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Abstract 

Introduction: There has been significant clinical advances in the understanding of the 

diagnosis and benefits of long-term recombinant human growth hormone (rhGH) 

replacement in adults with GH deficiency (GHD) since its approval in 1996 by the United 

States Food and Drug Administration.  

Areas covered: We searched PubMed, Medline, CINAHL, EMBASE and PsychInfo 

databases between January 2000 and June 2019 for published studies evaluating adults 

with GHD. We reviewed the data of the oral macimorelin test compared to the GHRH 

plus arginine and the insulin tolerance tests that led to its approval by the United States 

FDA and European Medicines Agency for adult diagnostic testing. We summarize the 

clinical advances of long-term benefits of rhGH therapy and the potential effects of GH 

receptor polymorphisms on individual treatment responsiveness. We identify that non-

adherence and discontinuation rates are high and recommend strategies to support 

patients to improve adherence. We also provide an overview of several long-acting GH 

(LAGH) preparations currently under development and their potential role in improving 

treatment adherence. 

Expert commentary: This article summarizes recent clinical advances in rhGH 

replacement therapy, the biological and molecular aspects that may influence rhGH 

action, and offers practical strategies to enhance adherence in adults with GHD. 
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1. Introduction 

Adult growth hormone deficiency (GHD) is a well-defined clinical entity characterized 

by abnormal body composition, unfavorable cardiovascular risk, cardiac dysfunction, 

decreased bone mineral density (BMD), glucose intolerance, and impaired quality of life 

(QoL) [1, 2]. Recent studies have suggested increased mortality in patients with 

hypopituitarism [3-7], particularly in women and in patients diagnosed at a younger age 

[5, 6]. Growth hormone deficiency has been implicated, although other factors such as 

under- [3] or over-treatment [4] with glucocorticoid replacement therapy for secondary 

adrenal insufficiency and underlying etiology of the hypothalamic-pituitary disease (e.g., 

craniopharyngioma and/or previous history of multiple surgeries and cranial irradiation) 

are also important contributing factors [8, 9]. Whether long-term recombinant human GH 

(rhGH) therapy normalizes or decreases mortality rates in patients with hypopituitarism 

remains unresolved.         

Adult GHD may present as childhood-onset (CO-GHD) or adult-onset (AO-GHD) 

GHD. The most frequent cause of CO-GHD is idiopathic and may be the only pituitary 

hormone deficiency. Other causes of CO-GHD include congenital causes (e.g., genetic 

abnormalities), structural defects (e.g., pituitary formation abnormalities, optic nerve 

hypoplasia, hydrocephalus, arachnoid cyst, midline facial defects such as single central 

incisor, cleft lip, and cleft palate), and acquired causes (e.g., perinatal insults, intracranial 

tumors such as germinomas, cranial irrradiation for intracranial tumors, and pituitary 

tumors). By contrast, AO-GHD is frequently acquired with hypothalamic-pituitary 

tumors and/or their treatment with surgery and cranial irradiation being the main causes 

[10, 11]. Current recommended regimens of rhGH replacement therapy are effective in 
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restoring linear growth and improving adult height outcomes of children with GHD [12], 

whereas in adults, the primary objective of rhGH replacement is to improve metabolic 

and psychological abnormalities [13-16].  

We reviewed studies published between January 2000 and June 2019 in PubMed, 

Medline, CINAHL, EMBASE and PsychInfo databases. The search was performed using 

the terms “adult” and “replacement therapy” as subheadings of the term “growth 

hormone deficiency” in the Medical Subject Headings (MeSH) thesaurus. The selection 

included prospective and retrospective studies, and clinical reviews on diagnosis, 

benefits, side-effects, adherence and treatment outcomes of rhGH replacement therapy in 

adults with GHD. We also summarize our current knowledge of the macimorelin test as 

the approved diagnostic test for adult GHD by the United States Food and Drug 

Administration (FDA) and the European Medicines Agency (EMA), and discuss the 

potential effects of GH receptor polymorphisms on individual treatment responsiveness. 

Finally, we offer practical strategies to improve adherence to rhGH therapy, and provide 

a brief overview of long-acting GH (LAGH) preparations under development. 

 

2. Clinical advances in the management of adult GHD 

2.1 Diagnosis of adult GHD  

Diagnosis of adult GHD is often challenging due to lack of a single biological end-point, 

unlike growth failure in children with the disorder. As serum GH and IGF-I levels decline 

with aging, it is important to differentiate between age-related physiological decrease in 

GH levels and pathological GHD that usually has an identifiable etiology. Additionally, 

GH is secreted episodically in a pulsatile pattern modified by age, gender, and BMI; 
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whereas serum IGF-I levels can be lowered by factors such as malnutrition, chronic 

hyperglycemia, illness, renal failure, and liver disease [17]. In the majority of patients, 

GH stimulation test/s are required to establish the diagnosis, with the exception of 

patients with hypothalamic-pituitary disease who have at least 3 other pituitary hormone 

deficiencies and low serum IGF-I levels [< -2.0 standard deviation score (SDS)] [18], 

patients with genetic defects affecting the hypothalamic-pituitary axes, and those with 

hypothalamic-pituitary structural brain defects [11]. In children with idiopathic GHD, 

retesting during transition to adult care services after at least 1 month following 

discontinuation of rhGH therapy, is recommended [11, 19, 20]. Several sub-populations 

of patients (e.g., traumatic brain injury, subarachnoid hemorrhage, ischemic stroke, 

infections in the central nervous system, congenital hydrocephalus, and snake bite) have 

been identified in recent years to be at risk for developing hypopituitarism, including 

adult GHD [21, 22]. However, the diagnostic accuracy and reliability of currently 

available GH stimulation tests in some of these newly described sub-populations have not 

been adequately studied. 

 The insulin tolerance test (ITT) has historically been accepted as the gold standard 

GH stimulation test, but is used less frequently today in the United States because it is 

labor-intensive, unpleasant for some patients, and contraindicated in the elderly and in 

those at risk of seizure disorders and cardio/cerebrovascular disease [23]. When 

recombinant GHRH (Geref®) was removed from the United States market in July 2008, 

it was debated as to which test should be used in place of the GHRH plus arginine test as 

the alternative to the ITT [24]. The arginine test is not a reliable alternative as its 

diagnostic accuracy is poor and requires a very low peak GH cut-point of 0.4 μg/L [25]. 
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The glucagon stimulation test (GST) was proposed in 2009 as the alternative to the ITT 

[24], based on the available data at that time [26-28], and has since become the most 

commonly used diagnostic test for adult GHD in the United States because of its 

availability, reproducibility, safety, lack of influence by gender and hypothalamic cause 

of GHD, and relatively few contraindications [23]. The accuracy of GST is acceptable in 

normal weight individuals, but because peak GH secretion decreases with increasing 

body mass index (BMI) [29], a lower peak GH cut-point of 1 μg/L has been suggested in 

overweight/obese patients [30]. The major drawbacks of the GST are the long test 

duration (3 to 4 hours), the need for intramuscular administration, and the relatively 

frequent incidence of nausea and vomiting [31]. 

In December 2017 and January 2019, the FDA and EMA approved macimorelin 

for use as a diagnostic test for adult GHD in the United States [32] and Europe [33], 

respectively. Macimorelin is an orally active ghrelin-mimetic that binds to the GHS-R1a 

receptor with similar affinity to ghrelin. It is a pseudo-tripeptide with increased stability 

and oral bioavailability compared with other GH secretagogues, such as GHRP-6. The 

drug is well absorbed in the gastrointestinal tract and effectively stimulates endogenous 

GH secretion in healthy volunteers with good tolerability [34]. An open-label, crossover, 

multicenter study tested the diagnostic accuracy of macimorelin (0.5 mg/kg) compared to 

the GHRH plus arginine test in adults with GHD and healthy matched controls [35]. Peak 

GH levels were 2.36 ± 5.69 and 17.71 ± 19.11 g/L in adults with GHD and healthy 

controls, respectively, with GH cut-points ranging between 2.7 and 5.2 g/L [35] 

showing good discrimination comparable to GHRH plus arginine. Macimorelin was 

subsequently compared to the ITT in a multicenter, open-label, randomized, 2-way 
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crossover study [36], and was found to be a simple, highly reproducible, and safe test, 

with optimal GH cut-points ranging from 4.6 to 8.1 μg/L. To minimize the potential of 

misclassifying some patients, the FDA selected the GH cut-point of 2.8 μg/L, the low end 

of the range suggested by the previously published data [35], to make the diagnosis of 

adult GHD. Interestingly, if the GH cut-point was increased to 5.1 μg/L, the identical cut-

point to the ITT [11, 20], optimal negative and positive agreements (94% and 82%, 

respectively) with 92% sensitivity and 96% specificity was observed. In fact, this higher 

GH cut-point increased the sensitivity of the test while maintaining the specificity of the 

2.8 μg/L cut-point with good overall agreement with the ITT. Advantages of macimorelin 

include its oral administration, short test duration lasting 90 minutes, only 3 to 4 blood 

sample collections required, and no reported hypoglycemia. The test was well-tolerated 

and mild dysgeusia was the most common side-effect, which resolved spontaneously 

[36]. Because macimorelin may interact with other drugs potentially inducing QT 

prolongation, such as antipsychotic medications (e.g., chlorpromazine, haloperidol, 

thioridazine, ziprasidone), antibiotics (e.g., moxifloxacin), Class 1A (e.g., quinidine, 

procainamide) and Class III (e.g., amiodarone, sotalol) antiarrhythmic medications, or 

reduce plasma macimorelin levels such as CYP3A4 inducers (e.g., carbamazepine, 

enzalutamide, mitotane, phenytoin, rifampin, St. John’s wort, bosentan, efavirenz, 

etravirine, modafinil, armodafinil, rufinamide) leading to false positive results, carefully 

reviewing and discontinuing these medications (after approval following discussion with 

the prescribing physician while providing sufficient washout time prior to testing) is 

recommended. Table 1 displays the individual characteristics of each GH stimulation test 

used in the United States and Europe. 
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2.2 Beneficial effects of rhGH replacement therapy  

Previous studies have shown that rhGH replacement improved body composition, 

increased bone mineral density (BMD) and QoL, and decreased cardiovascular risk 

factors [2, 37]. Most of these beneficial effects are generally reported within the first year 

of therapy [38-42], with the exception for BMD changes. However, long-term rhGH 

therapy is not without its drawbacks (Table 2). In young adults with persistent GHD 

transitioning over to adult services, early retesting of patients with idiopathic isolated 

GHD (i.e., before the achievement of final height and/or the adult pubertal stage) may 

avoid possible over-treatment [43] and prompt resumption of rhGH therapy to induce 

somatic development of body composition and bone maturation [44-46].  

Several observational studies with at least 7 years of follow-up data have 

demonstrated that many clinical improvements of rhGH therapy in adults with GHD are 

sustainable with low prevalence of side-effects [14, 15, 47, 48], likely due to the 

increasing trend of using low non-weight-based rhGH doses [41, 42, 49]. In a study of 

adults with GHD with 15 years follow-up, Elbornsson et al. [14] reported improvements 

in lean mass and an initial decrease in fat mass, followed by a gradual increase over time, 

which may be related to aging. Conversely, the systematic review by Appelman-Dijkstra 

et al. [13] demonstrated that the long-term effects of rhGH therapy on BMI are not 

consistent (some studies showing an increase and others no change), while Spielhagen et 

al. [50] found that most long-term studies showed no changes on waist-hip ratio and one 

study showing waist circumference increase. It has been hypothesized that the observed 

BMI and waist circumference increase is caused by normal aging off-setting the overall 
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improvement of rhGH therapy on body composition [51]. The findings by Filipsson 

Nystrom et al. [52] reinforced this hypothesis when they found that after rhGH had been 

discontinued following more than three years of therapy, central adiposity increased and 

thigh muscle mass decreased. In a meta-analysis of 22 studies, Newman et al. [53] 

demonstrated that mean lean mass increased by 2.61 kg vs 0.04 kg, whereas fat mass 

decreased by 2.19 kg vs 0.31 in rhGH-treated and placebo-treated patients, respectively, 

with higher doses being more effective than lower doses.  

Short-term rhGH studies have reported a 4-10% increase in BMD that is greater at 

the lumbar spine than femoral sites [54], and is more evident in males and in those with a 

lower baseline BMD. Females on estrogen tended to have a greater BMD increase 

compared to those not on estrogen, suggesting that adequate estrogen replacement is 

important to achieve an optimal BMD response in females with GHD [55]. Positive 

effects on bone microarchitecture was not observed [56], and initial vertebral BMD 

increases that was observed stabilized after 10 years of therapy [55]. Two recent meta-

analyses have suggested that the beneficial effects of rhGH therapy on BMD was mainly 

influenced by gender, age, dose and treatment duration [57, 58], while in a 15-year 

follow-up study, Appelman-Dijkstra et al. [47] demonstrated sustained lumbar spine 

increase, femoral neck BMD stabilization, and unchanged incidence of fractures. 

Treatment with rhGH therapy has also been shown to improve QoL in most adults 

with GHD, especially during the first year of treatment; an effect that may persist after 10 

years of therapy [15, 16]. A retrospective analysis of patients treated with rhGH during 

childhood showed that QoL results are closely linked to the underlying indication for 

rhGH treatment. Patients with associated diseases or syndromes scored slightly lower, 
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especially cancer survivor patients compared to patients with isolated GHD or idiopathic 

short stature, and lower physical component summary was associated with lower 

educational levels [59]. These data imply the importance of acknowledging the etiology 

of adults with CO-GHD when interpreting QoL data. It is also noteworthy that 

improvements in QoL have not consistently been reported in all adults or in all assessed 

socio-psychological domains [60, 61]. Patients with worse baseline QoL were better 

responders than those with relatively normal baseline QoL [15, 16]. Additionally, there 

are other studies that have shown more limited improvements and no gender 

predisposition [61-63]. The Treatment-Related Impact Measure-Adult Growth Hormone 

Deficiency (TRIM-AGHD), a patient-reported outcome measure assessing GHD impacts, 

appears to be a highly responsive measure assessing adult GHD treatment impacts, with a 

10-point change score being considered a clinically meaningful improvement [64]. 

However, caution still needs to be exercised in assessing the literacy level and 

understanding of the patient when using QoL questionnaires, and the data should be 

interpreted in the context of a detailed medical history.  

Studies have also shown that rhGH therapy improved several cardiovascular 

markers, including lipids, visceral fat, and some echocardiographic parameters, including 

interventricular septum diameter, left ventricular posterior wall-diameter and left 

ventricular mass index [65-67], whereas discontinuing long-term rhGH therapy may 

worsen total- and LDL-cholesterol levels [52] and diastolic blood pressure [68]. Other 

surrogate cardiovascular risk markers have been shown to improve with rhGH therapy, 

including C-reactive protein [69, 70], adipsin [71], pro-inflammatory cytokines such as 
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tumor-necrosis factor alpha [72], pregnancy-associated plasma protein A [73], lipid 

peroxidation [74] decreased, and markers of endothelial dysfunction [75].  

Age of the patient is an important determinant when implementing a rhGH dosing 

regimen. Older patients are more sensitive to rhGH therapy, hence more susceptible to 

side-effects. Acknowledging this notion, several consensus guidelines now recommend 

using low rhGH doses in older patients [11, 30, 76]. However, there are no data on the 

efficacy and safety of long-term rhGH replacement in patients above 80 years of age with 

GHD [77]. In a prospective, single-center, open-label study, the effects of rhGH 

replacement were assessed in 24 adults with GHD above 65 years of age and in 24 

younger patients. Lower doses were used, yet greater reductions in waist/hip ratio and 

serum LDL-cholesterol levels were observed, with these differences being persistent after 

correction for duration of hypopituitarism, suggesting enhanced GH responsiveness with 

aging [78]. 

 

3. Effects of GHD on sleep, skin and coagulation 

Growth hormone and IGF-I receptors are expressed in various tissues throughout the 

body. However, the effects of GH on skin, sleep, and coagulation system have not been 

well-studied, and in recent years, several studies have assessed the effects of rhGH 

therapy on these parameters. The effects of GH may be clinically relevant, as borne out 

by the effects of GH on the skin where excess GH in acromegaly causes skin thickening 

[79], on sleep where adults with untreated GHD report sleep disturbances [80], and on 

vascular functions, of which some are related to the regulation of coagulation processes 

[81-83]. 
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3.1 Sleep 

Sleep is characterized by cyclical periods of rapid eye movement (REM) and non-REM 

(NREM) sleep [84]. There is some evidence demonstrating bidirectional interactions 

between the GHRH/GH/IGF-I axis and sleep regulation [84], with GH preferentially 

secreted during sleep [85]. Early animal [86] and human [87, 88] studies have shown that 

GHRH exerts sleep-promoting effects and increases the duration and/or intensity of 

NREM sleep, despite the absence of GH, implying that increased hypothalamic GHRH 

secretion may enhance daytime sleepiness and fatigue. Due to lack of negative feedback 

inhibition by GH in adults with untreated GHD, hypothalamic GHRH secretion is 

increased [89]. In a study involving middle-aged men with GHD, Nolte et al. [90] 

demonstrated that rhGH therapy may influence sleep reaction, and a decrease in slow-

wave sleep was observed upon cessation of therapy. In another study, Schneider et al. 

[91] did not find any differences in baseline sleep parameters of adults with GHD 

compared to healthy controls, and rhGH therapy did not affect total sleep time and time 

spent in different sleep stages. In a study by Peker et al. [92] of adults with GHD 

evaluating sleep architecture by polysomnography before and after 6 months of rhGH 

therapy, mean total sleep time, durations of low-wave sleep, and REM sleep were not 

altered, but a mild increase in REM sleep time in those with obstructive sleep apnea after 

6 months of rhGH therapy was observed. Conversely, Ismailogullari et al. [93] did not 

observe any differences in sleep parameters using polysomnography to assess patients 

with Sheehan’s syndrome before and after 6 months of rhGH therapy, while Morselli et 
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al. [94] reported that 4 months of rhGH therapy in adults with GHD induced a shorter 

sleep period time and decreased the intensity of slow-wave sleep.  

In summary, current data suggest increased NREM sleep (mainly slow-wave 

sleep) and decreased REM sleep durations in adults with GHD compared to age/sex-

matched controls, and these changes in sleep parameters may explain the impaired 

memory, increased daytime tiredness, and decreased QoL seen in these patients. 

However, the effects of rhGH therapy are indeterminate due to lack of long-term placebo-

controlled studies, as short-term studies of rhGH therapy do not appear to fully reverse 

the disturbances in various sleep parameters.  

 

3.2 Skin  

It has been suggested that adults with GHD have decreased sweating and skin sebum 

content leading to dry skin and early aging of the skin [95]. Borlu et al. [96] investigated 

the skin characteristics in GH-deficient patients with Sheehan’s syndrome, and found that 

skin capacitance decreased on the forehead and forearm, and the sebum content decreased 

on the forehead, but after 6 months of rhGH therapy, the same investigators found that 

sebum content on the forehead increased without any changes in skin capacitance [97]. 

The effects of rhGH on the skin has been particularly relevant in recent years because of 

its use increasing as an anti-aging agent [98]. Although rhGH treatment may enhance 

dermal collagen content thus increasing skin thickness, it should not be used as an anti-

aging agent as there are no safety data [99]. However, because of the lack of good quality 

data, further studies of rhGH therapy on skin changes are still warranted. 
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3.3 Coagulation 

Previous studies have shown that patients with hypopituitarism treated with other 

hormone replacement therapies but without rhGH exhibit increased cardiovascular and 

cerebrovascular mortalities in comparison with general population [3, 5]. Changes in the 

coagulation system are implicated for being responsible for the increased 

thromboembolic events [83]. Fibrinogen and plasminogen activator inhibitor-1 levels 

increased [81, 83], and tissue plasminogen activator decreased in adults with GHD [81], 

explaining their thrombotic tendency. Following rhGH therapy, fibrinogen, plasminogen 

activator inhibitor-1 and tissue plasminogen activator decreased [82, 100], fibrinolysis 

improved that was attributed to improvement of stimulated endothelial tissue 

plasminogen activator release in response to venous occlusion [101], protein S activity 

normalized and antithrombin and protein C activities decreased [102]. 

Despite improvement following rhGH therapy on the prothrombotic state, 

increased fibrinogen, factor VIII, and von Willebrand factor levels were still present  

[103]. Baseline prothrombin time and activated partial thromboplastin time levels were in 

the normal range and remained unchanged 6 months after rhGH therapy, while platelet 

numbers were unaffected either by GHD per se or by rhGH therapy [102]. In summary, 

coagulation and fibrinolysis may be adversely affected by GHD itself in favor of 

thrombosis, and rhGH therapy may partially reverse these abnormalities. More studies are 

needed to clarify the direct effects of rhGH rather than on secondary changes as a 

consequence of alterations in body composition or dyslipidemia on the coagulation 

system. 
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4. Side-effects of rhGH replacement therapy  

Side-effects from rhGH therapy are mainly caused by its fluid retaining effects (e.g., 

edema, arthralgias, myalgias, paresthesias, and carpal tunnel syndrome), occur when high 

rhGH doses are used, and tend to resolve with dose reductions or treatment cessation. A 

recent randomized, open-label, clinical trial involving adults receiving GH therapy for at 

least 1 year showed that although increasing rhGH dose targeting IGF-I SDS between +1 

and +2 improved waist circumference and mood, patients with higher serum IGF-I levels 

reported more myalgia, whereas those with lower IGF-I levels reported more fatigue 

[104]. In another study, the same investigators decreased the rhGH dose to target the 

IGF-I SDS between - 2 to - 1 or increased the rhGH dose to target the IGF-I SDS between 

+1 to +2 over a 24-week period. Females in the low dose group reported better working 

memory and strategic memory control compared to females in the high dose group, 

whereas females in the low dose group reported more fatigue and less vigor [105].  

Treatment with rhGH, especially with high doses, decreases insulin sensitivity 

and induces glucose intolerance [68]. In the Hypopituitary Control and Complications 

Study, the prevalence and incidence of diabetes mellitus (DM) in adults treated with 

rhGH was analyzed [106]. Results of an analysis of 2,922 patients in the United States 

and 3,709 in Europe, with a mean follow-up of 4.1 years, showed that in the United 

States, the incidence rate of DM adjusted for age, sex, and BMI was higher in rhGH-

treated patients than in the general population. In France and Germany, the incidence 

rates were comparable with the reference population, while in Sweden, the incidence rate 

was increased in rhGH-treated patients. In another analysis of 5,143 patients from the 

Pfizer International Metabolic Database (KIMS), with 20,106 patient-year follow-up, the 
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observed/expected cases ratio was 10.8 in the first year of rhGH treatment that decreased 

to 1.9 after 8 years of treatment. When the incidence of DM in patients in the KIMS study 

was compared with the incidence rates in age-adjusted populations in other United States 

and European regions, the observed/expected cases ratios ranged from 2.11 to 5.22 [107]. 

Conversely, a study of 245 patients with adult-onset GHD showed that more than 4 years 

of rhGH therapy did not negatively affect glucose homeostasis [108]. This was 

substantiated by a meta-analysis of 94 randomized controlled and open trials that failed to 

demonstrate any increased frequency of DM in the short-term placebo controlled trials 

and during long-term rhGH therapy [109]. The inconsistent evidence of long-term rhGH 

effects on glucose homeostasis may be due to lack of control data and the heterogeneity 

of large international studies. Thus, close monitoring of glucose parameters is important 

during rhGH treatment especially in obese patients or those with glucose intolerance, and 

to consider initiating low-dose treatment and cautiously titrate the dose upwards 

according to clinical response and serum IGF-I levels. 

Previous studies have shown an increased cancer risk with rhGH replacement 

therapy [110], whereas others have not [111]. In a group of 6,840 adults included in the 

Hypopituitary Control and Complications Study, the incidence ratio of neoplasia was 

0.88 (0.74–1.04), but rose to 3.79 (1.39–8.26) in patients younger than 35 years and to 

2.74 (1.18–5.42) in patients with CO-GHD [112], suggesting that the overall risk of 

primary cancer in adult life was not increased. Child et al. [113] reported the incidence of 

primary neoplasia in 8,418 patients treated with rhGH, as well as in 3,668 GH-treated 

patients with history of pituitary adenoma and 956 rhGH-treated patients with history of 

craniopharyngioma. Comparisons carried out in cohorts of untreated patients, and during 
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a mean follow-up of 4.8 years, found no increased risk for all-site cancers, including 

breast, prostate and colorectal cancers, in rhGH-treated patients. In a meta-analysis of 15 

studies involving 46,148 adults with GHD, rhGH therapy did not increase the risk of 

pituitary tumor recurrence (relative risk, 0.77; 95 % confidence interval, 0.53-1.13) and 

secondary malignancy (relative risk, 0.99; 95 % confidence interval, 0.70-1.39), but the 

risk for stroke was higher in untreated patients (relative risk, 2.07; 95 % confidence 

interval, 1.51-2.83), supporting the overall safety of rhGH therapy [114, 115].  

Excess cardiovascular and cerebrovascular mortalities have been reported in 

previous epidemiological studies in patients with hypopituitarism, with GHD being 

implicated as one of the contributing factors [3-6, 48, 116]. Data from the Dutch National 

Registry of rhGH treatment [117] compared 2,229 patients treated with rhGH with an 

untreated control group of 109 and a secondary control group of 356 patients treated with 

rhGH in whom treatment had been discontinued. The standardized mortality ratio in 

relation to the general population was 1.27 (1.04–1.56) for the treatment group, and the 

ratio was 1.29 (1.05–1.59) when patients with acromegaly and Cushing’s disease were 

excluded, and decreased to 1.00 (0.79–1.26) after the exclusion of high-risk patients (e.g., 

craniopharyngioma). Notably, the authors did not find any increase in mortality in the 

two untreated control groups. In another study by Gaillard et al. [116] of 13,983 rhGH-

treated patients from the KIMS database followed up for 4.9 years, the authors showed 

that all-cause mortality was 13% higher than in the general population. Conversely, 

Olsson et al. [48] demonstrated in a study of 426 patients with nonfunctioning adenomas 

and nearly 4600 patient-years follow-up, of which 207 were treated with rhGH therapy 

and 219 were untreated, the overall mortality in the treated patients compared with the 
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general population and death due to malignancy was reduced. Because of possible 

selection bias in this study, rhGH therapy cannot be ascribed as directly responsible in 

increasing life expectancy and decreasing cancer risk, but does imply that long-term 

therapy is, at least, safe. These findings has been further substantiated in a recent large 

meta-analysis of 2 retrospective and 7 prospective studies involving 11,191 patients 

treated between 2.3 to 14.5 years demonstrating that rhGH therapy reduced cancer risk in 

adults with GHD [118], further reinforcing the safety of long-term rhGH therapy. 

In children with GHD and a history of cancer, studies have demonstrated no 

increase in relative risk of recurrence of the primary tumor in rhGH-treated individuals 

[119, 120]. The relative risk of developing a subsequent tumor in rhGH-treated childhood 

cancer survivors is elevated by 2.15-fold (95% CI 1.3–3.5) [121]. Similar data on primary 

and secondary tumors have been reported from the Pfizer International Growth Database 

(KIGS) post-marketing study [122, 123]. However, it remains unclear whether the 

increased risk of secondary tumors was due to the inherent characteristics of those 

children receiving rhGH therapy. For example, when the estimates of the relative risk of 

subsequent central nervous system tumors were adjusted for the effect of radiation 

therapy, there was no increased risk associated with rhGH therapy [124]. The 2018 

Endocrine Society Clinical Practice Guidelines suggest carefully offering rhGH treatment 

to childhood cancer survivors with confirmed GHD [125]. Nevertheless, rhGH therapy is 

contraindicated in patients with active malignancy [126], and should only be prescribed 

with caution to patients with a history of cancer and strong family history of cancer [127].  
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5. Growth hormone receptor polymorphisms and responsiveness to 

rhGH therapy 

Growth hormone exerts its biological effects by binding to the GH receptor (GHR) on the 

cell membrane of target cells. The human GHR gene is located in chromosome 5 [128, 

129], where there are 9 exons that encode the receptor and several additional exons in the 

5′ untranslated region. There are two major isoforms of the GHR that differ by the 

absence of exon 3 that encodes part of the extracellular domain of the GHR. Its absence 

gives rise to a GHR lacking 22 amino acids in the extracellular domain [128, 129]. The 

isoform of human GHR containing exon 3 is known as the full-length isoform (fl-GHR) 

and the isoform without exon 3 as the exon 3-deficient isoform (d3-GHR). This 

polymorphism has been extensively studied since the loss of a complete exon from a gene 

without affecting the function of the resulting protein is uncommon, and the binding 

capabilities of the two GHR isoforms are considered somewhat similar [130, 131]. The 

d3-GHR isoform is dominant over the fl-GHR isoform and about half of Europeans are 

hetero- or homozygous with respect to the allele encoding the d3-GHR isoform [132].  

Early studies demonstrated inter-individual variability of responsiveness to rhGH 

therapy, particularly in terms of metabolic parameters and hepatic IGF-I synthesis [133, 

134]. Age, gender, BMI, genetic factors, GH binding protein levels, rhGH dose used 

appear to be contributing factors [135-137], whereas amongst genetic factors, GHR 

polymorphisms has been suggested to play a role in individual rhGH responsiveness. In 

adults with GHD, some studies have shown increased responsiveness in the carriers of 

d3-GHR allele [138-140] and others have shown opposite results [141-144]. Table 3 
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summarizes the main findings of the effects of d3-GHR polymorphism on responsiveness 

to rhGH therapy in adults with GHD.   

Glad et al. [144] and Moyes et al. [139] reported that homozygote fl-GHR 

individuals had greater IGF-I responses than carriers of the d3-GHR genotype after rhGH 

therapy, while Meyer et al. [138] found that after 1 year of therapy, the required rhGH 

dose was lower in patients carrying one or two d3 alleles compared with those with the 

fl/fl genotype in achieving comparable serum IGF-I levels [138]. However, other studies 

have reported different response patterns. After 1 year of rhGH therapy, Barbosa et al. 

[143] found that baseline values and changes in IGF-I and body fat were similar between 

those with fl-HR alleles and those with at least one d3-GHR allele. Andujar-Plata et al. 

[142] corroborated these findings by demonstrating that the d3-GHR allele did not 

influence baseline serum IGF-I levels, adverse events or treatment discontinuation, while 

Adetunji et al. [141] reported no differences in the rhGH doses required to optimize 

serum IGF-I levels, QoL or body composition between carriers and non-carriers of the 

d3-GHR allele. Van der Klaauw et al. [140] found that serum IGF-I levels were higher in 

carriers of the d3-GHR allele compared with the fl/fl-GHR genotype and total cholesterol 

and LDL-cholesterol levels were lower in the group with at least one d3-GHR allele, 

whereas the increase in HDL-cholesterol was greater compared with non-carriers of the 

d3-GHR allele after 1 year, but these differential responses did not differ in all the GHR 

genotypes after 5 years of rhGH therapy [140]. Giavoli et al. [145] found that rhGH 

therapy normalized serum IGF-I levels and decreased body fat at 1 and 5 years, 

regardless of the presence of the d3-GHR allele. After 1 year, HDL-cholesterol increased 

in the d3-GHR carriers compared to non-carriers. After 1 and 5 years of therapy, the 
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number of subjects with impaired glucose tolerance that was similar in the two groups at 

baseline decreased in non-carriers and increased in d3-GHR allele carriers. In the d3-

GHR carrier group, reductions in total and LDL-cholesterol were observed after 5 years 

of therapy. More recently, Bianchi et al. [146] reported that low dose rhGH therapy 

induced greater increases in serum IGF-I levels in the d3-d3 group in the short-term, and 

improved lipid profiles, fat mass and blood pressure in the d3-GHR carriers after short- 

and long-term rhGH therapy. In summary, only a few studies have convincingly 

demonstrated the role of GH receptor polymorphisms in affecting rhGH responsiveness 

in the treatment of adult GHD in increasing IGF-I and altering lipid profiles and glucose 

tolerance, suggesting that its effect is at best probably minimal without major clinical 

ramifications.  

 

6. Adherence to growth hormone treatment  

High rates of non-adherence have been reported by several studies in children with GHD 

on rhGH therapy; nevertheless empirical evidence is limited in the respective adult 

patient population. Two systematic reviews which analyzed a total of 19 studies 

involving children receiving rhGH therapy have found that the prevalence of non-

adherence in children ranged from 71% (poor adherence defined as >85% or >1 missed 

injection/week) to less than 7% (excellent adherence) [147, 148].  

Our literature search on the PubMed, Medline, CINAHL, EMBASE and 

PsychInfo databases to identify empirical studies which evaluated the prevalence of non-

adherence to rhGH therapy in adults with GHD revealed five relevant studies involving a 

total of 509 patients [149-153]. These studies suggest an overall good adherence rate that 
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ranged between 70% and 91.3% of patients that missed less than one rhGH injection per 

week [149-153]. Adherence was measured via the number of rhGH prescription refills 

[152], an electronic auto-injector device [153], or self-reported adherence [149-151]. 

However, a characteristic finding is the high treatment discontinuation rate in adults with 

GD that varied between 13.3% [149], 17% [154], 21% [151] 50.8% [153] and 58.9% 

[152]. Common reasons for discontinuation of therapy reported in these studies were 

related to the patient’s decision mainly due to lack of their awareness regarding rhGH 

health benefits and the perceived effects on health status and QoL, treatment re-

evaluation purposes, side-effects, low adherence, and lapses of medical insurance 

coverage. Low persistence, defined as long treatment breaks or “drug holidays” lasting 

from a month to a year, was reported in 48% of non-adherent adult patients who reported 

being skeptical and less convinced of the benefit of their rhGH therapy [149]. 

Interestingly, Auer et al. [152] found a decrease of 9.8% in adherence between the first 

and second year of treatment, with 12.8% of patients being lost to follow-up.  

Medication-taking behavior is complex, personal, and at times not exclusively the 

responsibility or within the control of the patient. Practical barriers affecting adherence 

common to adults and children receiving rhGH include forgetfulness, “injection fatigue”, 

failure to renew the prescriptions and need for frequent refills, dissatisfaction with 

treatment outcomes (e.g., growth velocity in children, and health status and QoL in 

adults), treatment cost, shortage or limited choice of rhGH, lack of communication and 

inadequate contact with the endocrine specialist nurse and endocrinologist, lack of 

understanding of the treatment and condition, travelling, and being away from home 

[147-151, 155-159]. Perceptual barriers have also been associated with non-adherence 
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and include concerns about long-term complications and lack of perceived benefit of the 

rhGH treatment, embarrassment or peer pressure especially in adolescence, 

misconceptions about consequences of non-adherence, and lack of perceived true 

effectiveness of rhGH treatment [147-151, 155, 159-161]. Lower socio-economic and 

educational status are also important factors contributing to non-adherence [149, 159]. 

Interestingly, of the patients who had discontinued rhGH, 62.6% restarted treatment after 

a mean cessation period of 4.8 years [152], supporting the hypothesis that some patients 

only realize the true benefits from rhGH therapy retrospectively.  

It is important that clinicians remain alert to some of the ‘red flags’ that may 

impact adherence, such as history of poor attendance at consultations. They should 

proactively engage the patient by adopting an open, co-operative, non-judgmental shared 

decision-making approach to develop an easy-to-follow rhGH treatment plan for both the 

patient and their families and/or caregivers [160]. In addition, it is also imperative to 

support the patient by setting realistic expectations for their treatment regarding health 

outcomes and to provide a clear rationale as to why they are treated with rhGH. 

Encouraging patients to maintain a diary or complete QoL questionnaires periodically 

may assist with treatment monitoring and provide positive reinforcement [162]. 

Clinicians can also recommend helpful practical strategies to the patient that include 

setting up reminders and provide longer prescription durations. The type of injection 

device has also been associated with greater adherence when it is selected to meet the 

individual patient needs, such as using needle-free device for those with needle phobia 

[163, 164], using user-friendly electronic auto-injector devices [165-167], and prescribing 

non-refrigerated rhGH brands [158, 168]. Similarly, patient satisfaction with care services 
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and effective clinician-patient rapport and frequent communication have been shown to 

improve adherence [169-171]. In support of this notion, Wickramasuriya et al. [172] 

demonstrated high adherence rates of over 95% for children who attended a 

multidisciplinary endocrine center with access to a nurse-led clinic that offered 

individualized rhGH treatment initiation. Figure 1 presents a recommended algorithm 

which can support clinicians and patients in the shared-decision making process to select 

the most suitable device for each individual patient’s needs [162]. 

 

7. Long-acting GH preparations  

Many pharmaceutical companies have been developing LAGH preparations in the hope 

of improving treatment adherence and potentially treatment outcomes, while preserving 

safety and efficacy profile using fewer injections. Several different technologies have 

been used to render the GH molecule long-acting [173-175], and they include depot 

formulations, PEGylated molecules, pro-drug compounds, GH molecule non-covalently 

bound to albumin, GH molecule bound to Fab antibody, and GH fusion proteins. None 

are currently approved by the FDA, and Table 4 displays the LAGH preparations 

currently under development. 

Following the publication of the study by Lippe et al. [176] in 1979 using a depot 

GH preparation in gelatin solution, the next LAGH preparation that was developed was 

somatropin (rDNA origin), which was micronized zinc-stabilized GH encapsulated in 

microspheres (Nutropin Depot). Since then, other LAGH preparations have been 

developed and evaluated, namely LB03002 [177-184], Jintrolong [185, 186], 

Somapacitan (NNC0195-0092) [187, 188], ARX201, NNC126-0083 [189-192], PHA-
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794428 [193, 194], Somavaratan (VRS-317) [195, 196], TV-1106 [197, 198], ALTU-

238, TransCon GH (ACP-001) [199-202], GX-H9 [203], LAPSrhGH/HM10560A, MOD-

4023 [204-208], CP016, BBT-031, ProFuse GH, and AG-B1512, with phase 2 and 3 

studies that primarily assessed longitudinal growth in children and changes in body 

composition in adults as main primary endpoints [178, 179, 182, 186, 195, 209, 210]. 

Among them, LB03002 has been approved in South Korea and Europe, but has had 

limited marketing thus far, and Jintrolong has been approved and is used in children in 

China, whereas CP016, BBT-031, ProFuseGH, and AG-B1512 are still undergoing pre-

clinical studies. In December 2016, Opko Biologics reported that the primary end-point 

change in trunk fat mass in adults with GHD from baseline to 26 weeks in a phase 3 

study failed to demonstrate any difference between treatment with MOD-4023 and 

placebo [211]. Further plans to submit a pre-biologics license application by OPKO 

Biologics in collaboration with Pfizer to the FDA are underway, with additional studies 

being planned in adults using a pen device [211]. In September 2017, Versartis, Inc., the 

manufacturer of Somavaratan (VRS-317), announced that the drug failed to meet its 

primary end-point for non-inferiority comparison against daily Genotropin for height 

velocity in children (9.44 cm vs 10.70 cm for those receiving daily rhGH) in the 

VELOCITY phase 3 clinical trial. All clinical trials were suspended and Somavaratan 

was withdrawn from the United States Investigational Drug Application and equivalent 

filings in other countries [212]. Other LAGH preparations have also been discontinued 

for the following reasons: ARX201 due to the discovery of PEGylated-containing 

vacuoles in the epithelial cells of the choroid plexus in monkeys [173, 174], NNC126-

0083 related to unsatisfactory IGF-I profiles at the doses administered [173, 174], PHA-
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794428 due to high rates of injection-site lipoatrophy, particularly in women [193, 213], 

TV-1106 due to unfavorable benefit vs risk profile and the unlikelihood of gaining 

regulatory approval [173, 174], and ALTU-238 because the manufacturer declared 

bankruptcy [173, 174]. While several LAGH preparations are no longer being developed, 

the efficacy and safety of other LAGH preparations such as TransCon GH ACP-001, GX-

H9, LAPSrhGH/HM10560A, MOD-4023, Somapacitan and Jintrolong in adults and 

children appear promising and are still currently being evaluated. The recently presented 

data of the phase 3 heiGHt trial demonstrated that annualized height velocity after 1 year 

of TransCon GH in untreated children with GHD was greater than daily rhGH injections 

(11.2 cm vs 10.3 cm; P  = 0.0088) [202], whereas studies in adults with GHD are 

currently planned to start in 2020. On the other hand, the completed phase 3 [214] and 

ongoing extension study [215] in adults with GHD have demonstrated that weekly 

Somapacitan achieved IGF-I SDS values and maintained reductions in truncal fat that is 

similar to daily rhGH with a comparable safety profile, and was considered more 

convenient by the study participants.  

However, questions have arisen as to whether LAGH preparations are as effective 

and safe compared to daily rhGH because they are not physiologic and varying 

pharmacokinetics and pharmacodynamics with each individual preparation. It could be 

argued that none of the currently available rhGH preparations used to treat GHD in 

children and adults are truly physiologic, because they are administered as single daily 

doses, rather than in a pulsatile fashion. It is noteworthy that there are several hormones 

administered as commercially-available long-acting preparations do not mimic normal 

pulsatile physiology, such as testosterone, medroxyprogesterone, and gonadotropin-
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releasing hormone. Additionally, other types of medications frequently used by 

endocrinologists have been developed as long-acting preparations, such as once or twice 

weekly cabergoline rather than once to three times daily bromocriptine for 

hyperprolactinemia, bi-weekly testosterone cypionate injections, and ultra-long acting 

anti-resorptive medications, such as annual intravenous zoledronic acid infusions for 

osteoporosis. Other key questions include when is the optimal time to measure serum 

IGF-I levels, or whether other methods of assessing IGF-I, such as calculating the IGF-I 

area under the curve, and/or measuring other surrogate markers can be used reliably. It is 

also important to avoid causing supra-physiological IGF-I levels for too long in between 

injections [173], as this may theoretically induce “iatrogenic acromegaly”, tumor 

recurrence, neoplasia and glucose intolerance. The question about timing of when to 

measure serum IGF-I levels does not arise with daily rhGH injections because serum 

IGF-I levels stabilize over a few days, hence measurement of that hormone at random 

times during therapy can been used to guide dosing, but with LAGH preparations, serum 

IGF-I levels may fluctuate across days to weeks between injections. It remains to be 

determined whether the dose of LAGH preparations should be titrated based on the type 

of LAGH used and the nadir, peak, or mean of several IGF-I measurements during 

therapy. 

 

8. Expert commentary and 5-year view 

Recombinant human GH replacement has been shown to exert beneficial effects, 

regardless of the underlying etiology of GHD, and its long-term use appears to be safe. 

However, rhGH therapy has not definitively been proven to improve overall mortality, 
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bone fractures, or cardio/cerebrovascular disease. The appropriate utilization of rhGH 

requires the identification of patients with a high pretest probability of adult GHD and 

confirmation of the diagnosis before therapy initiation. Following its approval by the 

FDA and EMA, the utilization of macimorelin is expected to increase over time as the 

preferred diagnostic test for adult GHD because the test is simple to perform, highly 

reproducible, safe, and has better tolerability compared to the ITT and GST. However, 

further studies with larger numbers of patients, including children, adolescents, elderly, 

and those with obesity, DM, traumatic brain injury, cranial irradiation, subarachnoid 

hemorrhage, and renal or hepatic diseases, are needed to determine the sensitivity and 

specificity of this agent in these patient cohorts. Additionally, studies are needed to 

improve the palatability of this drug, especially for children, and to help outline any other 

potential drug-to-drug interactions. 

Results for clinical endpoints such as bone fractures, cardio/cerebrovascular 

disease, cancer and mortality, including those from large international databases and 

those with GH polymorphisms, should be interpreted with caution since all of them have 

diverse study designs and methodological flaws. What is well-recognized from published 

data is that rhGH therapy can improve and reverse many metabolic and psychological 

abnormalities associated with adult GHD, although some patients may benefit more than 

others. Clinical practice guidelines for monitoring efficacy and safety are well-established 

and have been previously published by several professional organizations [11, 20]. Long-

term observational studies involving large numbers of patients have shown that many 

benefits of rhGH therapy are sustainable with a low frequency of side-effects, and an 

emphasis of using low individualized rhGH doses, especially in “susceptible” patients 
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(e.g, elderly, obese, and patients with underlying glucose intolerance).  

Non-adherence and low persistence to rhGH injections remains an ongoing 

concern and limiting factor to good clinical outcomes. Unlike in children, the benefits of 

rhGH is harder to measure in adults which may impact on their ability and willingness to 

persist with treatment. Many barriers to good adherence can be overcome by the clinician 

with counselling and maintaining good relationship with the patient, and delivering useful 

and clear education and training soon after diagnosis. Emphasis should be given on 

individualized treatment planning and ensuring that patients have a clear understanding of 

the rationale for their treatment. 

The ongoing development of LAGH preparations aims to reduce the number of 

injections and may potentially improve treatment adherence and outcomes. Further 

prospective studies and long-term surveillance studies after any regulatory approval of 

LAGH preparations are recommended for assessing long-term efficacy, safety, 

tolerability and cost-effectiveness, and to help better understand the effects of prolonged 

exposure to these compounds [173]. We encourage endocrinologists to monitor 

developments in this arena as FDA and EMA submission(s) are anticipated to be filed in 

the near future. Nonetheless, although more research is needed in some key areas, recent 

clinical advances have allowed us to improve our understanding on a number of clinically 

relevant issues in better managing adults with GHD. 
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KEY POINTS 

 Since adult growth hormone deficiency (GHD) has been characterized as a 

clinical entity, the effects of recombinant human GH (rhGH) replacement therapy 

have been extensively evaluated. Improvements in most, but not all, metabolic 

and psychological abnormalities associated with this condition have been 

demonstrated. Recent long-term studies have suggested that most of the 

beneficial effects of rhGH therapy are sustainable long-term, but not without 

some drawbacks. 

 Diagnosis of adult GHD often requires performing GH stimulation testing. The 

utilization of the newly approved oral macimorelin test in the United States and 

Europe will likely increase over time because the test is simple to perform, highly 

reproducible, well-tolerated and safe. The lower GH cut-point of 2.8 μg/L was 

selected by the United States Food and Drug Administration as the cut-point; 

however, the GH cut-point up to 5.1 μg/L may also be considered because it 

increases the sensitivity of the test while maintaining its specificity to the GH 

cut-point of 2.8 μg/L. 

 Age of the patient is an important determinant for rhGH dose initiation, and 

maintenance with lower doses is emphasized for older patients. 

 Treatment with rhGH therapy has been shown to improve health-related quality 

of life (QoL) in most adults with GHD, and those with worse baseline QoL 

generally responded better than those with relatively normal baseline QoL.  

 Due to the presence of GH and IGF-I receptors throughout the body, the effects 

of rhGH therapy on skin, sleep, and coagulation system in adults have been 
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investigated in greater detail in recent years. Decreased sweating and skin 

sebum content causing dry skin and early skin aging, decreased REM sleep, 

increased slow wave sleep which may contribute to impaired memory 

functions, and impaired coagulation and fibrinolysis have been reported in 

adults with GHD, and rhGH replacement therapy has been shown to reverse 

some of the abnormal parameters affecting the skin, sleep pattern, and 

coagulation system.  

 Previous studies have consistently shown that treatment with rhGH may worsen 

insulin resistance, but recent large observational studies have demonstrated 

conflicting data. Some studies have suggested that the incidence rate of diabetes 

mellitus (DM) was persistently increased, while others have shown no increase 

in the frequency of DM with long-term rhGH therapy. Close monitoring of 

glucose parameters remains essential during rhGH treatment especially in “at 

risk” patients (e.g., patients with obesity or glucose intolerance). 

 Previous data on cancer risk with long-term rhGH replacement therapy has 

been inconsistent, with some studies suggesting an increased risk and others 

demonstrating a neutral effect, or even decreased risk. Therefore, definitive 

conclusions regarding the risk of cancer induction with rhGH therapy cannot be 

drawn, but existing data suggest that long-term rhGH therapy is safe.   

 Increased mortality has been reported in previous epidemiological studies in 

patients with hypopituitarism, with GHD being implicated as one of the 

contributing factors. Some of the recently published large observational studies 

have shown that rhGH therapy increased mortality rates, whereas others have 
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demonstrated that the overall mortality in the treated patients compared with the 

general population was significantly reduced. Because of the heterogeneity of 

patients and selection bias of some results cannot be excluded, firm conclusions 

at this point cannot be drawn on the effects of long-term rhGH therapy on 

mortality rates in adults with GHD.  

 Previous systematic reviews and meta-analysis in adults with GHD have shown 

that d3-GHR isoform may exert a weak influence on therapeutic response to 

rhGH, but data are heterogeneous and inconsistent likely because most studies 

involved small numbers and were not designed to address the question of GHR 

genotype-genotype relationships.  

 Studies suggest that adults with GHD report low persistence with rhGH therapy 

and high discontinuation rates, which are mainly associated poor understanding 

and perceived benefit of treatment. Although many factors can impact 

adherence to rhGH treatment, non-adherence can be minimized through shared 

decision-making and a personalized treatment plan at rhGH initiation.  

 Long-acting GH preparations represent an advancement over daily rhGH 

injections because of fewer injections that may offer increased acceptance, 

tolerability, and therapeutic flexibility to patients that potentially can improve 

treatment outcomes. However, given the non-physiological profile of LAGH 

preparations, long-term surveillance are needed to assess for efficacy and safety 

that will be essential for understanding the impact of prolonged exposure to these 

compounds.   
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Table 1   Accepted GH cut-points for GH stimulation tests commonly used in the United States and Europe to diagnose adult GHD. 

 
 GH cut-points 

(μg/L) 

Comments 

 

ITT 

 

 

< 3.0 to 5.0 

- Requires close medical supervision throughout the test due to concerns for hypoglycemia 

- May be unpleasant and cautioned in some patients because of potential side-effects (e.g., 

seizures or loss of consciousness resulting from neuroglycopenia), and contraindicated in the 

elderly and patients at risk for cardio/cerebrovascular disease 

- Patents with insulin resistance may fail to achieve adequate hypoglycemia because of underlying 

insulin resistance, requiring the use of higher insulin doses (0.15-0.2 IU/kg), thus increasing the 

risk of delayed hypoglycemia 

- Although the ITT demonstrates good sensitivity, its reproducibility is another limitation 

 

Glucagon 

- BMI < 25 kg/m2 

- BMI 25-30 kg/m2  

- BMI ≥ 30 kg/m2 

 

 

 

≤ 3.0 

≤ 1.0 

≤ 1.0 

 

 

- Advantages of the test include reproducibility, safety, and lack of influence by gender and 

hypothalamic GHD 

- Disadvantages include the long duration of the test (3-4 hours), intramuscular injection and 

relatively common side-effects that include nausea, vomiting, and headaches ranging from < 10% 

to 34% 

- Cautioned in the elderly, where severe symptomatic hypotension, hypoglycemia and seizures 

have been reported 

 

Macimorelin 

 

 

≤ 2.8 

 

- First oral GH secretagogue 

- Approved for use as a diagnostic test in the United States and Europe 

- Showed good discrimination comparable to GHRH plus arginine and ITT 

- Simple, highly reproducible, well-tolerated and safe 

- The FDA selected a low GH cut-point of 2.8 μg/L, but using a higher GH cut-point of 5.1 μg/L 

was still able to correctly identify all GH-deficient patients without misclassifying those that were 

GH-sufficient 

 

GHRH-arginine 

- BMI < 25 kg/m2 

- BMI 25-30 kg/m2  

- BMI ≥ 30 kg/m2 

 

< 11.0 

< 8.0 

< 4.0 

 

- Transient facial flushing may occur after administration of recombinant GHRH 

- Recombinant GHRH not available in the United States, but still available in Europe 

 

Arginine 

 

 

≤ 0.4 

 

- Weak GH secretagogue, requiring very low GH cut-point 

- Side-effects uncommon, but 5-10% of subjects reported paresthesias, dry mouth and headache 

- Not recommended for use unless no other GH stimulation tests are available 

 

BMI, body mass index; FDA, Food and Drug Administration; GH, growth hormone; GHD, growth hormone deficiency; GHRH, 

growth hormone-releasing hormone; ITT, insulin tolerance test.  
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Table 2   Summary of benefits and drawbacks of long-term rhGH therapy in adults with GHD.  

 
Parameters Benefits Drawbacks 

Body composition - fat mass and lean mass - fluid weight 

Bone metabolism - bone mineral density - Future fracture rates not conclusively proven  

Quality of life - Improved QoL, especially in patients with very poor 

pre-treatment QoL  

- Improvement in some dimensions of QoL not consistently 

shown 

-  QoL in some patients, especially in patients with 

relatively normal or mild baseline QoL 

Cardiovascular and 

metabolic risk factors 
- conventional risk factors (e.g., lipids and blood 

pressure)  

- surrogate risk factors (e.g., carotid intima-media 

thickness, C-reactive protein, pro-inflammatory 

cytokines, adipokines, pregnancy-associated plasma 

protein A, pro-coagulative factors, and endothelial 

dysfunction) 

- myocardial diastolic function 

- insulin resistance and glucose intolerance 

- risk of congestive heart failure due to fluid retentive 

effects, but this risk is small 

Neoplasia - overall risk of hypothalamic-pituitary tumor 

recurrence or progression and overall risk of induction 

of malignancy  

- risk of secondary neoplasia in childhood cancer 

survivors, especially in those previously treated with cranial 

irradiation, but this risk is small  

Mortality - possible risk of global and cardiovascular mortality in 

patients with hypopituitarism 

- mortality rates not conclusively proven 

 

, increased; , decreased; , unchanged; QoL quality of life. 
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Table 3   Summary of studies investigating the effects of d3-GHR polymorphism and responsiveness to rhGH therapy in adults with 

GHD.  

 
 Genotype, %   

Studies n fl-fl d3-fl d3-d3 d3-carriers Outcomes investigated Main findings 

Meyer, et al. 
[138] 

133 59 37 4 41 rhGH dose, IGF-I and SDS values, and 

anthropometry after 12 months of therapy 

~25% lower rhGH dose needed to attain 

comparable IGF-I in d3-carriers 

 

Moyes, et al. 
[139] 

194 52 39 9 48 IGF-I and clinical signs and symptoms 

after 12 months of therapy 

Minimal increase in IGF-I levels in the 

d3-d3 group 

 

van der 

Klaauw, et al. 
[140] 

99 

 

 

 

 

53 

56 38 6 44 IGF-I, lipids, anthropometry, and bone 

mineral density after 1 and 5 years of 

therapy 

d3-carriers had greater increase in IGF-

I, lesser decrease in total and LDL-

cholesterol, and greater increase in 

HDL-cholesterol 

 

No effect after 5 years of therapy 

 

Adetunji, et al. 
[141] 

131 55 39 6 45 Symptoms, quality of life and body 

composition after > 1 year of therapy 

 

No effect after therapy 

Andujar-Plata, 

et al. [142] 

44 63 31 6 37 Baseline IGF-I, adverse events and 

treatment discontinuation after 6, 12 and 36 

months of therapy   

 

No effect at baseline 

Barbosa, et al. 
[143]  

124 58 30 12 42 Baseline IGF-I, and total body fat mass and 

changes after 12 months of therapy 

 

No effect at baseline 

Glad, et al. 
[144] 

313 59 35 7 41 Short (1 week) and long-term (6 and 12 

months) IGF-I response to therapy 

 

Greater IGF-I response at 1 week in the 

fl-fl group  

Giavoli, et al. 
[145]  

100 

 

 

 

50 

48 45 7 52 IGF-I, BMI, body composition, lipids, 

glucose homeostasis after 1 year (n=100) or 

5 years (n=50) of therapy 

No effect at baseline 

 

 

 

Higher increase of HDL-cholesterol and 

fasting glucose in d3-carriers after 1 year 

of therapy 

Lower number of patients with impaired 
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glucose tolerance in fl/fl, but more in d3-

GHR patients after 1 and 5 years of 

therapy 

Greater decrease in total and LDL-

cholesterol in d3-carriers after 5 years 

of therapy  

 

Bianchi, et al. 
[146] 

69 54 33 13 0 Short- (6 and 12 months) and long-term (5 

years) IGF-I, anthropometry, lipids, 

glucose homeostasis, and blood pressure 

responses to low dose (0.01‐
0.03 mg/kg/week) therapy  

Higher increase of IGF-I in the d3‐d3 

group after 6 and 12 months of therapy; 

d3‐carriers showed a more effective 

short‐ and long‐term response with 

respect to LDL-cholesterol, fat mass and 

blood pressure reductions  

 

 

BMI, body mass index; GHR, growth hormone receptor; HDL, high-density lipoprotein; IGF-I, insulin-like growth factor I; LDL, 

low-density lipoprotein; rhGH, recombinant human growth hormone; SDS, standard deviation score. 
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Table 4   Overview of LAGH preparations currently studied and under development. 
Technology 

used 

Product (Company) Modification to the GH molecule Frequency of 

administration 

Current status 

Depot LB03002 (LG Life 

Sciences, Ltd) 

Microparticles containing GH incorporated into 

sodium hyaluronate and dispersed in an oil base of 

medium-chain triglycerides  

7 days Approved and marketed in 

South Korea for childhood 

GHD. Approved but not 

marketed in Europe. 

Depot CP016 (Critical 

Pharmaceuticals) 

Supercritical carbon dioxide, formed when carbon 

dioxide exceeds its thermodynamic critical point, used 

to create the depot 

14 days (planned) Pre-clinical studies 

PEGylated BBT-031 (Bolder 

Biotechnology) 

Site-specific PEGylated GH analog   7 days (planned) Pre-clinical studies 

PEGylated Jintrolong (GeneScience 

Pharmaceuticals, Ltd) 

40-kDa PEG linked to GH 7 days Approved in China for 

childhood GHD 

Prodrug TransCon ACP-001 

(Ascendis) 

GH transiently linked to carrier molecule via a self-

cleaving linker, and releases GH unmodified  

7 days Phase 3 in children 

completed and presented, 

phase 3 in adults in 

planning stages  

GH molecule 

bound to 

albumin 

Somapacitan NNC0195-

0092 (Novo Nordisk) 

Single point mutation in GH, with non-covalent 

albumin binding moiety attached 

7 days Phase 3 in children, phase 

3 and extension study in 

adults  

GH molecule 

bound to Fab 

antibody 

AG-B1512 (Ahngook 

Pharmaceutical Co., 

Ltd.) 

Recombinant human GH genetically fused to a 

polypeptide linker and an anti-HSA Fab antibody 

14-28 days 

(planned) 

Pre-clinical studies 

GH fusion 

protein 

ProFuse GH (Asterion) GH-binding protein 1 month (planned) Pre-clinical studies 

GH fusion 

protein 

GX-H9 (Genexine, Inc. 

and Handok, Inc.) 

Hybridization of non-cytolytic immunoglobulin Fc 

portion of IgD and IgG4  

7-14 days Phase 2 in children and 

adults, pending phase 3 

trial in adults 

GH fusion 

protein 

LAPSrhGH/HM10560A 

(Hanmi Pharmaceutical 

Co., Ltd.) 

Homodimeric aglycosylated IgG4 Fc fragment 7-14 days Phase 2 in children and 

adults 

GH fusion 

protein 

MOD-4023 (Pfizer, Inc.) Carboxyl-terminal peptide of hCG β-subunit 7 days Phase 3 in children, phase 

3 in adults failed primary 

end-point and further 

studies planned for pen 

devices 

Fab, fragment antigen binding; Fc, fragment crystallizable; GHD, growth hormone deficiency; hCG, human chorionic gonadotropin; 

HSA, human serum albumin; IgD, immunoglobulin D; IgG, immunoglobulin G; PEG, polyethylene glycol.  
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Figure 1: Algorithm for selecting a suitable GH injection device patient’s individual needs (used with permission from Llahana et al, 

2019). 

 

 


