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Abstract

Background

Resting state fMRI has emerged as a popular neuroimaging method for

automated recognition and classification of brain disorders. Attention Deficit

Hyperactivity Disorder (ADHD) is one of the most common brain disorders

affecting young children, yet its underlying mechanism is not completely understood

and its diagnosis is mainly dependent on behaviour analysis.

New method

In this paper, we propose an end-to-end deep learning architecture to diagnose

ADHD. Our aim is to (1) automatically classify a subject as ADHD or healthy

control, and (2) demonstrate the importance of functional connectivity to increase

classification accuracy and provide interpretable results. The proposed method,

called DeepFMRI, is comprised of three sequential networks, namely (1) a

feature extractor, (2) a functional connectivity network, and (3) a classification

network. The model takes fMRI pre-processed time-series signals as input and

outputs a diagnosis, and is trained end-to-end using back-propagation.

Results

Experimental results on the publicly available ADHD-200 dataset demonstrate

that this innovative method outperforms previous state-of-the-art. Different

imaging sites contributed the data to the ADHD-200 dataset. For the New York

University imaging site, our proposed method was able to achieve classification

accuracy of 73.1% (specificity 91.6%, sensitivity 65.5%).

Comparison with Existing Methods
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In this work, we propose a novel end-to-end deep learning method incorporating

functional connectivity for the classification of ADHD. To the best of our knowledge,

this has not been explored by existing studies.

Conclusions

The results suggest that the proposed end-to-end deep learning architecture

achieves better performance as compared to the other state-of-the-art methods.

The findings suggest that the frontal lobe contains the most discriminative power

towards the classification of ADHD.

Keywords: functional MRI, Deep Learning, End-to-end network, ADHD

1. Introduction

The human brain can be perceived as a large and complex network controlling

and monitoring the systems of the body. The brain network is comprised

of multiple inter-connected brain regions. While supervising and executing

different bodily functions, the brain regions continuously coordinate with each5

other in an efficient manner resulting in a complex brain connectivity pattern.

Brain connectivity is a promising source for diagnosis, characterization and

prediction of pathologies, which are linked to abnormal functional organization

of the brain. Recently, analysis of the connectivity of brain regions has gained

much research focus as it is believed that connectivity plays a key role in the10

cognitive processes [1].

A number of different imaging modalities have been proposed to explore

the functional activity of the brain, such as Electroencephalography (EEG),

Magnetoencephalography (MEG), functional Magnetic Resonance Imaging (fMRI)

and Positron Emission Tomography (PET). Being non-invasive and displaying15

remarkable spatial resolution, fMRI is considered most suitable towards determining

functional activity of the brain regions [2]. In recent years, fMRI has emerged as

a popular neuroimaging modality to explore brain connectivity patterns for the

classification of different neurological disorders, demonstrated in several studies

[3, 4, 5] with promising outcomes by studying brain functional networks in20
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resting state fMRI.

fMRI data can be viewed as a 4D tensor such that the 3D volume of the brain

is divided into small voxels or regions and the activity of each region is recorded

for a certain duration. Two brain regions that show synchronous functional

activity are assumed to be functionally connected. Functional connectivity is25

viewed as the relationship between the temporal activity patterns of anatomically

separated brain regions, depicting the strength of functional communication

between regions [1].

Recently, functional connectivity has been shown to be an important biomarker

towards discrimination of different brain disorders [6, 7, 8]. Research studies30

have shown that brain disorders such as Alzheimer's disease, epilepsy and

ADHD can alter the functional connectivity of the brain network [9]. Accurate

identification of the altered functional connectivity induced by a particular

disorder is considered an important task that may highlight the underlying

mechanisms of the disorder. Recently, resting state fMRI has emerged as a35

promising neuroimaging tool to investigate functional activity of brain regions

[6, 7, 10, 11, 4, 12]. In particular, fMRI has been employed to identify the

connectivity alterations induced by disorders such as epilepsy [6, 7], schizophrenia

[10, 11], ADHD [4, 12, 8, 13], Alzheimer’s disease [14] and Parkinson’s disease

[15, 16].40

ADHD is one of the most common neuro-developmental and mental disorders

affecting 5-10% of young children [4], contributing to lifetime impairment [17],

poor quality of life [18] and long-term burden on affected families [17, 18]. Like

many other neurological disorders, the underlying mechanisms of ADHD are

still unknown [4]. There is no single confirmed diagnostic method available for45

diagnosing ADHD, which may take up to several months to complete and is

dependent on observations conducted by healthcare practitioners or parents.

In this work, we propose a deep learning architecture for diagnosing ADHD.

The proposed method consists of an end-to-end trainable network that takes

pre-processed time-series signals as input and produces predicted label as its50

output. The proposed architecture incorporates a functional connectivity network
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which is designed to capture pair-wise region connectivity. The last component

is a classifier that takes functional connectivity measures computed from pairs

of brain regions as input, and produces a final prediction. The contributions

of the work include 1) a deep learning architecture, trained end-to-end, for55

the classification of ADHD, 2) demonstration of the importance of functional

connectivity for improved results and, 3) a new state-of-the-art classification

accuracy on the ADHD-200 dataset.

It should be noted that a preliminary version of this work was published in a

peer review conference [19]. Compared to the earlier version of this manuscript,60

we have extended our work by 1) performing and including additional experimental

results, 2) exploring the impact of functional connectivity in an end-to-end deep

network and, 3) performing anatomical analysis of our results. In this paper,

we have applied our framework to ADHD data only, however, the proposed

method can also be applied to other neurological disorders like schizophrenia65

and epilepsy.

The rest of the paper is structured as follows. Related work is introduced

in Section 2. We present an overview of the fMRI data used in this work and

preprocessing steps in Section 3. Our proposed multi-stage network is detailed

in Section 4. Section 5 shows the experimental validation and results. The70

anatomical analysis is discussed in Section 6. Section 7 concludes the paper.

2. Related work

ADHD has received significant research focus, including studies employing

machine learning using fMRI data to investigate functional connectivity alterations

in ADHD [20, 21, 4, 9, 22]. In the following subsections, we review the related75

work categorised as correlation methods, dimensionality reduction methods,

graph based methods, clustering based methods, and deep learning methods.

2.1. Correlation methods

Correlation is a widely used method calculating functional connectivity where

the regions with high correlation are considered strongly functionally connected.80
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Dai et al. [23] segmented the brain into 351 Regions of Interest (ROIs) using a

template provided by [24] and calculated functional connectivity using Pearson’s

correlation. Bohland et al. [25] applied the Automated Anatomical Labeling

(AAL) atlas [26] to segment the brain into 116 ROIs and computed functional

connectivity using three correlation variants: Pearson’s correlation, sparse regularized85

inverse covariance [27] and Patel’s Kappa [28]. Eloyan et al. [29] extracted five

ROIs belonging to the motor network with 264 voxels as nodes and computed

functional connectivity using Pearson’s correlation coefficient which was later

used for classification. Similarly Cheng et al. [30] employed Pearson’s correlation

and partial correlation to calculate functional connectivity on 90 brain regions90

extracted from the AAL template [26]. Multiple measures including Regional

Homogeneity (ReHo), functional connectivity and fractional amplitude of low-frequency

fluctuation (fALFF) were employed for classification.

Most of these studies rely on correlation-based approaches for calculation

of functional connectivity. However, the correlation-based approach does not95

characterize the network structure of different brain regions, i.e. whether two

brain regions belong to the same functional cluster or not [31]. Moreover,

the network obtained by correlation is quite dense, which may degrade the

performance of a classifier [31, 6]. We also note that these studies highlight the

lack of consensus in using a common brain atlas for specifying brain regions in100

fMRI analysis.

2.2. Dimensionality reduction methods

Dimensionality reduction methods such as Independent Component Analysis

(ICA) are commonly used with fMRI data. Garcia et al. [20] proposed an ICA

based functional-anatomical discriminative region model for pattern classification105

of ADHD. This approach applied ICA to extract brain functional connectivity

networks. Similarly, Tabas et al. [22] proposed a variant of ICA to characterize

the differences between a healthy control group and an ADHD group. This

study used 20 independent components and combined ICA and a spatial variant

of Fisher's linear discriminant. ICA-based methods are considered a natural110
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choice for fMRI studies as these methods do not require any prior information

about the spatial or temporal patterns of source signals.

In another study [32], the authors have proposed a framework for the classification

of Autism and ADHD. The authors have used multiple imaging modalities,

namely MRI and fMRI for classification of disorders. Also, personal characteristic115

data such as age, gender has been explored for the classification. In this

work, a histogram of oriented gradients have been calculated from the imaging

modalities and the minimum redundancy maximum relevance (MRMR) is applied

as the feature selection strategy. The selected features are presented to a support

vector machine classifier for the final prediction. Similarly, in another study120

[33], the authors have also used multiple imaging modalities (MRI and fMRI)

for the classification of ADHD and Autism. In this study, the structural features

from MRI are extracted through a sparse auto-encoder and principal component

analysis (PCA) is applied to the fMRI data to decompose to extract principal

components. Finally, an SVM classifier is used for final prediction. Both of these125

studies rely on multiple imaging modalities and do not incorporate functional

connectivity in their work, which is an important characteristic of fMRI data.

The focus in this proposed work is to utilise a single imaging modality (fMRI)

and exploit functional connectivity for prediction of ADHD. We note that the

proposed method produces comparable results to [32, 33], but using only a single130

imaging modality.

ICA-based approaches have shown success in classification tasks, however,

there are limitations to these methods. First, independent components are often

perceived as difficult to understand [1]. ICA is based on the assumption that

components (signal sources) are independent, whether spatially or temporally.135

Violation of the assumption degrades performance. Moreover, selection of the

number of independent components and a threshold value for the independent

component maps are considered as a drawback [2], especially in the case of fMRI,

where there is no prior information of the number of components available.
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2.3. Graph based methods140

A number of graph based approaches have been applied to model brain

networks. Dey et al. [4] proposed a graph-based solution for the classification of

ADHD. They modelled the brain connectivity network as a graph and represented

each node of the network as a set of attributes which was termed as the signature

of a node. The correlation was applied for functional network construction145

and a threshold was applied to construct the network. The threshold value

was arbitrarily chosen and different values were employed for different imaging

datasets. Similarly, Siqueira et al. [9] investigated different graph-based measures

for the classification of ADHD.

2.4. Clustering based methods150

Clustering is another popular approach for the evaluation of functional connectivity,

where regions belonging to the same cluster are assumed to be functionally

connected. Studies have shown that a clustering-based approach is more sophisticated

as compared to correlation-based approaches, as the network obtained by clustering

is sparse [7, 2]. Recently, a few studies have applied clustering to the ADHD-200155

dataset for functional connectivity analysis [8, 3]. Zhang et al. [31] applied

k-means clustering to calculate functional connectivity. However, in k-means,

random initialization of clusters and priori information on the number of clusters

emerges as a major drawback, as these are unknown in the case of fMRI.

Hierarchical clustering can also be applied to calculate functional connectivity160

[34], however the selection of the thresholding and the number of clusters are

not known in advance in the case of fMRI. Other studies (e.g., [7, 8, 3]) have

applied affinity propagation (AP) [35] clustering for the classification of brain

disorders. AP clustering does not require an initial number of clusters, which

is a good choice for fMRI data. However, AP requires a similarity measure165

between data points as the input and output of the algorithm are affected by

this measure. Selection of the distance measure presents a limitation of these

methods.
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2.5. Deep learning based methods

End-to-end deep learning networks have been shown to outperform existing170

classical machine learning models in a number of domains like image classification,

image segmentation and object recognition [36]. Generally speaking, an end-to-end

trainable network refers to a single learning system where the predicted label

of a neural network model is predicted directly from the input, with all weights

learned through back-propagation. In the domain of fMRI, there is very limited175

work exploring deep learning based functional connectivity for classification of

neurological disorders [13].

Many studies have applied deep learning to MRI data. In [37], the authors

have applied a three-dimensional convolutional neural network for the classification

of Alzheimer’s disease using MRI data. The method used an auto-encoder180

for pre-training the CNN filters. The study suggested that a CNN performs

better than other classifiers for prediction of Alzheimer’s disease. In [38], the

authors have applied a CNN for the classification of ADHD using combined

features of MRI and fMRI. Instead of applying a CNN directly on the temporal

data of brain regions, the CNN was applied to the features extracted from the185

fMRI data. These features include regional homogeneity (ReHo), the normalized

amplitude of low-frequency fluctuations (fALFF) and voxel-mirrored homotopic

connectivity (VMHC). These features are calculated using conventional hand-crafted

statistical measures and might not able to capture the inherent characteristics

of temporal fMRI signals. Also, functional connectivity is not explored. In [39],190

the authors have applied an auto-encoder for the classification of Alzheimer’s

disease. Functional connectivity was calculated through correlation and then

fed to an auto-encoder network followed by a softmax layer for the classification.

The method uses a deep network, however, still relies on correlation for functional

connectivity.195

The use of an artificial neural network for classification of ADHD has been

explored in [40]. However, this method relied on a classical machine learning

model for the extraction of multiple features, which are passed to a fully connected

neural network for classification. Similarly, the study in [41] addressed the
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problem of classification of mild cognitive impairment (MCI) from fMRI data.200

The authors applied a deep autoencoder for dimensionality reduction of pre-processed

fMRI signals. The representation encoded by the autoencoder was fed into

a hidden Markov model to estimate the likelihood of a subject belonging to

the healthy control group or the MCI group to identify its predicted label.

Recently, a deep learning method, namely FCNet [13], has been proposed for205

the classification of ADHD from fMRI data. The method applies a convolutional

neural network (CNN) to predict functional connectivity of brain regions. However,

after predicting functional connectivity using deep learning, the method applies

classical machine learning methods to extract discriminant features and an SVM

classifier to predict classification labels. These approaches rely on classical210

machine learning models for prediction of a disorder. In a non peer reviewed

work [42], a CNN was proposed for classification of Alzheimer’s disease using

fMRI data. The study applied a 2D CNN where the 4D fMRI data was converted

to a stack of 2D images and classification was evaluated on the individual 2D

images. The study does not incorporate the temporal information in the work,215

which is the most important aspect of the fMRI time-series data. Being a 2D

CNN model, the prediction results are evaluated for individual images instead

of per subject. For prediction of a subject, the results of individual 2D images

are accumulated. A recent study [43] applied a 3D CNN for classification of

autism spectrum disorder. The fMRI 3D volume was downsampled and the 3D220

CNN was applied on the downsampled data. The study does not incorporate

functional connectivity which is an important characteristic in brain studies.

Many of the studies describe above highlight the importance of functional

connectivity towards the classification of a disorder. However, most existing

techniques employ classical machine learning methods for classification, typically225

relying solely on hand-crafted features. Discriminant features are selected and

presented to a classifier for the final prediction. More importantly, all the

different processing steps in a classical machine learning method are independent

of each other. However, in the machine learning literature, deep learning has

proved to be a powerful paradigm to simultaneously learn discriminant features230
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and a classifier [36].

We propose a deep neural network for diagnosis of ADHD. The network is

learned end-to-end, taking pre-processed fMRI time-series as input and producing

a classification (healthy or ADHD) as output. Our proposed network does not

involve hand-crafted features or independent modules for feature extraction,235

feature selection and classification. Rather, all these modules are incorporated

in a single network and the weights are learnt itself by the model during the

training. To the best of our knowledge, this is the first study to propose a

fully end-to-end deep learning method incorporating functional connectivity for

the classification of a neurological disorder based on fMRI. Particularly, we240

are interested to explore if a deep network-based model can be designed for the

classification of ADHD, and if it is able to outperform classical machine learning

methods or a combination of deep learning and existing classical machine learning

methods. The strength of deep learning comes from its representation learning

capabilities, where the most discriminative features are learned during training.245

A deep network is composed of multiple modules, where each module learns the

representation from one lower level to a higher, more abstract level.

3. Data and preprocessing

The resting state fMRI data used in this study is from the NeuroBureau

ADHD-200 competition [44]. The data provided by the competition consists of250

MRI and resting state fMRI data as well as different phenotypic information

(non-imaging data) such as age, gender and IQ, for each subject. There was a

global competition held for classification of ADHD subjects, and the consortium

has provided the training and independent test dataset for each imaging site.

The dataset was collected and contributed by eight different imaging sites. For255

the development and evaluation of our proposed network, we used datasets from

three imaging sites: NeuroImage (NI), New York University Medical Center

(NYU), and Peking University (Peking). Our approach is designed to accept

time-series signals of length 172, therefore, we discarded the imaging sites with
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Table 1: Overview of the dataset used in the study.

Train dataset Test dataset

Healthy controls ADHD Healthy controls ADHD

NYU 98 118 12 29

NI 23 25 14 11

Peking 61 24 24 27

signal length less than 172. All the imaging sites have a different number of260

subjects. Table 1 describes the overview of the data used in this study. The

imaging sites have different lengths of time-series signals. The deep learning

methodology employed in this work requires a fixed length of input signal and

can not accept input with different input lengths. To decide the supported input

length, we selected the imaging site with highest number of subjects. The site265

with maximum number of subjects was NYU with 226 subjects and its length

of time-series signals was 172. Therefore, we designed our network to accept

input length of 172. We discarded the imaging sites with length of time-series

smaller than this number. Also, the time-series of length greater than 172 were

truncated at the beginning to make fixed length of input signals suitable for270

input to the method.

The scan parameters and the equipment used were varied across different

imaging sites. Some of important parameters used by different imaging sites

are presented in Table 2. Additionally, the imaging sites employ different

data acquisition parameters, for example NeuroImage scanned the data while275

subjects were asked to close their eyes, whereas in Peking, subjects were asked

to keep their eyes open or close. The variations in the parameters of scan and

data acquisition increase the complexity and diversity of the data.

For all our experiments, we used the pre-processed data released for the

competition. This data has been pre-processed as part of the connectome project280

[45]. The preprocessing is performed using AFNI [46] and FSL [47] tools on
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Table 2: Scan parameters per imaging sites.

NYU NI Peking

Slices 33 37 33

TR (ms) 2000 1960 2000

TE (ms) 15 40 30

Thickness (mm) 4.0 3.0 3.5

FoV read (mm) 240 224 200

FoV phase (%) 80 100 100

Flip angle (degree) 90 80 90

Athena computer clusters at the Virginia Tech advanced research computing

centre. The preprocessing steps include: removing of the first four time points,

slice time correction, motion correction (first image taken as the reference),

registration on 4×4×4 voxel resolution using the Montreal Neurological Institute285

(MNI) space, filtration (bandpass filter 0.009Hz < f < 0.08Hz) and smoothing

using a 6mm FWHM Gaussian filter. The brain is segmented into 90 regions

using the well established AAL template. Although some other atlases like

Craddoc et al. [24] segment the brain into 351 regions can be used here, they

will yield very high dimensionality of data, so the AAL template is preferred.290

A number of studies [7, 3, 8, 13, 30, 25] have also employed the AAL template

for brain parcellation. Interested readers may refer to the competition website

for further details on the data and preprocessing [45].

4. Methods

4.1. End-to-end model295

In this paper, we propose an end-to-end deep learning model for the classification

of ADHD that takes pre-processed fMRI time-series signals as input and predicts

a label (1 for ADHD subject and 0 for healthy control) as output. The proposed

work is motivated by FCNet [13]. FCNet is used to extract functional connectivity
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from fMRI time-series signals, however it combines deep learning and classical300

machine learning and is not trained end-to-end. For ease of understanding, our

proposed architecture can be divided into three modules: 1) feature extractor

network, 2) functional connectivity network, and 3) classification network. The

feature extractor network is applied to a pre-processed time-series signal of

individual brain region and it produces an abstracted feature as its output.305

These features are learned during the training. The functional connectivity

network takes the abstracted features as input and produces the strength of

similarity between any two brain regions. Finally, the classification network

produces the final prediction label based on the functional connectivity values

of all brain regions. We describe the details of each individual network below.310

4.1.1. The feature extractor network

This convolutional neural network (CNN) extracts features from individual

brain region pre-processed time-series signals and is comprised of multiple layers

that are common in CNN models to learn abstract representations of data. The

network is designed to accept signals of length 172 as the input and produces315

an abstract representation (vector of size 32). The network hyperparameters

were not tuned using a validation dataset, instead, the network architecture

and hyper-parameters are inspired by [48]. We use parametric ReLU and its

slope is learned during the training phase. The parametric ReLU is presented

as:320

f(x) =

 x, x > 0

ax, x ≤ 0
, (1)

where a is a non-negative scalar subject to learning. Instead of three consecutive

convolutional layers proposed in the network of [48], we have two convolutional

layers next to each other (Layer 12 and 13). The network is presented in Figure

1a and is comprised of 15 layers (Figure 1d). All convolutional layers are one

dimensional with a kernel size of 3, stride of 1 and the numbers of filters are 32,325

64, 96, 64, 64 for the respective layers as presented in Figure 1. All max pooling

layers pool temporally with pool length of 2 with stride 1 as proposed by [48].
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Figure 1: The DeepFMRI architecture. a) represents a set of 90 feature extractor networks

where each network is applied on each individual region R. All networks share the same

weights. b) represents a functional connectivity network comprising a set of 4005 similarity

measure networks. Each network’s input contains abstracted features of two brain regions. All

networks share the same weights. c) is the classification network comprising of fully connected

layers and a softmax layer. d) represents the layers in the feature extractor network, where

Convolutional (c) represents a convolutional layer with c filters, Pool (p) represents a max

pooling layer with pool length of p and Fully connected (f) represents a fully connected layer

with f nodes. Similarly, e) represents layer architecture of similarity measure network, and f)

represents the layers of an individual block in the classification network (each block has two

layers, as shown above).

The last fully connected layer in the network has 32 nodes. The total number

of weights in the feature extractor network are 90947.

In the proposed work, the same feature extraction steps are applied to330

individual brain regions. This is implemented by employing nf feature extractor.

Each feature extractor network is applied to an individual brain region (nf =

90), converting individual time-series data into an abstract representation. All

the feature extractor networks share the same parameters and updates are

applied to these shared parameters during training.335

14



4.1.2. The functional connectivity network

The functional connectivity network determines the functional connectivity

between the brain regions and is presented in Figure 1b. The network is

comprised of multiple similarity measure networks where the architecture of each

similarity network is presented in Figure 1e. This Siamese-inspired similarity340

measure network determines the similarity between pairs of extracted features

from two brain regions. Here, the calculated similarity measure serves as the

degree of functional connectivity between the two regions. Each similarity

measure network operates on two brain regions, where the input to each network

are the abstracted features of the two brain regions from the feature extractor345

network. The neural network learns to identify functionally connected regions

using a non-linear function. This function is learned from the data and is

specific to this problem as compared to other commonly used generic measures

like correlation. The similarity measure network is comprised of three fully

connected layers, where the last layer is connected to a softmax layer with350

dense connections. These layers are presented in Figure 1e, where the number

of nodes in these layers are 32, 32, and 2 respectively. The total number of

weights in the network is 3202. The output of the similarity measure network is

a length two vector, and can be interpreted as the probability the two regions

are functionally connected, and the complement of the probability.355

In the proposed work, all pairs of brain regions are passed through the same

similarity measure network. This is implemented by employing ns similarity

measure networks. The similarity measure network is applied to all combinations

of pairs of brain regions, so ns = 4005 (nf×(nf−1)/2). There are 4005 similarity

measure networks and all the similarity measure networks are implemented360

with the constraint that the networks share the same parameters and updates

are applied to these shared parameters. The approach is similar to a Siamese

network [49].

The output of the functional connectivity network is fed to a mapping layer
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using the following operation:365

M(i) = w1v
i
1 + w2v

i
2, (2)

where vi1 and vi2 are the scalar outputs of the ith similarity measure network,

w1 and w2 are the weights such that w1 + w2 = 1. In order to reduce training

parameters, we use w1 = 1 and w2 = 0. Moreover, the parameters enforce

passing the functional connectivity to the classification network. The output of

this network can be assumed to be the functional connectivity mapping of all the370

brain regions, and uses deep learning-based features from the feature extractor

network. Instead of initializing weights of the feature extractor network and the

similarity measure network randomly, we use weights of a pre-trained FCNet

[13].

The architecture of the feature extractor network in the proposed network375

is the same as in the feature extractor network in FCNet [13]. Similarly, the

architecture of the similarity measure network is the same in both in FCNet and

the proposed network. We extracted weights of both of these networks from the

pre-trained FCNet and used them to initialize the weights of the corresponding

networks of the proposed network. During the training of the network, a380

small learning rate (10−5)is used for the functional connectivity network. The

small learning rate allows smaller updates of weights and its advantages are

two-fold: it encourages maintenance of the original characteristics of the network

(i.e. to extract functional connectivity of brain regions), and at the same time

adapts the network according to the end-to-end classification task. In order385

to evaluate whether the original characteristics of the functional connectivity

network are maintained or not, we have compared the weights of the pre-trained

functional connectivity network with the weights of the same network after

final training of the DeepFMRI. The percentage difference in the weights is not

greater than 5% for three sites, showing that the network is maintaining its390

original characteristics. FCNet is pre-trained using the training data and its

training does not include any test data.
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4.1.3. Classification network

This neural network produces the final classification results. The input to

this network is the output of the mapping layer features (M) representing the395

functional connectivity of brain regions. The network is comprised of four fully

connected layers where the last layer is connected to a softmax classifier with

fully connected layers. The network is presented in Figure 1c, where the number

of nodes in the fully connected layers are 100, 50, 50 and 2 respectively. The

total number of weights in the network is 408602. The weights were initialized400

randomly.

5. Experimental settings and results

In this section, we evaluate the effectiveness of the proposed method for

ADHD classification employing resting state fMRI and by comparing our results

with those of the state-of-the-art methods in the literature.405

5.1. Experimental settings

The proposed model is evaluated on the ADHD-200 dataset. This publicly

available dataset was contributed by different imaging sites. Each imaging site

provided separate training and testing datasets and we followed the split in

accordance with the consortium. This also makes it possible to compare to other410

methods as they also tested on the independent test data. Doing cross-validation

within the original training/test was not advised due to the smaller dataset. For

the evaluation of our method on individual site, we train our end-to-end model

on the training dataset of each imaging site and test it on the corresponding

test dataset of that individual site. There are four categories of subjects in the415

dataset: healthy control, ADHD combined, ADHD hyperactive-impulsive and

ADHD inattentive. Here, we combine all ADHD types in one category as we are

interested to investigate the classification between healthy control and ADHD

only.

The proposed model is created in the python programming language using420

the tensorflow deep learning library. The network is trained end-to-end. The
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Adam optimizer [50] is used to optimize the network and the number of epochs

is set to 50. After 50 epochs, the training loss converges and becomes stable.

For the initialization of the feature extractor and similarity measure networks,

we use weights from a pre-trained FCNet [13] in our work, and these weights are425

updated through fine-tuning. The full deep network is trained the end-to-end

model with the cross-entropy loss:

L = − 1

n

n∑
1

[yilog(ŷi) + (1− yi)log(1− ŷi)], (3)

where n is the number of training samples, yi is the ground truth label of the

subject (1 for ADHD subject and 0 for healthy control) and ŷi is the prediction

by the proposed network.430

As the feature extraction and similarity measure networks are initialized

with a pre-trained FCNet, we employ different learning rates for i) feature

extraction and similarity measure networks (10−5), and ii) the classification

network (10−4). In our experiments, we use the Adam optimizer [50] to optimize

the network.435

5.2. Comparison methods

To validate the effectiveness of the proposed method, we compare it with

different network architectures and state-of-the-art methods namely, an end-to-end

network without functional connectivity, FCNet, a clustering method and a

correlation method.440

5.2.1. End-to-end model without functional connectivity

A number of studies have shown that functional connectivity plays a key

role in cognitive processes of the brain [1]. Recently, studies have shown that

altered functional connectivity can serve as an important biomarker towards

the identification and classification of different brain disorders [6, 7, 10, 11, 4,445

12, 8]. Inspired by the findings of such studies, we have integrated functional

connectivity network in the proposed method architecture. In order to evaluate

the importance of functional connectivity in our proposed work towards the
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Figure 2: The end-to-end model without the functional connectivity network. a) represents a

set of 90 feature extractor networks where each network is applied to each individual region

R. b) is the classification network.

classification of ADHD, we have evaluated our end-to-end network without the

functional connectivity network. The model without the functional connectivity450

network is presented in Figure 2.

In this model, the abstracted features calculated through the feature extraction

network are merged and passed directly to the classification network and there

is no functional connectivity network. Due to the exclusion of the functional

connectivity network, there are fewer overall parameters than in the proposed455

model. The weights and parameters of the feature extraction network are the

same as in the proposed network.

5.2.2. FCNet

The FCNet method [13] uses a CNN-based deep learning model to extract

functional connectivity from the pre-processed fMRI signals. An Elastic net460

[21] is applied to extract the discriminant features from the calculated functional

connectivity and finally an SVM classifier is applied to evaluate the classification

results. This is the first method that applies a CNN-based deep learning model

for the classification of ADHD.
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5.2.3. Correlation method465

Correlation is a popular method for calculating functional connectivity. In

order to compare the proposed method with correlation, we performed correlation

on pre-processed fMRI signals to calculate the functional connectivity between

the brain regions. We applied an Elastic Net based feature selection to extract

discriminant features. Finally, an SVM classifier was applied for classification.470

5.2.4. Clustering method

A clustering-based approach for calculating functional connectivity of brain

regions was used in [3]. Clustering is considered a more sophisticated technique

than correlation-based techniques for calculating functional connectivity [8] as

the network obtained by clustering is sparse [7, 2]. In this study, authors applied475

Synthetic Minority Over sampling TEchnique (SMOTE) [51] to address the

problem of dataset imbalance. An Elastic Net [21] was applied to functional

connectivity to extract discriminant features. Finally an SVM classifier was

utilized to classify healthy vs ADHD subjects.

5.3. Feature importance of functional connectivity480

A common criticism of deep networks is that they are a ‘black box’, mapping

inputs to outputs and lacking interpretability. In a clinical context, it is of

keen interest to not just produce diagnoses, but also draw some insights from

network itself, particularly looking for differences between healthy control and

patient groups to characterise the neurological condition. A key advantage of485

the proposed method is that due to the functional connectivity network, once

the model is trained, we can analyse the functional connectivity of brain regions

for patients and control, leading to interpretable results. As a demonstration,

we carried out an experiment to rank the contribution of individual functional

connectivity values towards prediction of a particular class label (in our case,490

class labels are healthy control and ADHD). This weighted rank can be viewed as

feature importance of functional connectivity and represents the strength of the
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functional connectivity of two brain regions towards calculating the assignment

of a class label.

In our end-to-end network, the final prediction is calculated through the495

classification network. The classification network is comprised of multiple layers

where it gets the functional connectivity from the mapping layer as input and

produces the final prediction of the network (i.e. control or ADHD) through a

softmax layer. During the training step, the network optimizes the parameters

with respect to the individual class label. The network back-propagates the error500

from the last layer to the mapping layer (reminiscent of functional connectivity

in our network) during the training phase. Thus the learned weights of this

network carry important information towards determining the feature importance

of the functional connectivity for each of the 4005 pairs of brain regions.

Specifically, we are interested to explore the weights assigned by the classification505

network to the mapping layer M in Equation 2. Deep neural networks have

been applied to visualize feature importance on images [52] and videos [53]. To

explore the importance of features assigned by the classification network, we

carried work similar to [5]. The main idea of the approach is: given a learned

neural network and a class of interest, we trace back to the original input by510

a backward pass with which we can determine how each input entity affects

the final detection score for a specific class. In our model, we have two classes

(healthy control and ADHD) and we trace back to the mapping layer values to

find how each mapping layer value affects the prediction of a particular class.

Given a particular output value of mapping layer M0, a class c and the class515

score function Sc(M), we would like to rank the elements of M0 based upon

their influence on the score Sc(M0). Consider the linear score model for the

class c:

Sc(M) = wcM + bc, (4)

where M is the one-dimensional vector, calculated from Equation 2 and is

reminiscent of the functional connectivity in our network. The wc is the weight520
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and bc is the bias of the model. Here, it is clear that the magnitude of the

elements of the weight vector wc specifies the importance of the corresponding

element of M for the class c.

In the case of a deep neural network, the class score is a non-linear function of

the input values, so the above assumption cannot be applied directly. However,525

given a vector M0, we can approximate Sc with a linear function in the neighbourhood

of M0 by a first-order Taylor expansion [52]:

Sc(M) ≈ wM + b. (5)

where w is the derivative of Sc with respect to the vector M at the point

M0:

w =
∂Sc

∂M
|M0

. (6)

Another justification of the network-learned weight using the class score derivative530

from Equation 6 is that the magnitude of the derivative indicates which elements

need to be changed the least to affect the class score the most. One can expect

such elements to be more discriminative for a particular class. The derivative

w in Equation 6 is calculated through back-propagation during the training of

the network. We define feature importance of a node i at layer d as:535

fd
c (i) =

d∑
l=L−1

∑
k

w(l,l+1)
c f (l+1)

c (k), (7)

where L is the total number of layers in our classification network, k is the

number of nodes and fL
c is the output of the classification network. We define

I as the feature importance map for the class c, where each element is given by:

Ic(x) = fM
c (x). (8)

The Ic defines the feature importance of a particular class c.

5.4. Results540

We evaluate the proposed network with the data from three imaging sites

(NYU, NI and Peking) from the ADHD-200 dataset. The number of training
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Table 3: Results from the proposed end-to-end network showing classification accuracy,

specificity and sensitivity for individual imaging sites.

Classification

accuracy
Specificity Sensitivity

NYU 73.1% 91.6% 65.5%

NI 67.9% 71.4% 63.6%

Peking 62.7% 79.1% 48.1%

subjects in each site is 226, 48 and 85 respectively. ADHD-200 [44] has provided

separate train and test dataset for individual imaging site. To evaluate the

performance of the proposed work on the individual imaging site, the proposed545

end-to-end model is trained on the training dataset of each imaging site and

the corresponding test dataset of the individual site is used for testing. Please

note, the data used to test the method is completely independent of the data

used to train. Let TP, TN,FP and FN denote true positive, true negative, false

positive and false negative respectively. Sensitivity and specificity are defined as550

sensitivity = TP/(TP +FN) and specificity = TN/(TN +FP ). The calculated

results are presented in Table 3. The highest accuracy is achieved with our

method for NYU with a classification accuracy of 73.1%. The classification

accuracy for the NI and Peking are 67.9% and 62.7%. One concern could be that

the number of subjects is very small to train a deep neural network. However,555

the performance of the proposed method on independent test datasets shows

that the model is able to achieve generalization despite the small dataset. Recent

literature [54, 5] has argued that deep neural networks ar effective to generalize

well on small datasets.

5.4.1. Comparison with other methods560

In order to evaluate the performance of the proposed method, we have

evaluated and compared results with state-of-the-art methods as described in

the previous section. The results are presented in Table 4. They show that the
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proposed method outperforms the average accuracy results of the competition

teams (data from the competition website [44]), the highest accuracy of competition565

for any individual site (from [20]), correlation-based functional connectivity

results and clustering based results. Our method also performs well in comparison

with the state-of-the-art FCNet method [13]. Table 1 highlights that the distribution

of healthy control and ADHD class in train and test splits are different. However,

in order to achieve better performance by any classifier, the training and testing570

data should follow a similar class-distribution. The performance of any classifier

depends on the distribution of the training data. If the majority class is changed

for the testing data, the classifier performance would drop badly. For the

calculation of the baseline classifier accuracy, it can be assumed that a simple

classifier would predict the majority class of the training dataset for all testing575

subjects. In the case of Peking, the majority class in the training dataset is

healthy control, so the baseline accuracy for Peking on testing dataset is 47.1%

(24/(24 + 27)). Similarly for NYU, with ADHD as majority class in training

data set, is 70.7% (29/(29 + 12)), and for NI, with ADHD as majority class

in training dataset, is 44.0% (11/(11 + 14)). The baseline accuracy for three580

imaging sites are presented in Table 4, where the DeepFMRI performs much

better than baseline accuracy for the Peking and NYU and slightly better for

the NYU.

The results show that the proposed method shows the improved results for

NI and NYU and the classification accuracy is highest in all three imaging sites.585

For Peking, results for both the FCNet [13] and proposed method are the same.

One interesting point about the ADHD dataset is that the studies employing

the dataset were not able to achieve high classification accuracy. The average

and highest accuracy achieved by competing studies is presented in Table 4

where the accuracy results are around 50%. One possible reason for lower590

accuracy could be the heterogeneous nature of the data and the scan parameters.

For example, for NI imaging site data acquisition, the subjects were asked

to keep their eyes closed. No visual stimulus was presented during the scan.

For NYU, the participants were asked to close their eyes, think of nothing
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Table 4: Comparison of the proposed method with the baseline accuracy, average results

of competition teams, highest accuracy achieved for individual site, correlation method,

clustering based results [3] and state-of-the-art FCNet method [13]. The highest accuracy

for NI was not quoted by [20].

NI Peking NYU

Baseline accuracy 44.0% 47.1% 70.7%

Average accuracy [44] 56.9% 51.0% 35.1%

Highest accuracy [20] – 58% 56%

Clustering method[3] 44% 58.8% 24.3%

Correlation method 52.0% 52.9% 56.1%

FCNet [13] 60.0% 62.7% 58.5%

Proposed method 67.9% 62.7% 73.1%

systematically and not fall asleep. However, a black screen was presented to595

them. In Peking, the participants were asked to stay still, and either keep their

eyes open or closed. A black screen with a white fixation cross was displayed

during the scan. Some other parameters were also not consistent across different

sites, making the dataset difficult to train any single machine learning model. In

order to evaluate the performance of the single model on all three imaging sites,600

we performed an experiment where the DeepFMRI method was trained on the

combined training dataset from all three imaging sites and was evaluated on the

test dataset of each individual imaging site. The results are presented in Table

5. The results show that a single model is not able to perform as well, since the

data is very heterogeneous, as discussed above. The number of subjects in the605

NYU dataset are higher, which may account for the better accuracy for NYU,

whereas the training data for Peking is very imbalanced, possibly causing lower

accuracy for this site.
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Table 5: Comparison of accuracies of i) trained and tested on each individual imaging site ii)

trained once on the combined training data set of three imaging sites (NI, Peking and NYU)

and tested individually on the three imaging sites.

Test data set

Accuracy when

trained on each

individual imaging site

Accuracy when trained

on the combined training

data set

NYU 73.1% 65.8%

NI 67.9% 60.0%

Peking 62.7% 43.1%

5.5. Performance comparison

Based on the results in Tables 3 and 4, the proposed end-to-end method610

comprising the feature extractor, functional connectivity and the classification

network to classify ADHD presents better performance than state-of-the-art

methods. Although it would be helpful to conduct a statistical significance test,

unfortunately, we could not conduct such a test due to very small number of

available subjects in the imaging sites. However, from a methodological point of615

view, we are mainly interested in investigating how important each subnetwork

is to produce accurate results. To this end, we additionally performed some

experiments by replacing different combinations of the networks.

5.5.1. Comparison Methods

For comparison, we conducted additional experiments, namely, the effect of620

functional connectivity, end-to-end model without classification network, clustering

+ classification network and correlation + classification network which are

detailed below and the results are presented in Figure 4.

Effect of functional connectivity

We evaluated an end-to-end model without the functional connectivity network625

(presented in Figure 2). The comparison of the performance of the end-to-end

model with and without functional connectivity is presented in Figure 3.
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Figure 3: Comparison of the performance of i) Proposed method and ii) the model without

the functional connectivity network for the three imaging sites. The proposed model shows

better performance as compared to the model without functional connectivity.
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It is important to note that for the end-to-end model without functional

connectivity, the number of parameters are less as compared to the end-to-end

model with the functional connectivity network. The number of trainable630

parameters for end-to-end model with functional connectivity is 502, 751 vs

386, 665 for end-to-end model without functional connectivity. However, the

end-to-end model with functional connectivity yields better performance than

the model without functional connectivity. These findings show that functional

connectivity serves as an important biomarker towards classification of ADHD.635

End-to-end model without classification network

In this experiment, we are interested to determine the importance of the

classification network towards diagnosis. Therefore, we use the pre-trained

feature extractor and functional connectivity network to calculate functional

connectivity. The proposed classification network was not used in this experiment.640

An Elastic Net was applied to extract discriminant features from functional

connectivity and finally, an SVM classifier was applied to evaluate the classification

accuracy as proposed by [13].

Clustering + classification network

We wanted also to check the importance of the functional connectivity645

network in our method. In this experiment, we apply clustering to calculate

functional connectivity between the brain regions as proposed by [3, 8]. The

calculated functional connectivity is passed to the proposed classification network

to evaluate the performance of the network.

Correlation + classification network650

Correlation is a popular method to calculate functional connectivity between

brain regions. We employ correlation to calculate functional connectivity. Similar

to the previous experiment, a classification network was employed on the calculated

functional connectivity.
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Figure 4: Comparisons of classification accuracy of different methods. The results suggest

that the proposed method outperforms all other evaluated methods. The proposed method

is able to achieve the highest accuracy on all three imaging sites where it outperforms in NI

and NYU imaging dataset.

5.5.2. Comparison Results655

We performed the comparison of these four methods and the results are

presented in Figure 4. From the results, it is apparent that the proposed

method outperforms all other evaluated methods or combinations. Comparison

of ‘clustering + classification network’ and ‘correlation + classification network’

supports the findings of [3] that clustering is a better method to calculate660

functional connectivity as compared to correlation-based techniques. However,

our proposed end-to-end model yields better performance.

6. Discussion

In this section, we discuss the performance comparison of networks of our

proposed method and analyse the features learned by the method.665
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Figure 5: Visualization of the feature importance map (I) for the healthy and the ADHD

classes for the NYU dataset. The visualization shows that a different feature importance is

assigned to a particular functional connectivity. The boxes highlight some of the differences.

6.1. Analysis of learned feature importance of functional connectivity

The feature importance map (Ic) from Equation 8 is a 4005 dimensional

vector where each value corresponds to the importance of the respective functional

connectivity value in determining a particular class. We were interested to

explore the learnt feature importance values. Towards this goal, we have selected670

feature importance values for NYU dataset as, i) NYU has the largest number of

subjects compared to other imaging sites, and ii) NYU has highest classification

accuracy. We have visualized the feature importance map for both the healthy

and the ADHD classes for the NYU dataset and present the result in Figure

5. It should be noted that these are the feature importance values assigned by675

the network to the individual features (functional connectivity) for a particular

class, and it is not the functional connectivity value itself. The figure highlights

the differences in feature importance learned by our method for both classes.

Our method assigns different weights to an individual feature with respect to

its importance towards prediction of a subject. This is in contrast to the most680

classical machine learning methods [8, 3], which typically employ a feature

selection that assigns a single weight to a functional connectivity regardless

of the class.
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Next, in order to study the differences in the two classes, we have plotted

the feature importance map for both classes in Figure 6. For the sake of clarity,685

we have plotted the top 100 feature maps for both classes. The figure highlights

the differences in the feature maps of both classes.

To explore further, we have plotted the feature importance values on the

brain map. The visualization of the healthy and the ADHD classes are visualized

in Figure 7 and Figure 8, respectively. The figures show that in most of the690

cases, the importance value assigned by our network to a particular functional

connectivity is different for both classes. We performed an experiment for the

quantitative analysis of the feature maps of both classes. Our motivation was

to compare the top 100 feature maps of both classes. The top 100 feature maps

values were extracted from the healthy class and a lookup was performed in the695

ADHD feature maps. The result is presented in Figure 9. The figure shows that

out of top 100 feature maps of healthy class, less than 10% fall in the top 500

feature maps in the ADHD class. Similarly, we extracted top 100 feature maps

from the ADHD class and computed the lookup in the healthy class and the

results are presented in Figure 10. As in the previous inference, out of the top700

100 feature maps of the ADHD class, less than 10% fall in the top 500 feature

maps in the healthy class. Our findings suggest that the altered functional

connectivity between healthy control and ADHD may relate to functional brain

network differences. In particular, the proposed method appears to weight

different brain network structures depending on the particular class (control705

or ADHD).

Finally, we are interested in analyzing the learned feature importance map

for both classes with respect to the inter-lobe and intra-lobe distribution. We

have categorized the learned feature importance map with respect to their

respective lobes and the results are visualized in Figure 11. The results suggest710

that for both classes, the frontal lobe carries a higher number of discriminant

features in terms of both inter and intra-lobe features. The figure shows a

different distribution for all of the lobes in both classes. The distribution is

highlighted by the different shape of an individual lobe when comparing the two
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classes. The frontal lobe is known to be involved with cognitive functioning [55].715

This includes attention, the executive function that includes planning, selection,

sequential organization and self-monitoring of actions, affect and mood, memory,

self-awareness and personality [55]. The alterations in frontal lobe might cause

abnormal behaviours in these functions including attention and mood. Studies

have shown connectivity alterations in frontal, temporal, and occipital cortices720

locally as well as with the rest of the brain in individuals with ADHD [56]. Our

findings about the frontal lobe alterations in ADHD support the results found

in earlier studies [57, 58, 59].
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Figure 6: Visualization of the learned feature importance map for a) healthy and, b) ADHD

classes for the NYU dataset. For the sake of clarity, only top 100 values for an individual class

are visualized. The visualization shows the differences in the feature maps of both classes.

7. Conclusions

In this paper, we have proposed an innovative end-to-end deep neural network725

for classification of ADHD from fMRI data. The proposed model takes pre-processed

time-series signals of fMRI as input and learns to predict the classification label.

We were interested to see if the classification task in fMRI can be solved by an
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Figure 7: Visualization of the learned feature importance map for the healthy class on the

brain volume. For the sake of clarity, only top 50 values are visualized. (Data visualized

through the BrainNet viewer software [60]).

Figure 8: Visualization of the learned feature importance map for the ADHD class on the

brain volume. For the sake of clarity, only top 50 values are visualized. Visualization through

the BrainNet viewer software [60].
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Figure 9: Plot of matching the top 100 healthy feature maps in the ADHD feature maps. The

y-axis represents the top 100 feature maps in the healthy group and the x-axis represents the

index of a particular healthy feature map in the ADHD feature map. The figure shows that

out of top 100 feature maps of healthy class, less than 10% fall in top 500 feature maps in the

ADHD class.

end-to-end network. As far as we know, this is the first attempt to apply an

end-to-end network incorporating functional connectivity for classification of a730

neurological disorder.

We have evaluated the importance of functional connectivity in the proposed

end-to-end network. Findings show that despite the large number of parameters

in our method, it performs better as compared to an end-to-end network without

functional connectivity with comparatively less number of trainable parameters.735

This result strengthens the argument that functional connectivity is an important

biomarker towards the identification of a neurological disorder. Experimental

results on the ADHD-200 dataset demonstrate that utilizing such a model

outperforms the current state-of-the-art.
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Figure 10: Plot of matching the top 100 ADHD feature maps in the healthy feature maps.

The y-axis represents the top 100 feature maps in the ADHD group and the x-axis represents

the index of a particular ADHD feature map in the healthy feature map. The figure shows

that out of top 100 feature maps of the ADHD class, less than 10% fall in top 500 feature

maps in the healthy class.
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Figure 11: Distribution of the top 100 features maps in the healthy and the ADHD classes.
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Our proposed method is able to associate different weights to an individual740

functional connectivity with respect to its importance in predicting a class label

(healthy control and ADHD). The proposed method appears to assign weight

to different brain networks with respect to a particular class.

Our results suggest that the frontal lobe carries most discriminant power in

classifying ADHD. The frontal lobe is known to be associated with cognitive745

functions like attention, memory, planning and mood. Our findings of the

frontal lobe anomalies in ADHD concur with earlier studies results. One of

the limitations of the proposed work is the small data size being evaluated.

There is a smaller number of subjects in the individual imaging sites. Also, the

data is very heterogeneous across different sites requiring training the network750

separately for each institution. The distribution of classes (healthy control

and ADHD) in training and testing splits in the imaging sites is different,

which makes the dataset very challenging for any classifier to achieve decent

results. Due to these facts, the classification accuracy achieved by studies on

this dataset is low and has room for improvement. We have compared results of755

the DeepFMRI and existing studies with a baseline classifier that simply chooses

the majority class based on the testing data distribution. In the case of NYU,

the baseline classifier accuracy is high (70.7%) and accuracy achieved by other

studies are comparatively lower. However, the DeepFMRI method was able to

achieve a slightly higher accuracy than the baseline, and was able to achieve760

much better accuracy than the baseline for the Peking and NI dataset.

In future work, we are interested to apply the proposed network to study

ADHD sub-groups. The study might be based on treatment response, clinical

scores, disorder outcomes etc. However, it will not require redesigning the

proposed network. If the output variable is discrete, a classifier can be used765

as presented in this paper. If the output variable is continuous, instead a

regressor can be used. We are curious to evaluate the proposed method on

other disorders like epilepsy and Alzheimer’s with a large number of subjects.

We are also interested to explore whether the proposed method can be used

to overcome variations in different imaging sites. One interesting experiment770
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could be to re-train the feature extractor network separately for each imaging

site, keeping the parameters of the classification network and similarity measure

network fixed. By this way possibly the proposed network could be adopted to

different imaging sites.
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