17) 0.7310(11) 0.7370(8) 0.9622(3)

SW 1.0000(3) 0.9521(3) 0.7299(11) 0.7207(15) 0.7179(16) 0.7125(18) 0.7288(11) 0.7351(8) 0.9586(3)

M = 78

MSE
RW 1.0000(2) 0.9034(3) 0.6612(7) 0.6485(12) 0.6487(15) 0.6395(18) 0.6631(7) 0.6647(6) 0.9793(2)

SW 1.0000(2) 0.9021(3) 0.6601(7) 0.6427(12) 0.6477(15) 0.6380(18) 0.6658(6) 0.6587(7) 0.9685(2)

QLIKE
RW 1.0000(3) 1.2628(1) 0.7071(11) 0.7010(13) 0.6932(17) 0.6866(18) 0.7018(10) 0.7091(10) 1.2922(1)

SW 1.0000(2) 1.2787(1) 0.7015(12) 0.6989(13) 0.6912(17) 0.6818(18) 0.7019(11) 0.6988(13) 1.2788(1)

M = 390

MSE
RW 1.0000(1) 0.8492(1) 0.5437(3) 0.5691(3) 0.5287(9) 0.5193(18) 0.5457(3) 0.5598(3) 0.9957(1)

SW 1.0000(1) 0.8326(2) 0.5337(3) 0.5525(3) 0.5221(10) 0.5109(18) 0.5401(2) 0.5466(3) 0.9866(1)

QLIKE
RW 1.0000(2) 2.3093(1) 0.6002(10) 0.5972(14) 0.5920(17) 0.5826(17) 0.6055(8) 0.6020(10) 1.0684(1)

SW 1.0000(2) 2.3020(1) 0.5921(10) 0.5848(12) 0.5901(18) 0.5823(18) 0.6088(7) 0.6001(9) 1.0536(1)

Table 5: Relative out-of-sample losses of HAR, HARQ, HARlog, HARK, SHAR, SHARK, ARFIMA, HARST, HAR∆J2±
averaged over

the 18 NYSE stocks. We report average losses computed both on a rolling window (RW) and on a static window (SW). We show in

parenthesis the number of times each model is included in M̂90%.

HAR HARQ HARlog HARK SHAR SHARK ARFIMA HARST HAR∆J2±

Dec. 2002 - Aug. 2008

M = 39

MSE 1.0000 0.9897 0.9927 0.9699? 0.9770 0.9508? 0.9970 0.9868 0.9799

QLIKE 1.0000 0.9037 0.8863 0.8765 0.8643? 0.8536? 0.8810 0.8798 0.9335

M = 78

MSE 1.0000 0.9714 0.9555 0.9284? 0.9452 0.9163? 0.9654 0.9555 0.9747

QLIKE 1.0000 0.8689 0.7844 0.7668? 0.7733? 0.7455? 0.7792 0.7844 0.8996

M = 390

MSE 1.0000? 0.9595? 0.9781? 0.9636? 0.9524? 0.9538? 0.9964 0.9712? 0.9542?

QLIKE 1.0000 0.9244 0.9022 0.8911 0.8830? 0.8759? 0.8991 0.8867? 0.8934

Table 6: Relative out-of-sample losses of HAR, HARQ, HARlog, HARK, SHAR, SHARK, ARFIMA, HARST, HAR∆J2±
on S&P500

data in the subsample [Dec. 2002 - Aug. 2008]. The SHAR and the SHARK are estimated on a static window, while the remaining

models are estimated on a rolling window. The presence of an asterisk indicates that the model is included in M̂90%.
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ϕhet ϕ
(1)
tvp ϕ

(2)
tvp ϕ

(1)
err ϕ

(2)
err

Dec. 2002 - Aug. 2008

M = 39

MSE
RW 0.9927 0.9830 0.9782 0.9771 0.9723

SW 0.9892 0.9818 0.9787 0.9774 0.9743

QLIKE
RW 0.8863 0.9735 0.9701 0.9890 0.9855

SW 0.8840 0.9714 0.9749 0.9843 0.9879

M = 78

MSE
RW 0.9555 0.9869 0.9847 0.9715 0.9695

SW 0.9534 0.9766 0.9776 0.9683 0.9693

QLIKE
RW 0.7844 0.9824 0.9678 0.9775 0.9630

SW 0.7823 0.9764 0.9595 0.9808 0.9639

M = 390

MSE
RW 0.9781 0.9715 0.9887 0.9852 1.0026

SW 0.9770 0.9662 0.9820 0.9852 1.0013

QLIKE
RW 0.9022 0.9748 0.9791 0.9876 0.9920

SW 0.9032 0.9724 0.9791 0.9851 0.9918

Sep. 2008 - Jun. 2013

M = 39

MSE
RW 0.5778 0.9801 1.0616 0.9161 0.9922

SW 0.5693 0.9854 1.0721 0.9087 0.9886

QLIKE
RW 0.9438 1.0001 1.0117 0.9847 0.9962

SW 0.9451 0.9951 1.0124 0.9781 0.9951

M = 78

MSE
RW 0.6631 1.0045 1.0478 0.9501 0.9910

SW 0.6630 0.9961 1.0420 0.9483 0.9920

QLIKE
RW 0.9395 0.9985 1.0083 0.9824 0.9921

SW 0.9310 1.0086 1.0075 0.9841 0.9931

M = 390

MSE
RW 0.7256 0.9802 1.0094 0.9717 1.0007

SW 0.7144 0.9892 1.0075 0.9838 1.0020

QLIKE
RW 0.9166 0.9950 0.9978 0.9925 0.9953

SW 0.9078 0.9916 0.9976 0.9925 0.9983

Table 7: Forecast gains ϕhet, ϕ
(1)
tvp, ϕ

(2)
tvp, ϕ

(1)
err , ϕ

(2)
err defined in eq. (41), (42), (43) computed on S&P500 data using the MSE and QLIKE

as loss measures. We denote by RW the forecast gains computed on a rolling window and by SW those computed on a static window.

Results for both subsamples [Dec. 2002 - Aug. 2008] and [Sep. 2008 - Jun. 2013] are reported.
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ϕhet ϕ
(1)
tvp ϕ

(2)
tvp ϕ

(1)
err ϕ

(2)
err

M = 39

MSE
RW 0.5639 0.9732 0.9849 0.9635 0.9750

SW 0.5529 0.9776 0.9801 0.9740 0.9767

QLIKE
RW 0.7366 0.9803 0.9825 0.9904 0.9925

SW 0.7299 0.9836 0.9886 0.9874 0.9925

M = 78

MSE
RW 0.6612 0.9811 0.9861 0.9809 0.9858

RW 0.6601 0.9812 0.9927 0.9736 0.9850

QLIKE
SW 0.7071 0.9803 0.9795 0.9914 0.9905

SW 0.7015 0.9853 0.9755 0.9963 0.9864

M = 390

MSE
RW 0.5437 0.9724 0.9125 1.0468 0.9822

SW 0.5337 0.9783 0.9247 1.0352 0.9785

QLIKE
RW 0.6002 0.9863 0.9756 0.9951 0.9841

SW 0.5921 0.9966 0.9957 0.9877 0.9868

Table 8: Forecast gains ϕhet, ϕ
(1)
tvp, ϕ

(2)
tvp, ϕ

(1)
err , ϕ

(2)
err defined in eq. (41), (42), (43) computed using the MSE and QLIKE as loss measures

and averaged over the 18 NYSE stocks. We denote by RW the forecast gains computed on a rolling window and by SW those computed

on a static window.
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HAR HARlog HARK SHAR SHARK

HARQ
M = 39

0.9490 0.9129 0.9281 0.9627 0.9741

HARQ
M = 78

0.9321 0.9004 0.9235 0.9475 0.9737

HARQ
M = 390

0.9395 0.9405 0.9517 0.9779 0.9623

Table 9: R2 resulting from regressing the forecast errors of the HARQ against the forecast errors of all other models.
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HAR HARQ HARlog HARK SHAR SHARK ARFIMA HARST HAR∆J2±

j = 5

M = 39

MSE
RW 1.0000 0.9519 0.9302 0.9047 0.9202 0.8721? 0.8980 0.9680 0.9721

SW 1.0000 0.9470 0.9280 0.8923 0.9125 0.8622? 0.8922 0.9621 0.9688

QLIKE
RW 1.0000 0.9263 0.8253 0.8051 0.8031 0.7713? 0.7980 0.8198 0.8462

SW 1.0000 0.9201 0.8176 0.8001 0.7966 0.7651? 0.7952 0.8147 0.8305

M = 78

MSE
RW 1.0000 0.9204 0.8853 0.8652 0.8601 0.8442? 0.8542? 0.8853 0.9464

SW 1.0000 0.9184 0.8798 0.8589? 0.8520? 0.8399? 0.8507? 0.8795 0.9403

QLIKE
RW 1.0000 0.8917 0.7662 0.7452 0.7379? 0.7222? 0.7406 0.7662 0.8058

SW 1.0000 0.8899 0.7625 0.7421 0.7322? 0.7178? 0.7382 0.7613 0.7926

M = 390

MSE
RW 1.0000 0.9422 0.9190 0.9084? 0.9128 0.9031? 0.9038? 0.9221 0.9654

SW 1.0000 0.9985 0.9126 0.9021? 0.9051 0.8953? 0.8913? 0.9198 0.9555

QLIKE
RW 1.0000 0.9387 0.8572 0.8426 0.8339? 0.8245? 0.8420 0.8644 0.8605

SW 1.0000 0.9321 0.8530 0.8400 0.8275? 0.8149? 0.8368 0.8591 0.8623

j = 22

M = 39

MSE
RW 1.0000 1.0081 0.8686 0.8334 0.8549 0.7911? 0.8067? 0.8791 1.0023

SW 1.0000 1.0111 0.8675 0.8288 0.8498 0.7872? 0.8033 0.8710 1.0015

QLIKE
RW 1.0000 0.9755 0.8023 0.7630 0.8024 0.6922? 0.7505 0.8061 0.8134

SW 1.0000 0.9701 0.7997 0.7588 0.7956 0.6853? 0.7459 0.7985 0.8122

M = 78

MSE
RW 1.0000 0.9896 0.8319 0.8039? 0.8050? 0.7833? 0.7993? 0.8147 0.9688

SW 1.0000 0.9822 0.8258 0.7952? 0.7975? 0.7782? 0.7901? 0.8077 0.9631

QLIKE
RW 1.0000 0.9747 0.7697 0.7347? 0.7627 0.6875? 0.7269? 0.7632 0.7848

SW 1.0000 0.9690 0.7611 0.7388? 0.7545 0.6809? 0.7123? 0.7598 0.7820

M = 390

MSE
RW 1.0000 1.0187 0.9409 0.9241? 0.9400 0.9000? 0.8969? 0.9512 0.9942

SW 1.0000 1.0222 0.9325 0.9248 0.9198 0.8818? 0.8862? 0.9433 0.9887

QLIKE
RW 1.0000 1.0150 0.8712 0.8468 0.8441 0.7981? 0.8539 0.9087 0.9008

SW 1.0000 1.0171 0.8622 0.8432 0.8306 0.7840? 0.8533 0.8922 0.8987

Table 10: Relative out-of-sample losses of HAR, HARQ, HARlog, HARK, SHAR, SHARK, ARFIMA, HARST, HAR∆J2±
on S&P500

data for weekly (j = 5) and monthly (j = 22) forecasts in the period [Dec. 2002 - Jun. 2013]. We report losses computed both on a

rolling window (RW) and on static window (SW). The presence of an asterisk indicates that the model is included in M̂90%.
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ϕhet ϕ
(1)
tvp ϕ

(2)
tvp ϕ

(1)
err ϕ

(2)
err

j = 5

M = 39

MSE
RW 0.9302 0.9892 0.9640 0.9726 0.9477

SW 0.9280 0.9833 0.9663 0.9615 0.9449

QLIKE
RW 0.8253 0.9731 0.9580 0.9755 0.9604

SW 0.8176 0.9743 0.9563 0.9786 0.9605

M = 78

MSE
RW 0.8853 0.9715 0.9757 0.9773 0.9815

SW 0.8798 0.9684 0.9779 0.9762 0.9858

QLIKE
RW 0.7662 0.9631 0.9691 0.9726 0.9787

SW 0.7625 0.9603 0.9673 0.9732 0.9803

M = 390

MSE
RW 0.9190 0.9933 0.9942 0.9885 0.9894

SW 0.9126 0.9918 0.9925 0.9885 0.9892

QLIKE
RW 0.8572 0.9728 0.9785 0.9830 0.9887

SW 0.8530 0.9701 0.9701 0.9848 0.9848

j = 22

M = 39

MSE
RW 0.8686 0.9842 0.9492 0.9595 0.9254

SW 0.8675 0.9796 0.9498 0.9554 0.9263

QLIKE
RW 0.8023 1.0001 0.9072 0.9511 0.8627

SW 0.7997 0.9949 0.9031 0.9489 0.8614

M = 78

MSE
RW 0.8319 0.9677 0.9744 0.9662 0.9730

SW 0.8258 0.9657 0.9786 0.9629 0.9758

QLIKE
RW 0.7697 0.9909 0.9358 0.9546 0.9014

SW 0.7611 0.9913 0.9216 0.9707 0.9025

M = 390

MSE
RW 0.9409 0.9990 0.9739 0.9822 0.9574

SW 0.9325 0.9864 0.9535 0.9917 0.9587

QLIKE
RW 0.8612 0.9689 0.9425 0.9720 0.9455

SW 0.8622 0.9633 0.9298 0.9780 0.9439

Table 11: Forecast gains for weekly (j = 5) and monthly (j = 22) forecast horizons. We denote by RW the forecast gains computed on a

rolling window and by SW those computed on a static window.
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ϕhet ϕerr1 ϕtvp1

uSPA test

tuSPA 3.5273 2.8827 1.8295

p-value 0 0 0.0365

Table 12: MSE based uniform superior predictive ability test (uSPA) of Quaedvlieg (2019). We show the tuSPA test statistics and related

p-values based on a multi-horizon bootstrap with 5000 replications.

M = 39 M = 78 M = 390

β

HARK 2.0595 2.9399 6.9714

(0.2106) (0.2856) (2.7879)

SHARK 0.8969 1.2051 2.3594

(0.2511) (0.3036) (1.8479)

Table 13: Maximum-likelihood estimates of the scaling parameter β in the dynamic specification 4. in Section (3.4). Standard errors are

shown in parenthesis.
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Figure 1: Kernel density estimates of standardized pivotal HAR and HARQ statistics estimated on N = 1000 Monte-Carlo simulations

of T = 1000 observations of model (10), (11)
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Figure 2: Kernel density estimates of standardized pivotal HARK statistics estimated on N = 1000 Monte-Carlo simulations of

T = 1000 observations of model (10), (11)
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Figure 3: Out-of-sample MSE of HARQ and HARK models for different values of signal-to-noise ratio δ. Each MSE is divided by the

MSE provided by the HAR model.
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Figure 4: Time series of 5-min daily realized variance of S&P500 future prices from 03-01-1995 to 21-06-2013.
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Figure 5: Residuals of HAR and HARlog models estimated on the series of 5-min daily realized variance of S&P500 future prices from

03-01-1995 to 21-06-2013.
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Figure 6: Sample autocorrelation function of HAR and HARlog residuals and squared residuals estimated on the series of 5-min daily

realized variance of S&P500 future prices from 03-01-1995 to 21-06-2013.
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Figure 7: Dynamics of HARlog coefficients obtained by estimating the model on a moving window of 1000 observations in the period

17-12-1998 − 21-06-2013. The red line denotes the estimated coefficient, while the two grey lines denote 95% confidence bands.
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Figure 8: Sample autocorrelation function of SHAR standardized residuals and squared standardized residuals estimated the series of

5-min daily realized variance of S&P500 future prices from 03-01-1995 to 21-06-2013.
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Figure 9: Kernel density estimate of SHAR standardized residuals computed on the series of 5-min daily realized variance of S&P500

future prices from 03-01-1995 to 21-06-2013. Q-Q plot of standardized residuals.
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Figure 10: Dynamics of filtered SHAR (blue lines) and SHARK (red lines) β0,t parameter obtained by estimating the two models on

S&P500 realized variance computed with 10, 5, 1-min returns in the period 23-12-1996 − 21-06-2013.
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Figure 11: Dynamics of filtered SHAR (blue lines) and SHARK (red lines) β1,t parameters obtained by estimating the two models on

S&P500 realized variance computed with 10, 5, 1-min returns in the period 23-12-1996 − 21-06-2013.
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Figure 12: Dynamics of filtered SHAR (blue lines) and SHARK (red lines) β3,t parameters obtained by estimating the two models on

S&P500 realized variance computed with 10, 5, 1-min returns in the period 23-12-1996 − 21-06-2013.
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Figure 13: Dynamics of filtered SHAR (blue lines) and SHARK (red lines) qt parameter obtained by estimating the two models on

S&P500 realized variance computed with 10, 5, 1-min returns in the period 23-12-1996 − 21-06-2013.
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